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Abstract
Observational studies have determined numerous correlations between sequence-based gut microbiota data and 
human mental traits. However, these associations are often inconsistent across studies. This inconsistency is one 
of the reasons that mechanistic validation studies of the observed correlations are lagging, making it difficult to 
establish causal associations. The absence of consistent study findings may partially be due to the lack of clear 
guidelines for identifying confounders of relations between complex microbial communities and mental conditions. 
Gut microbial complexity also impedes deciphering microbiota-host relations by using a single analytical approach. 
The aim of the current review is to help solve these problems by providing methodological recommendations for 
future human microbiota-gut-brain axis research on the selection of confounders, the use of integrative 
biostatistical methods, and the steps needed to translate correlative findings into causal conclusions.

Keywords: Microbiota-gut-brain axis, gut microbiota, mental development and health, correlation, causation, 
confounders, statistical analyses

INTRODUCTION
In the past decades, scientists have found that germ-free, antibiotic-treated, or gnotobiotic rodents show 
substantial changes in brain physiology and behavior[1]. These findings were paramount in establishing the 
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emerging role of the gut microbiota in brain development and mental health. In the following years, 
differences in microbial composition were frequently observed in case-control studies between neurotypical 
individuals and those with psychopathologies such as attention deficit hyperactivity disorder (ADHD), 
autism spectrum disorder (ASD), major depressive disorder (MDD), and generalized anxiety disorder 
(GAD)[2-5]. Recently, with a rise in the number of cohort studies, longitudinal relations between gut 
microbiota and host behavior have been reported more often[6-10]. Meanwhile, animal studies have served to 
discover several potential molecular mechanisms underlying observations in humans, including pathways 
related to aspects of immunity, the endocrine system, and the vagus nerve[1,11,12]. Specifically, the gut 
microbiota can generate a wide variety of metabolites, such as short-chain fatty acids and neurotransmitters. 
These neuroactive microbial metabolites can influence the gut barrier and dendritic cells to regulate 
immune function, as well as affect enterochromaffin cells to release gastrointestinal hormones. In addition, 
microbial signals can be detected by the vagus nerve in the form of microbiota-derived metabolites, or 
directly influence brain function via the vagus nerve as indicated by vagotomy studies. Collectively, these 
links between the gut and the brain are defined as the microbiota-gut-brain axis (MGBA)[1,11].

Due to the wide use of DNA sequencing techniques in describing gut microbiota composition, a high 
number of correlations have been found between the microbiota and host observable traits (e.g., brain 
structure and function, and host behavior). However, these associations are mostly variable and inconsistent 
across observational studies, and lack follow-up validation[2-10]. The lack of consistency in findings also 
makes it more challenging to set up mechanistic validation studies aimed at establishing causal associations. 
And indeed, mechanistic validation studies on correlational findings fail to keep pace, largely hampering 
their biological interpretation and translation towards clinical applications.

The inconsistencies in correlational findings can be attributed to different approaches from microbiology, 
genomics, epidemiology, bioinformatics, statistics, and other fields[13]. To facilitate the replicability and 
reproducibility of human microbiome research, a multi-disciplinary working group has adapted and 
developed a checklist called Strengthening The Organization and Reporting of Microbiome Studies[13]. This 
checklist provides guidance on how to concisely and completely report microbiome findings, of which the 
selection of potential confounders is an important part. Confounders are variables that influence both 
predictors and outcomes, and that require proper identification before being selected for use in multivariate 
statistical analysis. It is not easy to identify confounders of relations between diverse and complex microbial 
communities and mental traits because of limited knowledge of these intricate systems. This complication 
makes examining relations along the MGBA a challenging endeavor. Next to finding adequate ways of 
identifying confounders, the currently used statistical analyses are in need of close inspection and 
improvement, as they also may be behind inconsistencies in correlational findings. To this end, it is 
necessary to not only adopt suitable analytical methods but also use them integratively.

In this review focused on human MGBA research, we present methodological considerations aimed at 
helping to move the field forward: on the selection of confounders, on statistical approaches, and on how to 
move from correlation to causal inferences.

