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A B S T R A C T   

Descriptive sensory analysis was paired with temporal check-all-that-apply gas-chromatography olfactometry 
(TCATA GC-O) to compare differences in perceived flavour and volatile odour activity across a series of com
mercial plant-based meat analogues (PBMAs) versus conventional beef products. Multiple factor analysis sepa
rated PBMAs in two clusters along the first principal axis. The first cluster, rated higher in meaty flavour and 
odour, also showed higher citation proportions of sulfurous odourants. In contrast, the second cluster, higher in 
off odour and flavour, had higher citation proportions for fatty / legume odourants. Key odourants correlated with 
meaty flavour and odour were putatively identified as 2-methyl-3-furanthiol, dimethyl trisulfide, and furfuryl 
mercaptan while compounds correlated to off flavour and odour were putatively identified as (E,E)-3,5-octadien- 
2-one, 2-undecanol, and (E,E)-2,4-decadienal. No correspondence was found between PBMA odour-activity and 
source protein, suggesting that volatile flavour production in PBMAs is derived primarily from exogeneous fla
vouring materials or precursors rather than the base protein material. Contributions of lipid-protein interactions 
to overall flavour differences is further suggested by the putative discovery of 5,6-dihydro-2,4,6-trimethyl-4H- 
1,3,5-dithiazine odour activity in several meat samples profiled.   

1. Introduction 

Global meat consumption is rising with increasing affluence and 
growing populations in accordance with Bennet’s law (Bennett, 1941). 
Increased meat consumption has implications for health and the envi
ronment. High intakes of processed and red meats have been linked to an 
increased risk of colorectal cancer. Furthermore, approximately 15 % of 
anthropogenic greenhouse gas emissions is related to livestock rearing 
and production, thus raising questions about its long-term sustainability 
(Godfray et al., 2018; Kumar et al., 2017; Tso, Lim, & Forde, 2020). 
These concerns have spurred a growing trend of meat replacement 
products using proteins from plant, insect, microbial and even 
mammalian cell-cultured origins (He, Evans, Liu, & Shao, 2020; Hwang, 
You, Moon, & Jeong, 2020; Lee, Yong, Kim, Choi, & Jo, 2020). Of these, 
plant proteins are perhaps the most widely explored for formulating 
meat substitutes – proteins derived from soy, pea, fungi, and other seeds 
and grains have commonly been used to formulate PBMAs (Lee et al., 
2020). 

Unfortunately, the flavour quality of PBMAs has not been able to 
match the appeal of conventional animal-based meat products (Li & Li, 
2020; Pakseresht, Ahmadi Kaliji, & Canavari, 2022). Several recent 
advances in product formulation have increased the ability of PBMAs to 
mimic the appearance and perception of plant-based product, such as 
the use of soybean leghemoglobin to enhance the ‘bleed’ during cooking 
and improve the meaty flavour (Caputo, Sogari, & van Loo, 2022). 
Despite this, PBMAs are still regarded as less appealing and with a less 
authentic meaty flavour overall (Fiorentini, Kinchla, & Nolden, 2020). 

The chemicals contributing to meaty flavours in animal meats have 
been studied and quantified, with several important sulfurous and 
carbonyl compounds identified as primary contributors to the flavour of 
cooked meat (Bleicher, Ebner, & Bak, 2022; Calkins & Hodgen, 2007; 
Mottram, 1998; Mottram & Madruga, 1994; Ueda, Yamanoue, Sirai, & 
Iwamoto, 2021). For example, 2-methyl-3-furanthiol and its disulfide, 
bis-(2-methyl-3-furanyl) disulfide, have been shown to be major flavour 
contributors for cooked beef. Several other heterocyclic Maillard reac
tion products such as thiazoles and pyrazines have also been reported in 
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cooked meat. Besides Maillard reaction products, oxidation of the lipids 
also produces carbonyl compounds which contribute species specific 
aromas to the overall flavour of the meat (Calkins & Hodgen, 2007; 
Mottram, 1998; Wang et al., 2018). 

Although volatile compositions of commercial PBMAs have been 
characterized (He, Liu, Balamurugan, & Shao, 2021; Hernandez, 

Woerner, Brooks, & Legako, 2023), the extent of contributions of these 
volatile compounds to meaty odour and flavour have not been clearly 
established. Compounds that confer desirable aromas to animal-based 
meat may form undesirable off flavours when their concentrations are 
increased. For example, plant proteins tend to give rise to “beany” or 
“fresh-cut grass” aromas due to higher levels of hexanal produced by 

Table 1 
List of burger patty samples and their main ingredients and nutritional information. x indicates which patty samples were included each study measure. Detailed 
information and ingredients for each product can be found in Supplementary Table 2.  

