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Abstract

The importance of accurate genomic prediction of phenotypes in plant breeding is undeni-

able, as higher prediction accuracy can increase selection responses. In this regard, epista-

sis models have shown to be capable of increasing the prediction accuracy while their high

computational load is challenging. In this study, we investigated the predictive ability

obtained in additive and epistasis models when utilizing haplotype blocks versus pruned

sets of SNPs by including phenotypic information from the last growing season. This was

done by considering a single biological trait in two growing seasons (2017 and 2018) as sep-

arate traits in a multi-trait model. Thus, bivariate variants of the Genomic Best Linear Unbi-

ased Prediction (GBLUP) as an additive model, Epistatic Random Regression BLUP

(ERRBLUP) and selective Epistatic Random Regression BLUP (sERRBLUP) as epistasis

models were compared with respect to their prediction accuracies for the second year. The

prediction accuracies of bivariate GBLUP, ERRBLUP and sERRBLUP were assessed with

eight phenotypic traits for 471/402 doubled haploid lines in the European maize landrace

Kemater Landmais Gelb/Petkuser Ferdinand Rot. The results indicate that the obtained pre-

diction accuracies are similar when utilizing a pruned set of SNPs or haplotype blocks, while

utilizing haplotype blocks reduces the computational load significantly compared to the

pruned sets of SNPs. The number of interactions considered in the model was reduced from

323.5/456.4 million for the pruned SNP panel to 4.4/5.5 million in the haplotype block data-

set for Kemater and Petkuser landraces, respectively. Since the computational load scales

linearly with the number of parameters in the model, this leads to a reduction in computa-

tional time of 98.9% from 13.5 hours for the pruned set of markers to 9 minutes for the haplo-

type block dataset. We further investigated the impact of genomic correlation, phenotypic

correlation and trait heritability as factors affecting the bivariate models’ prediction accuracy,

identifying the genomic correlation between years as the most influential one. As computa-

tional load is substantially reduced, while the accuracy of genomic prediction is unchanged,

the here proposed framework to use haplotype blocks in sERRBLUP provided a solution for

the practical implementation of sERRBLUP in real breeding programs. Furthermore, our
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results indicate that sERRBLUP is not only suitable for prediction across different locations,

but also for the prediction across growing seasons.

Introduction

In plant breeding, genomic prediction has become a regular tool [1,2] which enables the opti-

mization of phenotyping costs of breeding programs [3]. The importance of genomic predic-

tion of phenotypes is not restricted to plants. Livestock [4] and human research [5] also are

widely developed in this regard. In the context of plant and animal breeding, accurately pre-

dicting phenotypic traits is of special importance, since raising all animals and growing all

crops to measure their performances requires a considerable amount of money under limited

resources [6].

Several statistical models have been compared over the last decades in the context of predic-

tion accuracy. Among the additive models, genomic best linear unbiased prediction (GBLUP)

[7,8] has been widely used due to its high robustness, computing speed and superiority in pre-

dictive ability to alternative prediction models like Bayesian methods, especially in small refer-

ence populations [9–12]. Furthermore, the inclusion of genotype × environment interaction

into additive genomic prediction models can result in an increase in prediction accuracy

[13,14]. Such approaches allow borrowing information across environments which potentially

leads to higher accuracy in phenotype prediction in multi environment models [15]. In fact,

multivariate mixed models were originally proposed in the context of animal breeding [16]

with the purpose of modeling the genomic correlation among traits, longitudinal data, and

modeling genotype by environment interactions across multiple years or environments

[11,17,18]. A multivariate GBLUP model was reported to have higher prediction accuracy

than univariate GBLUP when the genetic correlations were medium (0.6) or high (0.9) [11]. It

was also shown that aggregating the phenotypic data over years to train the model and predict

the performance of lines in the following years is a possible approach that can improve predic-

tion accuracy [19,20].

In addition, the inclusion of epistasis, defined as the interaction between loci [21,22], into

the genomic prediction model results in more accurate phenotype prediction [6,23–26] due to

the considerable contribution of epistasis in genetic variation of quantitative traits [25]. In this

context, several statistical models have been proposed. Extended genomic best linear unbiased

prediction (EG-BLUP, [27]) and categorical epistasis (CE, [28]) models are using a marker-

based epistatic relationship matrix that can be constructed in a highly efficient manner. It was

shown that the CE model is as good as or better than EG-BLUP without having undesirable

features of EG-BLUP such as coding-dependency [28].

