
Value-Sensitive	Software	Design
Data	Science	for	Entrepreneurship
Korenhof,	Paulan
https://doi.org/10.1007/978-3-031-19554-9_21

This	publication	is	made	publicly	available	in	the	institutional	repository	of	Wageningen	University
and	Research,	under	the	terms	of	article	25fa	of	the	Dutch	Copyright	Act,	also	known	as	the
Amendment	Taverne.

Article	25fa	states	that	the	author	of	a	short	scientific	work	funded	either	wholly	or	partially	by
Dutch	public	funds	is	entitled	to	make	that	work	publicly	available	for	no	consideration	following	a
reasonable	period	of	time	after	the	work	was	first	published,	provided	that	clear	reference	is	made	to
the	source	of	the	first	publication	of	the	work.

This	publication	is	distributed	using	the	principles	as	determined	in	the	Association	of	Universities	in
the	Netherlands	(VSNU)	'Article	25fa	implementation'	project.	According	to	these	principles	research
outputs	of	researchers	employed	by	Dutch	Universities	that	comply	with	the	legal	requirements	of
Article	25fa	of	the	Dutch	Copyright	Act	are	distributed	online	and	free	of	cost	or	other	barriers	in
institutional	repositories.	Research	outputs	are	distributed	six	months	after	their	first	online
publication	in	the	original	published	version	and	with	proper	attribution	to	the	source	of	the	original
publication.

You	are	permitted	to	download	and	use	the	publication	for	personal	purposes.	All	rights	remain	with
the	author(s)	and	/	or	copyright	owner(s)	of	this	work.	Any	use	of	the	publication	or	parts	of	it	other
than	authorised	under	article	25fa	of	the	Dutch	Copyright	act	is	prohibited.	Wageningen	University	&
Research	and	the	author(s)	of	this	publication	shall	not	be	held	responsible	or	liable	for	any	damages
resulting	from	your	(re)use	of	this	publication.

For	questions	regarding	the	public	availability	of	this	publication	please	contact
openaccess.library@wur.nl

https://doi.org/10.1007/978-3-031-19554-9_21
mailto:openaccess.library@wur.nl

501

Value-Sensitive
Software Design
Paulan Korenhof

Contents

21.1 Introduction – 502

21.2 The Good, the Bad,
and the Never Neutral – 503

21.2.1 Non-neutrality – 503
21.2.2 Impact on a Micro-level – 504
21.2.3 Impact on a Macro-level – 507
21.2.4 In Sum – 509

21.3 Employing the Never
Neutral – 510

21.3.1 A Challenge for Designers – 510
21.3.2 Value-Sensitive Design – 511
21.3.3 Values – 512
21.3.4 Legal Values and Design – 513

 References – 518

21

© Springer Nature Switzerland AG 2023
W. Liebregts et al. (eds.), Data Science for Entrepreneurship,
Classroom Companion: Business,
https://doi.org/10.1007/978-3-031-19554-9_21

https://doi.org/10.1007/978-3-031-19554-9_21#DOI
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19554-9_21&domain=pdf

502

21

Learning Objectives
 5 Understand why technology is not a neutral instrument
 5 Be able to recognise the non-neutral impact of a particular technology
 5 Think about how to embed ethical values in software design

21.1 Introduction

Software is involved in almost everything in our daily lives: it is in our desktops,
laptops, and smartphones, but we see it also implemented in an increasing range of
common-use items like cars, bikes, electric toothbrushes, cookers, fitness devices,
and toys. We use software to pay, communicate, shop online, plan a route, plan
public transport, watch series and movies, decide which insurance to take, which
political party to vote for, order food, check our health, and so on. And it is not
just us as private citizens that so gladly use software for many things in our daily
practice. Governmental institutions and business rely heavily on software for per-
forming many of their processes. They at times even fully automate certain
decision- making processes, like deciding whether someone should be given a fine
for speeding, whether someone should be granted a loan or a credit card, or
whether someone is a promising job applicant.

While there are many advantages to using software as an instrument to help us
out with all sorts of tasks, there is a catch. The catch with software programs is that
like all technology, they are inherently not neutral: every technology has a certain
bias, a particular way in which it likely affects our practices, our choices, our per-
ception, and how we interpret the world around us. Meanwhile, the impact of soft-
ware on the lives of individuals can be high, especially as increasingly more elements
of our lives are dependent on and intertwined with these applications.

The goal of this chapter is to draw the readers’ attention to this non-neutral
character of technology and to encourage them to try to utilise this non-neutrality
in a beneficial manner. The chapter starts with discussing why technology is never
a neutral instrument. With the help of various examples relating to software, the
impact of technology on different elements of human life is discussed. Given the
inherently non-neutral character of technology and its potential problematic
impact, it is important to figure out how to reap the fruits of the technology while
reducing its potential harms. The second half of the chapter therefore argues that,
ideally, we should actively deal with this non-neutrality from the very beginning of
technology design. In order to help designers with this, the chapter introduces the
main ideas underlying value-sensitive design (VSD). Because it is not possible to
provide here a complete instruction manual for value-sensitive software design, the
chapter aims to give readers sufficient food for thought so that they can venture on
the follow-up journey themselves.

 P. Korenhof

503 21

21.2 The Good, the Bad, and the Never Neutral

In this section, we will delve into the non-neutrality of technology. First, the back-
ground of the non-neutrality perspective will be discussed. After that, the non-
neutrality will be explained in more detail by approaching the technology from a
micro- and a macro-level perspective.

21.2.1 Non-neutrality

The importance of technology for human life can hardly be overestimated: society
and life as we know it today would not exist without the development and use of
technology. Technology allows us to achieve certain goals, do and perceive things
we could not do without the use of technology, and reveal the world in new ways
to us. For example, we can see single cells of the body through a microscope, con-
sult people at the other side of the planet over the phone, or look into the body
with an echo device. By allowing us such new experiences, actions, and perceptions
of the world, technology enables us to relate in the world in new manners and
affects our interpretation of the world around us, as well as our practices and social
conventions (Kiran & Verbeek, 2010; Verbeek, 2011). Due to the shaping influence
of technology on our perception, experience, actions, goals, and understanding,
technology transcends the role of being merely an instrument. In the last century,
philosophers of technology therefore argued that technology is inherently not neu-
tral: technologies can reveal the world to us in new ways; create new choices and
possibilities for action; establish social identities, power relations, and occasions of
inclusion and exclusion; and influence and inform us, our choices, our culture, and
our world views (see, e.g., Heidegger, 1954; Ihde, 1983; Latour, 1993; Feenberg,
2002; Verbeek, 2005). Due to this non-neutrality, technology has a normative
impact on the relation between human beings and their world (Hildebrandt, 2015).

