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1 
1.1 A closer look at food emulsions 

When two immiscible liquids, such as water and oil, come into contact with each other, the 
differences in their intermolecular forces prevent them from mixing. Water molecules are polar 
and form strong hydrogen bonds with each other, while oil molecules are nonpolar and interact 
through weaker van der Waals forces. As a result, these two types of molecules do not mix 
homogeneously, leading to the formation of a distinct interface. This interface does not only 
represent a geometric boundary but also serves as a transitional region for the molecular 
properties of the two phases. Upon mixing these phases, one liquid disperses within the other. 
Molecules at the interface have higher energy due to exposure to a different environment. In 
response, thermodynamic forces compel the dispersed droplets to become spherical, minimizing 
the contact area between the phases1. This process leads to the formation of emulsions: the 
droplets of one liquid are dispersed within the other liquid. The size of these droplets plays a 
crucial role in determining the properties of the emulsion. To illustrate, when a single droplet 
with a 1 µm radius is split into eight droplets with 0.5 µm radii to have the same volume, the 
total surface area doubles from around 13 µm2 to 25 µm2, leading to an unfavourable rise in 
Gibbs free energy. To minimize this energy, emulsions naturally tend to evolve into fewer, larger 
droplets. 

While all emulsions are thermodynamically unstable, they can exhibit kinetic stability over 
certain periods of time. Achieving kinetic stability in food-related emulsions requires the 
addition of thickening agents or emulsifiers. Thickeners such as carrageenan, agar, guar gum, 
xanthan gum, and pectin2–4 prevent phase separation by increasing the viscosity of the aqueous 
phase, which slows down the movement of the dispersed droplets. This viscosity enhancement 
also modifies the texture and mouthfeel of the final product. Emulsifiers, on the other hand, 
adsorb onto the interface and create a protective layer around the droplets, hindering their ability 
to coalesce. Emulsifiers are essential ingredients in creating and stabilizing emulsion-based food 
products5. In the food industry, a broad array of emulsifiers can be employed, including both 
natural and synthetic varieties. Natural emulsifiers include proteins, polysaccharides, 
phospholipids, and other biopolymers sourced from plants and animals. With the emulsifiers 
playing a pivotal role in stabilizing emulsions, they indirectly contribute to functional 
enhancements, such as improved texture and modified mouthfeel. Conversely, synthetic food 
emulsifiers such as Tween20 are specifically designed to exhibit outstanding emulsifying 
capabilities6. 

The process of producing emulsions can be accomplished through a variety of methods, each 
suitable for specific needs based on factors such as desired droplet sizes, ingredients used, and 
the required scale of production. High-shear dispersion uses mechanical force to break down the 
particles in a fluid, reducing their size and improving their distribution7,8. Colloid mills function 
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by applying extreme mechanical shear to the mixture, facilitating the dispersion of one phase 
into another, with typical shear rates ranging from 104 to 106 s-19. High-pressure homogenizers 
work by forcing the emulsion through a narrow gap under pressures up to 2,000 bar. This process 
results in the breakup of droplets and disperses them evenly throughout the liquid10. Micro 
fluidization also utilizes high pressure but introduces the concept of 'fixed-geometry' interaction 
chambers where the mixture is passed multiple times to achieve a consistent and uniform size 
reduction11. Ultrasonic homogenizers use ultrasonic waves to create cavitation bubbles in the 
fluid, which, upon collapse, generate strong hydrodynamic forces that break up and disperse 
particles or droplets12,13. Typically, a two-step process is employed to produce emulsions with 
sub-micron droplets. This process starts with a pre-homogenization step that generates an 
emulsion with coarse droplets. Subsequently, one of the aforementioned high-shear techniques 
is applied to further reduce the droplet size14. 

1.1.1 Physical instability of emulsions 

Once an emulsion has formed, it will destabilize over time due to several physical and chemical 
mechanisms15. Physical instabilities stem from changes in the spatial distribution or structural 
organization of molecules at the interface, which can lead to phenomena such as creaming, 
flocculation, coalescence, and Ostwald ripening (Figure 1.1). Creaming is a common form of 
physical instability observed in oil-in-water emulsions, where the lower-density oil droplets, 
influenced by buoyancy, migrate upward to form a creamy layer at the top of the emulsion16,17. 
Flocculation, another such mechanism, occurs when two or more droplets aggregate while 
maintaining their individuality, forming larger entities more susceptible to gravitational forces 
with no alteration in droplet radii18. Coalescence happens when two or more oil droplets collide 
due to Brownian motion, leading to rupture of the interfacial film and subsequent fusion into 
larger droplets19. This mechanism predominantly occurs when droplets are closely spaced, and 
it relies heavily on the nature of the emulsifier used for stabilization. Unlike creaming and 
flocculation, coalescence reduces the interfacial area between phases, thereby moving the 
system toward a more thermodynamically stable state. In the realm of food emulsions, 
coalescence can result in the formation of an oil layer on top of the emulsion20. Ostwald 
ripening is another mechanism predominantly observed in systems where the dispersed phase 
has some degree of solubility in the continuous phase. In this phenomenon, larger droplets grow 
at the expense of smaller ones in a polydisperse emulsion, facilitated by the higher internal 
Laplace pressure within smaller droplets, promoting mass transfer through the adjacent aqueous 
phase21. However, in food emulsions that utilize vegetable oils containing slowly diffusing long-
chain triacylglycerols, Ostwald ripening tends to be negligible22.  

The rate at which these instability mechanisms develop depends on the emulsion properties. For 
instance, physical instability mechanisms rely on the strength of interactions between oil 
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1 
droplets23. During flocculation, adsorbed molecules can generate electrostatic or steric repulsion 
between droplets, the strength of which depends on factors like molecular structure and 
environmental conditions such as ionic strength and pH. Coalescence, on the other hand, 
involves the draining of the continuous phase and the subsequent creation of a rupture in the 
interfacial layers between droplets, a process akin to dilatational deformation24. The rate of 
coalescence can be influenced by the mobility of adsorbed molecules and the viscoelasticity of 
the interfacial layer25.  

 

Figure 1.1. Schematic illustration of mechanisms that can destabilize an emulsion: creaming, flocculation, 
coalescence, and Ostwald ripening. During the creaming, oil droplets of lower density move upward due to 
buoyancy, forming a distinct creamy layer. Flocculation is illustrated by the aggregation of droplets. Coalescence is 
displayed by the merging of two droplets into a larger droplet, thereby reducing the interfacial area. Lastly, Ostwald 
ripening is depicted by the gradual enlargement of larger droplets due to mass transfer from smaller ones via the 
intervening aqueous phase. These processes often influence each other over time, contributing to changes in the 
overall stability of the emulsion. 
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1.1.2 Chemical instability of emulsions: oxidation 

Chemical instability of emulsions arises from the presence of catalytic activity at droplet 
interfaces, which is the main cause of lipid and protein oxidation in food emulsions. Here, the 
affinity of droplet interfaces for transition metal ions brings them close to the oil phase. These 
ions catalyze radical formation of hydroperoxides, which in turn form lipid radicals that consume 
oxygen in their reaction to peroxides. These reactions are propagated by redox cycling of 
transition metal ions at the droplet interface26. 

The oxidative stability of an oil-in-water emulsion is influenced by the strength of the affinity 
of the interfacial layer for transition metal ions. This property can be shaped by emulsifiers and 
co-emulsifiers that can either inhibit or promote oxidation27. For instance, proteins acting as 
emulsifiers can play both pro- and anti-oxidation roles in lipid oxidation. On one hand, the 
proteins can strongly bind transition metals at pH levels above their isoelectric point, thereby 
delaying oxidation28. On the other hand, proteins adsorbed at the interfaces can undergo 
oxidative reactions themselves, generating protein radicals29–31. These radicals can further 
interact with unsaturated lipids, propelling the chain reaction of lipid oxidation. Additionally, 
the oxidative breakdown of proteins may release secondary compounds that can promote 
oxidation32.  

1.2 Exploring complexity in food emulsions: The case of mayonnaise 

Mayonnaise is a widely consumed oil-in-water food emulsion. Vegetable oil, water, egg yolk, 
vinegar, and salt form the core ingredients of mayonnaise. Egg yolk can be separated into egg 
yolk granules and yellow plasma through mild centrifugation. Egg yolk granules contain 
emulsifying lipoproteins and proteins, with the protein phosvitin constituting about 16% 
w/w33,34. Structurally, phosvitin is a protein with around 200 amino acids, a molar mass of 35-
40 kDa, and a high degree of phosphorylation35. The structure of phosvitin resembles a triblock 
copolymer, with a long central hydrophilic chain of about 100 phosphorylated serine residues 
flanked by two hydrophobic amino acid blocks34. When the pH is higher than the isoelectric 
point of phosvitin, which is around pH 236, the middle block of phosvitin becomes negatively 
charged due to its many phosphoric acid groups37. Owing to its abundant charged phosphoserine 
groups, phosvitin can chelate multivalent ions, including magnesium, calcium, and iron. The 
chelation capacity varies with pH and ionic strength38.  

In mayonnaise, phosvitin stabilizes the emulsion despite not being a potent surfactant39. At 
neutral pH values, chelation of ferric ions by phosvitin has been suggested to play an anti-oxidant 
role40,41. However, under the acidic conditions of mayonnaise, the affinity for ferric ions is lower, 
and the redox couple of ferric/ferrous ions can then act as pro-oxidant42,43. 
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In addition to phosvitin, egg yolk is also a rich source of lipoproteins, which are nano-assemblies 
of proteins and lipids. The dry matter of egg yolk contains 68% of low-density lipoprotein (LDL) 
and 16% of high-density lipoprotein (HDL)44. HDL has a higher protein content and fewer lipids 
than LDL and is primarily confined within the egg yolks’ non-dissolved granules, exhibiting 
limited solubility and emulsifying properties under neutral scenarios33,45. LDL particles, 
spherical in shape and measuring between 17-60 nm in diameter46, possess a lipid center filled 
with triglycerides and cholesterol esters in a fluid state. This core is encased by a layer of 
phospholipids and proteins. LDL particles have a density of 0.982 g/mL,  are soluble in water-
based media and are unaffected by variations in pH or ionic conditions33,47. The stability of the 
LDL structure is largely attributed to the presence of phospholipids, as the association forces are 
predominantly hydrophobic48. Additionally, cholesterol is integrated into the phospholipid layer, 
increasing its structural rigidity. The surface of LDL exhibits a mosaic pattern49, wherein lipids 
and proteins reside in separate zones without forming close connections. Compositionally, LDL 
encompasses 11-17% proteins and 83-89% lipids, with the lipid portion being made of 69% 
triglycerides, 26% phospholipids, and 5% cholesterol50. LDL particles interact with interfaces, 
whereby neutral lipids, phospholipids, and proteins are released from the lipoprotein and 
dispersed over the interface. 

Among the proteins present in LDL, apolipoprotein B (apoB) is the most abundant one44,47. 
ApoB displays stronger interfacial adsorption than phosvitin, attributable to its flexible structure 
and higher surface hydrophobicity51. Moreover, as the emulsifiers present in egg yolk 
ingredients are added in excess to what is needed to stabilize the droplet interfaces, a major 
fraction ends up in the aqueous phase of mayonnaise, adding to the overall complexity of its 
composition and structure (Figure 1.2). Apoproteins, in their intact LDL particle state or when 
distributed at these boundaries, can undergo oxidation reactions. The oxidation of proteins 
within LDL was examined using UV/VIS and fluorescence spectroscopy, which indicated a rise 
in fluorescence intensity in the 430 nm emission range following auto-oxidation52,53. Recent 
studies have delved into the formation of oxidative protein radicals in LDL particles, both in 
their original state and when dispersed at droplet interfaces or within the aqueous phase54. 

To shed light on the structural complexity of mayonnaise outlined in Figure 1.2, it is imperative 
to commence studies at the droplet interface. By employing advanced microscopy techniques, 
this thesis aims to discern the spatial distribution of protein emulsifiers at the interface with 
molecular specificity and determine whether the emulsifiers are distributed heterogeneously or 
homogeneously. Of particular interest is the competition between low-molecular weight 
surfactants and proteins at the droplet interface. Additionally, the measurements will allow to 
ascertain which protein is more vulnerable to oxidation: is it phosvitin, due to its iron-binding 
capability, or apoproteins that deteriorate more swiftly? 
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Figure 1.2. Schematic representation of the microstructure of mayonnaise. The diagram presents two oil droplets 
suspended in the aqueous phase, highlighting the adsorption process of key egg yolk constituents at the interface. 
The left droplet shows intact LDL/HDL particles adsorbing to the interface, as well as released and adsorbed apoB, 
phosvitin, and phospholipids. Excess phosvitin and apoB also pervade the aqueous phase, contributing to the intricate 
structure of the emulsion. The right droplet illustrates how phosvitin and apoB antibodies, conjugated to 
fluorophores, are used for specific labelling. 

 

1.3 Direct visualization of interfacial structure: Insights and obstacles 

During homogenization, competition for adsorption at the interface may occur between various 
proteins or phospholipids, or they might even displace each other over time. As a result, the 
overall composition of the emulsifiers in the system does not necessarily correspond to the 
interfacial composition55–57. A common method for assessing interfacial composition involves 
measuring surface load via the supernatant or cream phases post-centrifugation. However, this 
method, while straightforward, is invasive and destructive and is not applicable to all types of 
food emulsions. To gain direct insight into the interfacial structure and behavior of fluid 
interfaces, researchers employ methods involving model films and optical techniques58,59. 
Interfacial rheology, which allows monitoring of the interfacial stress response induced by shear 
or dilatational deformation, serves as another critical instrument in the study of emulsifier 
interactions60,61. Non-destructive methods, such as spectroscopic methods, have been employed 
to monitor the displacement of globular proteins such as bovine serum albumin (BSA) from the 
surface of oil droplets by a non-ionic surfactant. However, while these methods can detect such 
displacements, they often lack spatial information62. Fluorescence microscopy offers another 
non-destructive option for assessing droplet interfacial composition in food emulsions but 
currently lacks molecular specificity.  

The main obstacle to employing optical microscopy to localize emulsifiers at interfaces is 
turbidity. Turbidity is inherently present in emulsions and arises from both the absorption and 
scattering of light by oil droplets. Emulsion turbidity peaks when the droplet diameter is 
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approximately 1 µm (at a wavelength of 650 nm)63, a phenomenon primarily driven by Mie 
scattering64. A second obstacle is the limited spatial resolution of conventional optical 
microscopy. These limitations underscore the necessity for advances in microscopy techniques.  

In this thesis, the limitations of conventional microscopy are addressed by adopting super-
resolution microscopy techniques capable of achieving resolutions down to a few tens of 
nanometres. Additionally, considering the prevalent turbidity in food emulsions, adaptive optics 
is used to counteract blurring. For the implementation of these solutions, this thesis work relied 
on the miCube framework65, capitalizing on its flexibility and open-access nature. The following 
sections will delve into these methodological advancements in greater detail. 

1.4 Evolution of optical microscopy 

1.4.1 Diffraction limit of light 

When a camera detects photons coming from a sample, the detected pattern is influenced by the 
optical components involved. Factors such as imperfections of involved lenses or misalignment 
of the optical path affect this response. As a result, the image of the emitter can appear larger 
than its actual size and will display a diffraction pattern. In the 19th century, Abbe defined a 
constraint for optical microscopy: any point source smaller than the microscope's resolution or 
optical diffraction limit is observed as a distinct spatial distribution known as the microscope's 
point spread function (PSF). This PSF is often characterized by the Airy diffraction pattern, a 
spatial distribution that manifests as a central disk surrounded by fainter concentric rings. These 
rings arise from the Fraunhofer diffraction of light by a circular aperture as given when using 
microscope objectives for detection66. The smallest distance at which two PSFs can be 
differentiated is referred to as the Rayleigh limit. This limit is defined by the alignment of the 
brightest spot of one point image with the first minimum, or the dimmest spot, of the other. If 
the two points are closer than the Rayleigh limit, they blur into a single image; if they are farther 
apart, they remain distinct67 (Figure 1.3). This critical separating distance, known as the 
Rayleigh criterion, can be approximated by 

𝑑𝑑 =
0.61 𝜆𝜆
𝑁𝑁𝑁𝑁

, (1.1) 

 

where λ is the wavelength of the emitted light, and NA is the lens's numerical aperture68. In a 
standard fluorescence microscope with a high numerical aperture objective (e.g., NA=1.4), the 
resolution limit set by the Rayleigh criterion is around 170 to 240 nm laterally and around 470 
to 670 nm axially.  
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Figure 1.3. Visual depiction of the PSF and the Rayleigh criterion in optical microscopy. The figure conveys how a 
single emitter with a size below the microscope's resolution limit manifests as an expanded image, forming a disk 
encircled by faint rings. It further underscores the Rayleigh limit concept - the minimal distance at which two PSFs 
can be individually discerned. In our simulation, we set the numerical aperture (NA) to 1.45 and used a wavelength 
of 530 nm. Three conditions are presented: (A) when two light points are sufficiently separated, they appear as 
distinct entities, (B) at the Rayleigh limit, the points are at the brink of distinguishability, and (C) for distances shorter 
than the Rayleigh limit, the points merge into a single spot. 

1.4.2 Unveiling details: Scanning based confocal microscopy 

Conventional transmission brightfield microscopes capture the image of a specimen by 
illuminating it with a light source. The transmitted light is collected by an objective lens and 
then focused through an additional lens onto a camera or magnified for viewing through an 
eyepiece. Expanding on these basic methods, fluorescence-based optical microscopy adds a new 
dimension by tagging structures or entities like molecules or proteins with specific fluorophores. 
This method not only offers notably precise targeting but also enhances the signal-to-noise ratio. 
Lasers, favored for their monochromatic light emission, stimulate these fluorophores. The 
narrow excitation spectrum of lasers facilitates the implementation of dichroic mirrors and filters 
to optimize the accessible spectral range for capturing fluorescence from the emitters. The 
imaging begins with collimating the laser light and is directed towards the microscope 
objective's back focal plane to excite the sample. The same objective captures the fluorescence 
emitted from the sample, allowing imaging of non-transparent samples. The red-shifted 
fluorescence passes the dichroic mirror, reflecting the laser's excitation wavelengths, and is then 
focused through a lens to the camera. 
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When imaging non-transparent samples with fluorescence microscopes, the laser is focused on 
a specific plane. However, as the laser light travels to the targeted focal plane, it also excites 
adjacent layers, leading to the emission of photons. The co-collection of in-focus and out-of-
focus light diminishes the signal-to-noise ratio and contrast, resulting in blurry images. To 
address these limitations, confocal microscopy uses a pinhole in the detection path, placed in a 
virtual image plane of the objective lens of a microscope. This pinhole effectively blocks 
unwanted light originating from non-focal planes, thereby reducing background fluorescence. It 
is worth noting that confocal microscopy can, under ideal conditions with an infinitesimally 
small pinhole, enhance image resolution by a factor of √2. Confocal microscopy improves 
image clarity and allows revealing details that are often obscured in conventional microscopy68. 
However, the degree of resolution improvement in a confocal microscope relies upon the size 
of the pinhole in the detection path. Though a smaller pinhole radius theoretically yields the 
highest resolution, it comes at the cost of a reduced signal-to-noise ratio. The pinhole size is 
commonly defined in terms of Airy unit. An Airy unit is equivalent to the zeroth-order portion 
of the Airy disk, which is the central part of the diffraction pattern created when light passes 
through a circular aperture. When the pinhole is sized at one Airy unit, the system operates under 
diffraction-limited conditions. As a result, most commercial confocal microscopes are 
engineered with a pinhole radius of one Airy unit to achieve an optimal compromise between 
resolution and signal quality. 

Re-scan confocal microscopy (RCM)69 is an optical technique that enhances the resolution in a 
confocal microscope using optics without requiring any software-based image reconstruction. 
RCM builds upon the standard confocal microscope by adding a re-scanning module, which 
allows for decoupling the scanning magnification of the object from the magnification of the 
scanning spot. This decoupling of magnifications forms the fundamental concept of RCM, 
enabling the system's resolution to be independent of the pinhole size. This is often referred to 
as "confocal microscopy with an open pinhole," a feature that allows for lateral super-resolution 
while preserving optical sectioning, as depicted in Figure 1.4. The crucial aspect of this method 
is that the second mirror must sweep with double the angular amplitude of the first mirror. This 
results in the image being stretched by a factor of √2, enhancing the resolution from 240 nm at 
520 nm wavelength (Abbe diffraction limit) to 170 nm70 (Figure 1.4). 

1.5 Going beyond limits: Super-resolution microscopy 

Super-resolution techniques have revolutionized the field of imaging by overcoming the 
resolution limitations imposed by the diffraction limit of light. These techniques can be broadly 
categorized into two groups: point-scanning-based and camera-based approaches71,72. Point-
scanning-based approaches, including stimulated emission depletion (STED)73, MINSTED74,  
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Figure 1.4. (A) Schematic representation of RCM operation building upon standard confocal microscopy through 
the addition of a re-scanning module. The subfigures depict three distinct operational steps: (B) the initial scanning 
of the excitation laser beam by the first scanning mirror, (C) the de-scanning of the image onto the camera in a 
conventional confocal microscope, and (D) the unique RCM feature wherein the re-scanning mirror sweeps with 
double the angular amplitude of the first mirror. This mechanism enables the decoupling of scanning magnifications, 
allowing for lateral super-resolution and preserving optical sectioning. 

and reversible, saturable optical linear fluorescence transitions (RESOLFT)75, rely on reducing 
the effective excitation volume with a depletion laser. Another novel and notable super-
resolution microscopy technique is minimal photon flux (MINFLUX)76. Unlike other point-
scanning-based methods, MINFLUX employs a nanoscale doughnut-shaped excitation beam to 
localize single molecules by pinpointing where the photon flux is minimal. MINFLUX enables 
unparalleled precision, potentially achieving resolutions down to a few nanometers. On the other 
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hand, camera-based approaches in the domain of single molecule localization microscopy 
(SMLM), such as stochastic optical reconstruction microscopy (STORM)77, photoactivated 
localization microscopy (PALM)78, stochastically activate a subset of photo switchable probes 
at a given time and then determine the centroid position of each point spread function. Another 
SMLM technique, points accumulation for imaging in nanoscale topography (PAINT)79, 
operates based on capturing images through the transient binding of diffusing fluorescent 
molecules to target structures. The STORM technique was originally developed using a Cy3-
Cy5 organic dye pairing. In this setup, Cy3 aids in converting Cy5 from its dark state to the 
fluorescent state. Subsequently, the technique was further refined to use conventional organic 
dyes such as Alexa Fluor 647. This improved version, which does not rely on the proximity of 
paired dyes, is referred to as 'direct' STORM80 and also facilitated the use of standard antibodies 
conjugated to these dyes. In contrast to STORM, where target binding sites are permanently 
attached to fluorophores and gradually bleach over time, in PAINT, fluorophores freely diffuse 
in solution and bind temporarily to target sites. This transient binding and subsequent 
immobilization leads to localizable emission. These events are then detected and captured by 
the camera. To enhance target specificity, the DNA-PAINT81 method was developed. It involves 
designing DNA 'docking strands' to attach to the target of interest while complementary DNA 
'imager strands' conjugated to fluorophores diffuse in the solution. Therefore, when the imager 
strands bind to the docking strands, they become temporarily immobilized and emit photons 
from a specific location. Subsequently, the imager strands dissociate, freeing the docking site 
for subsequent binding by other strands. This cyclical binding and release mechanism does not 
only amplify the signal but also increases localization precision, given that photobleaching is 
not a concern. 

To construct an image using SMLM, an image stack, typically comprising of 10,000 or more 
frames, is first recorded with a frame rate between 20 Hz and 100 Hz to capture the on-off 
events. These events are acquired in the form of a PSF due to the diffraction-limited detection 
of fluorophores. Subsequently, the position of each PSF in all frames is determined using various 
approaches, such as fitting the intensity profile of the individual PSFs with a 2D Gaussian 
function82, center of mass (CoM) calculations83, radial symmetry84, cubic splines85, or phasor 
based methods86. After all localizations from all frames are obtained, the image is reconstructed 
with super-resolved resolution, thereby providing an exceptionally detailed view (Figure 1.5). 

The accurate localization of each PSF is critical in achieving high-quality super-resolved images. 
This process is significantly influenced by two key parameters: localization precision and 
localization accuracy87. If we denote 𝑟𝑟𝑡𝑡 as the true position of a fluorophore, the localization 
precision can be described as the variability of the position estimates when this fluorophore's  
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Figure 1.5. Comparative representation of brightfield imaging and SMLM at an interface of oil droplets where 
fluorophores are anticipated. The brightfield image illustrates the traditional approach where simultaneous excitation 
of all fluorophores (black circles, hidden) leads to overlapping PSFs (green circles). This results in diffraction-limited 
resolution indistinct visualizations (red ring) due to the limitations set by the Rayleigh criterion. Conversely, the 
SMLM image is a composite of thousands of frames, each capturing distinct blinking events (green circles) of 
individual fluorophores (black circles). This method enables the precise localization of each fluorophore (red 
crosses), exceeding the resolution of conventional brightfield and confocal microscopy. 
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position is measured multiple times. Conversely, localization accuracy reflects the deviation of 
the mean measured position 𝑟̅𝑟 from the true position 𝑟𝑟𝑡𝑡 (Figure 1.6). 

While super-resolution techniques have significantly improved the resolution capabilities of 
optical microscopy, they still face challenges when imaging through samples with varying 
refractive indices. Optical aberrations introduced by these inhomogeneous samples can distort 
the wavefront of the light, leading to blurred images and loss of resolution. One technology that 
holds promise in addressing these challenges is adaptive optics, a technique originally developed 
in the field of astronomy. 

 
Figure 1.6. Illustrating the concepts of localization precision and accuracy in super-resolution imaging, focusing on 
the ring-like pattern observed at the interface of oil droplets. The diagram presents localization precision as the 
variance in position estimates when a fluorophore's position is measured multiple times, visually depicted as the 
thickness of a ring. Conversely, localization accuracy is illustrated as the divergence of the average measured position 
from the actual position of the fluorophore, represented by the radius size. The figure further highlights green 
localizations as highly accurate due to their similar radii to the true positions (blue localizations), while the red 
localizations indicate low accuracy due to their larger radii and high precision, as evidenced by their narrow ring. 

1.6 Correcting aberrations: Adaptive optics in microscopy 

Light can be described as a superposition of propagating electromagnetic waves. The spatial 
propagation of the waves is described by a wavefront. For instance, when light emanates from a 
point source, the wavefronts are spherical, much like the ripples in a pond when a stone is 
dropped. However, when light propagates through environments with varying refractive 
indices—such as when passing through the atmosphere—the wavefront becomes distorted. 
While telescopes and microscopes have traditionally catered to distinct observational scales, 
they share foundational principles of optics. These common principles have facilitated a notable 
exchange of technologies, particularly evident in addressing the shared challenge of correcting 
optical aberrations88. In astronomy, the development of adaptive optics (AO) was primarily 
aimed at compensating for atmospheric turbulence, causing variations in refractive indexes 
across different layers leading to wavefront distortions and image blurring89. AO technology in 
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astronomy involves real-time wavefront measurements and the use of deformable mirrors (DMs) 
to correct these aberrations dynamically90.  

Microscopy encounters similar challenges when imaging through samples such as food or 
biological specimens, which introduce optical aberrations due to varying refractive indexes. As 
the imaging depth increases, the image travels through obstructing volumes or layers with 
inhomogeneous or mismatched refractive indexes. Consequently, the reflection, absorption, and 
scattering of photons result in a loss of resolution and increased blurriness in the final image90,91. 
To address this challenge, techniques inspired by adaptive optics in astronomy have been 
adopted. These techniques employ similar principles, including wavefront sensing and the use 
of DMs, to compensate for aberrations92. When focusing light toward a plane close to the 
coverslip of a food emulsion sample, the amount of aberration is minimal. Consequently, the 
photons emitted from the sample and collected by the camera do not show significant wavefront 
distortion (Figure 1.7A). However, focusing light into planes deeper within the sample, 
particularly in a turbid food sample, causes the emitted light to become aberrated. When imaging 
such a sample, the resulting image appears blurry due to these distortions. The implementation 
of a DM in the detection path can counteract this by producing a conjugate aberration of the 
aberrated light. As this aberrated wavefront hits the surface of the DM, it is corrected, yielding 
a sharp and distortion-free image. This is a fundamental principle of the custom-built microscope 
setup that will be developed in this thesis (Figure 1.7B). 

 

 
Figure 1.7. Schematic of the impact of optical aberrations and the mitigating role of adaptive optics in microscopy. 
(A) Focusing light near the surface of a food emulsion sample leads to minimal aberrations, resulting in a clear, 
undistorted image. (B) In contrast, focusing light deeper within the turbid sample introduces wavefront distortions 
due to refractive index mismatch, leading to a blurry image. In this case, an adaptive optics system featuring a 
deformable mirror (DM) is placed instead of a plane mirror in the detection path. The DM produces a conjugate 
aberration to correct the distorted wavefronts emitted from deeper within the sample. As the aberrated wavefront 
encounters the DM, it is corrected, resulting in a sharp and distortion-free image. 



Introduction 
 

27 
 

1 
A DM is a commonly used component in wavefront correction systems in reflecting mode and 
is often referred to as a multichannel corrector. It consists of a grid of individual actuators that 
can introduce conjugate aberrations to counteract the aberrations arising within the optical 
system. There are different types of DMs, each with its own design and actuation mechanism. 
The surface of DMs can be continued, such as in a membrane mirror93, a bimorph mirror94, or 
segmented DMs with stacked piezoelectric actuators95,96. However, the range and amount of 
wavefront distortions that a particular DM can correct are limited by several factors, such as the 
actuation technology, number of actuators, coating types, and dimensions of the optical 
elements97. 

1.7 Aberration correction without a sensor 

DMs can be implemented using either direct or indirect wavefront sensing techniques98. In the 
direct sensing mode, an additional wavefront sensor, such as a Shack-Hartmann wavefront 
sensor99,100, a shearing interferometer sensor101,102, a rotational wavefront shearing sensor103, or 
a Pyramid wavefront sensor104 is utilized to provide instantaneous feedback to the optical 
element responsible for modulating the wavefront. In indirect wavefront sensing methods, the 
wavefront is not directly sensed but calculated from specific metrics or characteristics of the 
resulting image105. One common approach is the use of image-based metrics. Instead of directly 
measuring the wavefront, certain characteristics or metrics of the resulting images are evaluated. 
These metrics, such as sharpness, contrast, or resolution, provide an indication of the wavefront 
quality. The correction is then determined based on optimizing these image metrics using 
optimization algorithms106,107.  

Operating adaptive optics systems in direct sensing mode has a downside in SMLM108. In direct 
mode, a portion of the photons that would be available for image formation is instead used for 
wavefront sensing, which leads to a reduction in the overall photon count and potentially affects 
the performance of SMLM techniques. The localization precision is strongly influenced by the 
number of detected photons from each molecule, as higher photon counts result in more precise 
position determination. Therefore, any reduction in the number of photons available for 
detection can have a detrimental effect on the achievable resolution and accuracy in SMLM. On 
the other hand, one advantage of working with food and biological samples in comparison to 
astronomy is that the aberrations in these samples are relatively stable and do not change over 
time. Unlike atmospheric turbulence, which can introduce rapid and unpredictable variations in 
the wavefront, the aberrations in these samples show minimal variations over time. To 
effectively compensate for aberrations using sensorless methods, it is necessary to employ an 
image-based metric that can estimate the aberrations independently of the specimen. In the case 
of SMLM, the raw images often contain blinking events originating from the sample itself, 
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which is small and subject to diffraction limitations. These blinking events are observed as the 
PSF of the microscope and are influenced by aberrations. Considering the impact of aberrations 
on the PSF, it is common practice to utilize an image sharpness metric that remains insensitive 
to the intensity and number of blinking events. This sharpness metric M is defined based on the 
second moment of the Fourier transform of the image109 

𝑀𝑀 = � µ𝑛𝑛,𝑚𝑚𝐼𝐼𝑛𝑛,𝑚𝑚(𝑛́𝑛2 + 𝑚́𝑚2)/�𝐼𝐼𝑛𝑛,𝑚𝑚
𝑛𝑛,𝑚𝑚𝑛𝑛,𝑚𝑚

, (1.2) 

where 𝐼𝐼𝑛𝑛,𝑚𝑚 is the discrete Fourier transform of the image, 𝑛́𝑛 = 𝑛𝑛 −  𝑁𝑁−1
2

, 𝑛́𝑛 = 𝑛𝑛 −  𝑁𝑁−1
2

, and n 

and m are coordinates representing the pixel positions within the image, ranging from 0 to N and 
M, respectively, corresponding to the number of pixels in each image dimension. Additionally, 
µ𝑛𝑛,𝑚𝑚is a circular mask given by 

µ𝑛𝑛,𝑚𝑚 = �
1, �𝑛́𝑛2 + 𝑚́𝑚2 ≤ 𝑁𝑁𝑁𝑁

𝜆𝜆�

0, �𝑛́𝑛2 + 𝑚́𝑚2 > 𝑁𝑁𝑁𝑁
𝜆𝜆�

, (1.3) 

where it shows that this mask filters high spatial frequency noise and ensures accurate 
assessment of the metric. Consequently, the sharpness metric provides a reliable measure for 
quantifying and compensating for the effects of aberrations in SMLM imaging. 

