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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We combined remote sensing, climate 
and elevation to model tree-ring width 
(TRW). 

• Models’ explained variance ranged up to 
52 % and was higher for species-specific 
models. 

• Including remote sensing data improved 
the prediction accuracy by 6 % on 
average. 

• Satellite-derived vegetation indices 
yielded strong positive relationships 
with TRW. 

• The developed forest-type models were 
successfully applied to generate a map 
of TRW.  
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A B S T R A C T   

To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on 
forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) 
would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by 
high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how 
climate translates into tree growth. EOS provides information on surface reflectance related to forest charac-
teristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the 
modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain 
up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model 
performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data 
improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map 
of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range 
in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of 
the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred 
in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of 
combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research 
not only fills a critical void in the current understanding of forest growth dynamics but also highlights the po-
tential of integrated data sources for comprehensive ecosystem assessments.   

1. Introduction 

Forest growth is considered of essential importance due to its 
climate-mitigation potential via carbon sequestration, its economic 
value in terms of providing renewable resources and its indirect 
contribution to other key ecosystem services. Across the globe, forest 
growth varies with biomes and climate, species composition and forest 
developmental stage and structure (Gough et al., 2019; Morreale et al., 
2021), terrain characteristics, soil quality and nutrient availability 
(Coops and Waring, 2001). However, ongoing environmental changes 
pose potential risks to forests by amplifying drought stress and mortality 
rates, depositing nitrogen pollutants and increasing disturbances, such 
as fires, windstorms and insect outbreaks (Bugmann et al., 2014). All of 
these risks challenge forest management and therefore deserve further 
investigation in order to increase the climate resilience of forests 
(Keenan, 2015). Under this framework, observation-based gridded 
growth products can provide a valuable source of information, since 
they allow climate-change impacts on forest growth across large spatial 
gradients to be quantified. Despite recent advances in tree-growth 
modelling (Coops et al., 2021; Gallaun et al., 2010; Gang et al., 2017; 
Tian et al., 2023; Verkerk et al., 2015; Wu et al., 2023; Wulder et al., 
2020), a critical gap persists in the availability of observation-based, 
high-resolution, empirical gridded products (maps) depicting forest 
growth. Unlike growth predictions derived from dynamic vegetation 
models (Quillet et al., 2010), the absence of such maps hinders our 
ability to obtain precise insights into the dynamics of forest ecosystems. 
These empirical maps, if developed, could serve a multitude of purposes 
and offer valuable large-scale quantitative information on forests’ re-
sponses to climate change. Notably, they could facilitate the assessment 
of drought impacts on forest ecosystems, providing direct insights into 
carbon sequestration processes and enabling the evaluation of drought 
resilience in these vital ecological systems. The development and uti-
lisation of such maps stand to significantly enhance our understanding 
of the intricate relationships between forests and their changing 
environments. 

In this context, tree-ring width (TRW) data are an invaluable source 
of information, since they represent trees’ aboveground secondary 
growth at annual resolution – and thus approximate changes in tree 
growth and net primary production (NPP) (Dye et al., 2016; Wang et al., 
2023). However, TRW records represent local tree growth, which im-
plies the necessity of upscaling TRW-based NPP estimates to the stand 
and landscape levels in order to achieve gridded products (Babst et al., 
2018). In their study, Bodesheim et al. (2022) employed a series of 
climate variables to generate annual maps of secondary tree growth 

across various species. However, it is crucial to acknowledge that local 
site conditions, shaped by interacting soil and forest stand characteris-
tics, play a pivotal role in modulating how climate factors contribute to 
secondary tree growth, underscoring the necessity of incorporating local 
context when mapping forest growth (Collalti et al., 2020; Dorado-Liñán 
et al., 2022; Rehschuh et al., 2017; Schmitt et al., 2020). Thus, high- 
resolution, site-specific information could improve empirical models 
for predicting TRW based on gridded climate data (Babst et al., 2018; 
Bodesheim et al., 2022). 

Earth observation by satellites (EOS) provides a cost-effective and 
non-intrusive method for observing and monitoring large areas at a high 
resolution, thereby enabling comprehensive evaluations of vegetation 
dynamics. EOS may be a valuable and easy-to-obtain source of site- 
specific information by providing spectral data on the forest surface, 
which is closely related to photosynthetic activity and tree growth 
(Martínez-Fernández et al., 2019). Recent advancements in remote 
sensing technology now facilitate the monitoring of vegetation dy-
namics at high resolution, exemplified by platforms such as the Sentinel- 
1 and Sentinel-2 satellites, both of which were leveraged in our study, 
and allow for the integration of passive and active satellite sensors and 
thus a more sophisticated modelling of tree growth. 

