
Unravelling mycotoxin biotransformation by the black soldier fly and house fly

Kelly Niermans

Propositions

1.	HFL fed on an aflatoxin B ₁ spiked diet is safe as food and feed.
	(this thesis)
2.	BSFL convert aflatoxin B_1 into the less toxic aflatoxin P_1 .
	(this thesis)
3.	Land is the most limiting and crucial resource required for the energy transition.
4.	The current peer reviewing process is not suitable for multidisciplinary studies.
5.	The Dutch school system promotes segregation.
6.	One year of social service should be mandatory in the Netherlands.
Pro	positions belonging to the thesis, entitled
Uni	ravelling mycotoxin biotransformation by the black soldier fly and house fly
Kel	ly Niermans
Wa	geningen, 12 March 2024

Unravelling mycotoxin biotransformation by the black soldier fly and house fly

Kelly Niermans

Thesis committee

Promotors

Prof. Dr J. J. A. van Loon Personal chair at the Laboratory of Entomology Wageningen University & Research

Prof. Dr H. J. van der Fels-Klerx Special professor, Food Safety Economics Wageningen University & Research

Co-promotor

Dr E. F. Hoek- van den Hil Senior Scientist Food Safety Wageningen University & Research

Other members

Prof. Dr I. M. C. M. Rietjens, Wageningen University & Research

Prof. Dr R. Maul, Max Rubner-Institut, Kiel, Germany Prof. Dr L. W. Beukeboom, University of Groningen Dr L. Righetti, Wageningen University & Research

This research was conducted under the auspices of the Graduate School of Production Ecology and Resource Conservation.

Unravelling mycotoxin biotransformation by the black soldier fly and house fly

Kelly Niermans

Thesis

submitted in fulfilment of the requirements for the degree of doctor at Wageningen University
by the authority of the Rector Magnificus
Prof. Dr C. Kroeze,
in the presence of the
Thesis Committee appointed by the Academic Board
to be defended in public
on Tuesday 12 March 2024
at 1.30 p.m. in the Omnia Auditorium.

Kelly Niermans
Unravelling mycotoxin biotransformation by the black soldier fly and house fly
314 pages.
PhD thesis, Wageningen University, Wageningen, the Netherlands (2024)
With references, with summary in English
DOI: https://doi.org/10.18174/646593

Table of contents

Glossary	7
Chapter 1 General introduction	13
Chapter 2 A systematic literature review on the effects of mycotoxin exposure on insects, and on mycotoxin accumulation and biotransformation	31
Chapter 3 Effects of the mycotoxins aflatoxin B_1 , deoxynivalenol and zearalenone on survival, biomass and toxin accumulation in <i>Musca domestica</i> larvae	85
Chapter 4 The metabolic fate and biological effects of isotopically labelled aflatoxin B ₁ , fumonisin B ₁ , ochratoxin A and zearalenone in reared <i>Hermetia illucens</i> and <i>Musca domestica</i> larvae	105
Chapter 5 The role of larvae of black soldier fly and house fly and of feed substrate microbes in biotransformation of aflatoxin B_1	131
Chapter 6 Effects of aflatoxin B_1 on metabolic and immunity-related gene expression in Hermetia illucens L. (Diptera: Stratiomyidae)	157
Chapter 7 Conversion of aflatoxin-contaminated groundnut (<i>Arachis hypogaea</i> L.) press cake by larvae of black soldier fly <i>Hermetia illucens</i> results in a complete mass balance for aflatoxin B_1	193
Chapter 8 Conversion of mycotoxin-contaminated maize by fly larvae into feed and fertilizer	211
Chapter 9 General discussion	249
Summary	265
References	271
Acknowledgements	303
About the author Curriculum Vitae List of publications Training and Education statement	309

Glossary

15AcDON 15-acetyldeoxynivalenol 3AcDON 3-acetyldeoxynivalenol

AC Agroclavine AFB₁ Aflatoxin B₁ AFB₂ Aflatoxin B₂ AFG₁ Aflatoxin G₁ AFG₂ Aflatoxin G₂ AFL Aflatoxicol AFM₁ Aflatoxin M₁ AFP₁ Aflatoxin P₁ AFQ₁ Aflatoxin Q₁

AKR Aldo-keto reductase
AME Alternariol methylether

AOH Alternariol

BAF Bioaccumulation factor

BEA Beauvericin

BSF(L) Black soldier fly (larvae), Hermetia illucens L.
CDC Centre for Disease Control and Prevention

CIT Citrinin

Cyb5 Cytochrome b5
CYP450 Cytochrome P450
DAS Diacetoxyscirpenol

DEG Differentially Expressed Gene

DM Dry matter
DOL Day-old-larvae
DON Deoxynivalenol
DON3G DON-3-glucoside
DUOX Dual oxidase

EAC East Africa Community
EC European Commission

EFSA European Food Safety Authority

EMO Emodin
ENNA Enniatin A
ENNA₁ Enniatin A₁
ENNB Enniatin B
ENNB₁ Enniatin B₁

ESI Electrospray ionization
EU European Union
FA Fusaric acid

FAO Food and Agriculture Organization of the United Nations

 $\begin{array}{lll} \mathsf{FB}_1 & \mathsf{Fumonisin}\,\mathsf{B}_1 \\ \mathsf{FB}_2 & \mathsf{Fumonisin}\,\mathsf{B}_2 \\ \mathsf{FB}_3 & \mathsf{Fumonisin}\,\mathsf{B}_3 \end{array}$

FDA Food and Drug Administration

FP Fusaproliferin
GO Gene Ontology
GSH Glutathione

GST Glutathione S-transferase

GV Health-based guidance value

HF(L) Housefly (larvae), Musca domestica L.

HFB₁ Hydroxy-fumonisin B₁

HRMS High Resolution Mass Spectrometry

HT-2 toxin

IARC International Agency of Research on Cancer

InsectFeed Research project: Insects as sustainable feed for a circular economy

JHEH Juvenile hormone epoxide hydrolase

LC-MS/MS Liquid Chromatography Tandem Mass Spectrometry

LFC Log Fold Change LOD Limit of detection LOQ Limit of quantification

MeOH Methanol
ML Maximum level
MON Moniliformin
MOs Microorganisms
MPA Mycophenolic acid

MRP Multidrug resistance protein

nd Not detected NIV Nivalenol

NPA
 OTA
 Ochratoxin A
 OTB
 Ochratoxin B
 OTC
 Ochratoxin C
 OTα
 Ochratoxin alpha
 PA
 Penicillic acid

PACA Partnership for Aflatoxin Control in Africa

PBO Piperonyl butoxide

PCA Principal Component Analyses

PPC Peanut press cake ql Qualifier ions qn Quantifier ions

QuEChERS Quick, easy, cheap, effective, rugged and safe

RASFF Rapid Alert System for Food and Feed

ROQ Roquefortine C

RSB Rwanda Standards Board

SD Standard error

SDGs Sustainable Development Goals SEM Standard error of the mean

STER Sterigmatocystin

T-2 toxin

TeA Tenuazonic acid
UDP Uridine diphosphate
UGT UDP-glycosyltransferases

UN United Nations

UNEP United Nations Environment Programme

USA United States of America

WFSR Wageningen Food Safety Research

Glossary

WHO	World Health Organisation
WTO	World Trade Organisation
ww	Wet weight
ZEN	Zearalenone
α-ZEL	α-zearalenol
β-ZEL	β-zearalenol

Chapter 1

General introduction

The global population continues to grow, which is accompanied by challenges. A growing population means an increased demand for food, and associated impacts on biodiversity, land use, food use, climate change, and food security. Furthermore, the world that we live in today is fragile and many challenges are faced by its inhabitants daily. Social (human rights, inequality) and economic injustice, the climate crisis, food shortage and environmental degradation are amongst the biggest problems the world faces.

In the past decades, multiple concepts have been introduced which should help to battle and quantify the severity of these problems. In 2009, the Planetary Boundaries were developed with the aim to guide human development by defining quantitative environmental limits for a set of nine processes that regulate the stability and resilience of the Earths system (Rockström *et al.* 2009a; Rockström *et al.* 2009b). Consequently, exceedance of these boundaries will lead to an increase of the risk on irreversible environmental changes. In 2015, the United Nations (UN) called to action, and 193 countries decided together to protect the planet while promoting prosperity. In order to do this they developed a blueprint for 17 Sustainable Development Goals (SDGs; Figure 1), which are to be collectively achieved by 2030. Most recently, Europe followed with both the European Green Deal (2020; Figure 2) and a proposal for a Sustainable Use Regulation (2022). The latter is a part of the European Union (EU) Farm to Fork strategy focussing on fair, healthy and environmentally friendly food systems and aims to half the use and risk of chemical pesticides by 2030 (EC 2020; EC 2022). The European Green Deal, encompasses a set of policy initiatives proposed by the European Commission (EC) aiming to make the EU climate neutral by 2050 (EC 2019a).

Figure 1. Overview of the 17 United Nations' Sustainable Development Goals (UN 2023)

Figure 2. Overview of the EU Farm to Fork strategy (EC 2023)

SDGs and food security

The UN SDGs should be considered as a universal call to action to protect the planet, end poverty, reduce hunger and inequality, and to ensure peace and prosperity for all world citizens. Next to the topics mentioned before, the 17 SDGs also focus on good health, quality education, clean water and sanitation, renewable energy, economic growth, sustainability, the life below water

and land, and the formation of partnerships needed to make these improvements (Figure 1). Well-being, health, food security and food safety and therefore the availability of safe and nutritious food are considered important to a variety of these SDGs (FAO/WHO/WTO 2019; WHO 2022b). However, the increase in temperature, droughts, rising sea levels and extreme weather events resulting from climate change will impact the global food systems and drive existing and emerging food safety risks (FAO 2020).

It is estimated that by 2050, around 9.7 billion people will inhabit the earth and that, as compared to 2012, the demand for food will increase by 70-80% (UN 2019). At the moment, 49 million people are facing emergency levels of hunger, and up to 828 million people deal with food shortage (WHO 2022a). This situation makes food security (SDG 2, zero hunger) an important cornerstone of the UN 2030 agenda. During the 1974 World Food Summit, food security was defined as "availability at all times of adequate world food supplies of basic foodstuffs to sustain a steady expansion of food consumption and to offset fluctuations in production and prices" (UN 1975). However, this definition has been changed and expanded over the years, leading to its most recent definition: "food security exists when all people, at all times, have physical, social and economic access to sufficient, safe and nutritious food which meets their dietary needs and food preferences for an active and healthy life" (FAO 2001). The most recent definition clearly shows that food security does not only mean that enough food is available and that everyone has access to it, but that the accessible food also needs to be safe.

Food safety

According to the World Health Organisation (WHO), food-borne illnesses affect 600 million people and cause more than 420,000 premature deaths each year, most of these occurring in low-and middle-income countries (WHO 2016). Foodborne diseases can be both acute and chronic. Contamination can occur during each step in the food chain (cultivation, harvest, processing, storage, transport and consumer handling), and can be a result from pollution of water, air and soil. Public health problems resulting from foodborne diseases heavily impact health-care systems and create a vicious cycle of disease, malnutrition and disability (WHO 2022b). Furthermore, socio-economic growth and local- and global economies are affected due to loss of productivity and trade, which again impacts the global burden of disease as well as food security tremendously (WHO 2016; WHO 2022b). Overall, food safety clearly shows to be very important, and ensuring food safety will play a role in realising SDG 2 (zero hunger), SDG 3 (good health and well-being), SDG 6 (clean water and sanitation) and SDG 8 (decent work and economic growth). Ensuring food safety will not only contribute to the realisation of a variety of SDGs, but is also a requirement for accomplishing the goals set by the EU Farm to Fork strategy (EC 2020) and the WHO global strategy for food safety 2022-2030 (WHO 2022b).

In order to ensure food safety and to protect public health, definitions and legislations are needed (FAO/WHO/WTO 2019; WHO 2022b). For the past 60 years, the joint Food and Agriculture Organization of the United Nations (FAO)/WHO food program (Codex Alimentarius Commission) has developed global standards and guidelines, known as the Codex Alimentarius, which are relevant for food safety. However, even though such standards and guidelines exist, food safety legislations vary between countries (Eskola *et al.* 2020).

Food safety legislation in the EU

In the EU, food- as well as feed safety are regulated by the General Food Law (Regulation (EC) No 178/2002). Article 14 of this law states that food shall not be placed on the EU market when it is either unsafe or deemed to be unsafe, meaning it is injurious to health or unfit for human consumption (EC 2002b). A food can, for example, be considered injurious to health when the health of the person consuming it is affected immediately or on the long term. Additionally, in Article 15, the General Food Law extends its contents to feed safety and states that also feed shall not be placed on the market when deemed unsafe (EC 2002b). Feed is deemed to be unsafe when its consumption can have an adverse effect on human- or animal health or when it makes the food derived from food-producing animals unsafe for human consumption.

EU legislation for contaminants

As by law it is required that food and feed are safe for their consumers, the EC has set limits for a variety of compounds that should protect its consumers and indicate safe levels of consumption for a variety of contaminants. In EU Regulation (EEC) No 315/93 a contaminant is defined as any substance not intentionally added, but present in a food as a result of production, processing, treatment, packaging, transport, storage or as a result of environmental contamination (EC 1993). In this definition a food contaminant may be biological (e.g. bacteria, viruses), chemical (e.g. cleaning agents, plant protection products, natural toxins) or physical (e.g. pieces of plastic, wood). In this thesis we will only focus the second category: chemical contaminants, and more specifically on the natural toxins. By definition, natural toxins are poisonous secondary metabolites produced by living organisms, which are typically not harmful to the organisms themselves but can impact on human or animal health when consumed (Fletcher and Netzel 2020; WHO 2023). Common sources of such toxins are algae, bacteria, fungi and poisonous plants (Fletcher and Netzel 2020).

Food- and or feed may not be placed on the EU market when it contains a contaminant which is unacceptable from a public health viewpoint or when it is present at an unsafe level. In order to ensure this the EU has set maximum levels (MLs), meaning that food or feed with levels of contaminants higher than those specified in their respective legislation may not be sold (EC 2006c). MLs are set at strict levels but should be reasonably achievable by following good agricultural, fishery and manufacturing practices and take into account the risk related to the

consumption of food (no exposure = no risk). Exemptions exist and adjusted rules are applied when a contaminant is considered to be a genotoxic carcinogen. A genotoxic carcinogen is a chemical with the ability to induce carcinogenesis (initiation of cancer formation) by damaging DNA and acts as a mutagen (causes genetic mutation). It is generally considered that for such compounds no safe thresholds exist and that even a single molecule of the compound could cause an adverse effect (EFSA 2005). Next to the MLs, the EU also provides other rules to ensure consumer safety. Health-based guidance values or guidance values in short (GVs), for example, contain a recommendation for the maximum (oral) exposure to a substance that is not expected to result in an appreciable health risk, taking into account current safety data, uncertainties in these data, and the likely duration of consumption (EFSA 2021).

Mycotoxins

Many contaminants could be present in food and feed, however, of major importance are the mycotoxins. Mycotoxins are secondary metabolites which are produced by filamentous fungi (Bennett and Klich 2003). A variety of fungal species are known to produce mycotoxins, and based on their occurrence and preference for certain climatic conditions e.g. moisture content and temperature, they might be classified as field (Fusarium, Alternaria) or storage fungi (Aspergillus, Penicillium) (Logrieco et al. 2003). Currently over 300 different mycotoxins are known to exist of which aflatoxin B₁ (AFB₁), deoxynivalenol (DON), fumonisin B₁ (FB₁), ochratoxin A (OTA) and zearalenone (ZEN) are given most attention, by both regulators and scientists, due to their degree of toxicity and/or prevalence. In 1999 the FAO estimated that around 25% of all globally harvested crops are contaminated by mycotoxins each year (Park et al. 1999). However, more recent studies indicated that in 60-80% of the food crops mycotoxins were detected (Eskola et al. 2020). Mycotoxins are known to occur in a variety of agricultural commodities (Alshannaq and Yu 2017), and mycotoxin contamination is of global concern as exposure to them can cause detrimental effects on human and animal health (Zain 2011). However, the type of toxicity depends on the type of mycotoxin, the dose and duration of exposure (Bennett and Klich 2003; Chilaka et al. 2022).

Furthermore, mycotoxins are the main hazard cited in the EU border rejection notifications system according to the Rapid Alert System for Food and Feed (RASSF) (Alshannaq and Yu 2021; Chilaka *et al.* 2022; Pigłowski 2019). Border rejection due to mycotoxin contamination has financial consequences and directly impacts global trade. On top of that, contamination with mycotoxins is difficult to predict and prevent providing unique challenges to our food safety systems worldwide even when good agricultural-, storage-, and processing practices are implemented. Furthermore, mycotoxins are difficult to eliminate from the food chain due to their stability against heat, physical and chemical treatments (Park 2002).

Mycotoxin contamination is currently considered as one of the most important food/feed safety challenges in the food and feed industry (Moretti *et al.* 2019). Additionally, due to climate change, a shift in the mycotoxin contamination pattern as well as geographical distribution pattern is expected (Zingales *et al.* 2022). Moreover, modelling of different climate change scenarios predicts an expansion of risk zones leading to an increased exposure to these mycotoxins (Battilani *et al.* 2016).

Aflatoxins

Aflatoxins are a group of mycotoxins which are mainly produced by fungal species belonging to the *Aspergillus* genus, in particular *A. flavus* and *A. parasiticus* (Bennett and Klich 2003), which normally occur in soil and other organic materials (Paulussen *et al.* 2017). Aflatoxins are found in a wide variety of foods such as cereals (maize, rice, barley, oats, and sorghum), nuts (peanuts, ground nuts, pistachio, almonds, walnuts), spices, cottonseeds and milk (Alshannaq and Yu 2017; Kumar *et al.* 2016; Park *et al.* 2002; Yakubu and Vyas 2020). Amongst the aflatoxins, AFB₁ is most known due to its genotoxic potential. Other known aflatoxins are aflatoxin B₂ (AFB₂), aflatoxin G₁ (AFG₁) and aflatoxin G₂ (AFG₂) (Bennett and Klich 2003). In general, aflatoxins can cause both acute toxicity and chronic carcinogenicity in humans and animals and are known to have mutagenic, carcinogenic, teratogenic, immunosuppressive and hepatotoxic effects, with the liver as their main target organ (EFSA 2004; EFSA 2006; EFSA 2020a; Zain 2011). More specifically, AFB₁ is considered as a genotoxic carcinogen (EFSA 2020a).

The International Agency of Research on Cancer (IARC) classified all naturally occurring aflatoxins, including AFB₁ as a Group 1 carcinogen (carcinogenic to humans), while AFM₁ is listed in Group 2B meaning it is possibly carcinogenic to humans (IARC 1993).

The human liver cytochrome P450 (CYP450) enzyme system can metabolise AFB₁ into AFB₁-8,9-epoxide (AFBO), which has two isomers *endo-*8,9-epoxide and *exo-*8,9-epoxide. In humans, this metabolic conversion is mainly carried out by CYP1A2 and CYP3A4. AFBO is highly electrophilic and therefore may bind to proteins and nucleic acids. It is *e.g.* known to covalently bind to the N_7 position on guanine resulting in the formation of the adduct AFB₁-N₇-guanine which may lead to carcinogenesis, making AFBO the ultimate carcinogen. AFB₁ can also be metabolized to a number of hydroxylated products. Some of the known AFB₁ metabolites include aflatoxicol (AFL), aflatoxin P_1 (AFP₁), aflatoxin M_1 (AFM₁) and aflatoxin Q_1 (AFQ₁) (EFSA 2020a). In humans, AFQ₁ seems to solely be produced by CYP3A4, whereas AFP₁ is known to be produced by CYP2A3, CYP2A13, and CYP321A1. The DNA-binding potential of AFQ₁ as well as AFP₁ is much lower than that of AFBO, which is why they could be considered detoxification products. AFL on the other hand is found in the cytosolic fractions of liver preparations and is formed by an NADPH reductase, usually in the cytosol. AFM₁ is a hydroxylated AFB₁ metabolite often found in milk

(Henry *et al.* 1999). AFL and AFM₁ retain their DNA-binding activity, so are not considered detoxification products.

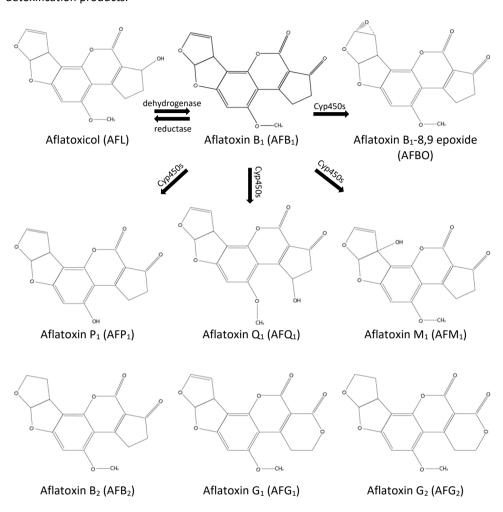


Figure 3: Overview of aflatoxins and the enzymatic degradation pathways documented for AFB₁ metabolites. Figure based on: Bhatnagar *et al.* (2014); Murcia and Diaz (2020a); Rushing and Selim (2019).

Deoxynivalenol

Based on its chemical structure, DON belongs to the trichothecene mycotoxins. Furthermore, DON is considered a *Fusarium* toxin, as it is mainly produced by *F. culmorum* and *F. graminearum*. The most studied metabolites of DON are 3-acetyldeoxynivalenol (3AcDON), 15-acetyldeoxynivalenol (15AcDON) and deoxynivalenol-3-β-D-glucoside (DON3G), however also conjugation with a glucuronide or sulphate occurs (Sun *et al.* 2022). DON as well as its metabolites are mainly found in cereals (barley, maize, oats, rye, wheat), and cereal products

like beer, bread, flour and noodles (Alshannaq and Yu 2017; EFSA 2017a). Generally, the acetyl derivatives of DON occur at much lower levels than their parent compound (Chen *et al.* 2022; Yan *et al.* 2020), however, they also are known to cause toxicity *in vitro* and *in vivo* (Pinton *et al.* 2012). Acute effects resulting from high exposure to DON are similar in humans, and some animals, and lead to gastrointestinal symptoms *e.g.* vomiting and feed refusal (Prelusky *et al.* 1994). Chronic effects in animals have been described to be anorexia and weight gain suppression (EFSA 2017a). The IARC has decided that DON is unclassifiable as to its carcinogenicity to humans and is therefore placed in Group 3 (IARC 1993). This classification does not mean that DON has been determined to be non-carcinogenic, but that more information is needed.

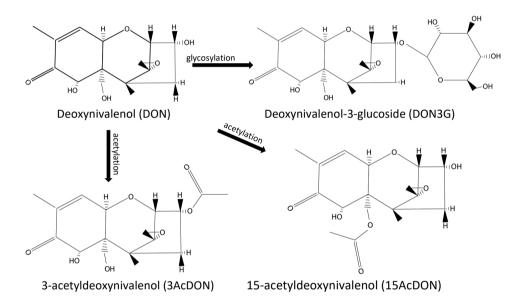


Figure 4: Conjugation of DON into DON3G, 3AcDON and 15AcDON. Figure based on: Fiby et al. (2021); Ran et al. (2013).

Fumonisins

Fumonisins are mainly produced by fungi from the *Fusarium* genus *e.g. F. verticillioides* and *F. proliferatum*, but can also be produced by some *Aspergillus* strains (EFSA 2018b; Mogensen *et al.* 2010). Around 28 different fumonisins have been characterised, of which FB₁, fumonisin B₂ (FB₂) and fumonisin B₃ (FB₃) are the most abundant naturally occurring fumonisins (Rheeder *et al.* 2002). FB₁ typically makes up for 70-80% of the fumonisins produced and is therefore the most prevalent fumonisin. Biotransformation of FB₁ into its hydrolysed forms, hydroxy-FB₁ (HFB₁) or p-hydroxy-FB₁, is limited in mammals, whereas extensive biotransformation is observed in pigs and ruminants (EFSA 2018b; Fodor *et al.* 2008; Rice and Ross 1994). FB₁ and its

hydrolysed forms can undergo further biotransformation in via *N*-acylation with fatty acids of various chain lengths (EFSA 2018a; Harrer *et al.* 2015; Seiferlein *et al.* 2007). FB₁ commonly contaminates asparagus, beer, cereals, dried figs, garlic and maize (EFSA 2018b; Heperkan *et al.* 2012; Kawashima *et al.* 2007; Park *et al.* 2002; Seefelder *et al.* 2002). Of the fumonisins, FB₁ is considered most toxic, and is known to trigger multi-organ dysfunction such as pulmonary oedema, hepatotoxicity, nephrotoxicity, immunotoxicity, and disturbance of the intestinal barrier function (Bouhet and Oswald 2007; Chen *et al.* 2021; Loiseau *et al.* 2015). Fumonisins target a variety of organs, but the liver and the kidney can be considered as the main ones affected (Chen *et al.* 2021). IARC classified FB₁ in Group 2B, which means it is considered as possibly carcinogenic to humans (IARC 1993).

Fumonisin B₂ (FB₂)

$$C = CH_1 - CH_2 - COOH$$
 $C = CH_1 - CH_2 - COOH$
 $C = CH_2 - CH_3 - COOH$
 $C = CH_3 - COOH$
 $C =$

Figure 5: Chemical structures of FB₁, FB₂ and FB₃. Figure based on: EFSA (2018a); Waśkiewicz (2014).

Ochratoxins

The ochratoxins are a group of compounds produced by a variety of fungi of the genus *Aspergillus* and *Penicillium* e.g. *A. ochraceus* and *P. verrucosum*, amongst others (Heussner and Bingle 2015). The most toxic, and therefore most important toxin of the group is ochratoxin A (OTA). Amongst the other ochratoxins are ochratoxin-alpha (OT α), ochratoxin B (OTB) and ochratoxin C (OTC) which are the hydrolysed, non-chlorinated and ethyl ester forms of OTA, respectively (EFSA 2020b). Ochratoxins are often found in agricultural commodities like cereals (barley, corn, oats, rice, rye, wheat), beans, peas, coffee, cacao, spices, grapes, beer and wine

(Alshannaq and Yu 2017; Kawashima *et al.* 2007; Streit *et al.* 2012), but are also present in animal-derived products such as, meat, milk and cheese (Altafini *et al.* 2021; Ganesan *et al.* 2021). OTA is reported to be nephrotoxic (Krogh *et al.* 1979), and at higher doses OTA is also shown to be neurotoxic and carcinogenic (Mantle *et al.* 2005), immunotoxic and teratogenic in both humans and animals (EFSA 2020b). The kidney is the main target organ (EFSA 2020b), and the IARC classified OTA in Group 2B (IARC 1993).

Figure 6: Biotransformation of ochratoxin A into $OT\alpha$, OTB and OTC. Figure based on: Freire et al. (2019); Kőszegi and Poór (2016); Tran et al. (2020b).

Zearalenone

Zearalenone (ZEN) is produced by a variety of *Fusarium* species, mainly by *F. culmorum*, *F. graminearum*, *F. verticillioides* and *F. equiseti* (Bennett and Klich 2003). Plants and fungi metabolise ZEN via conjugation with glucose or sulphate (Binder *et al.* 2017). ZEN is mainly found in crops such as barley, maize, rye, sorghum and wheat (Alshannaq and Yu 2017). ZEN toxicity is based on its ability to bind competitively to the oestrogen receptors ER α and ER β , resulting in adverse effects on the female reproductive system. However, also adverse effects on sex organ weight, spermatogenesis and testosterone synthesis in male animals have been observed (EFSA 2011a). In mammals the main metabolites of ZEN are α -zearalenol (α -ZEL) and β -zearalenol (β -ZEL) (Miles *et al.* 1996), however, also conjugation with glucuronic acid occurs (Binder *et al.* 2017). α -ZEL shows a higher estrogenic potential than its parent compound. Like DON, ZEN is classified, as a Group 3 carcinogen by IARC (IARC 1993).

Figure 7: Chemical structures of ZEN, α-ZEL and β-ZEL. Figure based on: Balázs et al. (2021); Waśkiewicz (2014).

Emerging mycotoxins

According to the latest definition, emerging mycotoxins are "mycotoxins, which are neither routinely determined, nor legislatively regulated; however, the evidence of their incidence is rapidly increasing" (Vaclavikova et al. 2013). Currently, the Alternaria metabolites alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA), the Aspergillus metabolites emodin (EMO) and sterigmatocytin (STER), the Fusarium metabolites beauvericin (BEA), enniatins (ENNs; A₁, A₂, B₁, B₂), moniliformin (MON), fusaproliferin (FP), fusaric acid (FA), and the Penicillium metabolite mycophenolic acid (MPA) are considered to be emerging mycotoxins (Gruber-Dorninger et al. 2017; Vaclavikova et al. 2013). In general, toxicity data for these mycotoxins are either lacking or the available data is inconclusive. Therefore, more relevant toxicity data are needed in order to draw conclusions regarding their toxicity. On the other hand, it is known that STER shares its biosynthetic pathway with the aflatoxins and has a similar chemical structure as AFB₁. Like AFB₁, STER is considered a genotoxic carcinogen and mainly targets the liver (Díaz Nieto et al. 2018; WHO/FAO 2018).

Mycotoxin co-occurrence

The mycotoxins above have been described separately, however, contamination of food and feed with multiple mycotoxins occurs often (Eskola *et al.* 2020; Lee and Ryu 2017). Data from multi-mycotoxin studies even indicate that around 70-100% of the feed samples analysed contained more than one mycotoxin (Streit *et al.* 2012). This so called co-occurrence of mycotoxins happens because some fungal species, in particular *Fusarium* spp. can produce multiple mycotoxins. Furthermore, several toxigenic fungal species can contaminate a food or feed product simultaneously (Lee and Ryu 2017), and humans and animals generally consume a diet composed of a variety of commodities (Streit *et al.* 2012). Most of the current regulatory guidelines and risk assessments are based on toxicity studies performed for individual mycotoxins. However, 'mixture effects' meaning the combined toxicological effects from mycotoxin co-exposure are increasingly studied (Lee and Ryu 2017). Answers to whether co-exposure results in either additive or synergistic effects or whether antagonistic or non-interactive effects might be happening are needed (Lee and Ryu 2017).

Regulatory limits regarding mycotoxins

Amongst all mycotoxins that are regulated for feed in the EU, only for AFB₁, due to its toxicity, an ML exists while for the other mycotoxins a GV is determined. EU MLs for AFB₁ in feed products range from $5-20~\mu g/kg$, while the MLs set by the Food and Drug Administration (FDA) of the United Stated of America (USA) vary between 20 - 300 $\mu g/kg$ (Table 1). Differences between the enforced MLs on mycotoxins in food worldwide are apparent (Table 1).

In reality, the mycotoxin concentration in food- as well as feed commodities often surpasses the legal limits (Gruber-Dorninger *et al.* 2019). In the EU, food commodities which contain mycotoxins in concentrations above their respective MLs or GVs for food are often converted into feed, as the legal limits for feed are higher. At the moment, there is no European law that specifies how to dispose of food products that are affected by mycotoxins. However, EU Regulation does specify that products containing contaminants, including mycotoxins, exceeding the maximum levels should not be placed on the market after mixture with other foodstuffs (EC 2006c). Decontamination and valorisation of mycotoxin-contaminated commodities can be done via various disposal systems *e.g.* landfilling, burying, incineration, anaerobic digestion and composting. Incineration is most effective in terms of disposal as it destroys the mycotoxin molecule, whereas anaerobic digestion and composting allows for the recovery of energy (*i.e.* biogas production) and materials (*i.e.* nutrients for digestate and/or compost) (Cucina and Tacconi 2022). The EC estimated that mycotoxin contamination leads to annual global crop losses of 5 to 10% (EC 2015), and therefore burdens waste management systems (UN 2021; UNEP 2021; WHO 2022b).

Table 1. Range of legal limits of mycotoxins in food and feed in the East Africa Community (EAC), European Union (EU), United States of America (USA) and the Codex Alimentarius in products intended for animal feed and food in µg/kg.

		Feed			_	Food	
Region	EAC1	EU ²	USA³	Codex Alimentarius ⁴	EAC ³	EU ²	USA³
AFB ₁	5 - 50	5 - 20	20 - 300		5	0.10 - 12	
Total aflatoxins	20 - 300			10 - 15	4 - 20	4 - 15	20
AFM ₁				0.5	0.05	0.025 - 0.05	0.5
DON		900 - 8,000	5,000 - 10,000	200 - 2,000		200 - 1,750	1,000
ZEN		100 - 2,000				20 - 400	
ОТА		50 - 250		2		2 - 80	
Total fumonisins		5,000 - 60,000	5,000 -100,000	2,000 - 4,000	2,000	200 - 4,000	2,000 - 4,000

Socio-economic challenges

Incineration and a strict limitation of mycotoxin-contaminated commodities is not always an option due to e.q. a country's socio-economic status (Nji et al. 2022; Van Egmond 2002). Cereal crops like maize are highly susceptible for mycotoxin contamination, but are often staple foods in sub-Saharan African countries and are amongst the main cash crops (Nji et al. 2022). Good quality, non-contaminated crops are often exported, leaving the poor-quality commodities for home consumption or sale in the informal sector (Meijer et al. 2021b; PACA 2020). As mainly the upper middle, lower middle, low-income and the very poor populations make use of the informal sector, strict legal measures may lead to food insecurity and promote a situation where crops complying to the legal limits are available at a premium price. 'Safe' (non-mycotoxincontaminated) food may become a luxury product and solely affordable for the more wealthy, resulting in inequality and an expected higher disease burden for lower income households (Leroy et al. 2015). Furthermore, regulatory entities have mainly focused their attention on the organised formal sector. This made the enforcement of regulatory standards challenging, as the informal sector is responsible for the majority, e.g. 90% in Kenya, of transaction of the food supply (Mutegi et al. 2018). In order to limit the impact of mycotoxin contamination on food security as well as waste management practices, implementation of a more safe and circular food system is urgently needed.

Insects as a possible solution

It is clear that we are in need of a more sustainable and circular food and feed sector in which unused or unsafe by-products *e.g.* mycotoxin-contaminated commodities can be brought back into the value chain without stimulating inequality nor affecting public health. It is known that insects can recycle agri-food by-products within the food system thereby contributing to circular food systems. Previous studies have shown that a variety of insect larvae can be used to convert different organic side-streams into insect biomass for feed (Gold *et al.* 2020; Gold *et al.* 2018; Van Huis 2013). It is hypothesized that insects could do the same for mycotoxin-contaminated commodities. Furthermore, insect farming can be done at industrial, small-holder farmer and on community scale. In the EU, insects are considered as livestock and therefore the feed they receive needs to comply with the respective MLs and GVs for animal feed (EC 2002a; EC 2006b). Rearing insects on feed containing mycotoxin concentrations above these limits is currently not allowed. Scientific evidence is therefore needed to determine whether this could be a viable and safe solution.

Previously conducted studies already showed that larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) are able to recycle a variety of organic streams (Gold et al. 2018). Furthermore, others successfully managed to rear BSFL (Bosch et al. 2017; Camenzuli et al. 2018; Leni et al. 2019) and larvae of other relevant insect species, namely the larvae of the

beetles *Tenebrio molitor* (Niermans *et al.* 2019; Van Broekhoven *et al.* 2014; Van Broekhoven *et al.* 2017), and *Alphitobius diaperinus* (Camenzuli *et al.* 2018; Leni *et al.* 2019) on mycotoxin-contaminated substrates. The impact of mycotoxin exposure on larval viability, biomass, and mycotoxin transfer from substrates to larvae remained unresolved. Moreover, a missing fraction in the mycotoxin mass balance in insect rearing systems suggested that mycotoxin biotransformation occurred in insects. The nature and origin of this mycotoxin fraction required elucidation to conclude on possible food safety implications, as well as the larval capacity to biotransform mycotoxins.

This is where the InsectFeed research program came into play. The InsectFeed consortium aimed to generate a high-quality fundamental knowledge on whether the larvae of the BSF and housefly (HF; *Musca domestica* L.; Diptera: Muscidae) can be used as animal feed in poultry production systems (Figure 8). The research conducted within this consortium was divided in seven integrated research topics (work packages; WP) namely; WP1: conceptualization, WP2: insect welfare and ethics of insect production, WP3: insect health as affected by substrate quality, WP4: insect health and immunology, WP5: insect behaviour and welfare, WP6: effects of the use of insects as feed on poultry health and welfare, and WP7: economic robustness of the value chain, including consumer behaviour. This thesis is part of WP3.

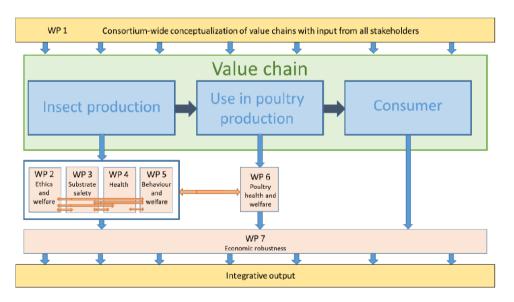


Figure 8: Overview of the work packages (WP) included in the InsectFeed research program.

Objectives and outline of this thesis

The aims of this research topic (WP3) are to (1) determine whether BSFL and HFL survival and biomass are affected after feeding on a mycotoxin-contaminated substrate; (2) whether transfer of the mycotoxins from the rearing substrates into the larvae takes place; (3) whether the insect larvae metabolise the mycotoxins fed and; (4) what metabolic products are formed.

Firstly we aimed to identify knowledge gaps in literature. Therefore, in *Chapter 2* we present a systematic literature review in which we summarized the currently available literature regarding mycotoxin exposure on insects, mycotoxin accumulation and biotransformation. Afterwards and based on the knowledge gaps identified in the literature review we studied the effects of the three mycotoxins AFB₁, DON and ZEN on survival, growth and toxin accumulation in HFL (*Chapter 3*). In this chapter HFL were fed substrates spiked with mycotoxins at concentrations of either one time or 10 times the ML or GVs set for feed materials by the EC. The experiment was performed on laboratory scale and exposure lasted for five days. In *Chapter 4* we focussed on the metabolic fate and metabolic product formation of the mycotoxins AFB₁, FB₁, OTA and ZEN, in both BSFL and HFL and used tracking of an isotopic label in these four compounds in combination with High Resolution Mass Spectrometry (HRMS) analyses to identify the formation of (novel) metabolites.

Afterwards, in *Chapter 5* we examined whether BSFL and HFL were solely responsible for AFB₁ metabolism or whether microorganisms in the feed substrate are also involved. This was done at lab scale with substrates spiked at a concentration of one time the ML for AFB₁, and the preparation of sterile substrates. Lastly in *Chapter 6*, we studied the effects of AFB₁ on metabolic and immunity-related gene expression in BSFL. In order to do this we collected samples at three timepoints during a lab-scale feeding study in which BSFL were fed on an AFB₁-spiked or a control diet and performed RNA-Sequencing to quantify larval gene expression.

The feeding studies in the previous chapters were all performed with mycotoxin-spiked materials, and therefore we studied whether similar results for survival, biomass, mycotoxin transfer and metabolism would be obtained when using peanut material which was naturally contaminated with aflatoxins on laboratory scale (*Chapter 7*). In *Chapter 8* we built further on this and performed a pilot scale study with naturally contaminated maize in Kigali, Rwanda. We mixed mycotoxin-contaminated maize with local agri-food by-products and studied common mycotoxins such as AFB₁, FB₁, DON, OTA, and ZEN, as well as a variety of emerging mycotoxins. Here we furthermore investigated the viability of producing high-quality fertilizer using BSFL from crops contaminated with mycotoxins.

Chapter 2

A systematic literature review on the effects of mycotoxin exposure on insects, and on mycotoxin accumulation and biotransformation

Kelly Niermans^{1,2}, Amelia M. Meyer², Elise F. Hoek- van den Hil², Joop J.A. van Loon¹, H.J. (Ine) van der Fels-Klerx²

¹Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; ²Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.

Published in: Mycotoxin Research, 37, 279-295. https://doi.org/10.1007/s12550-021-00441-z

Abstract

Novel protein sources for animal feed are needed, and the use of insects as feed ingredient is explored. The insect production sector offers opportunities for a circular and sustainable approach to feed production by upgrading waste- or side streams into high-quality proteins. However, potential food or feed safety issues should be studied in advance. Mycotoxins, such as aflatoxin B₁ (AFB₁), are natural contaminants commonly found in agricultural crops and have proven to be detrimental to the agricultural industry, livestock, and human health. This systematic review aims to provide a comprehensive overview of the published evidence on effects of mycotoxin exposure on insect growth and survival, mycotoxin accumulation within the insect body, and metabolization of various mycotoxins by insects. The review includes 54 scientific articles published in the past 55 years, in total covering 32 insect species. The main findings are: (1) insects of the order Coleoptera show lower mortality after exposure to AFB₁ when compared to Lepidoptera and Diptera; (2) effects of mycotoxins on larval growth and survival are less detrimental in later larval stages; (3) accumulation of mycotoxins was low in most insect species; (4) mycotoxins are metabolized within the insect body, the degree of which depends on the particular mycotoxin and insect species; (5) cytochrome P450s (CYP450s) are the main family of enzymes involved in biotransformation of mycotoxins in some insect species. Results of this review support an optimistic outlook for the use of mycotoxin-contaminated waste streams as substrate for insect rearing.

Introduction

With the expected growth of the human population an increase in food and feed production is required and the use of insects as a novel suitable feed source of animal proteins is explored. Opportunities for a circular and sustainable approach to feed production are offered by the insect production sector. Traditionally more than 2000 species of insects are consumed (Jongema 2017), of which most in tropical countries. Beetles (Coleoptera), butterfly and moth larvae (Lepidoptera), ants, bees and wasps (Hymenoptera) are consumed most commonly, followed by crickets, grasshoppers and locusts (Orthoptera) (Van Huis et al. 2013). However, in Europe the consumption of insects is still considered novel. Besides increasing the use of insects as food, their use in the feed sector provides interesting opportunities. By using waste- or side streams as substrates for insect rearing low-quality streams can be upgraded into high-quality proteins. But possible issues regarding food or feed safety should be studied beforehand. Serval classes of contaminants could possibly be present in waste- or side streams of interest. When using these waste- or side streams as a substrate to rear insects as food and/or feed it is important to know whether these insects accumulate the possibly present contaminants in their bodies and therefore become a source of contaminants themselves. Waste- or side streams can originate from a variety of sources. This wide variety of available waste- or side streams could also result in contamination by heavy metals, veterinarian drugs and hormones, pesticides, dioxins, dioxin-like polychlorinated biphenyls and polyaromatic hydrocarbons, among others. Additionally, an example of a group of contaminants commonly found in nature and in agriculture are mycotoxins (Van der Fels-Klerx *et al.* 2018). Mycotoxins are a chemically diverse group of low-molecular weight secondary metabolites produced by fungi, mainly *Aspergillus* spp., *Fusarium* spp., and *Penicillium* spp.. Mycotoxins can cause a variety of adverse effects on human and animal health (Hussein and Brasel 2001) and are commonly found in seeds, nuts and ears of crops (Agriopoulou *et al.* 2020). Therefore waste- or side streams consisting of agricultural materials, for example restaurant waste or brewery spent grains, could be contaminated with these mycotoxins and be fed to insects when used as substrates for insect rearing. As mycotoxins are detrimental to both human and animal health, the European Union (EU) has set maximum levels (ML) for the presence of certain mycotoxins in food and food commodities in Commission Regulation (EC) No 1881/2006 (EC 2006c). MLs and advised guidance values (GVs) for feed materials and complementary and complete feeding stuffs in Directive 2002/32/EC and Commission Recommendation 2006/576/EC (EC 2002a; EC 2006b). Table 1 gives an overview of the range of MLs and advised GVs set for feed and food materials.

For a detailed overview of which ML or GV is set for a specific product intended as animal feed or as food we direct the reader to the legal documents themselves. Data on the occurrence of mycotoxins in raw materials used for animal feed production (maize, wheat, barley and soybean) from 100 countries, collected in the past 10 years showed that mycotoxin concentrations mostly complied with the ML or GV set for animal feed in the EU (Gruber-Dorninger et al. 2019).

Table 1. Overview of the range of maximum levels (MLs) and advised guidance values (GVs) set for products intended for animal and human consumption

Mycotoxin	MLs in μg/kg	GVs in μg/kg				
All feed materials and complementary and complete feeding stuffs						
AFB ₁	5 - 20 ¹					
DON		900 - 12,000 ²				
Sum of FB ₁ and FB ₂		5,000 - 60,000 ²				
OTA		50 - 250 ²				
ZEN		100 - 3,000 ²				
Foodstuffs						
Sum of AFB ₁ , B ₂ , G_1 and G_2	4 - 15 ³					
DON	200 - 1,750 ³					
Sum of FB ₁ and FB ₂	200 - 2,000 ³					
OTA	0.50 - 10 ³					
Patulin	10 - 50 ³					
ZEN	20 - 200 ³					

¹Directive 2002/32/EC, ²Commission Recommendation 2006/576/EC, ³Commission Regulation (EC) No 1881/2006. Aflatoxin B_1 (AFB₁), deoxynivalenol (DON), fumonisin B_1 (FB₁), fumonisin B_2 (FB₂), ochratoxin A (OTA), zearalenone (ZEN), aflatoxin B_2 (AFB₂), aflatoxin G_1 (AFG₁), aflatoxin G_2 (AFG₂)

However, the percentage of samples exceeding the ML or GVs varied between 2.4-7.4% for AFB₁, 4.8-13.0% for zearalenone (ZEN), 4.3-21.5% for deoxynivalenol (DON), 0.2-0.9% for ochratoxin A (OTA) and 0.0-3.3% for fumonisin B₁ (FB₁) + fumonisin B₂ (FB₂). This study showed that mycotoxin presence in feed and related commodities greatly varies from year-to-year and varies between regions of Europe, being highly affected by environmental conditions and agricultural practices (Gruber-Dorninger et al. 2019). Climate change and bad storage conditions may result in elevated levels of mycotoxins in plants and crops (e.g. maize) on which insects feed (Gruber-Dorninger et al. 2019; Medina et al. 2017). Some insect species have a degree of tolerance to particular mycotoxins and - in general - insects seem to be able to grow on plant-derived (waste) streams which contain mycotoxins (Bosch et al. 2017; Leni et al. 2019; Niu et al. 2009; Ochoa Sanabria et al. 2019). When comparing the initially present mycotoxin concentration with the concentration found in the residual feed material and the larvae, a portion of the ingested mycotoxins could not be recovered (Leni et al. 2019; Schrögel and Wätjen 2019) pointing at a need to further investigate the fate of mycotoxins. These unrecovered mycotoxin fractions could indicate the formation of mycotoxin metabolites (Berenbaum et al. 2021), or adducts (with protein or DNA), of which some could be unknown. Possible metabolites and modified forms of mycotoxins formed after ingestion of mycotoxins by insects may still be toxic (e.g. formation of a more toxic metabolite) to animals or humans (EFSA 2016), indicating the necessity for more information on the metabolism of mycotoxins by insects especially if intended for use as feed and food.