Describing aberrations mathematically requires a specific mathematical framework. Given the 
prevalence of circular apertures in optical systems, Zernike introduced a set of polynomials that 
are orthonormal over a disk110. These Zernike polynomials play a crucial role in adaptive optics. 
Each term of the polynomial corresponds to a specific type of aberration, that is described below 
(Figure 1.8): 

• Piston/Tilt-Tip: The initial three terms, representing a constant shift and linear tilt in 
the wavefront, do not contribute to image distortions. 

• Defocus: This is the primary optical aberration term. It describes the deviation of an 
optical system's focal point from the ideal. 

• Astigmatism (Oblique and Vertical): This aberration causes the focal point to diverge 
in two perpendicular directions. 

• Coma (Vertical and Horizontal): This aberration causes point sources, like distant 
stars, to appear elongated or comet-like. 

• Trefoil (Oblique and Vertical): This aberration manifests as a distortion, producing a 
three-pointed star-shaped appearance in images. 

• Spherical Aberration: Results in the outer rays of a beam focusing differently than 
the central rays, causing a blur. 
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• Secondary Astigmatism (Oblique and Vertical): Represents a more intricate form of 

the astigmatism aberration. 
• Quatrefoil (Oblique and Vertical): Results in a four-pointed star-shaped distortion in 

images. 

Thus, by analyzing the coefficients of these polynomials, the type and severity of the aberrations 
in an optical system can be discerned. Furthermore, the Zernike polynomials possess the 
advantage of easily transforming under rotations around the Cartesian axes. Additionally, the 
coefficients of these polynomials can be employed for aberration correction66. Within this thesis, 
we used a DM that supports the first 15 terms of Zernike polynomials. 

 
Figure 1.8. Visualization of the first 15 terms of Zernike polynomials, organized vertically by radial degree and 
horizontally by azimuthal degree. These terms, supported by the DM used in our research, serve as a fundamental 
tool for modeling and correcting optical aberrations in adaptive optics systems. Each term corresponds to a specific 
aberration type, providing a comprehensive framework for aberration analysis. 
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Robust and effective adaptive optics in localization microscopy (REALM) is a sensorless 
approach that uses model-based optimization to iteratively correct all available Zernike 
modes111. In REALM, each Zernike mode undergoes independent correction by applying 
varying biases or amplitudes of the Zernike modes within the DM. For every single bias applied 
to the DM, an image is captured, and from these images, the sharpness metric is calculated for 
all the biases associated with a specific Zernike mode. This calculated metric is subsequently 
fitted using a Gaussian function to identify the optimum. This procedure is replicated across all 
Zernike modes that successively changed in the DM and is executed over multiple rounds until 
an optimal solution is achieved. As per the simulation provided by the authors of REALM, an 
optimal strategy might consist of three correction rounds with 13 biases for each Zernike mode 
to effectively compensate for aberration, which means 297 acquisitions (3 rounds * 9 biases * 
11 Zernike modes – excluding piston, tip, tilt, and defocus). Implementing the REALM 
technique in conjunction with SMLM can effectively compensate for aberrations present in 
turbid samples. Furthermore, it is important to note that aberrations can also be introduced by 
the microscope setup itself due to the inherent characteristics of the optical elements and 
potential fabrication errors in the DM. In such cases, the REALM method is first employed to 
correct the aberrations from the microscope before addressing those introduced by the turbid 
sample. 

After applying the REALM technique for aberration correction in SMLM, this thesis will 
leverage the versatility of the DM. Its capabilities in PSF engineering are harnessed to advance 
our imaging techniques into the three-dimensional. The following section delves into how 
incorporating PSF engineering enables 3D imaging in SMLM. 

1.8 PSF engineering in 3D SMLM 

In a well-aligned microscope, we can observe how spherical aberration impacts the shape of the 
PSF both at the top and bottom of the focal plane. Notably, this effect is manifested 
symmetrically on either side. It is important to highlight our understanding of how the PSF shape 
varies with depth. By intentionally breaking this symmetry between the top and bottom of the 
focal plane, we can encode the depth z within the PSF shape at different planes. This technique, 
known as PSF engineering, is a powerful method used in 3D SMLM and multiplexing 
applications. One commonly used technique in PSF engineering involves adding a cylindrical 
lens in the detection path. The cylindrical lens induces astigmatism, resulting in the creation of 
two distinct focal planes for the x and y axes. As a result, the symmetry of the PSF is broken, 
causing changes in ellipticity and orientation as we move through different depths. By 
implementing this method, a z-range of 1 µm can be achieved83,105. A different strategy involves 
modulating the shape of PSF by the placement of a transmission mask within the detection path, 



Introduction 
 

31 
 

1 
using a 4f configuration to generate unique PSF shapes such as a saddle point, tetrapod, and 
double helix112,113. However, these phase masks are expensive to fabricate and are primarily used 
for creating a specific PSF shape. As an alternative, spatial light modulators (SLMs)114,115 can 
replace phase masks, facilitating the creation of various phase masks within the detection path 
for PSF engineering. Nevertheless, it is worth mentioning that the use of liquid crystal SLMs 
may lead to photon loss and reduced resolution116. An alternative approach involves the use of 
a DM, which can generate a wide range of PSF shapes with different lateral and axial extensions, 
thereby providing greater versatility in PSF engineering. By adjusting the settings of the DM, 
we can generate a range of PSF shapes. For instance, for Saddle Point PSF modulation, 𝑍𝑍22 to 
0.5 and 𝑍𝑍42 to -0.65. The DM allows recording of 3D SMLM data with axial ranges between 
1 µm and 6 µm, dependent on the chosen PSF shape117. However, larger axial distances are 
challenging to achieve due to the overlap of PSFs from neighboring emitters. Furthermore, 
localizing modulated PSFs presents more challenges compared to using Gaussian-based 
methods or other approaches for symmetrical PSFs. Fitting algorithms rely on experimentally 
retrieved PSFs118, phase retrieving methods117,119, spline interpolation120, or a fast retrieval 
localizing method using a standard CPU based on phasor method121. Having explained the 
principles of super-resolution microscopy using adaptive optics, the following section will detail 
the microscope setup to be further developed in this thesis. 

1.9 Revamping the miCube: Implementing beam shaping and 
deformable mirrors 

The miCube is an open framework for single-molecule microscopy, constructed using 3D 
printed components and a custom aluminum stand aimed at minimizing thermal drift. It has been 
detailed in previous publications14,65,121. In this thesis, the miCube was chosen for its 
customization potential, which not only permitted to tailor its components to our food samples' 
specific requirements but also to add or remove specialized components as necessary. Such 
adaptability was crucial for adjustments in both the excitation and detection paths. Most SMLM 
microscopes utilize laser fibers that generate a Gaussian intensity profile of the laser beam. This 
presents a challenge because uneven illumination can adversely affect quantitative analysis. 
Various solutions have been proposed, including using a pair of micro lens arrays with identical 
spherical lenslets122, employing a multimode fiber laser with speckle or rotating reducers123,124, 
and incorporating two galvanometer scanning mirrors placed in a plane conjugated to the back 
focal plane of the microscope objective125. In this thesis, we have incorporated a top-hat beam 
shaper to modify the Gaussian intensity distribution into a homogeneous flat-field profile126,127. 
This refractive beam shaping method redistributes the laser beam into a flat-top profile, ensuring 
uniform illumination of the sample during SMLM measurements. Furthermore, measuring 
turbid samples can result in heavily aberrated images. To address the aberrations in the detection 
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path, a DM can be implemented in the Fourier plane of the objective. The DM does not only 
compensate for aberrations but also facilitates PSF engineering for 3D SMLM imaging. This 
improved SMLM microscope setup is specially designed to address challenges presented by 
turbid samples such as food emulsions (Figure 1.9). 

 
Figure 1.9. Illustration of the enhanced miCube open framework. The excitation path (green dotted rectangle) 
features a top hat beam shaper (TB, highlighted in blue) to transform the Gaussian laser beam intensity distribution 
into a uniform flat-field profile. The detection path (red dotted rectangle) integrates a DM ( highlighted in blue) for 
aberration correction and 3D SMLM PSF engineering. 

1.10 Aim and outline of this thesis 

A main methodological bottleneck in understanding the physical and chemical stability of food 
emulsions is the non-invasive assessment of protein spatial distribution at emulsion interfaces 
with molecular specificity and submicron precision. This thesis introduces advanced microscopy 
techniques tailored to directly localize proteins at the interface of oil droplets within turbid food 
emulsions. Objectives are to develop the methods for extracting and quantifying interfacial 
protein distribution and to demonstrate these methods in challenging model emulsions. 
Figure 1.10 provides the schematic outline of this thesis. The first two chapters detail the 
development of microscopic methodologies for the assessment of proteins at droplet interfaces 
and quantifying heterogeneity of droplet coverage. In the subsequent chapters, the applications 
of these methodologies are demonstrated on model systems mimicking the complexity of 
mayonnaise. Lastly, a general discussion of the findings and an outlook on future research will 
be presented. 
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Figure 1.10. Schematic overview of this thesis. Chapters 2 and 3 focus on methodology development; Chapter 2 
presents the upgraded miCube, a custom-built microscope with enhancements for aberration correction within 
opaque food emulsion samples. Chapter 3 introduces the RPD method for quantitative analysis of protein distribution 
at the interface of oil-in-water emulsions. Chapters 4 and 5 apply these methodologies to model systems; Chapter 4 
delves into the competition between proteins and surfactants for adsorbing at the interface. Chapter 5 investigates 
the co-localization of proteins and radical formation in the early stages of oxidation at the interface. Chapter 6 
provides a discussion of the findings and prospects for future research. 

Chapter 2 describes the fluorescence-based imaging of oil/water interfaces in turbid food 
samples, where traditional imaging methods are limited by the diffraction of light. An upgraded 
custom-built miCube microscope will be presented, featuring adaptive optics and flat-top beam 
excitation. These enhancements aim to tackle optical aberrations in complex emulsions and open 
the door to 3D SMLM through PSF engineering and advanced quantitative. The chapter also 
introduces a first model system for mayonnaise.  

Chapter 3 presents a new method for quantitatively analyzing the distribution of proteins at the 
interface of oil-in-water emulsions. This analytical approach aims to answer whether the 
distribution of emulsifiers at these interfaces is homo- or heterogeneous. 

Chapter 4 employs the methodology from Chapters 2 and 3 to assess intra- and inter-droplet 
heterogeneity in the distribution of proteins at droplet interfaces. This chapter further explores 
the specificity of antibodies for phosvitin and examines their efficacy in relation to affimers, 
which are small proteins- engineered as alternatives to antibodies for specific target recognition.  
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Chapter 5 explores a model system encompassing a model emulsion developed using egg yolk 
as an emulsifier. The chapter seeks to answer the question: how does protein surface coverage 
relate to local co-oxidation? A water-soluble, fluorescently labeled spin trap (CAMPO-
AFDye647) 54 will be used for detecting early radical formation, enabling co-localization of 
protein and radical formation. This analysis will aim to compare which protein is more 
susceptible to co-oxidation compared to the other. 

Chapter 6 provides a comprehensive discussion of the findings presented in this thesis, along 
with an outlook on potential avenues for future research. 
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Abstract 

Turbidity poses a major challenge for the microscopic characterization of food systems. Local 
mismatches in refractive indices, for example, lead to significant image deterioration along 
sample depth. To mitigate the issue of turbidity and to increase the accessible optical resolution 
in food microscopy, we added adaptive optics (AO) and flat-field illumination to our previously 
published open microscopy framework, the miCube. In the detection path, we implemented AO 
via a deformable mirror to compensate aberrations and to modulate the emission wavefront 
enabling the engineering of point spread functions (PSFs) for single-molecule localization 
microscopy (SMLM) in three dimensions. As a model system for a non-transparent food colloid 
such as mayonnaise, we designed an oil-in-water emulsion containing the ferric ion binding 
protein phosvitin commonly present in egg yolk. We targeted phosvitin with fluorescently 
labelled primary antibodies and used PSF engineering to obtain two- and three-dimensional 
images of phosvitin covered oil droplets with sub 100 nm resolution. Our data indicated that 
phosvitin is homogeneously distributed at the interface. With the possibility to obtain super-
resolved images in depth, our work paves the way for localizing biomacromolecules at 
heterogeneous colloidal interfaces in food emulsions.  
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2.1 Introduction 

In turbid media, optical imaging can be compromised by the presence of ingredients or phases 
bearing different refractive indices. In food emulsions such as mayonnaise, for example, the 
presence of oil droplets in the aqueous phase will disturb incoming and outgoing wavefronts of 
light. With an increasing depth of imaging, more and more photons will be reflected, absorbed, 
or scattered leading to aberrated images that suffer from decreased resolution, blurriness and 
distortions1,2. To correct aberrations, the concept of adaptive optics (AO) was developed in 
which active controllable elements such as deformable mirrors or spatial light modulators allow 
to modulate the wavefronts before the light reaches the photon detecting camera3. First 
developed for astronomical telescopes4, AO is increasingly finding applications in fluorescence 
microscopy such as a super resolution5, light-sheet6, confocal7,8 or multiphoton9 microscopy. AO 
can be implemented using direct or indirect wavefront sensing10. In the direct sensing mode, an 
additional wavefront sensor (e.g. Shack–Hartmann wavefront sensor) is required to send 
instantaneous feedback to the optical element that can modulate the wavefront11. However, 
operation in direct mode reduces the number of photons available for image formation, 
hampering especially applications in super-resolution localization microscopy (SMLM)12,13. 
Using indirect sensing, the wavefront is obtained from analyzing a sequence of images allowing 
more photons to reach the main camera and simplifying the experimental layout. A common 
implementation of indirect sensing AO uses a deformable mirror in reflecting mode to 
compensate aberrations that can be described by Zernike polynomials14.  

In SMLM, individual emitters, whose distance to each other is below the diffraction limit of 
optical microscopy, can be distinguished from each other, if conditions are achieved that allow 
separation of the emission of each fluorophore in time. In the dSTORM (direct stochastic optical 
reconstruction microscopy) variant, this requirement is achieved by using blinking fluorophores 
that switch between fluorescent and non-fluorescent states15,16. Originally a two-dimensional 
imaging technique, three-dimensional resolution in SMLM can be achieved by breaking the 
axial symmetry of the imaged point spread function (PSF) using astigmatism17,18 or further PSF 
engineering via phase masks or AO enabling saddle point, tetrapod19 and double helix20 PSFs. 
Our recent work introduced a method called circular-tangent phasor-based SMLM (ct-pSMLM) 
that enables fast and accurate localization of emitters after PSFs engineering on standard CPUs21. 

SMLM has not yet found widespread use to study food systems22. We therefore decided to 
update the previously published miCube microscopy framework23 on several aspects to 
showcase SMLM in food-related turbid media. Quantitative SMLM measurements are often 
compromised by inhomogeneous illumination due to a Gaussian intensity distribution of the 
exciting laser beam. To overcome this issue, several approaches have been introduced to achieve 
illumination with a constant intensity over the entire field of view. Examples include the use of 
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a pair of micro lenses array consisting of identical spherical lenslets24,25, the use of multimode 
optical fibers (MMF)26 for illumination in combination with speckle reducers27 or rotating 
diffusers28 with the latter being less suitable for total internal reflection fluorescence (TIRF) 
microscopy due to the degradation of spatial coherence that prevents diffraction limited 
focusing. Recent work further demonstrated flat field illumination over variable field sizes using 
two galvanometer scanning mirrors placed in a plane conjugated to the back focal plane of the 
microscope objective in epifluorescence or TIRF mode29. In our implementation, we added a 
top-hat beam shaper in the excitation path that converts the Gaussian shaped intensity 
distribution of the excitation beam into a homogeneous flat field profile (top hat) enabling 
quantitative microscopy30,31. Moreover, we equipped the miCube with a deformable mirror 
placed in the detection pathway to compensate aberrations coming from in-depth imaging of 
opaque samples with spatial variations of refractive indices and for enabling PSF engineering. 
In particular, we adapted an approach called robust and effective adaptive optics in localization 
microscopy (REALM) that was recently developed to compensate aberrations in depth of 
complex biological samples32. REALM uses the image quality metric derived from a weighted 
sum of Fourier transforms of raw images of emitters to estimate the aberrations. REALM then 
compensates the aberrations of different Zernike modes based on the metric values and biases 
of the mirror. 

In a recent study using conventional multi-colour confocal microscopy, we found evidence that 
the distribution of oxidized proteins in the water phase and the oil/water interface of mayonnaise 
is not homogeneous33. Mayonnaise is a highly turbid food emulsion containing up to 80% of oil, 
in which egg yolk acts as an emulsifier34. For the previous oxidation study, we saw structural 
features too small to be resolved, motivating us to implement SMLM. To demonstrate the 
applicability of SMLM, we will here use a dilute oil-in-water model emulsion that was 
emulsified with phosvitin35. Phosvitin is a protein contained in egg yolk that has a binding 
capacity for ferric ions36. Ferric/ferrous ions can catalyze lipid oxidation at the oil–water 
interface, which can be detrimental to the sensorial and nutritional quality of food emulsions. 
Visualization of phosvitin at oil–water interfaces in food emulsions is therefore relevant to 
understand lipid oxidation mechanisms and design anti-oxidant strategies37. For our model 
emulsion, we opted for a 15% v/v oil concentration to obtain small droplets (approx. 1 µm 
diameter) with a large surface area available for phosvitin. We then used a phosvitin antibody 
conjugated with the fluorophore Alexa Fluor 647 to map phosvitin at the droplet interface and 
to obtain the three-dimensional distribution of phosvitins. With the demonstration of SMLM 
supported by adaptive optics, PSF engineering and a flat-field illumination scheme, our work 
paves the way for quantitative characterization of food systems under ambient environmental 
conditions. 
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2.2 Material and methods 

2.2.1 The miCube excitation path 

For laser excitation, we used two options. The first option features a standard laser combiner 
(Omicron Lighthub, Germany) equipped with 4 lasers operating at 405 nm, 488 nm, 561 nm, 
and 642 nm that were coupled into a single mode fiber. As a second option, we used two low-
cost diode lasers equipped with simple beam shaping optics. The lasers operate at 635 nm (PD-
01287, 200 mW, Standard Module, Lasertack, Germany) and 520 nm (PD-01298, 100 mW, 
Standard Module, Lasertack, Germany) and are controlled via a home-built Arduino powered 
laser control engine (https://hohlbeinlab.github.io/miCube/LaserTrack_Arduino.html). 
After combining the laser light with a dichroic mirror (RGB Beam Splitter-Combiner – 
Lasertack, Germany), the light was coupled into a single-mode fiber (P3-460B-FC-2, Thorlabs) 
using a 10x objective (RMS10X - 10X Olympus Plan Achromat Objective, Japan). The coupling 
efficiencies of the 635 nm and 520 nm diode lasers to single-mode fiber were 56% and 42%, 
respectively. For collimating the laser light after the fiber, we used an achromatic lens (CL) of 
either 30 mm or 60 mm focal length (AC254-030-A-ML and AC254-060-A-ML, Thorlabs). 
Collimation was checked with a shear plate (SI050, Thorlabs). The laser light was then reflected 
by an elliptical mirror (M1, BBE1-E02, Thorlabs) mounted to a right-angle kinematic cage 
mount (KCB1E/M, Thorlabs), towards the top-hat beam shaper (TSM25-10-D-D-355, Top 
Shape, Asphericon GmbH, Germany) to create a homogeneous distribution of illumination 
intensity. The ideal input beam size for the beam shaper is between 9.2 mm and 10.8 mm (1/e2). 
Using the 60 mm collimating lens, the input beam size is approximately 10.2 mm. After the 
beam shaping, the laser beam was reflected with another mirror (M2, BBE1-E02, Thorlabs) 
towards an iris (Iris, SM1D12D, Thorlabs) that allows the area of illumination in the sample 
plane to be controlled. The laser light was then focused into the back focal plane (BFP) of the 
microscope objective using an achromatic lens (TR, f = 150 mm, AC508-150-A-ML, Thorlabs) 
mounted on a translational stage (XR25C/M, Thorlabs) used to change the position of the focus 
in the BFP. 

2.2.2 The miCube main block 

The main block itself is similar to the one reported previously23. The laser beam focused by the 
TIRF lens is reflected by a polychroic mirror (DiM, ZT532/640rpc or ZT405/488/561/640rpcv2, 
Chroma) into the back focal plane of the objective lens (OL, CFI Plan Apo Lambda 100× Oil 
NA 1.45, Nikon). The sample was placed on a three-dimensional printed coverslip sample holder 
and secured in place with small magnets. We used a stick–slip piezo XYZ stage (SLS-3232, 
SmarAct GmbH, Germany) for sample scanning. The stage has a footprint of 32 mm by 32 mm 
and offers a travel range of 21 mm in each direction with 1 nm closed-loop resolvable position 

https://hohlbeinlab.github.io/miCube/LaserTrack_Arduino.html
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resolution. The stage is able to handle payloads of up to 1.5 N. The light emitted from the sample 
was collected with the same microscope objective and, after passing the polychroic mirror, 
further cleaned up with a bandpass filter (F, ZET532/640m-TRF, Chroma) located at the bottom 
of the dichroic cage holder (DFM1/M, Thorlabs) to block remaining back-reflected laser light 
from entering the emission path. Subsequently, emitted light was reflected using a 90° mirror 
(M3, BBE1-E02, Thorlabs) towards the tube lens. 

2.2.3 The miCube emission path 

A tube lens TuL (MXA20696, Nikon) with 200 mm effective focal length is used to form an 
image in the first image plane. An elliptical mirror M4 (BBE1-E02, Thorlabs) steers the light 
towards a 4f system of lenses. The first lens L1 (AC508-100-A-ML, Thorlabs) was positioned 
to collimate the light from the first image plane. As the angle between incident and reflected 
light from the deformable mirror should stay below 30°, we used mirror M5 (PF10-03-P01, 
Protected Silver Mirror, Thorlabs) mounted to a precision kinematic mirror holder (KS1, 
Thorlabs), placed in front of the deformable mirror to control this angle. For modifying the 
incoming wave front and to compensate the aberrations, we placed the deformable mirror DM 
(DMP40/M-P01, 40- Actuator Piezo Deformable Mirror, Thorlabs) in the Fourier plane of L1 
(one focal distance). The deformable mirror consists of a 40-actuator array with three bimorph 
benders for ±2.0 mrad Tip/Tilt actuation and was mounted on a XZ linear stage (XR25C/M, 
Thorlabs) to simplify the alignment of the mirror in respect to the emission light. The light 
reflected from the deformable mirror was conducted to lens L2 (AC508-100-A-ML, Thorlabs), 
which focused the light on the camera (Prime 95B sCMOS, Photometrics) having a maximum 
quantum yield of 95% QE and featuring a 11 µm by 11 µm pixel size. The camera was mounted 
on a custom three-dimensional printed stand to adjust the height and position on the optical table. 

2.2.4 Re-scan confocal microscopy 

We updated the previous miCube microscope with a re-scan confocal microscopy (RCM) 
module (Confocal.nl, Amsterdam, The Netherlands)38. The RCM has a separate fiber input for 
and allows scanning of the collimated laser beam across the sample. The emitted light from the 
specimen is then rescanned with a second mirror with twice the sweep length as the excitation 
scanning mirror, leading to a 43 nm pixel size on the sCMOS chip. The RCM is capable of 
achieving a √2  times increase in resolution compared to classical confocal laser scanning 
microscopes. 

2.2.5 Deformable mirror for adaptive optics and PSF engineering 

The mirror (DM, DMP40/M-P01, 40-Actuator Piezo Deformable Mirror, Thorlabs) consists of 
40 individual actuators and three arms for tip/tilt. Each actuator and each arm can be controlled 
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by applying voltages between 0 V and 200 V. In combination, the voltages determine the 
curvature of the mirror. To correct the flatness of the mirror and later for modulating the PSFs, 
we implemented REALM (https://github.com/MSiemons/REALM)32, which allows for 
corrections without requiring an additional sensor to monitor the incoming wavefront. We 
further wrote a plugin for Micromanager to connect REALM to the deformable mirror used in 
our study (https://github.com/HohlbeinLab/Thorlabs_DM_Device_Adapter)21. 

2.2.6 Data acquisition, visualization and image analysis of SMLM data 

If not stated otherwise, we used the 642 nm laser for excitation of Alexa Fluor 647 and the 
405 nm laser for photo-reactivation. Movies were recorded for 10,000 frames with a frame time 
of 20 ms. The raw data were analysed with ThunderSTORM39 plugin in ImageJ/Fiji40 based on 
the phasor-based localization algorithm41. After obtaining the localizations, we performed two-
dimensional cross-correlation drift correction (settings in ThunderSTORM: 10 bins and 5× 
magnification). The localizations were visualized using the average shifted histogram options, 
with the magnification set to 5. Moreover, no lateral shifts were added and cyan was chosen for 
the lookup table. A rewritten ImageJ plugin was used to remove constant fluorescence 
background by means of a temporal median filter42 (see github.com/HohlbeinLab/FTM2 for 
the ImageJ/Fiji plugin). To determine the histogram of droplet sizes, we first manually 
encircled droplets in the field of view based on the ring-shaped presence and absence of 
fluorescence. We then applied the Hough circle transform43 function in MATLAB (Mathworks, 
UK) to obtain the radii of all circles using 0.2 µm as the minimum and 2 µm as the maximum 
search radius for oil droplets. For measuring the resolution of super resolved images, we further 
used Fourier ring correlation (FRC) as implemented in the software package SMAP44. 

2.2.7 Isolation and purification of phosvitin 

Our procedure of isolating and purifying phosvitin follows previous work36. Briefly, fresh hen 
eggs were purchased from the domestic market. To remove egg white and chalazas, the yolks 
were rolled on a filter paper. The temperature of the following steps was kept at 4◦C. An equal 
amount of distilled water was added to the yolk. The diluted solution was centrifuged at 12,000 g 
for 10 min (Avanti j-25, Beckman). The precipitate was collected and homogenized with an 
equal mass of a 0.17 M NaCl solution and centrifuged again at 12,000 g for 10 min. The granules 
were dissolved in a 10% w/v of a 1.74 M NaCl solution. The pH was adjusted to 8.0 with 1 mM 
NaOH solution and homogenized with 4% PEG6000 w/w and centrifuged at 12,000 g for 
another 10 min. The supernatant was dialyzed against distilled water for 48 h and subsequently 
centrifuged at 12,000 g for 10 min. The supernatant was collected and lyophilized using a 
lyophilizer from either Christ, Germany or Labconco, USA. 

https://github.com/MSiemons/REALM
https://github.com/HohlbeinLab/Thorlabs_DM_Device_Adapter
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2.2.8 Phosvitin based model emulsion 

In total, 6 mg ml−1 of lyophilized phosvitin was added to 0.05 M of 2-N-porpholino ethane 
sulfonic acid (MES) buffer at pH 6.6. The solution was centrifuged at 4,000 g for 20 min and 
the supernatant was extracted to remove the undissolved particle from the solution. We then 
added 0.15% w/v of sodium dodecyl sulfate (SDS) to the solution to obtain a stable model 
emulsion. A 15% oil in water mixture was prepared with 7.5 mL of rapeseed oil and 42.5 mL of 
the phosvitin containing solution. The emulsion was premixed with an 18 mm diameter head 
disperser at 18,000 r.p.m. for 2 min (T 18 digital ULTRA-TURRAX, IKA, Germany). Next, the 
15% oil in water model emulsion was obtained by emulsifying the premix at 70 bar for 20 min 
with a flow rate of 80 mL min−1 using a high-pressure homogenizer (Delta Instruments LAB 
Homogenizer). 

2.2.9 Sample preparation 

For the rescan-confocal microscopy measurements on mayonnaise, 1% w/w of 1 mg mL−1 Nile 
blue (Sigma, ref. N0766) solution was gently stirred into the mayonnaise. Nile blue was excited 
at 642 nm. For correcting the deformable mirror, we used fluorescent beads (FluoSpheresTM 
Carboxylate-Modified Microspheres, 28 nm diameter, dark red fluorescent (660/680), Thermo 
Fisher). First, we diluted the provided solution 1 : 100,000 and added 4 mL of the dilution to a 
coverslip (no. 1.5, Thermo Scientific Menzel Gläser). We then used a second coverslip used on 
top of the first one to have homogeneous distribution of beads on the field of view. To measure 
the drift characteristics in x, y and z, we prepared a sample as described but using 50 nm 
fluorescent beads (560 nm peak emission wavelength) instead. For dSTORM measurements, the 
phosvitin antibody conjugated with Alexa Fluor 647 stock solution was first diluted 50 times in 
TRIS buffer. Here 40 µL of the diluted antibodies were then added to 400 µL of the 15% oil-
inwater model emulsion. In order to stall self-diffusion of droplets, we further added 0.5% w/v 
of guar gum (Sigma, ref. G4129). The specimen was then dripped into a well of a silicon gasket. 
1.5 µL of the STORM buffer containing 50 mM TRIS pH 8, 10 mM NaCl, 10% glucose, 
140 mM 2-mercaptoethanol, 68 µg mL−1 catalase and 200 µg ml−1 glucose oxidase45 was mixed 
into 15 µL of sample, before we sealed the gasket. We note that although we effectively used a 
10- fold reduced concentration of a standard STORM buffer in our sample, sufficient blinking 
was achieved. Using a 10× increased concentration of BME did not lead to improvements in 
blinking and achievable resolution. 
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2.3 Results and discussion 

2.3.1 Turbidity compromises the image quality in oil-in-water emulsions 

We first imaged a mayonnaise sample containing Nile blue using a stack of confocal images to 
demonstrate the challenges of optical imaging in turbid media (Figure 2.1A). The expected loss 
of optical resolution in depth of the sample is seen in the cross-sectional view; an increase of 
imaging depth coincides with increased blurriness (Figure 2.1B, C). To obtain a model 
emulsion suitable for SMLM, we prepared a low (15%) oil-in-water model emulsion emulsified 
with phosvitin. We decided to start with a simple model system consisting of phosvitin as the 
main emulsifier to develop and refine the required microscopy framework. The main restriction 
of using real mayonnaise is its compositional complexity: egg yolk, used as emulsifier in 
mayonnaise, consists of many different proteins (e.g., phosvitin, LDL, apoB) making an 
attribution of the individual contributions difficult. Owing to the lower oil content of the model 
emulsion, the packing of droplets is less dense leading to self-diffusion of droplets. We therefore 
added guar gum to the emulsion which increased the viscosity leading to an effective 
immobilization of the droplets (Figure 2.1D, E). The rescan-confocal laser scanning images 
showed that the high shear during emulsification resulted in smaller droplet sizes (approx. 
0.5 µm radius) compared to typical mayonnaises (2– 2.5 µm radius; Figure 2.1E, F). Similar to 
imaging in mayonnaise, we observed a loss of resolution and signal-to-noise ratio with 
increasing depth (Figure 2.1G, H). We note that larger areas are void of droplets and are likely 
occupied with guar gum networks (Figure 2.1B, E: xz and xy sectional views). 