Further, it was shown that the accuracy of the epistasis genomic prediction model can be

increased in one environment by variable selection in another environment [6]. In this

approach, the full epistasis model was reduced to a model with a subset of the largest epistatic

interaction effects, resulting in an increase in predictive ability [6], through borrowing infor-

mation across environments. Vojgani et al. (2021) [26] showed that the prediction accuracy

can be increased even further by selecting the interactions with the highest absolute effect sizes

or variances in the epistasis model. The resulting higher computational needs were offset by

the development of a highly efficient software package “EpiGP” [29], performing computa-

tions in a bit-wise manner [30]. This enabled predictions with data sets of practically relevant

size across environments, both with respect to sample size and number of markers [26]. Since
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the number of interactions to be considered increases quadratically with the number of vari-

ables included, the computational load of methods such as EpiGP can quickly get out of con-

trol, since a model with 600,000 SNPs, as occurs in high-density arrays [31,32], would result in

more than a hundred billion interactions to be considered. The most common variable reduc-

tion method used here is LD pruning [33], but new linkage-based haplotyping methods [34] to

further reduce the dimensionality of genomic data without much loss of information [35] are

worth exploring.

The aim of this study is to compare the obtained prediction accuracies of bivariate genomic

prediction models incorporating epistatic interactions through borrowing information across

years when utilizing haplotype blocks versus pruned sets of SNPs, as a novel approach in epis-

tasis models. As the accuracy of marker-based genomic prediction of phenotypes was shown

to be increased by both borrowing information across environments and/or years [11,20] and

the inclusion of epistasis into the prediction model [6,36], we combine these two approaches

in both SNP-based and haplotype-based genomic prediction models to make the best use of

the available information. We further find the optimum proportion of epistatic interactions of

pruned sets of SNPs and haplotype blocks to be kept in the model in the variable selection step

across years and compare their obtained predictive abilities. We further study structural fac-

tors in the data which might affect the predictive ability across years.

Materials and methods

Data used for analysis

A set of 948 doubled haploid lines of the European maize landraces Kemater Landmais Gelb

(KE, Austria, 516 lines) and Petkuser Ferdinand Rot (PE, Germany, 432 lines) were genotyped

with the 600 k Affymetrix1 Axiom1Maize Array [32], which were utilized separately for

genomic prediction of phenotypes.

After quality filtering and imputation, 910 DH lines remained (501 lines in KE and 409

lines in PE) and the panel of markers was reduced to 501,124 markers [37]. Additionally, loci

that were in high level of pairwise linkage disequilibrium (LD) were removed [38] through

linkage disequilibrium based SNP pruning with PLINK v1.07 [33,39] with the parameters 50, 5

and 2 indicating the SNPs window size, the number of SNPs by which the SNP window is

shifted and the variance inflation factor, respectively. This resulted in a data panel containing

25’437 SNPs for KE and 30’212 SNPs for PE [36]. Note that even a panel of 25’000 SNPs results

in more than 1 billion SNP interactions to account for. Therefore, in order to have a further

variable reduction, haplotype blocks as a combination of closely linked markers, which has

shown to be an alternative approach for genomic prediction improving the prediction accu-

racy [40,41], were generated from the full panel of markers with the software HaploBlocker

[34] using default settings. This resulted in a data panel containing 2’972 haplotype blocks in

KE and 3’330 haplotype blocks in PE. Monte Carlo analysis of variance [35] suggests that

99.2% / 98.2% of the variance of the pruned SNP dataset is explained by haplotype blocks in

KE / PE.

Out of 910 genotyped lines, only 873 DH lines were phenotyped (471 lines in KE and 402

lines in PE). Einbeck (EIN, Germany), Roggenstein (ROG, Germany), Golada (GOL, Spain)

and Tomeza (TOM, Spain) were the four locations where these lines were phenotyped for a

series of traits in both 2017 and 2018.

The means, standard deviations, maximum and minimum values of studied phenotypic

traits in 2017 and 2018 in each landrace are compared in Table 1 which were derived from the

Best Linear Unbiased Estimations (BLUEs) of the genotype mean for each phenotypic trait by

Hölker et al. (2019). The comparison of the respective detailed values for each trait in each
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environment and landrace in 2017 and 2018 are illustrated in the (S1 Table). Vi in phenotypic

traits represents the vegetative growth stage when i leaf collars are visible based on the leaf col-

lar method of the corn growth [42]. Early vigour at V3 stage (EV_V3), female flowering (FF)

and root lodging (RL) were not phenotyped in all four environments for both years. EV_V3

was not phenotyped in EIN in 2018, FF was not phenotyped in GOL in 2017 and RL was not

phenotyped in TOM and GOL in both 2017 and 2018.