The analysis of the impact and meaning of technology for human existence gave
rise to different schools of thought in the philosophy of technology. Instead of drag-
ging the reader into the discussion between the various ideas, it will be more valuable
for the purpose of this chapter to take the two main directions of the perspectives
into account, albeit in a simplified manner, and understand them as complementary
to each other. Simplified, we can say that technology affects the way humans engage
with the world that occurs stretching from a micro-level, an individual and empirical
level (see, e.g., Ihde, 1983; Verbeek, 2005), to macro-level, a societal and abstract
level (see, e.g., Stiegler, 1998; Feenberg, 2002). While taking the technology’s impact
on a more macro- level into account is indispensable for getting an understanding of
the scope and depth of its impact on our lives, an analysis focused more on a micro-
level can be very helpful to trace some of the problems back to particular concrete
properties of the technology. However, I argue that the micro- and macro-level of the
impact cannot be fully separated from each other because the micro-mechanics give
shape to the impact on the macro-level, while what happens at the macro-level is
bound to influence how the micro-mechanics are realised in practice. Despite this, I
will for structural clarity start with a focus on the micro-level and from thereon move
to a more macro-level of impact—but readers should note that these are linked.

Value-Sensitive Software Design

504

21

21.2.2 Impact on a Micro-level

On a micro-level, technology affects the human perception, actions, practices, and
goals, by letting us experience the world mediated by the technology (see, e.g., Ihde,
1983; Verbeek, 2005). For example, a thermometer can show us the temperature of
our bodies. If the thermometer indicates 38.5 °C, we will likely conclude that we
have a fever, even if we do not feel ill. By telling us that we are in fact ill, while we
may feel fine, the technology affects how we understand our health. By doing so,
the technology co-shapes our relation to the world (in this case, the human body).
Technology affects our perception, our actions, and even how we think and what
we remember. The latter was clearly shown by research into the effects of search
engines on our memory: it turned out that once people know that they can rely on
a search engine or the like for their information, they tend to remember where and
how to find something instead of remembering the content itself that they needed
to recall (Sparrow et al., 2011, p. 778).

When mediating our relation to the world, technology generally has a particu-
lar focus: it often reveals and highlights particular aspects of a technological co-
shaped reality, while other elements are obscured or ignored (Verbeek, 2005,
p. 131). Think for instance about what happens when you make a telephone call.
When you make a telephone call, this makes the voice of the caller stand out, while
the rest of the individual is concealed. The technology hereby establishes a particu-
lar relation between a human being and the world, a relation that is directed
towards something (i.e. in the case of the telephone call, the technology is directed
towards sound). We can therefore say that technology has a certain “directionality”
(Verbeek, 2005, p. 115). This directionality is embedded in the material design of
the technology. With its directionality, the technology takes a certain “stance”: it
can “suggest, enable, solicit, prompt, encourage, and prohibit certain actions, thoughts,
and affects or promote others” (Lazzarato & Jordan, 2014, p. 30). A designer will
generally aim to give the technology a particular directionality by imbuing the
technology with certain properties. For example, web applications of online stores
and services are generally designed in such a manner that they render it impossible
for users to place an online order for a product or service without accepting the
company’s general terms and conditions. The directionality of the technology in
this case is designed so that it ensures the legal base and protection of the company
selling the product or service. However, there is a limit to the influence of the
designer: in the end is the technology itself that is present in the world and with
which users interact. Technology has a certain autonomous existence separate
from its designers (Chabot, 2013, p. 15). As such, technology can also easily have
effects or uses that are unforeseen or unintended by its designers. However, as the
designers determine the material properties of the technology, they do play a piv-
otal role in the shaping of the non-neutral directionality of the technology they
design.

The directionality of software thus depends on the characteristics and con-
straints of the technology itself, as well as on the choices made by its designer. The
developer’s knowledge, expertise, cultural background, and limitations form the

 P. Korenhof

505 21

background of the software design (Kitchin, 2017, p. 18). This takes shape in a
two-step process: a developer needs (1) to interpret the task at hand and (2) trans-
late this into code. As designers develop the software, their views on how to inter-
pret and translate certain concepts, values, and goals form the base on which they
encode procedures that determine what the software does and does not do. With
this, the designer’s assumptions and biases are incorporated in the software—
whether it be intentional or accidental (Friedman & Nissenbaum, 1996; Goldman,
2008). Coded procedures are therefore inevitably value laden (see, e.g., Brey &
Søraker, 2009; Mittelstadt et al., 2016).

► Example 1

Imagine that a company hires you to circulate a vacancy for a truck driver and select
some potential candidates. You decide to develop an online form for the job application
procedure. In order to apply, job applicants need to fill in their name and date of birth,
upload a CV, tick a box with either male or female, and tick a box that they consent to
the processing of their personal data. In order to prevent people from forgetting to add
anything, you make all the fields mandatory in order to apply. While such a form may
seem simple and straightforward, in this small application, we can already see many
points on which the software has a certain directionality towards the world—and may
even be problematic. First off, the fact that it is an online form immediately places the
application process in the digital realm. As such, the application may bypass the less dig-
ital skilled or people who have limited access to the internet. Secondly, as the form needs
to be fully completed before someone can apply, the software compels people to reveal
all this information (or lie about it) and to identify themselves according to the options
the form offers. The form expresses a certain view of the world: it presents certain ele-
ments as important about people who want to be a truck driver and expresses a binary
gender perspective. Job applicants can experience this “identity fit to the software’s box”
as problematic: people may prefer not to give their date of birth for privacy reasons or
as protection against age discrimination, people may not identify themselves as male or
female or find it irrelevant to share in a job application, some people may prefer more
creative freedom when applying for a job, etc. However, the choices people can make in
applying for the vacancy are limited to and determined by the options offered by the
online form. ◄

Giving shape to software can be especially tricky when designing software that
needs to produce decisions based on particular laws. Examples are the automatic
fines issued when someone is recorded by a traffic camera for speeding, or the allo-
cation of child care subsidy based on a combination of data sets. In such cases,
programmer will need to translate law or policy rules into code and may find them-
selves confronted with questions about when exactly a certain case falls under the
definitions of a particular law or policy rule. When giving shape to such boundaries
in code, the programmer fills in legal concepts and de facto establishes a policy rule
by programming the software.