CHALLENGES IN SELECTING CONFOUNDERS
For observational studies aiming to infer potential causal relations, it remains a major concern to reduce the 
bias introduced by confounders[14,15]. It is not a simple endeavor to identify confounders in studies focused 
on associations between complex systems with numerous variables (e.g., the gut microbiota and host 
behavior), as knowledge about the relations between these variables is often insufficient and unavailable.
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In the following paragraphs, we present several considerations for choosing confounders, with the goal of 
inspiring the field:

(1) It is common in this field to choose potential confounders by referring to what has been previously 
reported in the literature. The most frequently used confounders when exploring relations along the MGBA 
in community samples include age, sex, BMI (birth weight for infants), diet (breastfeeding for infants and 
children), antibiotic use, and gastrointestinal symptoms. In addition, alcohol consumption frequency has 
recently been identified as a microbiota-related confounding host variable by Vujkovic-Cvijin et al., despite 
the fact that this variable has not received sufficient attention in the MGBA studies to date[15]. For infants 
and children, additional confounders may need to be carefully addressed, i.e., gestational duration, delivery 
mode, siblings, age, parental income, lifestyle, health conditions, and education level of parents (especially 
of primary caregiver). However, the current scarcity of MGBA research about microbiota-host links in 
specific fields (e.g., microbial relations to problem behavior and prosociality in community samples) means 
that very few references are available for confounder selection. Table 1 illustrates the variation in the use of 
confounders in published studies[6-10,16-24]. Furthermore, as the gut microbiota and host observable traits of 
mental development and health are sensitive to many variables (known vs. unknown; detectable vs. 
undetectable), it is nearly impossible to include all of them. To visualize such complex relations, a directed 
acyclic graph (DAG) can be helpful, as it provides insight into variables that have to be accounted for[25]. 
Criteria to identify such variables with the use of DAGs have been elaborated by Cinelli et al.[26]. In 
microbiota research, Eckermann et al. used a DAG to graphically describe potential confounders of the 
relation between gut microbiota and executive functions. This, in turn, provided a strong rationale for 
choosing the specific confounders for the analyses[27].

(2) When assessing a confounding effect, statistical significance is often determined based on a simple P 
value. The P value is used to decide whether to accept or reject the null hypothesis. Although widely 
adopted so far, more and more researchers have called for an end to simply using such a conventional and 
dichotomous way when declaring if an outcome rebuts or supports a hypothesis[28]. Instead of being 
overdependent on a P value, more attention should be given to a confidence interval (or a credible interval), 
which provides the range of plausible values of a relation[29].

(3) Collinearity can happen when two or more variables are strongly interrelated. Although researchers are 
aware of this phenomenon, the degree of collinearity has not been frequently reported in previous 
microbiota studies. Including confounders with high collinearity levels can distort the interpretation of 
outcomes, and for this reason, it is advisable to pre-check and report collinearity.

(4) Presenting both crude relations without confounders and adjusted relations with confounders is a 
common practice in epidemiological research[30-32]. This provides information about how confounders 
influence associations and increases the interpretability of outcomes. For this reason, it is advisable to show 
both relations when studying microbiota-host links.

(5) As a good step forward, pre-registering considerations and methods that will be used for confounder 
selection (also in the exploration of the MGBA discussed later) on open science platforms are highly 
recommended. Study pre-registration strengthens the transparency, credibility, and scientific value of a 
study by reporting original data analysis plans, hence reducing the chances of P-hacking or data dredging, 
and of reporting chance findings.
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Table 1. Commonly included confounders in human MGBA research focused on community samples

Parameter Design Sample size; ages; 
country Potential confounders

Year 
and 
ref.

Longitudinal N = 89; ages = one and 
two years; USA

Age, sex, birth weight, delivery mode, siblings, breastfeeding, parental 
education level

2018[6]

Longitudinal N = 309; ages = three to 
six months and three 
years; USA

Age, sex, delivery mode, breastfeeding, antibiotic use, gestational 
duration, parental education level, parental ethnicity, family income

2019[7]

Cross-
sectional

N = 39; age = one year; 
USA

Age, sex, birth weight, delivery mode, siblings, breastfeeding, 
antibiotic use, gastrointestinal symptoms, gestational duration, 
parental education level, parental ethnicity, parental age at childbirth

2019[20]

Cross-
sectional

N = 46; age = three years; 
China

Age, sex, breastfeeding, parental age, parental education level 2021[21]

Longitudinal N = 260; ages = six weeks 
and one to three years; 
USA

Age, sex, delivery mode, breastfeeding, gestational duration, parental 
age, maternal education level, maternal smoking

2021[22]

Longitudinal N = 405; ages = one and 
two years; Canada

Age, sex, delivery mode, siblings, breastfeeding, antibiotic use, ear 
infection, maternal ethnicity, maternal weight, maternal antibiotic use, 
family income

2021[8]