2.3.2 Adapting the miCube for SMLM in turbid media 

We modified the miCube microscopy framework23 at various positions to address the challenges 
imposed by super-resolution measurements in turbid media and to provide users with additional 
hardware options (Figure 2.2). In the excitation path, we included an option to use cheaper laser 
diodes as light sources rather than a scientific-grade multicolor laser engine. To enable 
simplified quantitative analysis of super-resolution data, we added a top-hat beam shaper 
providing an even illumination profile over the field of view24,30,31. We compared the resulting 
illumination profile in the field of view with one obtained using conventional Gaussian 
distributed laser excitation (Figure 2.2B–D). To this end, we placed a droplet of 1 µM Cy3B 
dye solution (Cytiva) on the coverslip and used a second coverslip on top to obtain a 
homogeneous spatial distribution of fluorophores. The fluorescence intensity profiles of the 
Gaussian and flattop epi-illumination were obtained by exciting the sample with the 561 nm 
laser set to 26 mW. Using a collimating lens with a focal length of CL = 30 mm and 60 mm (for 
their position, see Figure 2.2), we achieved a full width at 90% of the maximum intensity 
(FW90M) for these two lenses in the Gaussian illumination mode of 27 µm and 28 µm and for  
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Figure 2.1. Rescan-confocal images of mayonnaise and the model emulsion labelled with Nile blue. (A) Three-
dimensional volume rendering image of 40 µm by 40 µm by 20 µm taken with a 1 µm step size along the optical z-
axis. (B, C) Cross sectional views in different planes of xy-xz-yz shows in a slice of 20 µm thickness (B) and in the 
xy plane located in 40 µm depth in the sample (C). (D) Three-dimensional volume rendering of 40 µm by 40 µm by 
20 µm stabilized by guar gum, taken with 1 µm step size. (E, F) Cross-sectional views in different planes of xy-xz-
yz starting at the surface close to the coverslip (E) and in the xy plane located in 20 µm depth in the sample (F). Void 
areas in the model emulsion are caused by the guar gum network. (G) Line plots of fluorescence intensity (blue line 
in B) representing the achievable signal to noise of droplets close to the glass interface and (orange line in C) in 
40 µm depth. (H) Line plots of fluorescence intensity (red line in E) representing the achievable signal to noise of 
droplets close to the glass interface and (purple line in F) in 20 µm depth. 
 

flat illumination of 116 µm and 128 µm, respectively (Figure 2.2D). The flat field leads to laser 
intensity of 0.19 kW cm-2. For the main cube, we opted for a sample scanning stage that offers 
nanometer resolution over a 21 mm scanning range in all three directions and working in closed 
loop mode to compensate the thermal drift of the stage (Supplementary Figure 2.1). In the 
detection path, we implemented a deformable mirror to correct the aberrations induced by either 
the sample or by other optical elements in the detection pathway and enable PSF engineering 
that allow us to have higher z range in three dimensions. We noted, however, that the deformable 
mirror itself introduces additional aberrations to the system requiring corrections. Using the 
standard setting of all actuators set to 100 V, we observed asymmetrically elongated PSFs 
(Figure 2.2E) rather than the expected symmetrical and circular PSFs when imaging fluorescent 
latex beads of 28 nm diameter. To correct the flatness of the mirror and later for modulating the 
PSFs, we implemented REALM32. Using REALM, each Zernike aberration mode was 
individually corrected by sequentially optimizing the image metric (Figure 2.2F). The software 
evaluated 11 biases ranging from −100 nm to 100 nm for the mirror setting for each of the nine 
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tested Zernike modes. By using three correction rounds, a total of 297 images were acquired. A 
Gaussian function was fitted to the metric values of each bias. The position of the maximum of 
the fitted function was taken as the required correction amplitude for that specific mode. After 
correcting the mirror, the expected circular symmetry of the PSF is restored (Figure 2.2G) and 
we found the correction settings to be stable for several months. 

 
Figure 2.2. (A) Schematic of the optical pathway. The excitation path (left, green) and the detection path (right, red) 
are highlighted. Components include a collimating lens(CL), mirrors(M), top-hat beam shaper(TS), TIRF lens(TL), 
polychroicmirror (DiM), objective lens (OL), back focal plane (BFP), bandpass filter (F), tube lens (TuL), lenses 
(L), deformable mirror (DM), and a camera (Cam). (B–D) Characterization of the intensity profile in the field of 
view. Two collimating lenses (CL) were compared with either 30 mm or 60 mm focal length and with or without 
top-hat beam shaper. (B) Intensity profile after using the 30 mm lens. (C) Intensity profile after using the 60 mm lens 
with added top-hat beam shaper. Scale bars in (B, C) represent 50 µm. (D) The line profiles of B (green line) and C 
(blue line) are plotted and compared to using the 30 mm collimation lens with (black line) and without the top-hat 
beam shaper (red line). (E, F) Corrections of aberrations using adaptive optics in the emission path. (E) Fluorescent 
beads (28 nm diameter) were immobilized on a cover slip and imaged. Here, the asymmetrical shape of the PSF is 
induced by the deformable mirror itself. (F) A specific Zernike mode, oblique secondary astigmatism, Z-2

4 , was 
selected and the correction procedure was performed providing a Gaussian fit of the obtained metric values and 
biases. (G) The expected symmetrical shape of the PSF is restored after correcting the deformable mirror for all 
Zernike modes using REALM. We note that the beads are slightly out of focus to exemplify the symmetry. Scale 
bars in (E–G) represent 10 µm. 
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2.3.3 Super-resolution microscopy in turbid media 

Phosvitin is an egg yolk protein that has a binding capacity for ferric ions36 which can catalyze 
lipid oxidation at oil-water interface in food emulsions. Here, we aimed at visualizing phosvitin 
at the oil-water interfaces of a model emulsion to explore the potential spatial heterogeneity of 
phosvitin that could provide clues to design strategies combating lipid oxidation. In our 15% oil-
in-water model emulsion, phosvitin took the role as the main emulsifier. We further added SDS 
to increase the stability of the emulsion (Figure 2.3A). To localize phosvitin at the oil-water 
interface, we added fluorescently labelled antibodies against phosvitin. 

To demonstrate the effect of adaptive optics, we first recorded data in 8 µm depth without 
aberration correction in addition to the flat-mirror correction with REALM (Figure 2.3B, D) for 
5 min. Then, the sample was imaged with the depth correction setting applied. The outlines of 
the oil droplets representing labelled antibodies bound to phosvitin are clearly visible. We 
performed control experiments with phalloidin antibodies conjugated with Alexa Fluor 647 to 
verify the specificity of the phosvitin antibodies. As expected, a noisy background was observed 
without clear outlines of droplets being visible (Supplementary Figure 2.2). Before any further 
analysis of the raw data, we minimized the influence of background fluorescence by applying a 
temporal median filter (see Material and methods). To compare the datasets with and without 
aberration correction, we first summed up the intensities of all 10,000 frames pixel by pixel to 
mimic diffraction-limited resolution (Figure 2.3B, C). With correction, more droplets are 
visible showing a clear circular shape with better signal-to-noise ratio. We then analyzed the 
individual point spread functions frame by frame to demonstrate the increase in resolution 
obtainable in SMLM (Figure 2.3E, G). As indicated in the histograms, more localizations per 
movie frame can be obtained after correction with AO due to a better signal-to-noise ratio 
(Figure 2.3F, G).  

For a more quantitative analysis, we then imaged a new sample in a plane close to the surface (a 
few 100 nm deep) and plotted a line profile over an isolated droplet (Figure 2.4A) indicating a 
radii of approximately 0.65 µm. Further, analyzing the profile of the droplet using a Gaussian 
fit and calculating the FWHM of the intensity profile around the droplets revealed a thickness 
of 74 nm (Supplementary Figure 2.3) thereby representing a convolution of the localization 
precision and the expected geometrical averaging due to projecting a three dimensional cut-out 
of a sphere onto a two-dimensional imaging plane. We obtained an imaging resolution of 71 nm 
using FRC42,44,46 (Supplementary Figure 2.4). In total, we found 284 droplets with radii 
between 0.2 µm and 1.2 µm with a number averaged mean radius of 0.46 µm 
(Figure 2.4C and Supplementary Figure 2.5). We note that these are apparent radii due to the  



Enabling single-molecule localization microscopy in turbid food emulsions 
 

53 
 

2 

error introduced by the imaging plane not crossing all droplets at the center47. We then recorded 
data in 4 µm depth (Figure 2.4D) after applying the aberration corrections obtained with 
REALM. At this depth, the PSFs of individual fluorophore emitters are slightly aberrated such 
that they could be directly used to obtain the correction coefficients. We again enlarged a droplet 
and obtained a radius of 0.75 µm. In this plane, we obtained 79 nm for the FWHM of the 
intensity profile around the droplet (Supplementary Figure 2.3). We counted 134 droplets with 

 
Figure 2.3. From diffraction limited to super-resolved imaging of fluorescently labelled antibodies bound to 
phosvitin present at the oil–water interface of a model food emulsion. (A) Schematic diagram of an oil-in-water 
emulsion droplet in the model emulsion. Phosvitin and SDS jointly stabilize the oil–water interface. We then added 
antibodies against phosvitin that are fluorescently labelled (Alexa Fluor 647) to localize phosvitin at the interface 
using dSTORM. (B–E) Comparing diffraction limited and super-resolved images with and without adaptive optics. 
(B, C) The accumulated fluorescence intensity over 10,000 frames each in the same field of view in 8 µm sample 
depth first measured without (B) and then with AO enabled (C). (D, E) The corresponding super-resolved images of 
the same stack in 8 µm sample depth without (D) and with AO enabled (E). (F, G) The number of localizations in 
the field of view per 500 frames without (F) and with AO (G). 
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a different radius between 0.2 µm and 1.8 µm and a number averaged mean of 0.55 µm 
(Figure 2.4F and Supplementary Figure 2.5). At 15 µm sample depth we had to first correct 
the PSFs using embedded fluorescent latex beads. We further had to increase the laser excitation 
power twofold to obtain a sufficient number of photons per localization (Figure 2.4G). As we 
measured deeper into the sample, we noticed a decrease in the number of droplets present likely 
induced by the guar gum used to reduce the mobility of droplets in the sample. We achieved 
super resolved images in 15 µm depth indicated by resolving two droplets with approximately 
0.45 µm radius. Using FRC, we calculated the resolution of the image to be approximately 
124 nm (Figure 2.4H). As expected, the number of droplets per field of view reduced to 27 with 
an averaged mean radius of 0.43 µm and mostly those droplets distributed between 0.35 µm and 
0.48 µm. We note that the operational range offered by SMLM is not accessible by conventional 
laser scanning microscopy, which typically has a lower limit of 0.5 µm for determining the radii 
of droplets48. 

 
Figure 2.4. Super-resolved imaging in various depths of a turbid model food emulsion. (A, D, G) 25 µm by 25 µm 
field of view of the super-resolved droplets (A) close (less than 1 µm) to the surface, (D) 4 µm in-depth and, (G) 
15 µm in-depth. Line profile of an enlarged droplet from the sample with a radius of (B) approximately 0.65 µm and 
(E) approximately 0.75 µm. Apparent size distributions presented as histograms for a 15% model emulsion stabilized 
with phosvitin for the plane close to the surface (C) and, the plane 4 µm in-depth (F). (H) The FRC calculation to 
determine the resolution of super resolved image in 15 µm depth. 
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2.3.4 Obtaining 3D image of oil droplets using PSF engineering 

To show the capability of three-dimensional imaging using adaptive optics, we recorded 
engineered PSFs using the deformable mirror. Various PSFs such as astigmatism, saddle point 
and tetrapod can be engineered using the deformable mirror. To access a 2–2.5 µm z-range, we 
employed vertical astigmatism and vertical secondary astigmatism Zernike coefficients (Saddle 
point PSF). We recorded 40,000 frames with 30 ms frame time (Figure 2.5). We visualized the 
cross-sectional view of three-dimensional distribution in xz- and yz-planes, showing that the full 
volume of a droplet can be covered and further indicating that phosvitin is homogeneously 
distributed at oil droplet interfaces. Vertical and horizontal dashed lines in Figure 2.5 indicate 
the corresponding xz and yz sections. We note that further analysis of the homogeneity will 
critically depend on the surface coverage of the droplets with phosvitin and the matching, 
fluorescently labelled antibody. 

 
Figure 2.5. 20 µm × 20 µm image of the oil-in-water model emulsion droplets in 4 µm depth with the saddle point 
PSF setting providing a 2.1 µm z-range. The cross-sectional views show the distribution of protein in the xz- and xy-
plane. Saddle point PSFs were introduced by applying vertical astigmatism and vertical secondary astigmatism 
Zernike modes to the deformable mirror. 
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2.4 Conclusions 

In this study, we presented an updated design of the miCube open-source microscope featuring 
flat-field illumination and adaptive optics for PSF engineering. Together, these updates enable 
3D-SMLM in both standard samples and samples compromised by inherent turbidity. As a first 
model system we used a dilute oil-in-water emulsion in which we imaged the iron-binding 
protein phosvitin at the droplet interface using a primary phosvitin antibody conjugated with 
Alexa Fluor 647. Flat-field illumination enables homogeneous excitation intensities over areas 
surpassing 30 µm by 30 µm indicating that phosvitin is homogeneously distributed over the 
droplet interfaces. Droplets with radii as small as 0.2 µm can be discerned and localization of 
phosvitin in extended sample depths is possible. Using the deformable mirror to engineer PSFs, 
we demonstrated that extended z-ranges can be accessed with SMLM without moving the focus 
of the objective in the sample plane. Our work showed the ability of the open miCube platform 
to perform SMLM techniques for localizing biomacromolecules in both two and three 
dimensions at colloidal interfaces in complex and oxidation-sensitive food emulsions. 

   



Enabling single-molecule localization microscopy in turbid food emulsions 
 

57 
 

2 

References 
1 Schwertner, M.; Booth, M. J.; Wilson, T. Characterizing Specimen Induced Aberrations for High NA Adaptive 

Optical Microscopy. Opt. Express, OE 2004, 12 (26), 6540–6552. https://doi.org/10.1364/OPEX.12.006540. 
2 Vellekoop, I. M.; Aegerter, C. M. Scattered Light Fluorescence Microscopy: Imaging through Turbid Layers. 

Opt. Lett., OL 2010, 35 (8), 1245–1247. https://doi.org/10.1364/OL.35.001245. 
3 Girkin, J. M.; Poland, S.; Wright, A. J. Adaptive Optics for Deeper Imaging of Biological Samples. Current 

Opinion in Biotechnology 2009, 20 (1), 106–110. https://doi.org/10.1016/j.copbio.2009.02.009. 
4 Hardy, J. W. Adaptive Optics for Astronomical Telescopes; Oxford University Press, 1998. 
5 Booth, M.; Andrade, D.; Burke, D.; Patton, B.; Zurauskas, M. Aberrations and Adaptive Optics in Super-

Resolution Microscopy. Microscopy (Oxf) 2015, 64 (4), 251–261. https://doi.org/10.1093/jmicro/dfv033. 
6 Dalgarno, H. I. C.; Čižmár, T.; Vettenburg, T.; Nylk, J.; Gunn-Moore, F. J.; Dholakia, K. Wavefront Corrected 

Light Sheet Microscopy in Turbid Media. Appl. Phys. Lett. 2012, 100 (19), 191108. 
https://doi.org/10.1063/1.4710527. 

7 Hell, S.; Reiner, G.; Cremer, C.; Stelzer, E. H. K. Aberrations in Confocal Fluorescence Microscopy Induced by 
Mismatches in Refractive Index. Journal of Microscopy 1993, 169 (3), 391–405. https://doi.org/10.1111/j.1365-
2818.1993.tb03315.x. 

8 Ji, N.; Sato, T. R.; Betzig, E. Characterization and Adaptive Optical Correction of Aberrations during in Vivo 
Imaging in the Mouse Cortex. PNAS 2012, 109 (1), 22–27. https://doi.org/10.1073/pnas.1109202108. 

9 Dong, C.-Y.; Koenig, K.; So, P. T. C. Characterizing Point Spread Functions of Two-Photon Fluorescence 
Microscopy in Turbid Medium. JBO 2003, 8 (3), 450–459. https://doi.org/10.1117/1.1578644. 

10 Booth, M. J. Adaptive Optical Microscopy: The Ongoing Quest for a Perfect Image. Light Sci Appl 2014, 3 (4), 
e165–e165. https://doi.org/10.1038/lsa.2014.46. 

11 Tao, X.; Fernandez, B.; Azucena, O.; Fu, M.; Garcia, D.; Zuo, Y.; Chen, D. C.; Kubby, J. Adaptive Optics 
Confocal Microscopy Using Direct Wavefront Sensing. Opt. Lett., OL 2011, 36 (7), 1062–1064. 
https://doi.org/10.1364/OL.36.001062. 

12 Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; 
Lippincott-Schwartz, J.; Hess, H. F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. 
Science 2006, 313 (5793), 1642–1645. https://doi.org/10.1126/science.1127344. 

13 Hess, S. T.; Girirajan, T. P. K.; Mason, M. D. Ultra-High Resolution Imaging by Fluorescence Photoactivation 
Localization Microscopy. Biophysical Journal 2006, 91 (11), 4258–4272. 
https://doi.org/10.1529/biophysj.106.091116. 

14 Madec, P.-Y. Overview of Deformable Mirror Technologies for Adaptive Optics and Astronomy. In Adaptive 
Optics Systems III; International Society for Optics and Photonics, 2012; Vol. 8447, p 844705. 
https://doi.org/10.1117/12.924892. 

15 Heilemann, M.; van de Linde, S.; Schüttpelz, M.; Kasper, R.; Seefeldt, B.; Mukherjee, A.; Tinnefeld, P.; Sauer, 
M. Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes. Angew. Chem. Int. 
Ed. 2008, 47 (33), 6172–6176. https://doi.org/10.1002/anie.200802376. 

16 Rust, M. J.; Bates, M.; Zhuang, X. Stochastic Optical Reconstruction Microscopy (STORM) Provides Sub-
Diffraction-Limit Image Resolution. Nat Methods 2006, 3 (10), 793–795. https://doi.org/10.1038/nmeth929. 

17 Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Three-Dimensional Super-Resolution Imaging by Stochastic 
Optical Reconstruction Microscopy. Science 2008, 319 (5864), 810–813. 
https://doi.org/10.1126/science.1153529. 

18 Holtzer, L.; Meckel, T.; Schmidt, T. Nanometric Three-Dimensional Tracking of Individual Quantum Dots in 
Cells. Appl. Phys. Lett. 2007, 90 (5), 053902. https://doi.org/10.1063/1.2437066. 

19 Aristov, A.; Lelandais, B.; Rensen, E.; Zimmer, C. ZOLA-3D Allows Flexible 3D Localization Microscopy over 
an Adjustable Axial Range. Nature Communications 2018, 9 (1), 2409. https://doi.org/10.1038/s41467-018-
04709-4. 

20 Pavani, S. R. P.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. E. 
Three-Dimensional, Single-Molecule Fluorescence Imaging beyond the Diffraction Limit by Using a Double-
Helix Point Spread Function. PNAS 2009, 106 (9), 2995–2999. https://doi.org/10.1073/pnas.0900245106. 

21 Martens, K. J. A.; Jabermoradi, A.; Yang, S.; Hohlbein, J. Integrating Engineered Point Spread Functions into 
the Phasor-Based Single-Molecule Localization Microscopy Framework. Methods 2020. 
https://doi.org/10.1016/j.ymeth.2020.07.010. 

22 Hohlbein, J. Single-Molecule Localization Microscopy as an Emerging Tool to Probe Multiscale Food 
Structures. Food Structure 2021, 30, 100236. https://doi.org/10.1016/j.foostr.2021.100236. 

23 Martens, K. J. A.; van Beljouw, S. P. B.; van der Els, S.; Vink, J. N. A.; Baas, S.; Vogelaar, G. A.; Brouns, S. J. 
J.; van Baarlen, P.; Kleerebezem, M.; Hohlbein, J. Visualisation of DCas9 Target Search in Vivo Using an 



Chapter 2 
 

58 
 

Open-Microscopy Framework. Nature Communications 2019, 10 (1), 3552. https://doi.org/10.1038/s41467-019-
11514-0. 

24 Douglass, K. M.; Sieben, C.; Archetti, A.; Lambert, A.; Manley, S. Super-Resolution Imaging of Multiple Cells 
by Optimized Flat-Field Epi-Illumination. Nature Photonics 2016, 10 (11), 705–708. 
https://doi.org/10.1038/nphoton.2016.200. 

25 Scholtens, T. M.; Schreuder, F.; Ligthart, S. T.; Swennenhuis, J. F.; Tibbe, A. G. J.; Greve, J.; Terstappen, L. W. 
M. M. CellTracks TDI: An Image Cytometer for Cell Characterization. Cytometry Part A 2011, 79A (3), 203–
213. https://doi.org/10.1002/cyto.a.21024. 

26 Deschamps, J.; Rowald, A.; Ries, J. Efficient Homogeneous Illumination and Optical Sectioning for 
Quantitative Single-Molecule Localization Microscopy. Optics Express 2016, 24 (24), 28080–28090. 
https://doi.org/10.1364/OE.24.028080. 

27 Kwakwa, K.; Savell, A.; Davies, T.; Munro, I.; Parrinello, S.; Purbhoo, M. A.; Dunsby, C.; Neil, M. A. A.; 
French, P. M. W. EasySTORM: A Robust, Lower-Cost Approach to Localisation and TIRF Microscopy. 
Journal of Biophotonics 2016, 9 (9), 948–957. https://doi.org/10.1002/jbio.201500324. 

28 Ma, H.; Fu, R.; Xu, J.; Liu, Y. A Simple and Cost-Effective Setup for Super-Resolution Localization 
Microscopy. Scientific Reports 2017, 7 (1), 1542. https://doi.org/10.1038/s41598-017-01606-6. 

29 Mau, A.; Friedl, K.; Leterrier, C.; Bourg, N.; Lévêque-Fort, S. Fast Scanned Widefield Scheme Provides 
Tunable and Uniform Illumination for Optimized SMLM on Large Fields of View. bioRxiv 2020, 
2020.05.08.083774. https://doi.org/10.1101/2020.05.08.083774. 

30 Khaw, I.; Croop, B.; Tang, J.; Möhl, A.; Fuchs, U.; Han, K. Y. Flat-Field Illumination for Quantitative 
Fluorescence Imaging. Optics Express 2018, 26 (12), 15276–15288. https://doi.org/10.1364/OE.26.015276. 

31 Stehr, F.; Stein, J.; Schueder, F.; Schwille, P.; Jungmann, R. Flat-Top TIRF Illumination Boosts DNA-PAINT 
Imaging and Quantification. Nature Communications 2019, 10 (1), 1268. https://doi.org/10.1038/s41467-019-
09064-6. 

32 Siemons, M. E.; Hanemaaijer, N. A. K.; Kole, M. H. P.; Kapitein, L. C. Robust Adaptive Optics for Localization 
Microscopy Deep in Complex Tissue. Nature Communications 2021, 12 (1), 3407. 
https://doi.org/10.1038/s41467-021-23647-2. 

33 Yang, S.; Verhoeff, A. A.; Merkx, D. W. H.; van Duynhoven, J. P. M.; Hohlbein, J. Quantitative Spatiotemporal 
Mapping of Lipid and Protein Oxidation in Mayonnaise. Antioxidants 2020, 9 (12), 1278. 
https://doi.org/10.3390/antiox9121278. 

34 Depree, J. A.; Savage, G. P. Physical and Flavour Stability of Mayonnaise. Trends in Food Science & 
Technology 2001, 12 (5), 157–163. https://doi.org/10.1016/S0924-2244(01)00079-6. 

35 Castellani, O.; Belhomme, C.; David-Briand, E.; Guérin-Dubiard, C.; Anton, M. Oil-in-Water Emulsion 
Properties and Interfacial Characteristics of Hen Egg Yolk Phosvitin. Food Hydrocolloids 2006, 20 (1), 35–43. 
https://doi.org/10.1016/j.foodhyd.2005.02.010. 

36 Zhang, X.; Qiu, N.; Geng, F.; Ma, M. Simply and Effectively Preparing High-Purity Phosvitin Using 
Polyethylene Glycol and Anion-Exchange Chromatography. Journal of Separation Science 2011, 34 (22), 3295–
3301. https://doi.org/10.1002/jssc.201100601. 

37 Berton-Carabin, C. C.; Ropers, M.-H.; Genot, C. Lipid Oxidation in Oil-in-Water Emulsions: Involvement of the 
Interfacial Layer. Comprehensive Reviews in Food Science and Food Safety 2014, 13 (5), 945–977. 
https://doi.org/10.1111/1541-4337.12097. 

38 Luca, G. M. R. D.; Breedijk, R. M. P.; Brandt, R. A. J.; Zeelenberg, C. H. C.; Jong, B. E. de; Timmermans, W.; 
Azar, L. N.; Hoebe, R. A.; Stallinga, S.; Manders, E. M. M. Re-Scan Confocal Microscopy: Scanning Twice for 
Better Resolution. Biomed. Opt. Express, BOE 2013, 4 (11), 2644–2656. https://doi.org/10.1364/BOE.4.002644. 

39 Ovesný, M.; Křížek, P.; Borkovec, J.; Švindrych, Z.; Hagen, G. M. ThunderSTORM: A Comprehensive ImageJ 
Plug-in for PALM and STORM Data Analysis and Super-Resolution Imaging. Bioinformatics 2014, 30 (16), 
2389–2390. https://doi.org/10.1093/bioinformatics/btu202. 

40 Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; 
Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. 
Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods 2012, 9 (7), 676–682. 
https://doi.org/10.1038/nmeth.2019. 

41 Martens, K. J. A.; Bader, A. N.; Baas, S.; Rieger, B.; Hohlbein, J. Phasor Based Single-Molecule Localization 
Microscopy in 3D (PSMLM-3D): An Algorithm for MHz Localization Rates Using Standard CPUs. The Journal 
of Chemical Physics 2018, 148 (12), 123311. https://doi.org/10.1063/1.5005899. 

42 Nieuwenhuizen, R. P. J.; Lidke, K. A.; Bates, M.; Puig, D. L.; Grünwald, D.; Stallinga, S.; Rieger, B. Measuring 
Image Resolution in Optical Nanoscopy. Nature Methods 2013, 10 (6), 557–562. 
https://doi.org/10.1038/nmeth.2448. 

43 Yuen, H. K.; Princen, J.; Dlingworth, J.; Kittler, J. A Comparative Study of Hough Transform Methods for 
Circle Finding. In Procedings of the Alvey Vision Conference 1989; Alvey Vision Club: Reading, 1989; p 29.1–
29.6. https://doi.org/10.5244/C.3.29. 



Enabling single-molecule localization microscopy in turbid food emulsions 
 

59 
 

2 

44 Ries, J. SMAP: A Modular Super-Resolution Microscopy Analysis Platform for SMLM Data. Nature Methods 
2020, 17 (9), 870–872. https://doi.org/10.1038/s41592-020-0938-1. 

45 Jimenez, A.; Friedl, K.; Leterrier, C. About Samples, Giving Examples: Optimized Single Molecule 
Localization Microscopy. Methods 2020, 174, 100–114. https://doi.org/10.1016/j.ymeth.2019.05.008. 

46 Banterle, N.; Bui, K. H.; Lemke, E. A.; Beck, M. Fourier Ring Correlation as a Resolution Criterion for Super-
Resolution Microscopy. Journal of Structural Biology 2013, 183 (3), 363–367. 
https://doi.org/10.1016/j.jsb.2013.05.004. 

47 Schuster, S.; Bernewitz, R.; Guthausen, G.; Zapp, J.; Greiner, A. M.; Köhler, K.; Schuchmann, H. P. Analysis of 
W1/O/W2 Double Emulsions with CLSM: Statistical Image Processing for Droplet Size Distribution. Chemical 
Engineering Science 2012, 81, 84–90. https://doi.org/10.1016/j.ces.2012.06.059. 

48 Duynhoven, J. P. M. van; Goudappel, G. J. W.; Dalen, G. van; Bruggen, P. C. van; Blonk, J. C. G.; 
Eijkelenboom, A. P. a. M. Scope of Droplet Size Measurements in Food Emulsions by Pulsed Field Gradient 
NMR at Low Field. Magnetic Resonance in Chemistry 2002, 40 (13), S51–S59. 
https://doi.org/10.1002/mrc.1115. 

 
  



Chapter 2 
 

60 
 

2.5 Supplementary materials 

Supplementary Figure 2.1. To measure the drift characteristics, we recorded 10,000 frames of 
50 ms each using 50 nm diameter beads sample excited at 561 nm laser wavelength. We 
engineered the PSF to represent a saddle-point PSF by changing the Zernike modes Z-2

2  and Z2
4 

by applying a proper voltage from the flat mirror and recorded 3D raw data for determining the 
drift in the x, y, and z direction. We analyzed the data using the SMALL LABS combined with 
phasor analysis. We performed 3D drift-correction using the cross-correlation function in 
SMALL LABS. Our data show that we have less than 200 nm drift in the lateral plane during 
the 500 s long measurement (SFig 2.1). 

 

SFig 2.1. 500 seconds movie recording using 50 ms frame time and a 50 nm diameter bead sample. To measure 
the drift in three dimensions, we used a saddle point PSF enabled by the deformable mirror. The figure shows the 
tracked position of the bead in X (straight line), Y (dotted line), and Z (dashed line) direction.   
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Supplementary Figure 2.2. We used phalloidin antibody conjugated with Alexa-647 for a 
control experiment to see whether these antibodies attach to phosvitins at droplets or not. Raw 
data were obtained by recording 10,000 frames with a 10 ms frame time. After analyzing the 
raw data and finding the localizations we achieved a noisy super-resolved image (SFig 2.2A). A 
single frame from raw data is extracted to demonstrate, the blinking presents not only on the 
droplets but all over the field of view (SFig 2.2B). 

 

Figure S2.2. The control experiment using phalloidin antibody conjugated with Alexa-647. A Super resolved 
image after processing the raw data from model emulsion  with phalloidin antibody. B A single frame from raw 
data to show the interaction of control antibody with droplets covered by phosvitins. 
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Supplementary Figure 2.3. To measure the thickness of droplets, a gaussian fitted to the line 
profiles of droplets at a different depth. For the plane close to the surface we measured full width 
at half maximum of 71 nm with considering the average of both sides of the droplet (SFig 2.3A).  
with the same procedure we fitted also for the plane 4 µm (SFig 2.3B). 

 

Figure S2.3. A Gaussian function was fitted to the droplets to calculate the thickness of droplets in different 
depths, A Close to the surface and, B 4 µm in depth. 

Supplementary Figure 2.4. To determine the resolution of super-resolved images from our 
model emulsion, we used the Fourier ring correlation method. The localization list was used in 
the SMAP software to compute the resolution from FRC. FRC curve shows the decay of the 
correlation with spatial frequency and when it goes below the threshold, the resolution will be 
calculated by taking the spatial frequency inverse at that point. For the droplets close to the 
surface we achieved 71 nm resolution (SFig 2.4A) and for the plane 15 µm in depth 124 nm was 
achieved (SFig 2.4B). 

 

Figure S2.4. The data shows the FRC versus spatial frequency in which we can calculate the resolution of the 
images (A) close to the surface and, (B) 4 µm in depth. 
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Supplementary Figure 2.5. Droplet distribution sizes were quantified using visual inspection 
and Hough circle transform. First, the droplets visually inspected based on the presence and 
absence of fluorescents. Consecutively, we used Hough circle transform for circles in the range 
between 0.2 µm to 2.0 µm in which the circles with radius lower than 0.2 µm and higher than 
2.0 µm removed from quantification analysis. We used this approach for the image plane close 
to the surface (SFig 2.5A) and 4 µm in-depth (SFig 2.5B). 

