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A B S T R A C T

Background: Capecitabine is an oral chemotherapeutic drug showing antitumor activity through inhibition of thymidylate synthase, an enzyme involved
in folate metabolism. There are concerns about the high intake of certain vitamins, and specifically folate, during chemotherapy with capecitabine.
Whether folate or folic acid, the synthetic variant of the vitamin, impact treatment toxicity remains unclear.
Objective: We studied associations between intake and biomarkers of folate as well as folic acid and toxicities in patients with colorectal cancer (CRC)
receiving capecitabine.
Methods: Within the prospective COLON (Colorectal cancer: Longitudinal, Observational study on Nutritional and lifestyle factors that influence
recurrence, survival, and quality of life) cohort, 290 patients with stage II to III CRC receiving capecitabine were identified. Dietary and supplemental
intake of folate and folic acid were assessed at diagnosis and during chemotherapy using questionnaires (available for 280 patients). Plasma folate and
folic acid levels were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) and were available for 212 patients. Toxicities were
defined as toxicity-related modifications of treatment, including dose reductions, regimen switches, and early discontinuation. Associations of intake and
biomarkers of folate and folic acid with toxicities were determined using Cox proportional hazards regression adjusted for age and sex.
Results: In total, 153 (53%) patients experienced toxicities leading to modification of capecitabine treatment. Folate intake and plasma folate levels were
not associated with risk of toxicities. However, use of folic acid-containing supplements during treatment (hazard ratio (HR) 1.81 and 95% confidence
interval (CI) 1.15-2.85) and presence of folic acid in plasma at diagnosis (HR 2.09, 95% CI: 1.24, 3.52) and during treatment (HR 2.31, 95% CI: 1.29,
4.13) were associated with an increased risk of toxicities.
Conclusions: This study suggests a potential association between folic acid and capecitabine-induced toxicities, providing a rationale to study diet-drug
interactions and raise further awareness of the use of dietary supplements during oncological treatment.
Clinical trial details: This trial was registered at clinicaltrials.gov as NCT03191110.
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Introduction

The B-vitamin folate plays a central role in the mode of action of
several anticancer drugs, including fluoropyrimidines such as capeci-
tabine and 5-fluorouracil (5-FU). Capecitabine is an oral chemothera-
peutic agent for colorectal cancer (CRC) [1, 2]. After conversion to
5-FU, capecitabine inhibits the enzyme thymidylate synthase (TS) [3,
4]. Inhibition of TS results in disturbed nucleotide pools and conse-
quently impairs DNA synthesis and repair, causing antitumor effects
[5]. Reduced folate species can contribute to the stability of a ternary
complex formed with TS and active fluoropyrimidine drug metabolites,
which could theoretically enhance the efficacy but also toxicity and,
thus, side effects of treatment [3, 5, 6].

The toxicity profile of capecitabine is well-characterized, with hand-
foot syndrome and diarrhea being common toxicities [1, 7, 8]. However,
determinants of capecitabine-induced toxicities remain poorly under-
stood [1]. Given the mode of action of capecitabine and the central role
of folate metabolism therein, it is hypothesized that folate intake and
status are potential determinants of toxicity [1, 9]. This hypothesis is
substantiated by clinical applications of the folate vitamer leucovorin
(5-formyltetrahydrofolate or folinic acid) to increase the efficacy of
5-FU due to enhanced binding of the drug with TS [10, 11]. Coadmin-
istration of leucovorin is not recommended for capecitabine, as this has
been associated with excessive toxicity [12, 13].

Some evidence suggests that a higher folate status is associated with
an increased risk of toxicities of capecitabine [14–16]. Most studies
conducted so far were restricted to relatively small (N¼38-150) or
heterogenous populations or did not consider potential confounding
factors, such as age, sex, or capecitabine dose. Moreover, it remains
unclear whether associations might differ for natural folate versus its
synthetic form, folic acid. Folate naturally occurs in foods such as
green leafy vegetables, whereas folic acid, which is more stable and has
a higher bioavailability, is used in dietary supplements and fortified
foods [17, 18]. We have previously shown that higher circulating levels
of folic acid, but not folate, at the time of diagnosis were associated
with an increased risk of CRC recurrence [19].