The number of phenotyped lines per year and environment for trait PH_V4, as the main

trait in this study, are summarized in Table 2. For EIN and ROG, a higher number of pheno-

typed lines were generated in 2017. On the contrary, more lines were phenotypes in GOL and

TOM in 2018.

Table 1. Phenotypic trait description and the mean, minimum, maximum and standard deviation of the BLUEs for each phenotypic trait in KE and PE landraces in

the years 2017 and 2018.

Trait Definition Landrace Year Mean Minimum Maximum Standard

deviation

EV_V3

Early vigour at V3 stage scored on scale from 1 (very poor early vigour) to 9 (very

high early vigour)

KE 2017

2018

4.94

5.06

0.78

0.32

9.00

8.67

1.35

1.33

PE 2017

2018

5.57

5.47

1.00

1.38

9.03

8.93

1.20

1.13

EV _V4

Early vigour at V4 stage scored on scale from 1 (very poor early vigour) to 9 (very

high early vigour)

KE 2017

2018

4.84

5.08

0.67

0.96

8.29

8.65

1.30

1.30

PE 2017

2018

5.45

5.25

0.93

1.63

8.49

9.07

1.15

1.19

EV _V6

Early vigour at V6 stage scored on scale from 1 (very poor early vigour) to 9 (very

high early vigour)

KE 2017

2018

5.13

5.54

0.54

1.07

8.75

9.60

1.31

1.35

PE 2017

2018

5.64

5.38

0.84

1.07

8.39

9.68

1.12

1.29

PH_V4

Mean plant height of three plants of the plot at V4 stage in cm KE 2017

2018

33.10

42.01

6.90

8.48

88.24

89.24

13.95

16.47

PE 2017

2018

38.01

46.19

11.89

16.14

95.30

93.20

14.96

17.78

PH_V6

Mean plant height of three plants of the plot at V6 stage in cm KE 2017

2018

62.03

92.27

8.34

21.90

127.54

173.66

19.95

21.04

PE 2017

2018

69.84

97.80

14.78

50.37

130.51

169.71

19.26

19.44

PH_final

Final plant height after flowering in cm KE 2017

2018

139.10

146.04

49.27

35.41

245.00

265.02

27.14

35.74

PE 2017

2018

124.09

128.08

30.21

35.76

211.14

248.43

24.54

35.99

FF

Days after sowing until female flowering (days until 50% of the plot showed silks) KE 2017

2018

79.72

76.99

62.45

62.22

102.02

100.14

6.27

6.09

PE 2017

2018

78.85

76.70

59.10

60.14

101.50

93.96

6.33

6.52

RL

Root lodging score from 1 to 9 (1 = no lodging and 9 = severe lodging) KE 2017

2018

3.38

1.42

0.59

0.73

9.58

8.52

2.50

0.90

PE 2017

2018

2.14

1.21

0.03

0.32

9.22

4.69

1.74

0.51

https://doi.org/10.1371/journal.pone.0282288.t001

Table 2. Number of KE and PE lines phenotyped in each location for the years 2017 (blue numbers) and 2018 (red numbers) for trait PH_V4.

EIN (2017\2018) ROG (2017\2018) GOL (2017\2018) TOM (2017\2018)

Phenotyped lines in KE 462\365 461\365 211\222 211\222

Phenotyped lines in PE 393\365 390\365 204\240 204\240

https://doi.org/10.1371/journal.pone.0282288.t002
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Statistical models for phenotype prediction

We used the bivariate statistical framework as the basis of the genomic prediction models

which has been proposed in the recent work by [36]. In this regard, GBLUP, ERRBLUP and

sERRBLUP as three different methods described in Vojgani et al. (2021) [36] were used for

genomic prediction of phenotypes which differ in dispersion matrices representing their

covariance structure of the genetic effects. GBLUP as an additive model is based on a genomic

relationship matrix calculated according to VanRaden (2008) [43]. ERRBLUP (Epistatic Ran-

dom Regression BLUP) as a full epistasis model is based on all pairwise SNP interactions

which is generated from a marker combination matrix of dimension number of lines times

number of marker combinations, in which the absence (0) or presence (1) of each marker

combination for each line is coded. sERRBLUP (selective Epistatic Random Regression BLUP)

as a selective epistasis model is based on a selected subset of SNP interactions [26]. Vojgani

et al. (2021) [36] proposed estimated effect variances in the training set as the selection crite-

rion of pairwise SNP interactions due to its robustness in predictive ability specifically when

only a small proportion of interactions are maintained in the model.