Cognition

Longitudinal N = 90; ages = birth to 60 
months; Italy

Sex, delivery mode 2022[23]

Longitudinal N = 201; ages = one 
month to two years; 
Australia

Age, sex, delivery mode, siblings, breastfeeding, antibiotic use, 
gestational duration, pets

2020[9]

Longitudinal N = 260; ages = six weeks 
to three years; USA

Age, sex, delivery mode, breastfeeding, gestational duration, parental 
age, maternal education level, maternal smoking

2021[22]

Longitudinal N = 193; ages = one 
month to ten years; The 
Netherlands

Age, sex, birth weight, delivery mode, breastfeeding, solid food, 
antibiotic use

2022[10]

Cross-
sectional

N = 248; age = four years 
on average; Canada

Birth weight, delivery mode, antibiotic use, diet, maternal age, 
maternal education level, family income

2022[24]

Problem behavior

Cross-
sectional

N = 1,784; age = ten 
years; Multi-country

Age, sex, BMI, antibiotic use, host genetics, country of origin, maternal 
education, technical factors related to microbial processing

2023[16]

Cross-
sectional

Tested cohort 
N = 1,054; age = 51 years 
on average; Belgium 
Validated cohort 
N = 1,070; age = 45 years 
on average; The 
Netherlands

Age, sex, BMI, stool consistency, gastrointestinal symptoms, 
antidepressant use

2019[17]

Longitudinal N = 786; age = 65 to 69 
years on average; UK

Age, sex, BMI, diet, antidepressant use, technical factors related to 
microbial processing

2021[18]

Depression-relevant 
mental outcomes

Cross-
sectional

N = 3,211; age = 50 years 
on average; Multi-country

Age, sex, BMI, education, ethnicity, physical activity, smoking, alcohol 
use, antibiotic use, proton-pump inhibitor use, gastrointestinal 
symptoms, diabetes

2022[19]

In sum, there is no gold standard method for confounder selection and no consensus on the basis of which 
confounders have to be included in MGBA research. As a consequence, different studies often comprise a 
varied set of confounders, making comparisons and meta-analyses often hard to implement. Following the 
suggestions presented above can help improve the solidity and comparability of the results of this research 
field.

EXPLORING THE MGBA THROUGH INTEGRATIVE ANALYTICAL APPROACHES
The gut microbiota is a highly complex system. Compositional analysis by DNA sequencing techniques 
generates a vast amount of data, which are usually high-dimensional, phylogenetically structured, zero-
inflated, and over-dispersed[33]. These microbial features pose great difficulties when examining microbial 
communities. Using a suitable method that can better handle such features can improve the interpretation 

MGBA: Microbiota-gut-brain axis. 
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of outcomes. In the following, we discuss the pros and cons of several complementary and sophisticated 
biostatistical approaches used in the literature to explain microbial relations to host observable traits along 
the MGBA [Table 2]: (1) constrained methods such as RDA and CCA (acronyms and full names of 
analytical approaches are listed in Table 3)[10,34,35]; (2) RF algorithm[36-39]; (3) cluster-based approaches (e.g., 
the framework of Dirichlet multinomial mixtures[17,40,41] and partitioning-around-medoid algorithm[42]); 
(4) GLMs[17,43,44]; and (5) Bayesian linear models[27].

RDA directly shows how much variation in microbial composition is explained by host observable traits of 
mental development and health. By drawing a triplot including samples, microbial taxa, and observable 
traits, we can deduce which taxa fit an RDA model the best and how taxa are potentially related to mental 
health outcomes. This then provides information for follow-up validations of specific taxa. However, as 
RDA assumes linear relations between microbial data and observable traits, it is not suitable to explain 
complex non-linear relations. As a more appropriate alternative, another constrained ordination analysis, 
i.e., CCA, can be used for analyzing unimodal relations.

Compared to RDA (or CCA) models, RF models can identify both linear and non-linear relations between 
microbial data and observable traits. However, RF models fit data the best with an appropriate number of 
samples[45]. To determine the best sample size, estimates of out-of-bag error can be used. Out-of-bag 
estimates reflect the uncertainty of RF models in predicting the outcome of interest with the given sample 
size[46]. When working with an appropriate number of samples, RF models provide useful information 
regarding the importance of specific microbial taxa, and permit the selection of relevant taxa for 
downstream validations.