 

Figure S2.5. Analyzed field of view for droplet distribution. Orange circles show the visually inspected droplets 
and, red circles show detected droplets by Hough circle transformation for (A) close to the surface and, (B) 4 µm 
in-depth. 
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Abstract 

Emulsifiers play an essential role in ensuring the physiochemical stability of food emulsions. In 
the case of mayonnaise, proteins contained in egg yolk act as emulsifiers. Here, we employed 
stochastic optical reconstruction microscopy (STORM) to localize proteins at the oil/water 
droplet interface using fluorescently labeled protein antibodies. To quantitatively analyze the 
distribution of proteins at the droplet interface, we first simulated droplets with homogeneously 
and heterogeneously distributed proteins. We implemented the relative position distribution 
(RPD) analysis to extract the histogram of relative distances between all neighboring 
localizations. By analyzing the local maxima of the histogram, we could classify distributions at 
droplet interfaces as homogeneous, partially heterogeneous, and heterogeneous. The model 
fitting over the RPD histogram using a 2D probability function further provided a localization 
precision amplitude consistent with the analysis of the local maxima. As a model system for 
mayonnaise, we used emulsions prepared with combinations of phosvitin, phospholipids, 
apolipoprotein B (apoB), and sodium dodecyl sulfate (SDS) as emulsifiers. The binary 
phosvitin/SDS model emulsion showed a partially heterogeneous distribution of phosvitin 
around the droplets. The ternary phosvitin/phospholipid/SDS and apoB/phospholipid/SDS 
emulsions showed increased heterogeneity of phosvitin and apoB at the droplet interfaces. 
Quantification of heterogeneity at droplet interfaces may provide insights in factors determining 
the physical and chemical stability of emulsions.  
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3.1 Introduction 

In food emulsions, the underlying immiscibility of vegetable oil and water causes 
thermodynamic instability and a tendency to phase-separate. Mechanisms such as coalescence, 
flocculation, creaming, and Ostwald ripening reduce the free energy of the system, thereby 
effectively leading to an increase in the size of droplets before complete phase separation 
occurs1. To keep emulsions stable, the use of emulsifiers that lower the interfacial tension is 
essential. These emulsifiers adsorb at the oil/water interface during homogenization and can 
form an effective barrier against the degradation of the emulsion. Depending on the 
physicochemical properties of the aqueous phase, emulsifiers bearing a charge, for example, 
exert electrostatic interactions that prevent droplets from aggregation. Interfacial composition 
and structure have been postulated to play a critical role in the physical2,3 and chemical 
stability4,5 of food emulsions.  

Existing methods to assess interfacial structure, such as droplet tensiometry or atomic force 
microscopy (AFM) cannot be directly applied in the soft matter environment of food emulsions 
or are not yet adapted for quantitative assessments6. This lack of suitable tools hampers the 
rational design of formulations and processing routes. In this study, we will introduce a 
fluorescence imaging-based approach to quantitatively assess both composition and spatial 
distribution of proteins at the droplet interface of mayonnaise model emulsions,  in which egg 
yolk is the main source of emulsifiers. Egg yolk represents a complex system of functional 
ingredients that can be separated into plasma (78%) and granules (22% of dry yolk matter)7. The 
plasma comprises 85% low-density lipoprotein (LDL) particles and 15% livetin. The granules 
consist of 70% high-density lipoprotein (HDL) particles, 12% LDL, 16% phosvitin, and 2% 
ash8. Both LDL and HDL particles contain apoproteins and phospholipids, with the latter being 
primarily present as phosphatidylcholine (PC). Together with apoproteins and the 
phospholipids,  phosvitin adsorbs at the oil/water interface, where it has been associated with 
pro-oxidant activity9. Phosvitin is a highly phosphorylated protein consisting of phosphoserine 
clusters capable of binding ferric ions. When released, these ferric ions can engage in redox 
cycling and thus catalyze lipid oxidation, which induces a loss of sensory and nutritional 
quality10. The most abundant apoprotein in egg yolk is apolipoprotein B (apoB)11. ApoB shows 
stronger interfacial adsorption compared to phosvitin due to its flexible structure and higher 
surface hydrophobicity12. It has been demonstrated that both oxidation of lipoprotein particles 
in the continuous phase13 and lipid oxidation in the droplet phase14,15 can induce oxidation of 
apoB at the interface. Multiscale microscopic imaging techniques have provided insights into 
localizing the chemical events at play in lipid oxidation in mayonnaise14. Yet the interplay 
between interfacial composition, structure, and physical and chemical stability remains to be 
established experimentally. 
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Brightfield microscopy has been widely used to characterize properties such as flocculation, 
coalescence, and size distributions of droplets in food emulsions16,17 but does lack target 
specificity to provide additional insights in interfacial structure. Fluorescence-based confocal 
laser scanning microscopy (CLSM), on the other hand, provides good background suppression 
and some target specificity by using, for example, auto-fluorescence of proteins or dyes that 
report on the surrounding chemical environment, and was recently used to map lipid and protein 
oxidation in mayonnaise14 Despite the progress, finding and applying the right protein-specific 
marker has remained challenging3 and the spatial resolution achievable with CLSM of around 
200 nm limits our ability to visualize interfacial structure18,19. Electron microscopy techniques 
provide better spatial resolution, but resolving the droplet interfacial composition within an 
emulsion like mayonnaise involves cumbersome and invasive sample preparation steps, and 
only limited progress has been made14,20. Single-molecule localization microscopy (SMLM) 
allows us to overcome the so-called diffraction limit of fluorescence microscopy such as CLSM. 
The core idea is switching fluorophores between a fluorescent and non-fluorescent state so that 
single emitters can be identified and fitted with a 2D Gaussian function to localize the emitter 
with higher precision and accuracy. One particular implementation of SMLM is stochastic 
optical reconstruction microscopy (STORM), in which the induced blinking of standard 
fluorescent probes attached to targets of interest allows achieving sub-25 nm resolution19,21–23. 
We recently applied STORM to localize fluorescently labelled phosvitin at the interface of turbid 
oil-in-water model emulsions24.  

To evaluate and quantify the homogeneity of localizations of proteins at the interface, we 
introduce a quantitative analysis framework based on calculating the relative position 
distribution (RPD), which represents a histogram of distances between all super-resolved 
localization coordinates within a specific object25–27. In a recent application of RPD called 
pattern extraction from relative positions of localizations (PERPL), the authors analyzed the 
expected 8-fold symmetry of nuclear pore complexes27. We extend RPD and PERPL to assess 
the level of heterogeneity of randomly adsorbed proteins at interfaces. In particular, we quantify 
distributions obtained in the presence of phosvitin and additional protein emulsifiers. For this 
purpose, we prepared binary and ternary model systems of mayonnaise. The binary model 
system comprised isolated phosvitin and SDS, and the ternary systems were stabilized by 
phospholipids, SDS and either isolated phosvitin or apoB introduced via LDL. In the ternary 
phospholipids/SDS/phosvitin emulsion, the phospholipid was added in the form of 
phosphatidylcholine (PC). In the ternary phospholipid/apoB/SDS emulsions, LDL was used as 
a vehicle to introduce both apoB and phospholipids, that latter also mainly in the form of PC.  
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3.2 Materials and methods 

3.2.1 Isolation and purification of LDL and phosvitin 

Fresh hen eggs were purchased from a domestic market to isolate LDL, as a source of apoB and 
phospholipids, and phosvitin using protocols adapted from28,29. Briefly, egg yolks were rolled 
on filter paper to remove the chalazas. An equal amount of distilled water was added to the yolk 
at 4°C. The obtained solution was centrifuged at 12,000 g for 45 min (Avanti j-25, Beckman). 
To isolate LDL, the plasma fraction was moved to a new centrifuge tube and centrifuged again 
to obliterate the granules. Then, plasma was mixed with 40% ammonium sulfate for 1 hour to 
precipitate livetin. Next, the pH was adjusted to 8.7 using a 420 mM NaOH stock solution. The 
solution was centrifuged at 12,000 g for 45 min. The semisolid yellow supernatant was separated 
and dialyzed using a 7 kDa pore-size tube. The dialysis continued overnight to remove the 
ammonium sulfate. The dialyzed solution was then centrifuged at 12,000 g for 45 min. The 
floated residue was collected and lyophilized using a freeze-dryer from either (Christ, Germany) 
or (Labconco, United States of America). The granule fraction for isolating phosvitin was 
collected and homogenized with an equal mass of a 0.17 M NaCl solution and centrifuged again 
at 12,000 g for 15 min. The granules were dissolved in a 1.74 M NaCl solution (1:10 w/v). 
Further, the solution was homogenized with 4% w/w of PEG6000 and centrifuged at 12,000 g 
for 15 min. The supernatant was dialyzed against distilled water for 24 hours at 4°C and 
subsequently centrifuged at 12,000 g for 15 min. The supernatant was collected and lyophilized 
using a freeze-dryer. 

3.2.2 Preparation of oil-water model emulsions 

The binary phosvitin/SDS model emulsion was prepared using 6 mg/mL of lyophilized 
phosvitin in 0.05 M acetate buffer at pH 3.8. The solution was centrifuged at 4,000 g for 20 min, 
and the supernatant was transferred to a new aliquot. We then added 0.15% w/v of sodium 
dodecyl sulfate (SDS) to the solution to obtain a stable model emulsion. The solution was then 
premixed using an 18 mm diameter head disperser at 18,000 rpm for 2 min (T 18 digital 
ULTRA-TURRAX, IKA, Germany) to obtain a coarsely homogenized emulsion. Following that 
procedure, the coarse emulsion was further homogenized at 70 bar using a high-pressure 
homogenizer (HPH) (Delta Instruments LAB Homogenizer) for 20 min. 

For the ternary phosvitin/phospholipid/SDS emulsion, we first prepared the oil phase by 
dissolving 10 mg/mL of L-α-lecithin powder, which contains >94% phosphatidylcholine 
(429415, Sigma-Aldrich) in the oil before continuing with the steps outlined for the phosvitin 
emulsion. For the ternary apoB/phospholipid/SDS emulsion, we dissolved 10 mg/mL of 
lyophilized LDL into the oil phase using a magnetic stirrer. Here, LDL particles were used as 
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carriers to deliver both apoB and phospholipids to the droplet interface. Subsequently, SDS was 
added to the aqueous phase of both model systems. 

3.2.3 Single-molecule localization microscopy 

For acquiring SMLM data, we used the same modalities reported previously24. In short, the laser 
beam entered the excitation path of the microscope via a fiber-coupled laser engine (Omicron, 
Germany). After the fiber, the laser beam was collimated using a 60 mm achromatic lens 
(AC254-060-A-ML, Thorlabs) and reflected by a kinematic mirror (BBE1-E02, Thorlabs) into 
a top hat beam shaper (Asphericon GmbH). Then, the beam was focused by a 150 mm lens 
(AC508-150-A-ML, Thorlabs) into the back focal plane of a 100x oil immersion objective (NA 
= 1.45, Nikon) through a polychroic mirror (ZT405/488/561/640rpcv2, Chroma). The emitted 
signal from a sample is collected with the same objective and passes an emission filter 
(ZET405/488/561/640m-TRF, Chroma). The signal was further reflected by a kinematic mirror 
and focused through a tube lens (MXA20696, Nikon) into a focal plane of the first lens (AC508-
100-A-ML, Thorlabs) of a 4f system. Then, the emitted light was reflected by another mirror 
before arriving at a deformable mirror (DMP40/M – P01, Thorlabs) positioned in the Fourier 
plane of the 4f imaging system. The light was then focused via a second lens (AC508-100-A-
ML, Thorlabs) on a sCMOS camera (Prime 95B, Photometerics) with an effective pixel size of 
112 nm. 

3.2.4 Sample preparations and image acquisition 

To localize phosvitin, a primary phosvitin antibody conjugated with Alexa Fluor 647 (sc-46681, 
Santa Cruz Biotechnology) stock solution was diluted 50 times in PBS buffer. 10% v/v of the 
diluted solution was added to 400 μL of the phosvitin containing model emulsion. For staining 
apoB in the ternary apoB/phospholipid/SDS model emulsion, we first diluted 22.6 µL of the 
primary human apoB mouse antibody from the 8.85 mg/mL of stock solution (MBS530791, 
MyBioSource) in PBS buffer in a 1 mL final volume to obtain 200 μg/mL concentration. Then, 
a secondary anti-mouse antibody conjugated to Alexa 555 (ab150118, Abcam) was diluted 
10 times from the 2 mg/mL stock solution into the same solution and incubated at ambient 
temperature for an hour. Further, the mixture of the antibodies was diluted 50 times in PBS 
buffer (4 µg/mL), and 40 µL of the diluted solution was added to 360 μL of the LDL-based 
emulsion.  

The labeled emulsions were centrifuged at 4,000 g for 5 min to obtain the cream phase. In this 
phase, droplets are prevented from diffusing in the water phase during image acquisition. 2 μL 
of the cream phase was attentively pipetted into a silicone gasket's well (Grace Bio-Labs). 
Further, to increase the number of fluorophores blinking events, 25 μL of STORM buffer 
containing 50 mM TRIS pH 8, 10 mM NaCl, 10% glucose, 140 mM 2-mercaptoethanol, 
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68 µg/mL catalase, and 200 µg/mL glucose oxidase was added30. A second cover glass was put 
on the well to prevent new oxygen from getting into the sample. We recorded 10,000 frames 
with a 30 ms frame time for all samples. The samples containing phosvitin and apoB were 
excited using 640 nm (15 mW) and 561 nm (۲۰ mW) laser wavelengths, respectively. 

3.2.5 Simulation of protein interfacial distributions 

A simple Monte Carlo simulation was written in Python to analyze the protein distribution at the 
oil/water interface. First, virtual fluorescently tagged proteins were randomly placed on rings 
representing 2D cross-sections of oil/water droplet interfaces. In the next step, each fluorophore 
was allowed to blink to generate several localizations per protein. To enable a quantitative 
analysis of the experimental localizations at the interface, we simulated homogeneous and 
heterogeneous distributions of proteins around N = 100 non-overlapping droplets in a 30 μm by 
30 μm field of view. The homogeneous distribution was simulated using an even distribution 
ranging from 0 to 2π, representing the Φ value in polar coordinates. The radius r of each droplet 
in the simulation was randomly chosen from a normal distribution with a mean of 750 nm and a 
standard deviation of 200 nm. To determine the number of proteins present at the interface of 
each droplet, we take into account the droplet's circumference, the size of the protein (d = 22 nm 
diameter), and a quantity we define as the density ρ of proteins adsorbed at the interface. We 
multiply the droplet's cross-sectional circumference by the protein density ρ divided by the 
protein size to calculate the number of proteins occupying a specific perimeter. The value of ρ 
can vary between 0 and 1, with 0 indicating no proteins present and 1 indicating that proteins 
occupy the entire interface (a circle in our two-dimensional representation). For example, a 
droplet with a radius of 500 nm diameter and a protein density ρ of 0.5 would have 71 proteins 
distributed (71 = 2π 500[𝑛𝑛𝑛𝑛] ρ /d). The ground truth position rgt of each protein relative to the 
droplet’s interface is set by the polar coordinate Φ, the radius of the simulated droplet, and an 
additional sigma error in x and y representing the finite localization accuracy σac of 30 nm for 
each position. Moreover, the position of each fluorophore (localization) was calculated using 
the positions of each protein and an additional sigma error representing the finite localization 
precision σlp of 50 nm unless otherwise specified. To model the number of localizations for each 
protein, a random number is generated from an exponential distribution with a mean of 5. 
Together with assuming an average of five localizations per protein, this will lead to a total 
number of 355 localisations for this simulated droplet. 

To simulate a heterogeneous protein distribution at the interface, we placed the first protein 
randomly on the interface as outlined for the homogeneous case. Each additional protein was 
given an aggregation probability β to any previously placed protein, thereby potentially 
overwriting its initially calculated position. If aggregation occurred, the new position was 
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randomly chosen either to the left or right side of the protein or the existing chain of proteins to 
which it aggregates. Consequently, the continuing aggregation will lead to one-dimensional 
clusters of proteins at the droplet interface. This course of action is repeated over all simulated 
proteins per droplet (Supplementary Figure 3.1). Jupyter notebooks are provided with the 
manuscript and are available online: 

https://github.com/HohlbeinLab/Protein_distribution_analyzer. 

3.2.6 Image visualization and data analysis 

For analyzing the experimental raw data, we first removed the constant fluorescence background 
using a temporal median filter based on a rewritten ImageJ plugin 
(https://github.com/HohlbeinLab/FTM2)24,31. Then, we obtained the positions of the 
fluorophores with sub-pixel localization precision using a phasor-based localization algorithm32 
implemented in ThunderSTORM33 available for ImageJ/Fiji34. The 2D cross-correlation drift 
correction was applied (ThunderSTORM settings: 10 bins and 5x magnification). The 
localizations were visualized using the average shifted histogram option with the magnification 
set to 5. For the lookup table, we chose magenta and green for the labeled proteins phosvitin and 
apoB, respectively.  

The droplets in the field of view were segmented using StarDist to extract the position of each 
droplet35,36 after training our segmentation model on multiple data sets using QuPath 
(Supplementary Note 3.1)37. We quantitatively analyzed the protein distributions using the 
relative position distribution (RPD) method25–27. In RPD, all distances between all localizations 
attributed to each single droplet were calculated, and the normalized distance distributions were 
plotted in a histogram. 

Further, to quantitatively analyze the protein distribution, we obtained the local maxima present 
in the averaged RPD distribution. Additionally, we implemented a model fitting using the 2D 
probability function of distance distribution to the histogram data. 

3.3 Results and discussion 

3.3.1 Quantitative analysis of fluorophore distributions around droplet interfaces 

To establish our framework for quantifying the heterogeneity of localisations at droplet 
interfaces, we first placed 100 neighboring but non-overlapping droplets of different diameters 
in a box and simulated a homogeneous distribution of proteins on each droplet (Figure 3.1A). 
We then separated each droplet based on the known ground truth (Figure 3.1B) and calculated 
the relative position distribution for each droplet. The histograms of two selected droplets show 
a local maximum for small distances representing a convolution of the localization precision σlp 

https://github.com/HohlbeinLab/Protein_distribution_analyzer
https://github.com/HohlbeinLab/Protein_distribution_analyzer
https://github.com/HohlbeinLab/FTM2
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and the localization accuracy σac and a local maximum for large distances defined by the 
diameter of the droplet, further discussed below (Figure 3.1C). Normalizing the distance 
distributions over all droplets showed a smooth distribution with the local maxima identified 
earlier in the individual droplets (Figure 3.1D). The normalized histogram presents a fingerprint 
of expected distances. 

For the simulations of the heterogeneously covered interfaces, we added a simple aggregation 
probability to the model that prioritizes aggregation of proteins over a random distribution of 
individual proteins over the interface. Indeed, the simulated droplets show a more heterogeneous 
distribution of localisations, with the normalized histogram of relative distances showing 
suppressed occurrences and lower amplitudes of large-distance correlations (Figure 3.1E-H). 
The higher we set the aggregation probability, the more the large-distance correlations were 
suppressed, and consequently, the first peak became dominant, thereby deviating from the 
'fingerprint' of the homogeneous distribution. 

 

Figure 3.1. Simulation of homogeneous and heterogeneous distributions of fluorescently labeled proteins at 
droplet interfaces. (A) Homogeneous distribution with 100 droplets placed in a 30 μm by 30 μm field of view. A 
protein density of ρ = 0.5 and a protein size of d = 22 nm was chosen (B) Zoom-in of two droplets from (A). (C) 
Histogram showing the relative distance distribution (RPD) of all distances between localisations at the interface 
of the droplets selected in (B). (D) Averaged distribution over the distances normalized to each respective droplet 
in the entire field of view. (E-H) as in A-D but after simulating a heterogeneous distribution with a molecular 
aggregation probability β of 0.65. 
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To show the variation of the peaks, we simulated data with aggregation probabilities β ranging 
from 0.1 to 0.99 and plotted the resulting images and RPD histograms (Figure 3.2). The first 
local maximum in each histogram increased its relative amplitude with increasing aggregation. 
From an aggregation probability β of around 0.65, the amplitude of the first maximum is higher 
than the amplitude of the second maximum. 

We employed a composite model fitting approach to analyze the simulated data, allowing us to 
validate the matching between the input parameters used in the simulation and the values 
obtained through the fitting process (Supplementary Figure 3.2)27. The composite model is 
built from several distinct components, each of which contributes to the overall distribution of 
pairwise distances between localizations at the droplet interface. The composite model is 
composed of parts describing the rotational symmetry, repeated localizations, and arrangement 
of proteins. The rotational symmetry component represents the isotropic distribution of proteins 
at the circular droplet interface. The localization precision component represents the influence 
of localizing the same protein. The arrangement of proteins component accounts for proteins 

 

Figure 3.2. Simulations of heterogeneous distributions. We simulated 100 droplets in the field of view with 
aggregation probabilities β ranging from 0.1 to 0.99. Inserted graphs represent RPD histograms showing the changes 
in the relative peak amplitudes of the first and the second peak with changing aggregation probabilities. 
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that are adsorbed closely, causing the protein localizations to become unresolvable in the 
clusters. 

The rotational symmetry component involves three parameters, the ‘radius of averaged droplets’ 
(RR) and ‘RPD broadening’ (RB) describe the spread in the pairwise distances between the 
proteins around a droplet. The ‘amplitude of RPD broadening’ (ARB) determines the amplitude 
of the pairwise distances between the proteins. The localization precision component involves 
two parameters LP and ALP. The ‘localization precision’ (LP, denoted as σlp) represents the 
uncertainty in the repeated localizations of the same protein. The ‘amplitude of localization 
precision’ (ALP) determines the amplitude of the pairwise distances between the localizations 
belonging to the same protein. The arrangement of proteins involves two additional parameters; 
the ‘arrangement of proteins broadening’ (AB) describes the spread associated with the pairwise 
distances of localizations within a cluster. The ‘amplitude of arrangement of proteins 
broadening’ (AAB) determines the amplitude of the pairwise distances between the localizations 
in the clusters (Supplementary Figure 3.3). 

To quantify the heterogeneity of the experimental data, we first plotted the RPD histograms for 
aggregation probabilities β of 0, 0.6, and 0.95 (Figure 3.3A-C). We have shown earlier 
(Figure 3.1) that the relative amplitude of the first maximum increases while the amplitude of 
the second peak decreases with increasing aggregation probability. To obtain a more quantitative 
readout, we defined a relative peak amplitude Arel as the first peak amplitude divided by the sum 
of the amplitudes of the first and the second peak. We obtained relative peaks amplitude Arel of 
0.29, 0.49, and 0.93 and localization precision amplitudes (ALP) of 1.73, 6.75, and 12.18, 
respectively. We then determined the amplitudes of the local maxima e for the simulated data 
sets with aggregation probabilities β from 0 to 0.99 from Figure 3.2 and determined the 
amplitudes of the local maxima. (Figure 3.3D). The resulting graph shows Arel being constant 
around 0.25 for an aggregation probability 0 < β < 0.3. For 0.3 <= β < 0.6, Arel slightly increases 
to around 0.4. For β > 0.6 Arel increases, ultimately approaching unity. Moreover, when fitting 
over the RPD histograms, the green triangled line representing the amplitude of localization 
precision (ALP) variation of the RPD histograms show a similar trend as the relative peak 
amplitude (Supplementary Table 3.1). 

To quantitatively describe the degree of heterogeneity, we suggest defining a relative peak 
amplitude below 0.32 as homogeneous, 0.32 – 0.4 as partially heterogeneous, and the relative 
peak larger than 0.4 as heterogeneous. To further analyze the shape of the normalized 
histograms, we simulated 100 homogeneous droplets with a radius of 1000 nm and three 
different localization precisions σlp of 250 nm, 100 nm, and 40 nm. For this simulation, we set 
the localization accuracy σac to 30 nm to see the contribution of the σlp to the RPD histogram’s  



Chapter 3 
 

76 
 

first peak. For σlp of 250 nm, we obtained two broad peaks in the RPD histogram (Figure 3.4A). 
Decreasing σlp to 100 nm and 40 nm, respectively, led to an increasingly clear separation 
between the local maxima and the narrowing of both peak widths (Figure 3.4B, C). To validate 
the simulation results, we performed fitting on the data. The fitted values are normalized against 
the maximum distance and resulted in σlp values (LP) of 42 ± 3 nm, 103 ± 5 nm, and 257 ± 5 nm 
for the small, medium, and large σlp, respectively.  

We note that the residues between the simulated data and the fit show some systematic 
deviations, especially around the peak locations. This deviation is attributed to the fact that we 

 

Figure 3.3. Quantification of heterogeneity using the distribution of relative distances. For the simulation, a protein 
density of ρ = 0.5 and a protein size of d = 22 nm was chosen. (A-C) The data (gray bars) is simulated with β = 0 
representing a homogeneous distribution, (A) and 0.6 and 0.95 representing heterogeneous distributions, respectively 
(B and C) fitted the composite model (black line). (D) Relative peak amplitude values Arel, (red circles) are obtained 
for different aggregation probabilities β by dividing the amplitude of the first peak by the sum of the first and the 
second amplitudes. The triangles line (green) represents the amplitude of the localization precision obtained from 
fitting all different aggregation probabilities. Vertical lines demarcate the regions that we define as representing 
homogeneous coverage of droplets (1) partially heterogeneous coverage (2), and heterogeneous coverage (3). 
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have normalized over different max distances of the droplets in the field of view, which affects 
the characteristics of the peak position in the pattern and lead to a shift of the local maxima in 
the averaged droplet pattern. As the diameter size of the droplets is varied, the number of 
proteins, localizations per droplet, and maximum distance are affected, resulting in slightly 
different RPD broadening and peak locations. We neither observe systematic deviations in the 
residuals of single droplets and fits nor in a field of view with an identical radius of droplets 
(Supplementary Figure 3.4, Figure 3.4). Therefore, we consider the averaging effects as not 
being critical for the conclusions drawn in our study. 

3.3.2 The interfacial distribution of phosvitin in binary, high-pressure homogenized 
model emulsions is partially heterogeneous 

We first prepared a binary phosvitin/SDS model emulsion with a high-pressure homogenizer 
and captured a brightfield image showing the distribution of oil droplets (Figure 3.5A). We then 
determined the distribution of the fluorescently labeled phosvitin antibody using STORM 
microscopy and overlayed the bright field and super-resolved images (Figures 3.5B, C). The 
data show that phosvitin does not cover all droplets, indicating a competition between phosvitin 

 

Figure 3.4. Dependency of the peak positions of the local maxima on the localization precision. Simulations with a 
protein density of ρ = 0.25 and protein dimension of 22 nm, a 1000 nm radius and aggregation probability of β = 0. 
Simulated field of view and RPD histogram with σ𝑎𝑎𝑎𝑎 = 30 nm and (A, B) σ𝑙𝑙𝑙𝑙 = 250 nm, (C, D) σ𝑙𝑙𝑙𝑙 = 100 nm, and 
(E, F) σ𝑙𝑙𝑙𝑙 = 40 nm. The fit of the data using the composite model returned localisation precision (LP) of σ𝑙𝑙𝑙𝑙 = 257 ± 
5 nm, 103 ± 5 nm, and 42 ± 3 nm for B, D, and F, respectively. 
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and the SDS emulsifier at the interface. Interestingly, most phosvitin localizations at the 
interface visually appear to be homogeneously distributed (Figure 3.5B). To perform further 
quantitative analysis, we require all localizations to be attributed to individual droplets. To this 
end, we used the trained model from StarDist to obtain a segmentation mask of droplets that we 
overlayed with the super-resolved image (Figure 3.5D). StarDist attributes the localizations 
from overlapping droplet regions twice, once for each droplet. We note that this behavior does 
not affect the extracted RPD histogram from the localizations (Supplementary Figure 3.5). We 
then calculated the experimental RPD for each droplet and plotted the sum of all distance-
normalized distributions (Figure 3.5E). We calculated a Arel of 0.36 for the binary 
phosvitin/SDS model emulsion. Following our previous classification, the value indicates a 
partially heterogeneous distribution of phosvitin around the oil droplets. Furthermore, fitting the 
distribution gives the amplitude of the localization precision of 2.77, which follows the results 
with the relative peak values indicating partial heterogeneity. 

 

Figure 3.5. Images for a binary SDS/phosvitin model emulsion labeled with phosvitin primary antibodies conjugated 
to Alexa-647. (A) Brightfield image (B) Super resolved image based on localizing the emission of single fluorophores 
with STORM. (C) Image showing the merging of brightfield and super-resolved data (A+B). (D) Segmented image 
based on the StarDist applied to the super-resolved image in (B). (E) Extracted histogram of distances (gray bar 
chart), the fit over the data (blue line), and the peak analysis lines (dashed vertical lines). We calculated the relative 
peak amplitude of 0.36 and localization precision amplitude of 2.77, which indicates that the phosvitin distribution 
at the interface is partially heterogeneous. 
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3.3.3 The distribution of phosvitin and apoB  in ternary, high-pressure homogenized 
model emulsions is heterogeneous 

We proceeded by testing how the presence of three emulsifiers would change the protein 
distribution at the droplet interfaces in model emulsions prepared with a high-pressure 
homogenizer. In the first experiment, we added phospholipids in addition to phosvitin and SDS 
to observe their impact on the spatial distribution of phosvitin. Again, phosvitin was labeled with 
a phosvitin antibody conjugated with Alexa Fluor 647. In this experiment, the absence of dyes 
at the interface of many droplets indicates the presence of either phospholipids or SDS that 
outcompete phosvitin at the droplet interface. Visual inspection of the super-resolved image of 
the sample qualitatively showed a more heterogeneous distribution of phosvitin at the interface 
of those droplets that had phosvitin present (Figure 3.6A). To assess the distribution 
quantitatively, we applied the segmentation to isolate all droplets' localizations in the field of 
view (Figure 3.6B) and calculated the RPD over all droplets. The peak analysis indicated a Arel 
value of 0.43; thus, we consider the phosvitin distribution at the interface in the presence of 
phospholipids and SDS as heterogeneous. This is also reflected in the RPD histogram, which 
shows a clear deviation from the fingerprint of a homogeneous distribution (Figure 3.1).  

Next, we prepared a ternary model emulsion based on  SDS, phospholipid and apoB. Since apoB 
is poorly water soluble, we used LDL as a vehicle introduce this protein to the interphase. During 
homogenization, the LDL particles disintegrate, and the contained apoBs and phospholipids 
adsorb at the interface of droplets7. We labeled the apoB using a secondary apoB antibody 
conjugated with Alexa Fluor 555. We note that we used an antibody against human apoB, which 
this however strongly resembling apoB present in egg yolk11. Figure 3.6D indeed shows that 
this antibody is specific for egg yolk apoB present at droplet interfaces. In the SDS, phospholipid 
and apoB ternary emulsion a slightly more heterogeneous distribution could be observed 
compared to the ternary emulsion with phosvitin/phospholipids/SDS at the interface 
(Figure 3.6D). We again applied segmentation to obtain localizations for each droplet in the 
field of view (Figure 3.6E). The analysis of the peaks gave a Arel value of 0.47, indicative of a 
heterogeneous apoB distribution. In this methodological work, the use of the Arel value to classify 
model emulsions as homogeneous, partially heterogeneous and heterogeneous is based on the 
visual assessment of protein distributions at the droplet interfaces. We suggest to use Arel value 
for quantitative modelling of the effect of protein interfacial heterogeneity on physical and 
chemical stability of food emulsions. 
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3.4 Conclusions 

In this study, we introduced a quantitative method to analyze the heterogeneity of particles 
adsorbed at droplet interfaces. In our specific case, we analyzed oil/water interfaces in binary 
and ternary oil-in-water, high-pressure homogenized food emulsions that can be considered as 
models for mayonnaise. Using simulations of homogeneously and heterogeneously distributed 
labeled proteins, we showed that the distribution of distances on a droplet interface could be 
used as a measure to quantify the degree of heterogeneity.  

Using STORM, we could perform single-molecule localization of antibodies bound to protein 
emulsifiers (phosvitin and apoB) present at the droplet interfaces in mayonnaise model 
emulsions. The binary phosvitin/SDS model emulsion showed a partial heterogeneous phosvitin 
distribution at the interfaces of the droplets. In our ternary model emulsions, based on 
SDS/phospholipids, we showed that adding a third protein emulsifier (phospholipid or apoB) 
resulted in heterogeneous distributions at the droplet interface. Our proposed method will enable 
quantifying the effect of formulation and processing on protein emulsifier distribution at droplet 
interfaces and ultimately on physical and chemical food emulsion stability.  

 

Figure 3.6. Assessment of heterogeneity in ternary model emulsions. (A) Super-resolved images of a 
phosvitin/phospholipid/SDS model emulsion. (B) Segmented droplets in the field of view, (C) Distribution of 
distances (gray bar chart), fitting function (blue line), and the peak analysis lines (dashed vertical lines). We obtained 
the relative peak amplitude of 0.43, which indicates a heterogeneous distribution of phosvitin in the presence of 
phospholipids. (D-F) as in (A-C) but for an apoB/phospholipid/SDS model emulsion. We labeled the apoB with a 
secondary antibody conjugated to Alexa Fluor 555. We obtained a relative peak amplitude of 0.47, which suggests 
again a heterogeneous distribution of apoBs at the interface. 
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3.5 Supplementary materials 

 

Supplementary Figure 3.1. For simulating heterogeneous distributions of proteins, we used a simple algorithm for 
placing new proteins at the droplet interface that already contains at least one protein. We defined a probability for 
the aggregation of new proteins ranging between 0 and 1. For a probability of 0, our algorithm will lead to an entirely 
homogeneous distribution. For a probability of 1, each new protein will be placed next to the previous one considering 
a 5 nm distance between proteins. If the aggregation probability is, for example, 0.9 and if we consider the first 
protein adsorbed at the interface, there are two options for the second protein: there is a 10% chance that the protein 
adsorbs as an independent protein at the interface and a 90% chance that the protein aggregates with the first protein. 
Subsequently, the probabilities of placing the third protein will be divided based on the placing of the second protein. 
The schematic below shows the different probabilities for the second and third proteins for the simulation. The 
succeeding proteins follow the same approach as the second and third proteins. 