Assessment of genomic prediction models

GBLUP, ERRBLUP and sERRBLUP models have been assessed via 5-fold cross validation by

randomly partitioning the original sample into 5 equal size subsamples in which one subsam-

ple was considered as the test set to validate the model, and the remaining 4 subsamples were

considered as a joint training set [44]. The 5-fold cross validation scheme was repeated 5

times, and the Pearson correlation between the predicted values and the observed phenotypes

in the test set was considered as the predictive ability in each fold of each replicate, which then

was averaged across the 25 replicates. In this study, predictive ability was separately assessed

for KE and PE for a series of phenotypic traits in four different environments. Besides, we cal-

culated the traits’ prediction accuracies by dividing their predictive abilities by the square root

of the respective traits’ heritabilities [45] derived from all environments in both 2017 and 2018

jointly (S2 Table).

Univariate GBLUP within 2018 was assessed by training the model in the same year (2018)

as the test set was sampled from. However, bivariate GBLUP, ERRBLUP and sERRBLUP were

assessed by training the model with both the training set of the target environment in 2018

and the full dataset of the respective environment in 2017. The interaction selection step in

bivariate sERRBLUP is done by first using the complete dataset of the target environment in

2017 to estimate all pairwise SNP interaction effect variances. Then, an epistatic relationship

matrix for all lines is constructed based on the subset of top ranked interaction effect variances,

which is finally used to predict phenotypes of the target environment test set in 2018 [36].

Variance component estimation

Variance component estimation in univariate GBLUP was done by EMMREML [46] based on

the training set in each run of 5-fold cross validation with 5 replicates. In bivariate models this

was done by ASReml-R [47] with the approach specified by Vojgani et al. (2021) [36] for pre

estimating the variance components from the full dataset to derive the initial values for the var-

iance components in ASReml models in 100 iterations for each combination. If the variance

estimation based on the full set did not converge after 100 iterations, then the estimated vari-

ance components at the 100th iteration were extracted as initial values of the bivariate model in

the cross-validation step. Afterwards, the model used these values to re-estimate the variance

components based on the training set in each run of 5-fold cross validation in 50 iterations.

The estimated variance components in the converged models based on the full set deviated
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only slightly from the estimated variance components based on the training set (S1 Fig). How-

ever, the variance component estimations did not converge in all folds of 5-fold cross valida-

tion with 5 replicates. In such cases, the initial values were set as the fixed values for the model

to predict the breeding values. This approach appears justifiable in the case of non-conver-

gence of the bivariate model, since we show in S2 Fig that the difference between the mean pre-

dictive ability of all folds and only the converged folds does not appear to be critical. This

difference can get higher as the number of non-converged folds increases. The percentage of

converged folds in all studied material is shown in the (S3 Table).

Genomic correlation estimation

Genomic correlations were estimated from the genetic variances and covariance derived from

the ASReml bivariate model based on the full dataset of each location in both 2017 and 2018.

Results

Comparison of univariate GBLUP, bivariate GBLUP, bivariate ERRBLUP and bivariate

sERRBLUP based on pruned set of SNPs and haplotype blocks in PH_V4.

In order to compare the haplotype block based predictive abilities with the pruned SNP

based predictive abilities in both additive and epistasis models, Figs 1 and 2 are illustrated.

First of all, our results confirm the findings of Vojgani et al. (2021) [36] that bivariate models

outperform the univariate models as illustrated by the comparison in predictive ability of

bivariate GBLUP and univariate GBLUP for the trait PH-V4 in both landraces indicating the

superiority of bivariate GBLUP to univariate GBLUP in most cases (see Figs 1 and 2). Among

the bivariate genomic prediction models, the predictive ability obtained from bivariate

ERRBLUP is almost identical to bivariate GBLUP. As it is expected, this predictive ability

increases in bivariate sERRBLUP and the highest gain in accuracy is generally obtained when

the top 10 or 5 percent of pairwise SNP interactions are kept in the model, while a too strict

selection like using only the top 0.001 percent interactions, results in a decrease in predictive

ability (see Figs 1 and 2). The number of interactions maintained in the model for each pro-

portion of interactions are tabulated in the (S4 Table) with the total number of interactions for

the full dataset being 125.6 billion interactions compared to 323.5 million and 456.4 million

interactions for the pruned dataset and 4.4 million and 5.5 million interactions when using

haplotype blocks, respectively for KE and PE. The robustness of the predictive ability depend-

ing on the share of selected markers was higher in PE than KE. Moreover, Fig 1 and Fig 2