S/ 
N 

Product 
Code 

Product 
Image 

Main ingredients (main protein in bold) Nutritional composition 
(g/100 g) 

Sensory GC–MS/ 
O 

Protein Fats 
(saturated) 

1 AM Beef 18 13 (4) × ×

2 AP Beef, water, egg white, seasoning 15 16 (6) ×

3 SM-1 Water, soy protein concentrate, coconut oil, sunflower oil, flavourings 16.8 11.5 (5.3) × ×

4 SM-2 Water, soy protein, vegetable oil, pea protein, natural flavouring 12.2 13.9 (1.2) × ×

5 SP Water, soy protein, pea protein, vegetable oil, seasoning 14.1 18.8 (3.8) ×

6 PM Water, pea protein, pressed canola oil, refined coconut oil, rice protein, natural 
flavouring 

17.7 12.3 (4) × ×

7 PP Water, pea protein, pressed canola oil, refined coconut oil, rice protein, natural 
flavouring 

17.7 12.4 (4.4) ×

8 MM Mycoprotein, water, egg white, wheat flour, vegetable oil, maize flour, wheat 
starch, textured wheat protein, natural flavouring 

14.5 2.0 (0.5) × ×

9 MP Mycoprotein, egg white, textured wheat protein, vegetable oil, flavouring 16 8.1 (3.4) ×

10 GM Green spelt, whole-grain oat flakes, spelt flakes, sunflower seeds, seasoning 15 9 (1) × ×

11 GP Mushrooms, bulgur wheat, wheat gluten, sunflower oil, seasoning 8.5 7.0 (0.7) ×
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oxidation of the unsaturated fatty acids (Damodaran & Arora, 2013; Li & 
Li, 2020). Interestingly, a recent study on plant-based burger patties 
found comparable levels of volatile lipid degradation products and less 
Maillard reaction products in beef patties as compared to plant-based 
patties (He et al., 2021). 

To date, few studies have combined aroma sensory evaluation and 
volatile flavour measurements across commercial PBMAs to investigate 
the extent of overlap between compounds contributing to meaty flavour 
in plant and animal-based meat products. In the current work, we 
studied a selection of commercially available plant-based and animal 
meat products using descriptive sensory analysis and gas chromatog
raphy coupled with mass spectrometry and olfactometry (GC–MS/O) 
analyses to compare perceptual sensory differences and volatile odour 
activities between these products. 

2. Materials and methods 

2.1. Sensory analyses 

2.1.1. Sensory panel 
Participants for the sensory panel were recruited from the National 

University of Singapore (n = 21, 10 males) and had an average age of 
27.3 (±5.4) years. All participants were screened for eligibility and their 
sensitivity to detect and recognize the five basic tastes (sweet, salty, 
sour, bitter and umami). Recruitment criteria included being aged be
tween 21 and 50 years, non-smoker, no self-reported sinus problems, not 
currently following a special diet, no specific food dislikes, allergies, or 
intolerances, not phenylketonuric, non-diabetic, and not currently 
pregnant. All eligible participants provided informed consent and were 
compensated for their time. This study received ethical approval from 
the A*STAR Human Bio-Medical Research Office Institutional Review 
Board (Reference Number: 2021–056), Singapore. 

2.1.2. Sample selection and cooking 
Eleven types of burger patty products were selected to represent the 

diversity of animal and plant-based protein products commercially 
available in Singapore (Table 1). These included protein ingredients 
from a range of sources (animal (beef), soy, pea, mycoprotein and 
grains) in both ready-to-cook patty and mince formats. The sensory 
evaluation were carried out over 3 weeks and samples were purchased at 
the start and middle of the evaluation period from online local mar
ketplaces (FairPrice and Redmart). 

Mince samples were shaped into 20 g (±0.5 g) round patties, with 1 
cm (±0.1 cm) thickness, and cooked at 180–200 ◦C for 3 min on each 
side. Similarly, frozen ready-to-cook patties were cooked at 180–200 ◦C, 
but for 4 min on each side. Cooking times were standardized based on 
package instructions and we ensured that samples were cooked to a final 
internal temperature of 70–75 ◦C before serving. The samples were 
cooled for 1 min, cut into 20 g (±0.5 g) portions and served warm (58 ±
2 ◦C). 

2.1.3. Descriptive sensory analysis 
A provisional list of sensory vocabulary was derived from previous 

research that profiled the sensory differences between beef patty and 
plant-based meat analogues (de Angelis et al., 2020; Fiorentini et al., 
2020; Piñero et al., 2008; Taylor, Ahmed, Al-Juhaimi, & Bekhit, 2020). 
Participants completed two training sessions (1 hr each) to ensure fa
miliarity with the descriptive analysis procedure and further refined and 
clarified the list of attributes to ensure consensus and clarity on the 
terms before moving to sample evaluations. The final list of confirmed 
sensory attributes and definitions is summarised in Table 2. This training 
procedure was in line with previous literature and participants were 
semi-trained prior to formal evaluation of the samples (Tan, Wee, 
Tomic, & Forde, 2020; Wei Kee Tan, Lim, McCrickerd, & Forde, 2022). 

The presentation order of all samples was randomised to mitigate 
possible first-order and carryover effects and all samples were evaluated 

in triplicates across 3 sessions with replicate variance blocked to each 
session. The semi-trained panel was presented a standardised portion 
per sample, warm, in white ramekins covered with watch glass. During 
evaluation, participants were instructed to evaluate the odour attributes 
by lifting the watch glass and ortho-nasally sampling the headspace 
odour of each sample. Participants then consumed the sample and rated 
the taste/flavour, and texture/mouthfeel attributes, with perceived in
tensity of the attributes (Table 2) rated on a 0–100 Visual Analogue 
Scale (VAS) anchored from “Low” (0) to “High” (100). 

