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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Greenhouse design needs to consider 
production, economic, and environ
mental interdependencies, and
stakeholder preferences. 

• We used bio-economic modelling, ge
netic algorithm, and a directional dis
tance function approach to evaluate 
greenhouse designs. 

• We identified several greenhouse de
signs with robust economic and envi
ronmental performances for four 
locations in China. 

• Lighting system, structure, thermal 
screen, and CO2 dosing rate were among 
the most influential factors on operating 
income. 

• Lighting is the primary contributor to 
GHG emissions, while the use of thermal 
screens can effectively reduce GHG 
emissions.  
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A B S T R A C T   

CONTEXT: Optimizing greenhouse design is a complex challenge that involves the large combinational solution 
space and the interactions between design elements, outdoor climate, and crops. In addition, evaluating 
greenhouse performance requires consideration of economic and environmental dimensions, as well as different 
stakeholder priorities. 
OBJECTIVE: This study aims to identify greenhouse designs that are efficient in terms of economic and envi
ronmental performance for both policy makers and investors for four locations in China. 
METHODS: This paper made a novel combination of operational research methods with bio-economic modelling. 
Specifically, a bio-economic model was used to simulate the yield, energy use, and economic and environmental 
performance of different greenhouse designs. A genetic algorithm was used to explore the large solution space to 
reduce the computational effort. The overall performance of greenhouse design was evaluated using a directional 
distance function approach, which incorporated stakeholders’ priorities for economic and environmental per
formance through the directional vector. 
RESULTS AND CONCLUSIONS: The results identify several greenhouse designs that were found to be efficient in 
terms of economic and environmental performance for both investors and policymakers across various price 
scenarios. The most influential factors on operating income include the choice of lighting, structure, thermal 
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screen, and CO2 dosing rate. Among lighting options, LED lighting outperforms HPS lighting in terms of both 
economic and environmental performance. Specifically, incorporating LED lamps with an intensity of 200 μmol 
m− 2 s− 1 can increase annual operating income by 97.3 to 200.2 ¥ m− 2, depending on the region. Conversely, low 
intensity lighting adversely impacts both economic and environmental performance. A synergistic relationship 
has been observed between lighting and CO2 dosing. On the other hand, lighting is the primary contributor to 
greenhouse gas (GHG) emissions. Incorporating LED lighting with an intensity of 200 μmol m− 2 s− 1 can increase 
CO2 equivalent emissions from 151.7 to 211.0 kg m− 2. Incorporating thermal screens can effectively reduce GHG 
emissions. 
SIGNIFICANCE: The study presents an optimization approach that can be applied to various complex agricultural 
systems with interactions between many factors and the presence of multiple stakeholders with conflict prior
ities. In addition, our study has practical implications for the greenhouse sector in China. The wide range of 
optimal solutions provides policy makers and investors with the flexibility to choose greenhouse designs that 
meet regional agricultural development goals and budget constraints.   

1. Introduction 

China has the largest area of protected horticulture in the world, 
covering 1.89 million hectares (ha) by 2018 (Sun et al., 2019). However, 
China’s protected horticulture is dominated by Chinese solar green
houses1 (66.6%) and single-span plastic tunnels (30.5%), which are 
typically small in size and have limited climate control capabilities. In 
comparison, large-scale modern greenhouse such as multi-tunnel plastic 
greenhouses or Venlo-type glasshouses, only make up 2.9% of China’s 
protected horticulture area. 

Promoting agricultural mechanization has become as a top priority 
of the Ministry of Agriculture (MOA) in China. Subsidies have stimulated 
a surge in investment in Venlo-type glasshouse in China (MOA, 2018). 
However, the economic returns of these investments were questionable 
(MOA, 2018). One explanation may be that the designs of these green
houses were often imported directly from countries such as the 
Netherlands, without sufficient adaptation to the local climatic and 
market conditions in China. Identifying greenhouse designs that are 
optimally adapted to the local climate and market conditions in China is 
currently of high policy relevance. 

Existing studies on greenhouse designs mostly address the design as a 
single factorial problem (e.g., Luo et al., 2005; Wang et al., 2014; 
Esmaeli and Roshandel, 2020), i.e., by optimizing one design element at 
a time. However, the design of greenhouse production systems is clearly 
a multi-factorial optimization problem (van Henten et al., 2006), 
requiring the selection of the best combination of design elements, such 
as the structure and cover material, the choice of heating system, 
screens, CO2 supply, and artificial lighting. All of these choices mutually 
influence each other and are affected by local climate and market con
ditions (van Henten et al., 2006). A recent stream of literature advocates 
a more systematic approach, i.e., integrating the physical, biological, 
and economic models, and optimizing multiple factors simultaneously 
(e.g, Vanthoor et al., 2012; Naseer et al., 2021). 

One of the methodological challenges of taking a systematic 
approach is the “curse of dimensionality”—the number of possible 
combinations increases exponentially with the number of design ele
ments and the number of alternatives of each design element. Conse
quently, selecting the best combination of design options can be a 
complex task. Vanthoor et al. (2012) optimized the choice of greenhouse 
structure, cover material, shading and thermal screens, whitewash, 
heating and cooling system, CO2 enrichment system for Spain and the 
Netherlands. Adopting the same modelling framework, Naseer et al. 
(2021) identified the optimal design for Norway among five predefined 

design alternatives. 
Vanthoor et al. (2012) used the controlled random search method, 

which was originally developed for tackling continuous optimization 
problems (Price, 1977), to explore the solution space. However, the 
greenhouse design optimization problem is more suitable to be treated 
as a combinatorial optimization problem, as it involves discrete de
cisions regarding whether to include specific design element and which 
types to choose. In this regard, the genetic algorithm (GA) is an appro
priate method (Holland, 1992). GAs fall under the category of evolu
tionary algorithms and are often used to generate solutions to search and 
optimization problems (Mendes et al., 2019). In agriculture, GAs have 
been applied to analyze problems such as farm management practices 
(Lehmann et al., 2013; Villalba et al., 2019), orchard replacement de
cisions (West, 2019), and food resource allocation problems (Notte 
et al., 2016). 

A second component of optimal greenhouse design is the choice of 
criteria for evaluating the performance of different systems. Some 
scholars used biological or physical performance criteria, such as pro
duction levels (Luo et al., 2005) and the ability to maintain the indoor 
environment (Wang et al., 2014). Economic indicators are also well- 
accepted criteria for selecting the optimal greenhouse design (e.g., 
Vanthoor et al., 2012; Naseer et al., 2021). Apart from economic per
formance, environmental impact of greenhouse production is also an 
increasing concern for stakeholders, especially policy makers. Modern 
greenhouse production is associated with a high level of greenhouse gas 
(GHG) emissions due to the intensive use of energy. Different green
house designs have varying energy requirements, resulting in different 
environmental impacts (Zhou et al., 2021). Different stakeholders may 
assign different weights on the economic and environmental perfor
mance, and a greenhouse design that is ideal for investors may not be 
preferred by policy makers. The economic and environmental perfor
mance of different greenhouse designs have been compared in some 
studies (e.g., Naseer et al., 2022; Meyer-Aurich et al., 2012), but sepa
rately. However, for multi-stakeholder decision-making, the economic 
and environmental performance should be jointly assessed to achieve a 
form of consensus that reflects a trade-off between conflicting objectives 
and stakeholder priorities. 

This study aims to identify greenhouse designs that are optimally 
adapted to the climate and market conditions for four different locations 
in China. The design elements considered are greenhouse structure, 
cover material, shading and thermal screens, heating and cooling sys
tems, artificial lighting, CO2 enrichment systems, and whitewash. In 
order to reduce the computational effort, a genetic algorithm was 
employed to explore the large solution space. To identify the designs 
that best fit stakeholders’ preferences, a directional distance function 
approach was used to evaluate the overall performance of greenhouse 
designs in terms of economic and environmental performance. The 
optimal greenhouse designs were selected based on their ability to 
consistently deliver robust performance across different price scenarios. 
The resulting greenhouse designs were those where no improvement in 
economic performance can be achieved without compromising the 

1 The Chinese solar greenhouse features an arc-shaped south-facing, light- 
transmitting roof, and an energy-storing north wall. During the day, solar en
ergy is collected through the roof and stored in the north wall and soil. The 
stored energy is released at night, with a thermal blanket applied to prevent 
energy loss. No additional heating is applied this type of greenhouse (Montero 
et al., 2019). 
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environmental performance, and vice versa. 
The remainder of this paper is organized as follows: Section 2 pre

sents the combination of methods used in this paper, i.e., the bio- 
physical model for simulating greenhouse yield and energy use, the 
genetic search algorithm, and the directional distance function. This is 
followed by the description of the results in Section 3. The paper ends 
with Discussion and Conclusions. 

2. Materials and methods 

Fig. 1 presents the schematic overview of the combination of 
methods used in the greenhouse design optimization problem. A bio- 
economic model was used to evaluate the economic and environ
mental performance of a given greenhouse design (Min et al., 2022). A 
genetic algorithm was used to explore the large combinational solution 
space, using economic performance as the fitness function. The search of 
genetic algorithm produced a subset of promising greenhouse designs, 
the overall performance of which were then evaluated by a directional 
distance function which aims at improving the economic performance 
and reducing environmental impacts simultaneously. The categorical 
regression was used to estimate the impact of individual design element 
alternatives on economic and environmental performance. 

This study focuses on nine greenhouse design elements: 1) type of 
structure, 2) cover material, 3) presence, type, and capacity of cooling 
system, 4) capacity of heating system, 5) presence and type of thermal 
screen, 6) presence and type of shading screen, 7) presence, type, and 
intensity of artificial lighting system, 8) presence and capacity of CO2 
enrichment system, and 9) presence of whitewash. An overview of the 
alternatives of each design element is given in Table 1. 

2.1. Bio-physical simulation of different greenhouse designs 

This study uses a biophysical model INKTAM-KASPRO to simulate 
yield and energy use under different greenhouse designs. KASPRO is a 
dynamic greenhouse climate model that computes the greenhouse 
climate as a function of outdoor climate conditions and greenhouse 
climate management settings (De Zwart, 1996). The greenhouse climate 
computed by KASPRO is then fed into the tomato crop simulation model 
INTKAM to compute the daily gross photosynthesis and ultimately fruit 
weight (Marcelis et al., 2008). The inputs of the INKTAM-KASPRO are 
the greenhouse design configuration, outdoor climate, and the indoor 
climate management strategies. The outputs of the INKTAM-KASPRO 
are the monthly tomato yield, natural gas use, electricity use, and CO2 
use. The outputs of the biophysical model provided inputs for the 
evaluation of economic and environmental performance of a greenhouse 
design. 

Four locations were considered: Jinshan (East China), Langfang 
(North China), Weifang (East China), and Pingliang (Northwest China). 
The outdoor climate differs significantly across regions, and this could 

impact the optimal cropping and heating schedules. Furthermore, var
iations in the climate from year to year can have a significant impact on 
the economic and environmental performances of a greenhouse (Van
thoor et al., 2012). However, it is computationally infeasible to run the 
simulation with climate data from every historical year. Therefore, the 
solution adopted was to use the long-term climate data with sufficient 
meteorological representativeness for a location. To achieve this, we 
constructed a typical meteorological year climate dataset for each 
location using the historical climate data from 2000 to 2020 obtained 
from the ERA5 climate dataset (Hersbach et al., 2018), following the 
method used by Song et al. (2007). The details of construction of the 
typical meteorological year climate dataset are presented in Appendix B. 
Table 2 displays the climate characteristics of each region based on the 
constructed typical meteorological year climate dataset. 