The role of design choices in software can hardly be overestimated: the code is
what the software does and controls what users can and cannot do. This is what
Lessig meant with his famous statement “code is law” (Lessig, 2006). However, as

Value-Sensitive Software Design

506

21

Pariser explains, software code more forcefully controls user behaviour than law, at
least at the outset:

 » “If code is law, software engineers and geeks are the ones who get to write it. And
it’s a funny kind of law, created without any judicial system or legislators and
enforced nearly perfectly and instantly. Even with antivandalism laws on the books,
in the physical world you can still throw a rock through the window of a store you
don’t like. You might even get away with it. But if vandalism isn’t part of the design
of an online world, it’s simply impossible. Try to throw a rock through a virtual
storefront, and you just get an error” (Pariser, 2011, pp. 96–97).

The developer thus exercises a significant degree of power over users through the
software’s architecture: users can only use the software as its architecture allows. In
this, the software’s interface plays a key role on the one hand by suggesting to the
user what software does and can do, while on the other hand it is also the realm of
interaction by means of which users can operate the software. The interface thus
shapes the perception of users, provides them with the know-how of the software,
and offers them a particular set of actions—and without using tricks, the user’s
perception and actions are commonly limited to that which is offered by the inter-
face. Commonly, this is a graphic user interface (GUI) that hides the source code
of the software and thereby often renders a substantial part of what the software
actually does opaque. Moreover, the interface can be shaped to manipulate users to
perform certain actions by means of persuasion or nudging (see, e.g., Fogg, 1999;
Harjumaa & Oinas-Kukkonen, 2007; Thaler & Sunstein, 2009). Think for example
of the various ways in which website designers try to nudge users into accepting
marketing cookies by using a big green button to “accept all cookies”, versus a less
visible small red button that allows a user to select a different setting (see the chap-
ter by Gellert in this book for the explanation of consent and the use of cookies).

Depending on the interface, users are thus offered a more or lesser degree of
insight into the operations performed by the software and are given certain choices
with regard to the actions that they can perform. This affects the autonomy of
users: their ability to self-govern, which entails the freedom to make informed deci-
sions and shape their lives as they see fit.1 For example, some online stores require
users to classify themselves as “female” or “male” before they can place an order;
other stores give them more options, like the extra option of “I’d rather not say”;
while again other stores do not mark gender as a required field at all and leave it to
the users to decide whether they want to fill in the field. The more freely users can
choose and act, the more autonomy they have. Reducing the autonomy of users
and forcing them down certain action paths can estrange human agents from the
task they are performing with the software, especially if they have little insight into
and know-how of what the software is actually doing behind the interface. De Mul
and Van den Berg therefore argue: “Awareness of, and insight into the ‘scriptal

1 The exact definition of what autonomy entails differs somewhat per social and political perspec-
tive. For the purposes of this chapter, I kept the concept relatively open and phrased it in a man-
ner that can give some handholds in relation to software design.

 P. Korenhof

507 21

character’ of the artefact, and having the ability to influence that character, is cru-
cial for users in the light of the delegation of their autonomy” (De Mul & van den
Berg, 2011, pp. 59–60).

21.2.3 Impact on a Macro-level

Technology not only affects processes, practices, and perception on an individual
level, but also influences our lives on a macro-level: it influences and even shapes
societal organisation and transactions, institutions, governmental agency, politics,
science, relations between individuals, and even our identity (Stiegler, 1998).
Especially on the level of the functioning of companies and institutions, as well as
the work of people therein, the use of software deeply affects the processes and
output, which in turn can affect people outside of the organisation), and even soci-
ety at large. Take for instance the use of automated decision-making software, like
the automated issuing of fines for speeding. This entails a shift in decisionary
power, whereby the main “decision maker” changes from a human agent who
learned to employ their knowledge of legal rules and policy in order to make a
contextual assessment, to software that strictly applies rules:

 » decisions are pre-programmed in the algorithms that apply the same measures and
rules regardless of the person or the context (e.g., a speeding camera does not care
about the context). Responsibility for decisions made, in these cases, has moved
from ‘street-level bureaucrats’ to the ‘system-level bureaucrats’, such as managers
and computer experts, that decide on how to convert policy and legal frameworks
into algorithms and decision-trees (Noorman, 2020).

By shifting the decisionary power, such software generally reduces the space for
individual discretion and gives rise to a workforce that mass produces decisions in
a uniform production process on which they have little influence (Giritli Nygren,
2009; Wihlborg et al., 2016). As such, software “reframes relationships, responsi-
bilities and competences” (Wihlborg et al., 2016, p. 2903).

Moreover, when know-how is embedded into software, the practical need for
human agents to have this same know-how reduces and sometimes even disap-
pears: a click on a button can be enough to provide users with what they need. An
example of this is a bank where “customer advisers get predetermined interest
rates from the IT system for their customers’ credit, but they do not know how this
interest rate is calculated or what justifies it” (Spiekermann, 2015, p. 12). With the
delegation of know-how to software, human agents, and society in general, are
becoming increasingly dependent on software for many of their processes. Stiegler
therefore argues that technology is in a sense a poison that is at the same time its
own cure—a pharmakon (Stiegler, 2012): while software allows humans to forget
knowledge and how to do certain things (poison), it at the same time remedies this
loss of know-how by performing the actions for them (cure). Think for instance of
phone numbers. In the pre-mobile phone era, the phone numbers were not stored
in the telephone. This commonly meant that you automatically memorised the
numbers of family and close friends because you had to consistently type the num-

Value-Sensitive Software Design

508

21

ber in and, also, putting in some effort to remember a number was faster than
having to look the number up in an address book. However, with smartphones,
this need for remembering became virtually superfluous and typing in the number
is unnecessary: the technology does this for us. The result is that we are far less
likely to remember phone numbers unless we actively spend effort to memorise
them. The effect of this becomes painstakingly clear when you lose access to the
contact list in your phone.

The more dependent we become on particular software, the more power it holds
over us. We can see this clearly in the use of search engines. Due to the abundance
of information resources on the web, we have become highly dependent on their
use to find online information. As such, this pivotal position of search engines
imbues them with a significant power over the connection between users and con-
tent providers: search engines “are attention lenses; they bring the online world
into focus. They can redirect, reveal, magnify, and distort. They have immense
power to help and hide” (Grimmelmann, 2010, p. 435). Dropping out of a search
engine’s search result list can render content nearly invisible to a significant part of
the web users—with all due consequences for the web content owner as well as for
searching users.