All data were collected using computerised data acquisition software 
(Compusense Cloud, Guelph, Ontario, Canada), in sensory booths that 
conform to international standards for the design of test rooms (ISO, 
1988). Sample ratings were separated by a one-minute inter-stimulus 
interval during which participants were instructed to cleanse their pal
ate thoroughly with filtered water and plain crackers. 

2.2. Gas chromatography high-resolution mass spectrometry and 
olfactometry (GC-HRMS/O) 

2.2.1. Chemical standards 
All analytical standards (full list can be found in Supplementary 

Table S1) were purchased from Sigma Aldrich Co. (St. Louis, MO, USA). 
To determine retention index (RI), a mixture of hydrocarbons ranging 
from C7 (heptane) to C30 (triacontane) (Sigma Aldrich Co, St. Louis, 
MO) was used. Absolute ethanol was purchased from VWR chemicals 
(Radnor, PA, USA). Standards were mixed and dissolved in absolute 
ethanol. All standards were prepared at 100 ppm, except for 3-methyl 
indole (200 ppm) and 4-hydroxy-2,5-dimethyl-3-furanone (2000 
ppm). Individual standards were also prepared at the same concentra
tions and 1 ml was dripped into a sniffing pen to prepare the training kits 
(Otto Hutt GmbH, Germany). 

2.2.2. GC-O panel 
27 participants were recruited for GC-O panel training, and 12 par

ticipants were selected to complete the evaluation. Subsequent analysis 
only took into account completed datasets (n = 12, 6 males). The final 
panel had an average age of 31.4 (±5.2). All participants were screened 
for eligibility and ability to detect odours related to meat (see Table 3). 

Table 2 
Attributes and descriptions used for sensory evaluation of burger patties.   

Attribute Description  

Before Consuming 
Odour Meaty Odour 

Intensity 
The odour intensity associated with meat 
(e.g., beef)  

Legume Odour 
Intensity 

The odour intensity associated with 
legumes (e.g., beans, peas, lentils)  

Off Odour 
Intensity 

The intensity of non-characteristic odour 
(chemical, rancid, metallic etc.)  

After consuming 
Taste / 

Flavour 
Meaty Flavour 
Intensity 

The intensity of meat flavour  

Legume Flavour 
Intensity 

The intensity of flavour associated with 
legumes (e.g., beans, peas, lentils)  

Salty Taste 
Intensity 

The intensity of salty taste associated with 
sodium chloride  

Savoury Taste 
Intensity 

The intensity of savoury taste associated 
with monosodium glutamate  

Off Flavour 
Intensity 

The intensity of non-characteristic tastes 
(chemical, rancid, metallic etc.) in the 
sample 

Texture / 
Mouthfeel 

‘Juiciness’ The amount of moisture and juices released 
during the chewing of the sample  

Chewiness The amount of chewing required  
Oily mouthfeel The perception of oiliness in the mouth 

after swallowing  
Flavour 
Aftertaste 
Intensity 

The intensity of lingering flavour of the 
sample  
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The same recruitment criteria were applied for the GC-O panel as the 
sensory panel (Section 2.2.1). All eligible participants provided their 
informed consent and were compensated for their time. The GC-O study 
received ethical approval from the A*STAR Human Bio-Medical 
Research Office Institutional Review Board (Reference Number: 
2021–072). 

2.2.3. Sample selection and cooking 
Six types of plant and animal meat products were shortlisted for 

further GC-O analysis (see Table 1). Minced samples were selected as 
they displayed lower variance in the meaty and legume odour during 
sensory evaluations and covered a variety of alternative protein types. 
Samples were thawed and cooked as described in 2.1.2. A detailed list of 
ingredients in each sample can be found in Supplementary Table 2. 

2.2.4. Extraction of volatiles 
100 g of cooked samples (from above) were ground into smaller 

pieces and placed into a round flat bottom flask. 800 ml of ultra-pure 
water was added into the flask and placed in a heating mantle 
attached to a hydro-distillation set up. The meat-water solution was 
heated to simmer for an hour to extract volatiles. 100 ml of distillate was 
collected for each sample, aliquoted into individual 5 ml Eppendorf 
tubes and stored at − 20 ◦C until ready for analysis. 

Volatiles were trapped on a sorptive extraction stir bar coated with 
polydimethylsiloxane (PDMS). The stir bar was conditioned at 200 ◦C 
for 30 min using a Gerstel tube conditioner (TC2, Gerstel, Mühlheim an 
der Ruhr, Germany) before being placed into a vial containing 2 ml of 
distillate and stirred at 300 rpm for 30 min. The stir bar was then 
transferred into a sealed thermal desorption (TDU) tube and stored at 
room temperature before evaluation. 

2.2.5. Gas chromatography and mass spectrometry 
Volatile compounds were separated and identified on a 7890B gas 

chromatography (GC) equipped with a 7200 Accurate mass (Q-TOF GC/ 
MS) (Agilent Technologies) coupled to an olfactory detector port (ODP 
3, Gerstel). Volatiles adsorbed to the stir bar was desorbed at 250 ◦C for 
1 min and cryo-focused on the cooled injection system (CIS) at − 20 ◦C. 
Finally, the volatiles were transferred to the column by raising the CIS to 
250 ◦C for 5 min in splitless mode. 

