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Abstract 
Lignocellulosic material can be converted to valorized products such as fuels. Pretreatment is an essential step in conversion, 
which is needed to increase the digestibility of the raw material for microbial fermentation. However, pretreatment generates 
by-products (hydrolysate toxins) that are detrimental to microbial growth. In this study, natural Saccharomyces strains isolated 
from habitats in Thailand were screened for their tolerance to synthetic hydrolysate toxins (synHTs). The Saccharomyces 
cerevisiae natural strain BCC39850 (toxin-tolerant) was crossed with the laboratory strain CEN.PK2-1C (toxin-sensitive), 
and quantitative trait locus (QTL) analysis was performed on the segregants using phenotypic scores of growth (OD600) and 
glucose consumption. VMS1, DET1, KCS1, MRH1, YOS9, SYO1, and YDR042C were identified from QTLs as candidate 
genes associated with the tolerance trait. CEN.PK2-1C knockouts of the VMS1, YOS9, KCS1, and MRH1 genes exhibited 
significantly greater hydrolysate toxin sensitivity to growth, whereas CEN.PK2-1C knock-ins with replacement of VMS1 and 
MRH1 genes from the BCC39850 alleles showed significant increased ethanol production titers compared with the CEN.
PK2-1C parental strain in the presence of synHTs. The discovery of VMS1, YOS9, MRH1, and KCS1 genes associated with 
hydrolysate toxin tolerance in S. cerevisiae indicates the roles of the endoplasmic-reticulum-associated protein degradation 
pathway, plasma membrane protein association, and the phosphatidylinositol signaling system in this trait.

Key points
• QTL analysis was conducted using a hydrolysate toxin-tolerant S. cerevisiae natural strain
• Deletion of VMS1, YOS9, MRH1, and KCS1 genes associated with hydrolysate toxin-sensitivity
• Replacement of VMS1 and MRH1 with natural strain alleles increased ethanol production titers in the presence of hydro-
lysate toxins
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Introduction

Agricultural lignocellulosic waste can be converted to 
valorized products such as biofuels. The industrial biore-
finery process involves pretreatment, enzymatic hydroly-
sis, and microbial fermentation steps. Pretreatment of 
lignocellulosic material is generally required to increase 
enzymatic digestibility. However, hydrolysis by-products 
from this step, including weak acids, furan aldehydes, 
inorganic ions, and phenolic compounds, can inhibit the 
subsequent steps. The generation of by-product inhibitors 
is strongly dependent on the feedstock and pretreatment 
method (Jönsson et al. 2013). Physical, physicochemical, 
and biological approaches have been established to remove 
pretreatment by-products from lignocellulosic hydrolysate 
(Mussatto and Roberto 2004). Although each method is 
suited to certain types of compounds, better results can 
be obtained by combining two or more different methods; 
however, this can increase the production cost. Therefore, 
one of the major challenges for the economic conversion 
of lignocellulose in biorefinery is to generate robust and 
versatile microbial strains that can tolerate pretreatment 
by-products whilst maintaining high metabolic func-
tion for the efficient conversion of raw material to target 
products.

Saccharomyces cerevisiae is commonly used as a 
cell factory (production microorganism) for biorefinery 
(Nielsen 2013). Generally, chemical tolerance and indus-
trial fermentation traits are complex. These traits are influ-
enced by multiple genes working in concert, as shown by 
quantitative trait locus (QTL) analysis (Ehrenreich et al. 
2010; Swinnen et al. 2012; Hubmann et al. 2013; Cubillos 
et al. 2017; Wang et al. 2019; de Witt et al. 2019; Ho et al. 
2021). Several attempts have been applied to construct S. 
cerevisiae cell factories with improved tolerance to inhibi-
tory pretreatment hydrolysate by-products and the harsh 
conditions used in industrial processes including genetic 
modification, conventional breeding, and evolutionary 
engineering (Keasling 2010; Caspeta et al. 2015; Brandt 
et al. 2021; Hacısalihoğlu et al. 2019; Balaban et al. 2019; 
Kocaefe-Özşen et al. 2022; Menegon et al. 2022).

QTL analysis of tolerance to inhibitory hydrolysate 
toxin compounds (Meijnen et al. 2016; Maurer et al. 2017; 
de Witt et al. 2019) identified genes associated with this 
trait, including HAA1 (transcriptional activator for adap-
tation to weak acid stress), VMA7 (vacuolar membrane 
ATPase), GLO1 (glyoxalase I), DOT5 (nuclear thiol-perox-
idase), CUP2 (copper-binding transcription factor), HAP1 
(zinc-finger transcription factor), YGL176C (uncharacter-
ized open reading frame), and XRN1/BUD13 (bud-site 
selection). These genes function in oxidative, osmotic, 
acidic, and proteotoxic stress responses. Therefore, to 

construct industrial strains tolerant of various hydrolysate 
toxins, the collective effects of multiple genes from these 
pathways must be considered. The understanding of the 
genes and their interactions controlling this trait may be 
incomplete as previous QTL studies were performed with 
selected industrial, laboratory, or natural strains. Natural 
strains from habitats not sampled previously may harbor 
variants in other genes controlling this trait that were not 
considered.