The power of software is strengthened by the trust people tend to have in the
technology to fulfil its tasks properly: people tend to have an “automation bias”
due to which they trust the output of software more than their own assessment
(see, e.g., Skitka et al., 1999). As such, they may overly rely on software for their
assessment or to quickly make decisions (Skitka et al., 2000). Combine the human
inclination towards automation bias with an opaque interface that suggests an
objectivity or neutrality of the software’s operations, while the software is in fact
bound to harbour some (intentional or unintentional) biases and maybe even has
some errors, and we have a recipe for disaster.

The scale of processing afforded by software can magnify the impact of its
biases to a society-wide level. Software may “normalize the far more massive
impacts of system-level biases and blind spots” (Gandy, 2010, p. 33). Take for
example social media. This type of software led to changes in web culture by giving
rise to new standards of what is considered “normal” (Van Dijck, 2013; Wittkower,
2014). One of the changes brought about by social media is a shift from relatively
anonymous online communication to pattern communication where “individuals
are increasingly known, and in fact willingly share a lot of their personal informa-
tion online” (Sparrow et al., 2005, p. 283). A pivotal role here is played by the soft-
ware’s default settings. The default settings set a standard for its use and require
users with divergent preferences to invest time and effort in order to adjust the
default (see, e.g., van den Berg & Leenes, 2013; Acquisti et al., 2015). The default
settings thereby express a certain world view, a “normalcy”, with regard to its use.
For example, originally on Facebook, the default setting of an account was that all
user information and posts were publicly available. With these default settings,
Facebook suggested that the standard was to be available, accessible, and identifi-

 P. Korenhof

509 21

able as a particular offline person for a potentially worldwide audience.2
Additionally, users tend to have an inclination to accept the default settings,
because it “is convenient, and people often interpret default settings as implicit
recommendations” (Acquisti et al., 2015, p. 512). The default settings thus strongly
affect user behaviour and norms.

Last, the output of software can impact the lives of people who are not the
software’s users—as well as society at large. For instance by placing certain groups
of people at a disadvantage. Let us look a bit deeper into this by focusing on auto-
mated decision-making applications like those that issue fines for speeding, mark
people as being fraud risks, calculate the amount people need to pay for their insur-
ance policy, etc. In these cases, people who are not the initial users of the software
are subjected to the output (decision) produced by the software. However, as the
transparency of the software’s output is dependent on what is programmed into the
software to show as output, people may be profiled and subjected to a decision of
which the how, why, and what are not made clear to them. As such, it is difficult for
them to figure out if an error was made, and if so, where and how. A lack of insight
in what happens in software can be particularly problematic in the case of auto-
mated decision-making software used by government agencies because these agen-
cies have the obligation to be transparent in their decisions and motivate them.
Moreover, the lack of transparency and access to the same software makes it dif-
ficult for people to effectively challenge an automatically produced decision. It
leads to a power imbalance by establishing an inequality of arms between a com-
mon citizen and the agency—which generally already holds a power position
because people are dependent on the agency for one thing or the other. These are
only some of the issues concerning automated decision-making software. The
impact of automated decision-making software on our lives and world, a full dis-
cussion here is too extensive.

21.2.4 In Sum

This section discussed why software, like all technologies, is not a neutral instru-
ment. Software has a certain directionality in which it likely affects and even
changes the manner in which we work, decide, and interact. Its impact can stretch
deep into society and especially into the lives of people. The question now is how
should we deal with this non-neutrality.

2 Under pressure of public institutions and European legislation, Facebook eventually changed its
default settings to a restricted audience and with that sets a somewhat more privacy-friendly
standard.

Value-Sensitive Software Design

510

21

21.3 Employing the Never Neutral

This section offers an approach on how to deal with the non-neutrality of technol-
ogy. It will start by arguing for a proactive approach with regard to values in tech-
nology design. In order to give some handholds on how to start, the section then
gives a general outline of “value-sensitive design”. Last, given the focus of this
chapter on software, this section takes a look at the values promoted by the General
Data Protection Regulation (GDPR) when it comes to the processing of personal
data.

21.3.1 A Challenge for Designers

While technology is not necessarily good or bad, it is thus never neutral. The
design of technology is therefore pivotal: at this stage of the process, a significant
part of what a specific technology does and does not do, its directionality, is
determined. De Mul and Van den Berg therefore point out that, despite the
strong influence of technology on us and our world, “the responsibility for that
world and what happens in it is still in the hands of human beings and not in the
hands of the technologies. After all, human beings are the architects, designers
and users of the technologies, and for that reason they are responsible for their
creations and their creations’ output” (De Mul & van den Berg, 2011, p. 46).
Technology is designed by us, and in many cases, we will be able to design the
technology in such a manner that we can reduce, or even prevent, its problematic
impact.

A way to deal with the inherent non-neutrality of technology is therefore to
consciously design technology in a manner that it supports or promotes certain
social or moral values, like freedom, safety, and privacy. Already in the design pro-
cess, we should therefore be asking what the potential impact of a software applica-
tion may be, and how the application should work if we want it to promote certain
values, while repressing or even fully preventing the inscription of problematic
biases into the technology. Of course, not all future effects and unintended uses are
foreseeable (especially since real life is messy, see the point made by Keymolen and
Taylor in this book), and not everything can be prevented. However, a good start is
to consciously implement certain values from the first stages of the design and to
try to become aware of the values that we are unconsciously building into the tech-
nology. With this, “[t]echnological innovation can become responsible
innovation”[emphasis original] (van den Hoven et al., 2015, p. 3). This places an
active responsibility on engineers. Consciously focusing on the values inscribed
into the design can help to ensure that the technology meets societal needs and it
helps to reduce the risk of unwanted, unintended, or harmful effects. This also
beneficial for the designers and engineers, because it may avert damage to their
reputation when people consider the technology to be untrustworthy or harmful.
Moreover, in some cases, designing technology in such a way that it promotes par-
ticular values is even required by law. An important law in this regard is the GDPR

 P. Korenhof

511 21

(see the chapter by Gellert in this book for more information about this regula-
tion), which requires agents who process personal data to engage in privacy by
design (Art. 25, GDPR, I will return to this later).