A DB-WAX Ultra Inert fused-silica capillary column (30 m x 0.25 mm 
x 0.25 μm, J&W) were used to analyse the volatile compounds. The 
carrier gas used was helium at a constant column flow rate of 1 ml/min. 
The oven temperature was initially held at 35 ◦C for 1 min, increased to 
60 ◦C at 100 ◦C/min, increased to 190 ◦C at 8 ◦C/min, and increased to 
250 ◦C at 20 ◦C/min and held for 6.5 min. After the volatiles had eluted 
from the column, they were split equally between the mass spectrometer 
and the odour port. Molecules which entered the MS was ionized by an 
electron ionization (EI) source and the electron energy was fixed at 70 
eV with emission at 9.0 μA. Accurate mass information was collected in 
scan mode from 55 to 400 m/z and used to putatively identify odour 
active volatiles. 

2.2.6. Temporal check-all-that-apply gas chromatography olfactometry 
(TCATA GC-O) 

GC-O panellists were trained on selected odour descriptors 
commonly associated with plant and animal protein products. Reference 
aromas were created by dosing sniff pens (Otto Hutt GmBh, Germany) 
with approximately 1 ml of standards or extracts (Table 3). Several 
descriptors were obtained from previous sensory trials (Table 2) while a 
few others were included from literature (Caputo et al., 2022; Li & Li, 
2020). 

GC-O panellists were trained to detect and recognize odours using 
odour pens to simulate the GC-O environment. Each participant atten
ded two training sessions (1 hr each) where they were presented with a 
series of blank and dosed odour sniff pens in random order to mitigate 
potential crossover and first-order effects. Participants were tasked to 
select the appropriate descriptor(s) where applicable using the Com
pusense interface. At the end of each training session, feedback was 
provided to the participant to help them recognize the odours. 

After training was completed, GC-O panel performance was evalu
ated. A mixture of nine standard compounds covering the range of odour 
descriptors above (2-methylpyrazine, 2,5-dimethylpyrazine, dimethyl 
trisulfide, furfuryl thiol, methional, (E,E)-2,4-decadienal, 2,5-dimethyl- 
4-hydroxy-3(2H)-furanone, bis(2-methyl-3-furyl) disulfide, 3-methylin
dole) was used to assess the impact of panel training on TCATA GC-O 
panel performance at the sniff port of the GC-O. GC-O panellists were 
presented with a list of 6 descriptors (from Table 3) in random order to 
mitigate any response-order effects. Panellists were tasked to sniff the 
eluent from the GC odour port (same chromatographic conditions as 
above, total sniffing time of 27 min per sample) and select all the de
scriptors which applied at any time during the GC run. A fading time of 
6 s (duration which descriptor remains selected) was chosen based on 
the average chromatographic peak width. 

The GC-O panel then evaluated the commercial samples (Table 1) 
using the same fading TCATA GC-O method. To prevent fatigue, each 
GC-O panellist sniffed one sample per session. In total, 72 sessions were 
carried out (12 panellists x 6 samples). Samples were ordered in a 
complete block design to eliminate any effects on presentation order on 
GC-O rating. Temporal profiles of eluting sensory active volatiles were 
generated for each product similar to how TCATA has been previously 
used to evaluate changes in the sensory attributes of a product over time 
(e.g., flavour released through the chewing process) (Castura, Antúnez, 
Giménez, & Ares, 2016; Meyners & Castura, 2018). The TCATA GC-O 
approach improves on detection frequency techniques in GC-O by 
assessing “recognition” events rather than just “detection” events 
(Delahunty, Eyres, & Dufour, 2006; van Ruth, 2001). Odour recognition 
events are more reliable than odour detection events, since the former 
relies on trained observers positively identifying the odour quality 
whilst the latter typically uses untrained observers detecting a change 
from the background (Leonardos, Kendall, & Barnard, 1969). In this 
work, compounds were considered as “recognised” if there was panel 
consensus of the associated descriptor while the compound was eluting. 

2.3. Data analysis 

2.3.1. Sensory evaluation 
Normality and intra-class correlation tests were completed to 

confirm the normality of data distribution and reliability of replicate 
results, and an average of the replicates was taken for further analysis. 
The estimated means for each sensory attribute were calculated using 
Linear Mixed Model with sample as a fixed effect, and a random subject 
effect. Differences in the sensory profiles of the burger patty samples 
were assessed using ANOVA and significant main effects were compared 
using post-hoc Bonferroni test, with statistical significance set at 5 % (p 
= 0.05). All statistical analyses were completed using SPSS (Version 26, 
Armonk, New York). Principal Component Analysis (PCA) was used to 
map the estimated mean differences in sensory attributes within patty 
samples, with sensory intensity as loadings and samples as scores, to 

Table 3 
Attributes, descriptions, and reference aromas used to familiarize and train GC-O 
panellists.  

Descriptor Reference Description 

Meaty Beef extract The odour intensity associated with animal meat 
(beef, chicken) 

Legume Soybean extract The odour associated with legumes (e.g., bean, 
peas, lentils) 

Fatty (E,E)-2,4- 
decadienal 

The odour associated with oils, waxes, or fat- 
based foods (e.g., butter) 

Nutty 2,5-dimethyl 
pyrazine 

The odour associated with roasted nuts 

Sulfurous Furfuryl thiol The odour associated with eggs and onions 
Other – Any non-characteristic odours  
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examine the relationship between the sensory differences and protein 
source (i.e., animal-beef, soy, pea, mycoprotein and grains. The PCA 
analyses were conducted using XLSTAT (Version 2022.1; Addinsoft, 
Paris, France). 