In this study, natural Saccharomyces spp. isolated from 
diverse habitats in Thailand were screened for tolerance 
to synthetic hydrolysate toxin compounds (synHTs). One 
isolate of S. cerevisiae (BCC39850) displaying superior 
tolerance and a sensitive laboratory strain (CEN.PK2-1C) 
was used for QTL analysis to identify genes associated 
with hydrolysate toxin tolerance, and the functions of can-
didate genes with respect to the tolerance phenotype were 
tested by gene knockout and knock-in experiments.

Materials and methods

Strains, cultivation conditions, and reagents

S. cerevisiae laboratory strain CEN.PK2-1C (MATa; 
his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2) 
was obtained from EUROSCARF, Frankfurt, Germany. S. 
cerevisiae isolates BCC39850 and other wild strains were 
obtained from the Thailand Bioresource Research Center 
(www.​tbrcn​etwork.​org). Yeast strains were grown in YPD 
liquid medium (20 g/L peptone, 20 g/L glucose, and 10 
g/L yeast extract) and stored in YPD broth containing 20% 
glycerol at − 70 °C.

Yeast mating

S. cerevisiae BCC39850 haploid#17 (MATalpha; hydro-
lysate toxin tolerant) and CEN.PK2-1C (MATa; sensitive 
laboratory strain) strains were crossed on a YPD agar plate 
and grown overnight at 30 °C. After mating, a loop full 
of the mated population was suspended in SC broth and 
streaked on an SC agar plate (without amino acid) and 
then incubated at 30 °C for 3–5 days until diploid colonies 
appeared. Diploid colonies were taken and re-streaked on 
sporulation agar plates (10 g/L potassium acetate, 1 g/L 
yeast extract, 0.5 g/L dextrose, 20 g/L agar) and incubated 
at 30 °C for 3–5 days until tetrad formation was observed 
by microscopy. Sporulation and isolation of haploid seg-
regants were carried out using standard protocols (Sher-
man and Hicks 1991).

http://www.tbrcnetwork.org
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Genome sequencing and mapping of SNPs

Genomic DNA samples were obtained from 93 yeast strains, 
including the parental strains (BCC39850 haploid#17 and 
CEN.PK2-1C) and 91 segregants derived from the F1 prog-
eny using a genomic DNA purification kit (Thermo Fisher 
Scientific, Waltham, MA, USA). The DNA samples were 
quantified using a NanoDrop ND-1000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA) and diluted 
to 20 ng/µL. Samples were submitted for whole-genome 
sequencing service (National Omics Center, Pathum Thani, 
Thailand) using the MGISEQ-2000RS platform (MGI Tech, 
Guangdong, China). Whole-genome sequencing libraries 
were constructed using the MGIEasy FS DNA Library Prep 
Set (MGI Tech, Guangdong, China). Genomic DNA sam-
ples were fragmented, end-repaired, and modified to form 
a single adenine base overhang (A-tailing). Subsequently, 
the DNA fragments were ligated to barcoded adapters and 
amplified by PCR. The purified PCR products were then 
subjected to denaturation, circularization, exonuclease diges-
tion, and cleanup processes. The resulting DNA libraries 
were quantified using a Qubit 2.0 fluorometer (Invitrogen, 
Carlsbad, CA, USA) and sequenced using DNA NanoB-
alls (DNBs) technology to obtain 150 bp paired-end reads. 
The quality of the raw reads was assessed using FastQC 
v0.11.8 (https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​
cts/​fastqc/). Sequencing adapters and low-quality reads 
were trimmed and removed. Reads were mapped to the 
S. cerevisiae S288c reference genome available from the 
National Center for Biotechnology Information (Engel et al. 
2022) using minimap2 with default parameters (Li 2018). 
Variants were called using Genomic Analysis Toolkit best 
practice; GATK version 4.1.4.1 with the HaplotypeCaller 
method (https://​gatk.​broad​insti​tute.​org/​hc/​en-​us). A total 
of 71,430 single-nucleotide polymorphisms (SNPs) were 
identified. After removing monomorphic markers to ensure 
that only markers segregating among progeny were consid-
ered, 67,423 SNPs were filtered using the following criteria: 
(1) base quality scores > 20, (2) coverage depths between 
20 × and 1000 × , (3) missing data ≤ 20%, and (4) a minor 
allele frequency ≥ 0.1. A total of 27,977 SNPs were used as 
the final variant set for genetic analysis. The variants were 
annotated for their effects on gene function using SnpEff 
version 3.4 (Cingolani et al. 2012). The accession number 
for the raw sequence read data in the NCBI Sequence Read 
Archive (SRA) is PRJNA971766 (BioProject).