importantly illustrate the comparison between the predictive abilities obtained from the

respective genomic prediction models in KE and PE when utilizing pruned set of SNPs and

haplotype blocks. It is shown that the GBLUP, ERRBLUP and sERRBLUP (for the optimum

proportions of interactions) predictive abilities are almost identical in both pruned set of SNPs

and haplotype blocks. Results when using haplotype blocks were only worse when an

extremely low share of interactions (0.01 & 0.001%) was included in the model (Fig 1). As the

number of included interactions is then reduced to less than 1’000 (S4 Table) these should not

reflect practically relevant parameter settings. Similar patterns are observed across a series of

other traits for bivariate models which are shown in the (S3–S16 Figs). Additionally, the pre-

dictive ability of univariate GBLUP by training the model on the average phenotypic values of

both 2017 and 2018, when utilizing pruned set of SNPs, was evaluated for a series of pheno-

typic traits, which yielded quite similar predictive ability as obtained with univariate GBLUP

within year 2018 or worse in some cases (S5 Table (KE) and S6 Table (PE)).
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Correlation between prediction accuracy and the genomic correlation in

bivariate models

In addition to the comparison between the predictive abilities obtained by utilizing haplotype

blocks versus pruned sets of SNPs, investigating genomic correlation as a factor affecting the

bivariate models’ predictive abilities is of interest as bivariate models have found to outperform

the univariate GBLUP in both haplotype blocks and pruned set of SNPs settings (Figs 1 and 2).

Fig 1. Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), bivariate GBLUP (green and blue dashed

horizontal line), bivariate ERRBLUP (open circle) and bivariate sERRBLUP (filled circles and solid line) for trait PH-V4 in Kemater based on the

pruned set of SNPs (left) and haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability obtained from

bivariate sERRBLUP.

https://doi.org/10.1371/journal.pone.0282288.g001
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The absolute gain in predictive ability from univariate GBLUP to maximum bivariate

sERRBLUP, when utilizing haplotype blocks, was regressed on the respective sERRBLUP

genomic correlation between the two respective years in each environment and across the

series of studied traits (Fig 3). Regression coefficients range between -0.09and 0.81 and thus

show a clear association between the absolute gain in prediction accuracy and the genomic

correlation between the years in most environments. When combining all traits and environ-

ments, this correlation is 0.58 (p-value = 0.001) in KE and 0.66 (p-value = 0.0001) in PE. This

Fig 2. Predictive ability for univariate GBLUP within 2018 (orange and red dashed horizontal line), bivariate GBLUP (green and blue dashed

horizontal line), bivariate ERRBLUP (open circle) and bivariate sERRBLUP (filled circles and solid line) for trait PH-V4 in Petkuser based on the

pruned sets of SNPs (left) and haplotype blocks (right). In each plot, the sERRBLUP maximum indicates the maximum predictive ability obtained from

bivariate sERRBLUP.

https://doi.org/10.1371/journal.pone.0282288.g002
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correlation is also significant for most of the environments when utilizing pruned set of SNPs

with the overall correlation of 0.65 (p-value = 0.00018) in KE and 0.69 (p-value = 4.393e-05) in

PE (S17 Fig).

Interplay of GBLUP and sERRBLUP prediction accuracy and genomic

correlations

In order to investigate whether there is an underlying pattern when comparing the GBLUP

genomic correlation and sERRBLUP genomic correlation leading to the maximum predictive

Fig 3. Regression of the absolute increase in predictive ability from univariate GBLUP to maximum bivariate sERRBLUP on the respective sERRBLUP

genomic correlation between 2017 and 2018 in Kemater (left) and in Petkuser (right) for all studied traits. In each panel, the overall linear regression

line (gray solid line) with the regression coefficient (b) and R-squared (R2) are shown.

https://doi.org/10.1371/journal.pone.0282288.g003
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ability, the genomic correlations across years estimated with GBLUP and sERRBLUP based on

haplotype blocks and pruned set of SNPs for the trait PH_V4 are illustrated respectively in Tables

3 and 4. It is indicated that the proportion of interactions in bivariate sERRBLUP which maxi-

mized the predictive ability are not necessarily linked to the highest genomic correlation. In con-

trast, the best sERRBLUP for trait PH_V4 is linked to the lowest genomic correlation in most

cases. However, this is not the general pattern observed for a series of other traits and the best

sERRBLUP for some traits and environments combinations are linked to the highest genomic

correlation based on both haplotype blocks (S7–S13 Tables) and pruned set of SNPs (S14–S20

Tables). In fact, there is a significant correlation between the absolute increase in predictive ability

from bivariate GBLUP to maximum bivariate sERRBLUP and the difference between genetic cor-

relations estimated with GBLUP and maximum sERRBLUP in both KE and PE when utilizing

pruned set of SNPs (S18 Fig) and in KE when utilizing haplotype blocks (S19 Fig).