2.3.2. Aroma profiling by TCATA GC-O 
Recognition events reported by GC-O panellists were first binned 

into time segments 0.05 min (3 s) wide. The number of panellists who 
reported a recognition event at each time segment was then summed per 
descriptor. A smoothed aromagram, {st}, was obtained by applying a 
modified exponential smoothing algorithm to the raw dataset, {xt}, with 
a smoothing factor (α) of 0.8. 

s0 = x0  

st = xt • (1 − α)st− 1, t > 0  

A noise filter of 2 was used as the cut-off threshold (st > 2). This means 
that at least 3 participants (25 % of the GC-O panel) had to report the 
same odour descriptor at the same time for the recognition event to be 
reported as a signal. The noise level applied in this work is in line with 
similar studies (Dussort et al., 2012; Van Ruth & O’Connor, 2001; van 
Ruth & O’Connor, 2001). Finally, the overall aromagram of the sample 
was generated by creating a stacked area plot of each descriptor cited by 
the GC-O panel at each time point. 

2.3.3. Volatile annotation by HRMS 
Six volatile fingerprints representative of the six samples were 

deconvoluted using an adapted multivariate curve resolution workflow 
based on ADAP-GC (Smirnov, Jia, Walker, Jones, & Du, 2018, 2019). 
Raw mass data was extracted (noise level = 200) and used to construct 
model peaks via multivariate curve resolution (deconvolution window 
width: 0.3 min; RT tolerance: 0.02 min; Minimum number of peaks: 3). 
Model peaks and their corresponding mass spectra were then matched 

against an in-house library based on mass spectral and retention index 
similarity. Unknown compounds were putatively identified by 
comparing their mass spectrum and accurate masses against the NIST17 
database. Reconstructed MS peak areas (xij) were pareto scaled (x̃ij =

xij − xi̅̅̅si
√ ) for each compound i and sample j by normalizing by its variance, 

si. Hierarchical clustering was performed in R (v 4.1.2) using the stats 
package. Volatile compounds which were only detected in one out of the 
six samples were excluded from the hierarchical clustering analysis to 
exclude algorithmic artefacts. 

2.3.4. Multiple factor analysis of sensory and GC-O evaluations 
We also performed multiple factor analysis (MFA) which combined 

sensory evaluation and GC-O datasets into a single plot for visualization 
(de Tayrac, Lê, Aubry, Mosser, & Husson, 2009). For this analysis, we 
correlated odour activities from GC-O with sensory attributes containing 
a volatile component (i.e., meaty odour, meaty flavour, legume odour, 
legume flavour, off odour, off flavour). The analysis was performed in R (v 
4.1.2) using the FactoMineR package (Lê, Josse, Rennes, & Husson, 
2008). 

3. Results 

3.1. Sensory results 

The perceptual differences between the patty samples are summar
ised in Fig. 1 and estimated means and significant differences between 
samples are tabulated in Supplementary Table 3). The animal protein 
samples, AM and AP, were positively associated with meaty odour and 
flavour in contrast to the plant-based samples, GM and GP, which were 
positively associated with legume and off odour and flavour (Fig. 1). This 
was supported by higher intensities of meaty aroma and meaty flavour 
perceived in AM and AP when compared to the other samples evaluated 
(Supplementary Table 3). SM-1 had a comparable meaty odour and 

Fig. 1. Principal Component Analysis (PCA) of the descriptive sensory profiles of the burger patty samples. Colours represent the protein source: AP/AM - animal 
(red), GP/GM – grains (yellow), MP/MM – mycoprotein (green), PP/PM – pea (blue), SP/SM – soy (purple). 
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flavour intensity to the animal protein samples while GM and GP sam
ples had significantly higher legume odour and flavour which was 
similar to the other plant protein samples (PM, PP, SM-2, SP, MM and 
MP) (p < 0.001). In line with the perceptions of legume attributes, off 
odour and flavour were perceived to be at higher intensity in these 
samples too (Supplementary Table 3). 

Given the clear overlap in flavour profiles among the samples, a 
subset of samples was selected to undergo further quantitative volatile 
flavour analyses using TCATA GC–MS/O. Minced plant-based products 
were chosen preferentially as these products had a slightly lower vari
ance in their meaty and legume odour and flavour (Fig. 1, Supplementary 
Table 3). 

3.2. TCATA GC-O results 

3.2.1. Effectiveness of panel training for TCATA GC-O 
We compared attribute recognition among GC-O panellists pre- and 

post-training and showed that GC-O panel recognition increased 
following training with the odour pens, with 7 of the 9 compounds 
improving in their recognition scores (Table 4). Recognition remained 
the same for one compound (3-methyl indole) and decreased for another 
(2-methyl pyrazine). Overall, untrained GC-O panellists correctly 
described 56.6 ± 20.2 % of the odour standards, and this increased to 
66.7 ± 14.1 % following training with the odour pens. 