Passive multispectral sensors (optical EOS) are a well-explored 
means of approximating secondary tree growth by measuring canopy 
reflectance at different wavelengths, which ultimately allows reflec-
tance to be expressed using various vegetation indices (Fu and Sun, 
2022; Xue and Su, 2017). Previous studies have successfully linked 
secondary tree growth and vegetation indices on a global scale (Bhuyan 
et al., 2017; Vicente-Serrano et al., 2016), in boreal forests (Andreu- 
Hayles et al., 2011; Babst et al., 2018; Beck et al., 2013; Brehaut and 
Danby, 2018; Kaufmann et al., 2004) and at more local scales in 
temperate forests (Bonney and He, 2021; Correa-Díaz et al., 2019; 
Decuyper et al., 2020; Mašek et al., 2023; Mašek et al., 2024; Pompa- 
García et al., 2021; Stolz et al., 2021; Vicente-Serrano et al., 2020). Most 
studies applied EOS featuring coarse (e.g. GIMMS with 8 km) to mod-
erate (e.g. MODIS with 250 m) resolutions and solely relied on the 
commonly used normalised difference vegetation index (NDVI). In 
contrast, our research utilised the high-resolution (10–20 m) Sentinel-2 
data to calculate four distinct vegetation indices, a novel approach that 
has not yet been compared with tree-ring data. The NDVI is a measure of 
vegetation greenness and density that is directly related to photosyn-
thetic activity and represents a suitable proxy for NPP. Other vegetation 
indices, such as the normalised difference moisture index (NDMI), the 
normalised difference red edge index (NDRE) and the enhanced vege-
tation index (EVI) require further exploration regarding their relations 

J. Jevšenak et al.                                                                                                                                                                                                                                



Science of the Total Environment 913 (2024) 169692

4

to secondary tree growth. Similar to the NDVI, the EVI and NDRE in-
crease with higher photosynthetic activity but incorporate different 
wavelengths. Finally, the NDMI reflects moisture content in vegetation, 
offering valuable insights into plant water status and thereby presenting 
significant potential for the precise estimation of tree growth. 

In contrast to optical EOS, synthetic aperture radar (SAR) is a type of 
active satellite sensor and a less-explored source of EOS for studying 
forest growth. The radar vegetation index (RVI) is calculated from 
Sentinel-1 vertical–vertical (VV) and vertical–horizontal (VH) back-
scattering coefficients and is sensitive to surface roughness, geometrical 
properties of the vegetation, water content and leaf area index (Mandal 
et al., 2020; Tsyganskaya et al., 2018; Vreugdenhil et al., 2018). Since 
growth is linked to plant water availability (Castagneri et al., 2022; 
Dobbertin, 2005), SAR could improve models that explain variations in 
secondary tree growth (Knapp and Smith, 2001). Despite these possible 
indirect effects between SAR and tree growth, SAR data have not yet 
been linked to secondary tree growth. Incorporating the high-resolution 
(10–20 m) EOS sources with site-specific climate and topography data 
into observation-based tree-growth models appears to be a promising 
avenue for large-scale mapping of annual TRW. 

In our study, we delineated three primary objectives: 1) Integrating 
climate variables, EOS and elevation data to develop models for pre-
dicting TRW on different levels: species-specific, forest type-specific and 
a general model using all data. To achieve this, we assembled TREOS – a 
sub-continental tree-ring and EOS network. 2) Quantifying the added 
value of incorporating EOS into climate-based predictions of TRW. 
Given the previously described links between EOS and tree growth, we 
hypothesised that EOS information significantly increases the prediction 
accuracy of TRW. 3) To upscale the established forest-type models to the 
afforested area within the study region and derive the spatial extent of 
reliable TRW predictions. This process aimed to underscore the practical 
applications and real-world relevance of the models we developed. 

2. Materials and methods 

2.1. The TREOS tree-ring network 

We compiled a large tree-ring network of 707 site chronologies 
(Fig. 1). Chronologies come from eight abundant and five minor tree 
species from across central and eastern Europe and include 17,969 in-
dividual tree growth measurements over an elevational range of 8 to 
1682 m asl. Across the sites, the growing season (April–September) 
mean temperature ranges from 6.9 ◦C to 19.7 ◦C, and the annual pre-
cipitation totals are between 450 mm and 2100 mm, thus covering a 
large range of climatic conditions. All the chronologies were sampled 
from 2018 onwards, ensuring a minimum overlap with the Sentinel-1 
and Sentinel-2 data of two years per site. Tree-ring sampling was un-
dertaken at the end of the growing season to ensure that the secondary 
growth of a given year was completed. The number of sites declined over 
time, with 30 site chronologies remaining in 2022 (Supplementary Fig. 
7). The sampling protocol followed standardised criteria to minimise 
potential biases. First, the sampled tree species had to be dominant in 
the stand – that is, they should represent the canopy layer. Next, a 
minimum of 10 trees per site was required. The sampled species had to 
belong to one of the Fagus, Picea, Pinus, Quercus, Abies or Pseudotsuga 
genera to emphasise abundant and economically important forest trees 
in the study region. Some less representative tree species belonging to 
the same genera as the main species were included in the models that 
combined different tree species – that is, the forest-type and the general 
models. These additional tree species encompassed Quercus spp. (12 
sites), Quercus cerris (9), Pinus strobus (5), Fagus orientalis (3), Pinus 
peucea (1) and Pinus sitchensis (1). We initiated a tree-ring network, 
whose members applied a consistent sampling design and provided 
eventual measurements of tree-ring widths (TRW). Measurements were 
obtained using standard dendrochronological methods, which include 
tree coring or stem disc collection, drying and surface preparation, 

followed by ring-width measurements from high resolution images (e.g. 
using CooRecorder) or specialised tree-ring measuring stages (e.g. Lin-
Tab) (Speer, 2010). Cross-dating was applied to ensure that each indi-
vidual tree ring was assigned its exact year of formation (Wigley et al., 
1987). Each site chronology is a time series of mean annual radial 
increment obtained by averaging TRWs from individual trees. That is, 
before averaging, we did not detrend individual TRW measurements to 
retain absolute values of secondary growth as the dependent variable, 
which is more meaningful in terms of representing secondary tree 
growth, since detrending methods would centre all values around a 
value of 1 and thus remove differences of absolute growth among the 
sites. 