21.3.2 Value-Sensitive Design

One of the ways in which we can consciously aim to deal with the problematic, as
well as beneficial, non-neutrality of technology is by engaging in a manner of
designing that is value sensitive. Several approaches have been developed for explic-
itly taking human values into account when designing technology. These approaches
“share at least four key claims: values can be expressed and embedded in technol-
ogy, technologies have real and sometimes non-obvious impacts on those who are
directly and indirectly affected, explicit thinking about the values that are imparted
in technical design is morally significant, and value considerations should be sur-
faced early in the technical design process” (Friedman et al., 2017, p. 65). The most
well known of these approaches is value-sensitive design (VSD) (for an extensive
overview, see Friedman & Hendry, 2019).

The general idea of VSD was developed around the mid-1990s (Friedman et al.,
2017, p. 64). VSD is an approach to technology design that takes human values
into account during the whole of the design process (Friedman et al., 2008, p. 76).
Van den Hoven describes it as “a proactive integration of ethics—the frontloading
of ethics—in design, architecture, requirements, specifications, standards, proto-
cols, incentive structures, and institutional arrangements” (Van den Hoven, 2008,
p. 63). VSD is ongoing under development and may always be (which does not have
to be a bad thing). Its general methodology still faces some challenges (see, e.g.,
Friedman et al., 2017; Winkler & Spiekermann, 2018)—a few of these will be dis-
cussed below. Despite the challenges, overall, VSD is a relatively practical approach
concerning value-conscious technology design and can be of significant value to
those who are at the heart of the design process. VSD’s methodology draws on
inter alia the social sciences and human and computer interaction research
(Friedman et al., 2017, p. 64). Its methodology mixes empirical, technical, and con-
ceptual studies and applies these in an iterative and integrative manner throughout
the design process (Friedman et al., 2008, p. 93). With this methodological mix,
VSD takes an interactional stance and starts from the premise “that human beings
acting as individuals, organizations, or societies shape the tools and technologies
they design and implement; in turn, those tools and technologies shape human
experience and society” (Friedman et al., 2017, p. 68).

► Example 2

Imagine that you want to develop software that helps people to spend less time look-
ing at their smartphone. By means of empirical analysis, you can examine the context
and experience of people’s current smartphone use and get an idea of their wishes and
problems. In order to examine this, you would ideally use quantitative and/or quali-

Value-Sensitive Software Design

512

21

tative research methods from the social sciences, like interviews, surveys, and statisti-
cal analysis. Additionally, you can use such empirical analysis to test your own design.
However, these analyses are not all that is relevant. Users may not always know what
they want (especially beforehand), or be aware of all the implications of what they are
doing and using, nor may you have sufficient data to oversee the bigger picture. Doing a
conceptual analysis is therefore important to get a full(er) picture of the concepts and
issues involved, like the values that play a role or the broader individual and societal
implications of the technology. For this conceptual analysis, you draw on theoretic and
philosophic research that sees to the main concepts and issues that relate in one way or
the other to the (to be designed) technology. Let us say that for this software, you will be
reading up on philosophical accounts of agency, autonomy, nudging, manipulation, and
privacy. This can in turn inform your further empirical inquiries and your technological
design. It is thus important to also perform a technological analysis of the technology.
A better understanding of the technology can be achieved by analysing its concrete
mechanisms and results, as well as by looking at already existing technologies that share
certain similarities and assessing their impact. Your findings of the technical mecha-
nisms can further inform and specify your conceptual and empirical analysis, which in
turn can help you to improve the design. And so goes the process back and forth until
you end up with a design that is well rounded and backed by research. ◄

21.3.3 Values

In the context of VSD, the term “value” refers to “what is important to people in
their lives, with a focus on ethics and morality”[emphasis original] (Friedman &
Hendry, 2019, p. 24). The focus thus lies on social and moral values, and not on
economic value. In this context, we can think of values like human welfare, trust,
privacy, fairness, autonomy, universal usability, safety, health, and environmental
sustainability. The values potentially covered by VSD range from those that can be
found in the diverse moral philosophical theories like deontology, consequential-
ism, and virtue ethics (see the chapter by Keymolen and Taylor in this book), as
well as personal values like preferences of taste and colour, and conventions like
protocol standards (Friedman et al., 2008, p. 94).

VSD tends to base its value selection and assessment on the experiences and
opinions of the stakeholders. A key element of VSD is therefore to identify the
direct and indirect stakeholders and their corresponding values (Friedman et al.,
2017, p. 69). Direct stakeholders are people, groups, or organisations who directly
interact with the technology in question (Friedman et al., 2017, p. 76). The indirect
stakeholders consist of people, groups, or organisations who are affected by the
technology, but do not directly interact with it (Friedman et al., 2017, p. 76). An
example of a method to get a sense of the values at stake of the direct and indirect
stakeholders is to conduct semi-structured interviews (Friedman et al., 2008,
pp. 100–101). However, identifying the stakeholders can be difficult, and a failure
to identify a particular group of stakeholders can lead to their exclusion as well as
to the exclusion of particular values (Manders-Huits, 2011; Winkler & Spiekermann,
2018). Moreover, stakeholders themselves may not always be able to oversee the

 P. Korenhof

513 21

impact of particular technologies and be able to recognise which of their values
may be at stake in a certain context.

In some cases, it turns out that two or more conflicting values are involved.
These conflicting values do not necessarily have to originate from different stake-
holders: the same stakeholder can have multiple values that may pull the design in
different directions. If there is a tension between values, it is important to take this
into account in the design process (Friedman et al., 2017, p. 69).

► Example 3

An example of a tension between values is the likely tension between privacy and
national or public safety: while privacy generally benefits from collecting and revealing
less personal data, safety generally benefits from having access to more personal data.
This tension played a pivotal role in the introduction of body scanners in airports. The
goal of the body scanner is to increase safety by visually showing airport security staff
where on the body people carry objects. For this, they scan the surface of the body, and
this can display a rather accurate view of what the naked body of the scanned person
looks like. This deeply infringes the bodily privacy of those scanned. Many of the body
scanner developers took this privacy infringement for granted as a plausible sacrifice
in the name of safety (Spiekermann, 2015, p. 169). However, it turned out that neither
the general public nor the security staff and airport operators (who had to deal with
customer complaints and feared a drop in customers) were all too happy with this pri-
vacy infringement (Spiekermann, 2015, p. 169). One company took both values—that
of safety and privacy—seriously and sought to design scanner software that reduced the
privacy infringement while maintaining its safety goal. In the resulting design, the dis-
play of the body was replaced by an abstract stick figure outline of a body with areas in
which an object was located on the body marked. With this design, the company reached
its safety goal while at the same time building in privacy safeguards in the software. By
taking both values seriously and embedding them in the design, the company managed
to capture the majority of the market (Spiekermann, 2015, p. 169). ◄