Further disentangling dietary and supplemental exposures to folate
is important since dietary supplement use is common among in-
dividuals with CRC [20–22], and a substantial part of the worldwide
population is exposed to folic acid through fortification programs [23].
Here, we studied intake and biomarkers of folate and folic acid in
relation to chemotherapy-induced toxicities in patients with stage II to
III CRC undergoing treatment with capecitabine.

Methods

Patients were recruited through the prospective “Colorectal Lon-
gitudinal, Observational study on Nutritional and lifestyle factors”
(COLON) study, which started in 2010 [24]. Design and patient
recruitment have been described before [24]. Briefly, adult patients
with any CRC cancer stage were recruited between August 2010 and
August 2018 from 11 hospitals in the Netherlands. Patients were not
included if they were nonDutch speaking, had a history of CRC or
(partial) bowel resection, inflammatory bowel disease, hereditary CRC
syndromes, or a mental condition affecting abilities to complete
questionnaires.

From the COLON study, we identified those patients with stage II-
III CRC who underwent adjuvant chemotherapy and for whom toxicity
data were available at the time of analyses (N¼309). Patients who
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received regimens without capecitabine (N¼8) were excluded. Also,
patients with missing data on dietary or supplemental intake and
circulating folate and folic acid (N¼6) were excluded. Finally, patients
for whom the toxicity status was undefined (N¼5) were excluded,
resulting in a study population of 290 patients (Figure 1). As the pa-
tients were not recruited as part of a clinical trial but via a hospital-
based cohort, prescribed doses of capecitabine might have varied, but
generally aligned with national treatment protocols (capecitabine:
800–1000 mg/m2, administered twice daily for 14 d followed by a 7-
d rest period)[25, 26]. All patients provided written informed con-
sent. The COLON study was approved by the Committee on Research
involving Human Subjects, Arnhem-Nijmegen, the Netherlands and
was registered at clinicaltrials.gov (NCT03191110).

Dietary and supplemental intake
Habitual dietary intake, reflecting intake 1 mo before diagnosis, was

assessed through a validated 204-item food frequency questionnaire
completed shortly after diagnosis and before start of treatment [27].
The same questionnaire was also completed 6 mo after diagnosis,
reflecting intake (in the past month) during chemotherapy. Dietary
folate intake (of natural folate and folic acid, in μg dietary folate
equivalents (DFE) per d) was calculated based on the frequency of
intake, number of portions and standard portion sizes of the relevant
items using data from the 2011 Dutch food composition table [28].
Supplemental intake of folic acid was assessed through a questionnaire
on dietary supplements developed at Wageningen University [24]. This
questionnaire was also completed shortly after diagnosis (reflecting use
in the past 12 mo) and 6 mo after diagnosis (reflecting use in the past 6
mo, i.e., during chemotherapy). Use of folic acid supplements, as well
as folic acid-containing multivitamins, were considered. For multivi-
tamins, reported brand names were checked to verify whether the
supplement contained folic acid.

Biomarkers
Nonfasted blood samples were collected in EDTA tubes at diag-

nosis and 6 mo after diagnosis. One patient with samples collected after
start of chemotherapy and one patient with the second sample collected
before start of chemotherapy were excluded from biomarker analyses.
Patients who switched to FOLFOX (N¼6) were also excluded from
these analyses. Plasma was stored at -80 �C until analyses at the
Laboratory of BEVITAL, Bergen, Norway (www.bevital.no) were
performed as part of the FOCUS consortium [29]. Folate status was
determined as the sum of 5-methyl-tetrahydrofolate (5mTHF) and its
degradation product MeFox [30, 31] measured by liquid chromatog-
raphy tandem mass spectrometry (LC-MS/MS) as described previously
[19, 32]. Levels of folic acid were also determined using LC-MS/MS
[32]. In the same samples, levels of creatinine were assessed by
LC-MS/MS, providing an approximation of renal function.