2.2. Earth observation by satellites (EOS) 

Each site location was carefully verified to ensure that it was at least 
100 m from the nearest forest edge. We extracted individual Sentinel-1 
and Sentinel-2 bands for a circular polygon with a radius of 100 m 
around the coordinates of each sampling site using Google Earth Engine 
(Gorelick et al., 2017). The 100 m radius was selected since many 
sampling sites were located relatively close to the forest edge, and as the 
radius increases, the probability of capturing non-forest areas increases 
rapidly. For Sentinel-2, we extracted cloud-free, orthorectified, atmo-
spherically corrected surface reflectance of all the required bands (Level- 
2A), which was available from March 2017. From the bands obtained, 
we computed the NDVI, EVI, NDRE and NDMI based on Eqs. (1) to (4), 
where NIR, SWIR, Red, Blue and VRE stand for near infrared (B8), short- 
wave infrared (B11), red (B4), blue (B2) and vegetation red edge (B8A) 
bands, respectively. In addressing potential non-forest cover, such as 
roads and forest gaps, we explored different percentages for removing 
pixels having the lowest NDVI values within each polygon. Simulta-
neously, we evaluated the explained variance in relation to the valida-
tion data, identifying optimal results with a removal threshold set at 7 
%. Subsequently, we experimented with various percentiles for aggre-
gating site- and time-step-specific vegetation indices into seasonal 
values. The highest model performance was achieved at the 75th 
percentile, the same value utilised in the models presented in this study. 
To further refine the data and mitigate potential artefacts, we applied 
masking to eliminate values below predetermined thresholds for each 
vegetation index. Specifically, thresholds of 0.25, 0.20, 0.10 and 0 were 
established for NDVI, EVI, NDRE and NDMI, respectively. This meticu-
lous process resulted in the removal of an average of 1.54 % of the 
original data across all vegetation indices. These refinements contribute 
to the robustness and accuracy of our analysis by enhancing the quality 
of the input data and ensuring the reliability of subsequent model 
outcomes. 

NDVI = (NIR − Red)/(NIR+Red) (1)  

EVI = 2.5⋅(NIR − Red)/(NIR+ 6⋅Red − 7.5⋅Blue+ 1) (2)  

NDMI = (NIR − SWIR)/(NIR+ SWIR) (3)  

NDRE = (NIR − VRE)/(NRE +VRE) (4) 

Since 2014, the Sentinel-1 mission has provided data from a dual- 
polarisation C-band SAR instrument and offers the advantage of 
acquiring reliable data in all weather and lighting conditions. We used 
the Sentinel-1 ground range detected (GRD) data collection, processed 
with the Sentinel-1 Toolbox (Veci et al., 2014), to generate a calibrated, 
orthorectified product, which includes all the Sentinel 1-A and 1-B GRD 
image products acquired in both ascending and descending orbits. To 
reduce the unwanted artefacts or distortions that can occur at the edges 
or borders of the images, we applied additional border-noise correction, 
speckle filtering and radiometric terrain normalisation using the pro-
cedure proposed by Mullissa et al. (2021). We used the images acquired 
in the descending orbit, the interferometric wide swath (IW) mode and 
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Fig. 1. TREOS network including 707 tree-ring width chronologies sampled in central and eastern Europe since 2018. The number of study sites of the main tree 
species included in the analyses (a) and their spatial distribution across the TREOS network (b). 
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the dual-polarisation state (VV/VH). Finally, we calculated the dual- 
polarimetric radar vegetation index (RVI) (Mandal et al., 2020) (Eq. 
(5)). 

RVI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

VV
VV + VH

√ (

4VH
VV
VH

)

(5) 

To derive a diverse set of potential EOS-based predictor variables, we 
averaged both Sentinel-2 vegetation indices and Sentinel-1 RVI, VV and 
VH polarisation bands into seasonal aggregates spanning from March to 
October. These aggregates were defined with a minimum length of two 
consecutive months (e.g. March–April) and a maximum of eight months 
(i.e. March–October). The resulting seasonal aggregates capture varying 
vegetation states throughout the year, which are probably crucial for 
modelling TRWs. In our approach, we excluded seasonal aggregates 
related to the previous growing season due to the limited number of 
overlapping years with Sentinel-2, although many studies have reported 
significant relationships between tree rings and the NDVI from previous 
growing seasons (Bhuyan et al., 2017; Correa-Díaz et al., 2019; Vicente- 
Serrano et al., 2016). 

2.3. Climate and environmental model predictors 

We extracted mean, minimum and maximum daily temperatures and 
precipitation sums for each site from the nearest grid point in the Eu-
ropean daily high-resolution climate dataset (E-OBS v25.0e) at 0.1-de-
gree resolution (Cornes et al., 2018). To account for the extreme 
drought effects on tree growth (Buras et al., 2020; Salomón et al., 2022), 
we considered the climatic water balance. First, the potential evapo-
transpiration (PET) was calculated using the Hargreaves equation 
(Hargreaves and Samani, 1982), and to obtain the climatic water bal-
ance, the PET was subtracted from the daily precipitation sum 
(Jevšenak, 2019). Similar to the EOS data, the climate data were 
aggregated into different seasonal combinations, ranging from March to 
October, with a minimum length of two months and a maximum of eight 
months. To account for the influence of the previous year’s climate, 
which often exerts a significant impact on TRW in the current year, we 
also incorporated climate data from August to October of the preceding 
year. In addition, to capture the broader climatic context, the long-term 
(2000–2022) growing season (April–September) mean temperatures, 
annual climatic water balance and precipitation sums were calculated to 
accommodate diverse climates. All the climate variables were then 
considered as potential predictors in the modelling part. Next, each site 
was classified as coniferous, broadleaved or mixed forest according to 
the CORINE (Coordination of Information on the Environment) land 
cover classification representing forest cover in 2018 (Büttner, 2014). 
Site elevation was derived from the EU-DEM raster digital elevation 
model with 25 m resolution (https://land.copernicus.eu/imagery-in-si 
tu/eu-dem). 