Cluster-based approaches can compress complex high-dimensional microbial data into a simplified low-
dimensional matrix and are therefore considered to be a useful tool in identifying microbial patterns with 
different compositional features. This can largely facilitate the comparisons of mental health outcomes 
between compositional patterns. However, it is important to note that reduction of dimensionality increases 
the risk of unexpectedly losing relevant information in the data.

In addition to the three multivariate analytical approaches aforementioned, GLMs and Bayesian linear 
models can be used to explore univariate relations between single microbial taxa and observable traits[17,47]. 
In general, running a GLM is quicker and computationally less demanding compared to running a Bayesian 
linear model. However, Bayesian models outperform GLMs in several aspects: (1) use of a posterior 
distribution as an alternative to a P value; (2) ability to incorporate previous information from literature by 
including a prior probability distribution; and (3) extreme flexibility in straightforwardly fitting models to a 
complex data set with missing observations and multidimensional outcomes[48]. Using these models can help 
shed light on specific taxa that have the potential of being key biomarkers.

Note that single models may never adequately represent all aspects of the highly complex MGBA. For this 
reason, an integrative use of analytical approaches in exploring the MGBA in observational studies appears 
highly advisable. Up till now, an increasing number of techniques have been developed to achieve specific 
goals in the field of gut microbiota research. One major goal is the identification of microbial taxa that differ 
in their (relative) abundances between different groups of participants. For this aim, methods such as 
LEfSe[49], MaAsLin2[50], ANCOM[51], and ALDEx2[52], have been designed. However, the determination of 
differentially abundant taxa can vary drastically between methods due to varying concepts, algorithms, and 
requirements, and hence, it is necessary to consider such discrepancies when comparing findings between 
studies[53]. Moreover, due to a recent growing body of longitudinal microbiota cohorts, longitudinal 
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Methods Pros Cons

Constrained
methods

Provide information on explained variation in 
microbial composition 
Allow to plot samples, microbial taxa, and 
observable traits in the same figure 
Permit follow-up validations of specific taxa

Do not allow to detect complex non-linear relations

Random forest 
algorithm

Can identify both linear and non-linear relations 
Selection of microbial taxa based on their 
importance is available

Require an appropriate number of samples, which can be 
determined by out-of-bag error

Multivariate

Cluster-based 
approaches

Facilitate comparisons by compressing high-
dimensional data

Increased risk of information loss

Generalized linear 
models

Computationally simple and quick Often limited by a dichotomous outcome (P value)Univariate

Bayesian linear 
models

Present results in the form of a posterior 
distribution 
Can increase result precision by including a prior 
probability distribution 
Missing observations and multidimensional 
outcomes are acceptable

Computationally highly demanding

Table 3. Acronyms and full names of analytical approaches used for exploring microbial relations to host observable traits along the 
MGBA

Acronym Full name

RDA Redundancy analysis

RF Random forest

GLM Generalized linear model

CCA Canonical correlation analysis

LEfSe Linear discriminant analysis effect size

MaAsLin2 Microbiome multivariable associations with linear models

ANCOM Analysis of composition of microbiomes

ALDEx2 ANOVA-like differential expression analysis

methods have been developed to capture both intra-individual dynamics and inter-individual differences 
between groups of interest[54]. For example, a time-course gene set analysis has been developed and is able to 
detect changes in a group of genes over time[55]. In 2021, Roswall et al. implemented this time-course 
analysis in a longitudinal child cohort and distinguished four microbial developmental trajectories from 
birth to the age of five years[56]. However, to date, longitudinal methods have not been frequently applied to 
real microbiota data, and their performance awaits to be validated. Summarizing to obtain the most 
thorough description and information-rich view of the MGBA in observational studies, it is highly 
recommended to implement multiple complementary and sophisticated statistical approaches.

MOVING FROM CORRELATION TO CAUSATION
As the well-known phrase says, “correlation does not imply causation”. It remains a great challenge to
translate correlational findings into conclusive proofs of causality, especially along the MGBA. To add more
innovative insight into this axis, we introduce a workflow to explore causal relations [Figure 1].

Step 1 shows two common types of microbial composition-based correlations, including differentially
abundant taxa between groups and linear relations between taxa and observable traits. Although these
correlations have been reported in an increasing number of studies, little convergence in correlation
direction and strength has been reached till now.

MGBA: Microbiota-gut-brain axis. 

MGBA: Microbiota-gut-brain axis. 