Linkage and quantitative trait locus analysis

Linkage analysis was performed with Lep-Map3 (Rastas 
2017). The Lep-Map3 module “SeparateChromosomes2” 
was used to assign markers into linkage groups (LGs) by 
computing all pair-wise logarithm of odds (LOD) scores 

between markers with a threshold of 6.0. The “OrderMark-
ers2” module was used to order the markers for each LG by 
maximizing the likelihood of the data for alternative orders. 
Marker distances were converted to map distances in centi-
Morgans (cM) using the Kosambi mapping function (Kosa-
mbi 1944). Quantitative trait locus (QTL) analysis was per-
formed using the R package qtl (Broman et al. 2003). Using 
the composite interval mapping (CIM) method, the marker-
phenotype association and statistical significance were 
determined for each QTL by combining interval mapping 
with multiple regression. LOD thresholds (P < 0.05) were 
determined via permutation tests (PT) with 1000 iterations.

Validation of causative genes by gene knockout 
and knock‑in

The validation of candidate genes was carried out in the 
CEN.PK2-1C background strain. Deletion cassettes were 
obtained by PCR amplification of the hygromycin dele-
tion cassette (hygMX6) with 42 bp flanking homologous 
regions up- and downstream of the target locus. The knock-
in cassettes containing the BCC39850 allele fused with the 
hygMX6 module with 42 bp flanking homologous regions 
were amplified by overlapping extension PCR. The geneticin 
resistance (G418MX6) module was also used as selective 
markers for double knock-in. Gene knock-in cassettes con-
taining the BCC39850 allele were amplified by overlapping 
extension PCR. Yeast cells were transformed using the LiAc/
SS Carrier DNA/PEG method as described previously (Gietz 
and Schiestl 2007). Positive transformants were screened on 
YPD agar plates containing 200 mg/mL hygromycin and/or 
geneticin. Successful gene deletions and replacements were 
confirmed by PCR amplification and Sanger sequencing. 
The schematic diagrams for genomic modifications and all 
primers used in this experiment are summarized in Supple-
mentary information: Fig. S1 and Table S1.

Phenotypic assays

Sugarcane bagasse after mild alkaline pretreatment is a 
potential feedstock for yeast fermentation. A mixture of syn-
HTs (furan aldehyde, acids, and phenols) was formulated in 
a composition to mimic the hydrolysate toxins present in 
sugarcane bagasse from the alkaline pretreatment process, 
with minor modifications based on the study by van der Pol 
et al. (2015). Previous reports on lignocellulosic inhibi-
tory compounds have indicated that coniferyl aldehyde (an 
aromatic aldehyde) inhibits S. cerevisiae growth more than 
furan aldehydes (Larsson et al. 2000; Adeboye et al. 2015; 
Jönsson and Martín 2015). However, the concentration of 
furan aldehydes (derived from carbohydrates) in lignocel-
lulosic hydrolysates is higher than that of lignin-derived 
aromatic aldehydes (Jönsson and Martín 2015). Phenotypic 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://gatk.broadinstitute.org/hc/en-us
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assays were performed on yeast cultures for up to 72 h at 
30 °C with shaking at 220 rpm in YPD medium. In tests 
of hydrolysate toxin tolerance, the medium was supple-
mented with synHTs comprising furfural, 0.80 g/L; acetic 
acid, 2.0 g/L; formic acid, 1.0 g/L; vanillin, 0.07 g/L; and 
syringaldehyde 0.06 g/L. For screening of isolates and test-
ing of segregants, pre-cultured inoculum prepared in YPD 
medium at 30 °C overnight was used to inoculate 2 mL of 
fresh culture in a 1-mL tube to obtain the starting OD600 of 
0.05 (approximately 5 × 105 cells/mL). Cell growth (OD600) 
and glucose consumption (g/L) were monitored at 16-, 24-, 
and 48-h time points. A batch fermentation experiment was 
carried out in 250-mL Erlenmeyer flasks containing 50 mL 
of YPD containing 100 g/L glucose with S. cerevisiae cells 
suspended at an initial density OD600 of 0.2 (approximately 
2 × 106 cells/mL). One-milliliter samples were taken at 16-, 
24-, 48-, and 72-h intervals for analysis of growth (OD600) 
and ethanol production. Real-time growth monitoring was 
carried out by microtiter plate cultivation; BioLector (Beck-
man Coulter GmbH, Krefeld, Germany) in 48 round-bottom 
well plates. A total volume of 1 mL of YPD (100 g/L glu-
cose) with synHTs was added to each well with the starting 
OD600 of 0.05. The microtiter plate was sealed with gas per-
meable film (Beckman Coulter GmbH, Krefeld, Germany) 
and incubated at 30 °C with shaking at 1000 rpm and a 
relative humidity above 80%. Biomass was monitored every 
5 min for 48 h by measuring scattered light signal reflecting 
the amount of biomass suspended in culture medium.