Capecitabine-induced toxicities
Data on chemotherapy-induced toxicities were collected from

medical records. To focus on clinically relevant side effects, we defined
toxicities as modifications of capecitabine treatment as described pre-
viously [33]. Toxicity-induced modifications of treatment include dose
reductions or early discontinuation of the capecitabine treatment, as
well as switches from capecitabine-containing regimens to other regi-
mens due to toxicities. Treatment delays were not uniformly reported in
the medical records and were, therefore, not considered. Planned
treatment modifications or modifications in case of progressive disease

http://clinicaltrials.gov
http://www.bevital.no


Figure 1. Flow diagram for patient selection within the COLON study. 1 These numbers represent information on completion of the food frequency ques-
tionnaire (number reported before the slash) and the dietary supplement questionnaire (number reported after the slash).
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were not classified as toxicities and were not considered as outcomes
for this study. We calculated the relative dose intensity (RDI) of the
total given dose as a percentage of the total planned dose. For most
patients, 8 cycles (6 mo) of CAPOX (capecitabine þ oxaliplatin) were
planned according to protocols operational at that time [34]. However,
in the exceptional case of fewer cycles planned, for example due to
updated protocols in more recent years (4 cycles or 3 mo of CAPOX
[34, 35]), the RDI was calculated based on the actual number of
planned cycles.

Descriptive data and covariates
Clinical data were obtained through linkage with the Dutch colo-

rectal audit (DCRA) [36]. Apart from cancer stage (II or III) and tumor
location (colon, rectum), data on the American Society of Anesthesi-
ologists (ASA) physical status (I–III) assessed before surgery were
collected to assess medical comorbidities. Further information on
general and lifestyle factors was obtained through the questionnaires
completed at time of diagnosis or 6 mo after diagnosis. Body mass
index (BMI) was calculated based on self-reported weight and height.

Data analyses
Patients’ characteristics are presented as descriptive data using

medians and interquartile ranges (IQRs) or numbers and percentages.
Associations between the different exposures and risk of toxicity-
induced modifications of treatment were determined through Cox
proportional hazards regression analyses with the number of
completed, unmodified cycles as time variable. Dietary folate intake
was considered continuously (per 10 μg DFE/d). Circulating levels of
folate (in nmol/L) were considered as log2-transformed levels, and the
hazard ratios (HRs) should, therefore, be interpreted per doubling in
folate levels. Use of folic acid-containing supplements was compared
with nonuse as the reference category. Since folic acid was only
detected in a relatively small proportion of our population (10% at
diagnosis), we used information on whether folic acid was detected
(yes or no) as an exposure variable for folic acid status. Patients with
missing data on any of these exposure variables were excluded from the
analyses.

Analyses were adjusted for age and sex. Other potential con-
founders, including BMI (kg/m2), alcohol use (g/d), smoking status
(current, former, never), ASA physical status (I, II or III), cancer stage
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(II or III), and plasma creatinine (μmol/L) as marker for renal function,
were identified based on literature [37–41]. These potential con-
founders were added one by one to the models (Supplemental Table 1).
Since none of these variables changed the HRs by >10%, the final
adjusted models included age and sex as covariates.

Given the importance of drug exposure in toxicity outcomes, we
performed sensitivity analyses additionally adjusted for the starting
dose of capecitabine. All analyses were performed in SPSS version
28.0.1.1 (IBM SPSS Statistics, New York, USA). Statistical signifi-
cance was defined as 95% confidence intervals (CIs) not containing 1.

Results

Median (IQR) age of the patients was 64 (60–69) y, 38% were fe-
male, and most patients (90%) had stage III disease, and the tumor
located in the colon (95%). Capecitabine was predominantly given in
combination with oxaliplatin (87%), with a minority receiving cape-
citabine monotherapy (13%) (Table 1).