Over the past years the topic of insects as food and feed has received increasing attention and been elaborately discussed by Arnold van Huis (Van Huis 2016; Van Huis 2020; Van Huis *et al.* 2013). Also, the topics of sustainability in insect rearing (Van Huis and Oonincx 2017), consumer acceptance (Kauppi *et al.* 2019), profitability (Niyonsaba *et al.* 2021) and the circular business model perspective (Madau *et al.* 2020) have been extensively discussed in recent reviews. To date, the available data on possible accumulation of mycotoxins in insects and the possible metabolization of these toxins by insects, as well as the possible data gaps, are fragmented across disciplines and no clear overview is available. Therefore, the aim of this study was to obtain a comprehensive overview of the available information on the effects of mycotoxin exposure on growth and survival of insects, possible accumulation of mycotoxins in insects, and the possible bio-transformation of mycotoxins by insects. To this end, a systematic review was done covering all insect species, but with a particular focus on species used for feed and food. This comparative approach may allow extrapolation to a wider range of insect species that may be used for feed and food production in the future.

Methods

Three different bibliographic databases (*i.e.* PubMed, CAB Abstracts and Scopus) were used to retrieve peer-reviewed studies published in the English language from 1950 up to and including

2020. Search strings were defined beforehand and were divided into two parts. The general keywords added in both sets of search strings were: larva(e), larval, insect(a), insects, mycotoxin(s), deoxynivalenol*, enniatin*, beauvericin*, nivalenol*, aflatoxin*, zearalenone*, fumonisin* and ochratoxin*. The first search focused on survival and development of insects and included the following additional keywords: life cycle stage(s), life*cycle, life stages, biomass, reprod* fitness*, grow*, develop*, mortality, weigh*, pupat* and surviv*. The second search focused on accumulation and transformation of mycotoxins and contained the following additional key-words: metabolism*, convert, conversion, breakdown, degrad*, accumulat*, conjugat*, absorb*, excret*, distribut* and adme*. For all search strings used it was ensured that respective plural forms as well as related words (synonyms) were covered. The collected articles were stored in an EndNote library after which duplicates were removed. Then, the articles were screened for their relevance by using a priori determined exclusion criteria. Exclusion criteria used included: non-English articles, non-research articles, review articles, no full text available (via the WUR library), not focusing on insects (i.e. class Insecta), studies in insect cell-lines, not focusing on mycotoxins, focusing on pest management. The snowballing technique was used to identify other relevant studies from reference lists of the articles found.

Data reported in the relevant articles were extracted and synthesized to provide an overview of effects of mycotoxins on insect mortality and growth, on accumulation of mycotoxins, and on conversion of mycotoxins. Throughout the remaining part of this review, metabolism is defined as the process of biotransformation facilitated by enzymes to create polar compounds which are more easily excretable. The words metabolism, conversion, and biotransformation of mycotoxins will be used interchangeably to refer to metabolic processes which convert mycotoxins within insects into their metabolites or modified forms.

Results

Literature search

The initial literature search yielded 1,282 articles (Figure 1). Following elimination of duplicates and screening of title, keywords and abstract using the exclusion criteria, 148 potentially relevant papers were selected. An additional 24 potentially relevant papers were added in this step via the snowballing technique. After examination of the full texts, 52 papers were considered relevant. Additionally, two relevant papers which were published during the time this review was written were added. All study details and data from the final set of 54 research articles are presented in Table S1, including: insect species, substrate used, exposure time of the insects, analytical method used, and mycotoxins (metabolites) analysed. Although all insect species were included in the review, most of the retrieved studies focused on species from the insect orders Diptera, Coleoptera, and Lepidoptera. The order Diptera includes fly species that can feed on a variety of organic residues and usually have a short life cycle. The Coleoptera are beetles and

include known agricultural pests that can break down animal and plant debris. The Lepidoptera order includes butterflies and moths, the plant-feeding larvae of which are called caterpillars that can be detrimental to agriculture. The majority of currently considered edible insect species belong to the orders Coleoptera and Lepidoptera (Jongema 2017).

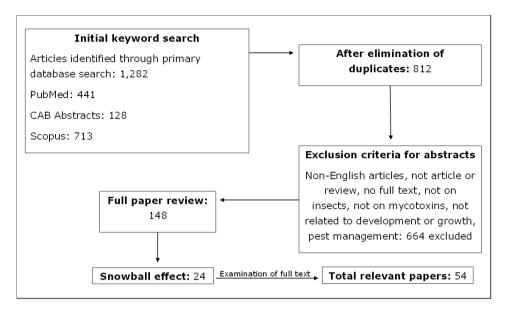


Figure 1. Overview of steps with number of articles of the systematic review process

Development and growth

Diptera

Developmental effects due to exposure of mycotoxins were observed mostly for larvae of Hermetia illucens L. and Drosophila melanogaster Meigen within the order of Diptera. Larval weight gain of H. illucens consuming a substrate contaminated with $4.600 \, \mu g/kg \, DON$, $260 \, \mu g/kg$ OTA and $88 \, \mu g/kg \, AFB_1$, $17 \, \mu g/kg \, AFB_2$, $46 \, \mu g/kg \, aflatoxin \, G_2 \, (AFG_2)$ and $860 \, \mu g/kg \, ZEN$ was not significantly different as compared to the control treatment (Purschke et al. 2017). A significantly longer development time was observed in Drosophila simulans Sturtevant female larvae when exposed to $0.05 \, \mu g/kg \, OTA$ as compared to the control (Cao et al. 2019). Furthermore, as the concentration of AFB₁ increased, more malformed adult (wings, leg and thorax) individuals of D. melanogaster were observed. Exposure to $800 \, \mu g/kg \, AFB_1$ resulted in $11\% \, malformation$ as opposed to $7\% \, for \, larvae \, exposed to <math>200 \, \mu g/kg \, AFB_1 \, (Sisman 2006)$. Furthermore, feeding D. melanogaster (strain Oregon R) with $10.000 \, \mu g/kg \, AFB_1 \, resulted$ in a doubling of larval and pupal development time (Kirk et al. 1971). Additionally, it has been shown that effects caused by mycotoxin exposure of D. melanogaster on growth can vary between both strains and larval stages. For instance, when 1^{st} , 2^{nd} and 3^{rd} instar larvae of strain A-11 of D. melanogaster were

reared on 440 μ g/kg AFB₁ no significant growth effects were observed, however, 2nd instar larvae of strain A-9 raised on 440 μ g/kg AFB₁ developed into significantly smaller adults than their controls (Chinnici *et al.* 1979). In addition, *D. melanogaster* larvae fed with 200 μ g/kg AFB₁ led to a significantly smaller body length for larvae of the Florida-9 strain (Gunst *et al.* 1982).

Coleoptera

Growth effects caused by mycotoxin exposure were also observed in the order of Coleoptera. For example, developmental time of one-day-old Ahasverus advena Waltl larvae was significantly longer when exposed to 2,000,000 μg/kg AFB₁ (Zhao et al. 2018). Lifetime fecundity of Tribolium confusum Jacq. adults fed with 100,000 μg/kg T-2 for 120 days was not affected, however, this exposure resulted in a much higher egg production in the first 60 days, followed by a lower egg count in the last 60 days (Wright et al. 1976). Nonetheless, most available studies focused on the effect of mycotoxin exposure on larval weight. Alphitobius diaperinus Panzer larvae fed with 1,300 µg/kg OTA had a significantly lower weight when compared to larvae fed with 1,700 µg/kg OTA and the control (Camenzuli et al. 2018). Also, a lower weight was observed for Zophobas atratus Fabr. larvae fed on 500 µg/kg T-2 as compared to their control (Van Broekhoven et al. 2014). Most studies used Tenebrio molitor L. larvae and showed, for example, that exposure to 450,000 µg/kg FB₁ resulted in a significantly lower weight in T. molitor larvae after 28 days (Abado-Becognee et al. 1998). Furthermore, T. molitor larvae gained significantly less weight when exposed to wheat bran contaminated with 8,000 µg/kg DON for two weeks and this effect became more pronounced at increasing concentrations (Janković-Tomanić et al. 2019). Contrarily, T. molitor larvae exposed to either 500 μg/kg OTA, 500 μg/kg T-2 (Van Broekhoven et al. 2014) or 204 μg/kg AFB₁ (Bosch et al. 2017) gained more weight than their respective controls, whereas no significant difference in weight gain of *T. molitor* larvae exposed to 415 µg/kg AFB₁ was observed (Bosch et al. 2017). Additionally, exposure to flour that was naturally contaminated with 2,854 µg/kg DON and 602.3 µg/kg ZEN resulted in a significantly increased larval weight (Niermans et al. 2019). T. molitor larvae fed with an artificial diet containing approx. 250 μg/kg T-2 / HT-2 toxins gained 44% more weight than the control group fed a natural diet. Additionally, larval weight gain was significantly higher when fed with an artificially contaminated diet than when fed with naturally contaminated diets (Piacenza et al. 2020). In general, most studies focused on the effect of mycotoxin exposure on weight gain in T. molitor larvae.

Lepidoptera

Growth effects caused by mycotoxin exposure on Lepidoptera were reported in several studies. Firstly, 1st instar *Amyelois transitella* Walker larvae fed with 50,000 µg/kg AFB₁ showed significantly lower pupation rates. Exposure of 5th instars to the same concentration did not cause a significant decrease in pupation rate. No developmental effects were observed in 1st

instar Am. transitella larvae after exposure of up to 5,000 μg/kg OTA, whereas 1st instar Helicoverpa zea Boddie larval development was significantly inhibited by this concentration of OTA (Niu et al. 2009). Exposure of Spodoptera frugiperda Smith and Hel. zea larvae to 25,000 μg/kg verrucolgen, roseotoxin B or penitrem A for 7 days resulted in a significantly lower weight gain for both species. Additionally, exposure of Hel. zea larvae to 250 μg/kg penitrem A also resulted in a significantly lower weight, this was not observed when the larvae were exposed to the same concentration of roseotoxin B (Dowd et al. 1988). Exposure to 25,000 µg/kg DON caused a significant growth retardation in Hel. zea larvae but not in S. frugiperda larvae. In contrast, exposure to 25,000 µg/kg T-2 resulted in a significantly lower weight of S. frugiperda larvae only. However, 25,000 µg/kg diacetoxyscripeol caused a significant growth retardation in both species (Dowd 1990), whereas exposure to 250,000 µg/kg griseofulvin caused significant weight loss in both Hel. zea and S. frugiperda larvae (Dowd 1993). Similarly, no significant difference in weight of Hel. zea larvae was observed after exposure to 25,000 and 250,000 μg/kg fusaric acid for seven days (Dowd 1989). Paterson et al. (1990) reared S. frugiperda larvae on substrates containing either brevianamide A, brevianamide D, or OTA, each at 10,000 μg/kg, and observed a significant larval weight loss after three days of exposure to each of the three mycotoxins. Exposure to brevianamide D reduced larval weight more than brevianamide A (Paterson et al. 1990). In neonatal Spodoptera exigua Hübner larvae reared for seven days on a semi-synthetic diet containing 15,000-90,000 µg/kg destruxin B resulted in significant decrease in growth with increasing concentration (Rizwan-Ul-Haq et al. 2009). Destruxins are produced by the documented insect pathogenic fungus Metarhizium spp., but they are not common contaminants of food or feed.

AFB₁ and its metabolites caused effects on fecundity and hatchability in Spodoptera littoralis Boisduval larvae. Exposure to 2,500 μg/kg AFB₁ or 4,000 μg/kg AFG₁ caused significant retardation in the development of both larvae and pupae, and significantly reduced the percentage of hatchability. Exposure to either 2,000 μg/kg AFB₁, 3,000 μg/kg AFG₁ or 4,000 μg/kg AFB₂ caused a significant reduction in the numbers of eggs laid (Sadek 1996). Tolerance of Trichoplusia ni Hübner larvae to AFB₁ seems to increase with age. As an example, exposure of newly hatched larvae to a semi-synthetic wheat germ-based diet containing 200 μg/kg AFB₁ resulted in a significant inhibition of larval growth after ten days, while no negative effects on growth and development were observed in five-day-old-larvae exposed to the same concentration for three days. Additionally, exposure of seven-day-old larvae to 3,000 μg/kg AFB₁ significantly reduced pupation, while exposure of 10-day-old larvae to the same concentration did not affect pupation (Zeng et al. 2013). 10-day-old Corcyra cephalonica larvae needed to be exposed to at least 1,000,000 µg AFB₁/kg for twelve days to observe a significantly reduced growth (Hegde et al. 1967). In Bombyx mori L. larvae, oral administration of up to 16,000 μg/kg bassianolide decreased body weight with an increasing dose already after two days. Larvae exposed to 4,000 µg/kg bassianolide weighed half of the control group, however, statistical

significance was not calculated in this study (Kanaoka et~al.~1978). Bassianolide is produced by the well-known insect pathogenic fungus Beauveria~bassiana, but is not a common contaminant of food or feed. Choristoneura~fumiferana Clemens larvae grown on Picea~glauca~b branches infected with rugulosin-producing endocytes showed that the Ch.~fumiferana~l larvae grown on infected trees containing 850 μ g/kg rugulosin (geometric mean) were significantly smaller than the ones grown on uninfected trees (Miller et~al.~2008). Sumarah et~al.~(2008) performed a similar experiment and observed a significant reduction of growth of Ch.~fumiferana~l and Lambdina~fiscellaria~Guenée~l larvae after exposure to 13,650 and 27,125 μ g/kg rugulosin, respectively. A significant reduction of the head capsule was observed in Ch.~fumiferana~l larvae fed with 54,250 μ g/kg dietary rugulosin and in L.~fiscellaria~l larvae fed with 81,375 μ g/kg dietary rugulosin. However, larval weight of Zeiraphera~c anadensis~Mutuura~8. Freeman~did~not significantly differ~when~exposed~to~up~to~81,375~ μ g/kg~rugulosin, which was the highest concentration tested (Sumarah et~al.~2008).

Other orders

Periplaneta americana L. (Blattodea) fed sucrose contaminated with 12,000 μg/kg AFB₁ had a higher body weight (approximately 7%) as compared to the control (Llewellyn *et al.* 1976). However, Oncopeltus fasciatus Dallas (Hemiptera) were observed to have a significantly lower body length after feeding on 5,000 μg/kg AFB₁ at 20°C, whereas no effect on body length was observed when exposed to the same concentration at 25°C (Llewellyn *et al.* 1988).

Mortality

Diptera

Hermetia illucens and *D. melanogaster* differed in tolerance to AFB₁ exposure (Figure 2a). When exposed to 1–500 μg AFB₁/kg, < 30% mortality was observed in *H. illucens* (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Meijer *et al.* 2019), while exposure to 440 μg AFB₁/kg caused 100% mortality in *D. melanogaster* strain A-9, but only 9% mortality in *D. melanogaster* strain A-11 (Chinnici *et al.* 1979). Exposure to 200 μg AFB₁/kg resulted in mortality of 66% and 9% in the *D. melanogaster* strains Florida 9 and Lausanne-S respectively (Gunst *et al.* 1982). Interestingly, when intermated lines of *D. melanogaster* (strains Oregon-R and Lausanne-S) were exposed to AFB₁ for multiple generations a significantly enhanced resistance as compared to the control line was observed (Melone and Chinnici 1986). While most studies focused on AFB₁, exposure of *H. illucens* larvae to DON in concentrations ranging from 630-3,580 μg/kg resulted in mortality varying between 7-10% (Gulsunoglu *et al.* 2019). On the contrary, no significant difference in mortality was observed when exposing *H. illucens* larvae to a substrate that contained a mixture of DON (4,600 μg/kg), 88 μg AFB₁/kg, 17 μg AFB₂/kg, 46 μg AFG₂/kg, 260 μg OTA/kg and 860 μg ZEN/kg (Purschke *et al.* 2017). Exposure of *H. illucens* larvae to spiked concentrations of AFB₁ (390 μg/kg), DON (112,000 μg/kg), ZEN (13,000 μg/kg) and OTA (1,700 μg/kg) caused ≤6%

mortality (Camenzuli *et al.* 2018). Additionally, 2% mortality was observed in 4th instar *Aedes aegypti* L. larvae when exposed to 3,000 µg AFB₁/kg for 5 days (Matsumura and Knight 1967).

Coleoptera

In the order of Coleoptera, studies were performed on T. molitor, Ah. advena, A. diaperinus, Z. atratus and Tri. confusum. Similar to the order of Diptera, differences in mycotoxin susceptibility were identified between Coleoptera species (Figure 2b). Mortality in one-day-old Ah. advena larvae caused by AFB₁ seems to be dose-dependent and ranged from 29% when exposed to 500,000 µg AFB₁/kg up to 99% when exposed to 8,000,000 µg AFB₁/kg (Zhao et al. 2018). T. molitor larvae have overall proven to be quite tolerant to various mycotoxins and as shown in Figure 2b - exposure to 415 μg AFB₁/kg resulted in only 5% mortality (Bosch et al. 2017). Additionally, no significant effects on mortality were observed when T. molitor larvae were fed with contaminated diets containing 200-12,000 µg DON/kg, and exposure to substrates infested with 12,000 µg DON/kg led to 2% mortality (Ochoa Sanabria et al. 2019). A naturally contaminated diet containing 4,900 µg DON/kg and another diet spiked with 8,000 µg DON/kg (Van Broekhoven et al. 2017) also resulted in 2% mortality. In addition, T. molitor larvae fed with wheat containing 568-4,588 µg DON/kg and 589-2,283 µg ZEN/kg did not result in significant mortality (Niermans et al. 2019). 7% mortality was observed in T. molitor larvae when fed with 128,000 µg T-2/kg (Davis and Schiefer 1982), but no mortality was observed upon exposure to 450,000 µg FB₁/kg (Abado-Becognee et al. 1998). However, 100% mortality was observed in T. molitor larvae after exposure to 102,280 µg beauvericin/kg (Beauveria bassiana strain B13/I11) (Cito et al. 2016). It should be noted that beauvericin is produced by the well-known insect pathogenic fungus Beauveria bassiana, and is a common contaminant of grains (EFSA 2014). Larvae fed with either an artificially contaminated diet or a naturally contaminated diet containing approximately 100 and 250 µg/kg total T-2 / HT-2 for four weeks resulted in an average mortality of 11% in T. molitor larvae considering all diets. Interestingly, when fed the artificially contaminated diet, 16% higher mortality was observed as compared to the naturally contaminated diet, and this effect seemed to be independent of the concentration (Piacenza et al. 2020).

Camenzuli *et al.* (2018) exposed *A. diaperinus* larvae to 17 different treatments, including single spiked concentrations of AFB₁ (8-390 μ g/kg), DON (3,900-112,000 μ g/kg), ZEN (280-13,000 μ g/kg), OTA (170-1,700 μ g/kg) and combined spiked mycotoxin concentrations of up to 100,000 μ g/kg and found no significantly different mortality in these treatment groups as compared to the control group (Camenzuli *et al.* 2018). In another study, exposure to 500 μ g/kg ZEN, OTA, and T-2 led to 10% mortality in *T. molitor* and *Z. atratus* larvae, and 20% mortality for larvae of *A. diaperinus* (Van Broekhoven *et al.* 2014). A similar high mortality of 15% was observed in *Tri. confusum* larvae fed on 100,000 μ g T-2/kg (Wright *et al.* 1976).

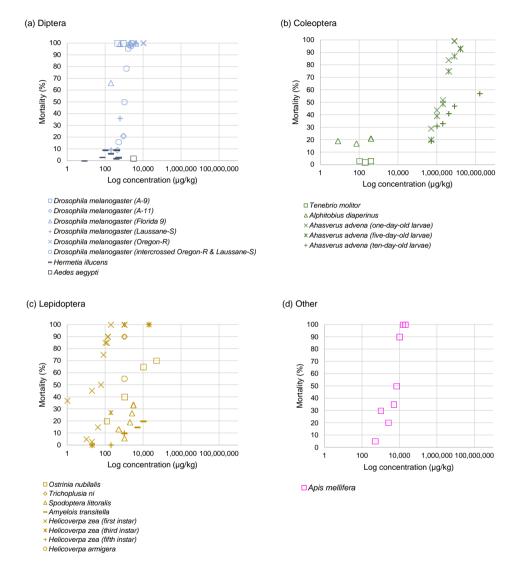


Figure 2. Mortality (%) caused by exposure to different doses of AFB₁ (log scale) for 14 insect species belonging to four orders.

Based on the studies of a: Camenzuli et al. (2018), Chinnici et al. (1979), Gunst et al. (1982), Kirk et al. (1971), Matsumura and Knight (1967), Meijer et al. (2019), Melone and Chinnici (1986); b: Bosch et al. (2017), Camenzuli et al. (2018), Zhao et al. (2018); c: Mencarelli et al. (2013), Niu et al. (2009), Sadek (1996), Zeng et al. (2006), Zeng et al. (2013); d: Niu et al. (2011). An overview of the data used is available in Table S2

Lepidoptera

Most studies on the effects of mycotoxin exposure on insects are performed for species in the order Lepidoptera. Similar to the orders previously described, different degrees of susceptibility in the species of this order were observed (Figure 2c) (Niu et al. 2009; Zeng et al. 2006). First instars of Hel. zea exposed to 1,000 µg AFB₁/kg, showed 100% mortality after 15 days, while also 100% mortality was observed in 3rd instars exposed to 20,000 µg AFB₁/kg for 21 days (Zeng et al. 2006). Additionally, exposure to 1,000 µg AFB₁/kg resulted in a significant increase in mortality (40-55%) after 6-9 days in Hel. armigera larvae (Elzaki et al. 2019), (35-55%) mortality after 8 days in Hel. zea larvae (Zeng et al. 2009), and 90% mortality after 10 days in Tr. ni larvae (Zeng et al. 2013). S. littoralis larvae fed with a diet containing AFB₁ (500-3,500 μg/kg), AFB₂ (2,000-4,000 μg/kg) and AFG₁ (1,000-4,000 μg/kg) until pupation showed a similar mortality across these treatments and a mortality increasing with higher doses (16-53%). Additionally, exposure to a combination of 3,500 μg AFB₁/kg and 75,000 μg kojic acid/kg resulted in an almost 9% increase in mortality compared to AFB₁ exposure alone (Sadek 1996). Ostrinia nubilalis Hübner (European corn borer) larvae, specialized on corn (Zea mays L.), showed a high tolerance towards AFB₁ exposure with a calculated median lethal concentration (LC₅₀) of 2,300 μg/kg diet (Mencarelli et al. 2013). The silkworm B. mori showed 100% mortality after 4 days of exposure to 15,614 µg AFB₁/kg (Ohtomo et al. 1975). Similarly, oral administration of 12,000 µg bassianolide/kg also was observed to be lethal to B. mori larvae after an exposure of 6 to 8 days (Kanaoka et al. 1978). Paterson et al. (1987) exposed S. littoralis larvae to a variety of mycotoxins, all at a concentration of 10,000 µg/kg. Highest mortality was observed after exposure to penicillic acid (90%) and brevianamide A (78%). Exposure to viomellein, OTA, cyclopenol, and citrinin led to 30%, 40%, 26%, and 48% mortality, respectively, indicating a varying susceptibility of S. littoralis larvae to different types of mycotoxins (Paterson et al. 1987). Exposure of Spodoptera litura Fabr. to 88-264 µg destruxin/kg body weight (Metarhizium anisopliae M-10 isolate) caused 30-90% mortality, after 48 hours. Destruxin obtained from a Metarhizium anisopliae M-19 isolate needed to be fed in nearly three times the doses to obtain the same percentage of mortality (Sree and Padmaja 2008). Exposure to 40,000-60,000 µg destruxin B/kg showed 7 to up to 30% mortality after 3 days, gradually increasing to 60-90% mortality after 8 days of exposure (Rizwan-Ul-Haq et al. 2009). Paterson et al. (1990) reared S. frugiperda larvae on substrates containing brevianamide A, brevianamide D and OTA up to a concentration of 10,000 μg/kg for 3 days and observed no mortality caused by brevianamide A and D. However, the observed mortality until pupation was considered significant for all treatments (Paterson et al. 1990). Am. transitella larvae seemed less sensitive to OTA exposure; concentrations of 1,000-50,000 µg OTA/kg for 12 days showed no significant difference in mortality and resulted in a 10% mortality in Hel. zea after exposure to 1,000 and 5,000 μg OTA/kg after 10 days (Niu et al. 2009). For both S. frugiperda and Hel. zea larvae exposed to 25,000 µg/kg dihydroxyaflavinine and roseotoxin B, a significantly higher mortality than the control was observed, while after exposure to 2,500-25,000 μg penitrem A/kg a significant higher mortality (≥15%) was only observed in *Hel. zea* (Dowd *et al.* 1988).

Other orders

O. fasciatus larvae showed 100% mortality when exposed to 5,000 μ g AFB₁/kg for 20 days, whereas a lower mortality was found after a shorter exposure time (Llewellyn *et al.* 1988). In honey bee *Apis mellifera* L. (Hymenoptera) exposed to 1,000 μ g AFB₁/kg 30% mortality was observed (Figure 2d), while exposure to 15,000 μ g AFB₁/kg caused 100% mortality after 60 hours of treatment (Niu *et al.* 2011). Exposure to 1,000 μ g DON/kg did not affect survival in *Sitobion avenae* Fabr. nymphs, but caused 50% mortality in *Acyrthosiphon pisum* Harris nymphs. Mortality < 19% was observed for both species when exposed to 500-3,000 μ g/kg deoxynivalenol-3-glucoside (DON3G) (De Zutter *et al.* 2016).

Accumulation and metabolism

Diptera

In the order of Diptera most studies on mycotoxin accumulation and metabolism were performed on H. illucens larvae. Concentrations observed were below the limit of quantification (LOQ) in H. illucens larval body when the larvae were given feed spiked with AFB₁ (8-390 μg/kg), DON (3,900-125,000 µg/kg), ZEN (280-13,000 µg/kg), or OTA (170-1,300 µg/kg) either as single mycotoxin or in mixtures with different concentrations of AFB₁, DON, ZEN, and OTA (Camenzuli et al. 2018). For the AFB₁ treatments (Figure 3a), only ≤18% of the initial concentration of AFB₁ present in the substrate was found in residual feed material and neither aflatoxicol (AFL), aflatoxin M₁ (AFM₁) nor aflatoxin P₁ (AFP₁) were detected in levels above the LOQ in the residual material (Camenzuli et al. 2018). When H. illucens larvae were fed a naturally contaminated diet containing AFB₁ (13.3 μ g/kg), AFB₂ (2.6 μ g/kg) and AFG₂ (7 μ g/kg), 10.9 μ g/kg AFB₁ and concentrations below the LOQ for AFB2 and AFG2 were detected in the residual material (Purschke et al. 2017). Exposure of H. illucens larvae to substrates containing AFB₁ as part of a mixture of mycotoxins (AFB₁, DON, ZEN, and OTA) in different concentrations resulted in a lower concentration found in the residual material compared to the initial concentration than when fed single mycotoxins. However, when fed with a mixed diet containing 430 µg AFB₁/kg, 100,000 μg DON/kg, 9,400 μg ZEN/kg and 2,000 μg OTA/kg a small amount of AFL was also formed (Camenzuli et al. 2018). A higher percentage of the initial concentration in the substrate was found back in the residual material of H. illucens larvae when DON was added as part of a mixture containing also AFB₁, ZEN, and OTA (Camenzuli et al. 2018). When H. illucens larvae were exposed to a substrate with an initial concentration of 170-1,700 µg OTA/kg, 41-62% was found back in the residual feed substrate (Camenzuli et al. 2018). Correspondingly, feed spiked with concentrations of AFB₁, DON, OTA, and ZEN either within the same range or lower than Camenzuli et al. (2018) resulted in non-detectable levels in H. illucens larvae (Purschke et al.

2017) and levels below the detection limit (LOD, limit of detection) when fed with 415 μ g/kg AFB₁ (Bosch *et al.* 2017). In a study performed by Leni *et al.* (2019) concentrations below the LOD were observed in the larval body of *H. illucens* fed on naturally contaminated substrates containing 779 μ g/kg DON, 573 μ g/kg FB₁, and 441 μ g/kg FB₂ (Leni *et al.* 2019). It must be noted that data obtained for *H. illucens* larvae might not representative for all species within the order, since one study observed a 10-fold higher concentration of AFB₁ in 2nd instar *Musca domestica* L. larvae after only two days of exposure to 20 μ g/kg AFB₁ (Nevins and Grant 1971).

Coleoptera

Several studies investigating mycotoxin accumulation for species in the order Coleoptera were found, nevertheless they only focus on *T. molitor* and *A. diaperinus*.

In 1^{st} instar T. molitor larvae fed with $13 \,\mu\text{g/kg}$ AFB₁, concentrations in the larval body were below the LOD. However, AFB₁ was detected at 1% and 10% of the EC legal limit (being $20 \,\mu\text{g/kg}$, Directive 2002/32/EC) after being fed with $23 \,\text{or} \, 415 \,\mu\text{g/kg}$ AFB₁, respectively (Bosch et al. 2017). As shown in Figure 3a, the percentage of AFB₁ found back in the residual feed material of T. molitor larvae was low and seems to be dependent on the initial AFB₁ concentration in the feed. In the residual feed material of T. molitor larvae, formation of small amounts of AFM₁ were found, however, it must be noted that other AFB₁ metabolites were not quantified in this study (Bosch et al. 2017).

As described for AFB₁, also levels of DON were below the LOD in the larval body of *T. molitor* when exposed to up to 12,000 µg/kg DON (Niermans et al. 2019; Ochoa Sanabria et al. 2019; Van Broekhoven et al. 2017). However, the concentration of DON found in the residual feed material varied between studies. Van Broekhoven et al. (2017) showed that the percentage of excreted DON was lower in the residual feed material of larvae fed a naturally contaminated diet (ca. 14%) as opposed the percentage found in the residual feed material of larvae fed a spiked diet (ca. 41%; Van Broekhoven et al. 2017). A second study found only a minor difference between the percentage of excreted DON when fed a spiked (58%) or a naturally contaminated (46-52%) diet after eight weeks of exposure (Niermans et al. 2019). The percentage of excreted DON in T. molitor varied between 6.2-16.2% and appeared to decrease when fed with increasing concentrations, and the metabolite 3-acetyldeoxynivalenol (3AcDON) was detected in the residual feed material in concentrations which were similar for all diets fed (Ochoa Sanabria et al. 2019). Since 3AcDON was only chemically analysed in residual feed materials of T. molitor, its presence cannot be compared with other species. Another study included the DON derivatives DON3G and 15-acetyldeoxynivalenol (15AcDON) in the analyses, but did not find them in the residual material (Van Broekhoven et al. 2017).

Similar trends were observed in *T. molitor* larvae when exposed to ZEN (Table S3). Levels detected in the larval body of *T. molitor* were below the LOD/LOQ when exposed to

concentrations up to 2,283 μ g/kg ZEN. The percentage of excreted ZEN was lower in the residual feed material of larvae fed a naturally contaminated diet (19-23%) as opposed to the percentage found in residues of larvae fed a spiked diet (56-63%). As shown in Figure 3b, formation of α -and β -zearalenol in different concentrations was observed in all diets fed (Niermans *et al.* 2019).

The study of Piacenza *et al.* (2020) showed that no T-2, HT-2, T-2 triol or T-2 tetraol were detected (in levels above the LOD) in the surviving larvae or in the dead larvae collected from the control diets. However, after examination of the dead larvae collected from the other diets, 44.2 μg/kg T-2 was found in the body of the larvae fed with the naturally contaminated diet (250 μg/kg total T-2 and HT-2) and 7.7 μg/kg T-2 in the larvae fed the naturally contaminated diet (100 μg/kg total T-2 and HT-2) and the artificially contaminated diets. Additionally, T-2 and HT-2 were found in the residual material of both the naturally and artificially contaminated diets (except for the controls). The percentage of excreted T-2 found in the residual materials were higher when fed a naturally contaminated diet (51.7-66.5%) as opposed to an artificially contaminated diet (36.5-55.1%). HT-2 was only observed in the residual feed material of the larvae fed the artificially contaminated diets, interestingly it seemed that the concentration found was not affected by the initial dose (Piacenza *et al.* 2020).

Currently, no data are available on the accumulation or reduction of OTA in T. molitor residues. Data on FB₁ are only available for T. molitor larvae and showed that when fed with doses varying between 50,000-450,000 µg FB₁/kg approximately 40% of the initial concentration was found back in the residual feed material. Accumulation within the larval body was not discussed and metabolites were not included in this study (Abado-Becognee $et\ al.$ 1998). Corresponding to what was found in T. molitor larvae, concentrations lower than the LOD/LOQ were observed in A. diaperinus larvae fed with substrates containing 8-390 µg/kg AFB₁, 3,900-125,000 µg/kg DON, 280-13,000 µg/kg ZEN, or 170-1,300 µg/kg OTA tested alone and after exposure to combined mycotoxin concentrations up to 100,000 µg DON/kg (Camenzuli $et\ al.$ 2018), 727 µg/kg FB₁, and 294 µg/kg FB₂ (Leni $et\ al.$ 2019).

The study of Camenzuli *et al.* (2018) showed that in the residues of *A. diaperinus* larvae, AFM₁ seems to be the main metabolite and AFL is also formed at the highest concentration (390 μg AFB₁/kg). The authors also included the metabolites AFP₁ and aflatoxin Q₁ in their study, but the concentrations found were below the LOQ (5 μg/kg). *A. diaperinus* larvae were exposed to substrates containing AFB₁ as part of a mixture of mycotoxins (AFB₁, DON, ZEN and OTA) in different concentrations. When compared with single AFB₁ exposure of *A. diaperinus* larvae, the concentration found in the residual material was lower as compared to the initial concentration as when fed single mycotoxins. Also, formation of the same metabolites was observed. The percentage of excreted DON was similar when fed as single compound and when fed as part of a mixture and ranged between 80-96%. Concentrations of the included DON metabolites (3AcDON, 15AcDON and DON3G) were below their respective LOQ's (Camenzuli *et al.* 2018).

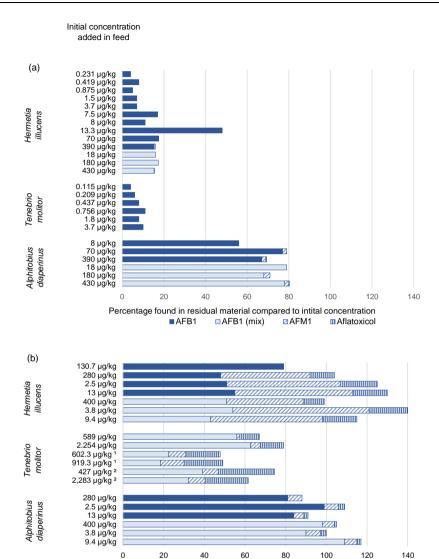


Figure 3. Overview of mycotoxin concentration in the feed substrate residues relative to the initial concentration (μ g/kg) present in the feed substrate in percentages for *H. illucens, T. molitor*, and *A. diaperinus*.

■ZEN (mix)

ZEN

Percentage found in residual material compared to intital concentration

☑ α-ZEL

¹Naturally contaminated, ²Artificially contaminated, α-ZEL: α-zearalenol, β-ZEL: β-zearalenol, when not specified, the mycotoxins are spiked to the initial substrate. In none of the included studies, concentrations above the LOQ/LOD were found in the larvae, therefore these percentages only represent the concentration found back in the residual material compared to the concentration in the initial substrate. In some of the studies the final amount of residue was not mentioned. Based on the studies of, a: Bosch *et al.* (2017), Camenzuli *et al.* (2018), Purschke *et al.* (2017); b: Camenzuli *et al.* (2018), Niermans *et al.* (2019), Purschke *et al.* (2017). An overview of the data used are available in Table S3.

In residual feed material of *A. diaperinus* larvae, the percentage of α -zearalenol (α -ZEL) formed is similar when fed with initial concentrations ranging from 280–13,000 μ g ZEN/kg. β -zearalenol (β -ZEL) was not formed, when an initial concentration of 280 μ g/kg ZEN was fed to the larvae, and seems to be formed only at higher initial concentrations in the feed (Figure 3b). Exposure to a mycotoxin mixture, resulted in a similar reduction of the concentration found in the residual material compared to the initial concentration of ZEN and formation of α -ZEL and β -ZEL in *A. diaperinus* as when spiked with ZEN alone (Camenzuli *et al.* 2018). For *A. diaperinus* larvae fed an OTA containing substrate (initial concentration of 170-1,700 μ g OTA/kg), 97-115% was found back in the residual material. Comparable results were found when OTA was fed as part of a mycotoxin mixture (AFB₁, DON and ZEN) (Camenzuli *et al.* 2018).

Lepidoptera

Only one study investigated mycotoxin accumulation in species of the order Lepidoptera, including *Hel. zea* and *O. nubilalis* larvae reared on a diet containing 5,000 μ g/kg ZEN. ZEN was not detected in 4-day old *O. nubilalis* larvae whereas 650 μ g ZEN/kg was observed in *Hel. zea* larvae of the same age. After 7 days of feeding, \pm 600 μ g ZEN/kg was also detected in *O. nubilalis* larvae. However, over time, a constant decrease of ZEN was observed in the larval body of both species. Feed residues were not analysed in this study (Bily *et al.* 2004).

Other orders

When *P. americana* were fed with 12,000 μ g AFB₁/kg detectable levels up to 2 μ g AFB₁/kg were found in 40% of the tested insects, residual feed materials were not analysed in this study (Llewellyn *et al.* 1976)

Enzymes responsible for insect mycotoxin biotransformation

An explanation for the unrecovered fraction of mycotoxins could be that mycotoxin biotransformation occurs in the insects, therefore the following section contains an overview of all studies suggesting enzymes responsible for mycotoxin biotransformation in insects (Table 2). The authors are not aware of any studies covering possible responsible enzyme systems in Coleoptera.

Diptera

Few studies regarding the metabolization of mycotoxins are available for *H. illucens* and *D. melanogaster*. Meijer *et al.* (2019) used an *H. illucens* S9 fraction, in combination with the cytochrome P450 (CYP450)-enzyme inhibitor piperonyl butoxide (PBO) and showed that CYP450s were responsible for the metabolic conversion of AFB₁ into AFP₁ and pointed to a role of a cytoplasmic reductase for conversion of AFB₁ into AFL (Meijer *et al.* 2019). In addition, the CYP450-enzyme CYP6A2 originating from the Oregon-R(R) strain of the fruit fly, *D. melanogaster*,

seemed to be at least partially responsible for bioactivation of AFB₁ to a recombinagen in a *Saccharomyces cerevisiae* strain, however, this metabolic activity seemed to be dependent on co-expression with a human-derived NADPH-CYP450-oxidoreductase (Saner *et al.* 1996).

Table 2. Overview of suggested systems involved in mycotoxin metabolism in different insect species

Species	Mycotoxin	Enzyme system involved in mycotoxin metabolism and resulting metabolite if reported	Reference
Diptera		-	
Hermetia illucens	AFB_1	CYP450 (AFP ₁);	Meijer <i>et al</i> . (2019)
		Cytoplasmic reductase (AFL) ¹	
Drosophila		CYP450 (CYP6A2) 8,9, depended on	
melanogaster (strain	AFB_1	co-expression with a NADPH-	Saner et al. (1996)
Oregon R(R))		CYP450-oxidoreductase	
Lepidoptera			
Helicoverpa zea	AFB_1	CYP450 ³	Zeng et al. (2006)
Helicoverpa zea	AFB_1	CYP450 (CYP321A1; AFP ₁) 1,4,5	Niu et al. (2008)
Helicoverpa armigera	AFB ₁	CYP450 (CYP6AE19) 4,7	Elzaki <i>et al</i> . (2019)
Amyelois transitella	AFB_1	CYP450 (AFB _{2a} , AFM ₁);	Lee and Campbell
		NADPH-dependent reductase (AFL)	5(2000)
Trichoplusia ni	AFB_1	CYP450 ⁴	Zeng et al. (2013)
Other			
Apis mellifera	AFB_1	CYP450 ³	Niu <i>et al</i> . (2011)
Apis mellifera	AFB ₁	CYP450 (three CYP6AS) 8	Johnson et al.
•		,	(2012)
Acyrthosiphon pisum	DON	Glucosyltransferase (DON-3G) ¹	De Zutter <i>et al</i> .
Sitobion avenae		, , ,	(2016)
Methods of measu	rements: 1 C-M	S/MS. ² Spectrophotometric enzyme	assay. 3 bioassays. 4 RT

Methods of measurements: ¹LC-MS/MS, ² Spectrophotometric enzyme assay, ³ bioassays, ⁴RT-PCR, ⁵HPLC, ⁶Enzyme assays, ⁷ gene-silencing, ⁸ northern blotting, ⁹ southern blotting. CYP450: cytochrome P450s

Lepidoptera

ABF₁ metabolism was not observed in midgut enzyme isolates from *Hel. zea* larvae fed with a control diet. However, AFB₁ metabolism was observed in midgut isolates from larvae grown on diets supplemented with either coumarin or xanthotoxin in which the relatively non-toxic AFP₁ was the main metabolite identified. Additionally, AFP₁ formation was completely inhibited by the addition of PBO, required NADPH and therefore indicated the role of CYP450s and more specifically CYP321A1 (Niu *et al.* 2008). The role of CYP450s in bioactivation of AFB₁ in *Hel. zea* was identified after performance of a series of bioassays in which AFB₁ toxicity was assessed in the presence of PBO (inhibitor) and phenobarbital (inducer). Addition of PBO caused a significantly decreased toxicity and an increased pupation rate in 4th and 5th instar *Hel. zea* larvae

(Zeng et al. 2006). Corresponding to what was mentioned previously, also a second study showed that PBO reduced the toxicity of AFB₁ to 5-day-old *Tr. ni* larvae (Zeng et al. 2013). When *H. armigera* larvae were fed a diet containing AFB₁ and injected with ds*CYP6AE19* to silence *CYP6AE19* expression, a decreased mortality was found compared to when fed the same diet but injected with ds*GFP* (green fluorescent protein) or water suggesting that induction of CYP6AE19 results in a higher toxicity of AFB₁ (Elzaki et al. 2019). In an *in vitro* inhibition study of AFB₁ metabolism, larvae of *Am. transitella* produced AFB_{2a}, AFM₁ and mostly AFL, while for *Cydia pomonella* only AFL was detected at trace level. After adding PBO, production of AFB_{2a} and AFM₁ by *Am. transitella* was completely inhibited, indicating a role for CYP450s. Additionally, the role of NAD(P)H and glutathione (GSH) in AFL production was tested and showed that NADPH and GSH were equally effective in AFL production in *Am. transitella*, whereas a mixture of both enhanced AFL production. The authors concluded that a NADPH-dependent reductase seems to be responsible for the transformation of AFB₁ into AFL and suggest the involvement of GSH as an electron donor in AFL formation (Lee and Campbell 2000).

Other orders

The role of a phase II enzyme glucosyltransferase was proposed to be involved in the detoxification of DON into DON3G in the aphids Si. avenae and Ac. pisum. Interestingly, Si. avenae, which co-occurs with the DON-producing Fusarium graminearum converted DON to DON3G more efficiently than Ac. pisum which normally feeds on plants not considered as host for F. graminearum (De Zutter et al. 2016). It was hypothesized that natural phytochemicals which are present in the insects' food could possibly induce CYP450 activity and help in the detoxification of AFB₁. To support this statement the effect of AFB₁ in combination with honey was examined and it was observed that A. mellifera adults fed on honey were more tolerant to AFB₁ exposure than bees fed on other diets. An elevated expression of three CYP6AS CYP450 genes were observed in northern blot analyses of the guts of bees fed extracts of honey, pollen and propolis and suggested that consumption of possible phytochemicals present in honey can induce CYP450s responsible for detoxification of AFB1 in A. mellifera (Johnson et al. 2012). In addition, a role for CYP450s was indicated in AFB₁ detoxification in A. mellifera. A decreased survival time was observed in A. mellifera after consumption of bee candy containing 10,000 μg/kg AFB₁ supplemented with either 0.05% PBO or 0.1% PBO as compared to when bee candy with the same concentration of AFB₁ was consumed alone. Additionally, the authors fed A. mellifera with two concentrations of OTA (10,000 and 40,000 µg/kg) supplemented with either 0.05% PBO or 0.1% PBO, but in this case the addition of PBO did not seem to affect survival time (Niu et al. 2011).

Discussion

Tolerance

The insect sector offers potential to promote circular and sustainable opportunities for feed production. Also the contribution to organic waste management is interesting from an economic and ecological point of view. When using waste- or side streams as a substrate for insect rearing low-quality streams can be upgraded into high-quality protein- or fat fractions. Another ecological advance supported by this review is that insects can breakdown complex mycotoxins and metabolize them into smaller less- or non-toxic metabolites. However, it needs to be clarified whether insects fed on these possibly contaminated waste- or side streams show a high tolerance and yield enough biomass for economically feasible production.