Table 2. The pros and cons of analytical approaches used in MGBA research
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Figure 1. The workflow of moving from sequence-based correlative results towards causality. GLP-1: Glucagon-like peptide 1; MGBA: 

microbiota-gut-brain axis;  PYY: peptide YY. (created with https://biorender.com/)

Step 2 introduces several approaches to verify the consistency of the observed correlations. A useful strategy
to synthesize diverse outcomes from the literature into a general opinion is meta-analysis. Meta-analyses
have been conducted on behavioral profiles on which considerable evidence has been collected to date, such
as on ASD[3], MDD[4,57], and ADHD[2,3]. Although to the best of our knowledge, meta-analyses have not yet
been applied to assessing microbiota-behavior links in community samples due to the limited number of
studies, such analyses are highly recommended, once there are sufficient data. When meta-analyses are not
feasible, the robustness of results within one study can be enhanced by performing repeated measures or
including a validation data set.

Relative abundance-based correlations are widely used in describing microbial links to mental health
outcomes. However, relative abundance data have some inherent limitations, including increased
correlational biases and false discovery rates[58,59]. This may lead to difficulties in objectively capturing inter-
individual variations in microbial composition[60-62]. Therefore, instead of only using relative abundances, it
is recommended to additionally include absolute abundances (or microbial load, measured by, e.g.,
quantitative PCR or flow cytometry) when attempting to convert statistically significant findings into
biological interpretations.

Once the consistency of the observed correlations is verified, we can give more attention to the inference of
molecular mechanisms. To this end, an integrative use of omics-driven approaches is suggested in Step 3.
Microbial gene functions can be the first accessible indicators for explaining the complex gut-brain
interplay. Furthermore, although many studies have uncovered aspects of the gut-brain interplay by
identifying links to specific microbial taxa, it is of fundamental importance to realize that different taxa can
encode the same metabolic functions and play an equivalent role in the gut-brain axis. Therefore, next to

https://biorender.com/


Page 8 of 13 Ou et al. Microbiome Res Rep 2024;3:1  https://dx.doi.org/10.20517/mrr.2023.33

focusing on taxonomic variability, functional redundancy (i.e., the capacity to perform the same
biochemical function by the coexistence of multiple distinct microbial taxa or their genomes[63]) in diverse
microbial systems should also be taken into account in MGBA studies. For broadly used 16S rRNA gene
sequence data, prediction tools, such as Picrust2, Tax4Fun2, and PanFP[64-67], can leverage the data to the
maximum. Although these prediction tools have been criticized for reference bias and limited resolution[65],
the increasing availability of reference data renders them more feasible alternatives to the still quite
expensive shotgun metagenomic sequencing. Additionally, other omic techniques can be incorporated into
the selection process of key pathways and possible biomarkers through multi-omics data integration
approaches, such as iClusterPlus, mixOmixs, JIVE, and PARADIGM[68]: (1) transcriptomics provides
information on sample-specific gene expression features (tools include, e.g., DESeq2, edgeR, and
limma[69-71]); (2) proteomics measures the entire set of proteins in samples and therefore can be used to
discover potential biomarkers (tools include, e.g., MaxQuant, SpectroNaut, PEAKS, and DIA-NN[72-75]); and
(3) metabolomics studies metabolites in samples (tools include, e.g., Mzmine3, MetaboAnalyst 5.0, and
MetFlow[76-78]). These techniques can help increase the understanding of relevant molecular pathways active
and relevant in specific conditions[79].

Before validating the inferred molecular mechanisms of candidate taxa, Step 4 emphasizes the importance
of isolation, cultivation, and characterization of specific microorganisms and even whole microbial
communities. The availability of cultured representatives of target microorganisms is a prerequisite to meet
the demand for experimental designs and even therapeutic strategies. A study in 2005 reported that
approximately 80% of human gut bacteria have not been cultured yet[80]. Compared with labor-intensive and
low-throughput traditional cultivation approaches, new cultivation tools such as different droplet-based
platforms, enable the anaerobic growth of microbial cells in millions of microscale droplets[81,82]. These
picoliter droplets can be automatically separated based on colony density to enhance the expansion of slow-
growing cells[82]. With high-throughput cultivation approaches being developed rapidly, it will be technically
possible in the coming decades to produce personalized collections of gut microbial taxa with known
genotypical and phenotypical characteristics[83].