Median time between first blood collection and start of chemo-
therapy was 47 (38–57) d. The second blood sample was collected
(median and IQR) 125 (110–143) d after start of chemotherapy, with a
planned chemotherapy duration of 168 d (8 cycles of 3 wk) for most
patients. Median intake of dietary folate was 239 (199–302) μg DFE/
day, plasma folate levels were 11.6 (8.0–16.5) nmol/L, 19% reported
use of dietary supplements containing folic acid, and 10% of the
population had folic acid detected in their plasma at time of diagnosis
(Table 2). At time of diagnosis, patients who used dietary supplements
with folic acid (N¼54, 19%) had higher plasma folate levels (14.9
[8.4–26.7] versus 10.8 [7.9–15.6] nmol/L) and had more often folic
acid detected (19% versus 7%) compared with nonsupplement users
(Supplemental Table 2).

Patients with plasma folic acid detected (N¼21) tended to have
higher plasma folate levels (at diagnosis 19.8 [13.8–29.4] nmol/L)
compared with patients without folic acid (10.6 [7.7–15.4] nmol/L).
Patients switching to FOLFOX (5-FU, leucovorin, oxaliplatin) (N¼6)
because of capecitabine-related toxicities showed an increase in
plasma folate levels over time (þ60.4 [39.2–74.3] nmol/L versus -0.4
[-4.0–3.3] nmol/L in patients without switch). These patients were
excluded in further analyses where biomarkers were considered since
these levels most likely increased due to administration of leucovorin.



TABLE 1
Demographic and clinical characteristics presented for the total study population and by occurrence of capecitabine-related toxicities

Total population N¼290 Toxicity1 N¼290

Yes N¼153 (53%) No N¼137 (47%)

Age at diagnosis (y) 64 (60–69) 64 (61–69) 64 (58–69)
Sex, female (N,%) 111 (38) 62 (41) 49 (36)
BMI at diagnosis (kg/m2), missing N¼6 26.3 (23.9–29.0) 26.2 (23.8–28.7) 26.6 (23.9–29.4)
Smoking status at diagnosis (N,%), missing N¼9
Current 20 (7) 11 (7) 9 (7)
Former 163 (58) 83 (56) 80 (60)
Never 98 (35) 54 (37) 44 (33)

Tumor location (N,%)2

Colon 274 (95) 144 (94) 130 (95)
Rectum 16 (6) 9 (6) 7 (5)

Tumor stage (N,%), missing N¼2
II 28 (10) 14 (9) 14 (10)
III 260 (90) 137 (91) 123 (90)

ASA physical status (N,%), missing N¼13
I 107 (39) 56 (39) 51 (39)
II 150 (54) 81 (56) 69 (52)
III 20 (7) 8 (6) 12 (9)

Plasma creatinine (μmol/L), missing N¼77 77 (69–88) 76 (69–90) 78 (69–88)
Chemotherapeutic regimen (N,%)
CAP monotherapy 37 (13) 26 (17) 11 (8)
CAP þ oxaliplatin (CAPOX) 253 (87) 127 (83) 126 (92)

Relative dose intensity CAP (N,%), missing N¼15 98 (80–100) 81 (63–90) 100 (100–100)

Data are presented as median and interquartile range or numbers and percentages, unless indicated otherwise.
Abbreviations: ASA: American Society of Anesthesiologists, BMI: body mass index, CAP: capecitabine, CAPOX: capecitabine and oxaliplatin.
1 Toxicity was defined as any toxicities resulting in regimen switch, dose reduction, or early discontinuation of the CAP regimen.
2 Colon ¼ cecum, appendix, ascending colon, hepatic flexure, transverse colon, splenic flexure, descending colon, sigmoid colon. Rectum ¼ rectosigmoid

junction and rectum.
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In total, 53% (N¼153) of the population had a toxicity-induced
modification of the capecitabine schedule. Dose reductions were the
main first toxicity-induced treatment modifications, whereas after cycle
7, early discontinuations became most common (Figure 2).