For the greenhouse climate manage strategies, we obtained the 
temperature and screen use setpoints from two Chinese growers and a 
greenhouse consultant (K. Yang, personal communication, December 5, 
2019; Y. Xie, personal communication, February 6, 2022; Y. Ying, per
sonal communication, June 7, 2022). The CO2 setpoint, which refers to 
the desired indoor CO2 concentration, increases with the use of lights 
and deceases with the opening of vent. In practice, the growers adjust 
their climate management strategies daily in response to weather con
ditions. The dependencies between the climate setpoints and the 
weather conditions were captured by the proportional band parameter 
(Pband). The detailed greenhouse climate management strategy can be 
found in Appendix C. The same climate setpoints were applied across all 
four locations to ensure that any differences in design performance were 
solely attributed to local climate and market conditions. 

2.2. Economic performance evaluation 

The economic performance of a greenhouse design is defined as the 
annual operating income from greenhouse production: 

Π = − EACsum +Rtomato − Cvar (1)  

where Π (¥ m− 2 year− 1) is the annual operating income from greenhouse 
production, R (¥ m− 2 year− 1) is the annual revenue generated from 
harvested tomatoes, EACsum (¥ m− 2 year− 1) is the annual fixed costs 
incurred from the depreciation and maintenance of greenhouse struc
ture and equipment. Cvar (¥ m− 2 year− 1) is the variable costs of 
production. 

Greenhouse structure and equipment have different life spans, and 
equipment replacement occurs at different times. To compare the fixed 
costs of different design elements with unequal lifetimes, the fixed costs 
associated with each design element was expressed as the Equivalent 
Annuity Cost (EAC). The total fixed costs of owning and maintaining the 
greenhouse is the sum of the EAC of each design element. 

Fig. 1. Schematic overview of the greenhouse design optimization problem.  
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EACj
i =

Ij
i • r

1 − (1 + r)− nj
i
+ Ij

i • mj
i (2)  

EACsum =
∑9

i=0
EACj

i (3) 

where EACj
i is the Equivalent Annuity Cost of design element i with 

alternative j. Ij
i (¥ m− 2) is the initial investment cost of design element i 

with alternative j. nj
i is the lifetime of design element i with alternative j 

in years. r is the discount rate, calculated with the Weighted Average 
Cost of Capital method (see Appendix D). mj

i (% year− 1) is a fixed per
centage of the initial investment costs, reflecting the annual mainte
nance costs of design element i with alternative j. An overview of the 
initial investment costs and maintenance costs of the nine design ele
ments can be found in Table 1. 

The annual revenue R is the sum of the economic value of tomatoes 
produced in all months: 

R =
∑12

t=1
Pt

tomato*Qt
tomato (4)  

where Pt
tomato (¥ kg− 1) is the tomato price of month t. Qt

tomato (kg m− 2) is 
the harvested tomato of month t. 

Variable costs Cvar is the sum of natural gas costs, electricity costs, 

Table 1 
Design element alternatives and associated economic parameters, encodings 
used for genetic algorithm.  

Design elements choices Investment Investment Lifetime Maintenance  

¥ m− 2 ¥ unit− 1 year % year− 1 

Structure (i = 1) 
A: Multi-tunnel, 1 vent 

10 m− 2 
156.3 g – 15 a 2% a 

B: Multi- tunnel, 1 vent 
20 m− 2 

143.3 g – 15 a 2% a 

C: Multi- tunnel, 1 vent 
30 m− 2 

131.0 g – 15 a 2% a 

D: Venlo, 1 vent 10 m− 2 241.7 g – 15 a 0.5% a 

E: Venlo, 1 vent 20 m− 2 218.3 g – 15 a 0.5% a 

F: Venlo, 1 vent 30 m− 2 208.3 g – 15 a 0.5% a 

Cover (i = 2)     
A: PE (polyethylene) 

film 
7.8 g – 7 a 5% a 

B: Double PE film 15.7 g – 7 a 5% a 

C: Glass 55.0 g – 15 a 0.5% a  

Cooling systems (i = 3) 
A: No 
B: Fogging: 200 g h− 1 

m− 2 
25.6 c – 10 a 5% a 

C: Fogging: 300 g h− 1 

m− 2 
29.1 e – 10 a 5% a 

D: Fogging: 400 g h− 1 

m− 2 
46.5 e – 10 a 5% a 

E: Pad and fan: 60 m3 

h− 1 m− 2 
22.2 e – 10 a 5% a 

F: Pad and fan: 90 m3 

h− 1 m− 2 
27.5 e – 10 a 5% a 

G: Pad and fan: 120 m3 

h− 1 m− 2 
31.0 c – 10 a 5% a  

Heating system (i = 4) 
A: Boiler: 1.16 MW ha− 1 – 412,920 e 15 a 1% a 

B: Boiler: 1.74 MW ha− 1 – 432,000 e 15 a 1% a 

C: Boiler: 2.32 MW ha− 1 – 475,200 e 15 a 1% a  

Thermal screen (i = 5) 
A: No 
B: a transparent woven 

screen with 
transmission of 72% 

12 b – 5 a 5% a 

C: made of non- 
transparent bands 
woven with black and 
transparent threads. 
Both side of screens 
are white 

18 b – 5 a 5% a 

D: a light blocking 
screen, white on one 
side and black on the 
other side 

27.5 b – 5 a 5% a 

E: Double-layer, the top 
layer an aluminized 
screen, and the low 
layer a woven black 
screen 

32.2 e – 5 a 5% a 

Structure for thermal 
screen 

42 b – 10 e 5% e  

Shading screen (i = 6) 
A: No 
B: shading factor 36% 13.5 b – 5 a 5% a 

C: shading factor 45% 11 b – 5 a 5% a 

D: shading factor 56% 12 b – 5 a 5% a 

Structure for shading 
screen 

42 b – 10 e 5% e  

Lighting (i = 7) 
A: No supplemental lighting  

Table 1 (continued ) 

Design elements choices Investment Investment Lifetime Maintenance  

¥ m− 2 ¥ unit− 1 year % year− 1 

HPS (High-pressure 
sodium) bulbs (2.3 
μmol J− 1) 
B: 50 μmol m− 2 s− 1 

C: 100 μmol m− 2 s− 1 

D: 150 μmol m− 2 s− 1 

E: 200 μmol m− 2 s− 1 

see 
Appendix A 

0.2 a ¥ W− 1 10,000 a 

hr 
1% a 

LED (light-emitting 
diode) lamp (3.1 μmol 
J− 1), 
F: 50 μmol m− 2 s− 1 

G: 100 μmol m− 2 s− 1 

H: 150 μmol m− 2 s− 1 

I: 200 μmol m− 2 s− 1 

4.2 f ¥ W− 1 35,000 a 

hr 
0.5% a 

HPS fixtures 0.9 a ¥ W− 1 7 a 1% a 

Cabling 0.9 a ¥ W− 1 10 a 1% a  

CO2 enrichment (i = 8) 
A: no 
B: 50 kg CO2 ha− 1 h− 1 

C: 100 kg CO2 ha− 1 h− 1 

D: 150 kg CO2 ha− 1 h− 1 

E: 200 kg CO2 ha− 1 h− 1 

Pure CO2 kg− 1 – 1d – – 
CO2 distribution system 3.7 c – 10 a 5% a  

Whitewash (i = 9)     
A: No 
B: 50% transmission 0.7 e – 1 0 

Note: The cost of the “Structure for thermal screen” is incurred only when 
thermal screen is incorporated. This rule also applies to the “Structure for 
shading screen”, “HPS fixtures”, “Cabling”, and “CO2 distribution system”. 
a Raaphorst et al. (2019) 
b Greenhouse screen consultant (Y. Ying, personal communication, June 7, 
2022) 
c Construction budget of a tomato Venlo-type glasshouse in Shanghai, China. 
d Greenhouse grower (Y. Xie, personal communication, July 19, 2022) 
e Vanthoor et al. (2012) 
f Supplemental lighting consultant (X. Chen, personal communication, Nov 26, 
2022) 
g Average costs provided by three greenhouse construction companies in China 
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CO2 costs (if any), and other costs such as seedlings, material, fertilizer, 
crop protection, labour costs. The costs of natural gas was modelled on a 
monthly basis. Cvar is given by: 

Cvar =
∑12

t=1
Pt

gas*Qt
gas +Pelec*Qelec +PCO2 *QCO2 +Cother (5)  

where Pt
gas (¥ m− 3) is the natural gas price of month t. Qt

gas (m
3 m− 2) is 

the natural gas use per unit area of month t. Annual heating costs is the 
sum of the product of Pt

gas and Qt
gas of all months. Qelec (kWh m− 2 year− 1) 

is the electricity use for lighting and empowering other machineries. We 
used the average monthly price of liquid natural gas from 2017 to 2022, 
the longest period for which data are available, to represent the long- 
term natural gas price (Table E2, Appendix E). 

Unlike liquid natural gas, the price of electricity in China is set by the 
government and has little variation from month to month. Therefore, a 
constant electricity price Pelec (¥ kWh− 1) was applied. The electricity 
price is 0.682 ¥ kWh− 1 for Jinshan, 0.512 ¥ kWh− 1 for Langfang, 0.525 ¥ 
kWh− 1 for Weifang, and 0.439 ¥ kWh− 1 for Pingliang. QCO2 is the 
amount of pure CO2 (kg m− 2 year− 1) supplied. PCO2 (¥ kg− 1) represents 
the price of pure CO2, which remains constant with no monthly varia
tion. Labour use was divided into non-harvest labour and harvest labour, 
the latter was dependent on tomato yield. Variable costs not related to 
energy and labour use were assumed to be the same for all locations. 

Monthly wholesale prices for cherry tomatoes in 2021 for each re
gion were aggregated by taking the average price of several markets 
within the same region (Table E1, Appendix E). These price data do not 
differentiate between variety and quality differences between field- 
grown and greenhouse tomatoes. Greenhouse-grown tomatoes are 
marketed as premium agricultural products and can command higher 
prices due to their superior quality and brand recognition (Wang, 2020; 
Zhang et al., 2010). A price premium of 50% was added to the wholesale 
price to represent the prices of tomatoes produced in modern 
greenhouses. 