The improvement in GC-O panel accuracy was statistically signifi
cant (P(T <= t)one-tailed < 0.05) based on a paired t-test of individual 
panellists before and after training. There was a concurrent decrease in 
false-positive attribute identifications, with a decrease in noise detection 
events (i.e., the number of times that GC-O panellists tapped on a 
descriptor not associated with the nine eluting standards) by almost 40 
% after two training sessions. The results show that training was effec
tive to improve compound recognition over a wide range of odour 
thresholds, although GC-O panellists may still have problems recog
nizing volatile compounds such as 2-methyl pyrazine with low odour 
activity (i.e., high odour threshold). 

3.2.2. Comparison of the odour active differences between the meat patties 
TCATA GC-O results are summarised in Fig. 2 and highlight the di

versity in odour activities across the different patty samples. Beef aroma 
profiles had fewer odour recognition events than PBMAs of different 
protein sources. A total of 21 odorants were cited in the aroma profile of 
the beef patty, of which, sulfurous odours were cited 9 times and meaty 
odours were cited 6 times. Conversely the odour profiles of PBMAs were 
more complex, with over 30 cited odour recognition peaks per sample. 
Many compounds eluting within the first 10 min (i.e., compounds with 
lower boiling points) were perceived as sulfurous (SM-1, GM, and PM) 
and meaty (SM-2). More fatty odours were cited for the samples GM, MM, 
and SM-2 when compared to AM, SM-1, and PM. 

The TCATA GC-O aromagrams showed a similar discrimination to 
the semi-trained sensory panel results, though there was little correla
tion between the volatile flavour of the cooked PBMAs and the under
lying differences in their source protein material (Fig. 2). More sulfurous 
and nutty odourants were described in SM-1 (soy), GM (grains), and PM 
(pea) as compared to beef. Moreover, a greater number of fatty and 
legume odourants were cited in plant-based meats (especially in GM, PM, 
and SM-2) versus the beef reference product. 

3.3. GC–MS – Chemical profile of the distinct volatile signatures of each 
plant-based burger 

The mass spectrometry (MS) data was used to fingerprint the volatile 
differences between commercial plant and animal-based patty products. 
Hierarchical cluster analysis of the MS dataset supported our findings 
above, revealing that the samples formed two clusters: SM-1, and PM in 
one and GM, MM, and SM-2 in the other. Higher levels of Maillard re
action products (MRPs) were observed in AM, SM-1, and PM samples. 
These products also had higher levels of meaty odour intensity perceived 
in these products during descriptive sensory analysis (Fig. 1). The GM 
and MM products were rated lowest in meaty odour and had the lowest 
amount of MRPs. 

Plant-based meats contained higher levels of pyrazines than the 
reference AM patty and these pyrazines were shown to be odour active 
(Fig. 2, Supplementary Table 4). In particular, 2-ethyl-3,5-dimethyl 
pyrazine and 2,5-dimethyl-3-isoamyl pyrazine had a perceivable nutty 
odour at 9.8 min (CPSM-1 = 0.25, CPGM = 0.6, CPPM = 0.26) and 12.9 min 
(CPSM-1 = 0.25) respectively (Fig. 2) which were not perceivable in AM. 
In contrast, sulfurous volatiles like dimethyl trisulfide and 5,6-dihydro- 
2,4,6-trimethyl-4H-1,3,5-dithiazine were found to be dominant in the 
beef reference profile. These sulfur-containing MRPs were confirmed to 
be odour active (Fig. 2). Dimethyl trisulfide was perceptible as sulfurous 
(CPAM = 0.3, CPSM-1 = 0.25, CPPM = 0.75) while 5,6-Dihydro-2,4,6-tri
methyl-4H-1,3,5-dithiazine was perceived as sulfurous (CPAM = 0.25). 

Lipid content also strongly impacted the aroma profile of meat an
alogues. Higher levels of saturated and unsaturated aldehydes were 
detected in PBMAs as compared to beef. Of these volatiles, (E,E)-2,4- 
decadienal gave rise to the strongest fatty odour perception in PBMAs 
(CP ranging from 0.25 to 0.75). Other odour active volatiles contrib
uting to fatty odours in commercial samples were (E)-2-nonenal, 2-unde
canone, and (E)-2-decenal with citation proportions ranging from 0.25 
to 0.47. All these volatiles are known lipid degradation products in 
cooked meat (Domínguez, Pateiro, Gagaoua, Barba, Zhang, & Lorenzo, 
2019), although we found that their citations were lower in the AM 
sample. 

3.4. Correspondence between sensory and GC-O/MS 

Multiple Factor Analysis (MFA) was used to combine and compare 
the sensorial and TCATA GC-O datasets (Fig. 4 and Fig. 5). The first 
component (describing 38.15 % of the variance) separated the patty 
samples into two groups AM, SM-1, PM from GM, MM, SM-2, which is in 
line with the two clusters observed in the Hierarchical Cluster Analysis 
(Fig. 3). Results discriminate between PBMAs that were rated as more 

Table 4 
Citation proportions of the compound matching its descriptor(s) before and after 
training. GC-O panel aromagrams can be found in Supplementary Fig. 1.  