This systematic review summarized published data about tolerance to mycotoxins for insect species mainly belonging to three insect orders. Although the available information is rather limited, tolerance differences between orders, within orders and even between strains and stages of the same species becomes apparent (Figure 2a). In addition to differences between insect species, growth and mortality were affected differently by the type of mycotoxin, the concentration of the mycotoxin fed and the life-stage in which mycotoxin exposure occurred. The studies on Coleoptera showed a reduction as well as an increase in biomass after exposure to mycotoxin-contaminated diets. The actual effect depended on the mycotoxin and its concentration and whether the toxin was present naturally or spiked to the substrate. Growth effects caused by mycotoxin exposure of Lepidoptera were reported in several studies and showed clear variation in tolerance between species, larval stages, and mycotoxins. Overall, insects of the order Coleoptera show lower mortality after exposure to AFB₁ when compared to Lepidoptera and Diptera. Additionally, the inclusion of certain supplements in the mycotoxincontaminated diet showed to have an influence as exposure of Tr. ni larvae to a diet containing the plant allelochemical xanthotoxin in combination with AFB₁ resulted in a substantially higher weight and pupation rate when compared to AFB₁ exposure alone (Zeng et al. 2013).

All papers which discussed the effect of mycotoxin exposure on insects are included in this review. In some papers the application of mycotoxins for biocontrol of insects is the main focus. These papers included mycotoxins such as roseotoxin B and brevianamides which are currently not considered as food-relevant. However, the future aim is to use (contaminated) organic waste- and/or side streams as substrate for insect rearing, rather than substrates from a solely food-relevant origin. Some of these mycotoxins are relevant for biocontrol of insects, and therefore might affect insect tolerance and/or growth. As discussed in this review, exposure of S. Iittoralis larvae to $10,000 \, \mu g/kg$ penicillic acid or brevianamide A led to a mortality of 90% and 78% respectively (Paterson et~al.~1987), which suggests that substrates containing these toxins in a similar or higher concentration might be unsuitable for insect rearing. Overall, the data

discussed provides a positive outlook for the use of mycotoxin-contaminated organic wasteand/or side streams in the future.

Type of substrate

Substrate materials investigated in the retrieved studies ranged from poorly defined waste streams to refined sugar. The type of substrate fed could have had an effect on the study outcome, as was shown in the case where mortality of A. mellifera exposed to AFB₁ in honey was lower than when fed with AFB₁ in sucrose (Johnson et al. 2012). In the retrieved studies, insects were exposed via artificially contaminated, spiked and naturally contaminated substrates, resulting in heterogenous effects. T. molitor larvae reared on wheat naturally contaminated with mycotoxins gained significantly more weight than when reared on spiked or artificially contaminated wheat (Niermans et al. 2019; Van Broekhoven et al. 2017). Naturally contaminated substrates might contain a mixture of mycotoxins or modified forms that could have had a synergistic effect on the larvae when exposed to them, which offers the insect a very different situation as compared to being fed a substrate spiked with a single mycotoxin. Accordingly, the studies included in this review showed that the presence of multiple mycotoxins in the insect diet, compared to the presence of a single mycotoxin, influenced mortality as was shown when Hel, zea larvae fed on a substrate contaminated with fusaric acid and the plant secondary metabolite gossypol experienced 18% mortality as opposed to fusaric acid or gossypol alone not leading to mortality (Dowd 1988). The results obtained from feeding studies in which the substrate was spiked with a single mycotoxin may therefore be not fully representative for when waste- or side streams are used. However, using spiked feed is more controlled and is necessary for a first exploration of the effects of single mycotoxins on insect tolerance and metabolism.

Accumulation/biotransformation

When insects are sold for human or animal consumption, they need to comply to the MLs and GVs set in the respective legislations, which makes no/low mycotoxin accumulation an important requirement. Mycotoxin accumulation in the insect body was observed in some specific cases, however, the concentration in the insects found was mostly below their respective MLs or GVs. In general, the available data demonstrate that mycotoxin levels in the insect larvae are below the respective LOD/LOQ, even when exposed to concentrations above the European Commission ML for the presence of mycotoxins in food and their commodities, and GVs set for mycotoxins in feed (EC 2002a; EC 2006b). Additionally, the available studies have shown that only a fraction of the initially added mycotoxin concentration in the feed was found back in the residual feed material (Figure 3a), even when taking into account main metabolites that could be formed. The unrecovered fraction could be explained in multiple ways; interference by the matrix leading to a loss of signal, breakdown of parent compounds, transformation into modified forms and/or the formation of unknown metabolites, amongst others. The unrecovered fraction

was larger for DON, OTA, and AFB₁ in *H. illucens* and *T. molitor* larvae as compared to *A. diaperinus* larvae. Formation of the toxic metabolite α -ZEL was highest in the residual feed material of *H. illucens* when compared to the concentrations found in the residues of *T. molitor* and *A. diaperinus* (Figure 3b) (Camenzuli et al. 2018). Identification and quantification of unknown metabolites will allow for a more complete mass balance in the future and will give a better insight in the possible detoxification by insects.

Enzyme systems

Insects have developed metabolic adaptations that can result in detoxification and/or yield metabolites that are easier to transport or excrete (Birnbaum and Abbot 2018). Metabolites formed can be more or less toxic than the parent compound (in this case the original mycotoxin in the substrate), and they should be identified and investigated for toxicity to ensure safety when insects are used as food or feed ingredients. Identification of enzyme systems responsible for the formation of mycotoxin metabolites will foster insights in the pathways involved in mycotoxin metabolism in the insect body and, hence, the possible metabolites that are formed. To date, most studies that identified enzyme systems involved in mycotoxin metabolism mainly focused on AFB₁ (Table 2). In insects, enzymes for phase I metabolism, CYP450s, as well as phase II enzymes, glycosyltransferases, are known to transform AFB₁. A recently published review covering CYP450-mediated mycotoxin metabolism in plant-feeding insects concluded that the involved CYP450s mostly belong to families known to detoxify phytochemicals (Berenbaum et al. 2021), which is in accordance with data found in this review. CYP450s were involved in the conversion of AFB₁ to mostly AFP₁ and the roles of GSH and NADH were identified in the formation of AFL in Am. transitella. CYP450 enzymes and their subfamilies are also found in most tissues of various animal species where they play a role in mycotoxin metabolism. (Hussein and Brasel 2001). As an example, chicken and quail hepatic microsomes use CYP2A6 and to a lesser extent CYP1A to transform AFB₁ into the extremely reactive AFB₁-8-9-epoxide (Diaz et al. 2010). A cytosolic reductase important in the reduction of AFB₁ to AFL seems to be produced in poultry as well, however, in larger quantities in turkey and duck then in quail and chicken (Peles et al. 2019). In bovine hepatocytes AFM₁, mainly formed by CYP1A and CYP3A hepatic monooxygenase activities, seemed to be the most prominent metabolite formed within the first hours of incubation (Kuilman et al. 2000). Additional to the shared importance of the CYP450 enzymes, cytoplasmic reductases and GSH, no solid conclusions can as yet be made on the comparison between the metabolism of mycotoxins by insects and another animals.

Other uncertainties

The LOD of the analytical system used to determine mycotoxin concentrations in the substrates, larval material and the residues is a critical point in this discussion. Although Table S1 gives an extensive overview of all analytical methods used, the relevant LODs are not always known. A weak analysis can result in a no-toxin level in the larvae, while in reality the method or machine

used might have a limited sensitivity. A sensitive method of analysis is especially important for measuring the presence of aflatoxins since very low concentrations are already unwanted when insects are used for used for food and/or feed purposes later on (Table 1). However, most recent studies do provide information on the sensitivity and detection limits of the analyses performed and are able to detect mycotoxin concentrations in insects in levels far below their respective legal limits (Camenzuli *et al.* 2018; Meijer *et al.* 2019). Finally, the question remains whether the entire amount of feed (and therefore the present toxin) was consumed by the insects during the exposure period and how this, when not fully consumed, would affect the data obtained in the discussed studies.

Outlook

This study presents comprehensive data on the effects of mycotoxins on insect growth and survival, as well as mycotoxin accumulation and conversion by insects. Most data relate to species which are agricultural pests and species potentially used as food or feed in the EU. Survival and growth as well as tolerance and metabolization varies between species, between mycotoxins, and their concentration as well as the type of substrate used, whether the mycotoxin was present naturally or spiked, and the presence of possible supplements. Accumulation of mycotoxins was identified as mostly below LOD/LOQ for the included species. Since data cannot be generalized across species and not even across strains of the same species, additional studies on other insect species than the main species covered in this review (H. illucens, T. molitor and A. diaperinus) are recommended, specifically on insects possibly considered for food/feed including crickets and locusts. CYP450s were suggested as main enzymes involved in AFB1 metabolism in some insects, however further research is recommended on unravelling metabolic pathways, involvement of Phase II enzymes, the formation of possible unknown metabolites and their toxicity. Overall, based on the available data, the use of mycotoxin-contaminated waste streams as substrate for insect rearing seems to provide a promising approach for the future of mycotoxin remediation and a circular economy.

Acknowledgments

Our research has been supported by the Dutch Research Council (NWO; NWA programme, InsectFeed project, NWA.1160.18.144) and by the European project SUSINCHAIN, funded under Horizon 2020, Grant No. 861976. Additional financing from the Netherlands Ministry of Agriculture, Nature and Food Quality (Topsector program TKI-AF-EU-2221) is acknowledged. We thank Marcel Dicke, Jan-Willem Heesakkers and Parth Shah for constructive comments to the final manuscript.

Supplementary materials

Table S1

Overview of covered studies including: insect species, substrate used, exposure time of the insects, analytical method used, and mycotoxins (metabolites) analysed

Reference	Orders	Species	Substrates	Insect stage	Time of exposure	Method of measurement	Mycotoxins Analysed ¹	Mycotoxin concentrations in feed	Fungus present
Abado- Becognee et al. (1998)	Coleoptera	Tenebrio molitor	Maize flour with 4% (w/w) mineral salt and 13% vitamin B complex	Larvae (7 weeks)	63 days	HPLC w Fluorescence Detector	FB ₁	FB ₁ : 50,000, 150,000, 450,000 μg/kg	No
Bily <i>et al</i> . (2004)	Lepidoptera	Helicoverpa zea and Ostrinia nubilalis	Hel. zea: soybean flour/wheat germ artificial diet. O. nubilalis: Meredic diet	Larvae (3rd instar)	4, 7, 11 and 14 days	LC-MS	ZEN	ZEN: 5,000 μg/kg	No
Bosch <i>et al.</i> (2017)	Coleoptera, Diptera	Tenebrio molitor and Hermetia illucens	Poultry feed	Larvae (1st instar)	T. molitor: 40 days; H. illucens: 10 days	HPLC w Fluorescence Detector	AFB ₁ , AFM ₁	AFB ₁ : 10, 25, 50, 100, 250 and 500 ug/kg	No

Ĺ		٦
(J	٦

Camenzuli <i>et</i> al. (2018)	Coleoptera, Diptera	Alphitobius diaperinus and Hermetia illucens	A. diaperinus: wheat based with apple; H. illucens: wheat based and water	Larvae (A. diapernius: 2 weeks and H. illucens: 1 week)	A. diapernius: 14 days; H. illucens: 10 days	LC-MS/MS	AFB ₁ , AFL, AFM ₁ , AFP ₁ , AFQ ₁ ; DON, 3AcDON, 15AcDON, DON3G; ZEN, α- ZEL, β-ZEL and OTA	AFB ₁ : 8, 70 and 390 μg/kg; DON: 3,900, 38,000 and 112,000 μg/kg; ZEN: 280, 2,500 and 13,000 μg/kg; OTA: 170, 1,700 and 1,300 μg/kg. Mixtures: AFB ₁ : 18, 180 and 430 μg/kg; DON: 4,100, 41,000 and 100,000 μg/kg; ZEN: 400, 3,800 and 9,400 μg/kg; OTA: 80, 800 and 2,000 μg/kg	No
Cao <i>et al</i> . (2019)	Diptera	Drosophila simulans	Grapes	Eggs-adult	Until adult	Not mentioned	ОТА	OTA: 0.05, 0.5 μg/kg	Yes
Chinnici et al. (1979)	Diptera	Drosophilia melanogaste r (strains A-9 and A-11)	Control media and media containing AFB ₁ (prepared according to Chinnici et al. 1976)	Larvae (1-5 days)	Until adult	Thin layer chromatography	AFB ₁	AFB ₁ : 440 and 880 μg/kg	No

J	
٦	٦
	₹

Cito <i>et al</i> . (2016)	Coleoptera	Tenebrio molitor	Bread and bran	Larvae (mature)	20 days	LC-UV-MS	Beauvericin A, bassianolide and beauverolides	Not specified	Beauveria bassiana (strains: B 13/103, B 13/111, B 13/149, B 13/157, B 13/163, and B 13/164)
Davis and Schiefer (1982)	Coleoptera	Tenebrio molitor	Whole wheat supplemented with brewer's yeast (9:1)	Larvae (8.5-11.5 mg)	4 weeks	Calculations from known concentration	T-2	T-2: 2,000, 4,000, 8,000, 16,000, 32,000, 64,000 and 128,000 µg/kg	No
De Zutter <i>et al</i> . (2016)	Hemiptera, Homoptera	Sitobion avenae, Acyrthosipho n pisum	Wheat seedlings and young broad bean plants	Nymphs	3 days	LC-MS/MS	DON, DON3G, 3- and 15AcDON	DON: 500, 1,000, 3,000 μg/kg; DON3G: 500, 1,000, 3,000 μg/kg	No
Dowd (1989)	Lepidoptera	Heliothis zea	Pinto bean- based diet + three allelochemicals (gossypol, a saponin, and 6- methoxy2- benzoxazolinone	Larvae (neonate)	7 days	Calculations from known concentration	Fusaric acid	Fusaric acid: 25,000 and 250,000 µg/kg	No
Dowd (1990)	Lepidoptera	Heliothis zea, Spodoptera frugiperda	Pinto bean	Larvae (last instar)	48 hours	Thin layer chromatography	DON, T-2, diacetoxyscirpen ol	DON: 2,500, 25,000, 250,000 μg/kg; T-2: 2,500, 25,000 μg/kg; diacetoxyscirpen ol: 2,500, 25,000 μg/kg	No

Dowd (1993)	Lepidoptera	Helicoverpa zea, Spodoptera frugiperda	Pinto bean	Larvae (1st and 3rd instar)	7 days	HPLC	Griseofulvin	Griseofulvin: 25,000 μg/kg	No
Dowd <i>et al</i> . (1988)	Lepidoptera	Heliothis zea, Spodoptera frugiperda	Pinto bean	Larvae (neonate)	7 days	Not mentioned	Dihydroxyaflavini ne, roseotoxin B, penitrem A, verruculogen, cytochalasin H, paspaline, paxilline	Up to 25,000 µg/kg ww (100,000 µg/kg dw) of dihydroxyaflavini ne, roseotoxin B, penitrem A, verruculogen, cytochalasin H, paspaline or paxilline	No
Elzaki <i>et al</i> . (2019)	Lepidoptera	Helicoverpa armigera	Artificial diet + and - MeJA (prepared according to Qi et al. 2000)	Larvae (2nd instar)	Until pupation	Not mentioned	AFB ₁	AFB ₁ : 1,000 μg/kg	No
Gulsunoglu et al. (2019)	Diptera	Hermetia illucens	SSF kernels	Larvae (2nd instar)	12 days	LC-MS/MS,	DON	DON: 630-3,580 μg/kg	Fusarium spp.
Gunst <i>et al.</i> (1982)	Diptera	Drosophilia melanogaste r (strains Florida-9 and Lausanne-S)	Five types: control, media + AFB ₁ , media + AFB ₁ , media + AFG ₁ and media + ST (prepared according to Chinnici et al., 1976)	Egg-adult	Whole life- cycle	Thin layer chromatography	AFB ₁ , AFB ₂ , AFG ₁ ; sterigmatocystin	AFB ₁ , AFB ₂ , AFG ₁ ; sterigmatocystin: 200, 600, 2,000 and 4,000 μg/kg	No

(J	п
3	•	Ŀ.
(Э

Hegde <i>et al.</i> (1967)	Lepidoptera	Corcyra cephalonica	Wheat bran, groundnut meal	Larvae (10 days)	20 days	Paper chromatography	AFB1, AFG1	AFB ₁ : 1,000,000 μg/kg	Aspergillus flavus, Aspergillus oryzae, Penicillium purpurogenus and Penicillium rubrum
Jankovic- Tomanic et al. (2019)	Coleoptera	Tenebrio molitor	Wheat bran artificially contaminated	Larvae (2 months)	2 weeks	Calculations from known concentration	DON	DON: 4,900, 8,000, 16,000 and 25,000 µg/kg	No
Johnson et al. (2012)	Hymenopter a	Apis mellifera	Bee candy (2 sucrose:1 water)	Newly emerged bees	3 days	Calculations from known concentration	AFB ₁	AFB ₁ : 20,000 μg/kg	No
Kanaoka <i>et</i> al. (1978)	Lepidoptera	Bombyx mori	Artificial diet	Larvae (3rd instar)	8 days	Silica gel column chromatography	Beauvericin, bassianolide	Beauvericin: 4,000, 8,000, 1,000,000 µg/kg; bassianolide: 1,000, 2,000, 4,000, 8,000, 12,000 or 16,000 µg/kg	Beauveria bassiana, Verticillium lecanii
Kirk <i>et al</i> . (1971)	Diptera	Drosophilia melanogaste r (strain Oregon R)	Yeast-corn meal molasses growth medium	Larvae (1st instar)	24 days	Not mentioned	AFB ₁	AFB ₁ : 10,000 μg/kg	No
Lee and Campbell (2000)	Lepidoptera	Amyelois transitella, Cydia pomonella	Am. transitella: walnuts; C. pomonella: apples	Larvae (1st instar)	Not applicable	HPLC w Fluorescence Detector	AFB ₁ , AFB ₂ , AFB _{2a} , AFL, AFM ₁ , AFM ₂ , AFG ₁ , AFG ₂ , AFB ₁ -8,9- epoxide and AFB ₁ -8,9- epoxide-GSH conjugate	AFB ₁ : 3,123,000 μg/kg	No

Leni <i>et al.</i> (2019)	Coleoptera, Diptera	Alphitobius diaperinus, Hermetia illucens	Naturally contaminated by-products of corn, wheat, rice, rapeseed, apple, olive and carrots	Larvae (2 days)	A. diaperinus: 28 days; H. illucens: 15 days	HPLC w Fluorescence Detector, UHPLC-MS/MS	DON, 3AcDON, fusarenone X, diacetoxyscirpen ol, T-2, HT-2, FB ₁ , FB ₂ , ZEN, AFB ₁ , patulin, OTA, nivalenol	DON: 416, 468, 557, 608, 726, 755 µg/kg; FB ₁ : 127 µg/kg; FB ₂ : < LOD; ZEN: < LOD	No
Llewellyn et al. (1988)	Hemiptera	Oncopeltus fasciatus	Water, unsalted raw sunflower seeds	Larvae (5th instar)	21 days	Calculations from known concentration	AFB ₁	AFB ₁ : 5,000 μg/kg	No
Llewellyn <i>et</i> al. (1976)	Blattodea	Paradelpho myia americana	Sucrose water	Adult (males)	56 days	Not mentioned	AFB ₁	AFB ₁ : 12,000 μg/kg	No
Matsumura and Knight (1967)	Diptera	Aedes aegypti, Drosophila melanogaste r and Musca domestica	Ae. aegypti: distilled water; D. melanogaster: standard food medium; M. domestica: sucrose solution and milk (1:1)	Ae. aegypti: larvae (4th instar) and adults; D. melanogaster: adults; M. domestica: adults	5 days	Not mentioned	AFB ₁	AFB ₁ : Ae. aegypti larvae 3,000 µg/kg (unclear for Ae. aegypti adults, D. melanogaster and M. domestica)	No
Meijer <i>et al</i> . (2019)	Diptera	Hermetia illucens	Wheat based mashed feed	Larvae (1st instar)	9 days	LC-MS	AFB ₁	AFB ₁ : 500 μg/kg	No
Melone and Chinnici (1986)	Diptera	Drosophilia melanogaste r (strains Oregon-R and Lausanne-S)	Fly culture medium (dextrose, yeast, agar, inorganic salts, and methyl p-hydroxybenzoate)	Egg-adult	Whole life- cycle, multiple generations	Calculations from known concentration	AFB ₁	AFB ₁ : 500, 1,000, 1,300, 1,600, 1,900, 2,200 and 2,500 μg/kg	No
Mencarelli et al. (2013)	Lepidoptera	Ostrinia nubilalis	Corn	Larvae (4th instar)	14 days	Not mentioned	AFB ₁	AFB ₁ : 125-30,000 μg/kg	Aspergillus flavus

Miller <i>et al</i> . (2008)	Lepidoptera	Choristoneur a fumiferana	Spruce Trees	Larvae (2nd instar)	3 months (until 6th instar)	Not mentioned	Rugulosin	Rugulosin: 850 μg/kg (geometric mean)	No
Nevins and Grant (1971)	Diptera	Musca domestica	Moistened dog food pellets	Larvae (2nd instar)	7 days	Thin layer chromatography	AFB ₁	AFB ₁ : 20 μg/kg	Aspergillus flavusoryzae
Niermans <i>et al.</i> (2019)	Coleoptera	Tenebrio molitor	Wheat flour	Larvae (42 days)	4 or 8 weeks	HPLC-MS/MS,	DON, ZEN, β-ZEL	DON: spiked with 568 and 576 µg/kg, artificially contaminated with 939 and 2,101 µg/kg and naturally contaminated with 2,854 and 4,588 µg/kg. ZEN: spiked with 589 and 2,254 µg/kg, artificially contaminated with 427 and 2,283 µg/kg and naturally contaminated with 602 and 919 µg/kg	No

C) :
£	_
-	

								AFB ₁ : 500, 1,000, 2,000, 5,000,	
Niu <i>et al</i> . (2011)	Hymenopter a	Apis mellifera	Bee candy (2 sucrose:1 water)	Workers	3 days	Calculations from known concentration	AFB1, OTA	7,000, 10,000, 15,000, 20,000 µg/kg. OTA: 1,000, 5,000, 10,000, 20,000, 40,000, 60,000 µg/kg	No
Niu <i>et al</i> . (2009)	Lepidoptera	Amyelois transitella and Helicoverpa zea	Not specified	Larvae (1st and 5th instar)	Until pupation	HPLC	AFB1, OTA	AFB ₁ : 1,000, 5,000, 10,000, 20,000, 50,000 and 100,000 μg/kg. OTA: 1,000, 5,000, 10,000, 20,000 and 50,000 μg/kg	No
Niu <i>et al</i> . (2008)	Lepidoptera	Helicoverpa zea	Artificial diet	Larvae (5th instar)	48 hours	HPLC, , LC-MS	AFB ₁	AFB ₁ : 1,000 μg/kg	No
Ochoa Sanabria <i>et</i> <i>al</i> . (2019)	Coleoptera	Tenebrio molitor	Wheat (naturally contaminated)	Larvae (7th-9th instar)	Until pupation	HPLC-MS	DON, 3AcDON	DON: 2,000, 10,000, 12,000 μg/kg. 3AcDON 52, 63, 205 μg/kg	No
Ohtomo <i>et al</i> . (1975)	Lepidoptera	Bombyx mori	Not specified	Larvae (5th instar)	5 days	Thin layer chromatography,	AFB ₁	AFB ₁ : 15,614 μg/kg	Aspergillus flavus (K-199)
Patterson <i>et</i> al. (1987)	Diptera, Lepidoptera	Drosophila melanogaste r, Spodoptera littoralis	D. melanogaster: maize; S. littoralis: beans	Larvae (D. melanogaster: 2nd instar and S. littoralis: 4th instar)	3 days	Thin layer chromatography	OTA, brevianamide A, citrinin, penicillic acid, viomellein, patulin, cyclopenol	10,000 μg/kg for all	Penicillium

	`	Γ	

Patterson et al. (1990)	Lepidoptera	Spodoptera frugiperda and Heliothis virescens	Bean based diet	Larvae (3rd-6th instar)	3 days	Preparative layer chromatography	Brevianamide A and D, OTA	Brenianamide A and B, OTA: 1,000 and 10,000 µg/kg	Penicillium vinidicatum
Piacenza <i>et</i> <i>al</i> . (2020)	Coleoptera	Tenebrio molitor	Oat flakes	larvae (42 days)	4 weeks	HPLC-MS/MS	T-2 and HT-2	Sum of T-2 and HT-2 (approx. 100 and 250 µg/kg)	No
Purschke <i>et</i> al. (2017)	Diptera	Hermetia illucens	Substrates based on corn semolina + contaminated corn grains (DON and ZEN)	Larvae (7 days)	13 days	HPLC-MS/MS QTRAP	AFB ₁ , AFB ₂ , AFG ₂ , OTA, DON, ZEN	DON: naturally contaminated with 4600 µg/kg, AFB ₁ : 88 µg/kg, AFB ₂ : 17 µg/kg, AFG ₂ : 46 µg/kg, OTA: 260 µg/kg ZEN: naturally contaminated with 860 µg/kg	No
Rizwan-UL- Haq <i>et al</i> . (2009)	Lepidoptera	Spodoptera exigua	Semi-synthetic diet	Larvae (neonate)	8 days	HPLC	Destruxin B	Destruxin B: 15,000, 30,000, 45,000, 60,000, 75,000, 90,000 μg/kg	Metarhiziun anisoplae
Sadek (1996)	Lepidoptera	Spodoptera littoralis	Artificial diet	Larvae (2nd instar)	Whole life- cycle	Not mentioned	AFB ₁ , AFB ₂ , AFG ₁	AFB ₁ : 500, 1,000, 2,000, 2,500, 3,000 and 3,500 μg/kg, AFB ₂ : 2,000, 3,000 and 4,000 μg/kg, AFG ₁ : 1,000, 2,000, 3,000 and 4,000 μg/kg	No

Saner <i>et al</i> . (1996)	Diptera	Drosophila melanogaste r (strain	Not specified	-	Not applicable	Not mentioned	AFB ₁	Not specified	No
Şişman <i>et al.</i> (2006)	Diptera	Oregon R(R)) Drosophila melanogaste r (strain Oregon-R)	Yeast-agar-sugar medium	Eggs, Larvae, Pupae	37-58 days	Not mentioned	AFB ₁	AFB ₁ : 200, 500, 800 μg/kg	No
Sree and Padmaja (2008)	Lepidoptera	Spodoptera litura	Artificial diet	Larvae (9 days)	1, 24, 48 hours	HPLC	Destruxin	Destruxin: 88- 693 μg/kg	Metarhizium anisopliae (M- 10) and (M-19)
Sumarah <i>et al</i> . (2008)	Lepidoptera	Choristoneur a fumiferana, Lambdina fiscellaria, and Zeiraphera canadensis	Picea glauca seedlings	Larvae (2nd and 3rd instar)	7 days	LC-MS	Rugulosin	Rugulosin: 2,713- 81,375 μg/kg	Aspergillus fumigatus
Van Broekhoven et al. (2014)	Coleoptera	Tenebrio molitor, Zophobas atratus, and Alphitobius diaperinus	Maize, beer yeast, bread remains, pent grains, potato steam peelings, cookie remains	Larvae (neonate)	T. molitor: 26 days; Z. atratus: 33 days; A. diaperinus: 21 days	LC-MS	T-2, ZEN, OTA	T-2, ZEN, OTA: 500 μg/kg	No
Van Broekhoven et al. (2017)	Coleoptera	Tenebrio molitor	Wheat flour (spiked and naturally contaminated)	Larvae (5 weeks)	14 days	LC-MS	DON	DON: naturally contaminated with 4,900 μg/kg, spiked with: 8,000 μg/kg	No
Wright <i>et al</i> . (1976)	Coleoptera	Tribolium confusum	Whole wheat flour plus 5% brewer's yeast	Larvae	60 days	Not mentioned	T-2	T-2: 10,000, 100,000 μg/kg	No

Zeng et al.		Helicoverpa	Semi-synthetic	Larvae		Calculations		AFB ₁ : 1, 20, 200,			
(2006)	Lepidoptera	•	diet containing	(1st, 3rd and	13 days	from known	AFB ₁	1,000, 20,000	No		
(2006)		zea	wheat germ	5th instars)		concentration		μg/kg			
Zeng et al.		Trichoplusia	Semi-synthetic	Larvae		Calculations		AFB ₁ : 1, 20, 200,			
(2013) Lepidoptera	Lepidoptera	ni	diet containing (1, 5, 7, 10 6-16 days from known		from known	AFB ₁ 1,000, 3,000,		No			
(2013)		III	wheat germ	days)		concentration		5,000 μg/kg			
Zeng et al.	•	Helicoverpa	Semi-synthetic	Larvae		Calculations	•	AFB ₁ : 1,000			
(2009)	Lepidoptera		diet containing	(4th and 5th	12 days	from known	AFB ₁	μg/kg	No		
(2009)		zea	wheat germ	rheat germ instar)		concentration		µg/кg			
								AFB ₁ : 0, 500,000,			
			Wheat flour,					1,000,000,			
Zhao et al.		Ahasverus	rolled oats and	Larvae		Calculations		2,000,000,			
	Coleoptera	advena		(1, 5, 10 days	4-14 days	from known	AFB ₁	4,000,000,	No		
(2018)	2018)	aavena	yeast (5:5:1 by	old)		concentration		8,000,000, and			
			weight)					16,000,000			
										μg/kg	

Table S2
Overview of data on mortality after AFB₁ exposure for insects in the orders Diptera, Coleoptera, Lepidoptera and the species *Apis mellifera*

Species	Conc. of AFB1	Unit	Conc. shown in graph (µg/kg)	Start amount of larvae	Mortality/ Survival mentioned in study (%)	Mortality in graph (%)	Age	Exposure time	Reference
Diptera									
Drosophila melanogaster (strain A-9)	0	ppm	0	25	23.67 Adults	5	Eggs	Until adult	Chinnici et al. (1979)
Drosophila melanogaster (strain A-9)	0.44	ppm	440	25	0 Adults	100	Eggs	Until adult	Chinnici et al. (1979)
Drosophila melanogaster (strain A-9)	0.88	ppm	880	25	0 Adults	100	Eggs	Until adult	Chinnici et al. (1979)
Drosophila melanogaster (strain A-11)	0	ppm	0	25	22.67 Adults	9	Eggs	Until adult	Chinnici et al. (1979)
Drosophila melanogaster (strain A-11)	0.44	ppm	440	25	22.83 Adults	9	Eggs	Until adult	Chinnici et al. (1979)
Drosophila melanogaster (strain A-11)	0.88	ppm	880	25	19.67 Adults	21	Eggs	Until adult	Chinnici et al. (1979)
Drosophila melanogaster (strain Florida 9)	0	ppm	0	25	15.67 Adults	37	Eggs	Until adult	Gunst <i>et al.</i> (1982)
Drosophila melanogaster (strain Florida 9)	0.2	ppm	200	25	8.5 Adults	66	Eggs	Until adult	Gunst <i>et al</i> . (1982)
Drosophila melanogaster (strain Florida 9)	0.6	ppm	600	25	0.17 Adults	99	Eggs	Until adult	Gunst <i>et al</i> . (1982)
Drosophila melanogaster (strain Florida 9)	2	ppm	2,000	25	0 Adults	100	Eggs	Until adult	Gunst <i>et al</i> . (1982)

Drosophila melanogaster (strain Florida 9)	4	ppm	4,000	25	0 Adults	100	Eggs	Until adult	Gunst <i>et al</i> . (1982)
Drosophila melanogaster (strain Laussane-S)	0	ppm	0	25	17.83 Adults	29	Eggs	Until adult	Gunst <i>et al.</i> (1982)
Drosophila melanogaster (strain Laussane-S)	0.2	ppm	200	25	22.67 Adults	9	Eggs	Until adult	Gunst <i>et al.</i> (1982)
Drosophila melanogaster (strain Laussane-S)	0.6	ppm	600	25	16 Adults	36	Eggs	Until adult	Gunst <i>et al.</i> (1982)
Drosophila melanogaster (strain Laussane-S)	2	ppm	2,000	25	0.33 Adults	99	Eggs	Until adult	Gunst <i>et al.</i> (1982)
Drosophila melanogaster (strain Laussane-S)	4	ppm	4,000	25	0 Adults	100	Eggs	Until adult	Gunst <i>et al.</i> (1982)
Drosophila melanogaster (strain Oregon-R)	10	ppm	10,000	х	100 Adults	100	Eggs	8 days	Kirk <i>et al</i> . (1971)
Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	0	ppm	0	25	21	21	Eggs	Until adult	Melone and Chinnici (1986)
Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	0.5	ppm	500	25	16	16	Eggs	Until adult	Melone and Chinnici (1986)
Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	1	ppm	1,000	25	46, 54	50	Eggs	Until adult	Melone and Chinnici (1986)
Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	1.3	ppm	1,300	25	82, 64, 90	79	Eggs	Until adult	Melone and Chinnici (1986)
Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	1.6	ppm	1,600	25	99, 100, 95, 88	96	Eggs	Until adult	Melone and Chinnici (1986)
Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	1.9	ppm	1,900	25	98, 98, 100	99	Eggs	Until adult	Melone and Chinnici (1986)

Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	2.2	ppm	2,200	25	98, 97, 97, 99	98	Eggs	Until adult	Melone and Chinnici (1986)
Drosophila melanogaster (intercrossed strain Oregon- R and Laussane-S)	2.5	ppm	2,500	25	100, 100, 100	100	Eggs	Until adult	Melone and Chinnici (1986)
Hermetia illucens	0	mg/kg ww	0	100	2	2	One-week old larvae	10 days	Camenzuli <i>et al.</i> (2018)
Hermetia illucens	0.008	mg/kg ww	8	100	0	0	One-week old larvae	10 days	Camenzuli <i>et al</i> . (2018)
Hermetia illucens	0.07	mg/kg ww	70	100	2	3	One-week old larvae	10 days	Camenzuli <i>et al</i> . (2018)
Hermetia illucens	0.39	mg/kg ww	390	100	2	2	One-week old larvae	10 days	Camenzuli <i>et al</i> . (2018)
Hermetia illucens	0	mg/kg	0	100	1	1	24 h	9 days	Meijer <i>et al</i> . (2019)
Hermetia illucens	0.5	mg/kg	500	100	3	3	24 h	9 days	Meijer <i>et al</i> . (2019)
Hermetia illucens	0	mg/kg	0	100	8	8	24 h	10 days	Bosch <i>et al</i> . (2017)
Hermetia illucens	0.1	mg/kg	100	100	9	9	24 h	10 days	Bosch <i>et al</i> . (2017)
Hermetia illucens	0.2	mg/kg	200	100	6	6	24 h	10 days	Bosch <i>et al</i> . (2017)
Hermetia illucens	0.4	mg/kg	400	100	9	9	24 h	10 days	Bosch <i>et al</i> . (2017)
Aedes aegypti	0	ppm	0	100	2	2	Freshly emerged	5 days	Matsumara and Knight (1967)
Aedes aegypti	3	ppm	3,000	100	2	2	Freshly emerged	5 days	Matsumara and Knight (1967)
Coleoptera									
Tenebrio molitor	0	mg/kg	0	100	8	8	First instar	40 days	Bosch <i>et al</i> . (2017)
Tenebrio molitor	0.1	mg/kg	100	100	3	3	First instar	40 days	Bosch <i>et al</i> . (2017)
Tenebrio molitor	0.2	mg/kg	200	100	2	2	First instar	40 days	Bosch <i>et al.</i> (2017)
Tenebrio molitor	0.4	mg/kg	400	100	3	3	First instar	40 days	Bosch <i>et al</i> . (2017)

Alphitobius diaperinus	0	mg/kg ww	0	200	26	26	Two-week old larvae	14 days	Camenzuli <i>et al.</i> (2018)
Alphitobius diaperinus	0.008	mg/kg ww	8	200	19	19	Two-week old larvae	14 days	Camenzuli <i>et al</i> . (2018)
Alphitobius diaperinus	0.07	mg/kg ww	70	200	17	17	Two-week old larvae	14 days	Camenzuli <i>et al</i> . (2018)
Alphitobius diaperinus	0.39	mg/kg ww	390	200	21	21	Two-week old larvae	14 days	Camenzuli <i>et al.</i> (2018)
Ahasverus advena	0	ppm	0	25	16	16	One-day old	4 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	500	ppm	500,000	25	29	29	One-day old	4 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	1,000	ppm	1,000,00 0	25	44	44	One-day old	4 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	2,000	ppm	2,000,00 0	25	52	52	One-day old	4 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	4,000	ppm	4,000,00 0	25	84	84	One-day old	4 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	8,000	ppm	8,000,00 0	25	99	99	One-day old	4 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	0	ppm	0	25	19	19	Five-days-old	9 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	500	ppm	500,000	25	20	20	Five-days-old	9 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	1,000	ppm	1,000,00 0	25	39	39	Five-days-old	9 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	2,000	ppm	2,000,00 0	25	49	49	Five-days-old	9 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	4,000	ppm	4,000,00 0	25	75	75	Five-days-old	9 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	8,000	ppm	8,000,00 0	25	87	87	Five-days-old	9 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	16,000	ppm	16,000,0 00	25	93	93	Five-days-old	9 days	Zhao <i>et al.</i> (2018)
Ahasverus advena	0	ppm	0	25	17	17	Ten-days-old	14 days	Zhao <i>et al</i> . (2018)
							•	-	

Ahasverus advena	500	ppm	500,000	25	19	19	Ten-days-old	14 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	1,000	ppm	1,000,00 0	25	31	31	Ten-days-old	14 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	2,000	ppm	2,000,00 0	25	33	33	Ten-days-old	14 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	4,000	ppm	4,000,00 0	25	41	41	Ten-days-old	14 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	8,000	ppm	8,000,00 0	25	47	47	Ten-days-old	14 days	Zhao <i>et al</i> . (2018)
Ahasverus advena	160,000	ppm	160,000, 000	25	57	57	Ten-days-old	14 days	Zhao <i>et al</i> . (2018)
Lepidoptera									
Ostrinia nubilalis	2.08	log ng/g	120	15	20	20	Fourth instar	14 days	Mencarelli et al. (2013)
Ostrinia nubilalis	3.02	log ng/g	1,047	15	40	40	Fourth instar	14 days	Mencarelli et al. (2013)
Ostrinia nubilalis	4	log ng/g	10,000	15	65	65	Fourth instar	14 days	Mencarelli et al. (2013)
Ostrinia nubilalis	4.7	log ng/g	50,119	15	70	70	Fourth instar	14 days	Mencarelli et al. (2013)
Trichoplusia ni	1	μg/g	1,000	20	90	90	First instar	10 days	Zeng et al. (2013)
Trichoplusia ni	1	μg/g	1,000	20	100	100	First instar	16 days	Zeng et al. (2013)
Spodoptera littoralis	0.00	ppm	0	60	7	7	Second instar	Until pupation	Sadek (1996)
Spodoptera littoralis	0.50	ppm	500	60	13	13	Second instar	Until pupation	Sadek (1996)
Spodoptera littoralis	1.00	ppm	1,000	60	6	6	Second instar	Until pupation	Sadek (1996)
Spodoptera littoralis	2.00	ppm	2,000	60	19	19	Second instar	Until pupation	Sadek (1996)

Spodoptera littoralis	2.50	ppm	2,500	60	27	27	Second instar	Until pupation	Sadek (1996)
Spodoptera littoralis	3.00	ppm	3,000	60	33	33	Second instar	Until pupation	Sadek (1996)
Amyelois transitella	0.00	μg/g	0	20	10	10	First instar	48 h	Niu <i>et al</i> . (2009)
Amyelois transitella	1.00	μg/g	1,000	20	10	10	First instar	48 h	Niu <i>et al</i> . (2009)
Amyelois transitella	5.00	μg/g	5,000	20	15	15	First instar	48 h	Niu <i>et al.</i> (2009)
Amyelois transitella	10.00	μg/g	10,000	20	20	20	First instar	48 h	Niu <i>et al.</i> (2009)
Helicoverpa zea	0.00	ng/g	0	20	2	2	First instar	48 h	Niu <i>et al.</i> (2009)
Helicoverpa zea	10.00	ng/g	10	20	5	5	First instar	48 h	Niu <i>et al.</i> (2009)
Helicoverpa zea	20.00	ng/g	20	20	3	3	First instar	48 h	Niu <i>et al.</i> (2009)
Helicoverpa zea	40.00	ng/g	40	20	15	15	First instar	48 h	Niu <i>et al</i> . (2009)
Helicoverpa zea	60.00	ng/g	60	20	50	50	First instar	48 h	Niu <i>et al</i> . (2009)
Helicoverpa zea	80.00	ng/g	80	20	75	75	First instar	48 h	Niu <i>et al</i> . (2009)
Helicoverpa zea	100.00	ng/g	100	20	85	85	First instar	48 h	Niu <i>et al.</i> (2009)
Helicoverpa zea	120.00	ng/g	120	20	85	85	First instar	48 h	Niu <i>et al.</i> (2009)
Helicoverpa zea	140.00	ng/g	140	20	90	90	First instar	48 h	Niu <i>et al</i> . (2009)
Helicoverpa zea	0.00	ng/g	0	20	20	20	First instar	15 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	1.00	ng/g	1	20	37	37	First instar	15 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	20.00	ng/g	20	20	45	45	First instar	15 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	200.00	ng/g	200	20	100	100	First instar	15 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	1.00	ug/g	1,000	20	100	100	First instar	15 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	0.00	ng/g	0	20	0	0	Third instar	21 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	20.00	ng/g	20	20	0	0	Third instar	21 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	200.00	ng/g	200	20	27	27	Third instar	21 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	1.00	μg/g	1,000	20	100	100	Third instar	21 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	20.00	μg/g	20,000	20	100	100	Third instar	21 days	Zeng <i>et al</i> . (2006)

Helicoverpa zea	20.00	ng/g	20	20	0	0	Fifth instar	10 days	Zeng <i>et al.</i> (2006)
Helicoverpa zea	200.00	ng/g	200	20	0	0	Fifth instar	10 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	1.00	μg/g	1,000	20	10	10	Fifth instar	10 days	Zeng <i>et al</i> . (2006)
Helicoverpa zea	20.00	μg/g	20,000	20	100	100	Fifth instar	10 days	Zeng et al. (2006)
Helicoverpa armigera	1.00	μg/g	1,000	20	40	40	Fourth instar	6 days	Elzaki <i>et al</i> . (2019)
Helicoverpa armigera	1.00	μg/g	1,000	20	55	55	Fourth instar	9 days	Elzaki <i>et al</i> . (2019)
Other									
Apis mellifera	0.00	μg/g	0	30	5	5	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)
Apis mellifera	0.50	μg/g	500	30	5	5	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)
Apis mellifera	1.00	μg/g	1,000	30	30	30	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)
Apis mellifera	2.50	μg/g	2,500	30	20	20	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)
Apis mellifera	5.00	μg/g	5,000	30	35	35	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)
Apis mellifera	7.00	μg/g	7,000	30	50	50	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)
Apis mellifera	10.00	μg/g	10,000	30	90	90	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)
Apis mellifera	15.00	μg/g	15,000	30	100	100	Newly enclosed adults	72 h	Niu <i>et al</i> . (2011)

Apis mellifera	20.00	μg/g	20,000	30	100	100	Newly enclosed	72 h	Niu <i>et al</i> . (2011)
							adults		

Table S3

Concentrations of parent compounds and metabolites in initial substrate, larvae, and residual material with mass balance provided of *Hermetia illucens*, *Tenebrio molitor*, and *Alphitobius diaperinus*

Hermetia illucens

Parent compound	Type of contamination	Initial dose (µg/kg)	Initial conc. in feed (µg/kg)	Conc. in larvae (µg/kg)	Conc. in residue(s) (µg/kg)	Metabolite(s)	Initial conc. in feed (µg/kg)	Conc. in larvae (µg/kg)	Conc. in residue (µg/kg)	Total calculated mass balance %	Reference
-	S	13	0.231	< LOD	0.010	AFM ₁	(86/18/	< LOD	(86/16/	4 1	
	S	23	0.419	< LOD	0.032	AFM ₁		< LOD		8 ¹	
	S	49	0.875	< LOD	0.047	AFM ₁		< LOD		5 ¹	Bosch et al.
AFB ₁	S	84	1.5	< LOD	0.110	AFM ₁		< LOD		7 ¹	(2017)
	S	204	3.7	< LOD	0.275	AFM ₁		< LOD		7 ¹	
	S	415	7.5	< LOD	1.3	AFM ₁		< LOD		17 ¹	
AED		12	12.2	.1.00		AFB ₂	2.6	< LOD	< LOQ	48 ²	
AFB ₁	S	13	13.3	< LOD	10.9	AFG_2	7	< LOD	< LOQ		Purschke <i>et</i>
DON	S	698	697.7	< LOD	1,135.7					163 ²	al. (2017)
OTA	S	39	39.4	< LOD	< LOQ					0 ²	- , ,
ZEN	S	130	130.7	< LOD	103.7					79 ²	-
	S	20 (ww)	8 (ww)	< LOQ	5.5 + <loq (dw)</loq 	AFM ₁ AFL AFP ₁ AFQ ₁		< LOQ < LOQ < LOQ < LOQ	< LOQ < LOQ < LOQ < LOQ	11 ¹	
AFB ₁	S	200 (ww)	70 (ww)	< LOQ	62 + 1.8 (dw)	AFM₁ AFL AFP₁		< LOQ < LOQ < LOQ	< LOQ < LOQ < LOQ	18 ¹	Camenzuli <i>et</i> al. (2018)
	S	500 (ww)	390 (ww)	< LOQ	303.3 + 5.3 (dw)	$ AFQ_1 $ $ AFM_1 $ $ AFL $ $ AFP_1 $ $ AFQ_1 $		< LOQ < LOQ < LOQ < LOQ < LOQ	< LOQ < LOQ < LOQ < LOQ < LOQ	16 ¹	