Product analysis

Samples from batch fermentation were harvested by cen-
trifugation (10,000 × g for 5 min at 4 °C) and filtered through 
0.2-micron filter cellulose acetate membranes (Millipore, 
Bedford, MA, USA). The amount of glucose and ethanol 
was determined using a high-performance liquid chroma-
tographic (HPLC) system (Shimadzu Prominence LC-20; 
Shimadzu Corporation, Kyoto, Japan) equipped with a 
refractive index detector and an Aminex-HPX-87H Column 
(Bio-Rad, Hercules, CA, USA). The column temperature 
was maintained at 65 °C, and 5 mM H2SO4 was used as the 
mobile phase at a flow rate of 0.5 mL/min.

Data analysis

All experiments were performed independently at least three 
times. Analysis of variance was conducted by one-way anal-
ysis of variance (ANOVA) using Tukey’s post hoc method 
on the SPSS statistical package (version 18.0 for Windows, 
SPSS Inc., Chicago, IL, USA). The level of statistical sig-
nificance was set at P < 0.05.

Results

Screening and selection of hydrolysate toxin 
tolerant strain

Wild isolates of Saccharomyces spp. from a wide range 
of ecological niches in Thailand deposited in the Thailand 
Bioresource Research Center (TBRC; Pathumthani, Thai-
land) were screened for tolerance to inhibitory hydrolysate 
compounds using synHTs (Fig. 1a). Seven candidate S. 
cerevisiae strains from screening were selected for further 
evaluation of ethanol production (Fig. 1b). Strain BCC39850 
was selected based on its phenotype (high yield of ethanol) 
and ability to sporulate. Strain BCC39850 was sporulated, 
and haploid segregants were tested for growth along with 
the laboratory strain CEN.PK2-1C, which is also haploid 
(Fig. 1c). From the five haploids isolated from the natural 
isolate BCC39850 that were analyzed, the haploid#17 strain 
showed the greatest synHTs tolerance. This haploid was then 
crossed with CEN.PK2-1C to generate hybrid strains. The 
hybrid#31 strain was selected for genetic analysis based 
on the growth on YPD plates supplemented with synHTs. 
This hybrid was then sporulated to generate F1 haploid seg-
regants. The selected haploid segregants were analyzed for 
growth (OD600) and glucose consumption at 16 and 24 h 
(Fig. 1d). The results were then converted to phenotypic 
scores for QTL analysis.

Genome sequence mapping and SNP analysis

Genomic DNA samples from the two parental strains (Hap-
loid#17 and CEN.PK2-1C) and 91 selected segregants from 
the cross were sequenced, and reads were mapped to the 
S. cerevisiae S288c reference genome. Raw read statistics 
are shown in Supplemental Table S2. A total of 71,430 
single-nucleotide polymorphisms (SNPs) were found. The 
annotation and prediction of the SNP effects showed that 
most SNPs were found in upstream (43.14%) and down-
stream (41.40%) of genome regions, with less identified in 
exon (Supplemental Table S3). After filtering, 27,977 SNPs 
remained, which were used to construct the linkage map 
(Fig. 2a). The distributions of SNP markers on the linkage 
groups are summarized in Supplemental Table S4.

Identification of QTLs associated with hydrolysate 
toxin tolerance

QTLs were identified from the marker-phenotype associa-
tion, with one major region passing significance thresholds 
located on chromosome IV (Fig. 2b). Using the applied phe-
notypic scores of glucose consumption and OD600 from the 
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16 h time point, analysis of markers (LOD threshold = 3.26) 
identified six genes (YOS9, VMS1, DET1, YDR042, KCS1, 
and MRH1). Using the 24-h time point data (LOD thresh-
old = 2.87), one additional gene was identified (SYO1). All 
of these candidate genes contained at least one non-synony-
mous missense variant compared with the S288c reference. 
The candidate genes associated with hydrolysate toxin toler-
ance and their functions are summarized in Tables 1 and 2.

Testing candidate gene function by gene deletion

To assess whether candidate gene function is required for 
hydrolysate toxin tolerance, candidate genes from QTL 
analysis were deleted by hygMX6 cassette disruption in the 
CEN.PK2-1C strain. After selection on YPD containing 0.2 
mg/mL hygromycin, integration of the deletion cassettes at 
target genes was validated by PCR. The tolerance phenotype 
of the knock-out mutants was initially tested by spot assay 
(Fig. 3a). Four deletion mutants (CEN.PK2-1C_VMS1Δ, 
CEN.PK2-1C_KCS1Δ, CEN.PK2-1C_MRH1Δ, and CEN.
PK2-1C_YOS9Δ) demonstrated markedly greater sensitivity 