21.3.4 Legal Values and Design

A good source to find values that value-sensitive software design should ideally
take into account, is law. In the context of software design, the GDPR is of par-
ticular relevance due to its focus on data processing. The GDPR provides us with
a set of values that need to be taken into account on behalf of (the protection of)
“data subjects” (see the chapter by Gellert in this book for a full explanation of the
term “data subject”) and society at large. Below are some of the main (derivative)
values listed that can be found in the GDPR:

 5 Autonomy (see, e.g., informed consent, Recital 32, Art. 4(11), Art. 7)
 5 Privacy (see, e.g., control over own data, Recitals 7 and 68, Art. 17, Art. 21)
 5 Protection against power imbalance (see, e.g., Recital 43, automated individual

decision-making, including profiling, Art. 22; purpose limitation, Art. 5(1)(b);
data minimisation, Art. 5(1)(c); storage limitation, Art. 5(1)(e))

 5 Human dignity (see, e.g., Recital 4)

Value-Sensitive Software Design

514

21

 5 Fairness (see, e.g., Recitals 39 and 60, 71, Art. 5(1)(a))
 5 Safety/protection (see, e.g., Recitals 1, 2, 51, 54, 78, and 108, Art. 1, Art. 6(d),

Art. 6(f), Art. 25)
 5 Security (see, e.g., Recitals 2, 16, 19, and 49, Art. 5(f), Art. 32)
 5 Respect for the rights and freedom of individuals (see, e.g., Recitals 2 and 4)
 5 Human welfare (see, e.g., Recital 4)
 5 Transparency (see, e.g., Recitals 39, 60, and 71, Art. 5(1)(a))
 5 Economic prosperity (see, e.g., right to run a business, Recital 4)

What is interesting about the GDPR in light of this chapter, is that the GDPR even
explicitly requires the embedding of some of its underpinning values in software
design. Art. 25(1) of the GDPR on “Data Protection by Design and Default” states:

 » Taking into account the state of the art, the cost of implementation and the nature,
scope, context and purposes of processing as well as the risks of varying likelihood
and severity for rights and freedoms of natural persons posed by the processing, the
controller shall (…) implement appropriate technical and organisational measures,
such as pseudonymisation, which are designed to implement data- protection prin-
ciples, such as data minimisation, in an effective manner and to integrate the neces-
sary safeguards into the processing in order to meet the requirements of this
Regulation and protect the rights of data subjects (Art. 25(1), GDPR).

The data protection principles (the chapter by Gellert provides an extensive analy-
sis of these principles; here, I will briefly touch upon them for clarity purposes) are
listed in Art. 5 of the GDPR and state that personal data needs to be “processed
lawfully, fairly and in a transparent manner in relation to the data subject (‘lawful-
ness, fairness and transparency’)” (Art. 5(1)(a), GDPR); the personal data can only
be collected and processed “for specified, explicit and legitimate purposes and not
further processed in a manner that is incompatible with those purpose (...) (‘pur-
pose limitation’)” (Art. 5(1)(b), GDPR); the personal data needs to be “adequate,
relevant and limited to what is necessary in relation to the purposes for which they
are processed (‘data minimisation’)” (Art. 5(1)(c), GDPR); the personal data needs
to be “accurate and, where necessary, kept up to date; every reasonable step must
be taken to ensure that personal data that are inaccurate, having regard to the pur-
poses for which they are processed, are erased or rectified without delay (‘accu-
racy’)” (Art. 5(1)(d), GDPR); the personal data needs to be “kept in a form which
permits identification of data subjects for no longer than is necessary for the pur-
poses for which the personal data are processed (…) (‘storage limitation’)” (Art.
5(1)(e), GDPR); the personal data needs to be “processed in a manner that ensures
appropriate security of the personal data, including protection against unauthor-
ised or unlawful processing and against accidental loss, destruction or damage,
using appropriate technical or organisational measures (‘integrity and confidenti-
ality’)” (Art. 5(1)(f), GDPR); and last, the ones controlling the data are held
responsible and need to be able to demonstrate that they comply with the data
protection principles (‘accountability’) (Art. 5(2), GDPR).

A significant role of these principles is to curb the personal data that can be
collected and retained about a specific data subject. Here, the adage “knowledge is

 P. Korenhof

515 21

power” comes to mind. In this context, the purpose limitation principle, the data
minimisation principle, and the storage limitation principle are important restric-
tions that curtail the power imbalance that may rise between citizens and institu-
tions and/or corporations that can aggregate massive amounts of information
about them (see, e.g., Brouwer et al., 2011). On the other side of the coin, we can
find measures in the GDPR that aim to better balance the playing field by ensuring
that the data subjects themselves have sufficient knowledge about how their data is
processed. For example, Art. 13(2)(f) of the GDPR seeks to ensure fair and trans-
parent processing in the case of automated decision-making, including profiling,
by requiring the data controller to provide the data subject “meaningful informa-
tion about the logic involved, as well as the significance and the envisaged
 consequences of such processing for the data subject”. Art. 22 of the GDPR sees
specifically to automated decision-making and requires human intervention in
cases where the produced decision can make a significant impact on the life of an
individual. An example of a significant impact is the automated refusal of an
online credit application without human intervention (Recital 71). The automated
decision-making “should be subject to suitable safeguards, which should include
specific information to the data subject and the right to obtain human interven-
tion, to express his or her point of view, to obtain an explanation of the decision
reached after such assessment and to challenge the decision” (Recital 71).3

The challenge of designing software value sensitively and trying to account for
values like those referred to above is how to concretely embed these values in the
designed product. For this, there is no one-size-fits-all method, as it depends on the
values sought after and the software in question. Moreover, the “how” in itself is a
topic of ongoing investigation. With regard to designing software in a privacy-
enhancing manner, the article A Critical Analysis of Privacy Design Strategies by
Colesky et al. (2016) can provide a valuable source of inspiration. The researchers
identify several “privacy design strategies” that can be used to embed privacy by
design. One of the suggested tactics is data minimisation; this links to Art. 5(1)(c) of
the GDPR (see also the chapter by Gellert). It entails a selection in which the data
that is not needed is excluded, stripped, or destroyed. Other strategies are access
restriction and separation of data (Colesky et al., 2016). By isolating data collec-
tions, or by distributing them over different locations, the risk is reduced that the
data is combined and provides a more detailed view on a specific individual and/or
de-anonymises the individual. Another tactic they mention is abstraction (Colesky
et al., 2016). If data is summarised or grouped on a more general level, the focus of
the data shifts from particular individuals to a more generic level. Studies like the
one performed by Colesky et al. can be an inspiration source for designers to come
up with designs that realise their striven- for values.