											<u>_</u> .
		S	20 (ww)	18 (ww)	< LOQ	13.7 + < LOQ (dw)	AFM ₁ AFL AFP ₁	< LOQ < LOQ < LOQ	< LOQ < LOQ < LOQ	16 ¹	_
	AFD (AAi)	S	200 (ww)	180 (ww)	< LOQ	156.7 + 1.8 (dw)	AFQ ₁ AFM ₁ AFL AFP ₁	< LOQ < LOQ < LOQ < LOQ	< LOQ < LOQ < LOQ < LOQ	17 ¹	
	AFB ₁ (Mix)		500	430		353.3 +	AFQ₁ AFM₁ AFL	< LOQ < LOQ < LOQ	< LOQ < LOQ 67 + < LOQ		
		S	(ww)	(ww)	< LOQ	4.6 (dw)	AFP_1 AFQ_1	< LOQ < LOQ	(dw) < LOQ < LOQ	16 ¹	_ Camenzuli <i>et</i>
74		S	5,000 (ww)	3,900 (ww)	< LOQ	7,700 + 300 (dw)				39 ¹	al. (2018)
	DON	S	50,000 (ww)	38,000 (ww)	129.3 (dw)	86,300 + 2,500 (dw)				45 ¹	
		S	125,000 (ww)	112,000 (ww)	256.7 (dw)	316,700 +5,500 (dw)				55 ¹	
		S	5,000 (ww)	4,100 (ww)	< LOQ	15,700 + 200 (dw)				80 ¹	-
	DON (Mix)	S	50,000 (ww)	41,000 (ww)	109.5 (dw)	150,000 + 1,800 (dw)				74 ¹	
		S	125,000 (ww)	100,000 (ww)	176.7 (dw)	296,700 + 4,200(dw)				55 ¹	

(-	

	S	100 (ww)	170 (ww)	< LOQ	400 + 5.1 (dw)				53 ¹	_
ОТА	S	1,000 (ww)	1,300 (ww)	2.2 (dw)	3,500 +26.3 (dw)				57 ¹	
	S	2,500 (ww)	1,700 (ww)	2.6 (dw)	5,100 + 45.0 (dw)				56 ¹	
	S	100 (ww)	80 (ww)	< LOQ	200 + < LOQ (dw)				41 ¹	_
OTA (Mix)	S	1,000 (ww)	800 (ww)	1.8 (dw)	2,500 + 27.3 (dw)				62 ¹	
	S	2,500 (ww)	2,000 (ww)	3.9 (dw)	5,000 + 69.0 (dw)				46 ¹	Camenzuli <i>et</i>
	S	500	280	< L0Q	700+	α-ZEL	< LOQ	640 + < LOQ (dw)	104 ¹	al. (2018)
	S	(ww)	(ww)	< LOQ	< LOQ (dw)	β-ZEL	< LOQ	180 + < LOQ (dw)	104 -	
ZEN	S	5,000	2,500 (ww)	< LOQ	6,600 +183.3	α-ZEL	5 (dw)	7,200 + 140 (dw)	128 ¹	
	S	(ww)	(ww)		(dw)	β-ZEL	< LOQ	2,300 + 42 (dw)		
	S	12,500	13,000	27.5	35,300 +	α-ZEL	25 (dw)	37,300 + 600 (dw)	133 ¹	
	S	(ww)	(ww)	(dw)	26.3 (dw)	β-ZEL	7 (dw)	11,200 + 180 (dw)		
ZEN (Mix)	S	500 (ww)	400 (ww)	< LOQ	990 +	α-ZEL	< LOQ	740 + 22 (dw)	100 ¹	_

					< LOQ (dw)	β-ZEL		< LOQ	200 + < LOQ (dw)		
	S	5,000	3,800	< LOQ	10,200 + 78.7 (dw)	α-ZEL		11 (dw)	12,700 + 210 (dw)	143 ¹	Camenzuli <i>et</i>
		(ww)	(ww)		76.7 (uw)	β-ZEL		< LOQ	3,600 + 71 (dw)		al. (2018)
	S	12,500	9,400	< L0Q	22,700 + 226.7	α-ZEL		29 (dw)	28,300 + 630 (dw)	118 ¹	
	J	(ww)	(ww)	LOQ	(dw)	β-ZEL		6.7 (dw)	8,600 + 130 (dw)	110	
DON	NC, CDR		779	< LOD	1,473	3AcDON	< LOD	< LOD	< LOD	± 81 ¹	land at al
FB ₁	NC, CDR		573	< LOD	951					± 72 ¹	— Leni <i>et al</i> . — (2019)
FB ₂	NC, CDR		441	< LOD	344			•		± 5 ¹	— (2019)
ZEN	NC, CDR		< LOD	< LOD	334						

	٠
_	
•	
_	ų

Tenebrio mo	litor										
Parent compound	Type of contamination	Initial Dose (µg/kg)	Initial Conc. in Feed (µg/kg)	Conc. in Larvae (μg/kg)	Conc. in Residue (μg/kg)	Metabolite(s)	Initial Conc. in Feed (µg/kg)	Conc. in Larvae (μg/kg)	Conc. in Residue (µg/kg)	Total Calculated Mass Balance %	Reference
	S	13	0.115	< LOD	0.005	AFM ₁		< LOD		4 ¹	
	S	23	0.209	< LOD	0.013	AFM_1		0.0017		6 ¹	
AFB ₁	S	49	0.437	0.001	0.035	AFM_1		< LOD		8 1	Bosch et al.
AFD1	S	84	0.756	0.001	0.083	AFM_1		0.0009		11 ¹	(2017)
	S	204	1.8	0.002	0.139	AFM_1		0.0009		8 1	
	S	415	3.7	0.002	0.352	AFM_1		0.0011		9 ¹	
						3AcDON	< LOD	66	286		
	NC		200	136	131	15AcDON	< LOD	< LOD	< LOD	234 ²	
						Nivalenol ³	< LOD	< LOD	50		
						3AcDON	63	66	323		
	NC		2,000	127	324	15AcDON	< LOD	< LOD	< LOD	31 ²	
						Nivalenol ³	< LOD	< LOD	< LOD		Sanabria <i>et</i>
DON						3AcDON	52	66	326		al. (2019)
	NC		10,000	122	230	15AcDON	< LOD	< LOD	< LOD	6 ²	, ,
						Nivalenol ³	< LOD	< LOD	51		
						3AcDON	205	65	280		
	NC		12,000	131	742	15AcDON	< LOD	< LOD	< LOD	8 ²	
						Nivalenol ³	< LOD	< LOD	< LOD		
DON (mix)	NC	2854	99.9	< LOD	51.6					52 ²	
7FN /miv\	NC	602.2	21.1	<1.0D	4.0	α-ZEL	< LOD	< LOD	1.8	48 ²	Niermans et
ZEN (mix)	NC	602.3	21.1	< LOD	4.8	β-ZEL	0.2	< LOD	3.6	48 -	al. (2019)
DON (mix)	NC	4588	160.6	< LOD	73.9					46 ²	

	•	٦	۰	٠	•	
	ı	•		١	,	

ZEN (mix)	NC	919.3	32.2	< LOD	6.0	α-ZEL	< LOD	< LOD	3.8	49 ²	_
						β-ZEL	0.4	< LOD	6.2		<u></u>
DON (mix)	AC	939	32.9	< LOD	18.5					56 ²	<u> </u>
ZEN (mix)	AC	427	14.9	< LOD	6.0	α-ZEL β-ZEL	< LOD 0.4	< LOD < LOD	1.2 4.2	75 ²	
DON (mix)	AC	2101	73.5	< LOD	39.3					53 ²	
ZEN (mix)	AC	2283	79.9	< LOD	26.2	α-ZEL β-ZEL	< LOD 1.7	< LOD < LOD	6.8 17.3	62 ²	Niermans <i>et</i>
DON (mix)	S	568	19.9	< LOD	11.5					58 ²	al. (2019)
75NI / : \		500	20.6	.1.00	44.6	α-ZEL	< LOD	< LOD	0.3	67.3	_
ZEN (mix)	S	589	20.6	< LOD	11.6	β-ZEL	< LOD	< LOD	2.0	67 ²	
DON (mix)	S	576	20.2	< LOD	11.7	-				58 ²	_
						α-ZEL	< LOD	< LOD	3.8		_
ZEN (mix)	S	2254	78.9	< LOD	49.6	β-ZEL	0.1	< LOD	9.0	79 ²	
	S	50,000	44,000		31,000					38 ¹	Abado
FB ₁	S	150,000	140,000		87,000					42 ¹	Becognee et
	S	450,000	398,000		276,000					39 ¹	al. (1997)
						DON3G		< LOD	< LOD		
DON	NC	4,900		< LOD	1,140	15AcDON		< LOD	< LOD	14 ¹	van
						DON3G		< LOD	< LOD		Broekhovenet al. (2017)
DON	S	8,000		< LOD	4,980	15AcDON		< LOD	< LOD	41 ¹	,
						HT-2	11.1	< LOD	< LOD		
T 2 (min)	NC		88.8	< LOD	58.6	T-2 triol		< LOD	< LOD	59 ²	Piacenza <i>et</i>
T-2 (mix)						T-2 tetraol		< LOD	< LOD		al. (2020)

T-2 (mix)	NC	262.3	< LOD	135.8	HT-2 T-2 triol T-2 tetraol	26.0	< LOD < LOD < LOD	< LOD < LOD < LOD	47 ²	
					HT-2	51.6	< LOD	34.1		
T-2 (mix)	AC	53.9	< LOD	29.7	T-2 triol		< LOD	< LOD	60 ²	Piacenza <i>et</i>
. = ()					T-2 tetraol		< LOD	< LOD		al. (2020)
T-2 (mix)					HT-2	120.9	< LOD	34.1		_
	AC	139.8	< LOD	51.1	T-2 triol		< LOD	< LOD	33 ²	
					T-2 tetraol		< LOD	< LOD		

^	v	
·	^	,
$^{\prime}$	_	١

Parent compound	Type of contamination	Initial Dose (µg/kg)	Initial Conc. in Feed (µg/kg)	Conc. in Larvae (μg/kg)	Conc. in Residue(s) (µg/kg)	Metabolite(s)	Initial Conc. in Feed (µg/kg)	Conc. in Larvae (µg/kg)	Conc. in Residue (µg/kg)	Total Calculated Mass Balance %	Reference
						AFM ₁		< LOQ	< LOQ		
	S	20 (ww)	8 (ww)	< LOD	5.7 + <	AFL		< LOQ	< LOQ	56 ¹	
	· ·	_0 ()	o (ww)		LOQ (dw)	AFP ₁		< LOQ	< LOQ		
						AFQ_1		< LOQ	< LOQ		
		200			61.7 +	AFM ₁		< LOQ	2.0 (dw)		
	S	(ww)	70 (ww)	< LOD	<loq< td=""><td>AFL</td><td></td><td>< LOQ</td><td>< LOQ</td><td>79 ¹</td><td></td></loq<>	AFL		< LOQ	< LOQ	79 ¹	
A F.D.		(vv vv)			(dw)	AFP ₁		< LOQ	< LOQ		
AFB ₁						AFQ_1		< LOQ	< LOQ		Camenzuli <i>et</i> al. (2018)
		500 (ww)	390 (ww)	< LOD	326.7 + <loq (dw)</loq 	AFM_1		< LOQ	11 (dw)	69 ¹	
						AFL		< LOQ	1.5 (dw)		
	S					AFP ₁		< LOQ	< LOQ		
						AFQ ₁		< LOQ	< LOQ		
					17.7 +	AFM ₁		< LOQ	< LOQ		-
	c	20 (2004)	10 (1404)	< LOD		AFL		< LOQ	< LOQ	79 ¹	
	S	20 (ww)	18 (ww)	< LUD	<l0q< td=""><td>AFP₁</td><td></td><td>< LOQ</td><td>< LOQ</td><td>79 -</td><td></td></l0q<>	AFP ₁		< LOQ	< LOQ	79 -	
					(dw)	AFQ_1		< LOQ	< LOQ		
AFB ₁ (Mix)	S		180 (ww)		153.3 +	AFM ₁		< LOQ	5.5 (dw)		
		200		< LOD	<loq< td=""><td>AFL</td><td></td><td>< LOQ</td><td>< LOQ</td><td>71 ¹</td><td></td></loq<>	AFL		< LOQ	< LOQ	71 ¹	
		(ww)			(dw)	AFP ₁		< LOQ	< LOQ		
						AFQ_1		< LOQ	< L0Q		

AFB ₁ (Mix)	S	500 (ww)	430 (ww)	< LOD	413.3 + <loq (dw)</loq 	AFM_1 AFL AFP_1 AFQ_1	< LOQ < LOQ < LOQ < LOQ	11 (dw) 1.3 (dw) < LOQ < LOQ	80 ¹	_
DON	S	5,000 (ww)	3,900 (ww)	< LOD	4,300 + <loq (dw)</loq 				90 ¹	
	S	50,000 (ww)	38,000 (ww)	< LOD	44,700 + <loq (dw)</loq 				96 ¹	_ Camenzuli <i>et</i> al. (2018)
	S	125,000 (ww)	112,000 (ww)	< LOD	110,000 + 263.3				80 ¹	
	S	5,000 (ww)	4,100 (ww)	< LOD	4,700 + <loq (dw)</loq 				92 ¹	
DON (Mix)	S	50,000 (ww)	41,000 (ww)	< LOD	47,300 + <loq (dw)</loq 				91 ¹	
	S	125,000 (ww)	100,000 (ww)	< LOD	116,700 + <loq (dw)</loq 				94 ¹	
	S	100 (ww)	170 (ww)	< LOD	210 + < LOQ (dw)				97 ¹	-
ОТА	S	1,000 (ww)	1,300 (ww)	< LOD	2,400 + <loq (dw)</loq 				111 ¹	_
	S	2,500 (ww)	1,700 (ww)	< LOD	1,900 + <loq (dw)</loq 				115 ¹	

0	O
ĭ	
1	

												<u></u>
		S	100 (ww)	80 (ww)	< LOD	120 + < LOQ (dw)					116 ¹	_
ОТА	(Mix)	S	1,000 (ww)	800 (ww)	< LOD	1,100 + <loq (dw)</loq 					111 ¹	
		S	2,500 (ww)	2,000 (ww)	< LOD	3,100 + 2.4 (dw)					126 ¹	
_		S	500	280	.1.00	280 + <	α-ZEL		< LOQ	23 (dw)	88 ¹	_
		S	(ww)	(ww)	< LOD	LOQ (dw)	β-ZEL		< LOQ	< LOQ	88 -	
		S	5,000	2,500	< LOD	3,000 + <loq< td=""><td>α-ZEL</td><td></td><td>< LOQ</td><td>203 (dw)</td><td>109 ¹</td><td></td></loq<>	α-ZEL		< LOQ	203 (dw)	109 ¹	
ZEN		S	(ww)	(ww)		(dw)	β-ZEL		< LOQ	102 (dw)	200	Camenzuli <i>et</i>
		S	12,500	13,000	< LOD	13,700 + <loq< td=""><td>α-ZEL</td><td></td><td>< LOQ</td><td>820 (dw)</td><td>91 ¹</td><td>al. (2018)</td></loq<>	α-ZEL		< LOQ	820 (dw)	91 ¹	al. (2018)
		S	(ww)	(ww)	1200	(dw)	β-ZEL		< LOQ	320 (dw)	31	_
		S	500	400	< LOD	490 + <	α-ZEL		< LOQ	30 (dw)	105 ¹	
		S	(ww)	(ww)	\ LOD	LOQ (dw)	β-ZEL		< LOQ	11 (dw)	103	
		S	5,000	3,800	< LOD	4,300 + <loq< td=""><td>α-ZEL</td><td></td><td>< LOQ</td><td>350 (dw)</td><td>100 ¹</td><td></td></loq<>	α-ZEL		< LOQ	350 (dw)	100 ¹	
ZEN	(Mix)	S	(ww)	(ww)		(dw)	β-ZEL		< LOQ	140 (dw)		
		S	12,500	9,400	< LOD	12,700 + <loq< td=""><td>α-ZEL</td><td></td><td>< LOQ</td><td>740 (dw)</td><td>117 ¹</td><td></td></loq<>	α-ZEL		< LOQ	740 (dw)	117 ¹	
		S	(ww)	(ww)		(dw)	β-ZEL		< LOQ	270 (dw)		
DON	N	NC, CG		1207	726	827	3AcDON	< LOD	< LOD	< LOD	± 43 ¹	<u></u>
FB ₁		NC, CG		727	127	728	·				± 55 ¹	— — Leni <i>et al</i> .
FB ₂		NC, CG		294	< LOD	< LOD					± 6 ¹	– (2019)
DON	١	NC, WM		938	416	< LOD	3AcDON	< LOD	< LOD	< LOD	± 6 ¹	(2013)
DON	N	NC, CDR		779	468	587	3AcDON	< LOD	< LOD	< LOD	± 22 ¹	<u>_</u>

FB ₁	NC, CDR	573	< LOD	224	± 12 ¹	Leni <i>et al</i> .
FB ₂	NC, CDR	441	< LOD	< LOD	± 2 ¹	(2019)

Chapter 3

Effects of the mycotoxins aflatoxin B₁, deoxynivalenol and zearalenone on survival, biomass and toxin accumulation in *Musca domestica* larvae

Kelly Niermans^{1,2}, Elise F. Hoek- van den Hil², Ruud van Dam², H.J. (Ine) van der Fels-Klerx², Joop J.A. van Loon¹

¹Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; ²Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.

Published in: World Mycotoxin Journal, https://doi.org/10.1163/18750796-20222826

Abstract

Insects are receiving increasing attention as a possible ingredient for feed and/or food production. When used efficiently, insects can provide a sustainable and economically favourable contribution to global food security. Housefly larvae (HFL) can grow on a variety of organic side streams and upgrade them by partial conversion into high-quality protein. Organic side streams may be chemically contaminated by naturally occurring toxins e.q. mycotoxins, therefore, effects on insect survival and biomass as well as other feed and/or food safety issues should be investigated. In this study, the HFL were exposed to a feed substrate spiked with aflatoxin B₁ (AFB₁), deoxynivalenol (DON) or zearalenone (ZEN) at concentrations of either 1 or 10 times the maximum levels (MLs) or guidance values (GVs) set for feed materials by the European Commission. Mortality and biomass of HFL were recorded over five days of exposure. LC-MS/MS analysis was used to determine the concentration of the mycotoxins in the substrate offered, the larvae and the residual feed material. A molar mass balance was calculated to estimate how much of the spiked mycotoxins (and several metabolites), was recovered in the larval body and the residual material. Exposure to either of the three mycotoxins did not affect larval mortality and biomass, and accumulation in the larval body did not take place. Metabolism does seem to occur for AFB1 and ZEN as the molar mass balance revealed an unrecovered fraction of ca. 40 - 50%. Little DON metabolism occurred as most of the initially present DON was found back unchanged. The results of this study support the potential for safe use of HFL as food- and/or feed when reared on mycotoxin-contaminated side-streams, as accumulation of the tested mycotoxins did not take place in HFL. Further research is needed to identify the fate of the unrecovered fractions of AFB₁ and ZEN.

Introduction

Novel protein sources for food and feed are urgently needed, and insects are considered a valuable source of novel proteins. In order to make insect rearing circular, sustainable and economically feasible, insects could be reared on residual organic streams from agriculture or food production. Fly larvae are receiving increasing attention as they can be reared on a variety of organic residues. Such organic materials potentially contain contaminants which could accumulate in the insect body (Van der Fels-Klerx *et al.* 2018). Therefore, potential food or feed safety issues should be identified and controlled in advance. A class of contaminants commonly occurring in organic residues are mycotoxins (Van der Fels-Klerx *et al.* 2018).

Currently, mycotoxin contamination is considered as one of the most important food/feed safety challenges in the food and feed industry (Moretti *et al.* 2019). Due to climate change, a shift in the mycotoxin contamination pattern as well as geographical distribution pattern is expected (Zingales *et al.*, 2022). Furthermore, modelling of different climate change scenarios predicts an expansion of risk zones leading to an increased exposure to these mycotoxins (Battilani *et al.*, 2016).

Mycotoxins are secondary metabolites produced by fungi and constitute a chemically diverse class of compounds, among which several of the most potent toxic molecules of biological origin. Mycotoxins cause a variety of adverse effects in humans and animals, such as carcinogenicity, hepatoxicity, nephrotoxicity and oestrogenicity among others (Zain 2011). As mycotoxin exposure causes a variety of detrimental health effects, exposure needs to be kept below safe limits. In order to ensure this, maximum levels (ML) or guidance values (GV) for feed as well as food are set by the European Commission (EC 2002a; EC 2006b). When contamination occurs in levels above these respective levels, contaminated commodities may no longer be used as feed-and/or food. Recycling these contaminated commodities as feed substrate ('substrate' in brief) for insect larvae limits feed- and food waste and results in high quality insect proteins.

Several feeding studies on a variety of insects examined the effects of mycotoxins on insect biomass and survival as well as the possible transfer of mycotoxins from the substrate into the insect body (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Meijer *et al.* 2019; Piacenza *et al.* 2020). These studies showed that biomass and survival of the insects studied is not at all affected by the presence of mycotoxins in their substrate. A recent systematic literature review concluded that the use of mycotoxin-contaminated waste streams as substrate for insect rearing seems to provide a promising approach for the future of mycotoxin remediation and a circular economy (*Chapter 2*; Niermans *et al.* 2021). Most available studies focussed on *Hermetia illucens* L., *Alphitobius diaperinus* Panzer and *Tenebrio molitor* L. (the latter two are beetles (Coleoptera: Tenebrionidae). The larvae of the house fly (HFL) *Musca domestica* L. (Diptera: Muscidae) are considered as an additional promising source of proteins for feed. However, data for a safety assessment for HFL fed on mycotoxin-contaminated substrates are lacking. *Hermetia illucens* and the HFL both belong to the order Diptera, but to different families and have a considerably different ecology (Kortsmit *et al.* 2022; Van Huis *et al.* 2020). Data gathered on *H. illucens* may therefore not be generally valid for Diptera.

Only few studies on HFL, dating back to the 1970s, have been published (Al-Adil *et al.* 1972; Nevins and Grant 1971). These indicate that oral uptake of aflatoxin B₁ (AFB₁) and G₁ (AFG₁) increases insect mortality, act as a temporary chemo-sterilant (Al-Adil *et al.* 1972) and resulted in a ten-fold higher concentration of AFB₁ in the HFL relative to the substrate (Nevins and Grant 1971). Studies performed on other insect species reared for food and feed, including *H. illucens*, *A. diaperinus* and *T. molitor* concluded that accumulation and transfer of mycotoxins has, until now, not been observed, although a portion of the ingested mycotoxins could not be recovered (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Charlton *et al.* 2015; Leni *et al.* 2019; Meijer *et al.* 2019; Niermans *et al.* 2019; Piacenza *et al.* 2020; Schrögel and Wätjen 2019). These unrecovered mycotoxin fractions could indicate the formation of unknown metabolites or masked forms caused by metabolic processes and interactions with other substances in the substrate (Gützkow *et al.* 2021; Meijer *et al.* 2022).

The aims of the present work were (I) to determine the effect of AFB₁, deoxynivalenol (DON) and zearalenone (ZEN) exposure on HFL survival and biomass, (II) to determine whether mycotoxin accumulation takes place in the HFL body, and (III) to get a better insight into mycotoxin metabolism by determining how much of the initially fed mycotoxins can be recovered in the larval body and the residual materials (mycotoxin recovery).

Materials and methods

Chemicals and standards

Mycotoxin standards were purchased from Romer Labs (Getzersdorf, Austria): AFB₁, aflatoxin B₂ (AFB₂), AFG₁, aflatoxin G₂ (AFG₂), aflatoxin M₁ (AFM₁), ZEN, α -zearalenol (α -ZEL), β -zearalenol (β -ZEL), DON, 3-acetyldeoxynivalenol (3AcDON), 15-acetyldeoxynivalenol (15AcDON), DON-3-glucoside (DON3G); from Enzo Life Sciences (Brussels, Belgium): aflatoxicol (AFL) and from TRC (Toronto, ON, Canada): aflatoxin P₁ (AFP₁) and aflatoxin Q₁ (AFQ₁).

Spiked substrate preparation

Spiking solutions of AFB₁, DON and ZEN were dissolved in methanol (MeOH). Table 1 presents the intended and the final (analytically determined) concentrations in the substrate. Four mL of the spiking solution was mixed with 216 mL water, 20 mL nipagin solution in water (final concentration: 0.9 mg/L; Merck, Darmstadt, Germany) and 160 g dry food mix (37% wheat bran, 56% wheat flour, 4% full fat milk powder (28.2 g fat/100 g) and 2% dry instant baker's yeast) to obtain four separate batches of wet substrate of in total 400 mL (60% moisture; 1% MeOH). In the solvent control- and the control substrate the four mL spiking solution was either replaced by MeOH or water. The wet substrate was mixed manually for 5 min, and subsequently for 30 min in a head-over-head shaker (Reax 2, Heidolph Instruments GmbH & Co, Schwabach, Germany). The control substrates were prepared in the same way as the spiked substrates, with an equal amount of MeOH except for the blank.

In order to determine whether the spiked substrates could be considered homogeneous, 10 replicates from the AFB₁ 1x ML substrate were analysed for the presence of AFB₁, and four replicates of each of the other treatment substrates were analysed. When the measured concentrations (relative standard deviation of the replicates) in the samples differed \leq 20% from each other, the samples (and substrates) were considered homogeneous. The control substrates were also analysed in order to verify that these were free of mycotoxins.

Table 1. Overview of experimental substrates

#	Substrate	Intended mycotoxin conc. (µg/kg ww)	Actual mycotoxin conc. (μg/kg ww) ¹	Percentage of MeOH in substrate
1	Blank	0	0	0%
2	Solvent (MeOH) control	0	0	1%
3	Substrate + AFB ₁ 1x ML	20	22	1%
4	Substrate + AFB ₁ 10x ML	200	226	1%
5	Substrate + DON 1x GV	8,000	8,839	1%
6	Substrate + DON 10x GV	80,000	84,243	1%
7	Substrate + ZEN 1x GV	2,000	3,546	1%
8	Substrate + ZEN 10x GV	20,000	19,419	1%

¹ Average concentration over the replicates. Individual measurements for the replicates (n=4) can be found in Table S1. ww: wet weight; ML: maximum level; GV: guidance value.

Housefly rearing

The HF eggs used in this study were taken from the HF colony reared at the Laboratory of Entomology (Wageningen University), originally obtained from dr. Leo Beukeboom, Faculty of Science and Engineering, University of Groningen. Adult HF were kept in mesh BugDorm insect rearing cages (W24.5 x D24.5 x H24.5 cm, MegaView Science Co., Ltd.,, Taichung, Taiwan) in a climate cell with the following settings: 25°C, relative humidity of 65% and a day/night rhythm of 12/12 h. The adult flies had access to tap water, a 20% sucrose solution, full fat milk powder (28.2 g fat/100 g) and dry instant baker's yeast at all times. HF eggs were collected in a nylon sock which was hung into a paper cup above approx. five cm of full fat cow milk and covered by an aluminium lid with holes, providing an optimum environment for egg laying. The necessary number of eggs was collected from the nylon sock, and used in the current study. For colony maintenance purposes, the rest of the eggs were weighed, and placed in a 480 mL rearing cup (BugDorm insect pots purchased from MegaView Science Co., Ltd.,, Taichung, Taiwan) on top of the wet substrate (ca. 0.012 g of HF eggs per 62.5 g wet substrate). The wet substrate consisted of a dry food mix containing 37% wheat bran, 56% wheat flour, 4% full fat milk powder (28.2 g fat/100 g) and 2% dry instant baker's yeast. Water was added to the dry substrate mix to obtain the wet substrate (water:dry substrate mix; 60:40). Mature larvae were left in the substrate to develop into pupae and two days before the expected emergence the rearing cups were placed in new clean BugDorm insect rearing cages.

Experimental set-up

HFL were exposed to a control substrate (with or without solvent), or a substrate spiked with AFB₁, DON or ZEN. Mycotoxins were spiked to the substrate in a concentration of either 1x or 10x the ML or GV allowed by the European Commission (EC). The concentration chosen for AFB₁ was based on the ML for all feed materials, as set in Directive 2002/32/EC (EC 2002a). The chosen

concentrations for DON and ZEN were based on the lowest GV for feed materials as mentioned in EC Recommendation 2006/576/EC (EC 2006b). Table 1 presents an overview of the substrates tested. Per substrate treatment, four replicates were performed leading to a total of 32 treatment groups.

Two-hundred eggs were collected from the HFL culture and placed on top of 62.5 g mycotoxin spiked wet substrate (preparation described below) in each of the 480 mL rearing cups (BugDorm insect pots purchased from MegaView Science Co., Ltd.,, Taichung, Taiwan) and placed in a climate cell at 25°C, relative humidity of 65% and a day/night rhythm of 12/12 h. On the fifth day of exposure, larvae were separated from the residual material (a mixture of left-over substrate and frass), transferred to a clean (non-spiked) substrate for ± 4 h and collected afterwards. The residual material of the spiked substrates and the control substrates was weighed, collected and stored for further analyses. After each step, larvae were washed and their body surface dried using a paper towel. Per rearing cup both the total fresh larval biomass and the number of larvae were quantified by either weighing or counting, respectively. Larval- and residual material were stored at -20°C until further analyses.

Extraction

Before extraction, the frozen five-day-old HFL were ground under liquid nitrogen to obtain a fine powder, the sample was then stored at -80°C. Sample extraction of the substrate and residual material was performed in accordance with an in-house validated method based on the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, with a slightly adjusted protocol for the larval samples. A quantity of 2.5 g of the substrate or residual material was weighed in a 50 mL tube, 7.5 mL water was added and shaken. After 15 min, 10 mL extraction solvent (acetonitrile, 1% acetic acid) was added and mixed for 30 min in a head-over-head shaker (Reax 2, Heidolph Instruments GmbH & Co, Schwabach, Germany). Afterwards, 4 g of magnesium sulphate was added, mixed manually and vortexed for 1 min. Samples were centrifuged (MSE Falcon 6-30) for 10 min at 3000 rpm. The same procedure was used for the HFL analyses, however, in order to prevent use of excessive amounts of larval sample material, extractions were done with 200 mg of larval sample. Amounts of solvents and sample material used in the extraction procedure were adjusted accordingly. Finally, 200 µL of sample extract was added together with 200 µL water in a syringeless PTFE filter file (Mini-UniPrep, Whatman, Marlborough, MA), capped, vortexed and placed in the refrigerator for 30 min. Afterwards, the vials were closed and stored at 4°C until LC-MS/MS analyses. In order to calculate the mycotoxin concentrations in the samples, a matrix-matched calibration was prepared in blank extract of each of the matrices (initial substrate, larvae and residual material).

Chemical analyses

The LC-MS/MS system consisted of a Waters Acquity injection and pump system (Waters, Milford, MA) and an Waters Micromass Ultima triple quad system equipped with an electrospray ionization (ESI) source which was operated in positive- and negative mode (instrumental MS/MS parameters of the mycotoxins analysed are shown in Tables S2 and S3). LC separation was performed by an Acquity HSS T3 1.8 µm 100x2.1 mm column (Waters, Milford, MA). Eluent A consisted of H₂O and eluent B was composed of MeOH:H₂O 95/5 (v/v); for the positive ionization mode both eluents contained 1 mM ammonium formate and 1% formic acid, while for the negative ionization mode both eluents contained 5 mM ammonium acetate and 0.1% acetic acid. The LC eluent gradient for both ionisation modes was similar and started with an initial period of 2 min at 100% A. The proportion of B was linearly increased to 50% at 3 min and followed by a linear gradient of 100% B at 8 min (5 min for the negative mode) and was kept for 2 min. In the positive mode, the initial conditions were restored at 10.5 min and the elution ended at 15 min, while for the negative ionisation mode this happened after 8.5 min and 11 min, respectively. The flow rate was 0.4 mL/min, the column temperature was 35°C, and the injection volume 5 μL. The conditions set for electrospray ionization (ESI) were as follows: spray voltage 2.5 kV/2.0 kV, desolvation temperature 350°C, desolvation gas flow 565 L/h. MassLynx v4.2 software (Waters, Milford, MA) was used to analyse the LC-MS/MS data obtained.

Identification of peaks was performed according to the criteria of an in-house validated method. The LOD was determined as the lowest concentration included in the calibration curve with a signal to noise ratio ≥ 3 , and the LOQ was determined by following the criteria for identification and recovery mentioned in SANTE/12682/2019 (EC 2019b) and can be found in Table S4. To obtain the final mycotoxin concentration in the samples the calculated mycotoxin concentrations were corrected for the determined average recovery of the mycotoxins in the different matrices (Table S5).

All samples (substrate, larvae and residue) were analysed for the concentration of the mycotoxin (AFB₁, DON, ZEN) spiked to the substrate, and its respective metabolites (mentioned above).

Data analysis

Data on the number of larvae and larval biomass at harvest were used to determine the effect of mycotoxin exposure on HFL survival and biomass. A Kruskal-Wallis test and a Dunn's Multiple Comparison Test (comparison of all treatments with the solvent (1% MeOH) control treatment) was performed in GraphPad Prism v4 to determine whether survival and individual larval biomass measured in the treatment groups differed significantly (P < 0.05). A Mann-Whitney test U was performed to determine whether the absolute amount (μ g) of mycotoxins differed significantly (P < 0.05; IBM SPSS statistics) between the substrate and residue samples. Molar mass balance calculations were performed for all substrates other than the control substrates.

Detected concentrations from the LC-MS/MS analyses were adjusted for the wet weight measured for each of the treatments. Mycotoxin concentrations below the LOQ were set to zero. The concentrations (µg/kg) of the mycotoxins determined in larval biomass and mass of residual substrate by LC-MS/MS analysis were multiplied by the total wet weight of larval biomass or residual substrate mass respectively to yield the total amount of mycotoxin recovered, including the amounts of metabolites analysed. The molar mass balance was calculated by dividing the sum of the mycotoxin mass detected in the larvae and residual material by the mycotoxin molar mass, including that of metabolites quantified, present in the initial substrate on a wet weight basis. All figures were made in GraphPad Prism v4.

Results

Control substrates and sample homogeneity

No concentrations above the LOQ for any of the three mycotoxins and their metabolites included in the analyses were detected in the control substrate. For all spiked substrates, the relative standard deviation of the mycotoxin concentration between the replicates was \leq 20% and the mycotoxin concentrations in the substrates were therefore considered as homogeneous (Table S1).

Larval survival and biomass

The average survival of the HFL was 66 - 83% and was not affected by exposure to AFB₁, DON and ZEN for 5 days (Figure 1a). Exposure to the mycotoxins did also not result in an effect on insect biomass when comparing the individual treatments with the solvent control substrate (Figure 1b).

Mycotoxin accumulation and metabolism

Chemical analytical results showed that parent compounds and metabolites were detected in the substrate and residual materials (in concentrations above the LOQ), but that these were not present in concentrations above the LOQ in any of the larval samples.

A molar mass balance was calculated in order to express which fraction of the initially present parent compounds (or metabolites) in the substrate was recovered in the larvae and the residual material. The molar mass-balances of the AFB₁ treatments - as based on averages - were 50% (1x ML) and 63% (10x ML). Even though seven known aflatoxins (AFB₂, AFG₁, AFG₂, AFM₁, AFL, AFP₁ and AFQ₁) were analysed, neither the substrate, the larvae nor the collected residual material contained AFB₁ metabolites in concentrations above their LOQ. The absolute amount of AFB₁ (μ g) in the substrate was significantly lower than in the residual material for both the 1x ML and the 10x ML substrates (P < 0.05).

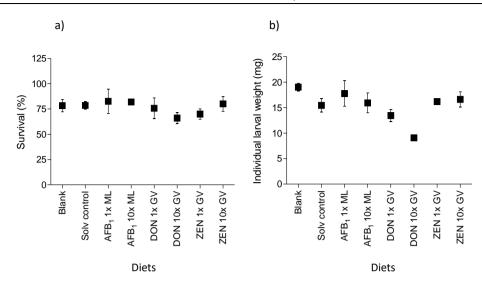
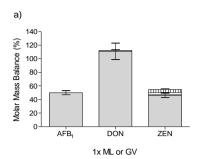



Figure 1. (a) Larval survival and (b) individual larval weight recorded after five days feeding on the included substrates. Significance was determined by comparing individual treatments with the solvent control substrate (* P = < 0.05). Error bars represent the SEM as a measure of variability between the replicates (n=4).

The calculated molar mass balance of DON in both treatments was 112% (1x GV) and 95% (10x GV) (Figure 2). This indicates that a complete mycotoxin recovery was obtained by the DON metabolites analysed. DON itself and the metabolites DON3G, 15AcDON and 3AcDON were present in the residual materials of the DON-spiked substrates. For both 1x and 10x GV DON-spiked substrates, DON was responsible for the majority of the recovered fraction, and the absolute amount of DON (μ g) in the substrate did not significantly differ from the concentration in the residue in both the 1x GV (P = 0.886) and the 10x GV (P = 0.886) substrates (Table S7). Contribution of the metabolites; DON3G, 15AcDON and 3AcDON to the total amount of DON-related compounds ranged between 0.01% and 1.3%, indicating that only little metabolism occurred (Table S6).

The molar mass balance of ZEN was 54% (1x GV) and 63% (10x GV) (Figure 2). In the mass balance of both ZEN treatments, ZEN was the main compound recovered. α - and β -ZEL contributed – on average - 4.1% and 4.7% to the mass balance of the ZEN 1x GV substrate. In the ZEN 10x GV substrate, α - and β -ZEL contributed around 2.3% and 8.3% to the mass balance, respectively (Table S6). As mentioned above, no metabolites were detected in the substrate and residual material of the AFB₁ treatments and for DON no significant difference in absolute concentration between the substrate and residual material was found (Table S7).

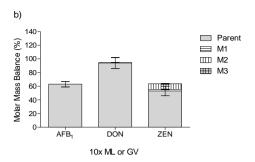


Figure 2. Molar mass balance of AFB₁, DON and ZEN for each of the spiked substrates: a) maximum level (ML) or guidance value (GV) and b) 10x maximum level (ML) or guidance value (GV). Error bars represent the SEM as a measure of variability between the replicates (n=4). Metabolites (M) contributing to the mass balance for DON were M1: DON3G, M2: 15AcDON, and M3: 3AcDON and for ZEN were M1: α -ZEL and M2: β -ZEL. None of the AFB₁ metabolites were detected in any of the samples in quantifiable concentrations. A table with the average contribution of the four replicates and the SEM per parent compound or metabolite can be found in Appendix F.

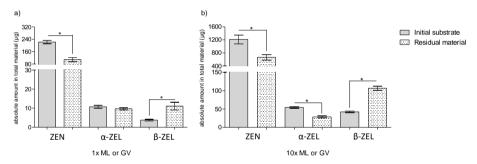


Figure 3. Overview of the absolute amount of ZEN, α - and β -ZEL (μ g per kg total material) in the substrate, larvae and residues for each of the two substrates: a) ZEN 1x GV and b) ZEN 10x GV. Bars indicate the absolute total amount (μ g) of mycotoxin (metabolite) recovered in the initial substrate after spiking or in the residual material. Significance was determined by comparing the concentration of the respective toxin in the substrate with the concentration of the same toxin in the residual material belonging to the same substrate (* = P < 0.05). Error bars represent the SEM as a measure of variability between the replicates (n=4), an overview per replicate can be found in Appendix G.

In the case of ZEN and its metabolites the absolute amount and their contribution – though low – in the substrate and residual material was calculated (Figures 3a and 3b). The metabolites α - and β -ZEL were already present in the ZEN-spiked substrates. Interestingly, the concentration of ZEN is significantly (P < 0.05) decreased in the residual material of both the 1x and 10x GV ZEN-spiked substrates as compared to the initial substrate (Figures 3a and b). Also the absolute concentration (μ g) of α -ZEL, in the 10x GV substrate, and β -ZEL, in both ZEN substrates, changed significantly (P < 0.05).

Discussion

Our study is the first to evaluate the effects of mycotoxin exposure of HFL using LC-MS/MS and to present molar mass balances quantifying compound recovery. Survival of HFL was not significantly affected by mycotoxin exposure. Exposure started in the egg stage and consequently survival reflects effects on hatchability and exposure of neonates to the mycotoxins. Furthermore, the presence of unfertilized eggs (Gadallah and Marei 1973) or damage caused while handling the eggs could have contributed to the mortality that occurred in this study. No other comparable studies on HFL have been performed. Studies on H. illucens larvae (also order Diptera, class Brachycera, but family Stratiomyidae instead of Muscidae) did not start in the egg phase, but in a later larval stage (five or seven days since hatching, when the larvae were switched from a starter substrate to the organic residue substrate) and therefore likely resulted in a higher survival (Bosch et al. 2017; Camenzuli et al. 2018; Meijer et al. 2019). HFL develop into pupae already on day six or seven and no switch from starter to organic residue substrate is applied in practice. We therefore started exposure in the egg stage to match the practice of commercial HFL mass rearing. A study on Drosophila melanogaster Meigen strain A11 showed that eggs exposed to AFB₁ were less likely to develop into adults than when two-day-old larvae were exposed to the same concentration of AFB₁ (Chinnici et al. 1979). No significant effect on HFL body mass gain was found when fed mycotoxins in concentrations corresponding to 1x and 10x the ML or GV of AFB₁, DON and ZEN. Studies on H. illucens showed that exposure of larvae to concentrations of AFB₁, DON and ZEN in lower (Purschke et al. 2017) and in even higher concentrations (Camenzuli et al. 2018; Meijer et al. 2019) than tested in this study also showed no effect on body mass.

None of the mycotoxins and metabolites included in the analyses were detected in the larval samples and therefore accumulation in the larvae did not take place. This is in contrast with a previous study in which a ten-fold higher concentration of AFB₁ in 2nd instar HF larvae was found after two days of exposure to 20 µg/kg AFB₁ (Nevins and Grant 1971). The results from the present study are in accordance with previous studies on *H. illucens*, *A. diaperinus* and *T. molitor*, showing that AFB₁, DON and ZEN did not accumulate in the insect body (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Niermans *et al.* 2019).

The results of this study lead us to infer that mycotoxin metabolism occurs in HFL. Additionally, substrate-specific enzymes and microorganisms or photochemical degradation over time could be responsible for mycotoxin metabolism or breakdown leading to an incomplete mass balance. These events were not examined in the current study and therefore no statements can be made about this.

For AFB₁ ca. 40 – 50% is not accounted for in the molar mass balance, even though seven aflatoxins were included in the analyses. This finding suggests that as yet unknown metabolites

are formed. It is important to trace detoxification pathways and resulting metabolites for AFB₁ in view of the future use of HFL larvae as feed/food. The percentage of AFB₁ recovered in this study seems comparable to what was found for *A. diaperinus*, while AFB₁ recovery in *H. illucens* seems lower (Camenzuli *et al.* 2018). This suggests that aflatoxin metabolism and the possible formation of unknown metabolites might also be relevant for these species. Though no aflatoxin metabolites were detected in the residual materials of the HFL, some residual materials of *A. diaperinus* contained AFL and AFM₁, and AFL was also detected in residual materials of *H. illucens* (Camenzuli *et al.* 2018). The formation of novel AFB₁ metabolites was confirmed for *T. molitor* (Gützkow *et al.* 2021). This suggests differences in metabolism routes between insect species. However, these insect species were reared on distinct substrates which might have been responsible for metabolite formation. Other studies observed low aflatoxin recovery rates after spiking a food/feed matrix (Sulyok *et al.*, 2020; Warth *et al.*, 2012). This suggests that nonenzymatic conjugation of AFB₁ to, for example, proteins in the matrix could be an additional a reason for the incomplete mass balance.

The molar mass balance of DON showed that DON was completely recovered in this study. Most of the DON was found back unchanged, however, DON3G, 3AcDON and 15AcDON were found in low concentrations in the residual material. These three DON metabolites seem to be the main metabolites of DON formed. Also for DON, the percentage recovered in this study was comparable to what was found for *A. diaperinus*, but it was lower in *H. illucens* (Camenzuli *et al.* 2018). The residual materials of *A. diaperinus* and *H. illucens* were also analysed for the presence of 15AcDON and DON3G, but neither of these metabolites were detected (Camenzuli *et al.* 2018), suggesting a difference in metabolism routes occurs in a HFL and BSFL study.

The molar mass balance for ZEN varied between 54% and 63%, depending on the initial concentration, indicating that 37 – 46% had been converted. Although the metabolites α - and β -ZEL were already present in the ZEN-spiked substrates, changes in their concentrations were observed, indicating a possible metabolism of ZEN into metabolites. The concentration of ZEN decreased in the residual material as compared to the concentration in the initial substrate. The concentration of β -ZEL in the residue was significantly higher in both ZEN substrates as compared to that in the spiked substrate. A preferred conversion of ZEN into β -ZEL rather than into α -ZEL has also been observed in bovine liver preparations and liver subfractions from laying hens, but seemed to depend on the species as in pigs mostly α -ZEL is formed (EFSA 2011a; EFSA 2017b). The relative potency factor (RPF) for oestrogenicity determined for α -ZEL is 60.0, (RPF ZEN is 1.0), while the RPF for β -ZEL is 0.2 (EFSA 2016). Therefore, it seems promising that HFL may convert some of the more toxic ZEN into the less toxic metabolite β -ZEL.

ZEN recovery in HFL was similar to that observed in T. molitor (Niermans et al. 2019), while ZEN recovery in H. illucens and A. diaperinus seemed to be complete (Camenzuli et al. 2018). Also in these insects species, α - and β -ZEL were, as in this study, present in the residual materials

(Camenzuli *et al.* 2018; Niermans *et al.* 2019). α -ZEL even contributed to around 50% of the total ZEN recovery in *H. illucens* (Camenzuli *et al.* 2018). Further studies are needed to clarify the contribution of the HFL and the substrate in this.