to synHTs, whereas CEN.PK2-1C_DET1Δ, CEN.PK2-
1C_SYO1Δ, and CEN.PK2-1C_YDR042CΔ did not appear 
to differ in toxin sensitivity from the CEN.PK2-1C parental 
strain. In standard YPD medium, deletion of candidate genes 
was found to have little effect on growth except for KCS1, 
in which the CEN.PK2-1C_KCS1Δ strain showed impaired 
growth (Supplemental Fig. S2). Real-time growth analysis of 
the parental strains and hydrolysate toxin- sensitive knockout 
mutants was performed (Fig. 3b), and the data were used 
for the calculation of specific growth rate (Table 3). Among 
these deletion strains, CEN.PK2-1C_VMS1Δ showed the 
greatest sensitivity to synHTs, as indicated by the decreased 
specific growth rate (0.0101 h−1) followed by CEN.PK2-
1C_KCS1Δ (0.0147 h−1), CEN.PK2-1C_MRH1Δ (0.0237 
h−1), and CEN.PK2-1C_YOS9Δ (0.0258 h−1), respectively. 
The ethanol production titers were also determined; all dele-
tion variants displayed a delayed ethanol production (Fig. 3c) 
resulting from extended lag time. At 28 h of growth, CEN.
PK2-1C showed a reduced growth rate, and then switched 
to diauxic shift at 35-h time point (Fig. 3b). While CEN.
PK2-1C_YOS9Δ strain entered stationary phase at a slower 

Fig. 1   Screening and phenotyping for hydrolysate toxin tolerance. a 
Screening for hydrolysate toxin tolerance of Saccharomyces spp. cul-
ture collection isolates. Candidate tolerant strains are indicated by red 
dots. b Ethanol production of selected S. cerevisiae candidate tolerant 
strains in YPD containing 200 g/L glucose. c Growth analysis (Bio-
Lector) of parental strains used for mating in YPD with synHTs. Hap-

loid#17 is a segregant from BCC39850 sporulation, which was mated 
with the CEN.PK2-1C reference strain (hydrolysate toxin-sensitive). 
d Assessment of selected segregants from the cross of haploid#17 
and CEN.PK2-1C for glucose consumption and growth (OD600) sam-
pled at 16 and 24 h in YPD supplemented with synHTs
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rate than CEN.PK2-1C and consumed less ethanol result-
ing in higher ethanol concentrations after 40-h fermentation 
(Fig. 3c). The different growth characteristics are possibly 
due to differences in transcription regulation during oxida-
tive metabolism. Since the transition from exponential phase 
to diauxic shift and stationary phase is regulated by multiple 
signaling pathways such as protein kinase A (PKA), TOR 

(target of rapamycin), Snf1p, and Rim15p (Galdieri et al. 
2010). The knock-out mutants showed varying levels of sen-
sitivity to different hydrolysate compounds. Among these 
mutants, the most sensitive knock-out strain was CEN.PK2-
1C_VMS1Δ, which showed a very high sensitivity to fur-
fural but not acetic acid (Fig. 4). Notably, this gene has not 
been associated with hydrolysate toxin tolerance previously. 

Fig. 2   QTL analysis to 
identify genes associated with 
hydrolysate toxin tolerance. 
a Linkage map and distribu-
tion of QTLs associated with 
hydrolysate toxin tolerance 
(highlighted box). The light 
blue box indicates the identified 
QTLs and their positions on the 
chromosome. b QTL mapping 
of 91 selected segregants using 
phenotypic scores of glucose 
consumption (upper panels) and 
OD600 (lower panels) at 16 h 
and 24 h. The logarithm of the 
odds (LOD) scores was plotted 
against the respective chromo-
somal positions. LOD score 
thresholds were determined 
separately for each data type by 
permutation test, as indicated on 
each panel
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MRH1 deletion resulted in acetic acid hyper-sensitivity 
(Fig. 4), consistent with a previous report by Takabatake 
and coworkers (2015).

Testing BCC39850 alleles for function by gene 
knock‑in

Next, we tested the VMS1, MRH1, EMC10, KCS1, and YOS9 
alleles from the BCC39850 strain for function in the CEN.
PK2-1C strain background by gene knock-in. The CEN.PK2-
1C_VMS1rep and CEN.PK2-1C_MRH1rep knock-in strains 
exhibited growth on YPD containing acetic acid, furfural, or 
synHTs comparable to the CEN.PK2-1C strain by spot-test 
(Fig. 4). The growth profiles of the single knock-in strains 
from real-time measurements were not significantly different 
from the CEN.PK2-1C strain (Fig. 5a). Additionally, double 
knock-in mutants were constructed to test the interaction of 
VMS1 with the MRH1 and YOS9 genes on the hydrolysate 
toxin tolerance phenotype. Two double knock-in strains were 
constructed (CEN.PK2-1C_VMS1repMRH1rep and CEN.
PK2-1C_VMS1repYOS9rep) and tested for growth and etha-
nol production. The growth profiles of the double knock-in 