2.3. Environmental performance evaluation 

The environmental performance of a greenhouse design is a multi
dimensional construct that encompasses many aspects, such as the 
release of hazardous chemicals into water systems, water use efficiency, 
soil degradation, and GHG emissions to the atmosphere (Zhou et al., 
2021). Assuming soilless cultivation and the same irrigation system for 
each greenhouse design, variations in the environmental performance of 
each design primarily stem from differences in GHG emissions from 
energy consumption (Torrellas et al., 2012). Therefore, to assess the 
environmental performance of greenhouse designs, GHG emissions from 
energy use during the cultivation phase were taken into account. 
Emissions from greenhouses construction, product storage and trans
portation were not included.2 The three main types of GHGs considered 
were carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), 
which have varying effects on global warming. Emissions of each type of 
GHG were converted into CO2 equivalent emissions using specific global 
warming potentials (GWPs), as shown in Table 3. The environmental 
impact of a greenhouse design was computed using eq. (6): 

E =
∑

GHG

(
Qgas*egas*GWPgas

)
+Qelec*eelec (6)  

where E (kg m− 2) is the total amount of CO2 equivalent emissions per 
unit area. Qgas (m3 m− 2) and Qelec (kWh m− 2) are the annual consump
tion of natural gas and electricity per unit area. egas is the emission factor 
of natural gas (liquids) for the specified type of greenhouse gas. GWPgas 

(CO2e kg− 1) is the global warming potentials for the specified type of 
greenhouse gas. The emission factor of purchased electricity eelec differs 
by region, depending on the proportion of electricity generated from 
renewable energy sources in the regional grid (Qu et al., 2017). Table 3 
shows the emission factors of liquid natural gas and electricity. 

2.4. Search strategy – Genetic algorithm 

For the given set of design elements, the number of possible design 
alternatives would be equal to 340,200. A simulation for one design 
takes 20 s; hence, exploring all design alternatives would take 197 days, 

Table 2 
Climate characteristics, cropping and heating schedules of four regions.   

Jinshan Langfang Weifang Pingliang 

Longitude 30◦49′51.96″ 
N 

39◦30′34.99″ 
N 

36◦ 42′ 
24.39″ N 

35◦32′21.01″ 
N 

Latitude 121◦20′38.40″ 
E 

116◦41′40.99″ 
E 

119◦ 9′ 
42.33″ E 

106◦41′10.00″ 
E 

Gross radiation 
of the year 
(MJ m− 2) 

5406.3 5764.3 5715.7 5593.3 

Gross radiation 
in Dec, Jan, 
Feb (MJ 
m− 2) 

913.8 932 931.3 993.4 

Average 
temperature 
in Jan (◦C) 

6.5 − 3.7 − 1.6 − 2.7 

Average 
temperature 
in Jul (◦C) 

28.7 27.5 27.4 22.9 

Average 
humidity in 
Jul (%) 

82.8 70.8 74.1 62.6 

Transplanting 
date 

Oct 1 Sep 15 Sep 15 Jan 1 

Heating start 
date 

Dec 1 Oct 25 Nov 5 Oct 10 

Heating end 
date 

Apr 20, next 
year 

Apr 13, next 
year 

Apr 20, 
next 
year 

Apr 30 

Final harvest 
date 

Jul 1, next 
year 

Jul 10, next 
year 

Jul 10, 
next 
year 

Dec 15 

Weeks of 
production 

39 43 43 50  

Table 3 
Emission factors for greenhouse gases emissions from energy use in greenhouse 
production.  

Energy type GHG 
type 

Emission factor Unit GWP 

Liquid natural 
gas 

CO2 64,200 a kg TJ− 1 1 
CH4 10 a kg TJ− 1 28 b 

NO2 0.6 a kg TJ− 1 265 b 

Electricity CO2e Langfang: 0.9236 c 

Weifang: 0.8007 c 

Jinshan: 0.6392 c Pingliang: 
0.5312 c 

kg 
kWh− 1 

1 

a. Source: IPCC (2007), volume 2, Chapter 2, Table 2.5. 
b. Source: IPCC (2014), Box 3.2, Table 1, with time horizon for 100 years. 
c. Source: Qu et al. (2017). 
Note: net calorific value of liquid natural gas: 51434 MJ ton− 1. Net calorific 
value of natural gas: 38.931 MJ m− 3. One ton of liquid natural gas was converted 
to 1320 m3 of natural gas. 

2 The GHG emission reporting guidelines for facility agriculture enterprises in 
China do not require reporting emissions from the construction and trans
portation phases. The guidelines specify the scope of the GHG assessment to 
include fossil fuel consumption, purchased electricity, and chemical use for 
greenhouse cultivation activities. Consequently, emissions related to other 
stages are of lesser concern to investors and policy makers in China. 
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and this number is multiplied by four as we would like to explore the 
optimal design for four locations. Given this enormous computational 
time, it is impractical to simulate all design alternatives for each loca
tion. To ease the computational effort, a genetic algorithm (GA), an 
adaptive heuristic search algorithm based on Darwinian natural selec
tion (Aytug et al., 2003; Mayer et al., 1999), was employed to search for 
close-to-optimal designs. 

GA has five basic components: 1) a genetic representation of solu
tions (in this case, the representation of greenhouse designs) to the 
problem, 2) A way to generate an initial population of solutions, 3) an 
evaluation function to calculate the fitness score of solutions, 4) cross
over and mutation operators to alter the genetic composition of off- 
springs during reproduction, and 5) Values for the parameters of GA 
(Zbigniew, 1996). The steps of genetic algorithm are:  

1. Initialization. Define N, the size of population. Randomly generate N 
design strings as the initial population.  

2. Define the initial population as the current population. 

Initialize Counter = 0.  

3. Define the termination condition, the maximum number of iterations 
Countermax. 

While Counter < Countermax:  

4. Evaluation. Calculate the economic and environmental performances 
of each design in the current population. 

5. Selection. Randomly draw two design strings from the current pop
ulation, select the design string with the higher economic perfor
mance to enter the parent pool (binary tournament selection). Repeat 
this process until the size of parent pool reaches N.  

6. Crossover. Each string in the parent pool has a probability of Pcrossover of 
being removed from the parent pool and selected to enter the mating 
pool. Randomly choose two strings from the mating pool as the parent 
chromosomes. Select two crossover points at random and swap the 
bits of parent chromosomes between the two points, resulting two 
offspring chromosomes. The offspring chromosomes and the 
remaining members of the parent pool together constitute the popu
lation after crossover.  

7. Mutation. The mutation operator randomly changes any position of 
the string to a random different letter with a probability of Pmutate. 
After applying the mutation operator for each design string in the 
population after crossover, we obtain the population after mutation.  

8. Update the population after mutation as the current population. Update 
the string with the highest economic performance as the best string.  

9. Iteratively execute steps 5 to 9 until meeting the stopping criteria 
(Counter = Countermax). 

A key step of GAs is to encode a solution of a real-world problem into 
a chromosome. GA was originally encoded as binary strings, however in 
the real world, especially the field of engineering, many problems 
cannot be represented with binary encoding (Gen and Cheng, 1999). 
This holds true for the greenhouse design optimization problem, as each 
design component consists of more than two design options. Therefore, 
we used literal permutation encoding to represent a greenhouse design 
as a string of nine letters, where each letter represents a design element 
and its corresponding option. The index of the design component and 
the letter representation of the options are given in. 

Table 1. One example of a design string is DCBABAABA, which 
represents a Venlo-glasshouse with one vent per 10 m2 floor area, a 
fogging system with the capacity of 200 g h− 1 m− 2, a boiler with heating 
capacity of 1.16 MW ha− 1, transparent thermal screens (transmissivity 
72%), no shading screen, HPS lamps with light intensity of 50 μmol m− 2 

s− 1, CO2 enrichment system at a dosing rate of 50 kg CO2 ha− 1 h− 1, no 
whitewash applied. Glass cover is infeasible for multi-tunnel structure, 

and PE film cover are considered for Venlo-type structure. Thus the 
strings with i1 = {A,B,C} and i2 = C, or i1 = {D,E, F} and i2 = {A,B}
are infeasible solutions and should be removed from the solution space. 
During the iterations of GA, the infeasible design strings were always 
converted to feasible ones. 

The choice of population size, crossover and mutation probabilities is 
critical to the efficiency of GA. A small population size could lead the 
algorithm to provide poor solutions, while a too large population size 
would require more computation time to find a good solution (Diaz- 
Gomez and Hougen, 2007). In general, the suitable population size 
should be proportional to the number of dimensions of the problem 
(Harik and Lobo, 1999). A good balance between the crossover and 
mutation probabilities could direct the search towards promising re
gions, while maintaining the degree of diversity in the population, to 
avoid premature convergence (Harik and Lobo, 1999). Usually, the 
values for these parameters are chosen empirically for the specific class 
of optimization problems (Eremeev, 1999). After experimenting with a 
number of parameter combinations, we chose N = 400,Pcrossover = 0.5,
Pmutate=0.1, Countermax = 60. 

2.5. Overall performance evaluation - the directional distance function 
approach 

We used the directional distance function approach to evaluate the 
overall performance of greenhouse production systems in terms of the 
revenues and GHG emissions generated. Following Chung et al. (1997), 
under the hypothesis of variable rate of return to scale, the directional 

distance function is defined as D→
(

EACsum,Cvar,R,E; d
→)

, The two types 

of inputs are EACsum and Cvar. The two types of outputs are the (desired) 

annual revenue and the (undesired) GHG emissions of production. d
→

is 

the directional vector, defined as d
→

=
(
wR

stakeholder*R0, − wGHG
stakeholder*E0

)
,

where wR
stakeholder, w

GHG
stakeholder represent the relative importance (weights) 

of revenue increase and environmental impacts reduction in the view of 
the stakeholders (investors or policy makers). This choice of directional 
vector implies that for given levels of inputs, the stakeholder aims at 
simultaneously increasing revenue at the rate of wR

stakeholder, and 
decreasing GHG emissions at the rate of wGHG

stakeholder. 
The values for wR and wGHG are 0.86 and 0.14 for investors, and 0.7 

and 0.3 for policy makers. These values are the averaged relative 
importance of economic and environmental performance according to 
ten greenhouse investors and policy makers. The values were obtained 
through a survey with the stakeholders and calculated by using the Best- 
Worst method (Unpublished results of Min et al., see Appendix F). 

The measure of inefficiency β can be calculated as solutions to the 
following linear programming problems: 

maxβ (7)  

s.t.
∑

λkEACsum ≤ EACi0 (8)  

∑
λkCvark ≤ Cvar0 (9)  

∑
λkRk ≥ R0 + β*wecon

stakeholder*R0 (10)  

∑
λkGHGk ≤ GHG0 − β*wenv

stakeholderGHG0 (11)  

∑
λk = 1 (12)  

λk ≥ 0, k = 1,…,K; β ≥ 0 (13) 

A greenhouse design is considered to be fully efficient when β takes 
the value zero. 
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2.6. Scenario analysis – find out robust greenhouse designs 

The profitability of greenhouse production faces uncertainty due to 
fluctuating input and output prices. A greenhouse system that is 
considered optimal based on a given set of prices may not remain 
optimal for other price scenarios. A good greenhouse design should 
possess resilience and deliver robust performance in a dynamic market 
environment. To find out greenhouse designs that are robust to different 
price settings, we conceived three price scenarios: the baseline scenario, 
the low tomato price scenario, and the high energy cost scenario. The 
baseline scenario used 2021 tomato and energy prices as inputs for the 
simulation. The low tomato price scenario assumed a 30% reduction in 
tomato prices compared to the baseline scenario. In the high energy cost 
scenario, both gas and electricity prices were assumed to be 20% higher 
than the 2021 levels. 