In conclusion, data collected in this study contribute to understanding whether HFL reared on mycotoxin-contaminated side streams could be used safely as feed and- or food ingredients. This study suggests that mycotoxin metabolism occurs in HFL, as for AFB₁ and ZEN, which were two of the three investigated mycotoxins, recovery of the initial amount of mycotoxin present in the substrates was partial (ca. 50 – 60%). Most of the initially present DON was found back unchanged, suggesting that little DON metabolism occurred. Therefore, further studies are needed to examine the role of the HFL as well as its substrate in mycotoxin metabolism.

Contamination with unknown metabolites can lead to an underestimation of toxicity and exposure. Therefore, further research is needed to identify the currently missing fraction of AFB₁ and ZEN. For future research it would also be of interest to include other known mammalian phase I metabolites as zearalanone (ZAN) and phase II glucosides, glutathione conjugates and sulphate esters commonly found in insects (Wilkinson 1986). Additionally, analysis of conjugates such as sulphates or glucosides which are known to be formed by plant enzymes (Brodehl *et al.* 2014), might help in determining the role of the substrate in mycotoxin metabolism.

Tracking of conversion or metabolic pathways through *e.g.* isotopic labelling are required to determine the presence of unknown metabolites to map AFB₁ metabolism in HFL. Such metabolites do not seem to be toxic to HFL, however, they might confer toxicity to consumers of HFL. Overall this study showed that HFL mortality and biomass were not affected after exposure to AFB₁, DON and ZEN. Furthermore, HFL do not accumulate the tested mycotoxins indicating their possible safe use as food- and/or feed when reared on mycotoxin-contaminated side-streams. Mycotoxin metabolism seems to occur for AFB₁ and ZEN, while metabolism of DON seems limited.

Acknowledgements

This study was financially supported by the Dutch Research Council (NWO; NWA programme, InsectFeed project, NWA.1160.18.144). Additional financing from the Knowledge Base program of the Ministry of LNV via project KB-33-001-045 is acknowledged. We would like to thank Anna Dörper, Parth Shah, Sevasti Maistrou and Yvonne Kortsmit for their assistance during sample collection, Geert Stoopen for his advice and assistance, and Marcel Dicke and Anna Voulgari Kokota for constructive comments to the final manuscript

Supplementary material

Table S1 Concentration ($\mu g/kg$) of the mycotoxin measured in the different replicates of the initial substrates

Treatments/	AFB ₁	(μg/kg)	DON (μg/kg)	ZEN (μg/kg)		
Replicates	1x ML	10x ML	1x GV	10x GV	1x GV	10x GV	
1	23.8	294.6	7,486.4	76,205.9	3,127.3	25,567.0	
2	23.5	190.5	8,096.5	63,650.5	3,415.1	15,378.6	
3	24.3	218.8	8,679.1	99,142.3	3,699.4	18,401.2	
4	20.1	198.2	11,093.7	97,973.3	3,940.9	18,328.7	
5	17.7						
6	25.0						
7	20.4						
8	20.7						
9	20.9						
10	18.7						
Average	21.5	225.6	8,838.9	84,243.0	3,545.7	19,418.9	
SD	2.4	41.2	1,368.4	14,993.0	304.9	3,753.2	
RSD	11%	18%	15%	18%	9%	19%	

Table S2
Instrumental MS/MS parameters of mycotoxins analysed in positive ionisation mode

•	Rt	01	02	Cono Voltago	CE
Component		Q1	Q3	Cone Voltage	
	(min)	(m/z)	(m/z)	(V)	(V)
15AcDON (ql)	3.68	355.9	321.1	25	11.0
15AcDON (qn)	3.68	355.9	137.1	25	15.0
AFB₁ (qI)	4.79	313.0	128.0	25	61.0
AFB ₁ (qn)	4.79	313.0	285.0	25	22.0
AFB_1 (ql2)	4.96	313.1	241.0	25	36.0
AFB ₂ (qI)	4.70	315.1	259.2	25	29.0
AFB ₂ (qn)	4.70	315.1	287.2	25	25.0
AFG_1 (ql)	4.36	329.0	200.0	25	35.0
AFG₁ (qn)	4.36	329.0	243.2	25	26.0
AFG ₂ (qI)	4.07	331.1	245.2	25	29.0
AFG₂ (qn)	4.07	331.1	313.2	25	23.0
AFP ₁ (qn)	4.46	299.0	271.0	25	22.0
AFP ₁ (ql1)	4.46	299.0	114.9	25	47.0
AFP ₁ (ql2)	4.46	299.0	90.9	25	45.0
AFQ ₁ (qn)	3.94	329,1	310.8	25	19.0
AFQ ₁ (ql1)	3.94	329,1	177.0	25	30.0
AFQ ₁ (ql2)	3.94	329.1	128.0	25	45.0
AFL (qn)	5.60	297.1	269.0	25	19.0
AFL (ql1)	5.60	297.1	114.9	25	45.0
AFL (ql2)	5.60	297.1	141.0	25	43.0
AFM ₁ (qn)	3.94	328.9	272.9	25	22.0
AFM ₁ (ql)	3.94	328.9	229.0	25	37.0
DON (ql)	2.98	297.0	231.0	25	11.0
DON (qn)	2.98	297.0	249.0	25	10.0

qn: quantifier ions. ql: qualifier ions

Table S3
Instrumental MS/MS parameters of mycotoxins analysed in negative ionisation mode

Component	Rt (min)	Q1 (m/z)	Q3 (m/z)	Cone voltage (V)	CE (V)
3AcDON (ql)	4.55	397.1	59.0	25	35.0
3AcDON (qn)	4.55	397.1	337.0	25	8.0
DON3G (ql)	3.43	517.2	247.0	25	21.0
DON3G (qn)	3.43	517.2	457.1	25	12.0
β-ZEL (ql)	6.20	319.3	130.0	25	31.0
β-ZEL (qn)	6.20	319.3	160.0	25	27.0
ZEN (ql)	6.46	317.1	131.1	25	24.0
ZEN (qn)	6.46	317.1	175.0	25	21.0
α-ZEL (ql)	6.39	319.3	130.0	25	31.0
α-ZEL (qn)	6.39	319.3	160.0	25	27.0

qn: quantifier ions. ql: qualifier ions

Table S4 LOD and LOQ (ng/mL) per mycotoxin in the different matrices

Compound		AFB ₁	AFB ₂	AFG ₁	AFG ₂	AFP ₁	AFQ_1	AFL	AFM ₁
Cubetrata	LOD	0.1	0.1	0.05	0.05	1	0.1	0.25	0.25
Substrate	LOQ	0.2	0.1	0.1	0.25	1	0.5	0.5	0.5
Larvae	LOD	0.1	0.01	0.05	0.05	0.25	0.25	0.5	0.1
Laivae	LOQ	0.1	0.25	0.1	0.1	1	0.25	0.5	0.5
Residue	LOD	0.2	0.	0.1	0.25	12.5	1	2.5	0.5
nesidue	LOQ	0.2	0.25	0.5	0.5	12.5	12.5	12.5	12.5

Compound		DON	DON3G	15AcDON	3AcDON	ZEN	α-ZEL	β-ZEL
Cubstrata	LOD	40	4	4	10	10	0.34	0.3
Substrate	LOQ	40	20	10	20	10	1.69	7.5
Larvae	LOD	40	10	2	4	10	1.69	0.75
Laivae	LOQ	40	200	4	100	10	1.69	3
Residue	LOD	40	10	10	100	10	1.69	1.5
Residue	LOQ	40	40	40	100	10	16.94	37.5

Table S5
Recovery per mycotoxin (based on QC samples) in different matrices

Substrate 75%	99%	89%	89%	73%	109%	130%	119%
Larvae 86%	82%	79%	99%	70%	117%	71%	43%
Residue 70%	98%	95%	84%	76%	127%	70%	61%

Compound	DON	DON3G	15AcDON	3AcDON	ZEN	α-ZEL	β-ZEL
Substrate	70%	80%	65%	83%	68%	64%	60%
Larvae	98%	84%	60%	122%	124%	79%	125%
Residue	71%	138%	85%	138%	158%	86%	72%

Overview of the average contribution of AFB₁, DON and ZEN and their metabolites to the overall molar mass balance (%) Table S6

	Parent	ent	-	-		()	_	Ç	2		2	با	2		2	1		-
Substrates	comp	compound	=	T I	_	ZIVI	_	CIN	≥	4	≦	CIV	≧	0	≥	<u> </u>	2	₹
	(%)	(%) SEM	(%)	SEM	(%)	SEM	(%)	SEM	(%)	SEM	(%)		(%)	SEM	(%)	SEM	(%)	SEM
AFB ₁ 1x ML	50.0	0.03		pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu		50.0	0.03
AFB ₁ 10x ML	63.0 0.04	0.04	pu		pu	pu	pu	pu		pu		pu	pu	pu	pu	pu	63.0	0.04
DON 1x GV	111.0	0.12		_	0.2	0.002	pu	0.00									112.0	0.12
DON 10x GV	94.0	0.08		_	0.01	0.0001	0.02	0.0002									95.0	0.08
ZEN 1x GV	46.0	0.03			4.7	0.007											54.0	0.03
ZEN 10x GV	53.0	0.07		_	8.3	0.002											63.0	0.08

were detected in any of the samples in quantifiable concentrations. This table shows the average contribution of the four replicates, an overview per replicate can be found in Table S7. Metabolites (M1 - M7) analysed for AFB1 were: M1: AFB2; M2: AFG1; M3: AFG2; M4: AFM1; M5: AFL; M6: AFP1 and M7: AFQ1. Metabolites contributing to the massbalance for DON were M1: DON3G, M2: 15AcDON, and M3: 3AcDON and for ZEN were M1: α-ZEL and M2: β-ZEL. nd: none of the seven AFB₁ metabolites and 3AcDON

Table S7

Overview of the absolute amount of mycotoxin (metabolite) recovered (μg) in the total substrate, larvae and residues calculated per total kilogram of material

		Substi	rate			Larvae			Re	sidual mate	rial	
Substrates	Parent	M1	M2	SUM	Parent	M1	M2	Parent	M1	M2	M3	SUM
AFB ₁ 1x ML (1)	1.5	< LOQ	< LOQ	1.5	< LOQ	< LOQ	< LOQ	0.6	< LOQ	< LOQ	< LOQ	0.6
AFB ₁ 1x ML (2)	1.5	< LOQ	< LOQ	1.5	< LOQ	< LOQ	< LOQ	0.8	< LOQ	< LOQ	< LOQ	0.8
AFB ₁ 1x ML (3)	1.5	< LOQ	< LOQ	1.5	< LOQ	< LOQ	< LOQ	0.7	< LOQ	< LOQ	< LOQ	0.7
AFB ₁ 1x ML (4)	1.3	< LOQ	< LOQ	1.3	< LOQ	< LOQ	< LOQ	0.7	< LOQ	< LOQ	< LOQ	0.7
AFB ₁ 10x ML (1)	18.4	< LOQ	< LOQ	18.4	< LOQ	< LOQ	< LOQ	9.4	< LOQ	< LOQ	< LOQ	9.4
AFB ₁ 10x ML (2)	11.9	< LOQ	< LOQ	11.2	< LOQ	< LOQ	< LOQ	8.2	< LOQ	< LOQ	< LOQ	8.2
AFB ₁ 10x ML (3)	13.7	< LOQ	< LOQ	13.7	< LOQ	< LOQ	< LOQ	8.2	< LOQ	< LOQ	< LOQ	8.2
AFB ₁ 10x ML (4)	12.4	< LOQ	< LOQ	12.4	< LOQ	< LOQ	< LOQ	8.7	< LOQ	< LOQ	< LOQ	8.7
DON 1x GV (1)	467.9	9.0	< LOQ	476.5	< LOQ	< LOQ	< LOQ	675.7	< LOQ	< LOQ	< LOQ	675.7
DON 1x GV (2)	506.0	< LOQ	< LOQ	506.0	< LOQ	< LOQ	< LOQ	641.4	< LOQ	3.5	< LOQ	644.9
DON 1x GV (3)	542.4	< LOQ	< LOQ	542.5	< LOQ	< LOQ	< LOQ	450.4	28.6	< LOQ	< LOQ	479.0
DON 1x GV (4)	693.4	2.0	< LOQ	695.4	< LOQ	< LOQ	< LOQ	634.3	< LOQ	< LOQ	< LOQ	634.3
DON 10x GV (1)	4762.9	65.0	< LOQ	4828.1	< LOQ	< LOQ	< LOQ	5282.7	15.5	< LOQ	< LOQ	5298.2
DON 10x GV (2)	3978.2	85.0	< LOQ	4062.8	< LOQ	< LOQ	< LOQ	4735.1	9.7	< LOQ	< LOQ	4744.8
DON 10x GV (3)	6196.4	94.0	1.0	6291.3	< LOQ	< LOQ	< LOQ	5019.5	18.6	1.7	5.1	5045.0
DON 10x GV (4)	6123.3	80.0	< LOQ	6203.5	< LOQ	< LOQ	< LOQ	5981.1	42.1	< LOQ	< LOQ	6023.2
ZEN 1x GV (1)	195.5	12.0	3.0	210.9	< LOQ	< LOQ	< LOQ	77.6	9.2	11.7		98.5
ZEN 1x GV (2)	213.4	9.0	3.0	225.7	< LOQ	< LOQ	< LOQ	95.4	8.3	5.2		108.8
ZEN 1x GV (3)	231.2	12.0	4.0	246.9	< LOQ	< LOQ	< LOQ	128.5	10.8	13.4		152.7
ZEN 1x GV (4)	246.3	10.0	5.0	261.0	< LOQ	< LOQ	< LOQ	133.7	10.5	14.1		158.4
ZEN 10x GV (1)	1597.9	59.0	48.0	1705.7	< LOQ	< LOQ	< LOQ	508.3	24.1	123.4		655.8
ZEN 10x GV (2)	961.2	48.0	38.0	1046.2	< LOQ	< LOQ	< LOQ	527.3	36.4	101.8		665.5
ZEN 10x GV (3)	1150.1	55.0	44.0	1248.7	< LOQ	< LOQ	< LOQ	803.0	24.4	103.0		930.4
ZEN 10x GV (4)	1145.5	55.0	39.0	1239.4	< LOQ	< LOQ	< LOQ	819.9	28.9	97.4		946.2

None of the seven included AFB1 metabolites were found in levels above the LOQ in the substrate, larvae and residual materials. Metabolites contributing to the mass-balance for DON were M1: DON3G, M2: 15AcDON, and M3: 3AcDON and for ZEN were M1: α -ZEL and M2: β -ZEL. Colours are added to improve readability. For the metabolites which are not mentioned in the table or not filled in the concentration found was < LOQ.

Chapter 4

The metabolic fate and biological effects of isotopically labelled aflatoxin B₁, fumonisin B₁, ochratoxin A and zearalenone in reared *Hermetia illucens* and *Musca domestica* larvae

Kelly Niermans^{1,2}, Nathan Meijer², Elise F. Hoek- van den Hil², Rosalie Nijssen², Lisa Zoet³, Ed Boers², Joop J.A. van Loon¹, H.J. (Ine) van der Fels-Klerx²

¹Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; ²Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands; ³Bestico B.V., Industrieweg 6, 2651 BE Berkel en Rodenrijs, the Netherlands.

Submitted

Abstract

Larvae of the black soldier fly (BSFL) and the house fly (HFL) are able to feed on a variety of organic side streams otherwise considered unsuitable as feed and food. In previous feeding experiments with mycotoxin-contaminated feed substrates the molar mass balance was mostly incomplete, which indicated the formation of unknown metabolites. Therefore, in the current study, BSFL and HFL were exposed to substrates spiked with regular and isotopically labelled aflatoxin B₁, fumonisin B₁, ochratoxin A or zearalenone. The molar mass balance was found complete for ochratoxin A (BSFL, HFL) and zearalenone (BSFL). For all tested mycotoxins insect survival and biomass were not affected and bio-accumulation in the insects did not occur. No isotopic labels were found back in unknown compounds except for two possibly new zearalenone metabolites detected in both insect species. Overall, mass balances for aflatoxin B₁ and zearalenone (HFL) remained incomplete, indicating the need for further research.

Introduction

Mycotoxins are secondary metabolites produced by toxigenic moulds. Large amounts of food and feed materials are contaminated by mycotoxins worldwide, having a substantial socioeconomic impact (Madala *et al.* 2019). In 1999, the FAO stated that at least 25% of the food crops, worldwide, were contaminated by mycotoxins (Park *et al.* 1999). However, a recent study indicated that this was a great underestimation and stated that the prevalence of detected mycotoxins in food crops is 60-80% (Eskola *et al.* 2020). Mycotoxins, such as aflatoxins, ergot alkaloids, fumonisins, ochratoxins, trichothecenes and zearalenone, can lead to adverse effects on animal and human health via mycotoxin exposure related to feed or food consumption (Benkerroum 2020; Marin *et al.* 2013; Zain 2011). In addition to economic losses due to disease burden caused by mycotoxins, crop farmers are affected directly by reduced revenues for their production (Agriopoulou *et al.* 2020), while livestock farmers are economically affected due to reduced animal performance (Zain 2011).

In the past years, the concept of organic waste management using insects (Gold *et al.* 2018) and insect-based bioconversion has received increased attention (Van Huis 2016; Van Huis 2020). Certain insect species are able to feed and thrive on a variety of side streams or by-products that may otherwise be unsafe for conventional livestock species. If the safety of rearing insects on mycotoxin-contaminated streams could be proven, insect rearing could become a sustainable practice and contribute to circularity in the production of food and/or feed (Van der Fels-Klerx *et al.* 2018). A recent literature review concluded that the use of mycotoxin-contaminated waste streams as feed substrate ('substrate' in brief) for insect rearing has potential to provide an alternative for the future of mycotoxin remediation and to contribute to a circular economy (*Chapter 2*; Niermans *et al.* 2021). Most studies including insects focussed on aflatoxin B₁ (AFB₁), deoxynivalenol (DON), ochratoxin A (OTA) and zearalenone (ZEN). Safety assessments on black

soldier fly larvae (BSFL; Hermetia illucens L.) (Bosch et al. 2017; Camenzuli et al. 2018; Meijer et al. 2019) and housefly larvae (HFL; Musca domestica L.) (Chapter 3; Niermans et al. 2023a) showed that mycotoxin metabolism occurs, but that in most cases a full recovery of the initial amount of the mycotoxin present in the substrate was not achieved. This missing fraction could possibly be explained by the presence of modified mycotoxins or unknown metabolites, which can lead to an underestimation of larval toxicity and animal/human exposure. Therefore, further research is needed to track the fate of the missing fractions of AFB₁, OTA and ZEN, and novel analytical methods will need to be used. In the studies cited above, the presence of mycotoxin (metabolites) was determined by a targeted LC-MS/MS based method. Therefore, in the current study, BSFL and HFL were exposed to a substrate spiked with regular- and isotopically (13C) labelled AFB₁, FB₁, OTA or ZEN. After exposure, the substrate, larval- and residual materials were collected and analysed by LC-MS/MS, and additionally tracking of the isotopic label by high resolution mass spectrometry (HRMS) was performed. The aims of the present work were (I) to determine the effect of mycotoxin exposure on BSFL and HFL survival and growth, (II) to determine whether mycotoxin accumulation takes place in the BSFL and HFL body, and (III) to track metabolic conversion of the mycotoxins.

Materials and methods

Experimental set-up

BSFL and HFL were exposed to substrates spiked with either isotopically labelled ('labelled' in brief) and regular AFB₁, FB₁, OTA or ZEN, a non-spiked control substrate or a non-spiked control substrate with solvent (MeOH). When tracking metabolic conversion of the included mycotoxins, the use of labelled mycotoxins provides additional confidence that the detected signals with a correct labelling status are metabolites of the mycotoxins. Whereas AFB₁, OTA and ZEN have been investigated before, fumonisin B₁ (FB₁) was also included in this study because it is a commonly occurring trichothecene found in food and it is regulated by the European Commission (EC) (Alshannag and Yu 2017; EC 2006c; Marin et al. 2013). For DON, a complete mass balance was obtained in a previous HF experiment (Chapter 3; Niermans et al. 2023a) and it was, therefore, excluded from the current study. The concentration chosen for AFB₁ was based on the highest of the maximum limit (ML) values listed for all feed materials mentioned in Directive 2002/32/EC (EC 2002a). For OTA and ZEN, the intended spiked concentrations were based on the highest guidance values (GV) for complementary and complete feed stuffs as mentioned in EC Recommendation 2006/576/EC. For FB₁, 0.1 of the lowest GV was chosen (EC 2006b), because no data of FB1 toxicity on the selected insect species are available. Table 1 presents an overview of the treatments included. Each of the eight substrate treatments and the two control substrate treatments were performed in triplicate.

Table 1. Intended and actual analysed concentrations ($\mu g/kg$) of spiked and control substrates for the BSFL and HFL.

		BSFL	HFL
	Intended	Corrected analysed	Corrected analysed
Substrates	concentration	concentration	concentration
Substrate Control	0	< LOD	< LOD
Solvent Control	0	< LOD	< LOD
AFB ₁	20	22.0 (± 1.3) ^a	27.0 (± 1.3) ^a
¹³ C ₁₇ -AFB ₁	20	22.0	22.9
FB ₁	500	533	599
¹³ C ₃₄ -FB ₁	500	417	426
OTA	100	95.4	94.0
¹³ C ₂₀ -OTA	100	91.4	91.5
ZEN	500	497	641
¹³ C ₁₈ -ZEN	500	558	571

^a± standard deviation; only provided for the AFB₁ spiked substrates, as these were analysed to confirm homogeneity. The other concentrations shown were based on the analyses of one sample.

Chemicals and standards

Mycotoxin standards were purchased from Romer Labs (Getzersdorf, Austria): $[^{13}C_{17}]$ -AFB₁, AFB₁, aflatoxin B₂ (AFB₂), aflatoxin G₁ (AFG₁), aflatoxin G₂ (AFG₂), aflatoxin M₁ (AFM₁), $[^{13}C_{34}]$ -FB₁, FB₁, FB₁, $[^{13}C_{20}]$ -OTA, OTA, ochratoxin B (OTB), ochratoxin-alpha (OT α), $[^{13}C_{18}]$ -ZEN, ZEN, α -zearalenol (α -ZEL), β -zearalenol (β -ZEL); Enzo Life Sciences (Brussels, Belgium): aflatoxicol (AFL) and TRC (Toronto, ON, Canada): aflatoxin P₁ (AFP₁) and aflatoxin Q₁ (AFQ₁).

Spiked substrate preparation

Spiking solutions of both the labelled and regular AFB₁, OTA and ZEN were prepared in methanol (MeOH) and in MeOH/H₂O (50:50 v/v) for FB₁.

BSFL substrate consisted of 35% wheat bran (Meelfabriek de Jongh, Steenbergen, the Netherlands) and 65% tap water. Prior to spiking, the wheat was milled to a particle size of 1 mm (Retsch Grindomix GM 200). The batches for the spiked substrates were made with 31.5 g (for substrates containing labelled mycotoxins) and 35 g (for regular mycotoxins) substrate, with intended concentrations as shown in Table 1. In order to create a homogenous slurry, the prepared spiking solution together with approximately 75 or 80 mL methanol was added to the spiked substrate. Each batch of slurry was mixed using a 300 W hand mixer (Philips, Eindhoven, the Netherlands) until being homogeneous and subsequently transferred to an open aluminium container. These containers were placed overnight in a fume hood for the methanol to evaporate, until the weight change was negligible. The next day, the dried batches of substrate were distributed into three replicate containers (SPL Life Sciences Co., Ltd., Gyeonggi-do, South

Korea). Each replicate container contained 8.75 ± 0.05 g of dried substrate and approximately 16.25 mL water.

In order to prepare the HF substrate, the spiking solution was mixed with water, nipagin solution (final concentration: 0.9 mg/L; Merck, Darmstadt, Germany) and a dry substrate mix containing 37% wheat bran, 56% wheat flour, 4% full fat milk powder (28.2 g fat/100 g) and 2% dry instant baker's yeast. The volume of prepared spiked substrate was such to obtain ten separate batches of wet substrate of in total 105 g (labelled) and 130 g (regular) (60% moisture; 0.5% MeOH). The wet substrate was mixed manually for 5 min and 30 min in a head-over-head shaker (Reax 2, Heidolph Instruments GmbH & Co, Schwabach, Germany).

For both insect species, the two control substrates were prepared in the same way as the spiked substrates. However, the control substrates did not contain MeOH while the percentage of MeOH in the solvent control substrate was the same as in the spiked substrates. The spiking method used in the current study was the same as in Meijer et al. (2022), and was tested for conformity with ISO standard 13528:2015 (Meijer et al. 2022). As the same spiking method was used in the current study six (BSF) or ten (HF) aliquots from the regular AFB₁ substrate were analysed for the presence of AFB₁ to confirm homogeneity. When the relative standard deviation of the replicates of the analysed samples of one treatment was \leq 20%, the substrate was considered homogeneous. The control substrates were also analysed for the presence of all mycotoxins and metabolites considered in this study (to verify whether these were absent). One sample of each of the other substrates (regular and labelled FB₁, OTA and ZEN) was analysed to determine the spiked mycotoxin concentration in these samples.

Mycotoxin exposure

Fifty individual seven-day-old BSFL (originating from the BSF colony of Bestico B.V.) were placed on 25 g of the wet spiked substrate (moisture content 65%) in a rearing cup (SPL Life Sciences Co., Ltd., Gyeonggi-do, South Korea) and placed in a climate chamber. Climate chamber conditions were set at 28° C, 60% RH and a day/night rhythm of 12/12 h was provided (Meijer *et al.* 2021a). On the sixth and seventh day of exposure, respectively, 3.47 ± 0.02 g and 3.00 ± 0.04 g of water was added to all containers to compensate for water loss. Exposure ended on day seven, when the BSFL were separated from the residual material (*i.e.* left over substrate and frass), weighed, counted, washed, dried, weighed again and transferred to clean (non-spiked) substrate to allow gut cleaning. On day eight, the larvae were again washed and dried, weighed, placed in plastic bags, and frozen at -18° C.

The HF eggs used in this study were taken from the HF colony maintained at the Laboratory of Entomology (Wageningen University). The rearing process was identical to that described in *Chapter 3* (Niermans *et al.* 2023a). An egg clutch of 100 HF eggs was placed on top of 30 g of the wet spiked substrate (moisture content 60%) in each of the 100 mL rearing cups (Greiner Bio-

One GmbH, Kremsmünster, Austria) and placed in a climate cell at $25 \pm 1^{\circ}$ C, 65% RH and a day/night rhythm of 12/12 h. On the fifth day of exposure, larvae were separated from the residual material, and the same protocol as described above for the BSFL (weighing, washing etc.) was applied. The only deviation to the original HF protocol (Niermans *et al.* 2023a) was that the HFL could ingest clean (non-spiked) substrate for *ca.* five hours. The residual material of the spiked substrates and the clean substrate (BSF and HF) was weighed, collected and stored at 18° C until further analyses.

Extraction procedure

Before extraction, the frozen BSFL and HFL were ground under liquid nitrogen to obtain a fine powder. The samples were then stored at -80°C. Sample extraction of the residual material was performed in accordance with and in-house validated method (according to SANTE/12682/2019; (EC 2019b)) based on the QuEChERS method and a slightly adjusted protocol was used for the substrate and larval samples. The extraction protocol was the same as reported in Camenzuli et al. (2018) and similar for the substrate and larvae, with adapted amounts of 1 g of HF substrate or BSFL and 500 mg of the HF larval sample. Amounts of solvents and other materials used in the extraction procedure were adjusted accordingly. Finally, 200 µL of sample extract was added together with 200 µL water in a syringeless PTFE filter vial (Mini-UniPrep, Whatman, Marlborough, MA), capped, vortexed and stored at 4°C until analyses. The same larval- and residual extracts as prepared for LC-MS/MS analyses were used for analyses on the LC-Q-OrbitrapTM-MS. In order to calculate the mycotoxin (metabolite) concentrations in the samples, a matrix matched calibration was prepared in extract of each of the control matrices (substrate, larvae and residual material). The ZEN metabolite α -ZEL was not present in the standard reference mixture used for this experiment, therefore, quantification was done based on an inhouse calibration line (in solvent).

LC-MS/MS analyses

All samples (substrate, larvae and residual material) were analysed for concentrations of either AFB₁, FB₁, OTA, ZEN and related metabolites, depending on the treatment. The LC-MS/MS system consisted of a Waters Acquity injection and pump system (Waters, Milford, MA) and an AB Sciex QTRAP 6500 triple quad system equipped with an electrospray ionization (ESI) source which was operated in positive and negative mode (instrumental MS/MS parameters of the mycotoxins analysed are shown in Tables S1 and S2). LC separation was performed by an Acquity UPLC HSS T3 1.8 µm 100x2.1 mm column (Waters, Milford, MA).

The composition of the eluents used for the positive and negative ionization mode and the LC eluent gradient for both ionisation modes was the same as reported in Camenzuli *et al.* (2018), however, in the current study the initial conditions were restored at 10.5 min and the run ended at 12.5 min (Camenzuli *et al.* 2018). The flow rate was 0.4 mL/min, the column temperature was

 40° C, and the injection volume 5 μ L. The conditions set for ESI were as follows: spray voltage 4.0 kV/-4 kV, temperature, 400° C, Ion Source Gas 1 and 2 were both set at 50 arbitrary units.

HRMS analyses

The same larval- and residual extracts as prepared for LC-MS/MS analyses were used for analyses on the LC-Q-Orbitrap[™]-MS. Chromatography and the variable data-independent acquisition (vDIA) in positive and negative mode were performed as described by Zomer and Mol (2015). In addition to this method, measurements were performed with a full scan top 5 DDMS, a full scan (mass range 135 - 1000 m/z, resolution 70.000) combined with a top5 DDMS2 (resolution 17.500) with a dynamic exclusion time of 10 s, in positive and negative mode. The DDMS method was performed for one sample of each triplicate sample set (per treatment).

Data collection and analysis

Data on survival and larval biomass on control and mycotoxin-spiked substrates were collected by counting and weighing larvae at harvest, after seven (BSF) and five (HF) days of exposure to the substrates, and after washing and drying. The weight of the residual material was calculated as the total weight of the container after exposure, minus the weight of the empty container and the weight of the larvae at harvest. Survival and growth data of both experiments were statistically analysed by a Kruskal-Wallis test followed by a Dunn's Multiple Comparison test in which the data were compared with the solvent control substrates (significance level (α) of 0.05; GraphPad Prism v4). In one of the labelled OTA replicates, some BSFL had escaped during the trial and, therefore, survival data of this replicate were excluded from further data analyses. Figures were made in GraphPad Prism v4.

SCIEX OS-MQ v2.1.6 software (Sciex, Framingham, MA) was used to analyse the concentration data of the mycotoxin (metabolites) obtained via the analyses with LC-MS/MS. Identification of peaks was performed according to criteria for identification and recovery set in SANTE/12682/2019 (EC 2019b). The recovery percentages of analysed compounds for each of the matrices (substrate, larvae and residual material) are shown in Table S3. Analysed concentrations were corrected for these recovery percentages, to include for possible uncertainties (extraction efficiency, matrix effect and LC-MS/MS analyses) and was done according to Regulation (EC) 401/2006 (EC 2006a). The samples taken of the BSFL substrate were dry, however, the insects were provided wet substrate (35:65 feed:water). Therefore, the analysed concentrations were corrected to reflect the actual weight of the substrate as provided to the insects. As the ZEN metabolite α -ZEL was not present in the standard reference mixture, no recovery could be calculated and, therefore, the analysed concentrations for this compound were not corrected for recovery. Sample homogeneity was determined by calculating the deviation between the aflatoxin concentrations in the aliquots collected from the regular AFB1 substrate. Replicate five (HF substrate) was excluded from this calculation since the results

indicated a technical issues with this sample. LOD and LOQ values were determined for the used method and were based on a calibration in solvent and adjusted for the recovery (%) of the respective matrices (substrate, larvae and residual material; Table S4). LOD and LOQ were determined as the lowest concentrations that complied to the aforementioned criteria for identification, with as additional criteria that the signal to noise ratio (S/N) had to be \geq 3 for the LOD, and \geq 10 for the LOQ. Mycotoxin (metabolite) concentrations < LOQ were set at 0 for the mass-balance calculations.

A bio-accumulation factor (BAF), representing the ratio of the concentration in the larval body (wet weight) as compared to the concentration present in the initial substrate (wet weight), was calculated in order to determine whether bio-accumulation occurred in the insects. The molar mass balance was calculated by expressing the total molar mass of post-experiment compounds (larvae + residual material) as a percentage of the mass of pre-experiment compounds (substrate). The calculation was performed for the regular substrates only, because reference standards were only available for metabolites of the regular mycotoxins. Molar mass balance calculations were performed for all substrates other than the control substrates. Detected concentrations from the LC-MS/MS analyses were adjusted for the wet mass measured for each of the treatments. The molecular weight of the parent compounds and metabolites used for the molar mass balance calculations are shown in Table S5.

In addition to the LC-MS/MS analyses, HRMS analyses was performed. Raw data files of the HRMS analyses were analysed by Compound Discoverer™ 3.2 (ThermoFisher Scientific, Waltham, MA, USA) to investigate the presence of modified mycotoxins or unknown metabolites. For each of the four spiked mycotoxins, the isotope labelled and regular samples were analysed together with controls. The Compound Discoverer™ workflow includes the selection of spectra, aligning of retention times, detection of compounds, grouping of compounds (labelled and regular (native) spiked samples were processed together with their respective controls), filtering of background noise (signal should be five times higher than the control samples), performance of a ChemSpider and mzCloud library search, and the prediction of elemental compositions (Figure S1). The workflow resulted in a list of potential compounds for which the software automatically generated molecular formulas, which were used for further analyses.

The isotopic label status (label only present in the labelled samples and absent in the regular ones) and a similar peak intensity of both the labelled and regular spiked samples were compared to the control samples, and used as additional criteria for identification. Only signals for which the isotope label was present in the labelled samples, as opposed to their regular counterparts, were manually selected. Subsequently, the peak intensity of labelled and regular samples, should be maximally a factor 5 difference. However, for most metabolites the difference was below a factor of 2. MS/MS spectra of the signals which met all aforementioned

criteria were checked for indications for the identification which includes looking for fragments and neutral losses corresponding to the respective mycotoxin fragmentation patterns. The use of isotope-labelled mycotoxins in this experiment provides additional confidence that detected signals with correct labelling status are metabolites of the mycotoxins. Unfortunately, the use of isotope labels only slightly enhanced the possibilities for molecular structure elucidation. To accurately describe the identification confidence of the compounds the method developed by Schymanski was used (Schymanski *et al.* 2014).

Results

Control substrate and sample homogeneity

The control substrates were analysed to determine the presence of possible mycotoxin background levels. The mycotoxins included in this study and their metabolites were absent (< LOD) from the two control substrates. For both the AFB $_1$ spiked substrates, the analysed corrected concentrations were within an acceptable deviation range of \pm 20% - confirming the homogeneity of the spiked substances in the substrate (Table 1, Table S6).

Larval survival and biomass

Average survival of BSFL varied from 94 to 100% between the treatments, whereas survival of HFL varied between 46 to 95% (Figure 1). The average individual larval biomass varied between the treatments from 57.6 to 84.2 mg for BSFL, and from 3.1 to 22.0 mg for HFL.

Larval biomass did not differ significantly between the different substrates for BSFL (P = 0.994) and HFL (P = 0.106). AFB₁, FB₁, OTA and ZEN concentrations - at around 0.1x (FB₁) and 1x the ML or GV for animal feed materials - did not significantly affect survival of BSFL (P = 0.111) or HFL (P = 0.229).

Mycotoxin (bio-)accumulation and metabolism

A low concentration of ZEN was found in the BSFL, whereas FB_1 was present in a much higher concentration in the larvae (217.7 \pm 68.9 $\mu g/kg$). Additionally, no mycotoxin (metabolites) were detected in concentrations above the LOD in the HF larval body. BAFs were calculated in order to determine whether bio-accumulation occurred in the larval body. Since mycotoxin metabolites were absent from the initial substrates, only the concentration of the parent compound was included in the calculation of the BAF. For both BSFL and HFL, the BAF was (near) zero for almost all compounds (Table 2). Only for FB_1 in BSFL, the BAF was between 0.41 and 0.46, therefore bio-accumulation did not occur (BAF < 1). All BAF values were similar for larvae fed the regular and the labelled mycotoxin substrates (Table 2).

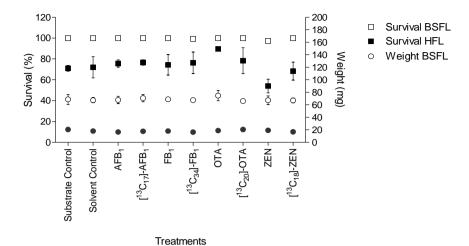


Figure 1. Average larval survival and individual larval weight recorded after seven (BSFL) and five (HFL) days feeding on the included substrates. Error bars represent the SEM (n=3). Please note that deviations in some cases are zero/very small.

The average calculated molar mass balances for AFB $_1$ revealed 62% and 52% recovery for the BSFL and HFL treatments, respectively (Figure 2). In the residual material of the AFB $_1$ -spiked substrates of BSFL, AFP $_1$ contributed for 13.5 \pm 2.3% to the overall molar mass balance. None of the seven included aflatoxins were found in the substrate or residual material of the HFL experiment. Molar mass balances for FB $_1$ resulted in 72% recovery in the BSFL and 60% in the HFL experiment. Molar mass balances for the OTA treatments resulted in 109% (BSFL) and 105% (HFL) recovery. Recovery of OTA in BSFL and HFL is therefore considered complete. Parent compound and metabolites were present in the residual materials: especially OT α (89.2 \pm 3.2%) contributed to the overall molar mass balance in the BSFL experiment.

In the HFL experiment, most OTA was found back in unchanged form; however, also OT α (13.2 \pm 0.5%) and OTB (0.6 \pm 0.02%) contributed to the overall recovery of OTA. Molar mass balances for ZEN showed 101% and 58% recovery for the BSFL and HFL treatments, respectively. In the substrates for the two insect species, a large proportion of ZEN was found back in unchanged form (BSFL 82.7 \pm 2.9% and HFL 49.0 \pm 1.2%), but also two metabolites of ZEN, *i.e.* α - and β -ZEL, contributed to the overall recovery. In the BSFL experiment, 15.2 \pm 4.8% and 2.7 \pm 0.9% of the overall molar mass balance was covered by α - and β -ZEL. In the HFL experiment, α - and β -ZEL contributed for 4.4 \pm 1.3% and 2.2 \pm 0.1%, respectively.

Table 2. Average concentrations (μ g/kg) \pm SD of parent compounds in the body of BSFL and HFL, and bio-accumulation factor (BAF) based on concentrations in substrate. Concentrations of all other mycotoxin (metabolites) in the larval body, were below their respective LOD.

	Spiked compound	Concentration	BAF
		parent compound	
	AFB ₁	< LOD	0.00
	$^{13}\text{C}_{17}\text{-}AFB_1$	< LOD	0.00
	FB_1	217 ± 68.8	0.41
BSFL	¹³ C ₃₄ -FB ₁	193 ± 74.9	0.46
DJFL	OTA	< LOD	0.00
	¹³ C ₂₀ -OTA	< LOD	0.00
	ZEN	7.7 ± 3.3	0.02
	¹³ C ₁₈ -ZEN	7.7 ± 3.0	0.01
	AFB ₁	< LOD	0.00
	$^{13}\text{C}_{17}\text{-}AFB_1$	< LOD	0.00
	FB_1	< LOD	0.00
HFL	¹³ C ₃₄ -FB ₁	< LOD	0.00
ПГС	OTA	< LOD	0.00
	¹³ C ₂₀ -OTA	< LOD	0.00
	ZEN	< LOD	0.00
	¹³ C ₁₈ -ZEN	< LOD	0.00

Unknown metabolites

No new metabolites were found in the larval material of the AFB₁, FB₁ or OTA spiked substrates of the BSFL experiment, nor were new metabolites found in the larval material of the ZEN spiked substrate in the HFL experiment. Additional metabolites were found in BSFL reared on the ZEN spiked substrates. These metabolites are clearly ZEN metabolites as confirmed by their labelling status, and retention times were as expected considering the compositional change. Additionally, the fact that they fragmented to masses also present in the ZEN spectrum, indicated that they are ZEN metabolites. Table 3 mentions the details of the presumed new ZEN metabolites, hereafter named metabolite 1 and 2. The MS/MS spectra of metabolites 1 and 2 are shown in Figures S2a and S2b, respectively.

No new metabolites were found in the residual material of the AFB₁, FB₁, OTA and ZEN treatments in the BSFL experiment. However, in the residual material of the ZEN-spiked substrates in the HFL experiment, two additional metabolites were detected. Multiple molecular formulas seemed to fit the isotope patterns, and the MS/MS spectra provided limited information on the elemental composition and structure of the metabolites. Therefore, it is not possible to report an unambiguous molecular formula. Table 3 mentions the details of the presumed new ZEN metabolites, hereafter named metabolites 3 and 4.

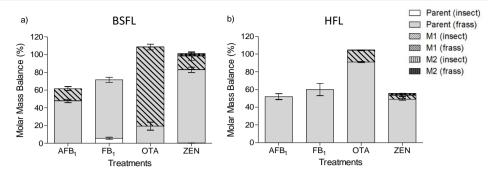


Figure 2. Molar mass balance of AFB₁, FB₁, OTA and ZEN for a) BSFL and b) HFL fed on a mycotoxin spiked substrate. Error bars represent the SEM (n=3). Metabolite(s) (M) contributing to the mass-balance for AFB₁ was M1: AFP₁; for OTA were: M1: OT α , M2: OTB and for ZEN were M1: α -ZEL and M2: β -ZEL. An overview of the average contribution of the included mycotoxin (metabolites) can be found in Table S7.

The MS/MS spectrum of metabolite 3 is shown in Figure S3a. Due to the low intensity of the signal of metabolite 4 (mass 400.2437 Da), no high quality DDMS2 spectrum is included; instead a DIA (composite) spectrum of all ions between 295 and 405 m/z at the retention time of this metabolite is presented (Figure S3b). For both metabolites no fragments, except for 112.985 m/z, are visible which are also present in the spectrum of ZEN. Still, the presence of the isotope labelled-compounds in the labelled samples and the absence of labelled compound in the regular spiked samples, leads to the conclusion that these are ZEN metabolites.

Table 3. Features detected in 'expected compound search' after filtering and evaluation, for the BSFL and HFL experiment.

Metabo lite #	Matrix	Confidence level ^a	Predicted formula	Mol. mass (Da)	Composition change	Rt (min)
1	BSFL	4	C34H41NO6	559.2937	+ C16H19NO +	10.896
2	BSFL	4	C44H64N2OP2	698.4519	C26H42N2P2 -O4	10.941
3	HFL residual material	5	-	282.02449	-	8.613
4	HFL residual material	5	-	400.2437	-	10.825

^a Confidence level of identification is based on the Schymanski method (Schymanski et al. 2014).

Discussion

The current study showed that substrates contaminated with AFB₁, FB₁, OTA or ZEN fed to BSFL and HFL did not significantly affect larval survival or larval biomass. This is in line with other studies that showed that substrates spiked with AFB₁ or ZEN, and OTA, in concentrations similar

to and higher than tested in the current study, did not significantly affect survival and larval biomass of BSFL (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Leni *et al.* 2019) and HFL (*Chapter 3*; Niermans *et al.* 2023a).

In the BSFL experiment, the BAF was (near) zero for all tested compounds, except for FB1 (BAF 0.41). FB₁ accumulation was also absent in a study in which BSFL were fed naturally contaminated substrates containing FB1 (in a similar concentration as in this study) and other mycotoxins (Leni et al. 2019). Camenzuli et al. (2018) detected α - and β -ZEL in BSFL, in concentrations either below or just above the LOQ (Camenzuli et al. 2018). While, in the current study, none of the included mycotoxin metabolites were found in BSFL in concentrations above the LOQ. Furthermore, no mycotoxin (metabolites) were found in HFL, which is in accordance with a previous study (Chapter 3; Niermans et al. 2023a). The concentration of the mycotoxins determined in the insect body of BSFL in all treatments were far below the lowest GV for complementary and complete feed stuffs as set in EC Recommendation 2006/576/EC (EC 2006b) or below the lowest ML listed for aflatoxins (sum of AFB₁, AFB₂, AFG₁ and AFG₂) in a variety of foodstuffs (EC 2006c) and below the lowest ML for AFB₁ in feedstuff (EC 2002a), indicating no safety concerns for using these insects as feed. Currently, AFP₁, OT α , α - and β -ZEL are not considered in any of the European legislations with MLs or GV for the presence of mycotoxins in animal feed. To our knowledge, this is the first study to investigate accumulation of OTA metabolites in reared insects and, as such, no comparisons can be made.

The recovered fraction of AFB₁ in the molar mass balance of this BSFL experiment was higher (62%) than reported by Bosch *et al.* (2017) (4 - 17%) and Camenzuli *et al.* (2018) (11 - 17%) (Bosch *et al.* 2017; Camenzuli *et al.* 2018). In the study of Bosch *et al.* (2017), only AFB₁ and AFM₁ were included in the mycotoxin analyses (Bosch *et al.* 2017), while in the current study AFP₁ contributed largely to the molar mass balance, which could in part account for the difference. Additionally, exposure time in the studies of Bosch *et al.* (2017) and Camenzuli *et al.* (2018) was ten days (Bosch *et al.* 2017; Camenzuli *et al.* 2018), whereas in the current study exposure lasted for seven days. The possible roles of the insect itself, substrate microorganisms and photochemical degradation in mycotoxin degradation/metabolism, and the effect of this on the molar mass balance, needs to be investigated further. Additional research also needs to be performed on the degradation products and breakdown pathway of AFB₁ in HFL. So far, only one other feeding study with mycotoxins has been performed for HFL (*Chapter 3*; Niermans *et al.* 2023a). The proportion of AFB₁ recovered in the molar mass balance of both HF experiments were comparable, and AFB₁ metabolites did not contribute to the overall recovery.