Dietary intake of folate (per 10 μg DFE/d) at diagnosis (HR 1.00;
95%CI: 0.98,1.01) and during treatment (HR 0.99; 95%CI: 0.97,1.01)
was not associated with risk of capecitabine-related toxicities. Also,
plasma levels of folate (per doubling in nmol/L) at diagnosis and during
TABLE 2
Dietary and supplemental intake and plasma levels of folate and folic acid at diag

Total popul

At diagnosis
Dietary folate intake (μg DFE/day), missing N¼9 239 (199-30
Use of supplements with folic acid (N,%), missing N¼6 54 (19)
Plasma folate levels (nmol/L)2,3 missing N¼76 11.6 (8.0-16
Plasma folic acid detected (N,%)3, missing N¼76 21 (10)

During chemotherapy
Dietary folate intake (μg DFE/day), missing N¼27 230 (191-28
Use of supplements with folic acid (N,%), missing N¼23 32 (12)
Plasma folate levels (nmol/L)2,3,4, missing N¼60 12.1 (8.7-16
Plasma folic acid detected3,4(N,%), missing N¼60 17 (8)

Data are presented as median and interquartile range or numbers and percentages
Abbreviations: DFE: dietary folate equivalents, FOLFOX: folinic acid/leucovorin
alpha-hydroxy-5-methyl-tetrahydrofolate.
1 Toxicity was defined as any toxicities resulting in regimen switch, dose reduc
2 Sum of 5-methyl-tetrahydrofolate and MeFox.
3 One patient with blood samples collected after start of chemotherapy and one pa

excluded for biomarker analyses.
4 Patients who switched to FOLFOX (N¼6) were excluded here, since for these

(folinic acid).
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treatment were not associated with toxicities (HR 1.04, 95%CI:
0.82,1.30 and HR 0.94, 95%CI: 0.72,1.23, respectively). Use versus
nonuse of dietary supplements with folic acid during treatment (HR
1.81, 95%CI: 1.15,2.85), but not at diagnosis (HR 1.14, 95%CI:
0.75,1.72), was associated with an increased risk of toxicities. Also, the
detection (versus no detection) of folic acid in plasma was associated
with an increased risk of toxicities (HR 2.09, 95%CI: 1.24,3.52 and HR
2.31, 95%CI: 1.29,4.13 at diagnosis and during treatment, respectively)
nosis and during chemotherapy

ation N¼290 Toxicity1 N¼290

Yes N¼153 (53%) No N¼137 (47%)

2) 232 (198-305) 244 (200-296)
31 (21) 23 (17)

.5) 11.6 (7.5-17.9) 11.3 (8.3-16.2)
17 (15) 4 (4)

1) 229 (186-281) 233 (192-280)
24 (17) 8 (6)

.1) 12.5 (7.9-17.0) 11.9 (9.0-15.6)
14 (12) 3 (3)

.
, 5-fluorouracil, and oxaliplatin, MeFox: pyrazino-s-triazine derivative of 4-

tion, or early discontinuation of the CAP regimen.

tient with the second blood sample collected before start of chemotherapy were

patients folate metabolism may be impacted by administration of leucovorin



Figure 2. Treatment modifications of the capecitabine schedule. Toxicity-
induced modifications of the capecitabine treatment occurred in 153 of 290
patients. The treatment modifications that occurred first in each individual
patient are presented here according to the cycle after which they occurred.
For one patient, it was unknown after which cycle the treatment modification
took place, therefore data for 152 patients are presented here. Abbreviations:
no.: number.
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(Table 3). Sensitivity analyses adjusted for initial dose of capecitabine
showed similar findings (Supplemental Table 3). Model adjustment for
plasma creatinine, reflecting renal function, did not impact the findings
(Supplemental Table 1). Also, analyses that considered the two folate
species (5mTHF and MeFox) separately showed similar findings
(Supplemental Table 4).