In addition to collecting single microorganisms, it is also important to intensify research on studying
interactions between various microorganisms: not only predominant bacteria, but also other microbes, such
as fungi and archaea, as well as viruses[83]. Fungi regulate gut immunity and are involved in gut-related
diseases, such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer[84]. After
millions of years of coevolution, gut fungi and bacteria have developed various types of interactions,
including mutualistic, commensal, and competitive relations[84]. Archaea in the human gut, mainly
composed of methanogens, produce methane (i.e., a potential neuromodulator and immunoregulator) and
affect host gut motility[85]. Archaea also interact with bacteria in the gut by utilizing bacteria-derived
products and consuming hydrogen, which improves energy yield and shifts metabolic outcomes[85].
Moreover, the binding of viruses to bacteria has been shown to promote bacterial adhesion to eukaryotic
cells and to increase coinfection and genetic recombination[86]. These complex interactions between host,
bacteria, fungi, archaea, and viruses constitute important challenges, but also underline the value of efforts
aimed at obtaining a more detailed picture of these dynamic interactions. Only then will we be able to
determine more precisely how different microorganisms influence host phenotypes.

Step 5 presents currently available in vitro and in vivo models used in validating pathways (e.g., immunity,
endocrine system, and vagus nerve as three main pathways) along the MGBA[1,11]. Depending on study
designs, different in vitro and in vivo models can be selected, such as organoids and animals (e.g., rodents,
zebrafish, fruit flies, and nematodes), respectively[1,87,88]. Although in vitro models are low-cost, time-
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efficient, and highly repeatable compared to in vivo models, they are often not performed in physiological 
conditions and hence lack precise descriptions of underlying molecular mechanisms. In spite of this, newly 
developed in vitro models increasingly address these disadvantages. For instance, organoids are self-
organized three-dimensional tissue constructs that show in vivo-like structure and regional specification[89]. 
Additionally, in vivo rodent models mimic potential causes and phenotypic outcomes of certain mental 
disorders (e.g., ASD, and depression and anxiety disorders), adding invaluable credits to causality 
exploration[87,90]. For example, the probiotic Limosilactobacillus reuteri (previously called Lactobacillus 
reuteri) was applied to specific-gene mutant rodent models with behavioral deficits, and this taxon rescued 
social deficits and improved oxytocin levels[87]. According to the FAO/WHO definition, a probiotic strain 
must be (1) sufficiently characterized; (2) safe for the intended purpose; (3) supported by at least one human 
clinical study; and (4) alive at an adequate amount during shelf life[91]. Although not all candidate taxa may 
seem qualified probiotics, their metabolites may be interesting biomarkers or even drugs for various mental 
disorders.

Despite the feasibility given by model organisms in exploring causality, it is important to reiterate that host 
observable traits are often different between model organisms and human beings, which to some extent 
impedes the translation from bench to bedside[1]. For this reason, well-established validation standards must 
be applied to animal studies beforehand[11]. Moreover, it has to be noted that the gut microbiota is a highly 
complex and interactive consortium, and studies of this community should not be restricted to specific 
microorganisms. To explore microbial communities as a whole, fecal microbiota transplantation (i.e., 
procedures that transfer stool-whole microbial communities from a donor to a recipient) can provide a 
more panoramic view of causal relations along the MGBA[92]. Recently, authoritative guidance (i.e., 
Guidelines for Reporting Animal Fecal Transplant) has been developed for preclinical fecal microbiota 
transplant, which will further facilitate the replicability and reproducibility of studies focused on 
causality[93]. Nevertheless, how microbes interact with each other and jointly influence host phenotypes at a 
molecular level awaits to be fully understood. This is an essential part of the puzzle that should receive more 
attention over the coming years.

CONCLUSIONS
Observational studies have uncovered a large number of correlations between gut microbiota composition 
and host mental development and health. However, these findings often lack consistency, impeding 
biological understanding and mechanistic verifications. To inspire future MGBA research, we (1) present 
several considerations for confounder selection, including the use of DAGs, discontinuing the 
overdependence on P values, checking for and reporting collinearity, presenting results adjusted and not 
adjusted for confounders, and pre-registering studies and analytical methods on open platforms; 
(2) recommend the use of a group of complementary and sophisticated biostatistical approaches when 
deciphering the complexity of the microbiota-host relations; and (3) introduce a five-step workflow for 
shifting sequence-based correlative results into more causal conclusions, including the identification of the 
microbiota-host correlations, the verification of the consistency of the observed correlations, the inference 
of microbial functions via different approaches, the isolation and cultivation of interesting microbial taxa, 
and the mechanistic validation on these taxa in in vitro and in vivo models. At this highly exploratory stage 
of the MGBA field, the first priority is to carry out bias-controlled replication studies to reach a consensus 
on the type and direction of associations. Once consistency is determined, more attention can be given to 
causality.
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