In addition to the previously mentioned predictor variables, we 
explored additional factors derived from site-specific stand character-
istics from the tree-ring data. Specifically, we investigated stand age and 
mean growth rates, which yielded a significant improvement in the 
model performance (not shown). However, since these variables are not 
available on a gridded scale – in contrast to the remaining predictor 
variables – and, thus, cannot be applied to upscale local tree growth, we 
did not include them in our final model selection. 

2.4. Model design and validation 

We modelled the associations between TRW as the dependent vari-
able and a range of seasonal climate aggregates (including temperature, 
precipitation and water balance), as well as aggregated EOS variables 
(NDVI, NDRE, EVI, NDMI, RVI, VV and VH backscattering coefficients) 
along with elevation, serving as independent variables (Objective 1). To 
do so, we employed the random forest algorithm, which is an ensemble 

learning method that combines predictions from multiple decision trees 
to reduce the risk of overfitting and provide more accurate and robust 
predictions (Ho, 1995). In an exploratory phase, we tested several 
different algorithms, including artificial neural networks, multiple 
linear regressions with interactions and generalised additive models. 
Since random forests consistently provided the most accurate pre-
dictions in terms of the explained variance, they were selected as the 
primary modelling approach in our study. In addition, random forests 
can handle high-dimensional data structures and capture complex, non- 
linear relationships (Chang et al., 2023; Jevšenak and Skudnik, 2021). 

The models were calibrated at three different levels of complexity. 
The first level represents a model including all TRW data independent of 
forest type or species. The second level consists of three different models 
representing the three different forest-type classifications as obtained 
from the CORINE land cover classification (coniferous, broadleaved and 
mixed forest). The third level of complexity comprises eight species- 
specific models, representing the eight abundant tree species (Abies 
alba, Picea abies, Pinus sylvestris, Pinus nigra, Pseudotsuga meziesii, Fagus 
sylvatica, Quercus petraea and Quercus robur). 

At each level, we first reduced the initial pool of 127 potential in-
dependent variables by removing collinear variables with a Pearson 
correlation coefficient above 0.70 (Dormann et al., 2013). If two inde-
pendent variables had a correlation that was stronger than 0.70, we 
retained the one that had a higher correlation score with TRW. To assess 
the importance of each predictor variable in contributing to the model’s 
predictive performance, we employed the cforest() function from the R 
package party version 1-3-11 (Strobl et al., 2008) to compute the con-
ditional variable importance. To establish relative importance, we nor-
malised these values by dividing the conditional variable importance by 
the sum of importance within each model, providing a comprehensive 
assessment of the predictors’ overall impact. All variables with a relative 
importance of <1 % were removed. All remaining variables were used to 
fit the random forest models with the R package ranger version 0.13.1 
(Wright and Ziegler, 2015). 

To evaluate the relative contribution of the remote sensing variables 
in comparison to climate and elevation in explaining the dependent 
variable TRW (Objective 2), we evaluated and compared the model 
performance with and without the EOS data for each computed model (i. 
e. for all sites, forest type and species specific). To test whether differ-
ences in explained variance (ΔR2) were significantly different from 0, we 
employed the Wilcoxon signed-rank test (Harris and Hardin, 2013). In 
the event that the EOS data did not improve the explained variance in 
the independent data, the final selected model was fitted without the 
EOS data. The marginal effect of the predictor variables on tree growth 
was derived from partial dependence plots for each model (Greenwell, 
2017). To do so, the predictor variables were simulated for a range of 
existing values, while all the other numerical variables were kept con-
stant based on their medians. 

Model validation was done using k-fold spatially blocked cross- 
validation, where models are systematically trained using k-1 folds 
and validated based on the remaining fold. Blocked cross-validation is a 
robust validation approach for models with spatial structures (Bergmeir 
and Benítez, 2012). To assess the impact of the proportion of training 
data used, we evaluated a range of k values from 5 to 50. For each model, 
we analysed the residual structure (Supplementary Fig. 3) and calcu-
lated the explained variance (R2), root mean square error (RMSE; Pham 
et al., 2022) and root relative square error (RRSE; Pham et al., 2022). 

2.5. Forest-type model upscaling 

To demonstrate model upscaling at a coarse resolution and to iden-
tify critical gaps in model spatial applicability (Objective 3), the three 
forest-type models were applied to predict annual TRW in the region 
represented by TREOS. For this purpose, we created a 0.05-degree 
spatial resolution grid covering the region between latitudes 40◦N and 
60◦N and longitudes 5◦E and 30◦E. For each grid point, we first 
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extracted the CORINE land cover (Büttner, 2014) information and 
retained only the forest-covered grid points for further analyses. For 
these, we then extracted all the required predictor variables derived 
from the forest-type models and predicted TRW for the year 2021. For 
each of the three forest types – coniferous, broadleaves and mixed – we 
made predictions and summarised them in a map. An important limi-
tation of this approach is the extraction of EOS data, which was derived 
only for the grid centre with a radius of 100 m and is thus not repre-
sentative of all the pixels. Therefore, this upscaling serves only as a 
general demonstration of the model’s applicability across space. To 
identify where models cannot generate reliable predictions, we applied 
the principle of ‘area of applicability’ (AOA) using the CAST R package 
version 0.6.0 (Meyer and Pebesma, 2021), which identifies pixels for 
which model predictions are supported by available training data, pre-
venting unreliable spatial extrapolations. Finally, we analysed the dis-
tribution of the key predictor variables within and outside the AOA to 
identify the critical prediction space, which is defined as the area where 
the predictor variables are underrepresented, providing guidance for 
future sampling campaigns. 