 

 

Supplementary Figure 3.2. We plotted the rotational symmetry component from the composite model by 
incorporating the 2D probability non-gaussian distance distribution function 27 which assumes a homogeneous 
distribution of emitters around a circle. This model provides the distribution of protein pair distances using only 
three parameters: the radius of averaged droplets (RR), the RPD broadening (RB), and the amplitude of RPD 
broadening (ARB). The model RPD was generated using 200 proteins, each with, on average, five localizations. 
We plotted the generated 2D probability function based on a droplet of 1000 nm diameter and 60 nm RB. Similar 
to Figure 3.4, increasing the localization precision will lead to moving the position of peaks towards each other. 
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Supplementary Figure 3.3. (A) The contribution of the fitting parameters for an RPD histogram with an 
aggregation probability β of 0.8. (B) The first three fit parameters were obtained using the rotational symmetry 
component to acquire the radius of the averaged droplets (RR = 0.95 D), the RPD broadening (RB = 0.07 D), and 
the amplitude of RPD broadening (ARB = 0.05). (C) The following two fit parameters belong to the localization 
precision broadening (LP = 0.048 D) and the amplitude (ALP = 8.25) contribution. (D) The last two parameters of 
the fit belong to the component describing the arrangement of proteins broadening (AB = 0.08 D) and its amplitude 
(AAB = 2.45).  
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Supplementary Figure 3.4. The fit over an averaged relative position distribution (RPD) histogram of all droplets 
in a field of view shows small deviations around the peaks in the residues in which droplets differed in their radius 
(from a normal distribution with a mean of 700 nm and a standard deviation of 200 nm). This bias arises due to 
variations in peak positions among individual droplets. Each droplet exhibits a distinct radius and a unique 
distribution of proteins at the interface. Consequently, this leads to non-identical peak positions and varying 
maximum distances of localizations. In the figure below, subfigure (A) shows fits of ten randomly selected, 
homogeneous droplets in a field of view (The radii of droplets 1 to 10 are 573 nm, 545 nm, 558 nm, 566 nm, 634 nm, 
705 nm, 716 nm, 908 nm, 517 nm, 587 nm, respectively). The residues between fit and the RPDs show an unbiased 
behavior for individual droplets. Subfigure (B) shows a fit over an averaged RPD histogram of the ten droplets in 
the field of view, where the residues start to show a bias around the peak positions of the RPD histogram. Subfigure 
C shows a fit over an averaged RPD histogram of 100 droplets.  

  



Chapter 3 
 

86 
 

 

Supplementary Figure 3.5. In the experimental data, droplets often partially overlap. The overlapping 
localizations were counted twice when StarDist was used to segment the data. To investigate the overlapping effect 
on the extracted pattern, we simulated three neighboring homogeneous droplets with a radius of 900 nm, 1100 nm, 
and 500 nm (A) and calculated their individual RPD distributions based on the known ground truth (C). We then 
used StarDist to segment the simulated droplets (B).  The segmented droplets were processed and plotted for all 
three droplet localizations containing overlapped localizations (D). The processed data indicates no major 
difference between the pattern extracted from the ground truth data and the segmented droplets.  
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Supplementary Note 3.1. The workflow of droplet segmentation using StarDist follows three 
steps: (1) generation and annotating of raw images, (2) training a model using Qupath, and (3) 
predicting segmentation. 

(1) First, we require ground-truth annotated images of droplets featuring ring structure (protein 
at the interface) to train a model. Therefore, we prepared four experimental and two simulated 
data sets. The simulated data sets contain homogeneous and heterogeneous (with an aggregation 
probability of β = 0.8) droplets images. Further, we cropped our raw images into six different 
500 pixels by 500 pixels sub-images to increase the number of input images. In total, we 
annotated 30 images for training.  

(2) We used Qupath to prepare ground-truth annotated images where all pixels of a droplet, 
including the interface, are labeled for all droplets in a field of view. Moreover, we considered 
using the augmentation mode of the training program to increase the number of raw images even 
higher by applying random rotations, flips, and intensity changes on each cropped image. 
Afterward, we used the ground-truth annotated images in the StarDist python training code to 
obtain our model. The figure below shows a matching metric between the ground truth and the 
predicted droplets in the field of view that validated the segmentation performance. The metric 
shows an accuracy of 0.8 and a precision of 0.9 for the intersection over union (IoU) threshold 
of 0.5 used in our training model.  

(3) In the final step, we used our trained model to segment the droplets. 
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Supplementary Table 3.1. Fitting parameters of the simulated data, values are calculated for 
normalized droplets.  Abbreviations used are RPD (relative position distribution),RR (radius of 
averaged droplets), RB (RPD broadening), ARB (amplitude of RPD broadening), LP 
(localization precision), ALP (amplitude of localization precision), AB (arrangement of proteins 
broadening), and AAB (amplitude of arrangement of proteins broadening).  

 

 
 

  

Aggregation 
Probability RR RB ARB LP ALP AB AAB 

0.00 0.87 D 0.04 D 0.08 0.026 D 1.56 0.0 D 0.0 

0.05 0.87 D 0.04 D 0.08 0.026 D 1.60 0.01 D 0.01 

0.10 0.87 D 0.05 D 0.08 0.028 D 1.58 0.01 D 0.03 

0.15 0.87 D 0.04 D 0.08 0.027 D 1.62 0.01 D 0.11 

0.20 0.87 D 0.04 D 0.08 0.028 D 1.62 0.02 D 0.25 

0.25 0.88 D 0.04 D 0.08 0.027 D 1.74 0.02 D 0.37 

0.30 0.87 D 0.05 D 0.08 0.027 D 1.77 0.02 D 0.39 

0.35 0.87 D 0.04 D 0.08 0.027 D 1.99 0.02 D 0.42 

0.40 0.87 D 0.04 D 0.08 0.028 D 1.99 0.02 D 0.45 

0.45 0.88 D 0.04 D 0.08 0.026 D 2.13 0.03 D 0.48 

0.50 0.87 D 0.04 D 0.08 0.027 D 2.43 0.02 D 0.60 

0.55 0.88 D 0.04 D 0.08 0.024 D 2.86 0.04 D 1.89 

0.60 0.87D 0.05 D 0.08 0.025 D 2.86 0.03 D 3.17 

0.65 0.87 D 0.04 D 0.07 0.026 D 4.62 0.03 D 4.32 

0.70 0.88 D 0.04 D 0.06 0.026 D 6.75 0.03 D 3.65 

0.75 0.87 D 0.05 D 0.03 0.028 D 6.82 0.04 D 4.72 

0.80 0.88 D 0.04 D 0.03 0.027 D 8.25 0.04 D 5.06 

0.85 0.88 D 0.04 D 0.02 0.028 D 9.79 0.04 D 5.15 

0.90 0.87 D 0.04 D 0.01 0.029 D 10.2 0.05 D 5.89 

0.95 0.87 D 0.04 D 0.00 0.027 D 10.2 0.06 D 6.81 

0.99 0.87 D 0.04 D 0.00 0.028 D 10.18 0.06 D 7.28 
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in the coverage of oil-in-water food emulsions 
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Abstract 

Super-resolution imaging was applied to reveal the distribution of phosvitin on the droplet 
interfaces of binary SDS/phosvitin model emulsions manufactured by high-pressure 
homogenization (HPH). For this purpose, phosvitin-binding primary antibodies were used to 
localize phosvitin at droplet interfaces. Re-scan confocal microscopy (RCM) revealed that for 
HPH manufactured O/W model emulsions, a bimodal droplet size distribution was obtained in 
which small droplets were covered by SDS and large droplets by phosvitin, respectively. This 
inter-droplet heterogeneity in droplet coverage was in line with expected kinetics of emulsifier 
coverage of droplet interfaces during HPH. Stochastic optical reconstruction microscopy 
(STORM) indicated that the concentration of phosvitin did not affect the intra-droplet 
distribution at the droplet interface. STORM further provided a direct visualization of the 
redistribution of phosvitin in the HPH prepared emulsions upon prolonged low shear treatment, 
resulting in diffusion-assisted exchange of SDS and phosvitin between droplet interfaces and 
the continuous aqueous phase. Our RCM- and STORM-based approaches allow a direct and 
quantitative view on the intricate balance between kinetic and thermodynamic forces governing 
the inter- and intra-droplet interfacial distribution of proteins.   
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4.1 Introduction 

Food emulsions are intricately structured systems comprising two immiscible liquid phases, 
usually oil and water, that are effectively stabilized by emulsifiers and mixtures thereof1. Many 
of these mixtures contain both proteins and low molecular weight (LMW) surfactants. The 
adsorption of emulsifying proteins at an oil/water interface is influenced by the protein's inherent 
physical and chemical properties, such as size, charge, conformation, and amino acid 
composition, as well as environmental conditions like the type of interface (e.g., oil-water, air-
water), pH, temperature, and presence of other substances2. When these proteins adsorb, they 
stabilize the emulsion through self-interaction, resulting in a viscoelastic layer that resists local 
deformation3. On the other hand, LMW surfactants are small molecules, each having a 
hydrophilic head group and one or more hydrophobic tails. When these surfactants are present 
at an interface, they orient themselves such that the hydrophilic head faces the water phase while 
the hydrophobic tails align with the oil phase. Their high mobility allows them to quickly coat 
the newly formed oil-water interface following the emulsification process4. Unlike proteins, 
LMW surfactants form a fluid layer due to the absence of strong intermolecular bonds5. 
Moreover, LMW surfactants diffuse laterally towards areas of high surface tension, known as 
the Marangoni effect6. Although the viscoelastic mechanism associated with protein adsorption 
and the Marangoni mechanism linked to LMW surfactant adsorption both serve to stabilize 
emulsions, they might not always complement each other and can be mutually unfavorable7. 
Formulating protein/LMW emulsifier mixtures has been identified as a route for designing food 
emulsions with desired physical8 and chemical9 stability.   

Interfacial composition has been identified as a key determinant of the properties of food 
emulsions10 and is typically determined by indirect methods11,12. Interfacial rheology, for 
example, can be applied on model films or hanging droplets13, but does not allow to study the 
effects of food emulsification routes14. In food emulsions, the assessment of surface load via the 
(centrifuged) serum or cream phases is a common and straightforward method to assess 
interfacial composition. This method is, however, invasive and destructive, and cannot be 
generally applied to all types of food emulsions12. Spectroscopic methods can be applied to 
assess conformational changes of proteins at droplet interfaces and their displacement by LMW 
surfactants, but do usually not provide spatial information15. Fluorescence microscopy has been 
identified as a method to assess surface morphology in food emulsions, but so far, this method 
lacked the capability of resolving protein composition at droplet interfaces12. In this work, we 
will outline an approach based on fluorescence imaging to visualize and quantify surfactant 
composition at the single-droplet level. We will use a model system for mayonnaise to 
demonstrate our approach. 
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To localize proteins and surfactants, the correct choice of fluorescent probes for imaging is 
critical. In the life sciences, primary or secondary antibodies labeled with fluorescent markers 
are being widely deployed due to their inherent capability to localize specific 
biomacromolecules and bind to various targets16. There are challenges with their use, however, 
including long and unpredictable production timelines, inconsistencies across different 
production batches that can undermine their effectiveness17, and their large size (approximately 
150 kDa) that may limit their ability to penetrate densely packed structures like tissues18,19. 
Affimers, small protein scaffolds of about 100 amino acids, present a viable alternative20. They 
possess a well-defined structure featuring one or two target-specific loops, enhancing 
localization accuracy by positioning the probe closer to the target21. Affimers are selected 
through a process known as phage biopanning, which is relatively rapid and effectively 
minimizes variations between production batches19. Affimers can be produced via bacterial 
expression systems thereby circumventing the expensive and time-consuming traditional routes 
to obtain antibodies. Together, these features have expanded the use of affimers as specific 
ligands in bioassays20,22. Their use as ligands that specifically bind to biomolecular targets has 
also been exploited within the bioimaging field20,21,23, yet their application in food emulsion 
studies is unexplored, presenting an exciting area for future investigation. 

Mayonnaise is a food emulsion that relies on egg yolk as an emulsifier mixture to maintain its 
physical and chemical stability23. Egg yolk is composed of several constituents, including low-
density lipoproteins (LDL), high-density lipoproteins (HDL), phosvitin, and livetin. Upon 
emulsification, the lipoprotein particles disintegrate, liberating apoproteins and phospholipids as 
emulsifiers24. Phosvitin is a highly phosphorylated protein with unique emulsifying, metal-
chelating, and pro-oxidant properties among the proteins found in egg yolk25. In this work we 
will focus on studying the interaction of phosvitin and SDS, as a model LMW surfactant, at the 
oil-water interface in emulsions26. Here, we build on our previous work in which we used super-
resolution microscopy techniques to localize proteins in model emulsions for mayonnaise26. In 
particular, we use stochastic optical reconstruction microscopy (STORM)27 to surpass the 
diffraction limit of traditional fluorescence microscopy and localize phosvitin with molecular 
specificity at droplet interfaces in binary O/W model emulsions prepared with SDS. 
Additionally, re-scan confocal microscopy (RCM) is employed providing higher resolution than 
conventional confocal microscopy technique thereby enabling us to resolve smaller droplets. We 
will first benchmark different strategies to localize phosvitin at droplet interfaces. We will 
compare the performance of affimer- and antibody-based labelling strategies, and benchmark 
these against an approach in which phosvitin was labelled covalently with a fluorophore. Next, 
we will prepare binary emulsions with different phosvitin/SDS ratios with a high-pressure 
homogenizer (HPH). HPH is a common emulsification method in food processing, known to 
have an effect on the composition of the droplet surface28. Further, we will employ RCM to 
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investigate the effect of the formulated phosvitin/SDS ratio on the heterogeneity of phosvitin 
surface coverage. With STORM we will investigate the impact of the phosvitin/SDS ratio on the 
phosvitin surface coverage at the intra-droplet level. Furthermore, we will investigate the effect 
of prolonged low shear rate treatment29,30 on the model emulsion. Under such low shear 
conditions, diffusion-assisted exchange of SDS and phosvitin between the droplet interface and 
the continuous aqueous phase will enable a  transition towards a more thermodynamically 
favorable state which implies an interfacial composition that yields minimized interfacial. 

4.2 Materials and Method 

4.2.1 Isolation and purification of phosvitin 

Phosvitin was isolated from fresh egg yolk according to the protocol described by Zhang et al.31. 
Fresh hen eggs were obtained from the local market. Egg yolks were separated and rolled on 
filter paper to remove the chalazas. An equal amount of distilled water was added to the yolk at 
4°C, and the obtained solution was centrifuged at 12,000 g for 15 min (Avanti j-25, Beckman). 
The precipitate was collected and homogenized with an equal mass of a 0:17M NaCl solution, 
followed by another centrifugation at 12,000 g for 15 min. The granules were dissolved in 10% 
(w/v) of a 1.74 M NaCl solution. Further, the solution was homogenized with 4% w/w of 
PEG6000 and centrifuged at 12,000 g for 15 min. The supernatant was dialyzed against distilled 
water for 24 hours at 4°C and subsequently centrifuged at 12,000 g for 15 min. The supernatant 
was collected and lyophilized using a freeze-dryer from either Christ, Germany or Labconco, 
United States of America. 

4.2.2 Preparation of binary emulsions 

To prepare the binary emulsions, we dissolved lyophilized phosvitin in 0.05 M acetate buffer at 
pH 3.8 to obtain concentrations of 3, 6, 9 and 12 mg/mL. Each solution was centrifuged at 
4,000 g for 20 min, and the supernatants were transferred to new aliquots to remove any 
impurities. We then added 0.15% w/v of sodium dodecyl sulfate (SDS) to each solution to 
stabilize the emulsion and investigate the competition between SDS and phosvitin. Next, we 
added rapeseed oil, 15% of the final volume, into each of these solutions to prepare the model 
emulsions. The mixtures were coarsely homogenized using an 18 mm diameter head disperser 
at 18,000 rpm for 2 min, followed by further homogenization at 70 bar using a high-pressure 
homogenizer (HPH) (Niro Soavi – PandaPLUS 2000, GEA) for ten cycles. 

4.2.2.1 Low shear treatment 
To investigate the impact of low shear treatment on the competition between phosvitin and SDS, 
we gently stirred 20 mL of the emulsion prepared with the phosvitin concentration of 6 mg/mL 
using a magnetic stirrer at a speed of 500 rpm for 3 days. 
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4.2.3 Confocal and single-molecule localization microscopy 

For the confocal RCM measurements, we used a Nikon A1R HD25 upright confocal microscope 
body equipped with an RCM module (Confocal.nl, Amsterdam, Netherlands)32. The microscope 
was equipped with a CCD camera (Tucsen, FL 20BW) and four laser lines (405 nm, 488 nm, 
561 nm, and 640 nm, Oxxius, France). Images were captured using a 60x Plan Apo objective 
lens with a numerical aperture of 1.4. All images were captured in 16-bit format with a resolution 
of 1024 x 1024 pixels. Micromanager 1.433, an open-source software for microscope control and 
image acquisition, was used to acquire RCM images at room temperature. We used the following 
settings for acquisition: 2.8 mW of 488 nm laser for the oil droplets channel, and 4.6 mW of 
647 nm laser for the phosvitin channel. 

For the measurements of covalent/non-covalent labelled phosvitin, we used a confocal mode of 
STED microscope (Abberior Instruments) equipped with a UPlanSApo 100x/1.40 Oil 
[infinity]/0.17/FN26.5 objective (Olympus), a Katana-08 HP laser (Onefive), and multiple laser 
lines at 405 nm, 488 nm, 561 nm, 640 nm, and pulsed lasers at 595 nm and 775 nm (power = 
3 W). The images were typically acquired with a pixel size of 60 nm and a pixel dwell time of 
10 μs around 2 μm above the coverslip. The Inspector 0.14.13919 software was used for image 
acquisition, and the pinhole was set at 1.00 AU at 100x. 

For STORM data acquisition we employed techniques similar to those previously reported26. A 
fiber-coupled laser engine (Omicron, Germany) delivered the laser beam to the microscope’s 
excitation path. The beam was collimated using a 60 mm achromatic lens (AC254-060-A-ML, 
Thorlabs), then deflected by a kinematic mirror (BBE1-E02, Thorlabs) into a top hat beam 
shaper (Asphericon GmbH). The beam was next focused by a 150 mm lens (AC508-150-A-ML, 
Thorlabs) into the back focal plane of a 100x oil immersion objective (NA = 1.45, Nikon) via a 
polychroic mirror (ZT405/488/561/640rpcv2, Chroma). The emitted signal from the sample was 
collected through the same objective and passed through an emission filter 
(ZET405/488/561/640m-TRF, Chroma). After being reflected by a kinematic mirror, the signal 
was focused through a tube lens (MXA20696, Nikon) and into the first lens (AC508-100-A-ML, 
Thorlabs) of a 4f system. The light was then directed by another mirror to a deformable mirror 
(DMP40/M – P01, Thorlabs) located in the Fourier plane of the 4f imaging system. Finally, the 
emitted light was focused via a second lens (AC508-100-A-ML, Thorlabs) onto an sCMOS 
camera (Prime 95B, Photometerics), with an effective pixel size of 112 nm per pixel. We 
recorded a total of 10,000 frames per field of view at a rate of 40 ms per frame (25 Hz). 
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4.2.4 Conjugation of phosvitin with fluorescein isothiocyanate (FITC) and emulsion 
preparation 

To enable direct fluorescence imaging of phosvitin, we employed a FITC labeling strategy that 
targeted the primary amines of phosvitin. First, we prepared a solution of phosvitin at a 
concentration of 6 mg/mL in 0.05 M MES buffer at pH 6.6. Then, we added a freshly prepared 
solution of 5 mg/mL FITC in DMSO to achieve a final concentration of 0.5 mM. The reaction 
mixture was stirred for 2 hours and subsequently dialyzed for four days using an 8 kDa cutoff 
dialysis bag (Sigma-Aldrich, Cat. No. D9527). To ensure the complete removal of free dyes, the 
dialyzed solution was filtered and concentrated using an Amicon® Ultra-15 centrifugal filter 
with a 3 kDa cut-off (Millipore, Cat. No. C7715). The degree of labeling was then determined 
by measuring the absorbance of the protein and FITC using a Nanodrop spectrophotometer. The 
degree of labeling was calculated to be approximately 10%, assuming that phosvitin has a 
molecular weight of 35 kD and absorbance (A280 nm) at 0.1% (1 g/L) of 0.32 +/- 
0.02 (L/g.cm)34. Using this covalently labeled phosvitin solution, we immediately prepared an 
oil-in-water emulsion by dissolving 0.15% w/v SDS and adding 15% (v/v) rapeseed oil. We then 
proceeded by making a coarse emulsion using an 18 mm diameter dispersing head at 7,000 rpm 
for 2 min (T 18 digital ULTRA-TURRAX, IKA, Germany). We subsequently homogenized the 
coarse emulsion at 70 bar using a high-pressure homogenizer (HPH) (Delta Instruments LAB 
Homogenizer) for 20 min and stored the resulting emulsions at 4°C overnight for further use. 

4.2.5 Sample preparation and image acquisition 

For RCM, 5 µL of BODIPY 493/503 (TCI America, ref. D4341) 1 mg/mL in DMSO was added 
to 495 µL of the emulsion. After a quick vortex, the emulsion was mixed with 100 µL of 
phosvitin primary antibody conjugated with Alexa Fluor 647 (sc-46681, Santa Cruz 
Biotechnology) at a concentration of 20 µg/mL diluted in PBS buffer. For CLSM, 100 µL of 
phosvitin antibody conjugated with Alexa Fluor 647 (20 µg/mL diluted in PBS) was added to 
500 µL of the covalently labeled phosvitin-FITC emulsion. For STORM, the phosvitin antibody 
conjugated with Alexa 647 (sc-46681, Santa Cruz Biotechnology) stock solution was diluted 50 
times in PBS buffer. 10% v/v of the diluted solution was added to 400 µL of the phosvitin-
containing model emulsion. After a 15-minute incubation at room temperature, all labeled 
emulsions were centrifuged at 4,000 g for 5 min, and the cream layer on top was harvested for 
imaging. In this cream phase, droplets are prevented from diffusing in the water phase during 
image acquisition. 2 μL of the cream phase was attentively pipetted into a silicone gasket's well 
(Grace Bio-Labs). Further, to increase the number of fluorophore blinking events, 25 μL of 
STORM buffer containing 50 mM TRIS pH 8, 10 mM NaCl, 10% glucose, 140 mM 2-
mercaptoethanol, 68 µg/mL catalase, and 200 µg/mL glucose oxidase was added 35. A second 
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cover glass was put on the well to prevent new oxygen from getting into the sample. For each 
sample we acquired a total of five different field of views. 

4.2.6 Image visualization and data analysis 

To analyze the confocal microscope images, we first normalized the contrast of the images from 
different channels using ImageJ/Fiji36. Next, we used StarDist segmentation37,38 to extract the 
positions of individual droplets within the field of view after training the model on multiple 
datasets using QuPath39. For the phosvitin antibody channel (Magenta), the image was 
subtracted from the BODIPY channel (green) to eliminate background interference. We then 
compared the number of droplets covered with phosvitin to the total number of droplets in the 
field of view. To assess emulsifier adsorption in relation to droplet size, we computed the Sauter 
mean diameter, D3,2, for all samples within each channel. To specify the width of the droplet 
size distribution, we took its standard deviation. To analyze the dSTORM raw data, we first 
removed the constant fluorescence background using a temporal median filter26 available at 
GitHub (https://github.com/HohlbeinLab/FTM2). Next, we used a phasor-based localization 
algorithm40 implemented in ThunderSTORM41, a software plugin for ImageJ/Fiji, to determine 
the positions of the fluorophores with sub-pixel localization precision. For image background 
filtering in ThunderSTORM, a β-spline wavelet filter with order 2 and scale 3 was used. We 
applied 2D cross-correlation drift correction with ThunderSTORM settings of 10 bins and 5x 
magnification. The localizations were then visualized using the “average shifted histogram” 
option, with the magnification set to 5 and the labeled protein phosvitin represented in magenta. 
To analyze the distribution of proteins at the interface of individual droplets, we applied droplet 
segmentation to extract the localizations for each droplet. This allowed us to apply relative 
position distribution (RPD) analysis42 to quantify the spatial heterogeneity of localizations 
within droplets, which we previously reported in chapter 3. 

4.3 Results and discussion 

4.3.1 Localization of phosvitin at droplet interfaces using covalent and non-covalent 
labeling 

First, we evaluated the use of affimers to target phosvitin at droplet interfaces. A main advantage 
of affimer ligands is that they can be generated from libraries in a combinatorial approach, thus 
avoiding expensive and time-consuming procedures to generate antibodies. Being small peptide 
sequences of only around 100 amino acids that can be expressed and harvested in bacteria, 
affimers may offer a spatially tighter interaction with the target protein and thereby improved 
localization accuracy. However, the phosvitin-binding affimers that we specifically raised 
against phosvitin in a phage display, were positively charged at pH 6 and lacked the required 

https://github.com/HohlbeinLab/FTM2
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specificity for phosvitin. Instead, the affimers non-specifically interacted with any negatively 
charged component, including both phosvitin and SDS. As a result, the affimers uniformly 
accumulated in the continuous water phase and showed accumulation at droplet interfaces, 
regardless of the presence or absence of phosvitin. This non-specific binding pattern was also 
evident for the control affimer, which is also positively charged at pH 6. In this control affimer, 
the recognition sequence identified for phosvitin was replaced with alanine residues 
(Supplementary Figure 4.1), suggesting that the interactions between affimers and phosvitin 
were primarily driven by electrostatic forces rather than specific recognition of phosvitin 
(Supplementary Figure 4.2, 4.3). By contrast, phosvitin-binding antibodies exhibited higher 
selectivity, targeting specific regions of phosvitin (Supplementary Figure 4.4). Consequently, 
we chose commercially available phosvitin antibodies for our subsequent RCM and STORM 
investigations of droplet surface coverage. We confirmed the specificity of the primary phosvitin 
antibodies by comparing the localization of phosvitin tagged covalently labeled with fluorescein 
isothiocyanate (FITC) (Figure 4.1A) and phosvitin tagged non-covalently through the phosvitin 
antibody conjugated to Alexa 647 (Figure 4.1B). The overlay image showed that the antibodies 
targeted the oil droplets that had covalently labeled phosvitin at their interface (Figure 4.1C). 
Among all oil droplets in the FOV only a fraction was covered with covalent and non-covalently 
labelled phosvitin (Supplementary Figure 4.5). In the non-covalent case, we observed a non-
uniform distribution of phosvitin on the oil droplet interfaces, as evidenced by the larger 
variations in fluorescence intensity of phosvitin-binding antibodies around the droplets 
(Figure 4.1D). This contrasted with the uniform distribution observed in the covalent case, 
suggesting that the degree of labeling with the antibody affects the distribution of phosvitin on 
the droplet interfaces. 

 

 
Figure 4.1. Dual-color CLSM imaging of a model emulsion stabilized with 0.15% w/v SDS and FITC-conjugated 
phosvitin. (A) Phosvitin covalently labeled with FITC (green channel), (B) Phosvitin antibody covalently labeled 
with Alexa Fluor 647 (magenta channel), (C) Overlay image (green: phosvitin-FITC, magenta: phosvitin antibody, 
white: co-localization of phosvitin-FITC and phosvitin antibody), and (D) The zoomed-in areas of the square region.  



Chapter 4 
 

98 
 

4.3.2 Effect of phosvitin/SDS concentration ratio on the surface coverage of droplets 

As phosvitin alone is a poor emulsifying agent43,44, achieving a stable emulsion required the 
addition of SDS. To obtain insights in the competition and interactions between phosvitin and 
SDS, we stained the oil droplets with BODIPY 493/503 and kept the concentration of SDS fixed 
at 1.5 mg/ml (5.2 mM). We then changed the concentration of phosvitin from 3 mg/mL to 
12 mg/mL (0.09 to 0.34 mM) (Figure 4.2). The chosen concentrations for SDS and the lowest 
considered concentration of phosvitin were selected to ensure full potential coverage of the 
surface of all oil droplets (Supplementary Note 4.1). Whereas the Bodipy (green channel) 
stains the oil  droplets  homogeneously  (Figure 4.2, first column), the  fluorescence  measured  

 
Figure 4.2.  Visualization and quantification of phosvitin-covered droplets in low-oil-content emulsions. Re-scan 
confocal microscopy (RCM) was used to visualize phosvitin-coated droplets in emulsions with varying phosvitin 
concentrations and a constant SDS concentration (1.5 mg/mL). The BODIPY column visualizes all oil droplets 
labeled by BODIPY 493/503 (represented in the green channel), while the antibody column visualizes phosvitin-
coated droplets (shown in the magenta channel) that were identified using Alexa Fluor 647-labeled primary 
phosvitin antibodies. The Merged column shows the overlay of the Antibody and BODIPY columns. The Pvt 
Segmentation column demonstrates the result of subtracting the Antibody column from the BODIPY column, a step 
necessary for the segmentation of phosvitin-covered droplets due to the noise present in the Antibody channel. The 
BODIPY Segmentation column presents the segmentation of all droplets using the BODIPY column. As 
demonstrated, the number of identified droplets covered by phosvitin increases with increasing concentrations of 
phosvitin.  
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from the phosvitin antibody (magenta channel) is not confined to the interface of the droplets 
(Figure 4.2, second column). In fact, we observe a rather hazy intensity distribution, which we 
attribute to (1) the presence of phosvitin in the water phase, (2) droplets that are either below or 
above the imaged volume, and (3) the high number of the droplets in the field of view. Merging 
both channels reveals that some oil droplets in the green channel are encircled by magenta rings, 
indicating their coverage by phosvitin (Figure 4.2, third column). Importantly, in this system, 
where only phosvitin and SDS serve as emulsifying agents, droplets that are devoid of phosvitin 
coverage can be inferred to be coated by SDS. Coverage by SDS is supported by the long-term 
physical stability of the binary SDS/phosvitin emulsions, which can only be achieved by 
coverage with an emulsifier. Droplets not visibly covered by phosvitin will henceforth be 
referred to as SDS-covered droplets. We employed the segmentation tool StarDist37,38 to segment 
the droplets in both the green (Bodipy) and magenta (phosvitin) channels. We employed the 
green channel as a reference to subtract the magenta channel. We achieved a reliable 
segmentation of the phosvitin-coated droplets (Figure 4.2, fourth column) and the droplets in 
the Bodipy channel (Figure 4.2, fifth column). Decreasing concentrations of phosvitin (from 
top to bottom) are accompanied by decreasing numbers of phosvitin coated droplets in the field 
of view. In the next section we will quantify the heterogeneity in the coverage of the droplets at 
the inter- and intra-droplet level. 

4.3.3 Inter-droplet surface heterogeneity 

Utilizing the results from the previous section, we analyzed the size distribution for droplets 
predominantly covered by SDS or phosvitin. Histograms with the comparative droplet size 
distributions for SDS and phosvitin coated droplets show that as the concentration of phosvitin 
increased, the number of droplets covered by phosvitin increased, whereas the number of SDS 
droplets declined (Figure 4.3). The overall data indicate that phosvitin tends to adsorb at larger 
droplets. SDS on the other hand, consistently coated smaller droplets across all samples. This 
indicates that phosvitin prefers covering larger droplets. We computed the surface volume mean 
diameter (Sauter mean diameter, D3,2) for the emulsions depicted in Figure 4.2 and 4.3. This 
metric quantified the tendencies observed visually in the histogram (Figure 4.4A). For all 
concentrations of phosvitin, we obtained D3,2 values between 2.08 and 2.28 ± 0.7 µm, and for 
SDS D3,2 between 1.52 and 1.59 ± 0.5 µm. The larger D3,2values for phosvitin confirm the 
protein's tendency to associate with larger droplets, and the  D3,2  for SDS align with the 
surfactant's observed preference for smaller droplets. For both phosvitin and SDS droplets, the 
D3,2 values do not vary with concentration, indicating that regardless of the concentration of the 
emulsifiers, they adsorb to specific droplet sizes ranges (Figure 4.4A). 