For each price scenario, we calculated the inefficiency scores β for 
both investors (βinvest) and policy makers (βpolicy), which produced an 
approximation of the efficiency frontier. Designs with βinvest = βpolicy = 0 
were considered efficient for that specific price scenario. Greenhouse 
designs that were found to be efficient across all three price scenarios 
were considered robust. 

To explore the relationship between the design elements and annual 
operating income or GHG emissions (under the baseline scenario), we 
performed categorical regression analyses. The interaction terms be
tween the level-specific lighting and CO2 dosing choices were included, 
as CO2 enrichment and supplemental lighting were found to have a 
synergistic effect in increasing the light use efficiency of crops (Heuve
link et al., 2018). A positive coefficient indicates that, ceteris paribus, 
selecting the specific design element leads to a higher operating income 
than the baseline choice. Conversely, a negative coefficient indicates a 
lower operating income compared to the baseline choice. 

3. Results 

For each location, the genetic search examined between 11,195 and 
18,616 greenhouse designs, which represented 3.3% to 5.5% of all 
possible designs. Section 3.1 and 3.2 present the top five efficient de
signs based on economic and environmental performance, respectively, 
for each location. Results of the categorical regression for the operating 
income and GHG emissions are reported in Section 3.3 and 3.4, 
respectively. 

3.1. Efficient greenhouse designs with the highest operating income 

Table 4 presents the five efficient designs with the highest operating 
income in the baseline scenario for each location. The differences in 
profit per m2 between the five designs are small, but with an average- 
sized greenhouse size of 1.5 ha, the cumulative difference can be large. 

For Jinshan, a Venlo-type structure with glass cover was found to be 
the most favorable choice. A small-capacity boiler (1.16 MW ha− 1) and 
thermal screen with moderate energy-saving but high transmissivity was 
always selected. No cooling system or shading screen was chosen among 
the three efficient designs with the highest operating income in the 
baseline scenario. LED lamps with a high light intensity (200 μmol m− 2 

s− 1) coupled with CO2 dosing at rate above 100 kg ha− 1 h− 1 were 
selected. Whitewash was selected only once out of the five efficient 
designs. 

For Langfang, the recommended structure and cover were either a 
multi-tunnel structure with single PE film or a Venlo-type structure with 
glass cover. Given the cold winters in Langfang, it was suggested to opt 
for a high-capacity boiler (2.23 MW ha− 1) along with double-layer 
thermal screens. All efficient designs had LED lamps with high light 
intensity and the maximum CO2 dosing rate, as well as whitewash. 

For Weifang, a multi-tunnel structure and shading screens with a 
shading level of 36% were selected in three out of the five listed designs. 

Table 4 
Simulation results per m2 of the efficient greenhouse designs with the highest operating income for each location.  

Design element choice Simulation outcome 

ST CV FG HT TS SS LT CO2 WW EAC R Cvar Π GHG 

Jinshan   
Venlo Glass No 1.16 Transp No LED 200 200 No 81 543 243 223 118 
Venlo Glass No 1.16 Transp No LED 200 200 Yes 83 546 247 220 121 
Venlo Glass No 1.16 Transp No LED 200 100 No 81 529 235 217 118 
Venlo Glass 200 1.16 Transp 36% LED 200 200 No 99 540 234 211 114 
Venlo Glass 300 1.16 Transp 36% LED 200 150 No 98 533 231 209 115  

Langfang   
MT S-PE No 2.23 D-layer 36% LED 200 200 Yes 91 751 256 405 184 
MT S-PE 300 2.23 Transp No LED 200 200 Yes 77 745 264 405 176 
Venlo Glass 200 2.23 D-layer 36% LED 200 200 Yes 107 760 252 403 182 
Venlo Glass 300 2.23 D-layer 36% LED 200 200 Yes 107 761 252 403 182 
MT S-PE 200 2.23 D-layer No LED 200 200 Yes 84 753 267 403 182  

Weifang   
MT D-PE No 1.16 D-layer 36% LED 200 200 No 92 502 243 168 161 
MT S-PE No 2.23 Transp 36% LED 200 200 No 81 495 248 167 146 
MT S-PE No 1.74 Transp 36% LED 200 200 No 80 495 348 167 147 
Venlo Glass 200 2.23 Transp No LED 200 200 No 84 502 251 167 146 
Venlo Glass 300 2.23 Transp No LED 200 200 No 85 502 251 166 146  

Pingliang   
MT S-PE No 1.16 Transp No LED 200 200 No 72 795 214 511 115 
Venlo Glass 200 2.23 Transp 36% LED 200 200 No 100 814 208 507 112 
Venlo Glass No 1.16 Transp 36% LED 200 200 No 94 807 206 507 112 
Venlo Glass 300 2.23 Transp 36% LED 200 200 No 100 814 208 507 112 
MT D-PE 200 1.74 D-layer 36% LED 200 200 No 100 816 211 506 123 

ST stands for structure, MT stands for multi-tunnel, CV stands for cover, FG stands for fogging, HT stands for heating capacity, TS stands for thermal screen, SS stands for 
shading screen, LT stands for lighting, CO2 stands for CO2 enrichment, WW stands for whitewash. S-PE stands for Single PE. D-PE stands for Double PE. Transp stands for 
Transparent. D-layer stands for Double layer. 
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When using single PE film as the cover material, which has higher 
transmissivity than double PE film, the transparent thermal screens were 
recommended. This choice of cover material and thermal screen aimed 
to increase light use efficiency and maximize yield. On the other hand, 
when double PE film, which has better insulation but less transmissivity 
than single PE film, was selected, the recommended design consisted of a 
small-capacity boiler and double-layer thermal screen with excellent 
insulation but no transmissivity, with the focus on maximizing energy 
savings and reducing variable costs. Similar cover and thermal screen 
combinations were recommended for Pingliang, with glass or single PE 
film coupled with transparent thermal screens, and double PE film 
coupled with double-layer screens. For Weifang, LED lamps with high 
light intensity were selected, together with CO2 dosing rate at 200 kg 
ha− 1 h− 1. No whitewash was applied in the listed designs. 

For Pingliang, the efficient design with the highest operating income 
in the baseline scenario was a relatively low-cost multi-tunnel structure 
with single PE film, without cooling system, shading screen or white
wash. LED lamps with the highest light intensity and a CO2 enrichment 
system at the highest dosing rate were always present among the five 
listed designs. 

3.2. Efficient greenhouse designs with the lowest greenhouse gas emissions 

Table 5 displays the top five efficient designs with the lowest GHG for 
each location, under the condition of a positive operating income in all 
three price scenarios. None of the designs with the best environmental 
performance for Langfang and Pingliang included supplemental light
ing. However, LED lamps with an intensity of 200 μmol m− 2 s− 1 were 
necessary, in order to maintain positive operating income across all 
price scenarios for Jinshan and Weifang. 

Unlike the five efficient designs in Table 4 for Langfang, which 
favored double-layer thermal screens, transparent thermal screens were 

selected when ranked on environmental performance. Conversely, most 
of the designs for Pingliang in Table 4 selected transparent thermal 
screens, but double-layer thermal screens became the preferred option 
when ranked on environmental performance. There are trade-offs be
tween economic and environmental performance, and generally, GHG 
increase with operating income. 

3.3. Relationship between the design element choice and operating income 

The results of the categorical regression analysis on operating in
come are shown in Table G1 in Appendix G. Almost all parameters were 
significant at the 0.05 critical level, as could be expected for this number 
of observations. The analysis indicates that the choices of lighting sys
tem, structure, thermal screen, and CO2 dosing rate were the most 
influential factors on the operating income. In contrast, the choices of 
cover material, boiler capacity, shading screen, and whitewash had 
relatively small impacts on the operating income of a tomato 
greenhouse. 

A structure with lower vent area was more favorable across all lo
cations. Using double PE film as the cover material reduced the oper
ating income in Jinshan and Langfang but increased it in Weifang and 
Pingliang. A pad and fan cooling system was not suitable for a tomato 
greenhouse, as indicated by the negative coefficients for each location. A 
fogging system was economically beneficial only for Langfang. A boiler 
with a capacity of 1.16 MW ha− 1 was the preferred choice for Jinshan 
and Weifang, while a capacity above 1.74 MW ha− 1 was preferable for 
Langfang and Pingliang. Overall, the choice of boiler capacity had 
limited impact on the operating income. All types of thermal screens, 
compared to no thermal screen, significantly increased the operating 
income of a tomato greenhouse. The transparent and double-layer 
thermal screens were the most effective measures for increasing oper
ating income. The presence of shading screens slightly decreased the 

Table 5 
Simulation results per m2 of the efficient greenhouse designs with the lowest GHG for each location, under the condition of positive operating income in all price 
scenarios.  

Design element choice Simulation outcome 

ST CV FG HT TS SS LT CO2 WW EAC R Cvar Π GHG 

Jinshan 
Venlo Glass 300 1.16 Transp 36% LED 200 200 No 99 540 234 211 114.4 
Venlo Glass 300 1.16 Transp 36% LED 200 150 No 99 533 231 208 114.4 
Venlo Glass No 1.16 Transp 36% LED 200 100 No 93 521 227 206 114.4 
Venlo Glass 200 1.16 Transp 36% LED 200 150 No 98 533 231 209 114.5 
Venlo Glass 400 1.74 Transp 36% LED 200 200 No 102 541 235 208 114.9  

Langfang 
MT D-PE 200 1.16 Transp No No No No 41 305 166 99 63.3 
MT D-PE 400 1.16 Transp No No 100 Yes 46 316 171 98 63.3 
MT D-PE 200 1.16 Transp No No 200 Yes 42 319 174 102 63.4 
MT S-PE No 1.74 Transp No No 100 Yes 36 322 184 103 69.5 
MT S-PE No 1.74 Transp No No 150 Yes 36 323 185 102 69.6  

Weifang 
Venlo Glass No 1.16 Transp 36% LED 200 50 No 91 467 227 150 142.1 
Venlo Glass 300 1.16 Transp 36% LED 200 100 No 96 481 233 153 142.4 
Venlo Glass No 1.16 Transp 36% LED 200 150 No 91 488 236 162 142.4 
Venlo Glass 300 1.16 Transp 36% LED 200 150 No 96 490 237 157 142.5 
Venlo Glass 400 1.16 Transp 36% LED 200 100 No 100 482 233 151 142.5  

Pingliang 
MT D-PE 300 1.74 D-layer 45% No No No 58 292 117 117 41.2 
MT D-PE No 2.23 D-layer No No 150 Yes 44 300 126 130 41.5 
MT D-PE No 1.16 D-layer No No 150 Yes 43 295 126 125 41.5 
MT D-PE 200 1.16 D-layer No No 100 No 47 301 125 129 41.6 
MT D-PE 300 1.16 D-layer No No 200 No 48 302 128 127 41.6 

ST stands for structure, MT stands for multi-tunnel, CV stands for cover, FG stands for fogging, HT stands for heating capacity, TS stands for thermal screen, SS stands for 
shading screen, LT stands for lighting, CO2 stands for CO2 enrichment, WW stands for whitewash. S-PE stands for Single PE. D-PE stands for Double PE. Transp stands for 
Transparent. D-layer stands for Double layer. 
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operating income of a tomato greenhouse in Jinshan, while shading 
screens with a 36% shading factor was the best choice for the other 
locations. 