3. Results and discussion 

3.1. Earth observation by satellites (EOS) data increases the prediction 
accuracy of tree-ring width (TRW) 

Incorporating EOS data significantly improved model performance. 
In particular, it increased the prediction accuracy (ΔR2) of TRW by 0.06 
on average (Supplementary Fig. 1, Table 1) and reached a maximum 
ΔR2 of 0.11 for the coniferous and mixed forest models. ΔR2 was 
negatively related to climate. For species for which growth was only 
poorly explained by climate variables, the incorporation of EOS data 
yielded stronger improvement regarding the growth model. 

Among the predictor variables, EOS had a relative importance 
(Strobl et al., 2007) of up to 84 % (mixed forests), while for climate 
variables and elevation, it was the highest for Quercus petraea (94 %) and 
broadleaved forests (41 %), respectively. However, the relative impor-
tance of EOS varied considerably among the models (Fig. 2, Supple-
mentary Table 1). For the general model, the total relative variable 
importance of EOS was 54 %. A high variable importance of EOS was 
also obtained for coniferous forests (63 %). However, for broadleaved 
forests, EOS incorporation did not improve the model performance. At 
the species level, EOS relative importance was high for Pinus nigra (60 
%) and Picea abies (56 %) but did not add any additional information for 
Quercus petraea and Pseudotsuga menziesii. For the remaining species, 
EOS importance ranged from 14 % (Quercus robur) up to 52 % (Pinus 

sylvestris), with a tendency towards lower EOS importance for broad-
leaved tree species (Fig. 2). 

All the EOS variables yielded positive relationships with TRW 
(Supplementary Fig. 2). This alignment is consistent with previously 
documented observations indicating that the NDVI, EVI and NDRE tend 
to increase with higher photosynthetic activity (Xue and Su, 2017), 
making them reliable indicators of growth. Notably, among the EOS 
variables, the NDMI emerged as the most important predictor variable. 
This prominence can be attributed to its capacity to capture canopy 
roughness and water content, both of which exert a substantial influence 
on photosynthetic activity and, consequently, tree growth. The NDMI 
mirrors plant–water status, directly linked to carbon assimilation rates 
and, thus, secondary growth (Castagneri et al., 2022; Dobbertin, 2005). 
Furthermore, its utility extends beyond growth assessment, as studies 
have demonstrated its effectiveness in detecting deforestation (Schultz 
et al., 2016), mapping bark beetle outbreaks (Havašová et al., 2015) and 
delineating rubber plantations (Fan et al., 2015). 

In six (seven) out of the twelve models, the EVI (NDRE) provided 
additional information but had lower importance in comparison to the 
NDMI and SAR. This outcome was unexpected, given that both EVI and 
NDRE are closely linked to vegetation vigour. The EVI was designed to 
correct for atmospheric conditions and canopy background noise and is, 
when compared to the NDVI, less prone to saturation (Huete et al., 2002) 
and more sensitive to changes in vegetation condition in areas with 
dense vegetation (Boegh et al., 2002). The NDRE, utilising red-edge 
bands in its formulation, is well-suited for estimating canopy chloro-
phyll and is strongly associated with vegetation stress (Clevers and 
Gitelson, 2013), a factor known to significantly reduce secondary 
growth. The NDVI, which is traditionally used to detect and evaluate 
forest growth trends, was not selected by any of the models. We suggest 
that the information inherent in the NDVI is likely represented by the 
combination of other indices (e.g. NDRE) and climate variables, all of 
which are known to exhibit significant correlations with the NDVI (Piao 
et al., 2014). The NDMI emerged as the most crucial proxy for predicting 
TRW in our network, underscoring its importance in future studies 
focused on mapping forest growth. 

SAR variables were included in eight out of the twelve models, and 
the relative importance of these variables was 13 % on average, with the 
largest relative importance obtained for Pinus nigra (28 %). The RVI had 
a consistent positive relationship with tree growth in mixed forests 
(Supplementary Fig. 2, panel h), which agrees with other studies 
showing that the RVI increases with higher vegetation growth and has 
enhanced sensitivity to vegetation cover and biomass (Szigarski et al., 
2018). Several studies have successfully established connections be-
tween Sentinel-1 backscatter dynamics and biophysical parameters of 
crops such as wheat and soybean (Mandal et al., 2020), as well as 
vegetation dynamics (Vreugdenhil et al., 2018) and height (Bartsch 
et al., 2020). This underscores the versatility of SAR variables, high-
lighting their significant role in elucidating the variability in TRWs. 
Overall, the inclusion of SAR variables in our models contributes valu-
able insights into the complex interplay between vegetation and tree 
growth dynamics. 