strains from real-time measurement were also not signifi-
cantly different from the CEN.PK2-1C strain (Fig. 5b). The 
ethanol production of CEN.PK2-1C, knock out, and knock-
in strains was investigated at different time points (16, 24, 
and 48 h) during fermentation. The results showed that CEN.
PK2-1C_MRH1rep and CEN.PK2-1C_VMS1repMRH1rep 
strains exhibited significantly higher ethanol production 
compared with CEN.PK2-1C at 16 and 24 h of fermentation 
(Fig. 5c). At 24-h time point, the ethanol production of CEN.
PK2-1C_VMS1rep strain was also significantly improved. In 
this experiment, the improvement of ethanol production 
of the double knock-in strains was only observed in CEN.
PK2-1C_VMS1repMRH1rep but not for CEN.PK2-1C_VMS
1repYOS9rep.

Discussion

In this study, we identified a hydrolysate toxin-tolerant S. 
cerevisiae strain from screening a collection of natural iso-
lates and performed QTL mapping to identify genes that are 
associated with the tolerance trait. From the seven QTLs 

Table 1   Genes with 
nonsynonymous variants in the 
major QTL region

Gene Chr Coordinate LOD score Length (aa) Annotated gene Amino acid substitution 
(relative to S288c reference)

Haploid #17 CEN.PK2-1C

1 IV 553,254..555152 3.74 632 VMS1 L60H
D22N
N561D
K194R
S49F

Wild type

2 IV 557,056..558060 3.74 334 DET1 H16Q
G17C

Wild type

3 IV 479,115..482267 3.99 1050 KCS1 Wild type N508Y
4 IV 508,147..509109 3.67 320 MRH1 S299G Wild type
5 IV 540,601..541203 3.77 200 YDR042C I143V Wild type
6 IV 565,927..567555 3.85 542 YOS9 T524A Wild type
7 IV 338,272..340134 2.99 620 SYO1 I340M Wild type

Table 2   Functional descriptions of candidate genes

QTL Gene Description

1 VMS1 Peptidyl-tRNA hydrolase that releases stalled peptides from ribosomes, component of a Cdc48p-complex; involved in protein 
quality control

2 DET1 Acid phosphatase (broad substrate activity); involved in the non-vesicular transport of sterols between endoplasmic reticulum 
(ER) and plasma membrane

3 KCS1 Inositol hexakisphosphate and inositol heptakisphosphate kinase; generation of high energy inositol pyrophosphates
4 MRH1 Protein that localizes primarily to the plasma membrane
5 YDR042C Putative protein of unknown function
6 YOS9 ER quality-control lectin; integral subunit of the HRD (3-hydroxy-3-methylglutaryl coenzyme A reductase degradation) 

ligase; participates in efficient ER retention of misfolded proteins
7 SYO1 Transport adaptor or symportin; assembly chaperone that co-translationally associates with nascent Rpl5p
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identified, four candidate genes (VMS1, YOS9, MRH, and 
KCS1) were tested for their involvement in hydrolysate toxin 
tolerance.

VMS1 and YOS9 gene functions are important for hydro-
lysate toxin tolerance, since the knockout mutants of these 
genes were more sensitive to hydrolysate toxin than wild 
type (Fig. 3). The VMS1 product, Vms1p, forms a com-
plex with Cdc48p and Npl4p. The Vms1p-Cdc48p-Npl4p 
complex acts in the ribosome quality control pathway, in 
which Vms1p removes tRNA from nascent polypeptides 
at stalled ribosomes (Verma et  al. 2018). The Vms1p-
Cdc48p-Npl4p complex functions in retrotranslocation 
of aberrant mitochondrial proteins (particularly pro-
teins damaged by oxidative stress) to the cytoplasm for 

ubiquitin–proteasome–dependent degradation (Heo et al. 
2010; Nielson et al. 2017). The Vms1p-Cdc48p-Npl4p com-
plex also retrotranslocates aberrant ER (endoplasmic reticu-
lum) proteins for degradation via the ERAD (endoplasmic-
reticulum-associated protein degradation) system (Tran et al. 
2011). Yos9p is an ER-localized lectin containing a mannose 
6-phosphate receptor homology (MRH) domain (Hosokawa 
et al. 2009). This domain recognizes an N-glycan–specific 
structure (Man7GlcNAc2) on misfolded glycoproteins tar-
geting them for degradation via the ERAD pathway (Sza-
thmary et al. 2005). Vms1p and Yos9p functions are thus 
linked by the ERAD system for removal of aberrant ER 
proteins. Recently, Kocaefe-Ozsen and coworkers (2022) 
also reported that the UFD1 gene (encodes a cofactor of the 