Discussion

In this prospective cohort of patients undergoing chemotherapy
with capecitabine for CRC, use of dietary supplements with folic acid
and presence of folic acid in the circulation were associated with an
increased risk of toxicities related to capecitabine. Dietary folate intake
or plasma levels of folate were not associated with risk of these
toxicities.
TABLE 3
Associations between intake and biomarkers of folate and folic acid and risk of c

No. of events / Pop

At diagnosis
Dietary folate intake (per 10 μg DFE/d) 145/280
Use of supplements with folic acid
No 117/230
Yes 30/53

Plasma folate levels (per doubling in nmol/L)1,2 115/212
Plasma folic acid detected2

No 98/191
Yes 17/21

During chemotherapy
Dietary folate intake (per 10 μg DFE/d) 134/262
Use of supplements with folic acid
No 114/235
Yes 23/31

Plasma folate levels (per doubling in nmol/L)1,2,3 112/221
Plasma folic acid detected2,3

No 99/205
Yes 13/16

The Cox proportional hazards regression analyses were adjusted for age (in y) an
1 Plasma folate levels were log2-transformed, and the hazard ratios should there
2 One patient with blood samples collected after start of chemotherapy and one pa

excluded for biomarker analyses.
3 Patients who switched to FOLFOX (N¼6) were excluded for these analyses.
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Folate vitamers are involved in various chemotherapeutic mecha-
nisms, including those of the fluoropyrimidines [4]. The presence of
reduced folate species contributes to stability of a ternary complex
formed with the active fluoropyrimidine drug metabolite and TS [6,
42]. Hypothetically, higher availability of reduced folate species might
thus lead to enhanced TS inhibition and more toxicities. In support of
this hypothesis, earlier small studies suggested that patients with a
higher folate status before start of treatment have a higher risk of
capecitabine-related toxicities [9, 14–16]. Sharma et al. demonstrated
that a higher pretreatment serum folate was associated with a higher
risk of grade 2 to 3 toxicities in 38 patients with advanced CRC [15].
Similarly, pretreatment serum folate levels were associated with grade
�2 toxicity in 126 patients with CRC [14]. Yap et al. [16] showed that
higher serum folate levels were associated with grade �2
capecitabine-induced hand-foot syndrome in 149 patients with various
cancers. Similar findings have been reported for 5-FU-containing
chemotherapy [43], although not all studies were able to confirm as-
sociations between folate status and 5-FU-related toxicities [44, 45].
Only one study reported on intake of dietary folate in relation to risk of
toxicities in 132 gastric cancer patients receiving 5-FU [46]. In this
retrospective cohort, dietary folate intake of >260 μg/d (versus �260
μg/d) was associated with an increased risk of hematologic toxicities
[46]. Within these studies, no distinction between folate and folic acid
was made, nor was intake or exposure to folate or folic acid during
treatment examined. In our study, we observed an association between
plasma folic acid, but not folate, and capecitabine-induced toxicities. In
contrast to the previous studies, we were able to differentiate between
folate and folic acid. The observation that folate was not associated
with toxicities might be explained by the relatively low plasma folate
levels (median at diagnosis ¼11.6 nmol/L) in our population, which
might be inherent to the fact that there is no mandatory fortification
program in the Netherlands. Similarly, the other 2 European studies,
not providing clear indications for an association between folate and
5-FU-related toxicities, showed relatively low folate levels (~8 and 14
nmol/L) [44, 45]. Serum folate levels were higher (~16–27 nmol/L) in
apecitabine-related toxicities

ulation size Hazard ratio 95% confidence interval

1.00 0.98–1.01

Ref
1.14 0.75–1.72
1.04 0.82–1.30

Ref
2.09 1.24–3.52

0.99 0.97–1.01

Ref
1.81 1.15–2.85
0.94 0.72–1.23

Ref
2.31 1.29–4.13

d sex.
fore be interpreted as per doubling in folate level.
tient with the second blood sample collected before start of chemotherapy were

Abbreviations: DFE: dietary folate equivalents.
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the studies from Canada, Australia, China, and Singapore that reported
associations with chemotherapy-induced toxicity [14–16, 43], which
might be due to mandatory fortification policies, dietary supplement
use or dietary traditions in those populations [18, 47, 48].