The relative importance of climate variables varied significantly 
among the different models, as illustrated in Fig. 2 and detailed in 
Supplementary Table 1. Mean growing season temperature and precip-
itation sums had similar importance, while climatic water balance – 
combining precipitation with evapotranspiration – was less important. 
This implies that actual precipitation plays a more pivotal role than 
drought status across the entire considered gradient. Seasonal temper-
ature was more significant for oak species and Pinus nigra, while pre-
cipitation was more significant for Pseudotsuga menziesii and Abies alba. 
Nevertheless, both factors consistently exerted a strong positive influ-
ence on tree growth (Supplementary Fig. 2), highlighting that warm and 
wet conditions generally favour tree growth. Elevation featured in 
eleven out of the twelve models; however, its impact on the dependent 
variable, TRW, exhibited a mixed pattern. The influence ranged from 

Table 1 
Comparison of the explained variance (R2) in models for predicting tree-ring 
width (TRW) with and without Earth observation by satellites (EOS), along 
with the resulting differences denoted as ΔR2. Statistical significance was 
assessed using the p-value from the Wilcoxon signed-rank test, indicating dif-
ferences from zero. The explained variance was calculated using the indepen-
dent data from k–fold blocked cross-validation, where k ranged from 5 to 50 
with a step of 5.  

Model R2 with EOS R2 without EOS ΔR2 

General model  0.15  0.06 0.09 (p < 0.002) 
Coniferous Forest  0.20  0.09 0.11 (p < 0.002) 
Broadleaved Forest  0.15  0.17 − 0.02 (p < 0.002) 
Mixed Forest  0.12  0.02 0.11 (p < 0.002) 
Abies alba  0.24  0.25 0.00 (p < 0.375) 
Picea abies  0.25  0.16 0.09 (p < 0.002) 
Pinus nigra  0.40  0.39 0.02 (p < 0.846) 
Pinus sylvestris  0.21  0.16 0.05 (p < 0.020) 
Pseudotsuga menziesii  0.07  0.21 − 0.14 (p < 0.002) 
Fagus sylvatica  0.22  0.15 0.07 (p < 0.002) 
Quercus petraea  0.40  0.45 − 0.05 (p < 0.002) 
Quercus robur  0.36  0.33 0.03 (p < 0.064)  
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positive for Fagus sylvatica, as depicted in Supplementary Fig. 2, panel s, 
to negative for Quercus robur, as illustrated in Supplementary Fig. 2, 
panel x. This intricate orographic interaction, coupled with the different 
optimal seasons related to climate variables, likely mirrors a broad 
spatial gradient and the diverse ecophysiological preferences of the 
included species (King et al., 2013; Ponocná et al., 2016). 

3.2. The importance of species and site for predicting tree-ring width 
(TRW) 

Among all the models constructed, 13–52 % of the annual variance in 
TRW was explained by the predictor variables tested (Fig. 3). The pre-
dictor variables explained the highest amount of variance in TRW in 
species-specific models. In models for broadleaved and coniferous for-
ests, predictor variables explained roughly the same amount of variance 
in TRW (19 % vs. 21 %, respectively), while the model for mixed forests 
performed comparably worse (R2 = 13 %). These findings align with 
expectations, as forests with more homogeneous compositions, such as 
coniferous and broadleaved forests, tend to possess simpler vertical 
structures and growth dynamics (Franklin, 1986). This simplicity ne-
cessitates fewer independent variables, making predictions more 
straightforward. Furthermore, the relatively low model performance for 
mixed forests is not surprising, given that each site was solely charac-
terised by species-specific chronology. Consequently, the intricate 
composition of species mixtures within mixed forests was not 
adequately represented in our tree-ring network. Although it has already 

been shown that different species can be combined in site chronologies 
for analyses of tree growth, because they respond similarly to fluctua-
tions in climate variables (Klisz et al., 2023; Opała and Mendecki, 2014), 
this approach still needs to be evaluated in terms of comparison with 
data from EOS. 

Among the species-specific models, the best performance was 
observed for Pinus nigra (R2 = 0.45) and Quercus petraea (R2 = 0.52), 
which had the lowest numbers of input chronologies (Fig. 1a). Good 
model performance was also obtained for Quercus robur (R2 = 0.40), 
with TRW data predominantly originating from mono-specific stands, 
potentially resulting in simplified tree growth patterns due to a lack of 
inter-species competition. In contrast, increased competition for sun-
light, nutrients and water reduces growth rates of individual trees 
(Coomes and Allen, 2007; Jevšenak and Skudnik, 2021) and thus also 
the performance of models where competition is not included. The 
model for Pseudotsuga menziesii was based on sub-populations from high 
elevation sites from the Balkan Peninsula and Switzerland and a sub- 
Mediterranean provenance trial, as well as many sites close to the 
Baltic Sea and central Poland (Fig. 1). These highly diverse sampled sites 
with limited replication likely exhibit very different vegetation dy-
namics that was not properly accounted for in our modelling approach, 
resulting in lower model performance. However, even for the highly 
diverse data of P. menziesii, we obtained reasonably accurate predictions 
when the share of the training data was above 95 % (Supplementary Fig. 
1), ensuring sufficient training data for the models to robustly learn the 
link between tree growth and the input variables. 