Both *in vivo* and *in vitro* studies showed that glutathione S-transferases that catalyse the formation of GSH conjugates play a crucial role in the modulation of AFB₁ DNA-adduct formation (Allameh *et al.* 2000). Also in insects, phase I enzymes *e.g.* cytochrome P450's (Berenbaum *et al.* 2021; Meijer *et al.* 2019) and phase II enzymes *e.g.* glucosyltransferases (De Zutter *et al.* 2016)

are known to play a role in mycotoxin metabolism. Additional common metabolic mechanisms in insects include conjugation with glutathione, sulphate or glucose (Wilkinson 1986). No such conjugated metabolites were detected in this study. AFB₁ has been documented to bind to the N_7 -position of guanine, one of the four DNA bases (Coskun *et al.* 2019). Such guanine-conjugates have molecular masses of 480 – 503 Da and the current method should have detected these since the upper limit of the full scan was 1000 Da. None of the expected AFB₁ metabolites or conjugates had a mass exceeding this limit.

In this study, a missing fraction of 28% (BSFL) and 40% (HFL) was calculated for FB₁. The same missing fraction (28% FB₁) was also found when BSFL were reared on a substrate naturally contaminated with FB1 (in a similar concentration as in this study) in a mixture with other mycotoxins, such as DON and fumonisin B2 (Leni et al. 2019). For HFL, the molar mass balance for FB₁ has not previously been calculated in other experiments. Analytical standards of FB₁ metabolites were not included in the analyses, as they were not available, but HRMS analyses did not lead to the discovery of (known or novel) FB_1 metabolites. FB_1 is a highly polar compound, resulting in a low absorption in humans and animals and a half-life of only a few hours (EFSA 2018a). When absorbed, FB₁ is rapidly cleared from systemic circulation of ruminants, pigs and avian species (EFSA 2018b). In mammalian species, FB1 is known to be biotransformed to only a limited extent and the main phase I modification described in the literature entails the hydrolysis of ester groups leading to the formation of hydroxy-FB₁ (HFB₁) or p-hydroxy-FB₁ (EFSA 2018b). In ruminants (Rice and Ross 1994) and pigs (Fodor et al. 2008) extensive biotransformation of FB₁ into its hydrolysed forms has been observed. Further metabolism of FB1 and its hydrolysed forms has been described in vitro (Seiferlein et al. 2007) and in rodents (Harrer et al. 2015), and includes N-acylation with fatty acids of various chain lengths (EFSA 2018a). Extractions and analyses of FB₁, HFB₁ and other modified forms should be similar and are often detected in the same chromatographic run (EFSA 2018b). It is plausible that, when present, the currently used extraction and detection methods were capable of extracting and detecting hydrolysed FB1 metabolites as well. N-acyl metabolites are, however, often less polar due to their conjugation with long-chain fatty acids (EFSA 2018a) which might make co-extraction less effective.

Recovery of OTA in a previously performed study (41 - 62%) (Camenzuli *et al.* 2018) was substantially lower than in this study (109%). In the current study, the metabolite OT α contributed for a large proportion to the recovery in the mass balance for the BSFL experiment, which may explain the differences between these two studies, as OT α was not analysed in the other study. This is the first time a molar mass balance was calculated for OTA in an HFL experiment, so no comparison with other studies can be made. OT α and OTB both contributed, of which OT α even more so than OTB, to the overall recovery in both the BSFL and the HFL experiment. Literature shows that *in vivo* biotransformation of OTA seems to be low and mainly restricted to hydrolysis of the amide bond leading to OT α (EFSA 2020b), which seems to

correspond with the results of the current study. OTB has been reported as a minor metabolite (1% of OTA) *in vitro* and *in vivo* (EFSA 2020b). Current knowledge on comparative toxicity between OTA and OTB needs to be strictly differentiated between *in vivo* and *in vitro* effects. *In vivo*, OTB is clearly less toxic than OTA as tested in a variety of animal models. This lower toxicity could be explained by its lower affinity for plasma proteins and the fact that OTB seems to be more readily eliminated. *In vitro*, both OTA and OTB showed a similar acute cytotoxicity, provided that similar amounts are taken up and are intracellularly bound (Heussner and Bingle 2015). OT α , on the other hand, is approximately 100-fold less toxic than OTA (Heussner and Bingle 2015). The predominant conversion of OTA into OT α in both the HFL and BSFL experiments seems therefore favourable because of its lower toxicity.

The results of the current study for ZEN in relation to BSFL are largely similar with those reported by Camenzuli et al. (2018). HRMS analyses resulted in the detection of two new ZEN metabolites in BSFL. These metabolites could be identified with a confidence level of 4 resulting in the assignment of a molecular formula, but current spectral data provided insufficient evidence to propose an actual structure (Schymanski et al. 2014). The proportions of ZEN recovered in the molar mass balance in the current and another HFL study (Chapter 3; Niermans et al. 2023a) were comparable. Also, the ZEN metabolites α - and β -ZEL contributed to the molar mass balance in both HFL studies. Two additional ZEN metabolites were detected in the residual material of HFL. The spectral data provided limited information on the elemental composition and structure of the metabolites, and it was therefore not possible to report an unambiguous molecular formula (confidence level 5) (Schymanski et al. 2014). Quantification of these four novel metabolites was not possible because standards are not available, but based on the small peak area it could be concluded that these metabolites were either only present in very low concentrations or that the small peak area was caused due to a low extraction efficiency or ionisation issues. It therefore seems unlikely that they can explain the missing fraction in the molar mass balance of the spiked ZEN treatments.

Data obtained in this study indicate that a certain proportion of the tested mycotoxins has not been recovered. It was hypothesized that the mycotoxins present at the start of the experiments would have metabolized to unknown metabolic products in either the insect or the residual material. However, the current study indicated that this was not the case. As LC-MS/MS analysis entails a targeted method for known compounds with optimized settings for the compounds of interest, it is much more sensitive than the HRMS method. The HRMS method is, on the other hand, a generic method which can be used to collect data on a wide range of compounds, which at the same time limits its sensitivity for specific compounds. Furthermore, it is possible that the QuEChERS-based extraction method was not optimal for some of the metabolites that may have been present, like the fumonisin *N*-acyl-metabolites or DNA adducts, which could consequently have not- or incompletely been extracted leading to a reduced recovery. Larger or more polar

molecules, as for example, metabolites conjugated with glucoside or sulphate might not be extracted as effectively in the currently used (extraction) method. Analyses of the water phase obtained from the QuEChERS partitioning step, the addition of a hydrolysis step or enzymatic treatment to free metabolites bound to proteins, peptides or lipids, might provide more information on this.

Overall, data obtained in this study indicate that the parent mycotoxins and related metabolites are (largely) absent from the insect samples of both species, and present to some extent in the frass. In certain cases, a proportion of the tested mycotoxins has not been recovered, as seen from the incomplete mass balances. Based on the provided data it seems possible that additional (unknown) metabolites are responsible for this missing fraction, as we might have not extracted them with the used methods. Furthermore, follow-up in vitro studies assessing the toxicity of insects fed a mycotoxin-contaminated substrates could be helpful. Testing of BSFL and HFL fed a mycotoxin-contaminated substrate for mutagenicity or genotoxicity with for example an Ames test or a micronucleus test (EFSA 2011b) might be a suitable next step. Furthermore, it would be valuable to assess whether the current findings can be extrapolated to a more realistic scenario (naturally contaminated substrates containing multiple mycotoxins). Additionally, studies assessing the role of the larval specific metabolic enzymes, their microbiota and of microorganisms in the substrate in mycotoxin metabolism, complete breakdown of AFB1 into CO₂ and possibly other small organic molecules, and photochemical degradation of mycotoxins in the substrate are recommended. To conclude, based on the findings presented here, the absence of mycotoxin accumulation in BSFL and HFL in levels above the set EU guidelines provides a positive outlook for the future use of these insects reared on mycotoxincontaminated substrates as feed or food. Furthermore, our results suggest that mycotoxincontaminated substrates which are otherwise deemed unsuitable for livestock consumption and therefore do not compete with commercial livestock feed, can be used as insect substrate without affecting growth and biomass provide economically interesting opportunities.

Acknowledgements

This study has been supported by the Netherlands Organisation for Scientific Research (NWO; NWA programme, InsectFeed project, NWA.1160.18.144) as well as the Horizon2020 project SUSINCHAIN under grant agreement No. 861976. Additional funding from the Netherlands Ministry of Agriculture, Nature and Food Quality under projects KB-33-001-045 and TKI BO-EU-2002 is acknowledged. We would like to thank Anna Dörper, Parth Shah and Yvonne Kortsmit for their assistance during sample collection, and Marcel Dicke for his constructive comments to the draft manuscript.

Supplementary information

Table S1
Instrumental MS/MS parameters of mycotoxins analysed in positive ionisation mode

	D±	01	03	DD	- FD	CE	CVD
Component	Rt (min)	Q1 (m/z)	Q3 (m/z)	DP (V)	EP (V)	CE (V)	CXP (V)
[13C ₁₇]-AFB ₁	4.70	330.1	301.1	40	10	33	16
	4.70	313.1	128.1	40	10	91	10
AFB ₁ (ql) AFB ₁ (qn)	4.70	313.1	285.2	40	10	33	16
	4.70	313.1		40	10	54	15
AFB ₁ (ql2)	4.40	315.1	241.0 259.2	40	10	43	18
AFB ₂ (ql)	4.40	315.1	239.2 287.2	40	10	43 37	18
AFB ₂ (qn)							
AFG ₁ (ql)	4.10	329.0	200.0	40	10	53	12
AFG ₁ (qn)	4.10	329.0	243.2	40	10	39 42	14
AFG ₂ (ql)	3.80	331.1	245.2	40 40	10 10	43 25	14
AFG ₂ (qn)	3.80	331.1	313.2	-	_	35 33	18
AFP ₁ (qn)	4.20	299.0	271.0	40	10	33	18
AFP ₁ (ql1)	4.20	299.0	114.9	40	10	71	12
AFP ₁ (ql2)	4.20	299.0	90.9	40	10	67 20	10
AFQ ₁ (qn)	3.70	329.1	310.8	40	10	29	16
AFQ ₁ (ql)	3.70	329.1	177.0	40	10	45	22
AFQ ₁ (ql2)	3.70	329.1	128.0	40	10	67	14
AFL (qn)	5.40	297.1	269.0	40	10	29	16
AFL (ql)	5.40	297.1	114.9	40	10	81	12
AFL (ql2)	5.40	297.1	141.0	40	10	65	14
AFM ₁ (qn)	3.84	328.9	272.9	40	10	33	18
AFM ₁ (ql)	3.84	328.9	229.0	40	10	55	16
[¹³ C ₃₄]-fB ₁	5.80	756.5	356.4	40	10	57	4
FB ₁ (ql)	5.80	722.5	352.3	40	10	55	12
FB ₁ (qn)	5.80	722.5	334.4	40	10	57	4
IS Caffeine ¹³ C pos	2.90	198.0	140.0	40	10	25	11
[¹³ C ₂₀]-OTA	6.70	424.2	250.0	40	10	33	16
OTA (ql)	6.70	404.0	102.0	40	10	91	14
OTA (qn)	6.70	404.0	239.0	40	10	33	16
OTB (ql)	6.00	370.1	186.9	40	10	47	12
OTB (qn)	6.00	370.1	204.9	40	10	29	14

qn: quantifier ions. ql: qualifier ions

Table S2 Instrumental MS/MS parameters of mycotoxins analysed in negative ionisation mode

Component	Rt	Q1	Q3	DP	EP	CE	CXP
Component	(min)	(m/z)	(m/z)	(V)	(V)	(V)	(V)
OTα (ql)	4.67	254.9	210.0	-30	-10	-22	-17
OΤα (ql2)	4.67	245.9	166.9	-30	-10	-34	-19
OTα (qn)	4.67	245.9	211.0	-30	-10	-22	-17
$[^{13}C_{18}]$ -ZEN	6.70	335.0	185.1	-175	-10	-32	-15
α-ZEL (ql)	6.45	319.2	130.0	-110	-10	-47	-20
α-ZEL (qn)	6.45	319.2	160.0	-110	-10	-41	-13
β-ZEL (ql)	6.00	319.3	130.0	-110	-10	-47	-20
β-ZEL (qn)	6.00	319.3	160.0	-110	-10	-41	-13
ZEN (ql)	6.70	317.1	131.1	-175	-10	-36	-11
ZEN (qn)	6.70	317.1	175.0	-175	-10	-32	-15

qn: quantifier ions. ql: qualifier ions

Table S3
Recovery per matrix (n=1 for substrate, larvae and residue), average recovery and within-lab reproducibility of the mycotoxin analyses in the BSFL and HFL experiment

Compound	[¹³ C ₁₇]- AFB ₁	AFB ₁	AFB ₂	AFG_1	AFG_2	AFP ₁	AFQ ₁	AFL	AFM_1
BSFL substrate	76%	79%	83%	69%	-	-	-	-	-
BSFL	80%	81%	82%	84%	85%	88%	84%	72%	86%
BSFL residue	82%	83%	84%	84%	88%	90%	91%	92%	86%
HFL substrate	71%	68%	69%	73%	84%	73%	80%	79%	86%
HFL	70%	99%	73%	75%	75%	84%	75%	28%	76%
HFL residue	87%	88%	88%	87%	86%	86%	88%	89%	87%
Average recovery *	78%	83%	80%	79%	84%	84%	84%	72%	84%
RSD _{wR} *	8%	12%	9%	9%	6%	8%	8%	36%	5%

Compound	[¹³ C ₃₄]- FB ₁	FB ₁	[¹³ C ₂₀]- OTA	ОТА	ОТВ	ΟΤα	[¹³ C ₁₈]- ZEN	ZEN	α-ZEL	β-ZEL
BSFL substrate	93%	88%	83%	85%	-	-	84%	81%	-	-
BSFL	95%	88%	74%	74%	74%	75%	88%	91%	-	86%
BSFL residue	106%	51%	88%	88%	86%	89%	92%	93%	-	92%
HFL substrate	99%	100%	92%	96%	77%	115%	88%	91%	-	78%
HFL	77%	73%	71%	74%	73%	56%	75%	75%	-	66%
HFL residue	111%	110%	90%	89%	89%	87%	99%	102%	-	90%
Average recovery *	97%	85%	83%	84%	80%	84%	88%	89%	-	82%
RSD _{wR} *	12%	24%	11%	10%	9%	26%	9%	11%	-	13%

^{*} these values are calculated as based on a variety of different matrices including two insect species.

Table S4 Method LOD and LOQ ($\mu g/kg$) per mycotoxin in the different matrices

BSFL	
------	--

Compound		AFB ₁	AFB ₂	AFG ₁	AFG ₂	AFP ₁	AFQ ₁	AFL	AFM ₁	FB ₁	ОТА	ΟΤα	ОТВ	ZEN	α-ZEL	β-ZEL
•	LOD	0.16	0.16	0.11	- -	-	- -	-	-	14.20	0.29	- -	-	7.72	-	- -
Substrate	LOQ	0.32	0.16	0.18	-	-	-	-	-	14.20	0.59	-	-	7.72	-	-
	LOD	0.15	0.16	0.09	0.15	0.45	0.31	0.55	0.31	14.20	0.34	1.47	0.74	6.87	5.00	5.81
Larvae	LOQ	0.31	0.16	0.15	0.59	1.00	1.05	1.83	1.02	14.20	0.68	4.40	1.49	6.87	10.00	11.63
n	LOD	0.15	0.16	0.09	0.14	0.44	0.29	0.43	0.31	24.51	0.28	1.24	0.64	6.72	5.00	5.43
Residue	LOQ	0.30	0.16	0.15	0.57	0.98	0.97	1.43	1.02	24.51	0.57	3.71	1.28	6.72	10.00	10.87
HFL																
Compound		AFB ₁	AFB ₂	AFG ₁	AFG ₂	AFP ₁	AFQ ₁	AFL	AFM ₁	FB ₁	OTA	ΟΤα	ОТВ	ZEN	α-ZEL	β-ZEL
Cultatuata	LOD	0.18	0.19	0.11	0.15	0.54	0.33	0.50	0.31	12.50	0.26	0.96	0.71	6.87	5.00	6.41
Substrate	LOQ	0.37	0.19	0.17	0.60	1.21	1.10	1.67	1.02	12.50	0.52	2.87	1.43	6.87	10.00	12.82
Lamia	LOD	0.13	0.18	0.11	0.17	0.47	0.35	1.41	0.35	17.12	0.34	1.96	0.75	8.33	5.00	7.58
Larvae	LOQ	0.25	0.18	0.17	0.67	1.05	1.17	4.71	1.16	17.12	0.68	5.89	1.51	8.33	10.00	15.15
Dasidua	LOD	0.14	0.15	0.09	0.15	0.46	0.30	0.44	0.30	11.36	0.28	1.26	0.62	6.13	5.00	5.56
Residue	LOQ	0.28	0.15	0.14	0.58	1.02	1.00	1.48	1.01	11.36	0.56	3.79	1.24	6.13	10.00	11.11

Table S5
Molecular weight of parent compounds and analysed metabolites for mass calculation purposes.

Compound	Molecular weight
	(g/mol)
AFB ₁	312.27
AFB ₂	314.29
AFL	314.29
AFM_1	328.27
AFP ₁	298.25
AFQ ₁	328.27
FB ₁	721.83
OTA	403.81
ZEN	318.36
ΟΤα	256.64
α-ZEL	320.38
OTB	369.37
β-ZEL	320.38

Table S6 Concentration ($\mu g/kg$) of the AFB₁ measured in the different replicates of the initial BSFL and HFL substrates for homogeneity testing

Treatments/	BSFL - AFB ₁	HFL - AFB ₁
Replicates	(μg/kg)	(μg/kg)
1	21.2	22.5
2	21.7	27.5
3	22.0	27.9
4	21.5	26.6
5	22.3	-
6	25.1	26.4
7		28.7
8		27.6
9		26.8
10		29.4
Average	22.3	27.0
SD	1.3	1.3
RSD	6%	7%

Table S7 Overview of the average contribution of AFB₁, FB₁, OTA and ZEN and their metabolites to the overall molar mass balance (%)

				La	Larvae					Residual material	material				
	substrates	Parent compou	punodwo	2	M1	_	M2	Parent compound	ent vund	M1	_	2	M2	Total	al
		(%)	SEM	(%)	SEM	(%)	SEM	(%)	SEM	(%)	SEM	(%)	SEM	(%)	SEM
	AFB ₁	0.1%	0.01%	0.4%	0.04%			47.7%	1.9%	13.5%	2.3%			61.6%	1.8%
L	FB_1	2.7%	1.2%					62.9%	2.9%					71.6%	6.2%
BSFL	OTA	0.1%	0.03%	0.002%	0.0002%			19.3%	4.5%	89.2%	3.2%	0.2%	0.005%	108.7%	1.9%
	ZEN	0.5%	0.04%	0.3%	0.04%	0.1%	0.02%	82.7%	2.9%	15.2%	4.8%	2.7%	%6.0	101.2%	6.5%
	AFB ₁							52.4%	3.4%					52.4%	3.4%
ī	FB_1							%8.09	7.0%					%8.09	7.0%
_	OTA	0.005%	0.005% 0.00002%					91.0%	0.7%	13.2%	0.5%	%9.0	0.02%	104.8%	0.4%
	ZEN					0.0004%	0.0004% 0.000004%	48.7%	1.2%	4.4%	1.3%	2.2%	%60.0	55.3%	2.2%
The n	The metabolite contributing to the mass-balance for AFB1 was M1: AFP1. For OTA these were M1: OTα and M2: OTB, and for ZEN were M1: α-ZEL and M2: β-ZEL. This table	ributing to	the mass-ba	lance for A	FB ₁ was M1.	: AFP ₁ . For C	JTA these were	9 M1: OTc	ι and M2	: OTB, ar	d for ZE	N were	//1: α-ZEL	and M2: β-ZEI	This table

shows the average contribution of the three replicates.

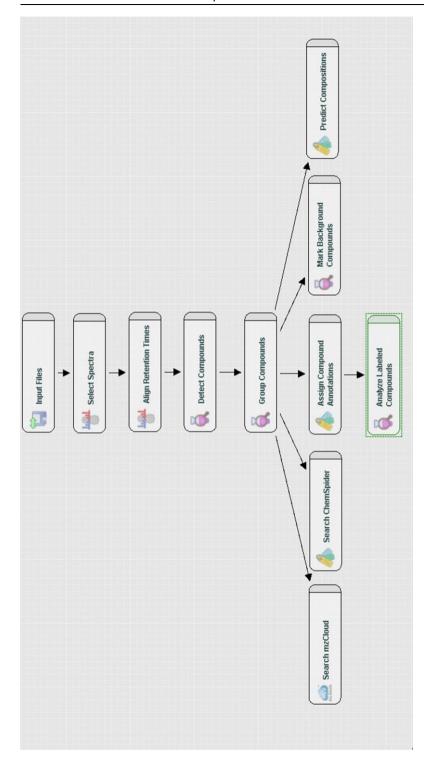


Figure S1 Compound DiscovererTM workflow

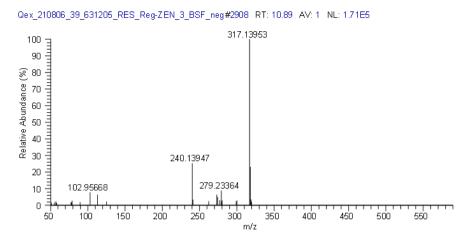


Figure S2a MS/MS spectrum of metabolite 1, a presumed ZEN metabolite with a molecular mass of 559 Da in the BSFL experiment. The relative abundance on (Y-axis), quantifies the amount of an ion produced in relation to the amount of the base peak (most abundant ion which is set as 100%)

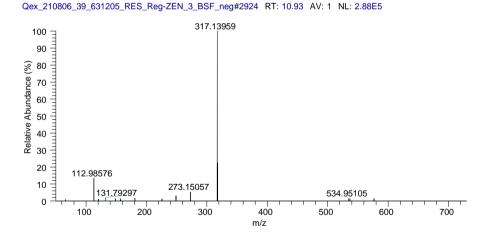


Figure S2b MS/MS spectrum of metabolite 2, presumed ZEN metabolite with a molecular mass of 698 Da in the BSFL experiment. The relative abundance on (Y-axis), quantifies the amount of an ion produced in relation to the amount of the base peak (most abundant ion which is set as 100%)

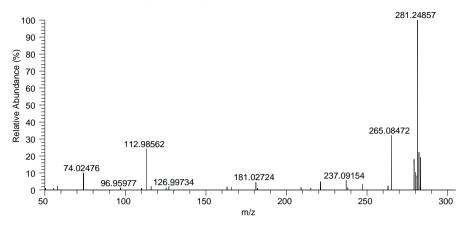


Figure S3a MS/MS spectrum of metabolite 3, a presumed ZEN metabolite with a molecular mass of 282 Da in the HFL experiment. The relative abundance on (Y-axis), quantifies the amount of an ion produced in relation to the amount of the base peak (most abundant ion which is set as 100%)

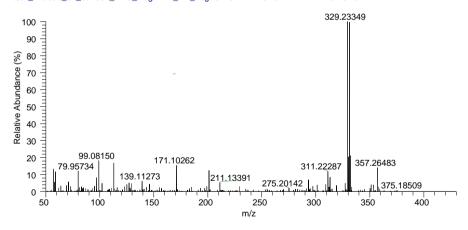


Figure S3b DIA (composite) spectrum of metabolite 4, a presumed ZEN metabolite with a molecular mass of 400 Da in the HFL experiment. This DIA spectrum shows all ions between 295 and 405 m/z at retention time 10.70 min. The relative abundance on (Y-axis), quantifies the amount of an ion produced in relation to the amount of the base peak (most abundant ion which is set as 100%).

Chapter 5

The role of larvae of black soldier fly and house fly and of feed substrate microbes in biotransformation of aflatoxin B₁

Kelly Niermans^{1,2}, Elise F. Hoek- van den Hil², H.J. (Ine) van der Fels-Klerx², Joop J.A. van Loon¹

¹Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; ²Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands

Abstract

Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B₁ (AFB₁) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB₁ degradation takes place, either enzymatic and/or nonenzymatic, but the identification of a missing fraction in the molar mass balance indicated that part of the initially present AFB1 could not be recovered. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. This study aimed to investigate whether biotransformation of AFB1 occurred and whether it is caused by insectenzymes and/or by microbial enzymes of MOs in the feed substrate. Sterile- and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL), and the AFB₁ concentration was recorded over time. We could not unravel whether nonenzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB₁ as well as in conversion of AFB₁ into AFP₁ and AFL, respectively. In contrast, HFL did not seem to contribute to AFB₁ degradation. The obtained results help in understanding the metabolism of aflatoxins by different insect species.

Introduction

Both the expected increase in the human population and the rise of the income levels will lead to a higher demand for food and nutrition, especially for animal proteins (UN 2015; Van Huis *et al.* 2013). Since the global area suitable for agricultural production is limited, the expected increase in animal protein production will likely be complemented with an increased environmental impact (Herrero *et al.* 2016). The increasing demand for alternative and sustainable proteins has led to the rise of insect farming. The emerging insect industry could contribute to food and feed security globally (Van Huis 2013).

A variety of insect larvae can be used to convert different organic side-streams into insect biomass for feed (Smetana *et al.* 2016). Larvae of the black soldier fly (BSFL; *Hermetia illucens* L.; Diptera: Stratiomyidae) and the housefly (HFL; *Musca domestica* L.; Diptera: Muscidae) are able to recycle these organic streams efficiently (Gold *et al.* 2018). However, organic side streams that could be of interest as a feed substrate for insect rearing could contain a variety of contaminants, among which mycotoxins. Mycotoxins are considered as an agriculturally relevant contaminant group affecting 60-80% of the food crops globally (Eskola *et al.* 2020). Mycotoxin contamination is not only associated with large economic losses and negative impacts on domestic and global trade, it also has a severe impact on the health of both animals and humans

(Eskola *et al.* 2020). Many different mycotoxins are known today (Berthiller *et al.* 2007), and from these aflatoxins have received most attention due to their presence and toxicity. Aflatoxins are secondary metabolites produced by fungal strains of the genus *Aspergillus* (Streit *et al.* 2012). Amongst the aflatoxins, aflatoxin B₁ (AFB₁) is most abundant in agricultural food crops (EFSA 2004). Due to its carcinogenic, teratogenic, mutagenic effects and immunosuppressive nature, maximum levels (ML) have been set for its presence in food (EC 2006c) and feed (EC 2002a) in Europe.

Multiple studies have examined the effects of AFB₁ exposure on a variety of insect species, among which BSFL (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 4*; *Chapter 7*; Meijer *et al.* 2019; Niermans *et al.* 2023b; Niermans *et al.* 2023c) and HFL (*Chapter 3*; *Chapter 4*; Niermans *et al.* 2023a; Niermans *et al.* 2023b). Most of these studies calculated a molar mass balance, and used this as a measurement for the fraction of the initially present parent toxic compound (or metabolites) in the substrate that had been recovered in the larvae and the residual material. In the studies using AFB₁-spiked substrates, the molar mass balance was incomplete, indicating a missing fraction that was not recovered. Interestingly, when performing a feeding study with BSFL and peanut press cake naturally contaminated with a mix of aflatoxins (AFB₁, AFB₂, AFG₁, AFG₂, AFM₁), the molar mass balance was close to being complete (*Chapter 7*; Niermans *et al.* 2023c). Furthermore, it is known that insects themselves possess the genetic machinery capable of metabolising mycotoxins (Berenbaum *et al.* 2021; *Chapter 2*; Niermans *et al.* 2021). However, thus far no study investigated the role of the substrate MOs versus the insect larvae in aflatoxin breakdown and metabolism.

In this study, we distinguish between enzymatic and non-enzymatic degradation. Enzymatic degradation is caused by the action of enzymes produced by living cells which causes a chemical reaction to happen resulting in the formation of metabolites. In non-enzymatic degradation, chemical reactions occur but enzymes are not involved. Enzymatic and non-enzymatic degradation of AFB₁ in the feed substrates for BSFL and HFL rearing has not been examined yet. However, multiple studies showed that biotransformation of AFB₁ after incubation in soil occurs (Accinelli *et al.* 2008; Angle and Wagner 1980; Juraschek *et al.* 2022), and it has been shown that biotransformation of AFB₁ in soil is mainly driven by soil specific microorganisms (MOs; Accinelli *et al.* 2008). Other studies have also shown the potential of (soil) MOs, especially bacteria, to enzymatically metabolise aflatoxins (Ji *et al.* 2016; Liu *et al.* 2022; Vanhoutte *et al.* 2016; Verheecke *et al.* 2016). The above mentioned studies clearly show that biotransformation of AFB₁ could take place in the insect substrate and that – in general –MOs are expected to play a role in this.

The aims of the current study were to I) investigate whether enzymatic and non-enzymatic degradation of AFB₁ in spiked feed substrates takes place, and to determine the role of II) the insect species BSFL and HFL, and III) the substrate-specific MOs (bacteria, fungi) in this process.

Materials and methods

Chemicals and standards

Mycotoxin standards were purchased from Romer Labs (Getzersdorf, Austria): AFB₁, aflatoxin B₂ (AFB₂), aflatoxin G₁ (AFG₁), aflatoxin G₂ (AFG₂), aflatoxin M₁ (AFM₁), and from Enzo Life Sciences (Brussels, Belgium): aflatoxicol (AFL) and from TRC (Toronto, ON, Canada): aflatoxin P₁ (AFP₁) and aflatoxin Q₁ (AFQ₁).

Insects

BSFL used in this study originated from the BSF colony of the Laboratory of Entomology, Wageningen University. Eggs were collected from the cardboard strips used as egg laying substrate, and larvae were reared on chicken feed (Kuikenopfokmeel, Kasper Faunafood, Woerden, the Netherlands) until seven days old. The colony is maintained in a controlled climate chamber (27°C, a relative humidity of 65% and a day/night rhythm of 16/8 h).

The HF eggs used in this study were taken from the HF colony reared at the Laboratory of Entomology, Wageningen University. This colony originates from the Faculty of Science and Engineering, University of Groningen. The HF rearing process was identical to that described in *Chapter 3* (Niermans *et al.* 2023a).

Spiked feed preparation

BSFL and HFL were exposed to a control feed substrate or a feed spiked with $20~\mu g/kg~AFB_1$. This selected concentration was based on the ML of AFB₁ allowed in all feed materials which is set in Directive 2002/32/EC (EC 2002a). Both feed substrate treatments were performed in quadruplicate. An overview of the included feed substrates can be found in Table 1.

To prepare the spiked feed substrate for BSFL, 1.9 mL of the AFB₁ spiking solution (in MeOH) was mixed with 618 mL water and 332 g chickenfeed (moisture content 65%; final concentration of 0.2% MeOH) to obtain a total of 950 mL spiked wet feed. The HFL spiked feed substrate was prepared by mixing 1.2 mL of the same spiking solution with 144 mL water, 216 mL Nipagin solution in water (final concentration: 0.9 mg/L; Merck, Darmstadt, Germany) and 240 g dry food mix (37% wheat bran, 56% wheat flour, 4% full fat milk powder (28.2 g fat/100 g) and 2% dry instant baker's yeast) to obtain a total of 600 mL spiked wet feed (moisture content 60%; final concentration of 0.2% MeOH). The control feed substrates were prepared in the same way, but without AFB₁, with MeOH in the same final concentration as added in the spiked feed substrates. In order to prepare the substrate for the sterilized treatment, the dry substrates for both the BSFL and the HFL were sterilized for 20 min at 121°C in a Vapour Line Lite Autoclave (VWR International, Radnor, Pennsylvania, US).

Table 1. Overview of experimental feed substrates

Species	Species Treatment code	With or without larvae	Type of matrix	Feed Re substrate	Replicates	Intended mycotoxin conc. (µg/kg ww)	Samples taken on day
	BSFC	With	Substrate	Control	4	0	1, 7, 9, 11, 13
	BSF+	With	Substrate	Spiked (AFB ₁)	4	20	1, 7, 9, 11, 13
BSFL	BSF-	Without	Substrate	Spiked (AFB ₁)	4	20	1, 3, 5, 7, 9, 11, 13
	BCEC	+110d+!/W	Sterile	Caiked (AEB.)	'n	C.	7 5 0 11 12
	ה ה	William	substrate	Spined (Ar b1)	n	07	1, 0, 9, 11, 13
	HFC	With	Substrate	Control	4	0	1, 5, 7, 9
	Ŧ	With	Substrate	Spiked (AFB ₁)	4	20	1, 5, 7, 9
HFL	품	Without	Substrate	Spiked (AFB ₁)	4	20	1, 3, 5, 7, 9
	ПЕС	+1104+1/4/	Sterile	Caiked (AEB.)	'n	OC.	7 2 7 0
	0 = -	ALLIOAL	substrate	opined (Al D1)	ก	07	L, J, J, I, J

The BSFL substrate underwent the sterilization procedure twice, as pilot experiments showed that autoclaving once did not result in a sterile substrate. The same spiking procedure applied for the sterilized and non-sterilized treatments, however, instead of tap water, autoclaved MilliQ water was used. The wet feed substrates were mixed manually for 15 min.

In order to determine homogeneity of the non-sterile spiked feed, eight samples were taken. Homogeneity was confirmed when the measured concentrations (relative standard deviation of the replicates) in the eight samples differed \leq 20% from each other. Four samples taken from the control feed were analysed to confirm the absence of aflatoxins in these feed substrates.

Experimental set-up

The spiked feed substrates were either incubated with the presence of BSFL or HFL (Table 1; BSF+ or HF+) or without larvae (Table 1; BSF- or HF-). Spiked sterilised feed substrates were prepared in order to study the effect of non-enzymatic degradation of AFB₁. Spiked feed substrates with- and without insect larvae allow a distinction between the contribution of biotransformation caused by the insect larvae or substrate-specific MOs, respectively.

For the treatments in which larvae were feeding on the substrate, 150 seven-days-old BSFL, with an individual average weight of 22.41 (± 0.19) mg were placed on 100 g of either the wet controlor wet AFB₁-spiked feed in a 480 mL rearing cup (BugDorm insect pots purchased from MegaView Science Co., Ltd., Taichung, Taiwan). The rearing cups were placed in a climate room at 27°C, relative humidity of 65% and a day/night rhythm of 12/12 h for seven days. 0.012 g HF eggs (corresponding to 200 eggs) were placed on 60 g of either the wet control- or wet spiked feed in a 480 mL rearing cup (BugDorm insect pots purchased from MegaView Science Co., Ltd., Taichung, Taiwan). The rearing cups were placed in a climate cell at 25°C, relative humidity of 65% and a day/night rhythm of 12/12 h for five days. At day seven, all BSFL were separated from the residual material (a mixture of left-over substrate and frass), washed, dried, weighed and transferred to clean (non-spiked) feed on the seventh day of exposure. This procedure was repeated on day eight of exposure after which the larvae were stored at -20°C until further analyses. The same procedure applied for HFL, however, here exposure ended after five days and larvae were fed on clean feed for ± 5.5 hours. For the feed substrates without larvae, samples of the residual material were taken at multiple timepoints (at least five) during the experiment. The same was done for the treatments with larvae, however, during the time that the larvae were feeding on the substrate no samples were taken in order to not interfere with the experiment.

The experimental set-up of the sterile substrate was adjusted slightly. For both the BSFL and HFL, only one batch of sterile spiked feed was prepared after which 5.8 (± 1.8) g was divided over fifteen tubes (sterile 50 mL centrifuge tubes, Greiner Bio-One GmbH, Alphen aan den Rijn, Netherlands). The caps of the tubes were sealed with Parafilm* and incubated under the same

conditions as mentioned previously. At each of the five timepoints (see Table 1), three tubes were collected, tested for sterility (see next section) and stored at -20°C until LC-MS/MS analysis.

Confirmation of sterility

Sterility of the substrate and residual samples collected for LC-MS/MS analysis was confirmed for each replicate at all sample collection days (see Table 1 for the exact days). Sterility was confirmed by plating sample extract on Luria-Bertani (LB) agar plates (Naveed et al. 2014; Zhang et al. 2011) and Sabouraud 4% Dextrose Agar (SDA; Millipore; Merck KGaA, Darmstadt, Germany (Kusari et al. 2012). The LB agar consisted Bacto™ Tryptone (final concentration 10 g/L; ThermoFisher Scientific Inc., Waltham, USA), Bacto™ Yeast Extract (final concentration 5 g/L; ThermoFisher Scientific Inc., Waltham, USA), NaCl (final concentration 5 g/L; Sigma-Aldrich, Merck KGaA, Darmstadt, Germany), Difco™ Agar (final concentration 15 g/L; Becton, Dickinson and Company, Franklin Lakes, USA) and MilliQ water. The SDA agar was prepared by mixing SDA (final concentration 65 g/L) and MilliQ water. Both were sterilized for 20 min at 121°C in a Vapour Line Lite Autoclave (VWR International, Radnor, Pennsylvania, US). After the agar cooled down to 60°C, the plates were poured and stored at 4°C until further use. One g of each of the collected samples at all timepoints was dissolved in two mL sterile PBS, vortexed for 30 s and set aside for 10 min to let the sediment settle. One-hundred μL of supernatant was pipetted on an agar plate (in duplo), spread with L-shaped sterile spreaders (Heathrow Scientific, Vernon Hills, US) on the agar plates. LB plates were incubated aerobically for 24 h at 27°C (Feizi et al. 2023) while the SDA plates were incubated aerobically at 25°C and were checked after 72 h and after 120 h (Fasuan et al. 2022). When the LB agar plates and SDA were free of colonies after incubation, samples were considered sterile (photos can be found in Figures S1 and S2).

Aflatoxin analyses

The extraction procedure for the substrate and residual material was performed as described by (Camenzuli *et al.* 2018). Extraction of the larval samples was performed with 0.5 g sample material, thus the extraction procedure *e.g.* volume of water (1.5 mL) and extraction solvent (2 mL) and magnesium sulphate (0.8 g) were adjusted accordingly. Aflatoxin concentrations in the samples were quantified by means of standard addition, therefore, each extract was prepared with- and without the addition of a standard mix containing eight aflatoxins (AFB₁, AFB₂, AFG₁, AFG₂, AFL, AFP₁, AFM₁ and AFQ₁). Two-hundred μ L sample extract was mixed with either 190 μ L water and 10 μ L of the standard mix or only 200 μ L water in a syringeless PTFE filter file (Mini-UniPrep, Whatman, Marlborough, MA). The files were capped, vortexed and placed in the refrigerator for 30 min after which the vials were closed and stored at 4°C until LC-MS/MS analyses.

The LC-MS/MS system consisted of a Waters Acquity injection and pump system (Waters, Milford, MA) and an AB Sciex QTRAP 6500 triple guad system equipped with an electrospray

ionization (ESI) source. LC-MS/MS analyses were performed exactly as described in *Chapter 7* (Niermans *et al.* 2023c). Aflatoxin analyses were also solely performed in positive ESI mode (instrumental MS/MS parameters of the mycotoxins analysed are shown in Table S1). LC separation was performed with an Acquity UPLC HSS T3 1.8 µm 100x2.1 mm column (Waters, Milford, MA).

Fungal identification

Identification of the present fungal species was done via MALDI-ToF analysis (Bruker MALDI Biotyper microflex LT-SH) after which the obtained spectra were matched against the specific MBT Filamentous Fungi module (MBT Fil. Fungi Library V5.0) and the regular MBT Compass Library Revision K (2022) inc. SR library: BTyp2.0Sec.Library 1.0.

Data analysis

LC-MS/MS data were analysed with SCIEX OS-MQ v2.1.6 software (Sciex, Framingham, MA). Analysed concentrations were corrected for recovery percentages of analysed aflatoxins per matrix (Table S2). Detected concentrations from the LC-MS/MS analyses were adjusted for the wet weight measured for each of the treatments. Concentrations were calculated by dividing the peak area of the sample by the (area of the sample with standard addition minus the area of the sample) and multiplied by the addition level of the respective mycotoxin. Kruskal-Wallis tests (significance level α : 0.05) were performed in SPSS (IBM* SPSS* Statistics 28, New York, USA) to determine whether the AFB₁ concentration in the residue samples per timepoint differed significantly between treatments. Significance was calculated for the two insect species separately. All figures were made in GraphPad Prism v5.02. In the current study, statistical analyses were performed using the non-parametric Kruskal-Wallis test. This means that significance of a possible interaction between the AFB₁ concentration over treatment and time was not tested.

Molar mass balance calculations were performed for all AFB₁-spiked feed substrates. Detected concentrations from the LC-MS/MS analyses were adjusted for the wet weight measured for each of the treatments. Mycotoxin (metabolite) concentrations below the LOQ were set to zero. The concentrations (µg/kg) of the mycotoxins determined in larval biomass and mass of residual substrate by LC-MS/MS analysis were multiplied by the total wet weight of larval biomass or residual substrate mass, respectively, to yield the total amount of mycotoxin recovered, including the amounts of metabolites analysed. The molar mass balance was calculated by dividing the sum of the mycotoxin (metabolite) mass detected in the larvae and residual material by the mycotoxin molar mass, including that of metabolites quantified, present in the initial substrate on a wet weight basis. The molar mass balance was calculated for the residual material on either day seven (BSFL) or day five (HFL).

Results

Control feed substrates and sample homogeneity

None of the mycotoxins included in the analyses were detected (< LOQ) in the control feed substrates. For all feed substrates, the analysed corrected concentrations were within an acceptable deviation range of \pm 20%, confirming the homogeneity of the spiked substances in the substrate (Table 2, Appendix G).

Aflatoxin metabolism

At day seven, samples of the BSF experiment were collected and a mass balance was calculated. The total aflatoxin (including AFB₁, AFL, AFP₁, AFM₁, AFQ₁) concentration in the BSFL was < LOQ, and the molar mass balance was therefore completely based on the aflatoxin concentration in the residual material. The total calculated molar mass balance in the BSFL experiment, with larvae (BSF+) was 50 \pm 2.6% of which the aflatoxin metabolite AFP₁ contributed 11 \pm 1.8%. The calculated molar mass balance for the treatment without BSFL (BSF-) was comparable as for the treatment with BSFL (60 \pm 8.4%), and here not AFP₁, but AFL contributed (5 \pm 2.5%) only to the overall mass balance (Figure 1). The molar mass balance for the sterile feed substrate (BSFS) was 73 \pm 11.9%, and no AFB₁ metabolites were detected. An overview of the average contribution of the aflatoxins to the overall molar mass balance can be found in Table S5. The molar mass balance was significantly different (P < 0.05) when BSFL were present in the substrate (BSF+) as compared to the sterile substrate (BSFS).

Table 2. Overview of the analysed AFB₁ concentration in the spiked feed substrates (mean \pm standard deviation) at the start (day 1) of the experiment

Treatment code	BSFC	BSF+	BSF-	BSFS	HFC	HF+	HF-	HFS
AFB ₁ concentration	<	20.2 ±	19.2 ±	18.5 ±	<	22.8 ±	22.2 ±	24.6 ±
(μg/kg ww)	LOQ	1.1	0.7	0.9	LOQ	2.3	1.2	3.3

Individual measurements for the replicates (n=4 for BSFC, BSF+, BSF-, HFC, HF+, HF-; n=3 for BSFS and HFS) can be found in Table S3. ww: wet weight; < LOQ: below limit of quantification. Table with overview of LODs and LOQ per respective matrix can be found in Table S4.

Data from the HFL experiment were collected on day five. The total aflatoxin concentration in the HFL was < LOQ. Additionally, none of the included AFB₁ metabolites contributed to the molar mass balance in the HFL experiment. Therefore, the molar mass balance was completely based on the recovery of AFB₁ in the residual material as compared to the concentration spiked in the feed substrate. The average calculated molar mass balance in the HFL experiment was similar for the treatments with $(64 \pm 3.5\%)$ and without $(69 \pm 6.2\%)$ larvae (Figure 1). The molar mass

balance for the sterile feed substrate was $78 \pm 8.4\%$, and again solely based on AFB₁ itself. Similar to what was observed in the BSFL experiment, the molar mass balance was significantly less complete (P < 0.05) when HFL (HF+) were present in the substrate as compared to the sterile feed substrate (HFS).

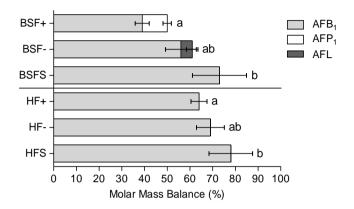


Figure 1. Molar mass balance of AFB₁ for BSFL and HFL fed on a AFB₁ spiked feed substrate with larvae (BSF+, HF+), for the spiked feed substrates on which no larvae had grown (BSF-, HF-) and for the sterile feed substrate (BSFS, HFS). Error bars represent the SD as a measure of variability between the replicates. Significance was tested separately for BSF or HF. Treatments with different letters differ significantly (Kruskal-Wallis, P = < 0.05).

Enzymatic vs. non- enzymatic degradation of AFB₁

The AFB $_1$ concentration in the BSFL feed substrates decreased over time finally resulting in a decrease of 76 ± 2% and 54 ± 5% for the non-sterile feed substrates with- and without BSFL, respectively, on the last day of the experiment (day 13). In the sterile feed substrate (BSFS), the AFB $_1$ concentration decreased with 24 ± 7% by the end of the experimental period. A significant decrease (P < 0.05) in AFB $_1$ concentration in the sterile feed substrate (BSFS) only occurred between the start of the experiment and day 5, afterwards the AFB $_1$ concentration remained unchanged until the end of the experiment (P > 0.05; Figure S3). The presence of BSFL in the feed substrate resulted in a lower AFB $_1$ concentration as compared to that in the sterile feed substrate (BSFS) from day seven, and in feed substrates without BSFL (BSF-) from day nine onwards (P < 0.05; Figure 2, Figure S4). The AFB $_1$ metabolite AFP $_1$ was formed in the BSF+ treatment and the absolute amount (µg) of AFP $_1$ – which was first found on day seven - decreased during the days that followed (Table 3).