LED lamp with an intensity of 200 μmol m− 2 s− 1 was found to be the 
optimal lighting solution for all locations. LED lamp almost always 
outperformed HPS lamps given the same light intensity. The operating 
income in Jinshan, Langfang, and Weifang significantly decreased when 
the light intensity fell below 100 μmol m− 2 s− 1. CO2 enrichment without 
the presence of supplemental lighting was only profitable for Pingliang. 
The significance and magnitude of the interaction term coefficients be
tween lighting and CO2 dosing rate indicated a synergistic effect be
tween lighting and CO2 enrichment. However, the synergistic effect was 
negative for Pingliang when a low light intensity (below 100 μmol m− 2 

s− 1) was applied. The combination of a high light intensity (200 μmol 
m− 2 s− 1) and a high CO2 dosing rate (200 kg CO2 ha− 1 h− 1) showed the 
best ability to improve operating income. 

3.4. Relationship between the design element choice and GHG 

Table G2 in Appendix G presents the regression results regarding the 
effect of individual design elements on GHG emissions. The results in
dicates that lighting was the primary contributor to GHG emissions. 
Compared to HPS lamp, using LED lamp produces less GHG emissions. 
Additionally, incorporating thermal screens can effectively reduce GHG 
emissions, particularly when utilizing transparent or double-layer 
thermal screens. Furthermore, greenhouse with smaller vent areas 
were found to generate fewer GHG emissions. In particular, the Venlo- 
type structure was found to contribute less to GHG emissions 
compared to multi-tunnel structure with the same vent area. Although 
double PE film offers better heat insulation, using it as the cover material 
slightly increased GHG emissions. This may be attributed to the reduc
tion in light penetration, which can lead to longer lighting hours. Lastly, 
fogging capacity, boiler capacity, shading screen, CO2 enrichment, and 
whitewash were found to have little impact on GHG emissions. 

4. Discussion 

The optimization of greenhouse design is complex as it involves the 
large combinational solution space and the interrelations between 
design elements, outdoor climate, and crops. This study demonstrates 
how a novel combination of operational research methods together with 
bio-economic modelling can effectively address the challenge of 
greenhouse design optimization. By coupling a genetic algorithm with a 
bio-economic greenhouse model, the solution space was reduced to 3% 
to 5% of the entire design space. The use a directional distance function 
approach for performance evaluation allows us to identify a range of 
designs that are located on the efficiency frontier, rather than a single 
optimal solution. 

This study extends existing work on greenhouse design optimization 
in several ways. Previously, Vanthoor et al. (2012) focused solely on 
optimizing greenhouse designs based on economic performance. Tor
rellas et al. (2012) and Naseer et al. (2022) evaluated both economic and 
environmental aspects of various greenhouse designs separately, 
without considering the trade-offs between them. Our study contributes 
to this field by optimizing greenhouse designs from both aspects, taking 
into account multiple stakeholders’ preference. This approach enables 
us to identify solutions that are acceptable to both investors and policy 
makers. Furthermore, the impact of price uncertainty is often over
looked in previous studies. While a greenhouse design may be consid
ered optimal under a given set of prices and costs, it may not remain 
optimal under different price scenarios. To address this, we accounted 
for price uncertainty by selecting designs that were robust (i.e., optimal) 
under different price scenarios. 

Our results clearly indicate that different regions require distinct 
greenhouse designs tailored to local climate and market conditions. 
Based on the findings of our study, Chinese policy makers can design 

region-specific subsidy policies to support technologies that are well- 
suited for individual regions, rather than subsidizing a broad range of 
technologies. For instance, the Venlo-type glasshouse was the most 
suitable structure for Jinshan. Double-layer thermal screens are advan
tageous in colder regions such as Langfang for energy-saving purposes. 
Moreover, LED lighting and CO2 enrichment should be promoted as a 
bundled technology due to their synergistic effect on enhancing eco
nomic returns. Our findings can also help Chinese investors to make 
more informed investment decisions. Investors could flexibly select 
suitable designs based on their available budget or other relevant factors 
among the identified optimal greenhouse designs. 

Our approach can be applied to many real-world problems, partic
ularly those embedded in complex systems with interactions between 
factors, where establishing analytical relationships between decision 
variables and performance measures is difficult. These types of problems 
often have multiple (and often conflicting) objectives, and simulating 
such systems can be time-consuming. Previous efforts have combined 
DEA with GA to address challenges such as supplier selection (Shadkam 
and Bijari, 2017), agricultural production (Whittaker et al., 2009), 
resource allocation in hospitals (Lin et al., 2013), and aircraft spare parts 
allocation (Lee et al., 2008). However, none of these approaches 
considered the presence of multiple stakeholders, whose weights for 
different objectives may differ. Therefore, our approach represents an 
advancement in this research domain. 

Some further issues can be studied in future research. Firstly, it 
should be noted that this study employed the same greenhouse climate 
setpoints across all price scenarios. In reality, the optimal climate set
points may vary depending on the price levels, and greenhouse growers 
may adjust climate setpoints with changes in energy prices (Los et al., 
2021). Therefore, a model that optimizes greenhouse design and climate 
management simultaneously is worth further exploration. A bilevel 
optimization formulation may be well-suited to this context. 

Secondly, the study used typical meteorological year climate data as 
inputs for its analysis. The typical meteorological year climate data was 
constructed based on climate data from 2000 to 2020. This implies that 
greenhouse designs were optimized to adapt to past climate conditions. 
However, in the context of climate change, it is also possible to take a 
forward-looking perspective and optimize greenhouse designs based on 
projected climate conditions for the next 20 years. 

Weather conditions can vary greatly from year to year, affecting 
yield, energy use, and operating income. Different greenhouse designs 
may respond differently to weather uncertainties. For instance, a 
greenhouse design with excellent heat insulation may not produce the 
best economic outcome in a typical climate year but could potentially 
yield better results during an extremely cold year. Therefore, instead of 
focusing on typical climate conditions, it may be valuable to consider the 
production risk arising from weather uncertainty and examine the dis
tribution of the economic outcomes. In this case, a robust optimization 
approach could be suitable. 

Thirdly, it is worth mentioning that the environmental performance 
assessment in this study focused solely on GHG emissions generated 
from energy use. However, it should be acknowledged that the GHG 
emissions generated from the construction phase of different greenhouse 
designs can vary greatly. To calculate the emissions related to green
house construction, we would need detailed data on the materials and 
quantities associated with the design alternatives listed in Table 1. Un
fortunately, such detailed information was not available. For a fairer 
assessment of the optimal greenhouse design, it would be more appro
priate to include the GHG emissions associated with greenhouse con
struction, provided that data is accessible. 

5. Conclusions 

This paper reports several greenhouse designs that were found to be 
efficient in terms of economic and environmental performance for both 
investors and policy makers across various price scenarios. The results 
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underscore the importance of tailoring greenhouse designs to local 
climate and market conditions, with specific recommendations for 
different regions. For example, the Venlo-type structure with glass cover 
is the most favorable choice for Jinshan, while a multi-tunnel structure 
appeared to be a more suitable for Langfang and Pingliang. Applying 
whitewash during summer is generally discouraged, except for in 
Langfang. Incorporating double-layer thermal screens in colder regions 
such as Langfang can be economically beneficial. In other cases, trans
parent thermal screen is a preferred choice to increase light use effi
ciency and improve yield. 

The choice of lighting system, structure, thermal screen, and CO2 
dosing rate were among the most influential factors on operating in
come. When comparing LED to HPS lamps, LED lighting performs better 
in terms of both economic and environmental performance. However, it 
is crucial to note that lighting is the primary contributor to GHG emis
sions. As a result, the optimal designs identified either opt for no lighting 
or incorporated LED lamps with an intensity above 100 μmol m− 2 s− 1, 
combined with a high CO2 dosing rate. Low intensity lighting negatively 
affects both economic and environmental performance. The use of 

thermal screens, on the other hand, can effectively reduce GHG 
emissions. 
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Appendix A. Lighting installation initial investment costs calculation  

Table A1 
Parameters for lighting installation initial investment costs calculation, depending on the lamp type and lighting intensity.  

Item Parameter Unit HPS LED 

Efficacy ηHPS, ηLED μmol J − 1 2.3 3.1 
Lamp investment IHPS

bulb , ILED
lamp ¥ W− 1 0.2 a 4.2 b 

Lamp lifetime nHPS
bulb , nLED

lamp hours 10,000 a 35,000 a 

Lamp maintenance mHPS
lamp, mLED

lamp % 1.0 a 0.5 a 

Fixture investment IHPS
fixture ¥ W− 1 0.9 a / 

Fixture lifetime nHPS
fixture years 7 a / 

Fixture maintenance mHPS
fixture % 1.0 / 

Cabling investment Icable ¥ W− 1 0.9 a 0.9 a 

Cabling lifetime ncable years 10 a 10 a 

Cabling maintenance mcable % 1.0 a 1.0 a  

Initial investment costs per floor area 
50 μmol m− 2 s− 1 I50

HPS, I50
LED ¥ m− 2 43.5 82.3 

100 μmol m− 2 s− 1 I100
HPS, I100

LED ¥ m− 2 87.0 164.5 
150 μmol m− 2 s− 1 I150

HPS, I150
LED ¥ m− 2 130.4 246.8 

200 μmol m− 2 s− 1 I200
HPS, I200

LED ¥ m− 2 173.9 329.9 

a Raaphorst et al. (2019). 
b X. Chen, personal communication, Nov 26, 2022. 

Lighting installation consists of several components (bulbs, fixture, cabling for HPS; lamp and cabling for LED). The total investment costs of 
lighting installation (¥ m− 2), given a desired lighting intensity x (μmol m− 2 s− 1), was calculated as: 

Ix
HPS =

(
IHPS

bulb + IHPS
fixture + Icable

)
*

x
ηHPS for HPS lamps, and  

Ix
LED =

(
ILED

lamp + Icable

)
*

x
ηLED for LED lamps 

The initial investment costs of each component was convert into the equivalent annuity cost (EAC), which is dependent on the lifetime (year) of the 
component. To calculated the lifetime of lamps, we divided the annual lighting hours, which is an output of the INTKAM-KASPRO model, by the 
lifetime (hour) of HPS bulb or LED lamp. The total EAC of lighting installation was give as: 

EACx
HPS = EACx

HPS− bulb +EACx
HPS− fixture +EACx

cable for HPS lamps, and  

EACx
LED = EACx

LED− Lamp +EACx
cable for LED lamps  

Appendix B. Typical meteorological year climate data based on the ERA5 climate dataset from 2000 to 2020 

To construct the typical meteorological year climate data based on the ERA5 dataset from 2000 to 2020, we followed the same method of typical 
meteorological year selection as in Song, F. et.al (2007), for the construction of Chinese Standard Weather Data. 

The typical meteorological year climate data of each month is constituted by selecting a year between 2000 and 2020 with the most meteorological 
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representativeness of the month. Seven climate indicators contribute to the measure of meteorological representativeness. The indicators were 
assigned with different weights Wi according to their importance in meteorological representativeness, as shown in Table B1.  