Correlation between prediction accuracy and the phenotypic correlation in

bivariate models

In addition to genomic correlation, phenotypic correlation can hypothetically have an impact

on the bivariate models’ predictive ability, which is tested in this study. In fact, there might be

a tendency that including phenotypes of the previous year into prediction becomes more effi-

cient when the phenotypic correlation between years is high. In this context, the correlation

between the absolute gain in predictive ability from univariate GBLUP to maximum bivariate

sERRBLUP and the phenotypic correlation among the years (see S21 Table) over all studied

traits in all four environments and in both landraces was studied. Fig 4 demonstrates that the

maximum correlation between the absolute gain in the respective predictive ability based on

the haplotype blocks and the phenotypic correlation is obtained in EIN for KE (0.51) and in

Table 3. Genomic correlation between 2017 and 2018 in each environment for trait PH_V4 for KE (blue numbers) and PE (red numbers). The blue and red bold

numbers with stars indicate which proportion of interactions in bivariate sERRBLUP maximized the predictive ability based on haplotype blocks in each environment for

KE and PE, respectively.

Bivariate Models EIN ROG GOL TOM

GBLUP 0.930/ 0.952 0. 984/ 0.712 0.930 / 0.959 0.927 / 0.911

sERRBLUP top 10% 0.940 / 0.882 0.954 / 0.649* 0.864 / 0.905 0.908 / 0.863*
sERRBLUP top 5% 0.0938 / 0.879 0.946 / 0.669 0.846 / 0.898 0.890 / 0.844

sERRBLUP top 1% 0.939 / 0.896* 0.937 / 0.833 0.825* / 0.893 0.860 / 0.858

sERRBLUP top 0.1% 0.943* / 0.902 0.939* / 0.898 0.873 / 0.916* 0.827* / 0.868

sERRBLUP top 0.01% 0.958 / 0.896 0.971 / 0.902 0.962 / 0.956 0.872 / 0.922

sERRBLUP top 0.001% 0.740 / 0.312 0.427 / 0.381 -0.998 / 0.505 0.515 / 0.525

https://doi.org/10.1371/journal.pone.0282288.t003

Table 4. Genomic correlation between 2017 and 2018 in each environment for trait PH_V4 for KE (blue numbers) and PE (red numbers). The blue and red bold

numbers with stars indicate which proportion of interactions in bivariate sERRBLUP maximized the predictive ability based on pruned set of SNPs in each environment

for KE and PE, respectively.

Bivariate Models EIN ROG GOL TOM

GBLUP 0.945 / 0.898 0.940 / 0.658 0.942 / 0.969 0.954 / 0.923

sERRBLUP top 10% 0.955 / 0.859* 0.869* / 0.615* 0.835 / 0.895 0.929 / 0.816*
sERRBLUP top 5% 0.958 / 0.868 0.850 / 0.631 0.797 / 0.888 0.912 / 0.826

sERRBLUP top 1% 0.949 / 0.895 0.848 / 0.820 0.796* / 0.905* 0.918 / 0.863

sERRBLUP top 0.1% 0.962* / 0.966 0.917 / 0.922 0.884 / 0.948 0.929 / 0.959

sERRBLUP top 0.01% 0.963 / 0.980 0.951 / 0.985 0.911 / 0.983 0.919* / 0.987

sERRBLUP top 0.001% 0.997 / 0.976 0.963 / 0.970 0.908 / 0.973 0.933 / 0.968

https://doi.org/10.1371/journal.pone.0282288.t004
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TOM for PE (0.78). Across all studied traits and environments, there is a significant correla-

tion of 0.55in KE (p-value = 0.002) and 0.56 in PE (p-value = 0.002). This correlation is also

significant in most of the environments when utilizing pruned sets of SNPs with the overall

correlation of 0.55 in KE (p-value = 0.003) and 0.50 in PE (p-value = 0.007) (S20 Fig).

sERRBLUP computational load based on the pruned set of SNPs and

haplotype blocks

As the obtained predictive abilities based on haplotype blocks is found to be almost identical

to ones obtained based on pruned sets of SNPs (Figs 1 and 2), precise comparison on their