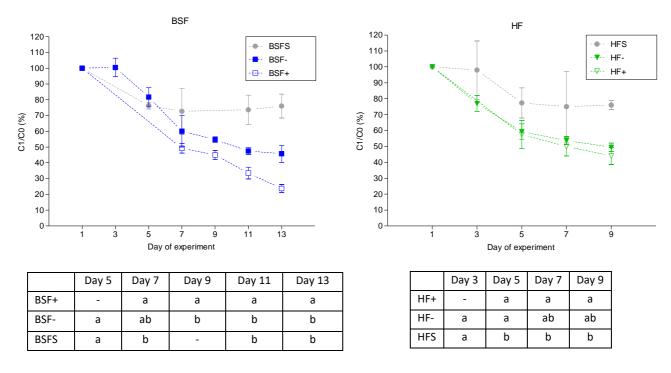


Figure 2. Percentage of total aflatoxin concentration (mean \pm SD) over time as compared to the starting concentration (Day one; 100%) in the spiked feed substrate with larvae (BSF+ or HF+), the spiked feed substrates on which no larvae had grown (BSF-, HF-) and the sterilized feed substrate (BSFS, HFS). Larvae were removed from the feed substrate on either day seven (BSFL) or day five (HFL). A complete overview of the percentual decrease of AFB₁ for all feed substrates can be found in Table S6. Significance was tested separately for BSF and HF, and was done by comparing the treatments on each day. Treatments with different letters differ significantly (Kruskal-Wallis, P = < 0.05).

As the BSFL were removed from the residual material on day seven this could indicate that conversion of AFB₁ into AFP₁ stopped when the larvae were removed from the feed substrate. In the treatment without BSFL no AFP₁, but AFL was present from day seven onwards.

Table 3. Average and standard deviation of absolute amount (μg) of total aflatoxins, AFB₁, AFP₁ and AFL over time in the spiked feed substrate with BSFL and for the spiked feed substrates on which no larvae had grown

		Day 1	Day 7	Day 9	Day 11	Day 13
BSF+	AFB ₁	2.03 ± 0.11	0.78 ± 0.06	0.72 ± 0.04	0.54 ± 0.05	0.38 ± 0.04
DOFT	AFP ₁	< LOQ	0.21 ± 0.04	0.20 ± 0.05	0.13 ± 0.02	0.10 ± 0.01
BSF-	AFB ₁	1.92 ± 0.07	1.07 ± 0.17	0.98 ± 0.09	0.84 ± 0.03	0.81 ± 0.12
	AFL	<l 0q<="" td=""><td>0.08 ± 0.06</td><td>0.07 ± 0.05</td><td>0.07 ± 0.05</td><td>0.07 ± 0.05</td></l>	0.08 ± 0.06	0.07 ± 0.05	0.07 ± 0.05	0.07 ± 0.05

< LOQ: below limit of quantification. Table with overview of LODs and LOQ per respective matrix can be found in Table S4.

The AFB $_1$ concentration in the HFL feed substrates changed over time finally resulting in a decrease of 56 ± 5% and 51 ± 2% on day nine for the non-sterile feed substrates with- and without HFL, respectively. In the sterile feed substrate (HFS) the AFB $_1$ concentration decreased with 24 ± 3% by the end of the experimental period (day nine). The presence of HFL did not affect the time course of AFB $_1$ concentration (P > 0.05; all days) as compared to the non-sterile feed substrate without HF (HF-; Table 1, Figure S4).

Discussion

This study investigated whether enzymatic and/or non-enzymatic degradation of AFB₁ in spiked feed substrates takes place, and looked into the role of the larvae of two insect species, BSF and HF, and substrate-specific MOs (bacteria, fungi) in this process. In order to do so, we calculated a molar mass balance and tracked metabolism and degradation of AFB₁ over time in sterilised feed substrates and in non-sterilised feed substrates with or without larvae over time. In the current study no distinction can be made between the role of the insect metabolic systems and their gut MOs as only intact feeding insects were used. Therefore, the current study considers the insect and their gut MOs as inseparable entities, namely the insect system.

The calculated molar mass balance was not different for the treatments with BSFL (BSF+) and without (BSF). Around half of the initially present AFB₁, and a clear contribution of AFP₁ was found when calculating the molar mass balance in the BSF+ experiment. Total recovery of AFB₁ was slightly higher in *Chapter 4* (Niermans *et al.* 2023b), but the contribution of AFP₁ was similar. As AFP₁ was not formed in the treatment without BSFL (BSF-), we conclude that the BSFL caused its formation. Total recovery of aflatoxin was much lower in other studies (Bosch *et al.* 2017; Camenzuli *et al.* 2018) as compared to the current study. In the study of Camenzuli *et al.* (2018)

the concentration of AFP₁ was below the LOQ in the larvae and could not be determined in the residual material due to matrix interferences. In the study of Bosch *et al.* (2017) AFP₁ was not analysed, so no comparison between the AFP₁ contribution to the molar mass balance in the current study and those studies can be made. In the above two referred studies, BSFL were exposed to the AFB₁-spiked feed substrate for ten days, whereas in *Chapter 4* (Niermans *et al.* 2023b) and the current study, exposure lasted for seven days. Based on the collected data, it can be concluded that a longer exposure time to AFB₁ results in a higher fraction that is enzymatically metabolised by the larvae as well as the substrate MOs and, therefore, a more incomplete molar mass balance. The average calculated molar mass balance in the HFL experiment was similar for both treatments (with- and without larvae).

In the current study, the concentration of AFB₁ in both BSFL and HFL treatments (with- and without larvae) decreased over time. Metabolism of AFB₁ was more efficient in the presence of larval- and substrate MO-enzymes (BSF+) as compared to the substrate MOs alone (BSF-) from day nine onwards. AFB₁ was differently metabolised in treatments with- (AFP₁) and without BSFL (AFL), which indicated that both BSFL as well as substrate-inhabiting MOs seem to play a role in AFB₁ metabolism. However, for HFL, the absence of aflatoxin metabolites in the residual material, and the fact that the percentual decrease of AFB₁ over time was not affected by the presence of HFL in the feed substrates indicate that the HFL themselves do not have a role in AFB₁ metabolism.

In general, it can be stated that the substrate is the main determinant of the BSF larval gut bacterial community (Schreven et al. 2022). In addition, the larvae also alter the composition of the substrate bacterial community over time by inhibiting certain bacteria, changing the population sizes of resident bacteria, and by introducing gut bacteria into the substrate (Schreven et al. 2021). Schreven et al. (2022) showed that the presence of BSFL in chicken feed, used as a substrate for BSFL rearing, caused a change in the microbial composition of the substrate. While the chickenfeed was rich in Curtobacterium and Pantoea at the start of the study, Pediococcus, Lactobacillus, and Weissella were more dominant after five days of incubation with BSFL (Schreven et al. 2022). As chickenfeed was also used as a substrate in the current study, we assume that these shifts in MO community took place in the experiments reported here. We therefore assume that the treatment 'BSF-' did not trigger the same change in MO composition of the substrate as expected in the 'BSF+' treatment and might therefore have resulted in a lower degree of biotransformation by substrate MOs (P < 0.05; from day nine onwards) as compared to the treatments with BSFL. As the BSF larvae were removed from their feed substrate (BSF+) on day seven, this hypothesised shift in MO community in the feed substrate before day seven is likely responsible for the observed difference in the biotransformation of AFB₁ as compared to the BSF- and BSFS treatments from day nine onwards. The 'BSF-' treatment, however, clearly indicated the role of substrate-inhabiting MOs as AFL was

formed. Microorganisms, especially bacteria, have been studied for their potential to either metabolise mycotoxins or reduce their bioavailability (Abbès *et al.* 2013; Ben Taheur *et al.* 2019; Moretti *et al.* 2018; Peltonen *et al.* 2001; Topcu *et al.* 2010; Verheecke *et al.* 2016). For example, inoculation of 0.24 mg/kg AFB₁ with *L. plantarum PTCC* 1058 (37°C, 4-7 days, 9.10° CFU/mL) resulted in an AFB₁ reduction efficacy of 77% in corn (Verheecke *et al.* 2016). Additionally, Peltonen *et al.* (2001) examined the AFB₁ binding potential of twelve *Lactobacillus* strains and found that AFB₁ was rapidly bound (17.3 to 59.7%) by the respective bacteria (Peltonen *et al.* 2001). Authors hypothesised that AFB₁ can bind to the peptidoglycans and polysaccharides in the cell wall of lactic acid bacteria (Ben Taheur *et al.* 2019; Topcu *et al.* 2010). When AFB₁ is bound to the cell wall, the efficiency of its extraction can be influenced. It has, for example, been demonstrated that the extraction efficiency of AFB₁, when bound to *L. rhamnosus*, was dependent on the various conditions of the extraction method used, including the extraction solvent, pH, and incubation temperature, among others (Haskard *et al.* 2001).

Previous (vermicomposting) studies with HFL showed the potential of this insect species to alter the abundance and structure of the bacterial community in the feed substrate (Li *et al.* 2019; Zhang *et al.* 2012). However, in the current study no difference in AFB₁ reduction was observed for the HFL treatments. Schreven *et al.* (2022) showed that the impact of BSFL on microbial composition of the substrate is substrate-dependent and that bacterial communities in larvae and substrates can differ in composition depending on the feed substrate (Schreven *et al.* 2022). The use of the different feed substrates therefore result in different substrate-inhabiting and insect gut-associated MOs and possibly different AFB₁ metabolic pathways. Though studied for BSFL, this might also be applicable for HFL.

In the current study, AFB₁ enzymatic and non-enzymatic degradation was higher in the non-sterile substrate with insect larvae (BSF+, HF+) as compared to the non-sterile substrate without insect larvae (BSF-) and the sterile substrate (BSFS, HFS) on the final day of the experiment. The AFB₁ concentration in the sterile feed substrates (BSFS, HFS) was around 24% lower at the end of the experiment as compared to the starting concentration, which seems to indicate that non-enzymatic degradation took place in the sterile substrates. Aflatoxins are known to be photosensitive, however, their non-enzymatic degradation efficiency depends on UV intensity (Liu *et al.* 2010; Stanley *et al.* 2020). During the incubation step in the experiment, samples were not exposed to daylight and the UV-intensity of the fluorescent tubes present in the incubator was negligible. We therefore assume that, in the current experiment, UV exposure did not play a role in the non-enzymatic degradation of AFB₁. Furthermore, we cannot exclude that the AFB₁ which was spiked to the feed substrate bound to *e.g.* the matrix of plant DNA, proteins and other (macro)molecules present in the feeding substrates during incubation. Resulting from this, extraction of AFB₁ in the residual material may have been incomplete with the extraction method used. This unextracted AFB₁ could account for a part of the missing fraction in the molar

mass balance. Furthermore, we cannot exclude that conjugated metabolites were formed during the experiment. The used extraction method might not be optimal for extracting AFB $_1$ metabolites conjugated with e.g. glutathione. Addition of a hydrolysis step or enzymatic treatment to liberate bound AFB $_1$ and/or conjugated metabolites during extraction, and/or analyses of the water phase obtained from the QuEChERS partitioning step might be essential. Additionally, possible degradation of AFB $_1$ - an alteration of the molecular structure which includes metabolization and mineralization (complete decomposition into CO $_2$) - over time could explain this difference.

In the current study, sterile BSFL and HFL substrates were prepared. However, even though the BSFL substrate was autoclaved (20 min at 121°C) twice, growth of fungal colonies were still observed in the LB- and SDA agar plates. We attempted to identify the present fungal species via MALDI-ToF analysis, however, no match could be found using the available database. Fungal growth was not observed in all replicates collected on a day and neither on all days of the experiment. As the AFB₁ concentration did not differ much between replicates (with and without fungal growth), and because the remaining percentage of AFB₁ did not significantly differ between day seven, eleven and thirteen in the BSFL experiment we believe that this provides enough evidence that the presence of the fungal species did not have a role in AFB₁ breakdown in the current study.

Other studies have also shown the potential of MOs for biotransformation of other mycotoxins e.g. fumonisin B_1 (Liu et al. 2022), deoxynivalenol (Ji et al. 2016; Liu et al. 2022), and zearalenone (Ji et al. 2016; Król et al. 2018; Liu et al. 2022; Yi et al. 2011). As the current study only focused on AFB₁, we advise to perform a similar study in which the role of the insect larvae and the substrate-specific MOs and their potential mycotoxin degrading capacities are investigated for other mycotoxins.

Overall, the current study showed that both the BSFL system and substrate-specific MOs play a role in the biotransformation of AFB₁ as well as in conversion of AFB₁ into AFP₁ and AFL, respectively, whereas the HFL system did not seem to be involved. Different AFB₁ metabolism/degradation patterns can be expected for different feed substrates and/or insect species. To get a complete picture of AFB₁ enzymatic and non-enzymatic degradation in insect feed substrates, spiking with isotopically labelled standards and tracking the formation of labelled CO₂ is advised. Additionally, investigation of enzymatic and non-enzymatic degradation of AFB₁ and the role of both substrate specific MOs and insects in naturally contaminated materials might provide valuable insights. Furthermore, examination of the extraction efficiency of AFB₁ bound to the cell wall of substrate MOs, plant-derived matrix, and conjugated metabolites with an optimized extraction method might be essential. In conclusion, this study showed that substrate specific MOs as well as the BSFL play a role in enzymatic degradation of

AFB₁ while occurrence of non-enzymatic degradation of AFB₁ in the feed substrates cannot be confirmed. HFL themselves do not have a role in AFB₁ metabolism.

Acknowledgments

This study has been supported by the Netherlands Organisation for Scientific Research (NWO; NWA programme, InsectFeed project, NWA.1160.18.144). Additional funding from the Netherlands Ministry of Agriculture, Nature and Food Quality under projects KB-33-001-045 and TKI BO-EU-2002 is acknowledged. We would like to thank Geert Stoopen, Menno van der Voort, Denise van de Kamer and Karlijn Koerts for sharing their advice, and Océane Lemartinel for assisting with the experimental work.

Supplementary materials

Table S1
Instrumental MS/MS parameters of mycotoxins analysed in positive ionisation mode

Component	Rt	Q1	Q3	DP	EP	CE	CXP
Component	(min)	(m/z)	(m/z)	(V)	(V)	(V)	(V)
AFB ₁ (qI)	4.70	313.1	128.1	40	10	91	10
AFB ₁ (qn)	4.70	313.1	285.2	40	10	33	16
AFB ₁ (ql2)	4.70	313.1	241.0	40	10	54	15
AFB_2 (qI)	4.40	315.1	259.2	40	10	43	18
AFB ₂ (qn)	4.40	315.1	287.2	40	10	37	18
AFG₁ (qI)	4.10	329.0	200.0	40	10	53	12
AFG₁ (qn)	4.10	329.0	243.2	40	10	39	14
AFG ₂ (ql)	3.80	331.1	245.2	40	10	43	14
AFG₂ (qn)	3.80	331.1	313.2	40	10	35	18
AFL (qn)	5.40	297.1	269.0	40	10	29	16
AFL (ql)	5.40	297.1	114.9	40	10	81	12
AFL (ql2)	5.40	297.1	141.0	40	10	65	14
AFP ₁ (qn)	4.20	299.0	271.0	40	10	33	18
AFP ₁ (ql1)	4.20	299.0	114.9	40	10	71	12
AFP ₁ (ql2)	4.20	299.0	90.9	40	10	67	10
AFM₁ (qn)	3.84	328.9	272.9	40	10	33	18
AFM₁ (ql)	3.84	328.9	229.0	40	10	55	16
AFQ ₁ (qn)	3.70	329.1	310.8	40	10	29	16
AFQ_1 (qI)	3.70	329.1	177.0	40	10	45	22
AFQ_1 (ql2)	3.70	329.1	128.0	40	10	67	14

qn: quantifier ions. ql: qualifier ions

Table S2
Recovery of the mycotoxins in the different matrices (substrate, residue) analysed

Compound	AFB_1	AFB_2	AFG_1	AFG_2	AFL	AFP_1	AFM_1	AFQ_1
BSFL substrate	94%	100%	99%	106%	104%	94%	103%	103%
BSFL residue	81%	81%	88%	86%	90%	89%	73%	76%
HFL substrate	81%	83%	81%	67%	87%	76%	90%	86%
HFL residue	86%	86%	92%	110%	97%	78%	94%	162%

Table S3 Overview of AFB₁ concentration ($\mu g/kg$) in the experimental feed substrates

Compound	BSFL feed substrate	HFL feed substrate
Control (1)	< LOQ	< LOQ
Control (2)	< LOQ	< LOQ
Control (3)	< LOQ	< LOQ
Control (4)	< LOQ	< LOQ
AFB ₁ (1)	21.8	19.5
AFB ₁ (2)	26.1	20.1
AFB ₁ (3)	22.5	19.6
AFB ₁ (4)	20.8	21.8
AFB ₁ (5)	23.9	19.3
AFB ₁ (6)	22.3	20.2
AFB ₁ (7)	21.4	18.7
AFB ₁ (8)	21.6	18.5
AFB ₁ sterile (1)	19.5	24.8
AFB ₁ sterile (2)	18.4	20.7
AFB ₁ sterile (3)	17.6	26.9

The substrate was also analysed for the presence of the aflatoxins B_2 , G_1 , G_2 , AFL, P_1 , M_1 and Q_1 but none of them were detected. < LOQ: below limit of quantification

Table S4

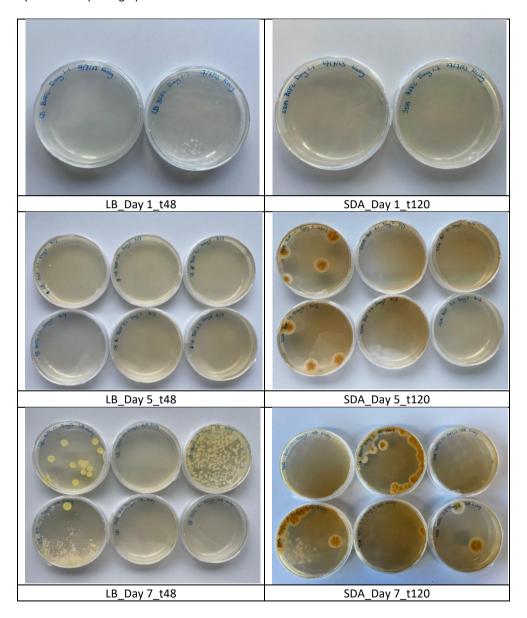
Overview of the limit of quantification (LOQ) (ng/mL) per aflatoxin in the different matrices

Compound	AFB ₁	AFL	AFP ₁	AFM ₁	AFQ ₁
Substrate	< 0.2376	1.435	0.989	0.889	0.917
Residue	< 0.2376	1.082	0.688	0.822	0.946

Overview of the mean contribution of the aflatoxins to the overall molar mass balance (%)

Troomtroot	AFB ₁		AFL		AFP ₁	1	AFM ₁	1	AFQ ₁	ជ
וובמרווובוורי	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
BSF+	38.5%	1.5%	< L0Q		11.1%	1.8%	< LOQ		< L0Q	
BSF-	25.5%	3.4%	4.6%	1.3%	<100		< LOQ		< L0Q	
BSFS	72.6%	%6.9	< L0Q		< 100		< LOQ		< L0Q	
HF+	64.5%	1.8%	< 100		< 100		< 100		< L0Q	
H-	%6.89	3.1%	< L0Q		< 100		< LOQ		< L0Q	
HFS	78.1%	4.8%	< LOQ		< L0Q		< LOQ		< L0Q	

This table shows the average contribution of either three (BSFS, HFS) or four replicates (SF+, BSF-, HF+, HF-). < LOQ: below limit of quantification


Overview of the mean decrease (%) of the total aflatoxin concentration in the different treatments

	Day 3	3	Day 5	10	Day 7	7	Day 9	6	Day 11	[1]	Day 13	₈
וובמרווובוורא	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
BSF+					49%	3%	45%	3%	34%	4%	24%	2%
BSF-	101%	%9	82%	%9	%09	10%	22%	7%	47%	7%	46%	2%
BSFS			77%	7%	73%	15%			74%	%6	%9/	2%
HF+			28%	%6	20%	%9	44%	2%				
HF-	77%	2%	29%	2%	24%	3%	49%	7%				
HFS	%86	18%	78%	%6	75%	22%	%92	3%				

This table shows the average contribution of either three (BSFS, HFS) or four replicates (BSF+, BSF-, HF+, HF-).

Figure S1

Pictures of Luria-Bertani (LB) agar plates and Sabouraud 4% dextrose agar (SDA) plates obtained during the BSFL experiment. Microbial growth in the substrate/residual material was investigated by plating sample extracts on LB and SDA plates. Samples were taken at day 1, 5, 7, 11, and 13. Two replicates per sample were incubated for 48 h (LB) or 120 h (SDA). The agar plates were photographed after incubation.

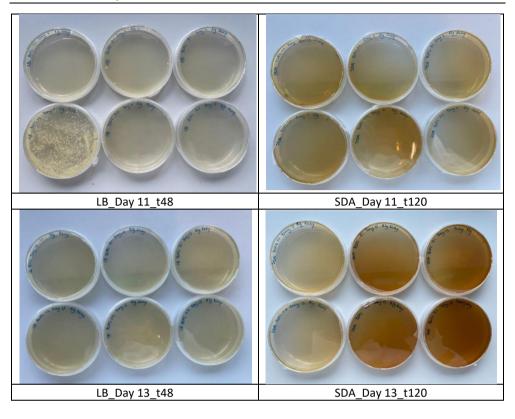
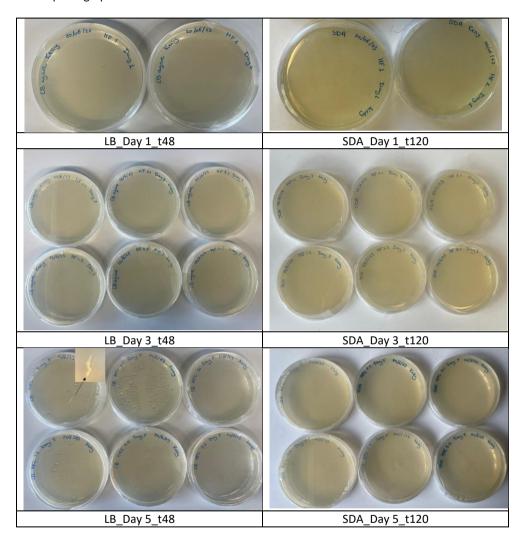
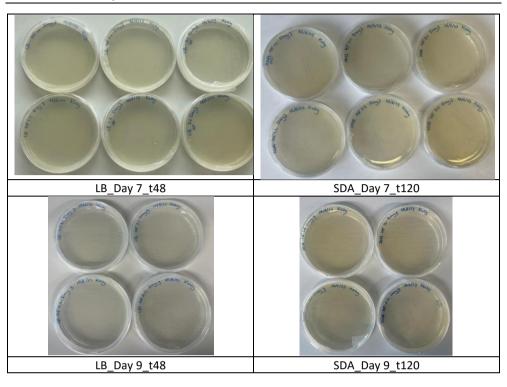




Figure S2

Pictures of Luria-Bertani (LB) agar plates and Sabouraud 4% dextrose agar (SDA) plates obtained during the HFL experiment. Microbial growth in the substrate/residual material was investigated by plating sample extracts on LB and SDA plates. Samples were taken at day 1, 3, 5, 7, 9. Two replicates per sample were incubated for 48 h (LB) or 120 h (SDA). The agar plates were photographed after incubation.

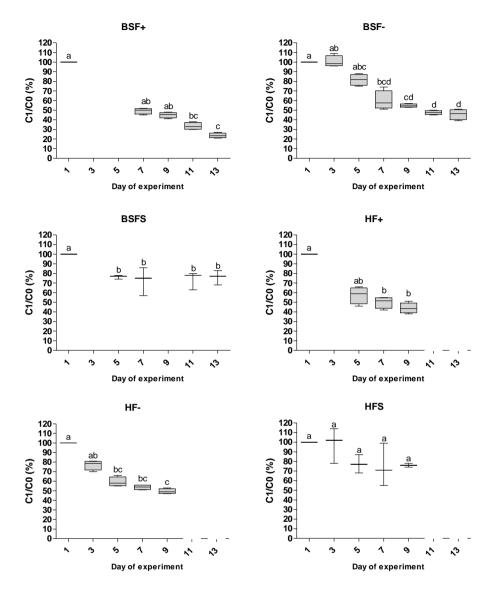


Figure S3 Whiskers plot: min to max. Effect of time within a treatment on enzymatic and non-enzymatic degradation of AFB $_1$ (Kruskal-Wallis, pairwise comparisons; P = < 0.05). Significance was calculated within experiments (BSF or HF) only, and was done by comparing the treatments on each day (n=4: BSFL+, BSFL-, HF+, HF-; n=3: BSFS, HFS). Treatments with different letters differ significantly.

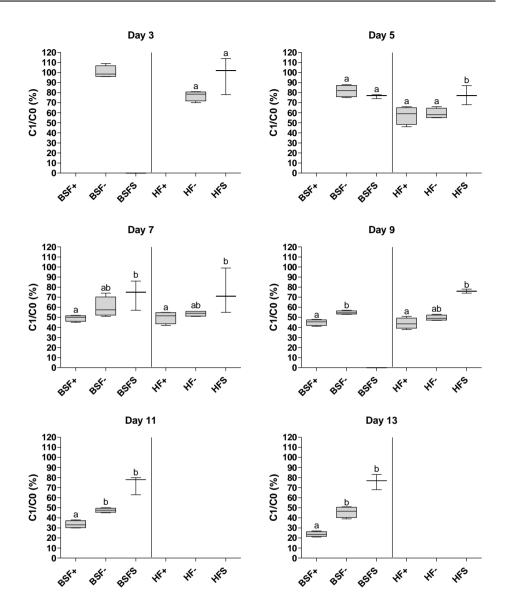


Figure S4 Whiskers plot: min to max. Effect of treatment on enzymatic and non-enzymatic degradation of AFB $_1$ (Kruskal-Wallis, pairwise comparisons; P = < 0.05). Significance was calculated within experiments (BSF or HF) only, and was done by comparing the treatments on each day (n=4: BSFL+, BSFL-, HF+, HF-; n=3: BSFS, HFS). Treatments with different letters differ significantly.

Chapter 6

Effects of aflatoxin B₁ on metabolism- and immunity-related gene expression in Hermetia illucens L. (Diptera: Stratiomyidae)

Parth N. Shah^{1*}, Kelly Niermans^{1,2*}, Elise F. Hoek-van den Hil², Marcel Dicke¹, Joop J.A. van Loon¹

¹Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; ²Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.

* These authors contributed equally to this work.

Submitted

Abstract

Contamination of food products with mycotoxins such as aflatoxin B₁ (AFB₁) poses a serious risk to human health. Larvae of the black soldier fly (BSFL), Hermetia illucens (Diptera: Stratiomyidae) are capable of successfully metabolizing AFB1 without any negative consequences on their survival or growth. Organic waste streams contaminated with mycotoxins can be upcycled into protein-rich BSFL as alternative feed for livestock and the left-over feed residue into nutrientrich crop fertilizers. However, the underlying mechanisms that allow BSFL to metabolize AFB₁ have not been unravelled in detail. To elucidate these mechanisms, five-day-old BSFL were fed with a control or AFB₁-spiked diet. Larval samples were collected and subjected to RNA-Seq analysis to determine gene expression patterns. Provision of AFB₁-spiked diet resulted in upregulation of 357 and down-regulation of 929 unique genes. Upregulated genes include multiple genes that are known to be involved in AFB₁ metabolism in other (insect) species. Downregulated genes were generally involved in growth, development and immunity of the insects. Overall, BSFL possesses a diverse genetic arsenal that encodes for enzymes capable of metabolizing AFB₁ without trade-offs for larval survival and growth. Negative effects of AFB₁ exposure on immunityrelated processes are observed in the transcriptomic response indicative of a trade-off between detoxification and immune responses.

Introduction

Contamination of feed stuff with mycotoxins, and especially aflatoxin B₁ (AFB₁) is a global problem affecting food security and public health (Adeyeye *et al.* 2022; Meijer *et al.* 2021b). Innovative strategies to eliminate AFB₁ from the food chain are required and the use of detritivorous insects such as black soldier fly larvae (BSFL, *Hermetia illucens* L.) (Diptera: Stratiomyidae) has been proposed as a potential solution (*Chapter 2*; Niermans *et al.* 2021). The larvae of BSF have received increasing attention as potential source of alternative protein for livestock feed (Van Huis 2013; Van Huis 2016). The larvae are capable of feeding on a wide range of organic side streams, extracting and concentrating nutrients from nutrient-poor diets (Oonincx *et al.* 2015). The larvae have a high content of protein and other nutrients and are used as inputs for livestock feed (Dörper *et al.* 2021), while the by-products like frass and exuviae show potential as organic amendments (Barragán-Fonseca *et al.* 2022).

The potential of BSFL to utilize a wide variety of organic side-streams including contaminated commodities like maize, peanuts, etc. has previously been investigated (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 7*; *Chapter 8*; Gold *et al.* 2023; Leni *et al.* 2019; Meijer *et al.* 2019; Niermans *et al.* 2023c; Purschke *et al.* 2017). Concentrations of AFB₁ fed to BSFL varied between 8 and 500 µg/kg feed and none of these studies recorded any negative effect on larval survival or growth (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 7*; Meijer *et al.* 2019; Niermans *et al.* 2023c). Interestingly, all these studies showed that BSFL did not accumulate AFB₁ within their

body. Furthermore, based on the molar mass balance that quantifies which proportion of AFB₁ in the substrate is recovered in larvae and the mixture of feed substrate residue and larval excreta showed that a large fraction of AFB₁ remained unaccounted for (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 4*; Niermans *et al.* 2023b). There is a distinct possibility that the larvae metabolized AFB₁ into 'novel' unknown metabolites, which therefore could not be included in the mass balance. In particular, the biochemical pathways that allow BSFL to metabolize AFB₁ requires further understanding.

Molecular mechanisms involved in AFB₁ metabolism have not been thoroughly investigated in insects in contrast to studies on human or mammalian models. However, it is known that insects possess cytochrome P450s (Berenbaum *et al.* 2021; Berenbaum and Johnson 2015; Niu *et al.* 2008; Zeng *et al.* 2006), glucosyltransferases (De Zutter *et al.* 2016; Pan *et al.* 2020) and other metabolic conjugation systems (Wilkinson 1986) that could potentially be involved in AFB₁ metabolism. More specifically, the genome of BSF contains significant expansion in CYP450 gene families which are associated with xenobiotic detoxification (Zhan *et al.* 2020). Furthermore, in BSFL CYP450s are responsible for the metabolism of AFB₁ into aflatoxin P₁ (AFP₁) and a cytoplasmic NADPH-dependent reductase for the transformation of AFB₁ into aflatoxicol (AFL) (Meijer *et al.* 2019). Here, we aim to investigate the biochemical pathways involved in AFB₁ metabolism.

Based on the existing data, AFB₁ exposure does not result in lethal consequences or growth reduction in BSFL (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Meijer *et al.* 2019). This may be the result of AFB₁ - mediated induction of AFB₁ metabolism in BSFL. However, metabolic induction often results in negative consequences on growth and survival of the insect; as observed in *Helicoverpa armigera* (Hubner) (Elzaki *et al.* 2019). AFB₁ feeding leads to induction of *CYP6AE19* in *H. armigera*, which in turn results in bioactivation of AFB₁ and increases larval mortality (Elzaki *et al.* 2019). However, consequences of AFB₁ feeding on transcriptomic response of BSFL are not yet known. In the current study, five-day-old BSFL were fed on a control diet or on an AFB₁-spiked diet after which whole-larvae RNA samples were collected at three time points (6, 24 and 72 h). The larval response to AFB₁ exposure was evaluated using RNA-sequencing with the aim of evaluating AFB₁- mediated effects on AFB₁ detoxification, metabolism and immune functions in BSFL.

Materials and Methods

Insect rearing

The insects used in the experiments were derived from a colony of *Hermetia illucens* L. (Diptera: Stratiomyidae) maintained at the Laboratory of Entomology, Wageningen University (the Netherlands) in a climate room ($27 \pm 1^{\circ}$ C, $70 \pm 10\%$ R.H., L12 : D12). Eggs laid within a period of six hours were collected from this colony. Two random egg clutches (a total of ~1500 eggs) were

placed on a chickenfeed diet (150 g + 300 mL water) (Kuikenopfokmeel 1; Kasper Faunafood, Woerden, the Netherlands) in a plastic container (15.5 \times 10.5 \times 6 cm). The container was closed with a plastic lid with a rectangular hole (7 x 5.5 cm) that was covered with nylon mesh to facilitate ventilation.

Chemicals and standards

Mycotoxin standards were purchased from Romer Labs (Getzersdorf, Austria): AFB₁, aflatoxin B₂ (AFB₂), aflatoxin G₁ (AFG₁), aflatoxin G₂ (AFG₂), aflatoxin M₁ (AFM₁); from Enzo Life Sciences (Brussels, Belgium): aflatoxicol (AFL) and from TRC (Toronto, ON, Canada): aflatoxin P₁ (AFP₁) and aflatoxin Q₁ (AFQ₁).

Spiked feed preparation

BSFL were fed on either a control diet or a diet spiked with 20 µg/kg AFB₁. This concentration was based on the maximum level (ML) of AFB₁ allowed in any feed material in the EU, set in Directive 2002/32/EC (EC 2002a). Both diet treatments were performed in four replicates. To prepare the spiked diet, 1.9 mL of the AFB₁ solution (suspended in MeOH; final percentage of 0.2% MeOH in the diet) was mixed with 618 mL water and 333 g chickenfeed (moisture content 65%; final percentage of 0.2% MeOH in the diet). The control chickenfeed diet was prepared in the same way, with addition of 1.9 mL of MeOH leading to a final percentage of 0.2% MeOH in the diet. Both control and AFB₁-spiked diets were mixed manually for 15 min. An overview of the intended and the final experimentally determined concentrations in the diets is presented in Table 1.

In order to determine homogeneity of the spiked feed, eight samples were taken from the AFB₁ diet. Homogeneity was confirmed when the measured concentrations (relative standard deviation of the replicates) in the samples differed \leq 20% from each other. Four samples taken from the control diets were analysed to check whether aflatoxins (AFB₁, AFB₂, AFG₁, AFG₂, AFL, AFP₁, AFM₁ and AFQ₁) were absent in these diets.

Feed transfer

Five-day-old BSFL (5DOL) were taken randomly and divided over groups of 150 larvae and weighed using a NewClassic MF ML54 (Mettler Toledo) balance to determine the average biomass at the start of the experiment (22.41 \pm 0.19 mg per larva). The larvae were transferred to 100 g of diet for the respective treatments: control and AFB₁-spiked diet (20 μ g/kg AFB₁). Four containers (480 mL rearing cups; BugDorm insect pots purchased from MegaView Science Co. Ltd., Taichung, Taiwan) were set up per diet type, and placed in a climate room (27 \pm 1°C, 70 \pm 10% R.H., L12:D12).

Sample collection and RNA isolation

Larval samples for RNA-Seq analyses (four times two larvae from each container, resulting in four biological replicates) were collected from control and AFB₁-spiked diets respectively at three timepoints (6 h, 48 h and 72 h). The remainder of the larvae were allowed to continuously feed on the AFB₁-spiked substrate for seven days. On day seven after the start of the feeding trial, the 12-day-old BSFL were separated from the substrate, washed, dried, counted and weighed. Samples of the residual material (mixture of left-over substrate and larval excreta, called frass) were collected to analyse aflatoxin concentrations. Samples for RNA-Seq analysis were collected at multiple timepoints during the feeding trial to account for biological processes affected in the larvae due to AFB₁ feeding, irrespective of chronology. The larvae were weighed and cleaned in distilled water twice for 5 s and air-dried on a clean paper towel. Total RNA was extracted and DNase treatment performed as described Shah *et al.* (2023). The quality and quantity of extracted RNA was assessed using a DS-11 series spectrophotometer (DeNovix, USA). The RNA integrity of the samples was monitored on 1% agarose gel and further assessed with Agilent 6000 Bioanalyser (Agilent Technologies, Santa Clara, CA, United States). RNA was stored at -80°C until further use.

Library preparation and RNASeq

cDNA libraries were constructed using TruSeq Stranded Total RNA Library Preparation (Illumina, San Diego, CA, United States) with input of 2.5 µg total RNA per sample. The cDNA libraries were sequenced (150 bp, paired-ended) on an Illumina NovaSeq6000 instrument. Sequencing was performed to an average depth of 19.3 M reads per sample. FASTQ sequence files were generated using bcl2fastq2 version 2.20, which included Illumina-Chastity quality filtering with default settings. Subsequently, reads containing adapters and/or PhiX control signal were removed using an in-house filtering protocol (BaseClear B.V., Leiden). In addition, reads containing (partial) adapters were clipped (up to a minimum read length of 99 bp). Second quality assessment was based on the remaining reads using the FASTQC quality control tool version 0.11.8 (Andrews 2010) with a Q-score of >35. Read quality was assessed using multiQC (Ewels *et al.* 2016). Reads were processed with Cutadapt (Martin 2011) to remove any remaining sequencing adaptors with the following settings: -m (minimum length) 100 -q (phred) 30 --no-indels.

Sequence alignment and gene counts

The FASTQ files were aligned to the reference genome of *H. illucens* (RefSeq assembly accession: GCF_905115235.1) using STAR (Dobin *et al.* 2012), and genes were annotated using the gene annotation file (gtf) (Generalovic *et al.* 2021) from the NCBI database. The FASTQ sequences were aligned to the genome in --quantMode to obtain read counts per gene directly. On average,

91.2% of the reads (average GC% = 39%) mapped to the reference genome (Table S1). Raw sequencing data will be available.

Principal component analysis (PCA) and analysis of Differentially Expressed Genes (DEG)

The differences in sample library sizes were determined using estimateSizeFactors and estimateDispersions (negative binomial distribution) functions of the DESeq2 package (Love et al. 2014). Further, the count data were transformed to log₂ scale to minimize differences between samples for rows with small counts and normalized with respect to library size using rlogcounts function of DESeq2 package (Love et al. 2014). Principal component analysis (PCA) was performed on the top 500 genes with maximum variance across samples with PCAexplorer (Marini and Binder 2019). rlogcounts were used as input for generating the PCA plot and the genes in the top and bottom loadings for each of the PC axes were extracted and functionally characterized. The gene read counts obtained via STAR were processed in R using the DESeq2 package (Love et al. 2014). A DESEq matrix (design = ~ treatment + time) was created to determine differentially expressed genes (DEGs). Genes with low count numbers (= < 20) across all samples were filtered out. The list of Differentially Expressed Genes (DEGs) was extracted by drawing contrasts between AFB₁ and control samples for the three time points by using the results function from the DESegDataSet. Genes were identified as DEGs when their false discovery rate (FDR) was lower than 0.001 and log₂ fold change (LFC) was higher than 2 (i.e. four time higher expression) in treatment than control samples.

Gene Ontology and Pathway analysis

Identified DEGs were used as input for Gene Ontology (GO) enrichment analysis to determine the affected processes. To explore the structure in gene expression, relative counts of DEGs were plotted and further segregated into different clusters (hierarchical clustering), whose functions in biological processes were determined using the topGO package (Alexa and Rahnenfuhrer 2022).

Aflatoxin analysis

The extraction procedure for the substrate and residual material was performed as described by Camenzuli *et al.* (2018). This method is an in-house method at Wageningen Food Safety Research which is validated according to SANTE/12682/2019 (EC 2019b). Extractions from the larval material were performed according to a slightly adjusted protocol. In short, 1 g of larval material and 3 mL MilliQ water were mixed. After 15 min, 4 mL of extraction solvent (acetonitrile/acetic acid 99:1 (v/v)) was added and the mixture was shaken in a head-over-head shaker for 30 min. After addition of 1.6 g of magnesium sulphate the samples were mixed manually, vortexed and centrifuged (MSE Falcon 6-30) for 10 min at 3000 rpm. Aflatoxin concentrations in both the

substrate and larval material were quantified by means of standard addition, therefore, each extract was prepared with and without the addition of a standard mix containing eight aflatoxins (30 μ g/kg AFB₁, 5 μ g/kg AFB₂, AFG₁, AFG₂, AFL, AFP₁, AFM₁ and AFQ₁). 200 μ L sample extract was mixed with either 190 μ L water and 10 μ L of the standard mix or only 200 μ L water in a syringeless PTFE filter file (Mini-UniPrep, Whatman, Marlborough, MA). The vials were capped, vortexed and placed in the refrigerator for 30 min after which they were closed and stored at 4°C until LC-MS/MS analysis.

The LC-MS/MS system consisted of a Waters Acquity injection and pump system (Waters, Milford, MA) and an AB Sciex QTRAP 6500 triple quad system equipped with an electrospray ionization source. LC-MS/MS analyses were performed exactly as described in *Chapter 4* (Niermans *et al.* 2023b) and in the current experiment aflatoxin analyses were also solely performed in positive ESI mode (instrumental MS/MS parameters of the mycotoxins analysed are shown in Table S2). LC separation was performed with an Acquity UPLC HSS T3 1.8 μm 100x2.1 mm column (Waters, Milford, MA).

Data analysis

All statistical analyses and image/plot generation were performed in RStudio (R Core Team 2023). Data collected on the survival and biomass of the larvae at harvest were used to determine the effect of aflatoxin exposure on BSFL. Differences in larval survival and biomass were determined with Kruskal-Wallis test; α was set at 0.05. LC-MS/MS data was analysed with SCIEX OS-MQ v2.1.6 software (Sciex, Framingham, MA). Peak identification was done according to SANTE/12682/2019 (EC 2019b). Concentrations were calculated by dividing the peak area of the sample by the area of the sample with standard addition minus the area of the sample and multiplied by the addition level of the respective aflatoxin. Quantification of concentrations was corrected for recovery percentages of the included aflatoxins (Table S3), and was done following Regulation (EC) 401/2006 (EC 2006a). Limits of detection (LOD) and limit of quantification (LOQ) for each of the aflatoxins in their respective matrices were determined (Table S4) as described in *Chapter 4* (Niermans *et al.* 2023b). Aflatoxin concentrations below the LOQ were set to zero.

Genes known to be involved in a) metabolism of AFB₁ in other organism models, and b) development, biomass and immunity of BSFL were assessed separately. Based on scientific evidence from other organisms and observations made in this study, potential pathways that allow BSFL to successfully metabolize aflatoxins are discussed.

Results

Aflatoxin analysis, larval survival and biomass

Aflatoxin concentration in the AFB₁ diet was $19.7 \pm 1.0 \,\mu\text{g/kg}$, the deviation range being within \pm 20%, thereby confirming the homogeneous distribution of the spiked substances in the substrate. No mycotoxins were detected in the control diets (Table 1, Table S5). The residual material, collected after seven days of exposure, contained AFB₁ (35.42 \pm 3.79 $\,\mu\text{g/kg}$) and AFP₁ (9.69 \pm 1.40 $\,\mu\text{g/kg}$).

Table 1. Overview of experimental diets

#	Diet	Replicates	Intended mycotoxin concentration (µg/kg ww)	Actual mycotoxin concentration (µg/kg ww)¹	Percentage of MeOH in diet
1	Control	4	0	< LOD	0.2%
2	Spiked with AFB ₁	4	20	19.71 ± 1.02	0.2%

¹ Average concentration in the replicates (n=4 per diet treatment, each replicate was a group of 150 larvae) as determined by LC-MS/MS analysis. Individual measurements for the replicates can be found in Table S1. ww: wet weight; < LOD: below limit of detection.

Survival of BSFL feeding on either control or AFB_1 -spiked diet over a period of seven days was high (88-94%, Table S6) and not affected by AFB_1 exposure (Kruskal-Wallis test, p > 0.05; Figure 1a). The biomass of the BSFL collected for RNA-Seq analyses was not affected by AFB_1 exposure after 6 h, 48 h and 72 h (Table S7) or in 12DOL at the end of experiment (Kruskal-Wallis test, p > 0.05; Figure 1b).

Sequence quality and Principal Component Analysis (PCA)

Average library size was 17.2 million reads per sample (39% GC content), of which 91.2% reads (~15.7 million reads) were mapped to the annotated genome of *H. illucens* (Table S1). A total of 15,196 genes were found with a gene count in the mapped dataset. Filtering out genes with counts less than 20 copies resulted in a dataset with a total of 11,429 genes.

Multivariate analysis revealed distinct separation between diet treatments (Figure 2). Although two data points overlap, PC1 clearly segregates the samples between the two treatments (*i.e.* control and AFB₁) irrespective of sampling time. Together, PC1 and PC2 account for 76% of the variation.

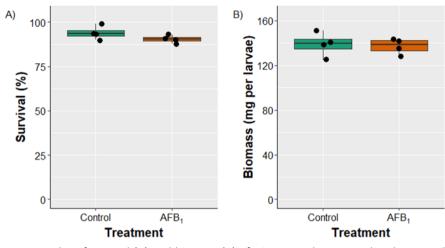
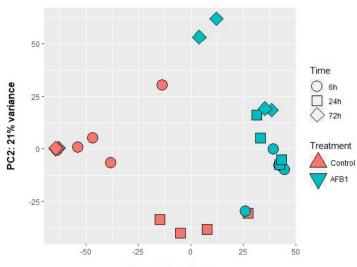



Figure 1. Boxplot of survival (A) and biomass (B) of BSFL reared on control and AFB₁-spiked diets for a period of seven days (5 days old larvae till 12 days old). No significant differences were observed for BSFL survival and biomass when fed on control or AFB₁ diets (Kruskal-Wallis test; p > 0.05). Data on survival and weight biomass per replicate after seven days of exposure are presented in Table S6.