Detection of folic acid is often due to saturation of the enzyme
dihydrofolate reductase (DHFR)[17, 49] and high intake of folic acid
itself, with supplement use being considered the primary source of
excessive intake [17].As such, circulating folic acidmay be considered a
proxy for an overall higher folate status. Indeed, we observed higher
folate levels in patients with versus those without plasma folic acid. We
have now shown for thefirst time that folic acid, as a supplemental intake
or circulating marker, is associated with risk of capecitabine-related
toxicities.

Theoretically, enhanced TS inhibition by higher availability of
reduced folate species leads to higher efficacy of treatment [3]. This
concept underlies the mode of action of leucovorin in treatment
schedules with 5-FU [10, 50]. The higher treatment efficacy may,
however, also lead to toxicities and resulting treatment modifications
that could impair prognosis [51, 52]. In a multicohort consortium,
including the COLON study, we have previously shown that higher
levels of folic acid, but not folate, were associated with an increased
risk of CRC recurrence [19]. Besides direct impact of folic acid on
growth of residual cancer cells [17, 53], interference of folic acid with
treatment, possibly resulting in more toxicities and treatment modifi-
cations, could be an explanation for these findings.

The current study has some limitations. First, inherent to the
observational nature, we cannot establish causal relationships, and
reverse causation cannot be ruled out. Patients with worse clinical
conditions, which might predispose them to more toxicities, may take
dietary supplements more often. It should be noted, however, that
patients with and patients without toxicity did not markedly differ in
terms of age, sex, tumor stage, or ASA classification. Especially
during chemotherapy, patients may also start using dietary supple-
ments or (temporarily) change dietary habits to relieve treatment-
related symptoms [20, 54, 55]. However, the observation that folic
acid detected at time of diagnosis was associated with an increased
risk of toxicities makes this possibility less likely. Also, although we
have considered and evaluated a set of relevant confounders, such as
age, sex, lifestyle, and clinical factors, residual confounding cannot
be ruled out completely. Second, for patients with (early) toxicities,
the planned collection of blood samples during chemotherapy might
have occurred after the event (i.e., toxicity-induced treatment modi-
fication) took place. Again, also plasma folic acid measured at time
of diagnosis was associated with toxicity, suggesting that this option
did not substantially impact our findings. Third, blood samples were
collected in nonfasting conditions. Very recent dietary or supple-
mental intake of folate or folic acid could have impacted circulating
levels [56], although potential misclassification is most likely non-
differential for patients with versus those without toxicities and, is
unlikely to overestimate the associations observed. Fourth, although
this study reports on a large and well-characterized patient popula-
tion, the number of patients in some subgroups is relatively small.
Most patients received capecitabine combined with oxaliplatin, which
could have impacted toxicity profiles, although we were able to
distinguish treatment modifications for both regimens. We were not
able to consider types (e.g., hand-foot syndrome or diarrhea) and
grades of toxicities. This aligns, however, with our aim to focus on
all clinically relevant toxicities and provided us with the opportunity
to circumvent interindividual differences in toxicity profiles and
inappropriate grading [57].
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Strengths of this relatively large study include comprehensive
assessment of both intake and status of folate as well as folic acid in a
well-defined population. To the best of our knowledge, dietary and
supplemental intake of folate, as well as folic acid, have not been
studied separately in relation to capecitabine-induced toxicities before.
Providing new evidence in this area is important, as it can guide health
care professionals and cancer patients in directing their choices
regarding dietary supplement use. We measured folate as the sum of the
main circulating form 5mTHF and the degradation product MeFox, to
allow for recovery of 5mTHF [30]. Previous studies mostly relied on
assays that measured total folate levels and that were unable to
distinguish folate from folic acid [14–16, 43–45].

In conclusion, we report an association between supplemental folic
acid intake as well as detection of plasma folic acid and toxicities in
patients treated with capecitabine for CRC. Results of this study may
contribute to awareness on this topic for researchers and health care
professionals and provide an evidence base for future studies on diet-
drug interactions.
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