No. Compound Descriptor Threshold Before 
training 

After 
training 

1 2-methyl pyrazine Nutty 60,000 
ppb 

27.3 % 9.1 % 

2 2,5- 
dimethylpyrazine 

Nutty 800 ppb 27.3 % 63.6 % 

3 Dimethyl trisulfide Sulfurous 0.01 ppb 54.5 % 63.6 % 
4 Furfuryl thiol Sulfurous, 

meaty 
0.005 ppb 72.7 % 81.8 % 

5 Methional Sulfurous, 
legume 

0.2 ppb 45.5 % 54.5 % 

6 (E,E)-2,4- 
decadienal 

Fatty 0.07 ppb 54.5 % 63.6 % 

7 2,5-dimethyl-4- 
hydroxy-3(2H)- 
furanone 

Others 4 ppb 81.8 % 100 % 

8 Bis(2-methyl-3- 
furyl) disulfide 

Meaty, 
sulfurous 

0.0007 ppt 63.6 % 81.8 % 

9 3-methyl indole Meaty, 
others 

0.05 ppb 81.8 % 81.8 %  

Total compound 
recognitions a 

–  223 203  

Total noise 
detections b 

–  2910 1801  

a Total compound recognitions: the number of times the assessors correctly 
selected the descriptor associated with the eluting compound. 

b Total noise detections: Number of times assessors selected a descriptor 
which was not associated with the elution of the nine standard compounds. 
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intense in meaty attributes (AM, SM-1, PM) and those rated as more 
intense in legume and off attributes (GM, MM, SM-2). 

The meaty flavour and odour intensities rated by the semi-trained 
sensory panel were positively correlated with citation proportions of 
several sulfurous odour active volatiles (Fig. 5). These sulfurous volatiles 
were identified as 2-methyl-3-furanthiol (RI = 1338), dimethyl trisulfide 
(RI = 1394), furfuryl mercaptan (RI = 1441), 2-(1-methylvinyl) thio
phene (RI = 1447), methional (RI = 1464), and 2-(methoxymethyl)- 
furan (RI = 1243). Not all odour activities could be related to a specific 
compound, as many sulfurous volatiles have odour thresholds below that 
of the MS sensitivity. MFA also revealed the relationship between off 
flavour and odours with the citations of fatty and legume odourants 
(Fig. 5). These volatiles were identified as (E,E)-3,5-octadien-2-one (RI 
= 1578), 2-undecanol (RI = 1717), and (E,E)-2,4-decadienal (RI =
1811). 

4. Discussion 

We explored the relationship between the sensory and volatile dif
ferences observed between commercial plant and animal-based meat 
products. A total of 11 burger patty samples varying in forms (i.e., mince 
and ready-to-eat patty) and protein sources were evaluated for a series of 
aroma, flavour, and texture/mouthfeel attributes. The results demon
strated differences in the sensory perception between meat and various 
plant-based protein products. However, the link between the product 
sensory profiles and their protein sources were less clear. The two 
PBMAs with the highest meaty flavour intensity were made from soy and 
pea protein respectively (SM-1 and PM). Furthermore, similar odour 

active volatile profiles were observed in PBMAs made from different 
plant protein sources as evidenced by clustering of odour activities of 
SM-1 and PM as well as SM-2 and MM (Fig. 2). The clustering of odour 
activities of PBMAs made from different plant proteins strongly suggests 
that meaty flavour and odour in PBMAs were derived from added fla
vouring materials rather than the intrinsic sensory qualities of the base- 
protein. 

Despite serving as an alternative to traditional animal protein (i.e., 
beef), sensory findings suggested that PBMAs were still lacking in meaty 
aroma and flavour attributes which were strongly associated with the 
animal protein samples (AM and AP). In addition, legume and off odour 
and flavour attributes were perceived to be stronger in PBMAs (Fig. 1). 
This was in line with previously published work that reported notable 
beany and grassy off odours in soy protein products which were 
commonly associated with lipoxygenase activity (de Angelis et al., 2020; 
Fiorentini et al., 2020). In addition to flavour and taste, recreating 
texture and mouthfeel profiles comparable to conventional meat prod
ucts has remained a significant challenge for alternative protein prod
ucts (Fiorentini et al., 2020; Scholliers, Steen, & Fraeye, 2020). Saponins 
and isoflavene compounds found in soy ingredients also contribute to 
unpleasant bitter taste or astringency of the product respectively (Asgar, 
Fazilah, Huda, Bhat, & Karim, 2010). However, several commercial 
PBMAs profiled in this work had comparable ratings in texture and 
mouthfeel attributes (i.e., juiciness, chewiness, and oily mouthfeel) with 
the animal protein samples, AP and AM (Supplementary Table 3). 

We applied a novel approach to profiling odour activity differences 
between samples in the current study, moving away from traditional 
time-intensity approaches to apply TCATA to GC-O. The forced-choice 

Fig. 2. GC-O TCATA aromagram generated by the panel for each meat product. The citation proportion is reported at the proportion of GC-O panellists who describe 
the same odour descriptor at any given point in time over the course of the GC run. 
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Fig. 3. Hierarchical cluster analysis (HCA) heat map showing relative pareto-scaled levels of volatiles identified from the GC-HRMS chromatogram. Unidentified 
compounds are labelled as “Unk” followed by their (fragment) molecular formula as derived from HRMS data (The full tabulated data can be found in Supple
mentary Table 4). 
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approach used in TCATA GC-O is advantageous over free-choice detec
tion frequency profiles due to its ability to generate attribute-specific 
responses (Dussort et al., 2012; Gerretzen et al., 2015; le Fur, Mercu
rio, Moio, Blanquet, & Meunier, 2003). This allows the analyst to focus 
on specific odour responses and reduces rater burden using the ‘fading’ 
method. We demonstrated the effectiveness of panel training in 
improving the accuracy and reducing the false positive (noise) rate of 
panellists in describing odours using TCATA GC-O (Table 4). The results 
are in line with a previous study by van Ruth and O’Connor which 
investigated the impact of training on GC-O panels (van Ruth & 
O’Connor, 2001). 