Table B1 
Climate indicators and the corresponding weights for typical 
meteorological year selection.  

Indicator Weight Wi 

Daily average temperature 2/16 
Daily minimum temperature 1/16 
Daily maximum temperature 1/16 
Daily average sky temperature 1/16 
Daily average relative humidity 2/16 
Global radiation downwards 8/16 
Daily average wind speed 1/16  

The selecting process is described as below:  

1. Calculate for each indicator the monthly mean values of each year from 2000 to 2020: Xi,m,y, where i denotes the climate indicator under 
consideration, m denotes the month indices and y denotes the year indices.  

2. Calculate for each climate indicator i, the mean Xi,m and the standard deviation Si,m across multiple years.  

3. Calculate for each indicator, the normalized monthly mean value of each year: ηi,m,y =
Xi,m,y − Xi,m

Si,m
.  

4. Calculate for each month and each year, the weighted sum normalized absolute monthly mean of all climate indicators: Dm,y =
∑

i
Wi •

⃒
⃒ηi,m,y

⃒
⃒

5. Select for each month, the year with the smallest min
y

Dm,y.  

6. Create the typical meteorological year data by appending the monthly climate data of the selected year, so for each month, the monthly data from 
the year with the smallest Dm,ybecome the same month data of the typical meteorological year.   

Table B2 
Selected years for each monthly for constructing the meteorological typical meteorological year climate dataset.  

Month Jinshan Langfang Weifang Pingliang 

January 2007 2008 2018 2019 
February 2003 2015 2011 2015 
March 2009 2004 2013 2014 
April 2000 2001 2004 2009 
May 2012 2015 2015 2015 
June 2008 2016 2015 2011 
July 2012 2013 2005 2009 
August 2003 2010 2017 2000 
September 2001 2020 2015 2015 
October 2013 2008 2019 2011 
November 2014 2001 2016 2008 
December 2020 2019 2006 2015  

Appendix C. Greenhouse climate management strategy  

Table C1 
Description of the greenhouse climate management strategy.  

Parameter Values Description 

Tair_heat (day/ 
night) 

17 ◦C/14 ◦C The heat is turned on when the indoor temperature (Tair) is below 17 ◦C during the day and 14 ◦C during the night. 

Pband_heat 2 ◦C, 100 W m− 2, 400 W m− 2 When radiation (Iglob) is below 100 W m− 2, Tair_heat is unaffected and above 400 W m− 2 Tair_heat increases by 2 ◦C. Between 
100 and 400 W m− 2, Tair_heat increment is linearly interpolated. 

Tout_ThScr 10 ◦C if Iglob <100 W m− 2; 
0 ◦C if Iglob <290 W m− 2 

Thermal screen may be used when the outside temperature (Tout) is below 10 ◦C and radiation is above 100 W m− 2. When 
Tout goes below 0 ◦C, the thermal screen will be kept deployed until the radiation is above 290 W m− 2. 

Iglob_ShScr 600 W m− 2, 
800 W m− 2 

The shading screen will be half closed when the radiation exceeds 600 W m− 2 and fully closed when the radiation exceeds 800 
W m− 2. 

Tair_vent 16 ◦C/19 ◦C Vent is open when Tair is above 19 ◦C during the day and 16 ◦C during the night. 
Pband vent 18 ◦C if Tout <6 ◦C, 4 ◦C if 

Tout >20 ◦C 
Pbandvent is a key parameter that controls how large the temperature excess has to be before the leeward vents are fully 
opened. The maximum opening of vents is 100%. When Tout is below 6 ◦C, the p-band is 18 ◦C; when Tout is above 20 ◦C, the 
p-band is 4 ◦C. 
The windward vents only open when the leeward vents are opened above 50%. 

Tair_fan 2 ◦C Fans will run on the maximum capacity when the difference between Tair and Tair_vent excesses 2 ◦C. The air can be cooled 
down to 0.85 of the wet-bulb temperature. The outlet temperature is 1.5 ◦C above the average greenhouse temperature. 

RH_fog 75% Fogging system starts working when the indoor relative humidity (RH) drops below 75%. 
Pband_fog 5% Fogging system works at the maximum capacity when RH drops to 70%. The working capacity of fogging system is 

proportionally controlled from 0 to the maximum value. 
Time_light_on 00:00 Lamps are turned on at 00:00 after five weeks of planting; the maximum lighting hour is 18 h per day. 

(continued on next page) 
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Table C1 (continued ) 

Parameter Values Description 

Iglob_light_off 400 W m− 2 Lamps are turned off when radiation is above 400 W m− 2. 
CO2_setpoint (day/ 

night) 
800 ppm/400 ppm Extra CO2 is applied is the indoor CO2 concentration is below 800 ppm during the day, and 400 ppm during the night. 

CO2_light 1000 ppm CO2 setpoint set to 1000 ppm if lights are on. 
CO2_vent 100%, 20%; 

50%, 40%; 
25%, 75% 

when the (leeward) vents are opened till 20%, the maximum CO2 dosing capacity is kept at 100%. When vents are opened till 
40%, the CO2 dosing capacity is reduced to half its maximum capacity. When vents are opened above 70%, the dosing capacity 
stays at 25% of the maximum capacity.  

Appendix D. Calculation of weighted average cost of capital (WACC)  

Table D1 
Calculation of weighted average cost of capital.  

Cost of debt after tax shield (CD) Rate Source 

Cost of debt (Rd) 5.5% The People’s Bank of China (2022), with the assumption of 20% floating rate on the 5-year Loan Prime Rate of 2022 (4.6%) 
Marginal tax rate (T) 0.0% Enterprise Income Tax Law of the People’s Republic of China, article 27 (2007) 
Cost of debt after tax shield 5.5%  
Cost of equity (CE)   
Risk free rate (rfr) 2.79% China 10-year government bond yield (Ministry of Finance of the People’s Republic of China, 2022) 
Market risk premium of China (rm) 4.94% (Damodaran, 2022a) 
Beta for farming sector in China (β) 0.79 (Damodaran, 2022b) 
Cost of equity 6.69% Calculated 
Capital structure Ratio  
Debt (D) 50% Authors’ assumption 
Equity (E) 50% Authors’ assumption 
WACC 6.10% Calculated  

The discount rate r was calculated using the WACC method as follows: 

r = WACC =
D

D + E
• CD+

E
D + E

• CE =
D

D + E
• Rd • (1 − T)+

E
D + E

• (rfr + β • rm)

Damodaran, A. (2022a). Country Default Spread and Risk Premiums. https://pages.stern.nyu.edu/~adamodar/pc/datasets/ctryprem.xlsx 
Retrieved on 24th February 2022. Verified [April 2022]. 

Damodaran, A. (2022b). Levered and Unlevered Betas by Industry - China. https://pages.stern.nyu.edu/~adamodar/pc/datasets/totalbetaChina. 
xls Retrieved on 24th February 2022. Verified [April 2022]. 

Appendix E. Tomato and natural gas prices  

Table E1 
Monthly cherry tomato wholesale prices (¥ kg− 1) for 2021 (with 50% price premium).  

Month Jinshana Langfang Weifang Pingliangb 

Jan 12.00 15.23 10.86 12.81 
Feb 11.18 14.60 12.99 12.23 
Mar 9.62 16.91 12.66 14.36 
Apr 11.03 15.93 11.12 13.46 
May 13.55 14.43 9.05 12.08 
Jun 11.63 12.78 6.75 10.56 
Jul 11.81 11.58 8.58 9.45 
Aug 12.84 11.43 9.12 9.32 
Sep 14.19 11.79 9.93 9.65 
Oct 15.09 12.35 11.60 10.16 
Nov 17.82 17.18 12.84 14.6 
Dec 18.71 17.96 13.68 15.32 

Source: National commercial information platform of agricultural product (nc.mofcom.gov.cn). 
a Cherry tomato prices of Jiangsu province were used as proxies for Jinshan cherry tomato prices due to the lack 

of data. 
b There are no price records for cherry tomato for Pingliang. Therefore, we estimated cherry tomato prices based 

on the price difference (92%) for globe tomatoes between Langfang and Pingliang. A transportation tarif of 1.2 ¥ 
kg− 1 was applied for Pingliang, after consulting a greenhouse manager in Pingliang.  
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Table E2 
Average monthly price (¥ m− 3) of natural gas from 2017 to 2022 for four regions.  

Month Jinshan Langfang Weifang Pingliang 

Jan 4.93 4.76 4.89 4.62 
Feb 5.03 4.69 4.91 4.24 
Mar 4.56 4.44 4.75 4.05 
Apr 4.32 4.12 4.51 3.87 
Oct 4.37 4.36 4.45 4.25 
Nov 4.95 4.93 5.07 5.02 
Dec 5.11 4.84 5.23 5.05 

Source: Shanghai Petroleum and Natural Gas Exchange (2023) (https://www.shpgx.com/html/yhtrqsj.html). 

Appendix F. Derivation of stakeholder weights 

The values of stakeholders’ weight for revenue increase wR
stakeholder and environmental impacts reduction wGHG

stakeholder used in this study were derived 
based on the unpublished results of Min et al. This appendix explains how the survey was conducted and how the weights were derived. 

The survey aimed to elicit the relative importance of the six criteria, including cost-benefit and environmental impacts of greenhouse technologies, 
among multiple stakeholders in the Chinese greenhouse sector. The survey was designed according to the guidelines of the Best-Worst method, a 
multi-criteria decision-making method developed by Rezaei (2015) for addressing complex problems with multiple conflicting and subjective criteria. 
The survey was documented in Excel format. 

We collected data from four groups of stakeholders: greenhouse growers, private investors, machinery and equipment suppliers, and agricultural 
policy makers in China. Ten respondents for each group were reached through snowball sampling. Specifically: 

Investors were general managers or directors in a modern greenhouse company, located in Beijing, Shanghai, Shandong, Gansu, Jiangsu, Yunnan, 
and Guangdong provinces. The sample of growers and investors covers the stakeholders of major modern greenhouse companies in China. 

Policy makers were recruited from the local ministry of agriculture, agricultural research institutes, extension centers, and quasi-commercialized 
state-owned enterprises. Policy makers were only included if they had participated in the design of local agricultural policy or had been involved in 
local greenhouse projects. 

The surveys were conducted through a web conferencing platform and presented to the respondents through screen sharing. Each respondent was 
presented with an overview of all evaluation criteria. The respondents were first asked to identify which criteria they considered the most and least 
important when adopting (for investors) or promoting (for policy makers) digital or automation technology for greenhouse production. Respondents 
were then instructed to compare the remaining criteria to the selected most and least important criteria by assigning a number between 1 and 9. 
Throughout the survey interview, respondents were also asked to explain their choices. 

A BWM solver was employed to calculate the optimal weights and the consistency ratio. In case of inconsistency, respondents were asked if they 
were willing to reconsider their judgement for the most inconsistent pair-wise comparison. Fig. F1 presents an example of a survey response that we 
collected.

Fig. F1. Example of a survey response.  