Fig. 3   Hydrolysate toxin toler-
ance of CEN.PK2-1C (CEN.
PK), CEN.PK2-1C_DET1Δ 
(DET1Δ), CEN.PK2-
1C_VMS1Δ (VMS1Δ), CEN.
PK2-1C_KCS1Δ (KCS1Δ), 
CEN.PK2-1C_MRH1Δ 
(MRH1Δ), CEN.PK2-
1C_YDR042CΔ (YDR042CΔ), 
CEN.PK2-1C_YOS9Δ 
(YOS9Δ), and CEN.PK2-
1C_SYO1Δ (SYO1Δ). a Spot 
test; all strains were spotted on 
the same YPD plate supple-
mented with synHTs. Growth 
was recorded at day 3 (30 °C). 
Serial dilutions of each strain 
were spotted on the plate, as 
indicated on the top. b Growth 
and c ethanol production titers 
of CEN.PK2-1C and deletion 
strains. Fermentation was per-
formed at 30 °C in YPD with 
synHTs and 100 g/L of glucose 
(n = 3)



Applied Microbiology and Biotechnology          (2024) 108:21 	

1 3

Page 9 of 13     21 

Cdc48p-Npl4p-Ufd1p) and ATG40 (encodes an autophagy 
receptor) play important roles in enhanced oxidative stress 
tolerance in a S. cerevisiae strain obtained by evolutionary 
engineering. The suggested functions of these two genes 
contribute to the dislocation of misfolded proteins and ER 
degradation.

The MRH1 knockout strain demonstrated significantly 
lower growth and ethanol production titer in the presence 
of synHTs compared with CEN.PK2-1C (Fig. 3), which is 

mainly due to acetic acid hyper-sensitivity (Fig. 4). Mrh1p 
is a membrane-bound protein related to heat shock protein 
(Hps30p); this protein and its paralog YRO2 (Yro2p) have 
been reported to play roles in tolerance to acetic acid (Wu 
et al. 2000; Mira et al. 2010; Haitani et al. 2012; Takabatake 
et al. 2015). As suggested by Sklodowski and coworkers 
(2017), Mrh1p is a pseudokinase as evidenced from muta-
tions in the conserved kinase motifs, which modulate its 
function in the recognition of chemical signals to recruit 
other proteins. It has also been reported that the upregulation 
of HSP30 and YRO2 genes is associated with an oxidative 
stress response in an iron-resistant S. cerevisiae strain (Bala-
ban et al. 2019). Similarly, in a coniferyl aldehyde-resistant 
strain of S. cerevisiae that showed cross-resistance to van-
illin, ferulic acid, and 4-hydroxybenzaldehyde, the HSP30 
gene has been found to be upregulated (Hacısalihoğlu 
et al. 2019). These findings suggested important roles of 
MRH1, HSP30, and YRO2 in stress tolerance, particularly in 
response to acetic acid and other chemical stressors.

KCS1 encodes an inositol hexakisphosphate/heptakis-
phosphate kinase that synthesizes the 5-diphosphoinositol 
pentakisphosphate (5-IP7) and inositol octakisphosphate 
(IP8) (Taylor et  al. 2012). These high-energy signaling 
molecules are involved in diverse cellular processes such 
as regulation of autophagy, DNA repair, cell wall synthe-
sis, telomere maintenance, and phosphate homeostasis 
(Bennett et al. 2006; Onnebo and Saiardi 2007; Bhandari 
et al. 2007). The changes in phosphatidylinositol-mediated 
signaling pathways and phosphate metabolism caused by 
mutations in STT4 (encodes phosphatidylinositol-4-kinase) 
and VPS34 (encodes phosphatidylinositol-3-kinase) have 

Table 3   Maximum specific growth rate (µMax) of Saccharomyces 
cerevisiae strains cultured in the presence of synthetic hydrolysate 
toxins

*The cell biomass was monitored every 5 min in YPD (100 g/L glu-
cose) at 30 °C, 1000 rpm for 48 h. Specific growth rates were calcu-
lated from 0 to 28-h time points. Means with the same letter are not 
significantly different (n = 5)

µMax (h−1)* S.D

CEN.PK2-1C 0.0363c,d 0.001
CEN.PK2-1C_VMS1Δ 0.0101a 0.001
CEN.PK2-1C_KCS1Δ 0.0147a 0.001
CEN.PK2-1C_MRH1Δ 0.0237b 0.002
CEN.PK2-1C_YOS9Δ 0.0258b 0.004
CEN.PK2-1C_SYO1Δ 0.0294c 0.001
CEN.PK2-1C_VMS1rep 0.0389d 0.001
CEN.PK2-1C_KCS1rep 0.0334c 0.001
CEN.PK2-1C_MRH1rep 0.0361c, d 0.002
CEN.PK2-1C_YOS9rep 0.0353c, d 0.003
CEN.PK2-1C_VMS1repMRH1rep 0.0335c 0.001
CEN.PK2-1C_VMS1repYOS9rep 0.0333c 0.001

Fig. 4   Characterization of acetic acid, furfural, and synHTs toler-
ance of CEN.PK2-1C (CEN.PK); CEN.PK2-1C_MRH1Δ (MRH1Δ); 
CEN.PK2-1C_MRH1 knock-in (MRH1rep); CEN.PK2-1C_VMS1Δ 
(VMS1Δ); and CEN.PK2-1C_VMS1 knock-in (VMS1.rep). All strains 

were spotted at serial dilutions as indicated on the top of YPD plates 
containing 0.6% acetic acid, 0.02% furfural, or synHTs. Growth at 30 
°C was recorded on day 3
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also been reported in an iron-resistant strain of S. cerevisiae 
(Balaban et al. 2019).