We then showed that TCATA GC-O was effective in discriminating 
between the aroma profiles of the different plant and animal meat 
products. Odour activities of PBMAs mainly consisted of odorants 
perceived as sulfurous, fatty, and legume (Fig. 2). The reported odour 
activities were independent of protein source, which suggested that a 
majority of the Maillard reaction products in PBMAs are generated from 
exogenous flavouring material (e.g., thiamine, yeast extracts) rather 
than produced from the base protein itself. Multiple factor analysis 
showed the correlation between overall meaty sensorial attributes and 
citations of sulfurous odourants. Higher citation proportions of sulfurous 
odourants were reported in SM-1 and PM which scored higher in meaty 
flavour versus other plant-based meats. However, they still fell short as 
compared to the reference animal meat product. Understanding differ
ences in sulfurous volatiles between plant- and animal-based products 

can help to reduce the gap in meaty flavour to better recreate an 
authentic sensorial experience of animal products. The flavour gap may 
be due to the presence of off odours which were strongly linked to fatty 
and legume odourants as suggested by results from the semi-trained 
sensory panels. Balancing the profiles of sulfurous and fatty odourants 
is needed to improve the flavour of PBMAs and reduce the flavour gap 
between plant and animal-based meats. 

Several of these odourants were putatively identified in these aroma 
active regions (Supplementary Table 4). For example, dimethyl trisul
fide, furfuryl mercaptan, and 2-methyl-3-furanthiol were present at 
higher levels in SM-1 and PM. These compounds are known odour active 
volatiles in meat products (Calkins & Hodgen, 2007; Cerny, 2015; 
Mottram & Madruga, 1994; Ueda et al., 2021). Not all odour active 
compounds could be identified. High citations of meaty and legume 
odours were reported at RI = 1280 which corresponded with the elution 
of a heteronuclear volatile with a molecular fragment of C7H11NO. The 
data supports the discovery of an unidentified odour active oxazole in 
AM and SM-1. Oxazoles have previously been reported in stewed beef, 
contributing to a nutty and vegetable type odour (Maga, 1978). Another 
sulfurous odour active compound of interest putatively identified in AM 
and SM-1 is 5,6-dihydro-2,4,6-trimethyl-4H-1,3,5-dithiazine. This vol
atile has been previously identified from model reactions of 2,4-decadie
nal with cysteine (Whitfield & Mottram, 1992). Our findings agree with 
literature that lipid-derived dicarbonyls modulate Maillard activity by 
reacting with cysteine degradation intermediates (Elmore & Mottram, 

Fig. 4. Multiple Factor Analysis scores plot combining the datasets from sensory (green) and TCATA GC-O (red).  
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1997; Hernandez et al., 2023; Mottram & Stephen Elmore, 2002). 
Interestingly, AM and SM-1, which were rated among the highest in 
meaty flavour and odour, also had the lowest levels of 2,4-decadienal 
(Supplementary Tables 3 and 4). It is unclear if the dienal was 
depleted in secondary reactions or if it was not produced initially, but 
our results demonstrate the importance of accounting for interactions 
between lipid derivatives and Maillard products to understand flavour 
formation in alternative meat systems. 

These findings describe the quantitative and qualitative relationship 
between the perceived sensory and flavour composition differences in a 
representative set of meat and plant-based patty samples across a range 
of different plant protein sources. Our findings also demonstrate the 
efficacy of a novel application of TCATA in a GC-O profile to help 
establish links between temporal sensory differences and the associated 
aroma composition of each sample. TCATA GC-O was valuable in 
uncovering positive correlations between meaty sensorial attributes with 
sulfurous odorants which were tentatively identified as Maillard reaction 
products (i.e., 2-methyl-3-furanthiol, dimethyl trisulfide, furfuryl 
mercaptan). PBMAs rated more highly in off flavour and odour were 
correlated with fatty and legume odourants which are typically derived 
from lipid degradation pathways such as (E,E)-3,5-octadien-2-one, 2- 
undecanol, and (E,E)-2,4-decadienal. While these compounds have 
been reported to contribute to overall meat flavour (Domínguez et al., 
2019), our study showed that these odour active volatiles were 

perceived negatively at higher levels in commercial plant-based ana
logues. Future studies should build on these preliminary findings and 
control the formulation and production process of samples that can be 
dosed with the appropriate volatile compounds to test whether it is 
possible to use these insights to better replicate an authentic meaty 
flavour. In addition, future studies should focus on optimizing lipid 
compositions in model systems to produce not just the appropriate 
amount, but also the correct type of volatile compounds. Further 
research is needed to isolate and characterize the flavour molecules 
produced in different plant-protein sources with different lipid addi
tions, to better understand flavour development in PBMAs during 
formulation and cooking. 
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