Chapter 4 
 

100 
 

An explanation of these results lies in the events occurring during the HPH process. In our binary 
model emulsion, both SDS and phosvitin are present in the aqueous phase from the outset of the 
coarse homogenization step using a high-shear mixer. The coarse droplets are likely stabilized 
by a mix of SDS and phosvitin. Subsequently, these pre-homogenized coarse droplets are 
processed using a high-pressure homogenizer (HPH), which fragments them into smaller ones. 
This then leads to a very rapid and massive increase of the total surface area, which needs to be 
stabilized by emulsifiers. Immediately after their formation, the fine droplets have virtually bare 
interfaces, and will coalesce, while the emulsifier coverage builds up due to adsorption from the 
bulk solution. Moreover, the coalescence itself will contribute to the increase of interfacial 
coverage because the coarsening implies a reduction in interfacial area. Since the adsorption 
kinetics of SDS is much faster than that of phosvitin, the smallest droplets in the size distribution 
will soon get stabilized by SDS before much phosvitin has adsorbed. On the other hand, larger 
droplets from the initial coarse distribution coalesce more slowly, allowing time for protein 
adsorption. As these droplets coalesce, their mixed interfaces of phosvitin and SDS become 
denser. However, while protein adsorption is quasi-irreversible45, SDS dynamically exchanges 

 
Figure 4.3.  Assessment of inter-droplet heterogeneity and the impact of various phosvitin concentrations, with a 
constant SDS concentration (1.5 mg/mL), on droplet size distribution post-segmentation as obtained from RCM 
images. The histograms display the relative distribution of SDS-covered droplets (blue bars) versus phosvitin-
covered droplets (gray bars). Note that phosvitin covered droplets were identified directly in the RCM images, non-
covered droplet stained with Bodipy were assumed to be covered with SDS only (see text). For clearer comparisons, 
droplet counts were adjusted to a reference: maximum observed counts of 450 for SDS droplets in the 3 mg/mL 
sample and 40 for phosvitin droplets in the 12 mg/mL sample. Increasing the phosvitin concentrations from 3 mg/mL 
to 12 mg/mL led to a corresponding rise in the proportion of droplets covered by phosvitin, from 10% (38 out of a 
total of 400 droplets) to 14% (54/390), 19% (71/373), and 25% (89/358), respectively; The reported droplet counts 
are based on observations from five different fields of view (FOVs).  



Super-resolution imaging reveals heterogeneity in the coverage of oil-in-water food emulsions 
 

101 
 

4 

with the bulk, leading to the detachment of surplus SDS as the protein concentration increases. 
This process yields larger droplets, predominantly covered by proteins. Consequentially, in oil 
water emulsions with SDS and phosvitin, phosvitin plays a more dominant role in the 
stabilization of larger droplets. The competition between SDS and phosvitin is shown in 
Figure 4.4B, which depicts the SDS area coverage against the concentrations of phosvitin. At 
the lowest concentration of phosvitin, 91% of the surface area was covered by SDS. However, 
as the concentration of phosvitin increased, the proportion of droplet surface area covered by 
SDS consistently decreased. It is important to note that both SDS and phosvitin were present a 
sufficiently high concentrations to cover all droplets (Supplementary Note 4.1). The observed 
decrease in SDS droplet surface coverage with increasing phosvitin concentration indicates an 
inherent competition between these emulsifiers for covering droplet interfaces within the binary 
emulsion. 

 

4.3.4 Intra-droplet surface heterogeneity 

Next, we proceeded with STORM to further quantify the intra-droplet distribution of phosvitin. 
The STORM images in Figure 4.5A show that an increase in phosvitin results in an increased 
number of large droplets covered. This experiment validates the findings from the RCM 
experiment that also showed an increase in the number of droplets covered by phosvitin with 
increasing concentration of phosvitin. The enhanced spatial resolution of STORM allowed 
assessment of the intra-droplet surface heterogeneity of droplets that were at least partially 
covered with phosvitin. We quantified the spatial heterogeneity of phosvitin localizations at the 
surface of single droplets with the methodology outlined in Chapter 3. This approach leads to 

 
Figure 4.4. (A) Plot of the surface volume mean diameter  D3,2  for emulsion samples with varying phosvitin 
concentrations with a constant SDS concentration (1.5 mg/mL). The circle marker represents the  D3,2 for phosvitin, 
the square marker indicates the  D3,2 for SDS. The larger mean  D3,2 of phosvitin compared to SDS indicates a 
tendency of phosvitin to associate with larger droplets. (B) Plot illustrating the SDS area coverage across various 
phosvitin concentrations with a constant SDS concentration (1.5 mg/mL).  
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RPD histograms that provide a fingerprint of intra-droplet heterogeneity of interfacial coverage. 
We calculated RPD histograms for droplet sizes below and above the average D3,2 value and 
these appeared similar. For the two droplet populations, the relative peak amplitudes Arel - a 
metric representing the ratio of the first peak's amplitude to the sum of the first and second peaks 
(see Chapter 3) - were all approximately 0.39, indicating a partially heterogeneous distribution 
of phosvitin (Supplementary Figure 4.6). The values for the two droplet populations did not 
differ within experimental error. There was no significant influence of phosvitin concentration 
on Arel either (Figure 4.5B). We conclude that neither droplet size nor phosvitin concentration 
affected the heterogeneity of the distribution of phosvitin on droplet interfaces in HPH prepared 
SDS/phosvitin based emulsions. 

4.3.5 Impact of low shear treatment 

We further investigated the impact of low-shear treatment, which allows for diffusion-assisted 
exchange of SDS and phosvitin between droplet interfaces and with the continuous aqueous 
phase. For this purpose, we selected the binary SDS/phosvitin emulsion with a phosvitin 
concentration of 6 mg/mL. This emulsion was subjected to low shear using a roller shaker for a 
duration of 3 days. To assess the influence of this processing step on the emulsion, we employed 
STORM before and after low-shear treatment (Figure 4.6A).  

After the low shear treatment, we see a clear reduction of the number of phosvitin-covered 
droplets (Figure 4.6B). The redistribution of SDS over the droplet surface is visualized in the 
histograms in Figure 4.6C, D. Post low-shear treatment, the histogram (Figure 4.6D) showed 
that the distribution of SDS-covered droplets remained constant. However, the number of 
phosvitin-covered droplets diminished, indicating that phosvitin was displaced by SDS from the 
droplet interfaces. To verify whether droplet coalescence played a role, we calculated the D3,2, 
which remained constant at approximately 1.73 ± 0.56 µm and 1.72 ± 0.61 µm before and after 
low-shear treatment, respectively. Thus, droplet coalescence can be excluded to play a role 
during the low shear treatment. We therefore attribute the replacement of phosvitin by SDS to a 
slow equilibration to a more thermodynamically favorable state in which droplet interfaces are 
solely covered by SDS. To ensure that the observed decrease in phosvitin coverage was not due 
to aging of the emulsion, we also measured a control sample from the same stock kept at room 
temperature that had not been sheared for three days. Upon imaging the control sample, we 
observed results consistent with Figure 4.6A, indicating that aging without shear treatment did 
not cause a decrease in phosvitin coverage (Supplementary Figure 4.7). 
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Figure 4.5. Analyzing the intra-droplet heterogeneity of the distribution of phosvitin at droplet interfaces. (A) 
STORM microscopy images of phosvitin at droplet interfaces at different concentrations. (B) Histograms of 
normalized relative position distances (RPD) were used to analyze the intra-droplet heterogeneity of the phosvitin 
distribution. RPD distances were normalized and averaged across all droplets for each concentration.  



Chapter 4 
 

104 
 

 
Figure 4.6. Impact of low shear treatment (A, B before; B, D, E after) on phosvitin droplet surface coverage 
relative to SDS, obtained from a single field of view (FOV). Note that phosvitin covered droplets can be identified 
directly in STORM images, non-covered droplets are assumed to be covered with SDS (see text). (A) Merge of 
the STORM image (Magenta channel) and the bright field of the emulsion sample before low shear treatment. The 
total number of droplets covered by SDS is 256. (B) Same as in A with a total of 273 droplets covered by SDS, 
but after low shear treatment. The histograms display the relative distribution of SDS-covered droplets (blue bars) 
versus phosvitin-covered droplets (gray bars) (C) Before low shear treatment, and (D) After low shear treatment. 
(E) Histograms of the normalized RPD to examine the heterogeneity of phosvitin distribution post low-shear 
treatment. RPD distances were normalized and averaged across all droplets within the field of view. The relative 
peak amplitude, Arel for droplets after the treatment is 0.48 which is not significantly different from the Arel of 
0.39 obtained before the low-shear treatment.  
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We then quantified the intra-droplet phosvitin distribution at the interface for all droplets within 
the field of view post low-shear treatment (Figure 6E). The relative peak amplitude, Arel for 
droplet with sizes below and above D3,2were respectively 0,47 and 0.49. These values are not 
significantly different from each other, and also not from the Arel obtained before the low-shear 
treatment. Our results are in line with previous findings that in O/W emulsions droplet coverage 
with low molecular weight surfactants is thermodynamically favored over coverage with 
proteins4,46. This effect was also observed for full mayonnaise subjected to a prolonged low shear 
treatment29. These previous findings were, however, mostly underpinned with indirect 
measurements of droplet surfactant coverage, whereas our super-resolution approach provides 
direct visualization with inter- and intra-droplet resolution. 

4.4 Conclusions 

Phosvitin-binding affimers that were specifically raised against phosvitin in a phage display, did 
not show sufficient specificity for phosvitin at the at the oil-water interface of HPH 
manufactured SDS/phosvitin model emulsions. In contrast, phosvitin-binding antibodies 
showed the required high specificity for localization at droplet interfaces. Re-scan confocal 
microscopy revealed that for HPH manufactured O/W model emulsions a bimodal droplet size 
was obtained wherein small droplets were covered by SDS and large droplets by phosvitin. This 
inter-droplet heterogeneity in the coverage of droplets was in line with the time-evolution of the 
emulsifier coverage of droplet interfaces during HPH. STORM indicated that the concentration 
of phosvitin did not affect the intra-droplet distribution at the droplet interface. STORM also 
provided a direct visualization of the redistribution of phosvitin upon low shear treatment, which 
hitherto could only be inferred from indirect measurements. Our RCM- and STORM-based 
approaches allow a direct and quantitative view on the intricate balance between kinetic and 
thermodynamic forces governing the intra- and inter-droplet interfacial distribution of proteins, 
paving the way for new studies in the realm of research on food emulsions. 
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4.5 Supplementary materials 

Supplementary note 4.1  
To demonstrate that the sodium dodecyl sulfate (SDS) and phosvitin concentrations were in excess of covering available 
droplet surface we provide the following estimates: 

Calculation of Surface Area per Unit Volume 

For phosvitin droplets, assuming an oil volume fraction (∅) of 0.15 and oil droplet radius (R) of 1.2 µm (1.2 × 10-6 m), 
the surface area per unit volume (A) was calculated as A =3∅/R yielding A = 3.75 × 105 1/m. For SDS, with the same 
oil volume fraction but a droplet radius (R) of 0.5 µm (0.5 × 10-6 m), the surface area per unit volume was found to 
be A = 9 × 105 1/m We note that in binary emulsions these values are to be considered as maximum values. 

Conversion of Saturation Adsorption Γsa for Phosvitin 

The saturation adsorption Γsa of phosvitin, taken as equivalent to that of ovalbumin due to comparable size, is 1.8 mg/m2 
at pH 3.4 This was converted into µmol/m2  for consistency with the following calculations using the molecular weight 
of Phosvitin (35 kDa or 35000 g/mol): Γsa (phosvitin) = 0.0514 µmol/m2. This value is in line with the recently reported 
value of the effective diameter deff < 8 nm for phosvitin in solution at pH <7 47, which would give Γsa  (phosvitin) 
< 0.08 µmol/m2. 

Calculation of Phosvitin/SDS Required Concentration 

The amount of phosvitin required per unit volume, given its saturation adsorption of 0.0514 µmol/m2, was found to be: 
0.0514 µmol/m2 ×3.75 × 105 1/m = 19.275 × 103 µmol/m3 . Subsequently, the concentration of phosvitin become 
0.0193 µM . The amount of SDS required per unit volume, given Γsa (SDS)  =3 µmol/m2 48, was found to be: 
3 µmol/m2× 9 × 105 1/m =2.7 × 106 µmol/m3. Likewise, concentration of SDS become 2.7 mM. 

Based on these calculations, summarized in Table 4.1, the lowest concentrations of emulsifiers that were used in the 
experiments are in excess of what would be needed to fully cover all droplets. 

 Average droplet 
size [µm] 

 

Surface area per 
unit volume 

[105 1
m

] 

Γsa [
µmol
m2 ] Required 

concentration 
to cover 

droplets [µM] 

Range used 
in this 

study [µM] 

Range used 
in this study 

[mg
ml

] 

SDS 0.5 9 3 2.7 x 103 5.2 x 103 1.5 

Phosvitin 1.2 3.8 0.051 0.02 0.09 - 0.34 3-12 

Table 4.1 Overview of surface area per unit volume, saturation adsorption Γsa and required concentrations to fully 
cover droplets in an emulsion with an oil volume fraction (φ) of 0.15. We note that these estimates are made of 
single-emulsifier emulsions, hence values for surface area per unit volume and Γsa should be considered as upper 
limits in binary emulsions. As a consequence, the required concentrations to cover all droplets in a binary 
emulsion are also upper (estimated) limits. 
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Supplementary Figure 4.1. Comparison of the specificity of antibody and affimer in Confocal laser scanning 
microscopy (CLSM) images of an emulsion stabilized by phosvitin and SDS, with an accompanying oil droplet line 
intensity profile. The line intensity profile of the highlighted yellow line in the overlay image is depicted in the right 
panels. In these profiles, green represents the intensity of oil droplets stained with BODIPY 493/503 dye, while 
magenta indicates the line intensity of affimers/antibodies at the interface: (A) CLSM image showing oil droplets 
with phosvitin antibody conjugated to Alexa Fluor 647. This reveals the accumulation of phosvitin-binding 
antibodies in the interfacial region of certain oil droplets, with discernible variations in magenta and green line 
intensity. (B) Image of the emulsion with Cy5-conjugated affimer (Pvt-28). Pvt-28, along with Pvt-7 and Pvt-33, 
comes from a phage display library containing 1.3 × 1010 randomized protein scaffold clones. From 48 potential 
affimer clones identified post-biopanning, three (Pvt-7, 28, and 33) were selected due to their binding proficiency 
as assessed by phage ELISA. Subsequent engineering introduced cysteines for enhanced labeling. Images show that 
Pvt-28 uniformly accumulates throughout the continuous water phase. (C) Cy5-conjugated control affimer (alanine) 
as a control labelling which lacks phosvitin-specific regions. Results show alanine accumulated in the continuous 
phase. Scale bar in the CLSM images is 1 μm. Images were acquired using the same settings and are shown at the 
same brightness scale. 
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Supplementary Figure 4.2. Comparing the specificity of Affimer (Pvt-28) in emulsions with different 
compositions. Representative CLSM images of emulsions (pH 6.6) stained with Cy5-conjugated affimer (Pvt-28) 
and BODIPY 493/503 with an accompanying oil droplet line intensity profile. The line intensity profile of the 
highlighted yellow line in the overlay image is depicted in the right panels. In these profiles, green represents the 
intensity of oil droplets stained with BODIPY 493/503 dye, while magenta indicates the line intensity of affimers 
at the interface. The emulsions are stabilized with: (A) SDS (anionic emulsifier) and phosvitin. (B) SDS (anionic 
emulsifier) as control emulsion. The images shows even though there is no phosvitin in the system that the affimer 
(Pvt-28) accumulated in the continuous water phase of the emulsion. (C) Tween20 (neutral emulsifier). The results 
show the nonspecific signal from the presence of affimer (Pvt-28) in the continuous phase was less pronounced and 
indistinguishable from the signal coming from the oil phase. Overall, all phosvitin-binding affimers showed a lower 
signal when the model emulsion was stabilized with the Tween20 (neutral emulsifier) than the control emulsion 
stabilized with only SDS (anionic emulsifier). This result suggests that electrostatic interactions play a role in the 
ligand binding of affimers to the interface and that the composition of the variable region may have less influence. 
Scale bars in all panels are 5 μm. Images were acquired using the same settings and are shown at the same brightness 
scale. 
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Supplementary Figure 4.3. Comparing the specificity of Affimers in CLSM images of emulsion (pH 6.6) 
containing SDS (anionic emulsifier) and phosvitin stained with Cy5-conjugated Affimers and BODIPY 493/503: 
(from up to down) (Pvt-1), (Pvt-7), (Pvt-28), (Pvt-33) and (alanine). All phosvitin-binding affimers accumulated 
in the continuous phase of emulsions with SDS (anionic emulsifier), regardless of the presence of phosvitin. Scale 
bars in all panels are 5 μm. 
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Supplementary Figure 4.4. Validating the specificity of phosvitin binding antibody in representative CLSM 
images of model emulsions stained with BODIPY and phosvitin antibody conjugated to Alexa Fluor 647 with an 
accompanying oil droplet line intensity profile. The line intensity profile of the highlighted yellow line in the overlay 
image is depicted in the right panels. In these profiles, green represents the intensity of oil droplets stained with 
BODIPY 493/503 dye, while magenta indicates the line intensity of antibodies at the interface. The emulsions 
stabilized with: (A) SDS (anionic emulsifier) and phosvitin. (B) SDS (anionic emulsifier), phosvitin-binding 
antibodies did not accumulate in the interfacial region of oil droplets in this control emulsion. (C) Tween20 (neutral 
emulsifier), phosvitin-binding antibodies did not accumulate in the interfacial region of oil droplets in this control 
emulsion as well. This suggesting that the monoclonal antibodies showed higher selectivity for phosvitin than 
affimers. Scale bars in all panels are 5 μm. Images were acquired with the same settings and are shown with the 
same brightness scale. 
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Supplementary Figure 4.5. Verification of the specificity of phosvitin antibody using fluorescent labeling. (A) 
Antibody targeting phosvitin, labeled with Alexa Fluor 647, visualized in the magenta channel. (B) Direct 
visualization of phosvitin covalently stained with FITC, shown in the green channel. Both A and B show that only 
a fraction of the oil droplet interfaces were covered with covalently and non-covalently labeled phosvitin (C) 
Segmentation mask of droplets derived from the magenta channel, detecting 18 droplets. (D) Segmentation mask 
based on the green channel, where 18 droplets were detected. (E) Resultant image post-subtraction of the phosvitin 
antibody mask (A) from the FITC-stained phosvitin mask (B) showed no droplets. The absence of droplets in the 
subtracted image confirms that droplets visualized in the magenta channel are also present in the green channel, 
indicating a match between droplets covered by phosvitin covalently stained with FITC and those recognized by the 
phosvitin antibody. 

 
Supplementary Figure 4.6. Amplitude ratios for droplet size smaller or larger than D3,2 for different formulated 
phosvitin concentrations. 
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Supplementary Figure 4.7. STORM imaging of a non-sheared sample with a phosvitin concentration of 6 mg/mL, 
stored at room temperature for three days. The image identified 46 droplets covered by phosvitin, illustrating that 
the reduction in phosvitin coverage observed in the main study (Figure 4.6B) was specifically due to the low-shear 
treatment and not merely the aging of the sample. 
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Abstract 

The interfacial properties of oil droplets in food emulsions modulate both the physical and 
oxidative stability of lipids and proteins. Here, we analyze the co-localization behavior and 
spatial heterogeneity of two egg yolk proteins, phosvitin and apolipoprotein B (apoB), and 
oxidative protein radical formation at the oil droplet interfaces in model emulsions. We 
employed stochastic optical reconstruction microscopy (STORM) to achieve sub-100 nm 
localization precision of these proteins and their radicals. To assess the effects of oxidation, we 
employed a three-color detection strategy, including fluorescently labelled antibodies and the 
fluorescent spin trap CAMPO-AFDye647 as a marker for protein radicals. Relative-position-
distribution analysis showed that phosvitin and apoB were heterogeneously distributed at the 
droplet surfaces. This heterogeneity was not droplet size dependent and not affected by protein 
oxidation. Small oil droplets were preferentially covered with phospholipids, which was 
reflected in lower formation of radicals. Co-localization analysis showed that apoB is more 
susceptible to radical formation than phosvitin. Our presented methodology provides us with a 
direct view of the distribution of protein emulsifiers at droplet surfaces and enables a better 
understanding and prediction of the physical and chemical stability of complex emulsions.  



Co-localization of egg yolk proteins and formation of radicals at the interface of oil droplets 
 

119 
 

5 

5.1 Introduction 

Mayonnaise is a widely consumed food emulsion. The physical stability of mayonnaise can be 
largely attributed to egg yolk, which provides a range of high and low molecular weight 
emulsifiers. Egg yolk primarily consists of plasma (78%) and granules (22%)1. The plasma 
contains predominantly low-density lipoprotein (LDL) particles (85%) and some livetin (15%). 
The granules are a mixture of high-density lipoprotein (HDL) particles (70%), LDL (12%), 
phosvitin (16%), and ash (2%)2. Both LDL and HDL exhibit structural similarities despite 
having varying amounts of cholesterol, phospholipids and apoprotein, with apolipoprotein B 
(apoB) being the most abundant one3. In oil-in-water emulsions, adsorption of proteins and 
phospholipids from egg yolk is primarily driven by hydrophobic interactions4 Specifically 
apoB's surface hydrophobicity and structural flexibility leads to strong interfacial adsorption5. 
Phosvitin, which is rich in phosphoserine clusters, also adsorbs at the oil/water interface, with 
an ability to bind ferric ions. In a neutral pH environment, phosvitin is a strong binder of ferric 
ions. However, under the acidic conditions of mayonnaise, its affinity for ferric ions decreases, 
which can then form a redox couple with ferrous ions6. These ferrous and ferric ions are potent 
catalysts for the radical formation of hydroperoxides7. These radicals can then generate lipid 
radicals that consume oxygen in their reaction to hydroperoxides. In this chain reaction, the 
formation of hydroperoxides is propagated by the redox cycling of iron ions introduced by 
phosvitin at the droplet interface8. 

In mayonnaise, protein oxidation at the interface can be induced by both oxidation of lipoprotein 
particles in the continuous phase9 as well as lipid oxidation at the droplet interface10. The 
potential anti-oxidant role of proteins at droplet surfaces remains unclear. Similarly, the extent 
to which heterogeneity of droplet coverage by pro- and anti-oxidant proteins modulates lipid 
oxidation behavior is yet to be fully understood. Indications for a modulating role of surface 
heterogeneity are provided by indirect measurements in model emulsions and on reconstituted 
monolayers11,12. These indirect methods did, however, not allow for identification of the 
involved proteins. 

In this work, we quantify the co-localization of specific egg yolk proteins, phosvitin and 
apolipoprotein B (apoB), and monitor the formation of protein radicals at the droplet surfaces in 
a mayonnaise model emulsion. This endeavor first necessitates the precise observation and 
quantification of protein co-localization. A particular challenge lies in discerning whether two 
protein targets co-localize on the same spot at the interface are part of separate entities. To 
address these limitations, the advent of super-resolution microscopy techniques has significantly 
elevated our capability to probe protein distributions at sub-100 nm resolution13,14. Single-
molecule localization microscopy (SMLM) techniques such as photoactivated localization 
microscopy (PALM)15,16, stochastic optical reconstruction microscopy (STORM)17,18, point 
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accumulation for imaging in nanoscale topography (PAINT)19 and MINFLUX20, have proven to 
be particularly potent, achieving spatial resolutions from tens of nanometers down to a few 
nanometers. At the sub-diffraction scale, the organization of proteins adsorbed at the interface 
of oil droplets has been investigated with molecular specificity using protein antibodies21. Here, 
we will rely on STORM, where individual fluorophores are stochastically activated, allowing 
image acquisition of isolated emission events22. These events gathered over 10,000 frames, can 
then be localized using computational fitting routines or a phasor-based method23,24, thereby 
determining the position of single molecules with nanometer precision. These localizations are 
subsequently used to construct a super-resolved image, offering an approximately 10-fold 
improvement in spatial resolution in comparison to traditional, diffraction-limited images. 
Hence, STORM images, essentially constructed from a list of molecular coordinates, offer 
unique opportunities to quantitatively analyze the spatial distribution of proteins at the interface 
of oil droplets in food emulsions. 

To co-localize different proteins and protein radicals, we will deploy multi-color fluorescence 
microscopy. Traditional co-localization methodologies hinge on the intensity correlation 
analysis of signals emitted in two or more channels, often separated by different fluorescence 
emission wavelengths of the labels25,26. These methodologies are commonly known as pixel-
based methods. When it comes to analyzing STORM data, the intensity correlation-based 
methods for co-localization analysis are compromised by a potential loss of information during 
image reconstruction namely binning as the user's choice of binning size directly affects the 
spatial resolution of the data. As a consequence, variations in binning sizes can result in different 
estimates of co-localization for the same sample, as they alter the area of overlap between the 
analyzed entities27. Another implementation of pixel based methods for co-localization analysis 
are object-based methods28. In this context, an 'object' refers to either a molecule or a patch of 
molecules. These objects are identified and segmented, and their spatial distribution and overlap 
are then analyzed28–30. One of the object-based methods is the nearest-neighbor distance method, 
which calculates the distance between the centers of mass of two objects. If the distance is less 
than a predefined threshold, the objects are considered to be co-localized. The object-based 
methods are independent of object size. Thus, particularly suited for analyzing objects smaller 
than the diffraction limit of light, such as those obtained in single-molecule localization 
microscopy. Here, we will adopt an object-based method that only relies on coordinates of 
localizations obtained from super-resolution microscopy and their respective localization 
precisions (Supplementary Note 5.1) to analyze the spatial arrangement of targets at the 
droplets interface31. 

We will examine protein (co-) localization in a model emulsion stabilized by egg yolk. We will 
deploy a primary antibody conjugated with Alexa 488 to localize phosvitin at the oil-water 
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interface (Figure 5.1A). Similarly, localization of apoB will be achieved using a secondary 
antibody conjugated with Alexa 555 (Figure 5.1B). To localize protein radicals in oxidizing 
emulsions, we will employ the CAMPO-AFDye647 spin trap (Figure 5.1C). This compound is 
composed of the fluorophore AFDye 647 and CAMPO, a derivative of the water-soluble DMPO 
spin trap10. Using multi-color detection, we aim to discern the spatial relationship between 
phosvitin, apoB, and oxidized proteins to infer their relative susceptibilities to lipid radical 
attacks at the interface. 

 
 

Figure 5.1. Schematic illustration of our approach to examine protein localization at the oil-water interface of a 
mayonnaise model emulsion stabilized by egg yolk. Phosvitin (A), apoB (B), and trapped protein radicals (C) are 
schematically presented. 
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5.2 Materials and methods 

5.2.1 Preparation of oil-water model emulsion using egg yolk 

An acetate buffer solution (0.05 M, pH 3.8) was prepared by dissolving sodium acetate (0.6 g) 
and acetic acid (2.6 g) in one liter of ultrapure water. To prepare the continuous water phase, a 
1 w/w% solution of egg yolk was prepared using the buffer. Next, soybean oil was stripped of 
impurities and lipid-soluble anti-oxidants using alumina powder32. The procedure involved 
mixing the oil and powder in a 2:1 volume ratio in Falcon tubes and then agitating the tubes for 
24 hours. The resulting mixture was centrifuged at 2,000 g for 20 min. The collected oil 
underwent a subsequent round of centrifugation under identical conditions to ensure the 
complete removal of alumina powder. To generate a coarse emulsion, we used 15 wt.% of 
stripped soybean oil in the continuous phase. Mixing was followed by homogenization at 
11,000 rpm for 2 min using an Ultra-Turrax IKA T18 basic rotor-stator homogenizer 
(Germany). Finally, the coarse emulsion was subjected to further processing using a high-
pressure homogenizer (HPH) at 70 bar (Niro Soavi – PandaPLUS 2000, GEA). This procedure 
was repeated for a total of ten cycles, resulting in a fine emulsion. 

5.2.2 Stochastic optical reconstruction microscopy 

For the acquisition of STORM data, we used the experimental setup previously described13. 
Briefly, we utilized a fiber-coupled laser engine (Omicron, Germany) to introduce the laser beam 
into the excitation path of the microscope. The laser beam was collimated using a 60 mm 
achromatic lens (AC254-060-A-ML, Thorlabs) and directed by a kinematic mirror (BBE1-E02, 
Thorlabs) into a top hat beam shaper from Asphericon GmbH. Subsequently, the beam was 
focused through a 150 mm lens (AC508-150-A-ML, Thorlabs) into the back focal plane of a 
100x oil immersion objective (NA = 1.45, Nikon) after passing through a polychroic mirror 
(ZT405/488/561/640rpcv2, Chroma). The emitted signal from the sample was collected using 
the same objective and transmitted through an emission filter (ZET405/488/561/640m-TRF, 
Chroma). The collected signal was then reflected by a kinematic mirror and focused through a 
tube lens (MXA20696, Nikon) onto the focal plane of the first lens (AC508-100-A-ML, 
Thorlabs) within a 4f imaging system. A mirror positioned in the Fourier plane of the 4f imaging 
system directed the light towards a deformable mirror (DMP40/M – P01, Thorlabs). The 
deformable mirror was modulated to correct for the aberrations induced by the microscope itself. 
The light then passed through a second lens (AC508-100-A-ML, Thorlabs) before being focused 
onto a sCMOS camera (Prime 95B, Photometrics) with an effective pixel size of 112 nm. During 
the measurement, the deformable mirror was modulated again to compensate for the aberrations 
introduced by the sample. These deformable corrections were calculated and applied using the 
REALM method33. 
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5.2.3 Sample preparation and image acquisition 

Phosvitin was labeled using a primary antibody conjugated with Alexa 488 (sc-46681, Santa 
Cruz Biotechnology). For apoB labeling, 22.6 µL of the primary human apoB mouse antibody 
was diluted from an 8.85 mg/mL stock solution (MBS530791, MyBioSource) in PBS buffer to 
a 1 mL final volume, achieving a concentration of 200 μg/mL. Then, an anti-mouse secondary 
antibody conjugated to Alexa 555 (ab150118, Abcam) was diluted tenfold from a 2 mg/mL stock 
solution and added to the same solution. The mixture was incubated at room temperature for an 
hour. For localizing protein radicals at the interface, CAMPO conjugated to AFDye 647 (SyMO-
Chem B.V.) was used. This CAMPO-AFDye 647 spin trap, with a molecular weight of 
1068.30 g/mol, was dissolved in dimethyl sulfoxide (DMSO) to prepare a 0.01 g/L stock 
solution. The staining procedure started with targeting the phosvitin. The phosvitin primary 
antibody conjugated with Alexa-488 stock solution was diluted 50-fold in PBS buffer, and 
10% v/v of the resultant solution was added to 400 µL of the egg yolk model emulsion. After 
incubating at room temperature for 15 min, the apoB staining process was performed. The 
secondary antibody conjugated with Alexa 555 was then diluted 50-fold in PBS buffer (final 
concentration 4 µg/mL), and 10% v/v of this diluted solution was added to the phosvitin-stained 
egg yolk model emulsion. Protein radicals were then trapped with CAMPO-AFDye647 stock 
solution added to the continuous phase samples and mayonnaise to attain a final concentration 
of 1 μM. The labeled model emulsion was centrifuged at 4,000 g for 5 min. The creamy top 
layer was harvested for imaging to prevent droplet diffusion in the water phase during image 
acquisition. Carefully, 2 μL of this cream phase was pipetted into a well in a silicone gasket 
(Grace Bio-Labs). To enhance the frequency of fluorophore blinking events, 25 μL of STORM 
buffer containing 50 mM TRIS pH 8, 10 mM NaCl, 10% glucose, 140 mM 2-mercaptoethanol, 
68 µg/mL catalase, and 200 µg/mL glucose oxidase was added34. Lastly, a second cover glass 
was placed on the well to prevent new oxygen from infiltrating the sample. For image 
acquisition, we employed three different laser wavelengths for sample excitation within a 20 µm 
by 20 µm field of view. Initially, 10,000 frames were captured using a 488 nm laser at 15 mW 
to localize the phosvitin. Subsequently, 10,000 frames were acquired using a 561 nm laser with 
20 mW power to localize the apoB. Finally, 10,000 frames were captured using a 648 nm laser 
at 15 mW to localize the trapped CAMPO-AFDye647. 