After deriving the optimal weights for each respondent, we calculated the weight for each stakeholder group by taking the arithmetic mean of the 
optimal weights for individual respondents within the stakeholder group. The values for wR

stakeholder and wGHG
stakeholder were then calculated as: 

wR
stakeholder =

wcost− benefit
stakeholder

wcost− benefit
stakeholder + wenvironmental

stakeholder  

wGHG
stakeholder =

wenvironmental
stakeholder

wcost− benefit
stakeholder + wenvironmental

stakeholder 
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Appendix G. Categorical regression results: the effect of individual design element on operating income and GHG emissions  

Table G1 
Categorical regression results: the relationship between design element choice and the annual operating income (baseline scenario).  

Variable Design element choice Jinshan Langfang Weifang Pingliang 

Structure_A Multi- tunnel, 1 vent 10 m− 2 baseline choice 
Structure_B Multi- tunnel, 1 vent 20 m− 2 24.7 (0.3) 34.9 (0.4) 26.2 (0.3) 36.3 (0.5) 
Structure_C Multi- tunnel, 1 vent 30 m− 2 39.1 (0.2) 52.0 (0.3) 41.7 (0.3) 55.0 (0.5) 
Structure_D Venlo, 1 vent 10 m− 2 8.4 (0.3) 7.7 (0.5) 5.3 (0.4) 10.6 (0.7) 
Structure_E Venlo, 1 vent 20 m− 2 33.5 (0.3) 41.8 (− 0.4) 33.6 (0.4) 44.5 (0.6) 
Structure_F Venlo, 1 vent 30 m− 2 46.2 (0.3) 55.2 (0.4) 46.1 (0.3) 59.8 (0.6) 

Cover_A Single PE film baseline choice 
Cover_B Double PE film − 3.5 (0.2) − 5.1 (0.2) 0.7 (0.2) 7.0 (0.4) 
Cooling_A No cooling baseline choice 
Cooling_B Fogging: 200 g h− 1 m− 2 − 6.5 (0.2) 5.1 (0.3) − 4.9 (0.2) − 4.4 (0.4) 
Cooling_C Fogging: 300 g h− 1 m− 2 − 7.0 (0.2) 5.6 (0.3) − 5.7 (0.2) − 5.4 (0.4) 
Cooling_D Fogging: 400 g h− 1 m− 2 − 10.1 (0.2) 2.3 (0.3) − 9.0 (0.3) − 8.4 (0.4) 
Cooling_E Pad and fan: 60 m3 h− 1 m− 2 − 42.2 (0.3) − 17.4 (0.4) − 22.2 (0.3) − 53.5 (0.7) 
Cooling_F Pad and fan: 90 m3 h− 1 m− 2 − 54.1 (0.3) − 25.0 (0.4) − 32.6 (0.3) − 65.1 (0.7) 
Cooling_G Pad and fan: 120 m3 h− 1 m− 2 − 64.6 (0.3) − 33.4 (0.4) − 40.8 (0.4) − 75.1 (0.7) 
Heating_A 1.16 MW ha− 1 baseline choice 
Heating_B 1.74 MW ha− 1 − 0.4 (0.2) 0.6 (0.2) − 0.5 (0.2) 1.4 (0.3) 
Heating_C 2.32 MW ha− 1 − 0.1 (0.2) 1.0 (0.2) 0.1 (0.2) 1.4 (0.3) 
Thermal_screen_A No thermal screens baseline choice 
Thermal_screen_B Transparent 40.5 (0.3) 59.0 (0.4) 53.8 (0.3) 73.0 (0.6) 
Thermal_screen_C Non-transparent 23.8 (0.3) 35.5 (0.4) 31.2 (0.4) 46.8 (0.7) 
Thermal_screen_D One side black 22.5 (0.3) 39.0 (0.4) 33.8 (0.4) 47.6 (0.7) 
Thermal_screen_E Double-layer 32.9 (0.3) 57.4 (0.4) 49.8 (0.3) 70.0 (0.7) 
Shade_screen_A No shade screens baseline choice 
Shading_screen_B 36% shading − 4.4 (0.2) 3.4 (0.2) 0.5 (0.2) 1.0 (0.4) 
Shading_screen_C 45% shading − 8.6 (0.2) − 4.0 (0.3) − 4.8 (0.2) − 4.5 (0.4) 
Shading_screen_D 56% shading − 9.1 (0.2) − 3.6 (0.3) − 5.1 (0.2) − 4.4 (0.4) 
Light_A No supplemental lighting baseline choice 
Light_B HPS, 50 μmol m− 2 s− 1 − 25.4 (1.1) − 8.8 (2.1) − 79.2 (2.1) 57.7 (4.4) 
Light_C HPS, 100 μmol m− 2 s− 1 − 49.9 (1.1) − 8.7 (2.1) − 92.4 (1.9) 28.0 (3.9) 
Light_D HPS, 150 μmol m− 2 s− 1 36.7 (0.8) 154.4 (1.4) − 3.9 (1.3) 229.4 (2.1) 
Light_E HPS, 200 μmol m− 2 s− 1 57.6 (0.6) 186.1 (1.0) 17.1 (1.1) 252.3 (1.3) 
Light_F LED, 50 μmol m− 2 s− 1 − 13.9 (1.0) − 3.6 (1.9) − 74.1 (1.7) 42.1 (3.9) 
Light_G LED, 100 μmol m− 2 s− 1 − 27.8 (1.0) − 9.5 (2.0) − 82.8 (1.6) 28.8 (3.3) 
Light_H LED, 150 μmol m− 2 s− 1 72.1 (0.8) 159.6 (1.9) 10.4 (1.2) 224.8 (2.6) 
Light_I LED, 200 μmol m− 2 s− 1 97.3 (0.5) 200.2 (0.7) 33.2 (0.6) 253.1 (1.3) 
CO2_A No CO2 enrichment baseline choice 
CO2_B 50 kg CO2 ha− 1 h− 1 − 16.8 (1.0) − 26.8 (1.9) − 85.7 (1.4) 15.2 (3.4) 
CO2_C 100 kg CO2 ha− 1 h− 1 − 18.9 (0.9) − 27.1 (1.2) − 87.5 (1.1) 13.4 (2.5) 
CO2_D 150 kg CO2 ha− 1 h− 1 − 18.6 (0.9) − 32.3 (1.0) − 89.7 (0.9) 7.7 (1.7) 
CO2_E 200 kg CO2 ha− 1 h− 1 − 19.3 (0.8) − 33.5 (1.0) − 89.3 (0.8) 6.0 (1.4) 
Whitewash_A No whitewash baseline choice 
Whitewash_B 50% transmission − 4.6 (0.1) 2.3 (0.2) − 5.6 (0.2) − 8.8 (0.3) 
light_B*CO2_B  14.3 (1.7) 29.7 (3.3) 83.3 (2.8) − 39.2 (6.1) 
light_B*CO2_C  13.1 (1.6) 23.4 (2.8) 82.1 (2.5) − 38.5 (5.8) 
light_B*CO2_D  11.2 (1.6) 30.9 (2.5) 82.0 (2.4) − 36.0 (4.9) 
light_B*CO2_E  7.7 (1.5) 28.9 (2.4) 82.4 (2.4) − 41.5 (4.7) 
light_C*CO2_B  16.9 (1.8) 27.7 (3.3) 86.9 (2.8) − 22.9 (6.1) 
light_C*CO2_C  15.1 (1.6) 24.8 (2.7) 85.3 (2.4) − 22.5 (5.3) 
light_C*CO2_D  10.9 (1.6) 27.8 (2.5) 86.3 (2.2) − 19.7 (4.6) 
light_C*CO2_E  9.9 (1.5) 28.2 (2.4) 83.6 (2.2) − 22.8 (4.2) 
light_D*CO2_B  23.7 (1.4) 42.5 (2.6) 91.9 (2.0) 17.5 (4.4) 
light_D*CO2_C  26.3 (1.3) 42.2 (2.0) 95.8 (1.8) 35.4 (3.5) 
light_D*CO2_D  25.5 (1.3) 52.8 (1.8) 100.1 (1.7) 52.9 (2.8) 
light_D*CO2_E  24.9 (1.2) 55.9 (1.8) 98.4 (1.6) 62.1 (2.6) 
light_E*CO2_B  25.9 (1.2) 58.9 (2.2) 99.6 (1.9) 25.0 (3.6) 
light_E*CO2_C  33.2 (1.0) 75.3 (1.6) 108.7 (1.6) 52.1(2.7) 
light_E*CO2_D  35.3 (1.0) 87.8 (1.4) 112.2 (1.4) 75.6 (1.9) 
light_E*CO2_E  37.1 (1.0) 94.5 (1.4) 113.3 (1.4) 87.1 (1.6) 
light_F*CO2_B  14.8 (1.7) 28.1 (3.1) 84.7 (2.5) − 14.4 (5.9) 
light_F*CO2_C  13.5 (1.5) 25.5 (2.5) 81.1 (2.2) − 22.1 (5.3) 
light_F*CO2_D  10.8 (1.5) 31.5 (2.4) 82.9 (2.1) − 16.7 (4.5) 
light_F*CO2_E  7.4 (1.4) 29.1 (2.3) 80.6 (2.0) − 20.7 (4.2) 
light_G*CO2_B  18.2 (1.7) 33.7 (3.1) 86.6 (2.4) (− 0.8) (5.6) 
light_G*CO2_C  17.0 (1.6) 31.4 (2.7) 85.6 (2.2) − 13.4 (4.6) 
light_G*CO2_D  12.4 (1.5) 36.2 (2.5) 87.1 (2.0) − 9.1 (4.1) 
light_G*CO2_E  10.9 (1.5) 37.7 (2.4) 84.1 (1.9) − 12.1 (3.6) 
light_H*CO2_B  21.9 (1.4) 43.3 (2.9) 92.4 (2.0) 11.6 (4.8) 
light_H*CO2_C  24.7 (1.3) 53.9 (2.4) 97.7 (1.7) 36.9 (4.0) 
light_H*CO2_D  25.4 (1.2) 61.6 (2.2) 101.9 (1.5) 54.3 (3.2) 
light_H*CO2_E  25.0 (1.2) 64.8 (2.1) 100.7 (1.5) 63.8 (3.0) 

(continued on next page) 
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Table G1 (continued ) 

Variable Design element choice Jinshan Langfang Weifang Pingliang 

light_I*CO2_B  26.7 (1.1) 57.6 (2.0) 101.9 (1.5) 24.6 (3.7) 
light_I*CO2_C  34.6 (1.0) 75.2 (1.3) 110.9 (1.2) 49.3 (2.8) 
light_I*CO2_D  36.8 (0.9) 88.7 (1.2) 115.7 (1.0) 71.1 (2.0) 
light_I*CO2_E  38.3 (0.9) 94.0 (1.1) 116.2 (0.9) 81.0 (1.7) 

Note: Standard errors of the coefficients were given in brackets. The insignificant coefficients are underlined, all other coefficients are significant at 0.05 level.  

Table G2 
Categorical regression results: the relationship between design element choice and greenhouse gas emissions.  