3 However, requiring a human agent to be in the decision-making loop is no guarantee that the
sought-after values are protected (Binns, 2019). Human intervention also has its up- and down-
sides: humans can discriminate intentionally and unintentionally. Additionally, if a human is
added into the decision-making loop, there is the risk that the human merely “rubber stamps” the
made decisions to validate their outcome and bypass the further requirements of Art. 22 of the
GDPR (Veale & Edwards, 2018, p. 400).

Value-Sensitive Software Design

516

21

 Conclusion
Technology is not neutral. It can influence and shape people’s perception, what they
know, what they can do, the way they engage with the world, and the way in which
society, governments, companies, and others engage with them. The innovative use
of technology can therefore be highly valuable, but also highly problematic. Technol-
ogy has therefore been the inspiration for both utopias and dystopias alike.

Value-sensitive design is an approach that aims to deal with the non-neutrality of
technology in a beneficial manner. It focuses on actively aiming to incorporate cer-
tain values in the design of technology. While VSD is not without problems and
challenges, it is a promising start for designing technology that aims to be on the
utopian, rather than on the dystopian, side of things. In some cases, law even requires
the embedding of certain values in the software design: art. 25 of the GDPR calls for
the implementation of “privacy by design” and “privacy by default”.

Designing value sensitively is not an easy task, especially because it is often dif-
ficult, if not impossible, to fully foresee the impact and use of a new technology.
However, this should not stop us from trying. There is a pivotal role here for design-
ers. Being aware of the views and assumptions that are necessarily built into the
system design, they can try to do this in a conscious and value sensitive manner.

In order to start designing value sensitively, it can be of help to keep the following
rules of thumb in mind:
 1. Be aware of the inherent non-neutrality of what you are designing: think about

what the technology adds to, takes away from, or changes in the current situation.
 2. Identify which values you want to endorse with your design (e.g. you may want

to design software in order to promote efficiency while at the same time safe-
guarding privacy).

 3. Assess the impact of the design: does the technology benefit or negatively impact
a specific group of people? And who are these people and what are the conse-
quences for them?

 4. Trace if you may unnecessarily or undesirably inscribe certain prejudices in the
design (e.g. is the user you have in mind representative for the whole user group,
or are you unconsciously designing the software in a way that only benefits a
particular subset of users?).

 5. Try to see if you can adjust the design in order to get rid of unintended bias or
negative impact while promoting the values you want to endorse (i.e. test, evalu-
ate, adjust).

How to (best) realise value-sensitive design (and in particular privacy by design and
default given that these are required by law) is still—and with new technologies will
always be—a topic of exploration and experiment. However, the first step is an
awareness of a technology’s non-neutrality, and a willingness to think about which
values ideally should be protected in its design and how to achieve this. Hopefully,
this chapter helps to readers with taking this first step.

 P. Korenhof

517 21

? Question
How can designers influence the non-neutrality of software?

 v Answer
Designers intentionally influence the non-neutral directionality of the technology by
designing software to perform specific tasks and help users reach certain goals. They
determine what a user can and cannot do with the program and thereby influence the
non-neutrality on the user action level. This is set “in stone” in the code of the pro-
gram. Additionally, the designers determine what a user perceives (in combination
with the properties of the used hardware) when engaging with the application, the-
reby steering a user’s experience and interpretation of the technology.

An important role here is played by the image of the user that a designer has in
mind. An example is the design of a website with little text and a lot of images. Users
with impaired vision that depend for their web surfing on an application that reads
text out loud, will have a hard time navigating the website.

Additionally, designers can influence the non-neutrality of software unconsci-
ously by embedding their own assumptions into the design. An example is an online
credit card request form that requires one to make a photo of an identity card with
a smartphone directly, and not allow the uploading of files. This assumes that all
internet users have a smartphone.

Furthermore, by means of user manuals and marketing, particular views on and
uses of a technology can be influenced and promoted, for example by suggesting that
using a particular software application can improve health, social status, friendship,
and efficiency, can reduce human errors, etc.

? Question
What are the advantages of designing value sensitively?

 v Answer
First and foremost, engaging in value-sensitive design will help designers to innovate
in an ethically responsible manner by front-loading ethical values in the design of
the software: in the interface, architecture, standards, specifications, incentive struc-
ture, institutional embedding, default settings, user requirements, etc.

Furthermore, taking into account the interest of the various direct and indirect
stakeholders and trying as good as possible to account for their values in the design
will help to generate more societal support for the use of the technology. More happy
people generally means more users and user engagement.

Also, because a thorough reflection on the potential impact of the software is a
necessary part of designing value sensitively, the designers (or commissioning com-
pany) are less likely to be surprised by unforeseen consequences of the technology.

? Question
Reread the text of Art. 25(1) of the GDPR cited in the text above. What is important
for properly realising privacy by design?

Value-Sensitive Software Design

518

21

 v Answer
Art. 25(1) of the GDPR does not call for a flat-out implementation of privacy by
design. Instead, it calls for a delicate balancing of the available technical options,
interests of those involved, the purposes of the data processing, and its context,
risks, and impact on people. It is thus not only privacy that should be taken into
account as a value in the design: other values, like safety, human welfare, and econo-
mic prosperity, should also be taken into account and balanced with privacy. Privacy
by design thus means, simply put, an active prevention of any possible privacy
infringement that is not strictly necessary for realising a particular goal. As the case
of the body scanners discussed in 7 Sect. 21.3 shows, a careful balancing can result
in a design that is able to respect conflicting values to a considerable degree: while
maintaining their goal of safety, the “stick puppet” body scanners also significantly
reduce the privacy infringement on those scanned. With this balance, these body
scanners are a good example of privacy by design.

References

Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and human behavior in the age of
information. Science, 347(6221), 509–514.

Binns, R. (2019). Human judgement in algorithmic loops; individual justice and automated decision-
making. Individual Justice and Automated Decision-Making (September 11, 2019).

Brey, P., & Søraker, J. H. (2009). Philosophy of computing and information technology. In: Philosophy
of technology and engineering sciences, Elsevier, pp. 1341–1407.

Brouwer, E., et al. (2011). Legality and data protection law: The forgotten purpose of purpose limita-
tion.