From the available information on the function of the 
VMS1, YOS9, MRH1, and KCS1 genes described above, 
we propose three pathways that are involved in response to 
hydrolysate toxin: (1) the ERAD pathway; (2) plasma mem-
brane protein association; and (3) the phosphatidylinositol 
signaling system. The functions of these pathways in hydro-
lysate toxin sensitivity can be understood by considering 
the cellular stresses imposed by hydrolysate toxins. The 
aldehyde hydrolysate toxins furfural and hydroxymethyl fur-
fural can induce the accumulation of reactive oxygen species 

(ROS) that cause damage to mitochondria, DNA, proteins, 
lipids, and the cytoskeleton (Allen et al. 2010). S. cerevi-
siae possesses NADPH and/or NADH cofactor-dependent 
aldehyde reductase/dehydrogenase enzymes that are capa-
ble of detoxifying aldehyde hydrolysate toxins. However, 
the action of these enzymes may be insufficient to prevent 
the accumulation of ROS-mediated damaged mitochondrial 
proteins triggered by aldehyde hydrolysate toxins, which 
must be removed by the action of the ERAD system and 
autophagy. Hydrolysate toxins, especially weak acids, can 
trigger osmotic stress (Guo and Olsson 2014). To counter 
this osmotic stress, S. cerevisiae maintains intracellular pH 

Fig. 5   Real-time growth measurement and ethanol production titers 
over 48 h. a Comparison of growth profiles of CEN.PK2-1C (CEN.
PK), CEN.PK2-1C_VMS1Rep (VMS1Rep), CEN.PK2-1C_KCS1Rep 
(KCS1Rep), CEN.PK2-1C_MRH1Rep (MRH Rep), and CEN.PK2-
1C_YOS9Rep (YOS9Rep). b Comparison of growth profiles of CEN.
PK2-1C, CEN.PK2-1C_VMS1RepMRH1Rep (VMS1Rep MRH1Rep) and 

CEN.PK2-1C_VMS1RepYOS9Rep (VMS1Rep YOS9Rep) strains. c Etha-
nol production titers of CEN.PK2-1C, knock-out, and knock-in strains 
at 16, 24, and 48 h of fermentation (asterisks indicate significant at 
0.05 level). Data shown in a, b, and c are mean values obtained from 
three independent experiments; error bars represent standard devia-
tions
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through the proton efflux action of the plasma membrane 
H+-ATPase (Holyoak et al. 1996). The redox imbalance and 
energy depletion caused by hydrolysate toxins subsequently 
affect cell growth and other cellular properties such as the 
cell turgor, amino acid pool, and mitochondrial integrity 
(López et al. 2021). The phosphatidylinositol signaling sys-
tem is also vital for S. cerevisiae to maintain normal growth, 
cell wall integrity, and adaptation to hypersaline stress 
(Dubois et al. 2002). Overall, the oxidative, osmotic, and 
acid stresses caused by hydrolysate toxins deplete the energy 
supply to maintain the proper cellular processes, including 
the level of high-energy inositol-pyrophosphate molecules 
produced from the phosphatidylinositol signaling system, 
which are crucial for cell growth, membrane integrity, and 
homeostatic responses to osmotic stress in S. cerevisiae 
(Dubois et al. 2002). The VMS1 and MRH1 knock-in strains 
demonstrated significantly greater ethanol production titers 
in the presence of synHTs compared with the CEN.PK2-1C 
strain (Fig. 5c), suggesting that the variants originating from 
strain BCC39850 contribute to gain-of-function phenotypes. 
No marked synergistic effect was observed in the double 
knock-in experiment (Fig. 5c), suggesting that epistatic 
interactions controlling the tolerance trait are complex and 
dependent on the strain genetic background (Gasch et al. 
2016; Sardi et al. 2016).

This work demonstrates the use of QTL mapping to iden-
tify genes associated with hydrolysate toxin tolerance in the 
natural S. cerevisiae strain BCC39850. VMS1, YOS9, MRH, 
and KCS1 were thus identified for the first time as genes 
controlling hydrolysate toxin tolerance in S. cerevisiae. The 
functions of these genes suggest that the tolerance involves 
the ERAD pathway, plasma membrane protein association, 
and the phosphatidylinositol signaling system. The results 
allow us to better understand the molecular mechanisms of 
hydrolysate tolerance in S. cerevisiae. These can be used for 
further development of yeast strains with improved chemical 
tolerance for industrial applications.
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