Fig 4. Regression of the absolute increase in predictive ability from univariate GBLUP to maximum bivariate sERRBLUP on the phenotypic correlation

between 2017 and 2018 in Kemater (left) and in Petkuser (right) for all studied traits. In each panel, the overall linear regression line (gray solid line)

with the regression coefficient (b) and R-squared (R2) are shown.

https://doi.org/10.1371/journal.pone.0282288.g004
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computational load for sERRBLUP model as an epistasis model, which requires high computa-

tional load, is of great interest. In this regard, the required computational time for sERRBLUP

based on 3’330 haplotype blocks with 5’546’115 interactions is found to be 9 minutes out of

which 4 minutes are required to estimate the pairwise SNP interaction effect variances and 5

minutes are required to generate the sERRBLUP relationship matrix for a selected proportion

of interactions by utilizing the R-package miraculix with 15 cores on a server cluster with Intel

E5-2650 (2X12 core 2.2GHz) processors in the released EpiGP R-package [29]. As the comput-

ing time is increasing approximately quadratically with the number of included markers, the

computing time for the respective SNP-based model with 30’212 SNPs takes 810 minutes,

which is 90 times longer than haplotype block-based model [36], while it resulted in similar

predictive abilities with the absolute difference being less than 0.01 in most cases across all

traits in all environments and both landraces (S21 Fig).

Discussion

In this study, we have found that GBLUP, ERRBLUP and maximum sERRBLUP predictive abili-

ties when utilizing haplotype blocks are very similar to the respective models’ predictive abilities

when utilizing pruned sets of SNPs. This finding is of high practical relevance, since it helps to

overcome the high computational load of epistasis models as the computational time for haplo-

type block-based epistasis models is 90 times less than SNP-based epistasis models. Although we

have found that the difference in predictive abilities is statistically significant based on a paired t-

test, the relative gains from using sERRBLUP compared to traditional methods should massively

outweigh these minor losses in accuracy, in particular, when testing the pipeline and performing

cross validation schemes for parameter tuning (e.g. share of included interactions). In case com-

puting time is not a problem the use of a larger data panel should still yield slightly better results.

Furthermore, the bivariate models for prediction across years behave in a similar manner as

bivariate models for prediction across environments [36] such that ERRBLUP as a full epistasis

model incorporating all pairwise SNP interactions is almost identical to bivariate GBLUP. This

was expected, since ERRBLUP incorporates a high number of interactions by which a large

number of unimportant variables are introduced into the model [6], thus introducing potential

‘noise’ which can prevent gains in predictive ability. In contrast, bivariate sERRBLUP substan-

tially increases the predictive ability compared to bivariate GBLUP which is mainly caused by

the inclusion of just the relevant pairwise SNP interactions. Note that all bivariate models sub-

stantially outperformed univariate GBLUP, as phenotypic data of the respective environment

in the previous year was used, as was also observed for prediction across environments [36].

Although sERRBLUP is a method that is using multiple environments, it is not a GxE

model [48] in the traditional sense. While GxE models typically assign effects to combinations

of specific genotypes depending on the environment, the second environment in sERRBLUP

is “only” used to detect which marker combinations affect a given trait to put more focus on

these markers in the actual prediction step. The estimation of marker effects itself is then exe-

cuted only based on the environment itself (or in the case of the bivariate model with some

contributions from the second environment but still not in the sense of a traditional GxE

model). As a different model is used for each environment, sERRBLUP will of course still

assign different marker effects in different environments. As the set of selected marker interac-

tions will be different between different models, a direct comparison of the effects assigned to

specific marker interactions is not statistically sound. Similar to most GxE models [49], the

computational load of sERRBLUP using markers is extremely high. However, our suggested

use of haplotype blocks massively reduces this problem, while the predictive ability is almost as

good as sERRBLUP based on the pruned set of SNPs.
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It was shown that multivariate GBLUP is superior in predictive ability compared to univari-

ate GBLUP with medium (~0.6) to high (~0.9) genomic correlations, and that low genomic

correlations result in no increase in multivariate GBLUP compared to univariate GBLUP [11].

Calus et al. (2011) [50] also found an increase of 3 to 14 percent in predictive ability of multi-

trait SNP-based models in a simulation study when genetic correlations ranged from 0.25 to

0.75. In our study, we also found a significant correlation between the absolute gain in predic-

tion accuracy from univariate GBLUP to maximum bivariate sERRBLUP and the respective

genomic correlation based on both pruned sets of SNPs (rKE = 0.65, rPE = 0.69) and haplotype

blocks (rKE = 0.47, rPE = 0.49) across all traits and environments combinations.