Chabot, P. (2013). The philosophy of Simondon: Between technology and individuation. A&C Black.
Colesky, M., Hoepman, J. H., & Hillen, C. (2016). A critical analysis of privacy design strategies. In:

2016 IEEE Security and Privacy Workshops (SPW), IEEE, pp 33–40.
De Mul, J., & van den Berg, B. (2011). Remote control: Human autonomy in the age of computer-

mediated agency. In: Law, human agency and autonomic computing, Routledge, pp. 62–79.
Feenberg, A. (2002). Transforming technology: A critical theory revisited. Oxford University Press.
Fogg, B. J. (1999). Persuasive technologies. Communications of the ACM, 42(5), 27–29.
Friedman, B., & Hendry, D. G. (2019). Value sensitive design: Shaping technology with moral imagina-

tion. Mit Press.
Friedman, B., Hendry, D. G., Borning, A., et al. (2017). A survey of value sensitive design methods.

Foundations and Trends® in Human–Computer Interaction, 11(2), 63–125.
Friedman B, Kahn PH, Borning A (2008). Value sensitive design and information systems. In: The

handbook of information and computer ethics, pp. 69–101.
Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Information

Systems (TOIS), 14(3), 330–347.
Gandy, O. H. (2010). Engaging rational discrimination: Exploring reasons for placing regulatory

constraints on decision support systems. Ethics and Information Technology, 12(1), 29–42.
Giritli Nygren, K. (2009). The rhetoric of e-government management and the reality of e- government

work: The Swedish action plan for e-government considered. International Journal of Public
Information Systems, 2, 135–146.

Goldman, E. (2008). Search engine bias and the demise of search engine utopianism. In: Web Search,
Springer, pp. 121–133.

Grimmelmann, J. (2010). Some skepticism about search neutrality. The next digital decade: Essays on
the future of the Internet, p. 435.

 P. Korenhof

519 21

Harjumaa, M., & Oinas-Kukkonen, H. (2007). Persuasion theories and it design. In: International
Conference on Persuasive Technology, Springer, pp. 311–314.

Heidegger, M. (1954). The question concerning technology. translated by William Lovitt in the question
concerning technology and other essays. 1977.

Hildebrandt, M. (2015). Smart Technologies and the End (s) of Law: Novel Entanglements of Law and
Technology. Edward Elgar Publishing.

Ihde, D. (1983). Existential technics. SUNY Press.
Kiran, A. H., & Verbeek, P. P. (2010). Trusting our selves to technology. Knowledge, Technology &

Policy, 23(3–4), 409–427.
Kitchin, R. (2017). Thinking critically about and researching algorithms. Information, Communication

& Society, 20(1), 14–29.
Latour, B. (1993). We have never been modern. Harvard University Press.
Lazzarato, M., & Jordan, J. D. (2014). Signs and machines: Capitalism and the production of subjectiv-

ity. Semiotext (e) Los Angeles.
Lessig, L. (2006). Code Version 2.0. Basic Books.
Manders-Huits, N. (2011). What values in design? the challenge of incorporating moral values into

design. Science and Engineering Ethics, 17(2), 271–287.
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms:

Mapping the debate. Big Data & Society, 3(2), 2053951716679679.
Noorman, M. (2020). Computing and moral responsibility. In E. N. Zalta (Ed.), The Stanford

Encyclopedia of Philosophy, Spring 2020th Edition. Metaphysics Research Lab, Stanford
University.

Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin UK.
Skitka, L. J., Mosier, K., & Burdick, M. D. (2000). Accountability and automation bias. International

Journal of Human-Computer Studies, 52(4), 701–717.
Skitka, L. J., Mosier, K. L., & Burdick, M. (1999). Does automation bias decision-making?

International Journal of Human-Computer Studies, 51(5), 991–1006.
Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory: Cognitive consequences of

having information at our fingertips. Science, 333(6043), 776–778.
Sparrow, B. C., Chapman, P., & Gould, J. (2005). Social cognition in the internet age: Same as it ever

was? pp. 273–292.
Spiekermann, S. (2015). Ethical IT innovation: A value-based system design approach. CRC Press.
Stiegler, B. (1998). Technics and time: The fault of Epimetheus (Vol. 1). Stanford University Press.
Stiegler, B. (2012). Relational ecology and the digital pharmakon. Culture Machine, 13.
Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving decisions about health, wealth, and happi-

ness. Penguin.
van den Berg, B., & Leenes, R. E. (2013). Abort, retry, fail: Scoping techno-regulation and other

techno-effects. In: Human law and computer law: Comparative perspectives, Springer, pp. 67–87.
Van den Hoven, J. (2008). Moral methodology and information technology. The handbook of informa-

tion and computer ethics, p. 49.
van den Hoven, J., Vermaas, P. E., & van de Poel, I. (2015). Design for values: An introduction. In:

Handbook of ethics, values, and technological design: Sources, theory, values and application
domains pp. 1–7.

Van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford University
Press.

Veale, M., & Edwards, L. (2018). Clarity, surprises, and further questions in the article 29 working
party draft guidance on automated decision-making and profiling. Computer Law & Security
Review, 34(2), 398–404.

Verbeek, P. P. (2005). What things do: Philosophical reflections on technology, agency, and design. Penn
State Press.

Verbeek, P. P. (2011). Moralizing technology: Understanding and designing the morality of things.
University of Chicago Press.

Wihlborg, E., Larsson, H., & Hedström, K. (2016). “The computer says no!”—A case study on auto-
mated decision-making in public authorities. In: 2016 49th Hawaii International Conference on
System Sciences (HICSS), IEEE, pp. 2903–2912.

Value-Sensitive Software Design

520

21

Winkler, T., & Spiekermann, S. (2018). Twenty years of value sensitive design: A review of method-
ological practices in VSD projects. Ethics and Information Technology. pp. 1–5.

Wittkower, D. (2014). Facebook and dramauthentic identity: A post-goffmanian theory of identity
performance on SNS. First Monday, 19(4).

 P. Korenhof

	21: Value-Sensitive Software Design
	21.1 Introduction
	21.2 The Good, the Bad, and the Never Neutral
	21.2.1 Non-neutrality
	21.2.2 Impact on a Micro-level
	21.2.3 Impact on a Macro-level
	21.2.4 In Sum

	21.3 Employing the Never Neutral
	21.3.1 A Challenge for Designers
	21.3.2 Value-Sensitive Design
	21.3.3 Values
	21.3.4 Legal Values and Design

	References