5.2.4 Image visualization co-localization analysis 

To analyze the raw data, we first removed the constant fluorescence background using a 
temporal median filter available at GitHub (https://github.com/HohlbeinLab/FTM2)13. Next, 
we used an integrated Gaussian method with maximum likelihood estimation (MLE)35 
implemented in ThunderSTORM23, a software plugin for ImageJ/Fiji36, to determine the 
positions of the fluorophores with sub-pixel localization precision. For localization in 

https://github.com/HohlbeinLab/FTM2
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ThunderSTORM, we used a β-spline wavelet filter with order 2 and scale 3, a fitting radius of 
3 pixels, and an initial sigma of 1.6 pixels. After performing the localization, we applied 2D 
cross-correlation drift correction with ThunderSTORM settings of 10 bins and 10x 
magnification. The localizations were then visualized using the “average shifted histogram” 
option, with the magnification set to 5 and the labeled protein phosvitin represented in magenta.  

To determine the positions of individual droplets within the field of view, we first trained a 
model on multiple datasets using QuPath37 before using StarDist segmentation38,39 to determine 
the positions of individual droplets within the field of view. The adsorption of emulsifiers in 
relation to droplet size was assessed by computing the Sauter mean diameter, D3,2

40, for all 
samples within each of the three detection channels. To specify the width of the droplet size 
distribution, we calculated the standard deviation over all diameters. Next, for each droplet, we 
extracted all localizations and performed relative position distribution (RPD) analysis41 to 
quantify the spatial heterogeneity of proteins at the interface of individual droplets as described 
in Chapter 3. Further, using a coordinate-based co-localization method on each droplet 
localization31, we analyzed the spatial relations between phosvitin, apoB, and the protein 
radicals. Since we used three different detection channels in our multi-color experiment, 
chromatic aberration was observed. We initially based our segmentation of the STORM data on 
the green channel. As these droplets appear in three different channels, however, circles were 
fitted over the individual droplets in all channels independently. Then, utilizing the green 
channel as a reference and we compared the centers of droplets from the red and blue channels 
to obtain transformation matrices. These matrices were subsequently applied to the respective 
channels, enabling positional adjustments to compensate the chromatic aberration. 

5.2.5 Computational analysis of emulsifier surface coverage 

A Python script was written to analyze the coverage of adsorbed emulsifiers on segmented 
droplets. The program computes the fraction of each droplet’s circumference covered by an 
emulsifier. To model the droplet’s circumference, first, the radius and the center of the droplets 
were determined by fitting a circle to all localizations. Then, the droplet was divided into 
segments, each representing an arc of 0.72°, effectively slicing the droplet into N = 500 
segments. Each array element corresponds to a discrete segment of the droplet’s ring, serving as 
a marker that can be flagged when emulsifiers are localized within that segment. For each 
localization of each emulsifier, its position was projected onto the droplet’s circumference. The 
occupied regions were subsequently plotted and overlaps between phosvitin and apoB channels 
were explicitly marked. 
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5.2.6 Simulating co-localization analysis based on single emitters 

The simulation models a geometrically well-defined distribution of two sets of proteins, each 
representing a different detection channel (green and magenta), located at the interface of oil-
water droplets. We distributed ten proteins in the green channel centered at 0° in a polar 
coordinate system with a spread of the proteins determined by a standard deviation of 2.8° (π/64 
radians) on the droplet interface. The simulated droplet had a radius of 500 nm. Similarly, the 
initial positions of proteins for the magenta channel were generated with their initial distribution 
centered at -22.5°. For each protein 50 localizations were simulated by adding a normally 
distributed distance with a standard deviation of 30 nm. The standard deviation represents here 
a convolution of the distribution of targeted proteins and the experimentally achievable 
localization precision and accuracy. This process resulted in a dataset of 500 localizations for 
each channel. The position of the green distribution marked a reference point at 0°. The magenta 
distribution was initially positioned to the right of the green distribution at -22.5° before being 
gradually rotated to sweep over the green distribution with a step size of π/32 radians (≈ 5.6°) 
until reaching + 22.5°. To test a scenario in which localizations exhibit different precision, we 
simulated distribution of localizations in the second channel with a 20 nm standard deviation. 

5.2.7 Statistical analysis 

The Shapiro-Wilk test was employed to assess the normality of the distribution of co-localization 
indices. For non-normal distributions, the Wilcoxon signed-rank test, a non-parametric method, 
was utilized to test for differences between populations42. The level of significance was set at 
0.05. The statistical analysis was conducted using the scipy.stats module in Python. 

5.3 Results and discussion 

5.3.1 Simultaneous detection of phosvitin, apoB, and protein radicals at droplet 
surfaces using multicolour STORM 

We prepared a model emulsion of mayonnaise using egg yolk to introduce both phosvitin and 
apoB as protein emulsifiers. Phosvitin was localized using a primary antibody conjugated to 
Alexa Fluor 488 and visualized in the blue channel (Figure 5.2A). Further, apoB was localized 
using a primary mouse antibody against apoB and a secondary anti-mouse antibody conjugated 
to Alexa Fluor 555, depicted in the green channel (Figure 5.2A). The STORM images indicate 
that both phosvitin and apoB are present at the oil droplet interface but are not uniformly 
distributed. Further, to ensure the specificity of our oxidative marker, we conducted a control 
experiment using fresh emulsion samples. We applied the CAMPO-AFDye647 spin trap to these 
samples and, as expected, observed no signal in the CAMPO channel, confirming the absence 
of radical formation in the fresh emulsion. Additionally, to investigate the impact of oxidation 
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on the interfacial properties of oil droplets, we subjected a freshly prepared emulsion to 
incubation at 30°C for a duration of five days. Notably, the emulsion remained physically stable 
throughout this period (Figure 5.2B). In addition to the antibodies against phosvitin and apoB, 
we used CAMPO-AFDye647 to localize protein radicals visualized in the red channel 
(Figure 5.2B). For visual examination of co-localization, we further plotted the fields of view 
as a composite featuring pairs of channels: phosvitin/apoB, apoB/protein radical, and 
phosvitin/protein radical (Figure 5.2C). 

 
 

Figure 5.2. Comparative STORM image analysis between fresh and oxidized emulsions. (A) In a fresh emulsion, 
the localization of phosvitin and apoB is distinctly visualized in the blue and green channels respectively, 
facilitated by a primary antibody conjugated with Alexa Fluor 488 for phosvitin, and a secondary antibody 
conjugated to Alexa Fluor 555 for apoB. We note that protein radical detection using CAMPO-AFDye647 did not 
lead to any detectable signal in the red channel. (B) Three-colour detection elucidating the spatial arrangement of 
phosvitin, apoB, and protein radicals in an oxidized emulsion. Phosvitin is visualized in the blue channel, and 
apoB in the green channel, while detection of protein radicals in the red channel is enabled by spin trapping with 
CAMPO- AFDye647. (C) Composite images of the FOV shown in (B) reveal paired channel overlaps among 
phosvitin/apoB (overlap in cyan), apoB/protein radical (overlap in yellow), and phosvitin/protein radical (overlap 
in magenta). 
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5.3.2 Inter-droplet heterogeneity of protein surface coverage 

We first focused on analyzing the localization of phosvitin and apoB at the droplet interface in 
respect to their respective surface coverage. We projected the localizations of phosvitin and 
apoB onto the droplet circumference (Figure 5.3A for apoB; Figure 5.3B for phosvitin). The 
union coverage of apoB and phosvitin was illustrated in dark cyan, corresponding to the part of 
the interface that is covered by phosvitin, or apoB (Figure 5.3C). Furthermore, uncolored 
regions indicate the absence of both phosvitin and apoB. The long-term stability of such small 
droplets not fully covered by proteins indicates coverage by another emulsifier. Given our 
findings in Chapter 4 showing that low molecular weight emulsifiers preferentially adsorb at 
smaller droplets, phospholipids from the egg yolk emerge as a likely candidate. Regions not 
covered by phosvitin or apoB will henceforth be referred to as phospholipid covered. The 
approach to quantify droplet surface coverage allowed the construction of a droplet size 
distribution histogram (Figure 5.3D). In this figure, we plotted a histogram representing the size 
distribution of droplets, with a with a mean Sauter diameter, D3,2 , of 2.36 µm and a size 
distribution width of +/- 0.67 µm. For each bin, we calculated the average coverage of either 
proteins or phospholipids at the droplet interface and presented these averages using a 
normalized bar plot. As the droplet size increases, the average coverage with proteins increases. 
We attribute this shift in droplet surface coverage to the mechanism at play during high-pressure 
homogenization (HPH), which favors coverage of small droplets by a low molecular weight 
surfactant over coverage by proteins (Chapter 4). We utilized the same droplet distribution and 
evaluated the average coverage with protein radicals (Figure 5.3E). Although smaller droplets 
are expected to undergo more oxidation due to their higher interfacial area per droplet volume 
with the water phase, our results indicate that larger droplets have a higher coverage with protein 
radicals. Our current data do not allow for a conclusion whether this to a pro- or anti-oxidant 
effect. The most straightforward explanation is however scavenging of lipid radicals formed 
within the droplets. This effect will be more pronounced for larger droplets which are more 
abundantly covered with proteins than the smaller ones. This finding suggests that droplet size 
is not the sole factor influencing lipid oxidation rates; the relative abundance of proteins 
adsorbed at the interface must also be considered. Additionally, we analyzed the correlation 
between the co-coverage of phosvitin/apoB and the radius of droplets using Pearson correlation. 
We obtained a low correlation coefficient, indicating that our data is insufficient to draw 
meaningful conclusions about this relationship (Supplementary Figure 5.1). 

5.3.3 Intra-droplet surface heterogeneity 

To quantify the protein distribution at the interface, we employed the relative peak distribution 
(RPD) analysis as we described in Chapter 3. Specifically, we used the relative peak amplitudes  
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Figure 5.3. Quantitative analysis of phospholipid, apoB and phosvitin coverage on oil droplets. (A-C) 
Experimental data from two single droplets (diameter 1.2 µm and 1.8 µm, respectively). (A) ApoB localizations 
(shown as green dots) projected onto the circumference of the droplets (shown as gray areas at the dashed 
interface), indicating 44% and 83% coverage, respectively. (B) Corresponding projection for phosvitin (shown as 
blue dots), indicating 25% and 44% coverage, respectively. (C) Co-coverage analysis demonstrates correlated 
apoB and phosvitin localizations, with 23% and 40% co-localized coverage in the respective channels. Non-co-
localized coverage accounts for 21% apoB and 0% phosvitin in the first droplet, and 42% apoB and 3% phosvitin 
in the second. Color key: green for apoB, blue for phosvitin, cyan for co-coverage regions, empty regions are 
assumed to be covered by phospholipids (see text). (D) Histograms display droplet size distribution (black line) 
alongside corresponding apparent phospholipid coverage (orange) and total protein coverage (turquoise), 
normalized to 1. (E) Histograms display droplet size distribution (black line) alongside corresponding protein 
radical coverage (red). 

 

Arel, defined as the ratio of the amplitude of the first peak to the sum of the first and the second 
peak. For the phosvitin channel, we averaged RPDs over all droplets and obtained a value of Arel 
= 0.56 +/- 0.17, indicating a heterogeneous distribution of phosvitin at the interface 
(Figure 5.4A – blue histogram). Likewise, the Arel for the apoB was calculated to be 0.51 +/- 
0.14, also indicative for a heterogeneous distribution of apoB at the interface (Figure 5.4A – 
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green histogram). To elucidate the potential effects of oxidation on protein distribution at the oil 
droplet interface, we calculated Arel for phosvitin, apoB, and protein radicals in the oxidized 
emulsion. The Arel value for phosvitin (Figure 5.4B – blue histogram) was found to be 0.64+/- 
0.15, and for apoB (Figure 5.4B – green histogram) 0.58+/- 0.15 both displaying a similar level 
of heterogeneity as observed in the untreated, fresh sample considering the uncertainty. These 
values collectively suggest that the distribution of phosvitin and apoB at the interface remains 
consistent over the course of incubation and oxidation. Further, we extended our analysis to the 
distribution of protein radicals at the interface. The  Arel for protein radicals (Figure 5.4B – red 
histogram) was calculated to be 0.62+/- 0.14, aligned with our expectations of heterogeneous 
distribution, given the expected associated localizations of protein radicals with phosvitin and 
apoB. 

.

 
 

Figure 5.4. Comparative analysis of protein emulsifiers phosvitin and apoB at oil droplet interfaces in both fresh 
and oxidized model emulsions stabilized by egg yolk. (A) Graph of Relative Positional Distribution (RPD) 
histogram for phosvitin (blue) and apoB (green) in fresh emulsion.  Arel values of 0.56 for phosvitin and 0.51 for 
apoB indicate heterogeneous distributions at the interface. (B) Histograms representing the distribution of apoB 
(green), phosvitin (blue), and protein radicals (red). The  Arel values for phosvitin (0.62), apoB (0.58), and protein 
radicals (0.64) indicate heterogeneous distributions. 

 

 

5.3.4 Coordinate-based co-localization index methodology at oil droplet interfaces 

To analyze the spatial arrangements commonly observed in food emulsions, we performed 
simulations involving two-channel localizations on a ring-like structure, representing the 
interface of an oil droplet when visualizing emulsifiers. We assessed the co-localization index 
(Supplementary note 5.1) using two sets of proteins  by gradually rotating the second channel 
(represented in magenta) over the first channel (shown in green), thereby altering the 
overlapping area between the two channels. Both channels were simulated with 500 localizations 
per channel as explained in the material and methods section (Figure 5.5A). Initially, starting 
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without any overlap, the second channel was rotated by π/32 radians per step, gradually 
increasing the overlap with the first channel. As expected, the co-localization index increased 
with the growing overlap, approaching 1 at a 0° rotation due to the complete overlap of 
localizations (Figure 5.5B), and then decreasing again, nearing zero at a +22.5° rotation as the 
overlap diminished. A subsequent simulation retained the same number of localizations but used 
a decreased standard deviation of 20 nm for the magenta channel to feature two differently sized 
objects on the ring structure (Figure 5.5C). Starting with no overlap between the two channels, 
we noted that as the overlap increased, the co-localization index for the magenta channel reached 
1.6, exceeding the value of 1 as the tighter localized localizations in the magenta channel fall 
entirely within the localizations simulated for the green channel. For the green channel 
calculated against the magenta channel, however, the co-localization index was only 0.5, as the 
localizations in the magenta channel did not fully cover those in the green channel 
(Figure 5.5D). Upon rotating the magenta channel, there was a sharper decrease in its co-
localization index compared to the more gradual decline for the green channel. This 
demonstrates that even if the structure and number of localizations are consistent, variances in 
the distributions of localizations can significantly influence the co-localization indices across 
channels. 

.  
 

Figure 5.5. Simulations of emulsifiers in different channels at an oil droplet interface with a radius of 500 nm to 
assess the co-localization index using a coordinate-based method. (A) Simulation with both channels (green and 
magenta) having identical settings: 500 localizations and 50 nm localization precision. In this scenario, the 
magenta channel rotates from 22.5° to + 22.5°. (B) The co-localization index calculated as a function of the 
sweeping angle of the magenta over the green channel. (C) Simulation with the same number of localizations but 
a lower localization precision of 25 nm for the magenta channel. (D) Co-localization index derived from the 
simulation in part (C) showing that if the if one distribution of proteins is engulfed by another one, the co-
localization index can exceed 1. 
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Additionally, we conducted a separate simulation to explore the impact of varying the number 
of localizations per protein in the channels (Supplementary Figure 5.2). For this, we halved 
the number of localizations in the magenta channel while keeping all other settings identical to 
our initial conditions. Interestingly, the results remained consistent with our initial findings, 
demonstrating that the number of localizations per protein (distribution) at the interface does not 
impact the co-localization calculation. We then applied the coordinate-based co-localization 
index method to assess the spatial relationship between phosvitin and apoB channels in oxidized 
emulsion (Supplementary Figure 5.3). The swarm plots indicates that there is no clear trend 
concerning the co-localization indices across the entire set of droplets. The degree of co-
localization varies from droplet to droplet, ranging from none to full co-localization, and even 
co-clustering in some instances. This variability in the co-localization indices indicates random 
adsorption of phosvitin and apoB. As also inferred in Chapter 4, this randomness stems from 
the use of HPH for emulsion production, which leads to the formation of droplets where 
emulsifier adsorption is kinetically driven. The Shapiro-Wilk test, applied to the co-localization 
indices for apoB and phosvitin, confirmed their non-normal distributions. Further analysis 
revealed median co-localization indices of 0.38 for apoB/phosvitin and 0.51 for phosvitin/apoB. 
Since the concentrations of phosvitin and apoB are different, we refrained from testing whether 
the distributions of co-localization indices of the apoB/phosvitin and phosvitin/apoB are 
different. For the co-localization of apoB and phosvitin with radical formation via the CAMPO-
AFDye647 channel we are, however, not limited by this complication. Whenever there is an 
apoB or phosvitin present, a radical can be formed, and we can test whether the distributions of 
the co-localization indices of these proteins with the CAMPO-AFDye647 and vice versa are 
different. Analysis of the co-localization indices for apoB/CAMPO-AFDye647 and CAMPO-
AFDye647/apoB revealed median co-localization indices of 0.24 and 0.32, respectively 
(Figures 5.6A). In contrast, the median co-localization indices for phosvitin/CAMPO-
AFDye647 CAMPO-AFDye647/phosvitin are 0.20 and 0.22, respectively (Figures 5.6B. These 
co-localization indices showed a non-normal distribution according to the Shapiro-Wilk 
normality test in all four distributions of co-localization indices depicted in Figure 6. We 
therefore used the Wilcoxon signed-rank metric to test for differences between each co-
localization pair of apoB and CAMPO-AFDye647 and phosvitin and CAMPO-AFDye647. For 
apoB/CAMPO-AFDye647, the Wilcoxon test yielded a p-value of 0.0083, indicating a 
statistically significant association beyond random chance at the set threshold of 0.05. 
Conversely, phosvitin/CAMPO-AFDye647 produced a p-value of 0.884, suggesting a random 
association at the interface. On the one hand, phosvitin has a weak affinity for pro-oxidant iron 
ions under the acidic conditions of the model emulsion and is thus close to lipid radical formation 
at the droplet surfaces. On the other hand, phosvitin primarily consists of phosphoserine 
residues, which are less prone to scavenge lipid radicals compared to the amino acids found in 
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apoB43, thus explaining the stronger association of apoB with protein radical formation. We note 
that the sizes of phosvitin and apoB patches at the droplet surfaces are well with in the distance 
that lipid peroxide radicals can travel in the aqueous continuous phase44. 

We note that our measurements were conducted using the HILO mode of the microscope. Due 
to the inclined angle of light illumination, certain angular sections of the droplets might receive 
more excitation light than others. This can lead to an uneven distribution of detected signals 
across the droplet’s surface. To assess this potential source of bias, we performed a comparative 
analysis between the angular distribution of protein localizations observed experimentally and 
those from a homogenized simulated droplet. The results substantiate that our experimental data 
indeed show a bias of detection at specific angles (Supplementary Figure 5.4). This might 
affect the accuracy of our co-localization analysis between experimental data in different 
channels. However, the co-localization method analysis employed is independent of localization 
density, which may mitigate potential concerns regarding the observed bias. Nonetheless, follow 
up studies should explore alternative microscopy modalities by using rotating focused laser 
beams azimuthally in the back focal plane of the objective lens45. 

 
 

Figure 5.6. Evaluation of spatial relationships and co-localization indices among phosvitin/ apoB, and protein 
radicals measured via CAMPO-AFDye 647 detection at individual droplet interfaces in oxidized emulsions as 
presented in Figure 5.2. (A) Co-localization indices between apoB/CAMPO-AFDye 647, and CAMPO-AFDye 
647/apoB with median values of 0.24, and 0.32, respectively. (B) Co-localization indices between phosvitin/ 
CAMPO-AFDye 647, and CAMPO-AFDye 647/phosvitin with median values of 0.20, and 0.22, respectively. 

5.4 Conclusions 

In this study, we employed STORM in combination with specific antibodies to unveil the spatial 
distribution and co-localization of two egg yolk proteins, phosvitin, and apoB, at the oil droplet 
interfaces of a model emulsion for mayonnaise. At the inter-droplet level these proteins 
preferentially cover larger droplets, with smaller ones assumed to be covered primarily by 
phospholipids. This droplet size dependency can be attributed to the dynamics of droplet surface 
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stabilization during high-pressure homogenization. Further, using RPD analysis revealed a 
heterogeneous distribution for both apoB and phosvitin. Applying the coordinate-based co-
localization index allowed us to quantify the co-localization of these proteins. The use of 
STORM with the fluorescent spin trap CAMPO-AfDye647 facilitated the co-localization of 
proteins and protein radicals likely formed by scavenging lipid radicals near the droplet 
interface. We observed that pro-oxidant, iron-binding phosvitin was less prone to radical 
formation compared to apoB. 
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5.5 Supplementary materials 

Supplementary Note 5.1 

To calculate the co-localization index, we employed the same equation presented in reference31. 
First, the Nearest Neighbor Distance (NND) is computed for every point within a specified 
Region of Interest (ROI). By averaging the NND of all points, the Mean Nearest Neighbor 
Distance (MNND) is derived. Subsequently, the local density (LD) for every point is identified 
as the total number of points within a region whose radius is defined by the effective resolution 
d. 

𝑑𝑑 =  �MNND2 + ε2, 

Here 𝜀𝜀  represents the localization precision. The co-localization Index for channel 1 (CIij
1 ) 

calculates how many localizations i from droplet j, in channel 2 (denoted by N1ij
2 ) exist within a 

certain radius d around every point in channel 1.This CIij
1 is then normalized on the average local 

density of localizations of droplet j in channel 2, represented as LD����2j, where d is driven by the 
effective resolution of points in a droplet, in channel 2. This can be expressed as 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖1 =
𝑁𝑁1𝑖𝑖𝑖𝑖2 (𝑑𝑑2)
𝐿𝐿𝐿𝐿����2𝑗𝑗

. 

Subsequently for each localizations of droplet j in channel 2, the CIij
2 values are computed as 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖2 =
𝑁𝑁2𝑖𝑖𝑖𝑖1 (𝑑𝑑1)
𝐿𝐿𝐿𝐿����1𝑗𝑗

. 

Averaged CIj values for every single droplet j can be graphically represented in a co-localization 
swarm plot. By taking their average, a unified mean-CI value can be obtained for all droplets in 
the entire ROI across both channels. 
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Supplementary Figure 5.1. Correlation between droplet radius and overlap coverage of apoB and phosvitin. The 
droplets are represented by black circular markers. The Pearson correlation, employed to analyze the correlation 
between the overlap coverage and radius, gives a coefficient of 0.41, indicating no significant correlation (p-value 
= 0.0025). 
 

 

 
Supplementary Figure 5.2. Simulation exploring the effect of reducing the number of localizations in the magenta 
channel by half, while maintaining all other initial conditions in the simulation. Despite the alteration in the number 
of localizations, the co-localization index remained constant. 
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Supplementary Figure 5.3. Evaluation of spatial relationships and co-localization indices between phosvitin, and 
apoB, at individual droplet interfaces in oxidized emulsions. The swarm plot shows co-localization indices 
between apoB/phosvitin and phosvitin/apoB with median values of 0.38, and 0.51, respectively. 
 

 
Supplementary Figure 5.4. Examination of the angular distribution of protein localizations between (A) 100 
simulated droplets in which the proteins were homogeneously distributed and (B) experimentally observed data. 
We see a small bias introduced by the HILO mode of the microscope on the excitation/detection probability at 
certain angular orientations of the droplets. 
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6.1 Overview and key outcomes: Nanoscale analysis of food emulsions 

Super-resolution microscopy techniques have revolutionized the life sciences by transcending 
the diffraction limit of light, thereby facilitating the examination of specimens at the nanoscale. 
Extending super-resolution microscopy with adaptive optics makes it also useful for studying 
complex food emulsions. An example is mayonnaise in which the use of egg yolk adds a mixture 
of emulsifying agents1. This thesis focused on the localization of two key emulsifying egg yolk 
proteins found in mayonnaise: phosvitin, a metal-binding phosphoprotein with implications for 
oxidative food stability, and apolipoprotein B (apoB), which acts as a strong emulsifier2. 

In this thesis, super-resolution microscopy assays were developed to study model food 
emulsions3. First, adaptive optics and a homogeneous beam shaper were implemented into an 
existing microscopy framework. The main challenge was to overcome turbidity in emulsions 
where droplets averaged one micron in size4 (Chapter 2). Subsequently, a quantitative analysis 
method was developed aimed at evaluating the spatial distribution of emulsifiers at the oil 
droplet interface (Chapter 3). To this end, the relative distances between all localizations around 
a single droplet were analyzed. Thereafter, the quantitative analysis of STORM data along with 
confocal images was employed to evaluate both inter- and intra-droplet heterogeneity of 
phosvitin in a binary model mayonnaise (Chapter 4). Finally, we transitioned to a more complex 
mayonnaise model system that used egg yolk as the emulsifying agent. We quantified the 
interfacial presence of phosvitin and apoB proteins while also analyzing their co-localization 
(Chapter 5). An overview of the thesis chapters is depicted in Figure 6.1. In this chapter, the 
challenges and bottlenecks faced in employing and developing super-resolution microscopy for 
food emulsions will be elaborated on. Future directions for improving the understanding of food 
emulsions will be outlined. 

6.2 Super-resolution in foods: breaking the ground 

6.2.1 Immobilization of oil droplets and efficient oxygen scavenging 

Super-resolution microscopy has primarily been developed for applications in life sciences5,6. 
Adapting techniques like STORM for food emulsion samples presented several challenges. The 
first challenge was the immobilization of oil droplets. In low-oil-content model emulsions, the 
oil droplets were not stationary, making them unsuitable for STORM, which requires capturing 
thousands of steady frames. Initially, guar gum was employed to immobilize the oil droplets, 
forming a gel network to restrict droplet movement. While this approach was partially 
successful, as discussed below, it was noticed that with increasing depth, the number of 
observable oil droplets decreased. An attempt was made to use alternative ingredients, such as  
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Figure 6.1. Overview of the work performed in this thesis. Chapter 2 advanced super-resolution microscopy for 
studying turbid food emulsions. Chapter 3 introduced quantitative emulsifier distribution analysis for emulsifiers at 
the interface. Chapter 4 applied the techniques developed in previous chapters to examine interfacial heterogeneity 
of phosvitin in a model emulsion. Chapter 5 extended the study to a complex mayonnaise model system with egg 
yolk, focusing on co-localization of proteins and protein radicals. 
 

kappa-carrageenan—a negatively charged polysaccharide—to mitigate the void-forming effects 
of guar gum. However, this approach led to the sample becoming unstable, likely due to the 
negative charge, which in turn prevented meaningful fluorescence measurements. Additionally, 
sucrose and glycerol were employed to increase the emulsion's viscosity to immobilize the 
droplets. However, the addition did not enhance the viscosity to the level required for droplet 
immobilization. The droplets remained mobile, rendering this approach unsuccessful. To 
counteract the limitations of guar gum, low-speed centrifugation was utilized to separate the oil 
droplets from the aqueous phase. This approach packed the droplets closely together, mimicking 
a high-oil-content environment and allowing for stable placement of the sample on the cover 
slip during measurements. The effects of immobilization using guar gum (Figure 6.2A, adapted 
from Chapter 2) and centrifugation (Figure 6.2B, adapted from Chapter 4) on the distribution 
of emulsifiers at the surface of oil droplets were examined. The methods used included relative 
position displacement (RPD)7 and relative peak amplitude analysis. These techniques were 
applied to a binary model emulsion, which contained phosvitin and sodium dodecyl sulfate 
(SDS) as emulsifiers (Chapter 3). Our results indicate no significant differences between the 
two methods, as demonstrated by comparable relative peak amplitudes of 0.4 +/- 0.14 for both 
methods (Figure 6.2C and 6.2D). 

Additional challenges arose in the context of oxygen scavenging for STORM experiments. 
STORM buffers, often incorporating oxygen scavenging systems, are essential for promoting 
frequent and stable blinking of fluorophores. This optimal environment ensures the intermittent 
and sparse activation of dyes, pivotal for achieving the characteristic high-resolution of 
STORM8,9. Most of the protocols and commercial STORM buffers were designed primarily for  
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Figure 6.2. Comparative analysis of the distribution of emulsifiers (phosvitin/SDS) at the surface. Reconstructed 
images, obtained via STORM, showcase oil droplets immobilized with (A) guar gum (adapted from Chapter 2) 
and by (B) centrifugation (adapted from Chapter 4). Phosvitin was labeled using a primary antibody conjugated to 
Alexa Fluor 647. Relative Position Displacement (RPD) histogram for droplets immobilized with (C) guar gum 
and by (D) centrifugation. Both methods yielded comparable relative peak amplitude values of 0.4  +/- 0.14 
 

applications in the life sciences and typically operate at a neutral pH of around 7. This posed a 
significant challenge for our low-pH model emulsions. Some buffers further lowered the pH of 
the sample10. These adverse pH changes had dual detrimental effects: they not only degraded 
the sample quality but also diminished the brightness of the dye used for imaging. Ultimately, a 
protocol described in11 was adapted, identifying it as the most suitable oxygen scavenger buffer 
for our system. Further exploration of other oxygen-scavenging methods that claim to be capable 
of maintaining a stable pH during measurements did not work for our samples12. Another 
challenge faced in this thesis was the lack of existing methods for quantitative analysis of 
emulsifier localizations at the interface. Despite having a list of localizations from proteins for 
all observable droplets in a given field of view, this thesis recognized the need to develop new 
methodologies for quantitative image analysis of model emulsions. These methodologies will 
be reviewed in the next sections. 
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6.2.2 Imaging in depth 

Food emulsions typically have droplet sizes in the microscale. These emulsions appear turbid, 
due to scattering and light aberrations especially when observed using optical microscopy 
(Chapter 1). To address this issue, adaptive optics utilizing a deformable mirror was employed, 
allowing penetration up to 15 µm into the emulsion samples, as described in Chapter 2. 
Initially, the aim was to compensate for aberrations arising from this depth, as we hypothesized 
that measurements taken close to the surface—particularly on a coverslip—could potentially 
influence the structure and characteristics of the sample. However, when images taken 8 µm 
deep were compared to those taken closer to the surface (see Figures 6.3A, and 6.3B - adapted 
from Chapter 2), little variation was found in the distribution of emulsifiers among the oil 
droplets. To quantify this observation, the RPD analysis tool from Chapter 3, also further 
discussed below, was employed, and it was found that the relative peak amplitudes for samples 
close to the surface (Figure 6.3C) and 8 µm deep (Figure 6.3D) were with 0.38 and 0.36 very 
similar. These findings suggest that the surface proximity does not affect droplet coverage 
distribution. As such, there is no compelling reason to measure deep into the sample. However, 
it is worth noting that aberrations still exist in turbid samples close to the surface. For this reason, 
adaptive optics was used for all measurements in this thesis. 

6.3 Methodological advances in studying the interface of droplets in 
food emulsions 

In this thesis, the focus is on the often overlooked yet critical task of directly visualizing the 
interfacial composition of oil droplets in food emulsions13. Despite the interface's vital role in 
the stability and quality of emulsions, its surface characteristics have rarely been investigated 
with both molecular specificity and high spatial resolution14–16. To address this gap, we 
employed antibodies for targeted examination. Recognizing the need for quantitative, we 
introduced several methodological advances designed to examine this interface in more detail. 