Moreover, Martini et al. (2016) [6] showed that the predictive ability in one environment

can be increased by variable selection in the other environment under the assumption of a pos-

itive phenotypic correlation between environments. It was shown in a wheat dataset [51],

where environments 2 and 3 had the highest phenotypic correlation (0.661), that the predictive

ability for phenotype prediction in environment 2 was maximized by variable selection in

environment 3 and vice versa [6]. Although 2017 and 2018 were climatically quite different,

since 2018 suffered from major heat stress compared to 2017 (Table 1), we still see a significant

correlation between the absolute gain in predictive ability from univariate GBLUP to maxi-

mum predictive ability of bivariate sERRBLUP and the phenotypic correlation between years

in each environment based on both pruned sets of SNPs (rKE = 0.55, rPE = 0.50) and haplotype

blocks (rKE = 0.55, rPE = 0.56).

In addition to the genomic and phenotypic correlations between the years, the trait herita-

bility is another factor that is expected to be influential for such an increase in bivariate

sERRBLUP predictive ability as well. Therefore, the traits with lower heritability are expected

to obtain less gain in sERRBLUP predictive ability than the traits with higher heritability. This

was confirmed in our study, as traits with low heritability (e.g. 0.59 for RL in PE) showed only

a small increase in prediction accuracy from univariate GBLUP to maximum bivariate

sERRBLUP. However, not all traits with higher heritabilities did necessarily show a higher

gain in predictive ability for all traits. It should be noted that the trait heritabilities were calcu-

lated on an entry-mean basis [14] within each KE and PE landraces by [37] over all four envi-

ronments in both years 2017 and 2018 jointly. The trait heritabilities obtained only from 2017

are significantly higher than the trait heritabilities obtained only from 2018 in both KE and PE

based on a paired t-test (S2 Table). This partly explains the increase in predictive ability from

univariate GBLUP to maximum bivariate sERRBLUP in KE and PE, since multi-trait models

have the potential of increasing the predictive ability when traits with low heritability are

joined with traits with higher heritability, given they are genomically correlated [52].

It should be noted that the increase in predictive ability from univariate GBLUP to maxi-

mum bivariate sERRBLUP is caused by both borrowing information across years and capital-

izing on epistasis, while the increase in predictive ability from bivariate GBLUP to maximum

bivariate sERRBLUP is caused by accounting for epistasis only. Overall, the traits behave dif-

ferently among different environments and landraces due to their genomic correlations, phe-

notypic correlations and heritabilities. To shed light on this, the maximum increase in

prediction accuracy from bivariate GBLUP to bivariate sERRBLUP based on the pruned set of

SNPs in KE was observed for the trait EV_V6 (0.112) in EIN where the corresponding

sERRBLUP genomic correlation (0.809) is higher than the GBLUP genomic correlation

(0.768). This trait has a high heritability (0.90) and high phenotypic correlation (0.551) as well.

In contrast, the respective prediction accuracy decreases (-0.018) for EV_V6 in TOM for KE

indicating the lower sERRBLUP genomic correlation (0.458) than GBLUP genomic correla-

tion (0.703) and the particularly low phenotypic correlation (0.383). It should be noted that the

phenotypic correlation does not play a major role for the increase in prediction accuracy from
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bivariate GBLUP to bivariate sERRBLUP, since both models are bivariate and benefit from the

same phenotypic correlations. Therefore, EV_V6 obtaining the maximum and minimum

increase in the respective prediction accuracy for KE indicates the significant role of genomic

correlation among the possible causes. In general, bivariate sERRBLUP improves the predic-

tion accuracy compared to bivariate GBLUP more in KE than PE which is potentially due to

significantly higher sERRBLUP genomic correlation and heritability in KE compared to PE,

based on paired t-test.

Overall, we conclude that utilizing haplotype blocks instead of pruned sets of SNPs in epis-

tasis models helps to makes ERRBLUP practically applicable, since the obtained predictive

abilities of the best epistasis model are quite similar, while the required computational time

when utilizing haplotype blocks is massively lower compared to using pruned sets of SNPs.

Moreover, our results indicate that incorporating a suitable subset of epistatic interactions

besides utilizing information across years can substantially increase the predictive ability. The

amount of this increase is affected by the genomic and phenotypic correlations between the

years and the heritability of the phenotypic trait. The suggested approach is especially benefi-

cial for genomic prediction of phenotypes under the assumption of sufficient genomic and

phenotypic correlation between years for highly heritable traits. This may allow to reduce the

number of lines that have to be phenotyped over several years and thus to reduce phenotyping

costs which may be of high interest in practical plant breeding.
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