Variable Design element choice Jinshan Langfang Weifang Pingliang 

Structure_A Multi- tunnel, 1 vent 10 m− 2 baseline choice 
Structure_B Multi- tunnel, 1 vent 20 m− 2 − 8.0 (0.1) − 9.1 (0.2) − 8.5 (0.1) − 7.1 (0.1) 
Structure_C Multi- tunnel, 1 vent 30 m− 2 − 12.6 (0.1) − 14.7 (0.1) − 13.7 (0.1) − 11.3 (0.1) 
Structure_D Venlo, 1 vent 10 m− 2 − 5.8 (0.1) − 5.1 (0.2) − 5.1 (0.2) − 5.0 (0.2) 
Structure_E Venlo, 1 vent 20 m− 2 − 13.2 (0.1) − 13.5 (0.2) − 13.1 (0.1) − 11.4 (0.1) 
Structure_F Venlo, 1 vent 30 m− 2 − 17.5 (0.1) − 18.4 (0.2) − 17.5 (0.1) − 14.6 (0.1) 

Cover_A Single PE film baseline choice 
Cover_B Double PE film 6.9 (0.0) 10.8 (0.1) 9.0 (0.1) 7.0 (0.1) 
Cooling_A No cooling baseline choice 
Cooling_B Fogging: 200 g h− 1 m− 2 0.0 (0.1) 0.5 (0.1) 0.1 (0.1) 0.1 (0.1) 
Cooling_C Fogging: 300 g h− 1 m− 2 0.1 (0.1) 0.5 (0.1) 0.0 (0.1) 0.0 (0.1) 
Cooling_D Fogging: 400 g h− 1 m− 2 0.1 (0.1) 0.5 (0.1) 0.0 (0.1) 0.2 (0.1) 
Cooling_E Pad and fan: 60 m3 h− 1 m− 2 10.2 (0.1) 12.0 (0.2) 11.1 (0.1) 10.3 (0.2) 
Cooling_F Pad and fan: 90 m3 h− 1 m− 2 15.0 (0.1) 18.4 (0.2) 16.7 (0.1) 15.0 (0.2) 
Cooling_G Pad and fan: 120 m3 h− 1 m− 2 20.1 (0.1) 24.7 (0.2) 22.8 (0.2) 20.0 (0.2) 
Heating_A 1.16 MW ha− 1 baseline choice 
Heating_B 1.74 MW ha− 1 0.4 (0.0) 1.2 (0.1) 1.2 (0.1) 0.2 (0.1) 
Heating_C 2.32 MW ha− 1 0.5 (0.0) 1.0 (0.1) 1.0 (0.1) 0.4 (0.1) 
Thermal_screen_A No thermal screens baseline choice 
Thermal_screen_B Transparent − 21.4 (0.1) − 27.1 (0.2) − 27.1 (0.1) − 27.3 (0.1) 
Thermal_screen_C Non-transparent − 14.8 (0.1) − 7.2 (0.2) − 11.7 (0.2) − 13.5 (0.2) 
Thermal_screen_D One side black − 14.9 (0.1) − 9.7 (0.2) − 13.6 (0.2) − 13.1 (0.2) 
Thermal_screen_E Double-layer − 19.8 (0.1) − 17.4 (0.2) − 20.8 (0.1) − 22.1 (0.1) 
Shade_screen_A No shade screens baseline choice 
Shading_screen_B 36% shading − 2.5 (0.0) − 3.0 (0.1) − 3.3 (0.1) 0.0 (0.1) 
Shading_screen_C 45% shading − 1.4 (0.1) − 0.3 (0.1) − 1.0 (0.1) 0.9 (0.1) 
Shading_screen_D 56% shading − 1.4 (0.1) − 0.4 (0.1) − 1.0 (0.1) 1.0 (0.1) 
Light_A No supplemental lighting baseline choice 
Light_B HPS, 50 μmol m− 2 s− 1 115.9 (0.1) 156.5 (0.4) 147.1 (0.3) 114.6 (0.3) 
Light_C HPS, 100 μmol m− 2 s− 1 155.4 (0.1) 211.5 (0.4) 193.7 (0.3) 151.4 (0.3) 
Light_D HPS, 150 μmol m− 2 s− 1 187.5 (0.1) 257.6 (0.3) 228.2 (0.3) 180.6 (0.3) 
Light_E HPS, 200 μmol m− 2 s− 1 210.7 (0.1) 284.4 (0.3) 248.4 (0.2) 200.5 (0.2) 
Light_F LED, 50 μmol m− 2 s− 1 99.2 (0.1) 133.8 (0.4) 128.2 (0.3) 101.1 (0.3) 
Light_G LED, 100 μmol m− 2 s− 1 123.1 (0.1) 166.3 (0.3) 156.3 (0.3) 1227. (0.3) 
Light_H LED, 150 μmol m− 2 s− 1 142.1 (0.1) 194.7 (0.3) 177.4 (0.3) 140.0 (0.3) 
Light_I LED, 200 μmol m− 2 s− 1 155.8 (0.1) 211.0 (0.2) 189.9 (0.2) 151.7 (0.2) 
CO2_A No CO2 enrichment baseline choice 
CO2_B 50 kg CO2 ha− 1 h− 1 0.0 (0.1) 0.4 (0.2) 0.3 (0.1) 0.1 (0.2) 
CO2_C 100 kg CO2 ha− 1 h− 1 − 0.1 (0.1) 0.6 (0.2) 0.4 (0.1) 0.3 (0.2) 
CO2_D 150 kg CO2 ha− 1 h− 1 0.0 (0.1) 0.3 (0.2) 0.5 (0.1) 0.2 (0.1) 
CO2_E 200 kg CO2 ha− 1 h− 1 0.1 (0.1) 0.6 (0.2) 0.4 (0.1) 0.5 (0.1) 
Whitewash_A No whitewash baseline choice 
Whitewash_B 50% transmission 3.5 (0.0) 7.76 (0.0) 6.78 (0.0) 5.80 (0.0) 

Note: Standard errors of the coefficients were given in brackets. The insignificant coefficients are underlined, all other coefficients are significant at 0.05 level. 

Appendix H. Supplementary Data 

Python code for performance evaluation of greenhouse designs and the implementation of genetic algorithm are available as supplementary 
materials at https://github.com/Xinyuan-wur/greenhouse-design-optimization. 
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Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., 
Dee, D., Thépaut, J.-N., 2018. ERA5 hourly data on single levels from 1959 to 
present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 
Accessed on January, 2022. https://doi.org/10.24381/cds.adbb2d47. 

Shanghai Petroleum and Natural Gas Exchange, 2023. Liquid Natural Gas Prices. htt 
ps://www.shpgx.com/html/yhtrqsj.html. Retrieved on 6th Feburay, 2022. Verified.  

X. Min et al.                                                                                                                                                                                                                                     

https://doi.org/10.1079/9781780641935.0000
https://doi.org/10.1079/9781780641935.0000
http://refhub.elsevier.com/S0308-521X(24)00005-2/rf0050
http://refhub.elsevier.com/S0308-521X(24)00005-2/rf0050
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html
https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
https://doi.org/10.1016/j.ejor.2007.05.036
https://doi.org/10.1016/j.agsy.2012.12.011
https://doi.org/10.1016/j.omega.2012.11.003
https://doi.org/10.1093/erae/jbab004
https://doi.org/10.1093/erae/jbab004
https://doi.org/10.1016/j.biosystemseng.2004.12.002
https://doi.org/10.1016/j.biosystemseng.2004.12.002
https://doi.org/10.17660/ActaHortic.2009.821.10
https://doi.org/10.1016/S0308-521X(99)00022-0
https://doi.org/10.1007/978-3-030-30241-2
https://doi.org/10.1007/978-3-030-30241-2
https://edepot.wur.nl/278553
https://doi.org/10.1080/27685241.2022.2135390
https://doi.org/10.1080/27685241.2022.2135390
http://new.zhiguker.com/index/article/detail?id=24762&amp;nav=0
http://new.zhiguker.com/index/article/detail?id=24762&amp;nav=0
https://doi.org/10.1201/9780429266744
https://doi.org/10.1201/9780429266744
https://doi.org/10.1016/j.biosystemseng.2021.11.005
https://doi.org/10.1016/j.biosystemseng.2021.11.005
https://doi.org/10.1016/j.agsy.2022.103391
https://doi.org/10.1016/j.agsy.2022.103391
https://doi.org/10.1016/j.agsy.2016.07.009
https://doi.org/10.1093/comjnl/20.4.367
https://doi.org/10.1021/acs.est.7b01814
https://doi.org/10.1021/acs.est.7b01814
http://refhub.elsevier.com/S0308-521X(24)00005-2/rf0150
http://refhub.elsevier.com/S0308-521X(24)00005-2/rf0150
http://refhub.elsevier.com/S0308-521X(24)00005-2/rf0150
https://doi.org/10.1016/j.omega.2014.11.009
https://doi.org/10.1007/s00170-015-7986-1
https://doi.org/10.1007/s00170-015-7986-1
https://www.aivc.org/node/34982
https://doi.org/10.7685/jnau.201810027
https://doi.org/10.1016/j.jclepro.2011.11.012
https://doi.org/10.17660/ActaHortic.2006.718.46
https://doi.org/10.17660/ActaHortic.2006.718.46
https://doi.org/10.1016/j.biosystemseng.2012.01.005
https://doi.org/10.1016/j.biosystemseng.2012.01.005
https://doi.org/10.1016/j.agsy.2019.01.011
https://doi.org/10.1016/j.agsy.2019.01.011
https://doi.org/10.16815/j.cnki.11-5436/s.2020.31.006
https://doi.org/10.16815/j.cnki.11-5436/s.2020.31.006
https://doi.org/10.1016/j.enbuild.2014.04.006
https://doi.org/10.1016/j.agsy.2019.03.016
https://doi.org/10.1016/j.ejor.2007.10.050
http://refhub.elsevier.com/S0308-521X(24)00005-2/rf0220
http://refhub.elsevier.com/S0308-521X(24)00005-2/rf0220
https://edepot.wur.nl/142956
https://doi.org/10.1016/j.resconrec.2020.105379
https://doi.org/10.24381/cds.adbb2d47
https://www.shpgx.com/html/yhtrqsj.html
https://www.shpgx.com/html/yhtrqsj.html

	Multi-stakeholder multi-objective greenhouse design optimization
	1 Introduction
	2 Materials and methods
	2.1 Bio-physical simulation of different greenhouse designs
	2.2 Economic performance evaluation
	2.3 Environmental performance evaluation
	2.4 Search strategy – Genetic algorithm
	2.5 Overall performance evaluation - the directional distance function approach
	2.6 Scenario analysis – find out robust greenhouse designs

	3 Results
	3.1 Efficient greenhouse designs with the highest operating income
	3.2 Efficient greenhouse designs with the lowest greenhouse gas emissions
	3.3 Relationship between the design element choice and operating income
	3.4 Relationship between the design element choice and GHG

	4 Discussion
	5 Conclusions
	Declaration of competing interest
	Acknowledgement
	Appendix A Lighting installation initial investment costs calculation
	Appendix B Typical meteorological year climate data based on the ERA5 climate dataset from 2000 to 2020
	Appendix C Greenhouse climate management strategy
	Appendix D Calculation of weighted average cost of capital (WACC)
	Appendix E Tomato and natural gas prices
	Appendix F Derivation of stakeholder weights
	Appendix G Categorical regression results: the effect of individual design element on operating income and GHG emissions
	Appendix H Supplementary Data
	References
	Outline placeholder
	Data reference