6.3.1 Assessing the heterogeneity of distribution of emulsifiers on oil droplet surfaces 

To advance the quantitative analysis of the distribution of emulsifiers at the oil-water interface, 
the RPD pattern method was adopted, which was initially designed for nuclear pore structures7. 
By simulating diverse protein arrangements at the interface, we identified a correlation between 
the protein distribution and the RPD histogram patterns. Homogeneous distributions consistently 
generated similar RPD patterns, suggesting that RPD could serve as a 'fingerprint' for the degree 
of homogeneity. Deviations from this pattern indicated a heterogeneous distribution of 
emulsifiers. To quantify this distribution, a metric named the relative peak amplitude (Arel) was  



General discussion 
 

147 
 

6 

introduced. Arel  is calculated by dividing the amplitude of the first peak by the sum of the 
amplitudes of both peaks appearing in the RPD histogram. In Chapter 3, we classify these 
distributions into three categories: homogeneous, partially heterogeneous, and heterogeneous. 
Although these categories are not rigidly defined, a higher Arel value consistently indicated a 
more heterogeneous distribution. Utilizing this methodology not only enabled to distinguish 
between homogeneous and heterogeneous distribution of emulsifiers but also to quantify the 
degree of heterogeneity when comparing different emulsifiers. 

6.3.2 Analyzing inter-droplet and intra-droplet heterogeneity 

Building the methods for analyzing the single-droplet emulsifier distribution allowed to extend 
the scope to inter-droplet heterogeneity. The aim was to investigate whether specific emulsifiers 

 

Figure 6.3. Comparative analysis of the distribution of emulsifiers at different sample depths using STORM. 
Labeling of phosvitin was performed using a primary phosvitin antibody conjugated to Alexa Fluor 647. (A) 
Reconstructed image of oil droplets close to the surface of the coverslip. (B) Reconstructed image of oil droplets 
taken at a sample depth of 8 µm. (C) Graph depicting the RPD histogram of the sample close to the surface, with a 
value of 0.38 +/- 0.14. (D) Graph depicting the RPD histogram of samples taken at a depth of 8 µm, with a value 
of 0.36 +/- 0.11. 
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preferentially adsorb to droplets of particular size. This approach is straightforward in binary 
model systems comprising a low-molecular-weight surfactant and a protein, as detailed in 
Chapter 4. However, the complexity increases when the system includes multiple ingredients 
and proteins that co-adsorb to the droplet surface. In Chapter 5, emulsions stabilized by egg 
yolk were examined, where proteins (apoB and phosvitin) and phospholipids adsorb at the oil-
droplet interface. To facilitate the analysis of inter-droplet heterogeneity, a Python program 
capable of projecting the 2D localization of emulsifiers onto the surface of the oil droplets was 
developed. This method allows calculating the proportion of a droplet's circumference occupied 
by specific ingredients while assuming the unoccupied circumference to be filled with 
phospholipids. By correlating this data with droplet size, the extent of inter-droplet heterogeneity 
within the emulsions was assessed. 

6.3.3 Advanced techniques for analyzing the co-localization of emulsifiers 

Having established the methodologies for both intra-droplet and inter-droplet analyses, it was 
recognized that a more nuanced approach was necessary for assessing the spatial association of 
different emulsifiers and proteins. To address this, a coordinate-based co-localization index 
analysis method17 was adopted. This approach calculates the spatial association between two 
channels irrespective of localization density and is not constrained by the bin size. Initially, the 
suitability of this methodology for studying the structure along the circumference of droplets 
through simulations was validated. Following verification, the method was applied to our egg 
yolk model system to assess co-localization indices between apoB and phosvitin. More 
importantly, this method allowed investigating the co-localization between proteins and protein 
radicals, with the surprising finding that for our model system both apoB and phosvitin had 
similar susceptibility to oxidation. 

6.4 Outlook 

6.4.1 From model emulsions to full mayonnaise: exploring the water-oil interface 

In this thesis, the complexity of the model systems was successively increased. Initially, an 
elementary model system featuring only phosvitin as the sole emulsifier was chosen due to its 
structural properties and its capacity for binding iron. However, this unary model system was 
unstable. Therefore, SDS was added to obtain a stable emulsion at a 10% oil concentration. 
Subsequently, the complexity of the model was expanded by adding LDL, which is composed 
of apoB and phospholipids. Finally, we employed egg yolk as an emulsifying agent, mimicking 
the multi-component nature of emulsifiers found in real mayonnaise. The methodologies 
delineated in the initial chapters enabled our investigation of the egg-yolk containing model 
system. It should be noted that our studies are currently limited to a concentration of 1% egg 
yolk; in contrast, real mayonnaise typically contains around 5% egg yolk18. Hence, a relevant 
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extension would be to examine the effects of varying egg yolk concentrations on both inter- and 
intra-droplet heterogeneity in relation to attenuation19 or acceleration20 of oxidation processes. 

Moreover, it is worth mentioning that our model emulsions incorporated a low oil content and 
exhibited average droplet sizes of approximately 1 µm—parameters that diverge considerably 
from commercial mayonnaise, which typically features an oil concentration between 60-70% 
and droplet sizes ranging from 4 to 6 µm. Therefore, a future step is to apply the methods that 
were developed in this thesis to study interfaces of oil droplet in real mayonnaise systems. 

6.4.2 Advanced probes and techniques for high-resolution imaging in food emulsions 

In this thesis, antibodies were utilized to target egg yolk proteins for STORM experiments21, an 
approach that has proven highly effective for localizing proteins. However, traditional antibodies 
present limitations due to their relatively large size, which can impede specimen penetration. In 
Chapter 4, affimers were evaluated as an alternative to phosvitin-specific antibodies. 
Unfortunately, these affimers exhibited low specificity, likely because their selection procedure 
was biases towards electrostatic interactions. As a recommended avenue for future research, I 
suggest the exploration of nanobodies22 as potential probes for STORM measurements 
(Figure 6.4). Like relatively large antibodies (~150 kDa), nanobodies (~10-15 kDa) retain a 
specificity in antigen recognition comparable to that of larger antibodies23–25. Their smaller size 
enables better specimen penetration, making nanobodies an attractive option for STORM 
measurements in emulsions. Furthermore, the utilization of smaller targeting labels could 
potentially enhance the resolution of co-localization experiments. Specifically, higher 
localization accuracy could pave the way for improved analyses of co-localization between 
proteins, as well as between proteins and protein radicals. 

Additionally, adopting the point accumulation for imaging in nanoscale topography (PAINT)26 
technique, specifically DNA-PAINT, could serve as a substitute for STORM. In DNA-PAINT27, 
we suggest using docking strands conjugated to target-specific nanobodies, which, in our case, 
should be raised against phosvitin and apoB. Subsequently, the introduction of fluorescently-
labeled imager strands allows for transient binding via DNA hybridization. This binding 
mechanism enables the precise localization of targets, in contrast to the on-off switching 
mechanism in STORM. For multi-labeling of different targets, orthogonal DNA strands will be 
employed, a feature especially valuable in complex systems28. This approach offers several 
advantages over STORM, including prolonged fluorophore association times and reduced 
photobleaching, which collectively results in improved localization precision and accuracy. This 
methodology has the potential to provide a robust platform for investigating early-stage 
oxidation processes (see Figure 6.4). However, traditional DNA-PAINT has two major 
disadvantages: the technical challenge of introducing freely diffusing DNA strands to the model 
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emulsion and its more time-consuming data acquisition compared to STORM29,30. I recommend 
sequential imaging of specific fields of view using various fluorophores conjugated to different 
imager strands. An alternative approach involves the use of a single fluorophore for multiple 
orthogonal imager strands. However, this latter method requires washing the sample and 
reloading new imager strands for each target, adding complexity due to the challenges of re-
locating the same field of view on the coverslip31. To verify the technique, I suggest using a 
simple model system. In this scenario, even though the model emulsion has a low oil 
concentration, the washing steps required in this method are applicable to the sample post-
centrifugation for imaging. 

 

6.4.3 Improvements in simulations 

To scrutinize and authenticate the efficacy of quantitative methods, simulations are invaluable 
tools. This thesis employed simulation techniques to conduct heterogeneity analysis of 

 

Figure 6.4.  Schematic illustration of multicolor DNA-PAINT employing three orthogonal pairs of docking and 
imager strands. Target molecules—phosvitin, apoB, and protein radicals—are located on the surface of oil droplets 
and are labeled via nanobodies conjugated to their respective docking strands. Each imager strand can be conjugated 
to a distinct fluorophore for simultaneous multicolor imaging. 
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emulsifiers situated at the interface of oil droplets (Chapter 3). Moreover, these simulations 
were utilized to validate the utility of coordinate-based co-localization index analysis 
(Chapter 5). For the purpose of simulating localizations, certain factors were omitted, such as 
the effect of localizations originating from focal planes above or below the target region. With 
respect to the aggregation term introduced in Chapter 3, the analysis was constrained to one 
dimension along the circumference of the oil droplets. Nevertheless, preliminary efforts were 
undertaken to extend the aggregation term into a two-dimensional plane within the oil droplet 
structure. For the advancement of quantitative analysis, further developments of these 
simulations into a three-dimensional framework are recommended.  

Now that the heterogeneity of emulsifiers can be mapped at oil droplet interfaces, a more 
verification of emulsifiers' behavior is possible. This involves integrating formalism for 
diffusion, local shear rate, protein aggregation, and convection. Into a simulation framework 
These advancements will deepen our insights into how emulsifiers interact with oil droplets 
during emulsification and how they distribute at the interface. 

In summary, simulations offer a versatile platform for the validation and extension of 
quantitative methods in the analysis of spatial association and heterogeneity of emulsifiers. 
Further advancements in multi-dimensional and multi-component whole-body simulation 
frameworks are anticipated. These enhancements will adequately address the complexity food 
emulsions and thus provide new insights. This, in turn, will aid in the meticulous design of 
emulsions and the strategic application of antioxidant strategies. 

6.4.4 New tools for studying food emulsions at the single droplet level 

In this thesis, various techniques and methods have been developed to study food emulsions and, 
specifically, the interface of oil droplets. These approaches enable the investigation of the 
modulating effect of intra- and inter-droplet heterogeneity and droplet size on lipid and protein 
oxidation. Current literature presents conflicting results regarding oxidation in food emulsions; 
some studies report that smaller droplets oxidize faster due to a higher surface-to-volume ratio32–

39, while others suggest that larger droplets oxidize faster40–44. It is important to note that these 
studies did not consider the spatial distribution of emulsifiers at droplet surfaces due to a lack of 
adequate methods. The tools developed in this thesis helped to clarify these discrepancies. As 
discussed in Chapter 5, a model system using egg yolk demonstrated that smaller droplets were 
preferentially covered by phospholipids and larger ones predominantly by proteins. It is 
recommended to investigate further whether and how the emulsifiers' intra- and inter-droplet 
heterogeneity in surface coverage is related to the physical and chemical stability of food 
emulsions.  
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The introduction of egg yolk in a model emulsion marked a pivotal point, enabling a systematic 
study of the localization of biomacromolecules at the interface. The use of techniques offering 
sub-micron resolution combined with molecular specificity offers an attractive tool for the food 
industry for mechanistic underpinning of natural oxidation control strategies. By suppressing 
oxidation at its origin, technological routes can be identified for producing sustainable foods 
with extended shelf life. Thus, the tools and methodologies presented in this thesis can guide 
rational process and formulation design of sustainable products in industrial settings. 

  



General discussion 
 

153 
 

6 

References 
1 Mine, Y. Emulsifying Characterization of Hens Egg Yolk Proteins in Oil-in-Water Emulsions. Food 

Hydrocolloids 1998, 12 (4), 409–415. https://doi.org/10.1016/S0268-005X(98)00054-X. 
2 Anton, M. Egg Yolk: Structures, Functionalities and Processes: Egg Yolk: Structures, Functionalities and 

Processes. J. Sci. Food Agric. 2013, 93 (12), 2871–2880. https://doi.org/10.1002/jsfa.6247. 
3 Jabermoradi, A.; Yang, S.; Gobes, M. I.; van Duynhoven, J. P. M.; Hohlbein, J. Enabling Single-Molecule 

Localization Microscopy in Turbid Food Emulsions. Phil. Trans. R. Soc. A. 2022, 380 (2220), 20200164. 
https://doi.org/10.1098/rsta.2020.0164. 

4 Chantrapornchai, W.; Clydesdale, F.; McClements, D. J. Influence of Droplet Size and Concentration on the 
Color of Oil-in-Water Emulsions. J. Agric. Food Chem. 1998, 46 (8), 2914–2920. 
https://doi.org/10.1021/jf980278z. 

5 Schermelleh, L.; Heintzmann, R.; Leonhardt, H. A Guide to Super-Resolution Fluorescence Microscopy. 
Journal of Cell Biology 2010, 190 (2), 165–175. https://doi.org/10.1083/jcb.201002018. 

6 Hell, S. W.; Wichmann, J. Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-
Emission-Depletion Fluorescence Microscopy. Opt. Lett., OL 1994, 19 (11), 780–782. 
https://doi.org/10.1364/OL.19.000780. 

7 Curd, A. P.; Leng, J.; Hughes, R. E.; Cleasby, A. J.; Rogers, B.; Trinh, C. H.; Baird, M. A.; Takagi, Y.; Tiede, 
C.; Sieben, C.; Manley, S.; Schlichthaerle, T.; Jungmann, R.; Ries, J.; Shroff, H.; Peckham, M. Nanoscale 
Pattern Extraction from Relative Positions of Sparse 3D Localizations. Nano Lett. 2021, 21 (3), 1213–1220. 
https://doi.org/10.1021/acs.nanolett.0c03332. 

8 Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging | Nature 
Methods. https://www.nature.com/articles/nmeth.1768 (accessed 2023-09-19). 

9 Lehmann, M.; Lichtner, G.; Klenz, H.; Schmoranzer, J. Novel Organic Dyes for Multicolor Localization-Based 
Super-Resolution Microscopy. Journal of Biophotonics 2016, 9 (1–2), 161–170. 
https://doi.org/10.1002/jbio.201500119. 

10 Hartwich, T. M. P.; Soeller, C.; Baddeley, D. A Simple Chemical Oxygen Scavenging System for Improved 
DSTORM Tissue Imaging. Biophysical Journal 2014, 106 (2), 401a. https://doi.org/10.1016/j.bpj.2013.11.2258. 

11 Jimenez, A.; Friedl, K.; Leterrier, C. About Samples, Giving Examples: Optimized Single Molecule 
Localization Microscopy. Methods 2020, 174, 100–114. https://doi.org/10.1016/j.ymeth.2019.05.008. 

12 Nahidiazar, L.; Agronskaia, A. V.; Broertjes, J.; Broek, B. van den; Jalink, K. Optimizing Imaging Conditions 
for Demanding Multi-Color Super Resolution Localization Microscopy. PLOS ONE 2016, 11 (7), e0158884. 
https://doi.org/10.1371/journal.pone.0158884. 

13 Hinderink, E. B. A.; Meinders, M. B. J.; Miller, R.; Sagis, L.; Schroën, K.; Berton-Carabin, C. C. Interfacial 
Protein-Protein Displacement at Fluid Interfaces. Advances in Colloid and Interface Science 2022, 305, 102691. 
https://doi.org/10.1016/j.cis.2022.102691. 

14 Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and Emulsion Stability: The Role 
of the Interfacial Properties. Advances in Colloid and Interface Science 2021, 288, 102344. 
https://doi.org/10.1016/j.cis.2020.102344. 

15 Correlation between interfacial layer properties and physical stability of food emulsions: current trends, 
challenges, strategies, and further perspectives - ScienceDirect. 
https://www.sciencedirect.com/science/article/pii/S0001868623000301?casa_token=4g9qYnvjBLoAAAAA:rG3
mcU8LoIAEP_GYuh_RJI8_2Lb7T1XciEit7Jd7ztNRM6xNxzPK-bLS7YcxaN85D-7-KUC9zQ (accessed 2023-
09-28). 

16 Niu, H.; Wang, W.; Dou, Z.; Chen, X.; Chen, X.; Chen, H.; Fu, X. Multiscale Combined Techniques for 
Evaluating Emulsion Stability: A Critical Review. Advances in Colloid and Interface Science 2023, 311, 
102813. https://doi.org/10.1016/j.cis.2022.102813. 

17 Willems, J.; MacGillavry, H. D. A Coordinate-Based Co-Localization Index to Quantify and Visualize Spatial 
Associations in Single-Molecule Localization Microscopy. Sci Rep 2022, 12 (1), 4676. 
https://doi.org/10.1038/s41598-022-08746-4. 

18 Harrison, L. J.; Cunningham, F. E. Factors Influencing the Quality of Mayonnaise: A Review. Journal of Food 
Quality 1985, 8 (1), 1–20. https://doi.org/10.1111/j.1745-4557.1985.tb00828.x. 

19 Ries, D.; Ye, A.; Haisman, D.; Singh, H. Antioxidant Properties of Caseins and Whey Proteins in Model Oil-in-
Water Emulsions. International Dairy Journal 2010, 20 (2), 72–78. 
https://doi.org/10.1016/j.idairyj.2009.09.001. 

20 Faraji, H.; McClements, D. J.; Decker, E. A. Role of Continuous Phase Protein on the Oxidative Stability of Fish 
Oil-in-Water Emulsions. J. Agric. Food Chem. 2004, 52 (14), 4558–4564. https://doi.org/10.1021/jf035346i. 

21 Rust, M. J.; Bates, M.; Zhuang, X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction 
Microscopy (STORM). Nat Methods 2006, 3 (10), 793–796. https://doi.org/10.1038/nmeth929. 



Chapter 6 
 

154 
 

22 Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annual Review of Biochemistry 2013, 82 (1), 
775–797. https://doi.org/10.1146/annurev-biochem-063011-092449. 

23 Virant, D.; Traenkle, B.; Maier, J.; Kaiser, P. D.; Bodenhöfer, M.; Schmees, C.; Vojnovic, I.; Pisak-Lukáts, B.; 
Endesfelder, U.; Rothbauer, U. A Peptide Tag-Specific Nanobody Enables High-Quality Labeling for DSTORM 
Imaging. Nat Commun 2018, 9 (1), 930. https://doi.org/10.1038/s41467-018-03191-2. 

24 Carrington, G.; Tomlinson, D.; Peckham, M. Exploiting Nanobodies and Affimers for Superresolution Imaging 
in Light Microscopy. MBoC 2019, 30 (22), 2737–2740. https://doi.org/10.1091/mbc.E18-11-0694. 

25 Cordell, P.; Carrington, G.; Curd, A.; Parker, F.; Tomlinson, D.; Peckham, M. Affimers and Nanobodies as 
Molecular Probes and Their Applications in Imaging. Journal of Cell Science 2022, 135 (14), jcs259168. 
https://doi.org/10.1242/jcs.259168. 

26 Sharonov, A.; Hochstrasser, R. M. Wide-Field Subdiffraction Imaging by Accumulated Binding of Diffusing 
Probes. Proceedings of the National Academy of Sciences 2006, 103 (50), 18911–18916. 
https://doi.org/10.1073/pnas.0609643104. 

27 Schnitzbauer, J.; Strauss, M. T.; Schlichthaerle, T.; Schueder, F.; Jungmann, R. Super-Resolution Microscopy 
with DNA-PAINT. Nat Protoc 2017, 12 (6), 1198–1228. https://doi.org/10.1038/nprot.2017.024. 

28 Schueder, F.; Lara-Gutiérrez, J.; Beliveau, B. J.; Saka, S. K.; Sasaki, H. M.; Woehrstein, J. B.; Strauss, M. T.; 
Grabmayr, H.; Yin, P.; Jungmann, R. Multiplexed 3D Super-Resolution Imaging of Whole Cells Using Spinning 
Disk Confocal Microscopy and DNA-PAINT. Nat Commun 2017, 8 (1), 2090. https://doi.org/10.1038/s41467-
017-02028-8. 

29 Filius, M.; Cui, T. J.; Ananth, A. N.; Docter, M. W.; Hegge, J. W.; van der Oost, J.; Joo, C. High-Speed Super-
Resolution Imaging Using Protein-Assisted DNA-PAINT. Nano Lett. 2020, 20 (4), 2264–2270. 
https://doi.org/10.1021/acs.nanolett.9b04277. 

30 Diekmann, R.; Deschamps, J.; Li, Y.; Deguchi, T.; Tschanz, A.; Kahnwald, M.; Matti, U.; Ries, J. Photon-Free 
(s)CMOS Camera Characterization for Artifact Reduction in High- and Super-Resolution Microscopy. Nat 
Commun 2022, 13 (1), 3362. https://doi.org/10.1038/s41467-022-30907-2. 

31 Yang, S.; Verhoeff, A. A.; Merkx, D. W. H.; van Duynhoven, J. P. M.; Hohlbein, J. Quantitative Spatiotemporal 
Mapping of Lipid and Protein Oxidation in Mayonnaise. Antioxidants 2020, 9 (12), 1278. 
https://doi.org/10.3390/antiox9121278. 

32 Azuma, G.; Kimura, N.; Hosokawa, M.; Miyashita, K. Effect of Droplet Size on the Oxidative Stability of 
Soybean Oil TAG and Fish Oil TAG in Oil-in-Water Emulsion. Journal of Oleo Science 2009, 58 (6), 329–338. 
https://doi.org/10.5650/jos.58.329. 

33 GOHTANI, S.; SIRENDI, M.; YAMAMOTO, N.; KAJIKAWA, K.; YAMANO, Y. Effect of Droplet Size on 
Oxidation of Docosahexaenoic Acid in Emulsion System. Journal of Dispersion Science and Technology 1999, 
20 (5), 1319–1325. https://doi.org/10.1080/01932699908943855. 

34 Jacobsen, C.; Hartvigsen, K.; Lund, P.; Thomsen, M. K.; Skibsted, L. H.; Adler-Nissen, J.; Hølmer, G.; Meyer, 
A. S. Oxidation in Fish Oil-Enriched Mayonnaise3. Assessment of the Influence of the Emulsion Structure on 
Oxidation by Discriminant Partial Least Squares Regression Analysis. Eur Food Res Technol 2000, 211 (2), 86–
98. https://doi.org/10.1007/s002179900132. 

35 Kuhn, K. R.; Cunha, R. L. Flaxseed Oil – Whey Protein Isolate Emulsions: Effect of High Pressure 
Homogenization. Journal of Food Engineering 2012, 111 (2), 449–457. 
https://doi.org/10.1016/j.jfoodeng.2012.01.016. 

36 Li, Q.; Xie, B.; Wang, Y.; Wang, Y.; Peng, L.; Li, Y.; Li, B.; Liu, S. Cellulose Nanofibrils from Miscanthus 
Floridulus Straw as Green Particle Emulsifier for O/W Pickering Emulsion. Food Hydrocolloids 2019, 97, 
105214. https://doi.org/10.1016/j.foodhyd.2019.105214. 

37 Neves, M. A.; Wang, Z.; Kobayashi, I.; Nakajima, M. Assessment of Oxidative Stability in Fish Oil-in-Water 
Emulsions: Effect of Emulsification Process, Droplet Size and Storage Temperature. Journal of Food Process 
Engineering 2017, 40 (1), e12316. https://doi.org/10.1111/jfpe.12316. 

38 Yang, H.; Su, Z.; Meng, X.; Zhang, X.; Kennedy, J. F.; Liu, B. Fabrication and Characterization of Pickering 
Emulsion Stabilized by Soy Protein Isolate-Chitosan Nanoparticles. Carbohydrate Polymers 2020, 247, 116712. 
https://doi.org/10.1016/j.carbpol.2020.116712. 

39 Interface Characterization and Aging of Bovine Serum Albumin Stabilized Oil-in-Water Emulsions As Revealed 
by Front-Surface Fluorescence | Journal of Agricultural and Food Chemistry. 
https://pubs.acs.org/doi/full/10.1021/jf001170y?casa_token=FwyPZRnzCgkAAAAA%3Al_izp5-KNw3t-it-
tnv9aMCYRrdZYjNwhebVvJZsaEIYzwLGwPrrr7jEJUBFikN3KAGEpV-pKZoAJOg (accessed 2023-10-11). 

40 Atarés, L.; Marshall, L. J.; Akhtar, M.; Murray, B. S. Structure and Oxidative Stability of Oil in Water 
Emulsions as Affected by Rutin and Homogenization Procedure. Food Chemistry 2012, 134 (3), 1418–1424. 
https://doi.org/10.1016/j.foodchem.2012.02.221. 

41 Costa, M.; Losada-Barreiro, S.; Bravo-Díaz, C.; Paiva-Martins, F. Effects of Emulsion Droplet Size on the 
Distribution and Efficiency of Antioxidants. In Lipid Oxidation in Food and Biological Systems: A Physical 



General discussion 
 

155 
 

6 

Chemistry Perspective; Bravo-Diaz, C., Ed.; Springer International Publishing: Cham, 2022; pp 217–235. 
https://doi.org/10.1007/978-3-030-87222-9_10. 

42 Let, M. B.; Jacobsen, C.; Sørensen, A.-D. M.; Meyer, A. S. Homogenization Conditions Affect the Oxidative 
Stability of Fish Oil Enriched Milk Emulsions:  Lipid Oxidation. J. Agric. Food Chem. 2007, 55 (5), 1773–1780. 
https://doi.org/10.1021/jf062391s. 

43 Ries, D.; Ye, A.; Haisman, D.; Singh, H. Antioxidant Properties of Caseins and Whey Proteins in Model Oil-in-
Water Emulsions. International Dairy Journal 2010, 20 (2), 72–78. 
https://doi.org/10.1016/j.idairyj.2009.09.001. 

44 Neves, M. A.; Wang, Z.; Kobayashi, I.; Nakajima, M. Assessment of Oxidative Stability in Fish Oil-in-Water 
Emulsions: Effect of Emulsification Process, Droplet Size and Storage Temperature. Journal of Food Process 
Engineering 2017, 40 (1), e12316. https://doi.org/10.1111/jfpe.12316. 

 

https://doi.org/10.1016/j.idairyj.2009.09.001


 

 



 

 

 

Summary 
 

 

  



Summary 
 

158 
 

 

  



Summary 
 

159 
 

Emulsifiers are crucial for the physicochemical stability of food emulsions like mayonnaise, 
where egg yolk proteins, acting as primary emulsifiers, adsorb at the oil-droplet interfaces. 
Understanding the composition and distribution of emulsifiers is pivotal for understanding their 
impact on oxidative stability and, hence, is vital for enhancing the quality of food emulsions. 
Conventional brightfield microscopy is limited to around 250 nm in spatial resolution and lacks 
of molecular specificity. As a consequence, researchers were so far primarily using indirect 
methods to investigate interfaces. These indirect methods can be invasive and may alter protein 
distribution, thereby compromising the accuracy of the analysis. In contrast, single-molecule 
localization microscopy (SMLM) offers sub-100 nm resolution and high molecular specificity 
using targeted antibodies, thereby enabling the direct visualization of proteins at the interface of 
oil droplets. In this thesis, stochastic optical reconstruction microscopy (STORM) was 
implemented in combination with quantitative analysis methods to discern protein distribution 
with sub-100 nm resolution, addressing inter- and intra-droplet heterogeneity. 

Chapter 2 described the development of a homebuilt microscope setup, the miCube, enhanced 
with adaptive optics in the detection path, and a top-hat beam shaper in the excitation path, 
tailored for imaging high-turbidity emulsions. A deformable mirror (DM) was utilized to correct 
aberrations and facilitate three-dimensional SMLM image acquisition through PSF engineering. 
The top-hat beam shaper was implemented to ensure uniform laser excitation across the entire 
field of view, which is beneficial for STORM data analysis. A first mayonnaise model system 
was designed, utilizing phosvitin, an iron-binding protein from egg yolk, and sodium dodecyl 
sulfate (SDS) as emulsifiers to verify the applicability of SMLM to food samples. As for all 
other model emulsions in this thesis, high-pressure homogenization (HPH) was used for 
emulsification. Phosvitin was targeted with a primary antibody fluorescently labeled with Alexa 
Fluor 647, and PSF engineering was used to obtain two- and three-dimensional images of 
phosvitin-covered oil droplets. This approach allowed to visualize and analyze the spatial 
distribution of phosvitin across oil droplets at various depths within the sample up to 15 µm. 
The STORM data yielded a collection of phosvitin localizations at the oil-water interface, which 
required quantitative analysis. Visual inspection of oil droplets implied a homogeneous 
distribution of phosvitin in the model system. Therefore, Chapter 3 introduced a quantitative 
method to assess the heterogeneity of emulsifiers adsorbed at droplet surfaces. To enhance the 
robustness of our method,  localizations of proteins were simulated with homo- and 
heterogeneous distributions using Monte Carlo methods. The simulations accounted for an 
aggregation probability term to reflect varying degrees of heterogeneity. The relative position 
distribution (RPD) analysis was then employed to extract the histogram of relative distances 
between all neighboring localizations of a droplet. These histograms consistently revealed an 
identical distribution pattern for simulations of homogeneous distributions. In contrast, 
heterogeneous distributions altered the amplitude of the histograms' local maxima. By 
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examining the local maxima and defining the relative peak amplitude,  distributions at droplet 
interfaces were classified as homogeneous, partially heterogeneous, and heterogeneous. Further, 
this method was applied to a binary model system using both phosvitin and SDS as emulsifiers, 
which showed a partially heterogeneous distribution of phosvitin around the droplets. 
Additionally, ternary model emulsions, phosvitin/phospholipid/SDS and apolipoprotein B 
(apoB)/phospholipid/SDS were designed. Imaging of apoB, labeled with a secondary antibody 
conjugated to Alexa Fluor 555, revealed a more heterogeneous distribution compared to 
phosvitin. 

The reconstructed images of the binary model emulsion using STORM indicated fewer 
phosvitin-covered droplets than total droplets observed via confocal microscopy. In Chapter 4, 
the specificity of the phosvitin antibody was first confirmed by comparing the localization of 
phosvitin covalently labeled with fluorescein isothiocyanate (FITC). Phosvitin-binding, DNA 
based affimers turned out to exhibit insufficient specificity. Once the specificity of the antibody 
was validated, the study progressed to investigate the interactions between protein and surfactant 
at the interface and the effect of protein concentration on their competitive behavior. For this 
purpose, re-scan confocal microscopy (RCM) on HPH-produced model emulsions revealed a 
bimodal droplet size distribution, in which small droplets were covered by SDS and large 
droplets by phosvitin, respectively. This inter-droplet heterogeneity in the coverage of droplets 
was in line with the time evolution of the emulsifier coverage of droplet interfaces during HPH. 
Further, STORM showed that the concentration of phosvitin did not affect the intra-droplet 
distribution at the droplet interface. Moreover, STORM provided a direct visualization of the 
redistribution of phosvitin in the HPH-prepared emulsions upon prolonged low-shear treatment, 
resulting in diffusion-assisted exchange of SDS and phosvitin between droplet interfaces and 
the continuous aqueous phase. 

Chapter 5 delved into the most intricate model system examined in this thesis, utilizing egg 
yolk as an emulsifier to create a mayonnaise model emulsion. Using STORM, we mapped the 
spatial distribution and co-localization of two egg yolk proteins, phosvitin and apoB, at the oil 
droplet interfaces. Given the acidic conditions of the emulsion, the weak affinity of phosvitin 
for pro-oxidant iron ions positions it near sites of lipid radical formation on droplet surfaces. In 
contrast, the phosphoserine-rich composition of phosvitin makes it less effective at scavenging 
lipid radicals than apoB. The RPD method revealed heterogeneous distributions for both apoB 
and phosvitin. Analysis of individual droplets indicated a size-dependent preference for 
apoB/phosvitin coverage on larger droplets, with smaller ones presumably coated by 
phospholipids, a pattern influenced by the surface stabilization dynamics during HPH 
processing. Additionally,  oxidation was localized using a three-color detection strategy, 
including fluorescently labeled antibodies and the fluorescent spin trap CAMPO-AFDye647 as 
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a marker for protein radicals. We validated the coordinate-based co-localization analysis through 
simulations of protein localization at the interface, ensuring its applicability to our protein 
localization ring structure. Subsequent co-localization analysis of apoB/CAMPO-AFDye647 
and phosvitin/CAMPO-AFDye647 indicated that pro-oxidant, iron-binding phosvitin was less 
prone to radical formation compared to apoB. 

Chapter 6 explored the challenges and possibilities associated with directly visualizing 
emulsifiers and protein radicals at oil droplet interfaces using super-resolution microscopy. The 
outlook section presents a strategy for extending this research from model emulsions to full 
mayonnaise. Smaller, more target-specific probes such as nanobodies may be advantageous over 
antibodies and DNA-PAINT is to be considered as an alternative to STORM. The chapter 
concludes by discussing the significance of these methodological advancements in studying food 
emulsions at the single droplet level, potentially resolving discrepancies in the current literature 
on protein and lipid co-oxidation rates and enabling and steering the development of antioxidant 
strategies in the food industry.  
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