Fig. 2. The relative importance of predictor variables on tree-ring width (TRW). To enhance readability, we combined different seasonal aggregates and long-term 
averages of climate variables in one group. EOS-related variables are highlighted with a bold rectangle. More detailed statistics for each variable are in Supple-
mentary Table 1. NDRE – normalised difference red edge index, EVI – enhanced vegetation index, NDMI – normalised difference moisture index, SAR – synthetic 
aperture radar variables. 
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Fig. 3. Scatterplots of predicted and observed ring widths with the indicated mean explained variance (R2) across all k-fold cross-validations. To highlight the 
robustness of the models, we strictly report the statistics derived from the model validation. The R2, root mean square error (RMSE) and root relative square error 
(RRSE) for specific k-folds are reported in Supplementary Fig. 1. The dashed line indicates a perfect 1-1 regression. 
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In contrast to the less specific models, which include all sites and 
forest types, the species-specific models show a significantly higher 
explained variance. This clearly underlines a preference for species- 
specific models, as they have a higher explanatory power, as shown in 
Fig. 3. However, it is essential to note that when applying these models 
for spatial predictions, adequate sample replication becomes crucial. 
The model performance experiences a significant decline for sparsely 
represented species, as exemplified by Pseudotsuga menziesii (Fig. 3). The 
importance of representative input data was also evident from the re-
sidual plot analyses (Supplementary Fig. 3), where we observed a 
moderate prediction bias for large TRWs, which were generally under-
estimated by the models. This bias could be removed by including 
additional stands with high productivity (Rahimzadeh-Bajgiran et al., 
2020). 

3.3. Upscaling tree growth for the three forest-type models 

We used the principle of AOA to estimate regions in which the 
developed forest type models can be reliably applied to predict TRW 
(Meyer and Pebesma, 2021). The combined forest-type model pre-
dictions were applicable to a large part of our study region (73 %) 
(Fig. 4). The highest share of pixels within the AOA was calculated for 
mixed forests (87 %), while for coniferous and broadleaved forests it was 
lower – 77 % and 61 %, respectively (Supplementary Fig. 4). The area 
within the AOA greatly overlapped with the sampled locations (Fig. 1), 
where major gaps are found in Italy, the south-eastern Balkans and the 
Alps. 

The distribution of key predictor variables within and outside the 
AOA (Supplementary Fig. 5) indicated that the coniferous model was not 
applicable to forests that had a low NDMI and NDRE and relatively 
higher late spring rainfall at high elevation sites. The model for broad-
leaved species, on the other hand, exhibited a high share of pixels 
outside the AOA when the long-term growing season temperature was 
relatively low or relatively high, with comparably lower summer pre-
cipitation and higher elevation. Taken together, the regions outside the 
AOA represent high-elevation sites and the spatial margins of the TREOS 
network. To fill the gaps outside the AOA, additional data should be 
collected in currently underrepresented areas. 

Annual prediction maps of TRW on large scales are thus a distinctive 
opportunity for investigating the effects of environmental changes on 
tree growth. The creation and comparison of annual TRW maps provide 
a means for indirect assessment of extreme events, such as droughts 
(Jiao et al., 2021), heatwaves and bark beetle infestations (Bárta et al., 
2022), with high resolution. Other approaches to mapping forest growth 
include national forest inventories (NFIs) and wood production statistics 
(Verkerk et al., 2015) or are based exclusively on climate data (Bode-
sheim et al., 2022) and thus have limited applicability. In our approach, 
we integrated three forest-type models; however, their explanatory 
power is constrained due to the uneven representation of different 
species. In an ideal scenario, the representation of different tree species 
in our forest-type models would accurately mirror their natural preva-
lence in the environment. The prediction accuracies can likely be sub-
stantially improved by deploying EOS-based tree-species classifications 
(Welle et al., 2022), which would allow for high-resolution species- 
specific growth predictions. 

In order to extend our methodology to a species-level resolution and 
generate comprehensive maps of annual TRW across Europe, it is 
imperative to undertake additional data collection on a systematic grid. 
This grid should be designed to adequately capture the representative-
ness of the different tree species and forest types at a continental scale. 
Such sampling campaigns could be integrated into NFIs, in which tree 
ring data are often collected to estimate forest age and radial tree growth 
(Tomppo et al., 2010). The existing frameworks of NFIs present an ideal 
opportunity for such an initiative. The use of established NFI systems 
allows for the inclusion of additional site-specific information already 
collected, paving the way for the development of more accurate 

predictive models, not only for mapping TRW but also for basal area and 
volume increments. 

3.4. Limitations 

In our study, we employed Sentinel-1 and Sentinel-2 EOS data to 
model annual TRW. The high spatial resolution of both satellite sources 
is the main advantage of our approach. For instance, the pixel size of 
Sentinel-2 bands used in our study is 100–400 m2, a significant 
improvement compared to the alternative Landsat 8 with a pixel size of 
900 m2 (Loveland and Irons, 2016). However, since Sentinel-2 revisit 
frequency of 5 days has only been available since March 2017, we had to 
restrict our analyses to the period 2017–2022. Despite the relatively 
short time series, this constraint was offset by the extensive spatial 
representation encompassing 707 sites, yielding a substantial dataset of 
2686 data points for the modelling phase. 

We focused on TRW, which is commonly considered a proxy for NPP 
(Dye et al., 2016; Wang et al., 2023). However, if using basal area in-
crements (BAI) instead, predictions would be more closely related to the 
actual wood volume produced and thus more representative of actual 
forest biomass increase. However, for a large part of the TREOS network, 
stem diameters – which are needed for accurate BAI calculations – were 
not available. Due to this constraint, we decided to model secondary tree 
growth, as obtained from TRWs. Furthermore, focusing on stand 
biomass and/or wood volume increments would provide a more precise 
estimate of the actual NPP but would require an additional measure of 
height (apical) growth and basal area across the stand, which was not 
realised in this study. Finally, we want to stress the well-documented 
sampling bias, which is caused by the selection of dominant and 
mature trees, while sampling should be random to robustly estimate 
growth at the stand level (Nehrbass-Ahles et al., 2014). 

To improve the prediction accuracy of the established models, 
additional variables could be considered. Variables related to site 
quality, such as soil depth, nutrient availability and soil water holding 
capacity, were not considered in our study. However, these factors are 
known to have a significant impact on tree growth (Durand et al., 2020; 
Kostić et al., 2021) and can be approximated by tree height, which can 
be obtained from the Global Ecosystem Dynamics Investigation (GEDI) 
(Potapov et al., 2021). Tree competition is one of the most significant 
factors related to tree growth (Jiang et al., 2018; Zhang et al., 2015), but 
it was not included in our study due to missing stand and tree size 
variables. Severe droughts, such as observed in 2003 and 2018 in central 
Europe (Buras et al., 2020) have major effects on forest growth. These 
effects were partially considered in our study by employing climatic 
water balance, but strong legacy effects, which can last for several years 
(Anderegg et al., 2015) and possible indirect effects resulting in bark 
beetle attacks (Robbins et al., 2022), soil (Qing et al., 2023) and atmo-
spheric drying (Churakova Sidorova et al., 2020) were not directly 
included in our modelling approach. However, for future campaigns 
focused on large-scale tree growth modelling, additional variables 
related to site characteristics, drought legacies and tree competition will 
likely increase the understanding of interactions between secondary tree 
growth, climate and EOS. 

Finally, in regions with more frequent cloud cover, harmonised 
Sentinel-2 and Landsat 8 datasets (Claverie et al., 2018) could improve 
the calculation of seasonal vegetation indices and thus may increase the 
prediction accuracy of tree growth due to an improved representation of 
growing season conditions. In the future, longer EOS time series will be 
available, which may allow for incorporating possible carryover effects 
from the previous growing season as well as drought-induced growth 
legacies (Anderegg et al., 2015; Gričar et al., 2022; Lian et al., 2021). 

4. Conclusions 

In summary, we have shown that EOS is a valuable, high-resolution 
source of information that increases the accuracy of models for 
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Fig. 4. Predicted tree-ring width (TRW) in 2021 for the three different CORINE land cover forest types at a spatial resolution of 0.05◦ (the mean cell size area ranges 
from roughly 12.5 to 24 km2) (a), share of pixels within (green colour) and outside (black colour) the area of applicability (AOA) (b). Pixel colour refers to predicted 
tree-ring width ranging from yellow (low growth) to blue (high growth) colours. Black pixels indicate forests outside the area of applicability (AOA), where the 
predictions based on the current TREOS network are not reliable. 
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predicting tree-ring width. Most of the information added by EOS seems 
to relate to plant water status, as approximated by the NDMI. The in-
clusion of additional related vegetation indices further improved the 
prediction accuracy, since these indices are linked to canopy greenness 
and, thus, photosynthetic capacity (EVI) as well as plant stress (NDRE). 
In addition to the incorporation of optical EOS, our study highlights the 
added value of SAR data and, in particular, the RVI. However, the 
interpretation of the RVI is less straightforward because the signal can be 
associated with moisture, the leaf area index and other vegetation 
characteristics related to the forest density, competition and develop-
mental stage. The maps produced in this study clearly indicate that our 
methodological approach can be used to produce high-resolution maps 
of annual secondary tree growth on a large scale and with unprece-
dented precision. Consequently, the incorporation of EOS into gridded 
forest growth products has the potential to improve our understanding 
of forests’ climate-change resilience across large environmental gradi-
ents, thereby providing an important source of knowledge for forest 
managers, stakeholders and policy makers. 
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077-01); M.Á. and Z.K. by the National Research Development, and 
Innovation Office (NKFIH) through grant project no. FK 134547; C.R. by 
the Ministry of Research, Innovation and Digitisation, CNCS – UEFISCDI, 
project number PN-III-P1-1.1-TE-2021-1419, within PNCDI III; An.Po. 
and I.P. by the Ministry of Research, Innovation and Digitisation under 
project PN-III-P4-PCE-2021-1002 and CresPerfInst (34PFE/2021); Mi. 
Bo. by the Slovak Research and Development Agency via grant no. 
APVV-19-0183; T.K., Mi.Ry. and I.S. by the Czech Science Foundation 
(No. 23-07583S); Sa.Me. by the Estonian Environmental Investment 
Centre and Estonian University of Life Sciences (project P200189MIMP); 
Pe.Ho., J.K., and Ja.Sv. by the EEA Grants and the KAPPA programme 
(TO01000345); Pe.Ho., J.K., J.S. and Ma.St. by the CzecOS programme 
(LM2023048); B.S. and C.Z. by the German Research Foundation (SCHU 
2935/2-1, ZA 755/2-1), and I.M. by the National Research Develop-
ment, and Innovation Office (NKFIH) through grant project no. SNN 
125652. 

CRediT authorship contribution statement 
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Lavnyy: Data curation. Maris Hordo: Data curation. Walter Ober-
huber: Data curation. Tom Levanič: Data curation. Ilona Mészáros: 
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Correa-Díaz, A., Silva, L., Horwath, W., Gómez-Guerrero, A., Vargas-Hernández, J., 
Villanueva-Díaz, J., et al., 2019. Linking remote sensing and dendrochronology to 
quantify climate-induced shifts in high-elevation forests over space and time. 
J. Geophys. Res. Biogeosci. 124, 166–183. 
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