The genes contributing to separation between the treatments in PC1 were identified and characterized (Figure S1). Top loadings (*i.e.* genes contributing to positive values on PC1, *i.e.* AFB₁ effects on BSFL gene expression) of PC1 included cytochrome P450 6a14 (CYP6a14, LOC119646754), cytochrome P450 6g2 (CYP6g2, LOC119655376) and enzyme-like aldo-keto reductase family 1 member B1 (LOC119649999). Bottom loadings of PC1 (*i.e.* genes contributing to negative values on PC1, corresponding to gene expression of control larvae) contained genes involved in the production of structural proteins (*e.g.* endocuticle structural glycoprotein SgAbd-2, pupal cuticle protein and glycine-rich structural protein) in the larvae (Silvert *et al.* 1984; Ye *et al.* 2021).

Analysis of Differentially Expressed Genes (DEGs)

A total of 1277 genes were differentially expressed ($|\log_2 FC| \ge 2$ and false discovery rate < 0.001) between larvae fed on AFB₁-contaminated and control diet over the three tested timepoints, corresponding to 11% of the total number of genes found within the dataset. A total of 357 genes were uniquely upregulated while 929 genes were uniquely downregulated as a result of AFB₁ feeding across all timepoints. Interestingly, more genes were distinctly downregulated at each timepoint compared to those that were upregulated (Figure 3). Some genes are affected (significantly up- or down-regulated, *i.e.* log2fold change) across two consecutive sampling timepoints as a result of AFB₁ feeding (Table S8 and S9).

PC1: 55% variance

Figure 2. Principal Component Analysis of transcriptome of BSFL fed on control diet (chickenfeed) and AFB₁-spiked diet (chickenfeed with 20 μ g/kg AFB₁). Different sampling timepoints are indicated as different shapes and treatments as colours (orange = control, blue = AFB₁ fed larvae).

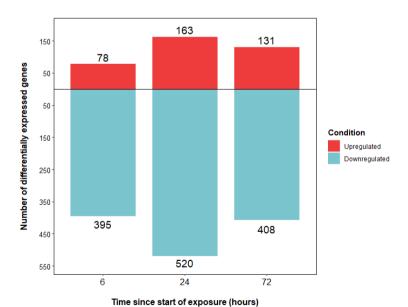


Figure 3. Number of differentially expressed genes (DEGs); either upregulated (in red) or down-regulated (in blue) in BSFL as a result of continuous feeding on a diet contaminated with AFB_1 compared to a control diet, sampled at three timepoints.

Gene ontology (GO)

GO enrichment analysis of DEGs indicates enrichment of genes encoding various enzymes *e.g.* methyltransferases, oxidoreductases, carboxypeptidases, exopeptidases (Figure 4a). Conversely, DEGs involved in processes in biological processes like proteolysis, primary lipid and carbohydrate metabolic processes; together with molecular functions (*i.e.* such as lipase and hydrolase activity, lipid transport, phospholipase, peptidase and carbohydrate derivative functions) were downregulated as a result of feeding on an AFB₁-contaminated diet (Figure 4b).

To categorize the functions of genes of which the expression was affected by feeding on an AFB₁-contaminated substrate, DEGs were divided into 9 clusters based on hierarchical clustering (Figure S2). Upon division of DEGs into separate clusters, relative expression of DEGs was plotted in a heatmap (Figure 5).

Genes belonging to Clusters 1 – 5 were downregulated upon AFB₁ feeding, with the exception of genes involved in Cluster 3 which were upregulated at 72 h. The genes within these clusters are known to be involved in growth and development processes in insects. Genes such as those encoding for trypsin and ctenidin, were included in Cluster 1 and are involved in multiple processes such as rRNA processing, ribosome biosynthesis, thymine and uracil catabolic processes, peptide crosslinking and DNA-templated transcription processes. Genes included in Cluster 2 encode for e.g. lipase, ecdysteroid-regulated 16 kDa protein, serine protease 7, βtrypsin, cecropin (LOC119657589 and LOC119657650) and chymotrypsin were downregulated across all three timepoints as a result of AFB1 feeding. The genes within this cluster are known to contribute to antibacterial humoral response, carbohydrate phosphorylation, galactose and lipid metabolic processes. Similarly, genes encoding for phenoloxidase, mucin, neurotrophin, and titin were grouped in Cluster 3. The downregulated genes within Cluster 3 are involved in proteolysis and response to oxidative stress. Genes in Cluster 4 were significantly downregulated across all three timepoints and included genes encoding e.g. spaetzle protein, odorant-binding proteins, multiple cuticle proteins, peroxidases, esterase B1, dual oxidase, protein takeout. These genes play roles in the response to oxidative stress, lipid metabolism, proteolysis, arachidonic acid secretion, and melanin biosynthesis and were significantly downregulated upon exposure to AFB₁. Genes in Cluster 5 were also significantly downregulated as a result of AFB₁ feeding and included genes encoding for glycine-rich protein DOT1, phenoloxidase 3, cadherin-23, mantle protein, myosin-11, lipase-3, neprilysin-4, Toll-receptor 6. The processes that were negatively affected included DNA-templated transcription, homophilic cell adhesion via plasma membrane adhesion molecules, regulation of signalling and carbohydrate metabolic process.

Genes in Clusters 6-9 were significantly upregulated as a result of AFB₁ feeding and are known to be involved in xenobiotic metabolism, detoxification and insecticide resistance. Cluster 6 contains genes encoding for *e.g.* cytochrome b5 and phosphomevalonate kinase. These genes

are involved in processes such as cholesterol biosynthesis, histone H3-K79 methylation and protein import into peroxisome matrix. Genes in Cluster 7 encode for multiple enzymes involved in xenobiotic metabolism such as CYP6a14, glutathione S-transferase 1, alcohol dehydrogenase 1, aldo-keto reductase family 1 member B1, UDP-glucosyltransferase 2, farnesol dehydrogenase, esterase E4, sorbitol dehydrogenase, and glycine N-methyltransferase. These genes contribute to biological processes such as arginine biosynthetic process via ornithine, initiation of translation and mitochondrial electron transport. Genes within Cluster 8 were distinctly upregulated at 72 h post AFB₁ feeding, and included genes encoding for esterase E4, CYP450 6a13, CYP450 12a5, kynurenine formamidase, chymotrypsin-C, glucose dehydrogenase, CYP450 4d14, β -thymosin, CYP450 307a1, carboxypeptidase B, CYP450 12A2. The processes affected due to upregulation of these genes are proteolysis, sulfate transport, cholesterol and carbohydrate metabolism, transmembrane transport and inositol catabolism.

Genes in Cluster 9 encode glutathione S-transferase, zinc carboxypeptidase and CYP450 12A2. Upregulation of these genes stimulates ubiquitin protein ligase activity, protein phosphorylation, transmembrane receptor protein tyrosine kinase signalling pathway and regulation of actin cytoskeleton organization.

The majority of upregulated genes of interest are linked to xenobiotic metabolism (e.q. CYP6a14, CYP6a13, CYP4d14, farnesol dehydrogenase, cytochrome b5). The downregulated genes of interest are mainly associated to processes involved in development (e.g. endocuticle glycoprotein SgAbd-2, larval cuticle proteins) and immunity (e.g. glycine-rich protein DOT1) of BSFL. Gene families known to be involved in AFB₁ detoxification in mammalian model organisms selected are also differentially expressed in BSFL (Figure 6a). Exposure through feeding on an AFB₁-spiked diet resulted in distinct upregulation of various genes from the cytochrome b, cytochrome C and CYP450 families. Furthermore, genes encoding for various dehydrogenases, transferases, peptidases, but also juvenile hormone epoxide hydrolase, aldo-keto reductase B1, and esterase E4 were clearly upregulated upon AFB₁ exposure. Furthermore, genes known to be involved in growth, development and immunity were selected from the DEG list (either upregulated or downregulated at at least one sampling timepoint) and plotted to explore their expression over the sampling timepoints (Figure 6b). Genes coding for cuticle formation proteins were significantly downregulated. Similarly, multiple genes related to insect immunity such as cecropin, ctenidin, phenoloxidase and gut homeostasis such as dual oxidase were significantly downregulated upon feeding on an AFB₁-spiked diet. Interestingly, genes encoding for enzymes involved in intermediary metabolism and proteolytic activities like chymotrypsin, lipase and trypsin were significantly downregulated at the early timepoint upon exposure to AFB₁ feeding. However, chymotrypsin and glycine-rich protein DOT1 were significantly upregulated at 72 h upon exposure to AFB₁.

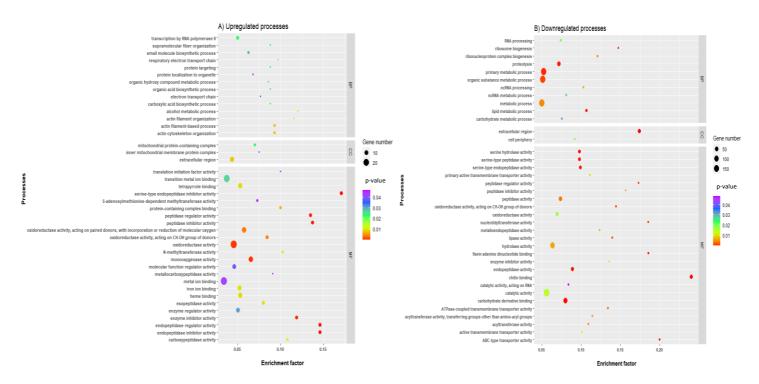


Figure 4. Overview of GO analysis outcomes in terms of processes that are (A) upregulated (from genes with LFC \geq 2 and FDR \leq 0.001), and (B) downregulated (from genes with LFC \leq -2 and FDR \leq 0.001) in BSFL as a result of AFB₁ feeding compared to control diet. Affected processes have been classified into three categories: biological processes, cellular components and molecular functions. Enrichment factor indicates the number of significantly affected genes compared to the total number of annotated genes involved in a particular process/function. Size of the dot indicates the number of genes involved in the GO process and the colour indicates the associated p-value (red = highly significant).

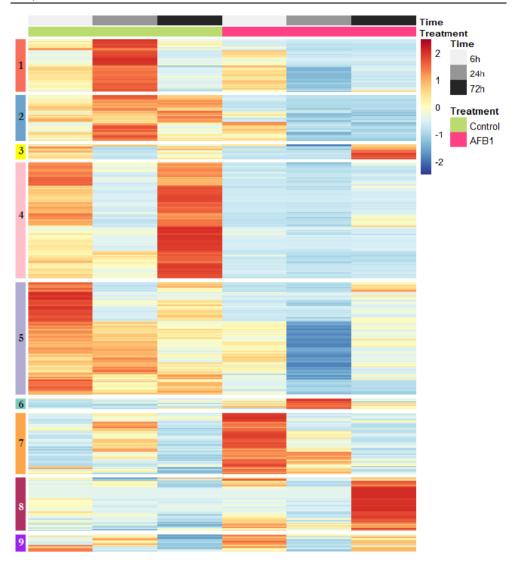


Figure 5. Heatmap indicating relative expression of differentially expressed genes (DEGs) in BSFL at three timepoints after the start of feeding on a control or AFB₁-spiked diet. DEGs were grouped into nine distinct clusters based on their expression patterns across time and treatment combinations. Upregulated genes are shown in red while downregulated genes are shown in blue.

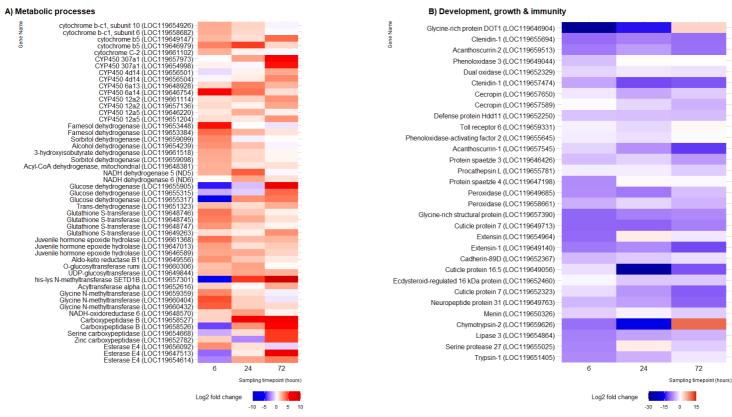


Figure 6. Expression profile in terms of log₂-fold change levels of DEGs (either up- or down-regulated at least one sampling timepoint) in BSFL affected by AFB₁ exposure through feeding compared to control diet. These genes encode for different enzymes involved in A) xenobiotic metabolism of AFB₁ (gene selection based on mammalian model organisms), and B) different developmental, growth and immunity related pathways.

Discussion

Feeding five-day-old BSFL on an AFB₁-spiked diet did not affect their survival and biomass in comparison to larvae fed on a control diet over a period of seven days. Previous AFB₁ feeding experiments on BSFL found similar results (Bosch et al. 2017; Camenzuli et al. 2018; Chapter 4; Chapter 7; Meijer et al. 2019; Niermans et al. (2023b); Niermans et al. 2023c). Analysis of the larval transcriptome indicates a significant upregulation of genes associated with xenobiotic metabolism when fed on a diet spiked with 20 μg/kg AFB₁. In contrast, multiple genes involved in growth, development and immunity were significantly downregulated suggesting a trade-off between detoxification and these latter processes. BSFL possess a considerable number of genes encoding for enzymes known from other insect species to be involved in xenobiotic transformation. Xenobiotic transformation entails processes facilitating excretion of endogenous and exogenous substances e.g. secondary plant metabolites, insecticides or mycotoxins, among others (Almazroo et al. 2017). These substances are altered via a series of reactions transforming the xenobiotic into more polar water-soluble metabolites, which can be excreted. In general, xenobiotic elimination occurs in three phases, i.e. Phase I metabolism, Phase II metabolism, and Phase III (excretion) (Esteves et al. 2021). The reactions involved in these phases may occur either sequentially or simultaneously (Meyer 1996).

Phase I

Phase I metabolism mainly results in conversion of xenobiotic compounds into more polar/water- soluble metabolite(s). Phase I metabolites are often reactive, and can become substrates for Phase II metabolism (Meyer 1996). Reactions involved in Phase I metabolism include oxidation, hydrolysis and reduction. Cytochrome P450s and aldo-keto reductases are enzymes known to be involved in a variety of (xenobiotic) metabolic pathways and play a role in resistance to xenobiotics in insects (Feyereisen 2006). In insects (e.g. Drosophila melanogaster, Trichoplusia ni and Helicoverpa armigera), CYPs are known to play a role in the detoxification of aflatoxins (Berenbaum et al. 2021). The CYP family also appears to play an important role in the current study as CYP6a14 and CYP6g2 were among the main genes contributing to separation between the treatments. In the current study, CYP6a14 and CYP6g2 were upregulated after 6 h of feeding on AFB₁. Upregulation of CYP6a14 was also shown after D. melanogaster larvae were fed a sterigmatocystin-contaminated diet (Trienens et al. 2017). Sterigmatocystin shares its biosynthetic pathway with the aflatoxins and is a known precursor of AFB₁ (Zingales et al. 2020). Furthermore, CYP6a14-1 as well as esterases contributed to insecticide resistance in the aphids Sitobion avenae and Myzus persicae (Field and Devonshire 1998; Li et al. 2007; Zhang et al. 2020). As opposed to CYP6a14, the P450s CYP4d14 and CYP21a2 were upregulated after 72 h of feeding on an AFB₁-contaminated diet. CYP4d14 as well as CYP6g2 have monooxygenase, oxidoreductase, and electron transporter activity, amongst others (Kalajdzic et al. 2012; Sun et al. 2006), and may be involved in the metabolism of insect hormones and breakdown of synthetic insecticides. The product of the CYP21a2 gene generally seems to be involved in hormone synthesis (Eachus *et al.* 2017). Multiple studies in which BSFL were fed an AFB₁-contaminated diet, including the current study, showed formation of the AFB₁ metabolite AFP₁ in the residual material (*Chapter 4*; *Chapter 7*; *Chapter 8*; Gold *et al.* 2023; Niermans *et al.* 2023b; Niermans *et al.* 2023c). As CYP450s are responsible for the metabolism of AFB₁ into AFP₁ (Meijer *et al.* 2019), one or multiple of the previously mentioned CYPs were likely involved in this transformation. In addition to the gene expression of CYP450 enzymes, cytochrome b5 (cyb5) was upregulated at 24 h and 72 h. Cyb5 participates in the oxidation of xenobiotics (Hildebrandt and Estabrook 1971), and stimulated the activation of AFB₁ to a greater extent when it was added together with CYP1a, 1c or 1d, as compared to AFB₁ activation caused by the CYPs alone (Ueno *et al.* 1983).

Based on the known metabolic pathways of AFB₁ (Figure 7) and the information presented so far, it seems likely that BSFL are able to transform AFB1 via CYP enzymes and/or cyb5 into an AFB₁-epoxide (AFB₁-exo-8,9-epoxide and/or AFB₁-endo-8,9-epoxides). This seems to be further supported by the high expression levels of juvenile hormone epoxide hydrolase 1 (JHEH) observed in this study. JHEH is involved in juvenile hormone degradation in insects, and is hypothesized to possess epoxide hydrolase activity (Anspaugh and Roe 2005; Sun et al. 2006). In mammals, epoxide hydrolases are known to convert epoxides into their corresponding dihydrodiols, via hydrolysis (Oesch et al. 1971), and are therefore considered key enzymes in the detoxification of genotoxic epoxides (Kelly et al. 2002). Furthermore, genes encoding aldo-keto reductase family 1 member B1 (AKR1B1), were among the main genes contributing to separation between the treatments (Figure 7) and were significantly upregulated after 6 h of feeding on an AFB₁-spiked diet. AKR1B1 belongs to the aldo-keto reductases (AKRs), which are cytosolic NADP(H)-dependent oxidoreductases (Ellis et al. 1993; Knight et al. 1999). The aflatoxin B₁ aldehyde reductases, and specifically the NADPH-dependent aldo-keto reductases of rats (AKR7A1) and humans (AKR7A2), are known to catalyse the reduction of aflatoxin dialdehyde to its corresponding di-alcohol (Ellis et al. 1993; Khayami et al. 2020; Knight et al. 1999). During this transformation step, protein-binding abilities are eliminated and thereby represent an important detoxification route of AFB₁ (Cao et al. 2022). The significant upregulation of JHEH expression in the current study, might indicate formation of the AFB₁-dihydrodiol. Further conversion of AFB₁dihydrodiol into the corresponding dialdehyde might have occurred (Figure 7) after which AKR1B1 may convert AFB₁-dialdehyde into AFB₁-dialcohol.

Phase II

Phase II metabolism involves conjugation of the xenobiotic or its metabolites (possibly formed during Phase I metabolism) to another endogenous hydrophilic group. Conjugation will result in the formation of a large inactive polar and more water soluble metabolite, which can be excreted by the Malpighian tubules (Dow and Davies 2006). Xenobiotics may be conjugated with amino

acids (glycine, taurine, glutamic acid), glucuronic acid, glutathione, methyl or acetyl groups or sulphate (Almazroo et al. 2017; Omiecinski et al. 2010). In the current study, upregulation of glutathione S-transferase 1 and UDP-glucosyltransferase 2 at 6 h and 72 h might indicate that Phase II metabolism occurred. UDP-glycosyltransferases (UGT) are a superfamily of enzymes that catalyse glucosidation. As insects are known to metabolize certain xenobiotics via glucosyltransferases (Bock 2016), it is hypothesised that AFB₁-glucose conjugates could be formed by insects (Gützkow et al. 2021). Whether AFB₁-dialcohol serves as a binding substrate for glucose conjugation is thus far unknown. More extensive analysis (e.g. the addition of a glucosidase during the extraction step before LC-MS/MS analyses) of the BSFL or their residual material after feeding on an AFB₁-contaminated diet might provide more insight. Furthermore, glutathione S-transferases (GSTs) are involved in one of the major AFB₁ detoxification pathways, namely the mercapturic acid pathway. Conjugation with mercapturic acid is a known detoxification mechanism in mammals and insects, and leads to the formation of a mercapturate which is generally more water soluble than its parent compound and is more readily excreted (Cooper and Hanigan 2018; Moss et al. 1985; Murcia and Diaz 2020a). Several insects use the mercapturic acid pathway as part of their adaptation strategy to the chemical defence mechanism of their host plant and insecticide resistance (Alias 2016; Sontowski et al. 2022). Furthermore, glycine N-methyltransferase (GNMT) was only upregulated after 6 h. GNMT possesses tumour suppressor effects against hepatocellular carcinomas in mice (Liao et al. 2009; Martínez-Chantar et al. 2008; Yen et al. 2009; Yen et al. 2013), and overexpression of GNMT seems to reduce AFB₁-DNA adduct formation and inhibits cancer cell proliferation (Yen et al. 2009). Overexpression of GNMT increased longevity in *D. melanogaster* (Obata and Miura 2015).

Phase III / Excretion

The main function of Phase III xenobiotic transporters is to excrete hydrophilic conjugates possibly formed during Phase I and II metabolism. Xenobiotic transport is done via membrane carriers which belong to two main clusters: ATP binding cassette (ABC) transporters, including the multidrug resistance protein (MRP) family, and solute carrier (SLC) transporters (Almazroo et al. 2017). ABC transporters have been found in various arthropod species, amongst which the mosquito Anopheles gambiae and the fruit fly D. melanogaster, and are associated with transport of and/or resistance to multiple acaricides and insecticides (Buss and Callaghan 2008; Dermauw and Van Leeuwen 2014). In the current study, upregulation of sodium-coupled monocarboxylate transporter 1 and multidrug resistance-associated protein lethal (2)03659 (MRP2) was also observed at 72 h. The sodium-coupled monocarboxylate transporter 1 is a transporter enzyme involved in the influx of xenobiotics into the cell (Phase 0 metabolism), and acts as a tumour suppressor gene in mammals (Hong et al. 2005; Li et al. 2003; Park et al. 2007).

MRP2 belongs to the ABC superfamily of transmembrane transport proteins. MRP2 protects cells from xenobiotics by extruding glutathione-, glucuronyl- and sulphate- conjugates from the

intracellular compartment (Lorico *et al.* 2002). Furthermore, MRP2 transports AFB₁-GSH conjugates of both the *endo*-isomers and *exo*-isomers in an ATP-dependent, osmotically sensitive manner, and is suggested to have a potential protective role in mammalian chemical carcinogenesis (Loe *et al.* 1997; Lorico *et al.* 2002). Though MRP2 is mainly known for its GSH transporting ability, it might play a role in the intestinal transcellular efflux of dietary glucosides (Walgren *et al.* 2000).

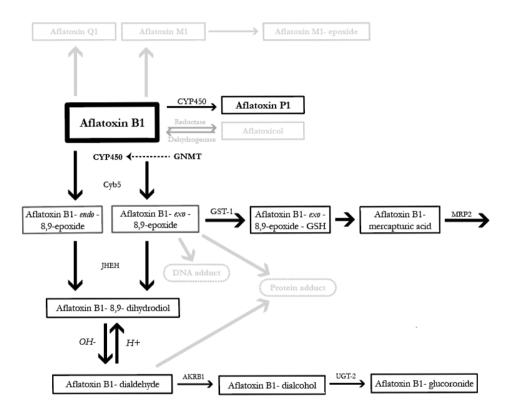


Figure 7. Potential metabolic pathway(s) in BSFL (in black) based on genes observed to be upregulated during AFB₁ feeding and their corresponding enzyme products. AKR1B1: aldoketo reductase family 1 member B1; Cyb5: cytochrome b5; CYP450s: cytochrome P450 monooxygenase; GNMT: glycine N-methyltransferase; GSH: glutathione; GST-1: glutathione S-transferase 1; JHEH: juvenile hormone epoxide hydrolase 1; MRP2: multidrug resistance-associated protein lethal (2)03659; UGT-2: UDP-glucosyltransferase 2.

Growth and Development

Although we did not observe effects of AFB₁ exposure on survival or growth of the larvae, the transcription of multiple genes involved in larval growth was affected by exposure to AFB₁-contaminated diet. Genes encoding enzymes like trypsin, chymotrypsin and lipase that are

involved in proteolysis, lipid hydrolysis and other physiological processes were significantly downregulated (four-fold decrease in expression) in BSFL feeding on an AFB₁-spiked diet at 6 and 24 h. *In vitro* studies indicate similar negative effects of AFB₁ on enzymatic activity of trypsin and lipase in rats (Uwaifo 1980). Chymotrypsin-C (CTRC) is a peptidase known to degrade all human trypsin and trypsinogen isoforms and is involved in protein digestion. Carboxypeptidase B catalyses the hydrolysis of the amino acids arginine, lysine and ornithine. Genes coding for pupal cuticle protein, fatty acyl-CoA reductase CG5065, neuropeptide protein 31 that are involved in growth and developmental processes were also significantly downregulated across all timepoints in BSFL exposed to AFB₁-contaminated diet. Neuropeptides are important signalling molecules, whose absence or dysregulation can result in abnormal behaviour like uncoordinated movements and/or hyperactivity (Nelson *et al.* 1998). Dose-related decrease in neuropeptide production was observed upon AFB₁ feeding in rats (Trebak *et al.* 2015). Fatty acyl-CoA reductases (FARs) are involved in maintaining chemical communication in insects through production of short-range recognition pheromones as well as protecting the insect from desiccation (Finet *et al.* 2019).

Multiple studies have shown that BSFL do not exhibit any negative effects of AFB₁ on their survival and growth (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 4*; Meijer *et al.* 2019; Niermans *et al.* 2023b). Thus far, only one study has observed a slower development in BSFL upon provision of much higher (\pm 800 µg kg DM-1) concentration of AFB₁ as investigated in the current study (Heuel *et al.* 2023). Furthermore, exposure of other insect species to higher concentrations (ranging from 800 – 10,000 µg/kg) of AFB₁ resulted in negative effects on growth and development. Exposure of *Drosophila melanogaster* (strain Oregon R) to a high concentration (*i.e.* 10,000 µg/kg) of AFB₁ resulted in doubling of larval and pupal development time (Kirk *et al.* 1971). Furthermore, exposure to 800 µg/kg AFB₁ resulted in physical malformation (wings, leg and thorax) in 11% of adult *D. melanogaster* (Şişman 2006). Exposure to \geq 2,000 µg/kg AFB₁ caused significant retardation in the development of larvae and pupae of *Spodoptera littoralis*, resulting in a significant reduction in the numbers of eggs laid and their hatching rate (Sadek 1996). Thus, oral uptake of very high AFB₁ concentrations by some insect species led to negative effects on insect growth and development; which was however not observed in BSFL.

Genes encoding proteins involved in the collagen biosynthesis pathway such as larval cuticle protein and endocuticle structural glycoprotein SgAbd-1 were significantly downregulated at all timepoints. In the nematode *Caenorhabditis elegans*, cuticular proteins are involved in their development and reproductive success and their downregulation negatively affects these processes (Yang *et al.* 2018). Although we did not observe any significant reduction in larval biomass in this study at the concentration applied, significant downregulation of growth and metabolic genes is indicative of negative long-term consequences in AFB₁-exposed larvae that

could potentially result in a shorter lifespan as adult or other developmental deformities and merits further investigations.

Immunity

Apart from genes associated with growth and development, genes known to contribute to insect immunity were also negatively affected. Interestingly, the dual oxidase (DUOX) gene was significantly downregulated at 6 h in AFB₁-fed BSFL. DUOX is responsible for production of reactive oxygen species (Huang et al. 2020) and maintaining gut homeostasis in insects (Jang et al. 2021). Downregulation of DUOX is indicative of negative gut homeostasis in BFSL resulting from exposure to AFB₁ diet. Phenoloxidase-2 was distinctly downregulated (LFC = -6.02) at 6 h in AFB₁ fed larvae. Phenoloxidases are key components of the insect immune system (González-Santoyo and Córdoba-Aguilar 2012). Similar down-regulation of phenoloxidase activity was also recorded in the mosquito Aedes aegypti when infected with the fungal pathogen Isaria sp. that produces mycotoxins (Ramirez et al. 2018). Fungal secondary metabolites like kojic acid (at 10⁻³ M) resulted in 80% inhibition of phenoloxidase activity in the cuticle and hemolymph of Spodoptera frugiperda (Dowd 1999). Genes coding for antimicrobial peptides like cecropin, glycine-rich DOT1, ctenidin-1 were significantly downregulated at all timepoints as a result of AFB₁ feeding. Downregulation of effector molecules may result in downregulation of the imd immune pathway in BSFL fed on AFB₁-spiked diet. In D. melanogaster, similar downregulation in expression of effector molecules was observed upon injection of destruxin A, produced by the entomopathogenic fungus Metarhizium anisopliae (Pal et al. 2007). The imd pathway is generally implicated to be responsible for immune defence again Gram-negative bacteria (Vogel et al. 2022). Downregulation of the components involved in the imd pathway would therefore imply that susceptibility against Gram-negative bacteria is enhanced. This suggests a trade-off for the humoral immune response of BSFL due to investment in detoxification pathways.

Conclusion

BSFL possesses a diverse set of genes that are upregulated upon exposure to AFB₁-spiked diet, allowing it to effectively metabolize and process AFB₁. Survival and larval biomass of BSFL were not significantly different from control treatments over a seven-day feeding trial. Based on the transcriptomic analysis, it is evident that a variety of detoxification/metabolic processes are upregulated in BSFL when fed on an AFB₁-spiked diet. Data from the current study indicate that AFB₁ might be transformed in BSFL via three of the major known AFB₁ detoxification pathways *i.e.* demethylation into AFP₁, glucosidation and conjugation with GSH, after which further transformation may occur via the mercapturic acid pathway.

At the same time, genes associated with growth, developmental and immunity processes are significantly downregulated. Although no larval mortality occurred in BSFL during the seven-day feeding trial at the concentration tested, potential trade-offs due to increased investments in

detoxification processes could result in higher susceptibility to infection by pathogens, low adult emergence, failure to emerge as adults or emergence of dysfunctional/malformed adults. Some genes (cecropin, glycine-rich protein DOT1, ctenidin, acanthoscurrin) that are involved in BSFL immunity pathways were downregulated. Impaired immunity could result in a lower resistance/increased susceptibility upon co-exposure to e.g. substrate-borne pathogens, which might affect BSFL survival and could consequently be detrimental in an insect rearing system.

Further, the genes encoding for multiple enzymes that are observed to be highly expressed on an AFB₁- contaminated diet (as hypothesized in Figure 7), merit functional validation using RNAi or CRISPR/Cas9 to confirm their role in AFB₁ metabolism/detoxification. Furthermore, the use of optimized extraction- and analytical methods to confirm the formation of the hypothesized metabolites may explain the missing fraction not obtained back in the mass balance analyses.

Acknowledgements

This study has been supported by the Netherlands Organisation for Scientific Research (NWO; NWA programme, InsectFeed project, NWA.1160.18.144).

Supplementary materials

Table S1
Sample quality and read-information

Treatment	Time	Sample	Trimmed	Mapped	Mapped	Average	Average
	(h)	#	read	reads	reads	input read	mapped
			inputs		%	length	length
Control	6	1	19.5	16.8	86.13%	300	297.67
Control	6	2	10.0	9.3	93.02%	301	298.75
Control	6	3	21.4	19.7	92.22%	301	298.6
Control	6	4	14.3	13.4	94.02%	301	299.09
Control	24	5	21.0	19.4	92.63%	300	297.61
Control	24	6	21.3	18.1	85.24%	300	297.86
Control	24	7	20.2	18.7	92.76%	301	298.28
Control	24	8	12.9	11.5	89.35%	301	298.91
Control	72	9	12.2	10.6	87.31%	301	298.23
Control	72	10	22.8	21.1	92.30%	300	297.83
Control	72	11	21.6	20.3	93.78%	301	298.56
Control	72	12	11.2	9.7	86.66%	301	298.47
AFB ₁	6	13	35.8	33.5	93.65%	289	286.63
AFB ₁	6	14	25.2	23.5	93.00%	291	288.88
AFB ₁	6	15	10.7	8.7	81.58%	301	298.77
AFB ₁	6	16	12.4	11.6	93.90%	301	299.22
AFB ₁	24	17	12.8	11.7	91.82%	300	298.07
AFB ₁	24	18	15.2	14.5	95.19%	301	299.45
AFB ₁	24	19	13.3	12.9	96.70%	301	299.58
AFB ₁	24	20	16.7	16.0	96.29%	301	299.04
AFB ₁	72	21	19.7	18.7	94.64%	301	298.84
AFB ₁	72	22	17.6	16.1	91.56%	300	297.45
AFB ₁	72	23	12.1	10.4	85.93%	301	297.38
AFB ₁	72	24	12.2	10.8	88.65%	301	297.96
Average			17.2	15.7	91.18%		

Table S2 Instrumental MS/MS parameters of mycotoxins analysed in positive ionization mode

Component	Rt	Q1	Q3	DP	EP	CE	CXP
Component	Νί	(m/z)	(m/z)	(V)	(V)	(V)	(V)
Aflatoxin B ₁ (ql)	4.70	313.1	128.1	40	10	91	10
Aflatoxin B ₁ (qn)	4.70	313.1	285.2	40	10	33	16
Aflatoxin B₁ (ql2)	4.70	313.1	241.0	40	10	54	15
Aflatoxin B ₂ (ql)	4.40	315.1	259.2	40	10	43	18
Aflatoxin B ₂ (qn)	4.40	315.1	287.2	40	10	37	18
Aflatoxin G₁ (ql)	4.1	329.0	200.0	40	10	53	12
Aflatoxin G₁ (qn)	4.1	329.0	243.2	40	10	39	14
Aflatoxin G₂ (ql)	3.8	331.1	245.2	40	10	43	14
Aflatoxin G₂ (qn)	3.8	331.1	313.2	40	10	35	18
Aflatoxicol (qn)	5.40	297.1	269.0	40	10	29	16
Aflatoxicol (ql)	5.40	297.1	114.9	40	10	81	12
Aflatoxicol (ql2)	5.40	297.1	141.0	40	10	65	14
Aflatoxin P ₁ (qn)	4.20	299.0	271.0	40	10	33	18
Aflatoxin P ₁ (ql1)	4.20	299.0	114.9	40	10	71	12
Aflatoxin P ₁ (ql2)	4.20	299.0	90.9	40	10	67	10
Aflatoxin M ₁ (qn)	3.84	328.9	272.9	40	10	33	18
Aflatoxin M ₁ (ql)	3.84	328.9	229.0	40	10	55	16
Aflatoxin Q ₁ (qn)	3.70	329.1	310.8	40	10	29	16
Aflatoxin Q₁ (ql)	3.70	329.1	177.0	40	10	45	22
Aflatoxin Q₁ (ql2)	3.70	329.1	128.0	40	10	67	14

qn: quantifier ions. ql: qualifier ions

Table S3
Recovery of the mycotoxins in the different matrices (substrate, residual material) analysed

Compound	AFB_1	AFB_2	AFG_1	AFG_2	AFL	AFP_1	AFM_1	AFQ ₁
Substrate	94%	100%	99%	106%	104%	94%	103%	103%
Residual material	81%	81%	88%	86%	90%	89%	73%	76%

Table S4 Limit of detection (LOD) and limit of quantification (LOQ) ($\mu g/kg$) per mycotoxin in the different matrices

Compou	ınd	AFB ₁	AFB_2	AFG ₁	AFG_2	AFP ₁	AFQ ₁	AFL	AFM ₁
Cubstrata	LOD	< 0.24	0.13	0.08	0.07	0.28	0.26	0.38	0.38
Substrate	LOQ	< 0.24	0.26	0.12	0.37	0.94	0.85	1.27	0.85
Daoidua	LOD	< 0.24	0.16	0.09	0.09	0.3	0.35	0.44	0.54
Residue	LOQ	< 0.24	0.33	0.14	0.46	0.99	1.16	1.47	1.21

Table S5 Overview of aflatoxin concentration ($\mu g/kg$) in the experimental diets

Compound	AFB ₁	AFB ₂	AFG ₁	AFG ₂	AFL	AFP ₁	AFM ₁	AFQ ₁
Control 1	nd	nd	nd	nd	nd	nd	nd	nd
Control 2	nd	nd	nd	nd	nd	nd	nd	nd
Control 3	nd	nd	nd	nd	nd	nd	nd	nd
Control 4	nd	nd	nd	nd	nd	nd	nd	nd
AFB ₁ 1	19.47	nd	nd	nd	nd	nd	nd	nd
AFB ₁ 2	20.12	nd	nd	nd	nd	nd	nd	nd
AFB ₁ 3	19.58	nd	nd	nd	nd	nd	nd	nd
AFB ₁ 4	21.80	nd	nd	nd	nd	nd	nd	nd
AFB ₁ 5	19.26	nd	nd	nd	nd	nd	nd	nd
AFB₁6	20.16	nd	nd	nd	nd	nd	nd	nd
AFB ₁ 7	18.73	nd	nd	nd	nd	nd	nd	nd
AFB ₁ 8	18.54	nd	nd	nd	nd	nd	nd	nd

nd: not detected

Table S6
Survival and biomass (n=4) after 7 days of exposure to a control or AFB₁-contaminated diet

Treatment	Survival BSFL (%)	Biomass BSFL (mg)
Control 1	94.00	141.41
Control 2	99.00	151.08
Control 3	93.00	138.52
Control 4	90.00	125.04
AFB ₁ 1	93.00	128.55
AFB ₁ 2	91.00	135.02
AFB ₁ 3	88.00	142.53
AFB ₁ 4	90.00	143.03

Table S7
Larval biomass of samples collected for RNASeq experiment (DOL is day-old-larvae). Calculated average individual larval biomass (mg)

Treatment	5DOL	5DOL + 6h	6DOL	8DOL	11DOL
Control 1	22.25	25.90	54.60	130.00	141.41
Control 2	22.65	20.75	37.15	92.80	151.08
Control 3	22.30	27.05	37.55	118.65	138.52
Control 4	22.46	23.65	44.20	116.30	125.04
AFB ₁ 1	22.18	42.70	70.65	131.25	128.55
AFB ₁ 2	22.34	27.50	47.65	101.45	135.02
AFB ₁ 3	22.40	27.20	59.20	96.70	142.53
AFB ₁ 4	22.72	17.65	70.25	112.80	143.02

Biomass of 5DOL + 6h, 6DOL and 8DOL are based on the biomass of n=2 larvae per replicate.

Table S8
List of genes affected (significantly up- or down-regulated) by AFB₁ feeding

Time	Gene	log ₂ FC	Gene name	Function	Citation
6 h	LOC119646754	5.09	cytochrome P450 6a14	Xenobiotic detoxification	Berenbaum et al. (2021); Esteves et al. (2021); Liu et al. (2019a); Niu et al. (2008); Wamba et al. (2021); Wu et al. (2023); Zeng et al. (2007)
	LOC119660404	4.25	glycine N- methyltransferase	AFB(1) binds to the S- adenosylmethionin e binding domain of GNMT Controls DNA methylation and epigenetic modulation of carcinogenic pathways in mice. GNMT knockout increases hepatocarcinoma susceptibility in mice	Liu et al. (2011); Martínez-Chantar et al. (2008); Yen et al. (2009)
	LOC119661368	3.52	juvenile hormone epoxide hydrolase 1	Coexpression of mEH with CYP resulted in significant decreases in measurements of AFB ₁ genotoxicity Mitigate carcinogenic effects of AFB ₁ in Saccharomyces cerevisiae model.	Kelly <i>et al.</i> (2002)
	LOC119648746	3.48	glutathione S- transferase 1	Modulates mercapturic acid pathways through conjugation	Cooper and Hanigan (2018)
	LOC119649556	2.75	aldo-keto reductase family 1 member B1	Converts protein- binding dialdehyde form of AFB ₁ - dihydrodiol to the nonbinding	Abraham et al. (2022); Barski et al. (2008); He et al. (2017); Knight et al. (1999);

			dialcohol metabolite. Oxidation of DON into 3-oxo-DON Modulates lipid synthesis, mitochondrial function and cellular apoptosis.	Wang <i>et al.</i> (2009)
LOC119651599	2.28	inosine triphosphate pyrophosphatase	Prevent incorporation of noncanonical purine nucleotides into DNA and RNA	Menezes <i>et al.</i> (2012)
LOC119646904	-28.35	glycine-rich protein DOT1	Dual function: Wing development and antimicrobial peptide activity	Baumann et al. (2010); Lorenzini et al. (2003); Zhong et al. (2006)
LOC119658421	-27.60	histidine-rich glycoprotein	regulate numerous important biologic processes, such as immune complex/necrotic cell/pathogen clearance, cell adhesion, angiogenesis, coagulation, and fibrinolysis	Poon <i>et al.</i> (2011)
LOC119651612	-16.57	mantle protein		
LOC119657463	-11.55	pupal cuticle protein	Role in development and reproduction ZEA induced- toxicity blocks collagen processing and cuticle formation	Yang <i>et al.</i> (2018)
LOC119659626	-9.24	chymotrypsin-2	Serine protease involved in proteolysis	
LOC119654864	-8.17	lipase 3	Reduced lipase activity in broilers during aflatoxicosis	Osborne and Hamilton (1981)

-					
				In this case,	
				downregulation	
				suggests trade-off	
				with other	
				processes.	
				After proteolytic	
				cleavage, acts a	
				ligand for Toll	
				receptor that is	
	LOC119647198	-7.35	protein spaetzle 4	involved in	Jang <i>et al.</i> (2006)
	100113047138	-7.33	protein spactzie 4	immunity	Jang et al. (2000)
				responses	
				Modulates innate	
				immunity	
				responses	
	LOC119658699	-6.03	phenoloxidase 2		Dowd (1999)
				Mediates gut	
				symbiosis and	
				tracheal network	
				stability in Riptortus	Huang et al.
	LOC119652329	-2.66	dual oxidase	pedestris	(2020); Jang et al.
				Regulates intestinal	(2021)
				bacterial	
				homeostasis in	
				Hermetia illucens	
24 h				Hydrolysed OTA	
	LOC119658527	6.04	carboxypeptidase	into non-toxic ΟΤα	Chang et al.
			В	and L- phenylalanine	(2015)
	LOC119646979	4.52	cytochrome b5	prierrylaiariirie	Berenbaum <i>et al.</i>
	100113040373	4.32	cytochrome P450		(2021); Dunkov <i>et</i>
	LOC119646754	3.55	6a14	Processing of	al. (1997); Elzaki
			0814	xenobiotic	et al. (2019);
	LOC119648928	3.19	cytochrome P450	compounds	Saner et al.
	100113040320	3.13	6a13		(1996)
				Conserved across	/
				multiple kingdoms	
				Phase II	
				detoxification	
				enzyme	
				Improves resistance	Bock (2016);
			LIDD	against DON and	Khairullina et al.
	100110640944	2 27	UDP-	NIV	(2022); Pan et al.
	LOC119649844	2.27	glucosyltransferas e 2	Convert	(2020);
			e z	zearalenone into	Poppenberger et
				ZEN-4-O-glucoside	al. (2006)
				Improves resistance	
				against	
				spirotetramat in	
				Aphis gossypii	
				Glover	

	LOC119646589	2.19	juvenile hormone epoxide hydrolase 1		
	LOC119649056	-26.71	cuticle protein 16.5		
	LOC119659626	-16.15	chymotrypsin-2		
	LOC119658421	-15.33	histidine-rich glycoprotein	Antifungal activity conferring innate immunity	Poon et al. (2011); Rydengård et al. (2008)
	LOC119646904	-14.53	glycine-rich protein DOT1	In Sorghum, generates innate immune response upon biotic stress Antimicrobial activity	Halder <i>et al.</i> (2019)
	LOC119657474	-11.62	ctenidin-1-like	Antimicrobial peptide from spider haemocyteS	Baumann <i>et al.</i> (2010)
	LOC119657650	-5.58	cecropin-like peptide 1	Confers immunity against Gram negative bacteria	
72 h	LOC119647513	6.63	esterase E4-like	Increases insecticide resistance in Myzus persicae Increased pesticide resistance in Sitobion avenae Fabricius	Blackman <i>et al.</i> (1996); Field and Devonshire (1998); Li <i>et al.</i> (2007); Zhan <i>et al.</i> (2020)
	LOC119658527	6.35	carboxypeptidase B	Degradation and detoxification of OTA	Chang <i>et al.</i> (2015)
	LOC119657973	5.30	cytochrome P450 307a1		
	LOC119654998	4.94	cytochrome P450 307a1		
	LOC119649263	2.82	glutathione S- transferase 1		
	LOC119661114	2.78	cytochrome P450 CYP12A2		
	LOC119657136	2.29	cytochrome P450 CYP12A2		
	LOC119656501	2.17	cytochrome P450 4d14		
	LOC119657225	-16.61	endocuticle structural glycoprotein SgAbd-1	Responsible for endocuticle formation	Ye <i>et al.</i> (2021)

			Glycine-rich	
			antimicrobial	
			peptide from	
			tarantula spider	
			Acanthoscurria	
			gomesian	
100440057545	12.61		-	Lorenzini <i>et al.</i>
LOC119657545	-12.61	acanthoscurrin-1	expressed in	•
			haemocytes and released to plasma following an	
			immune challenge	
			with <i>E. coli</i> and <i>M.</i>	
			luteus	
100110640056	-11.09	cuticle protein	Cuticle formation	
LOC119649056	-11.09	16.5	and development	
LOC119657474	-10.85	ctenidin-1		
100440657500	4.01	cecropin-like		
LOC119657589	-4.91	peptide 1		

Table S9
Genes distinctly upregulated at two distinct timepoints

Common timepoints	Gene ID	Gene Name	log ₂ FC	Function
6 / 24 h	LOC119646754	cytochrome P450 6a14	5.09 / 3.55	Detoxification of xenobiotic compounds (Berenbaum <i>et al.</i> 2021)
	LOC119653112	uncharacterized LOC119653112	4.79 / 4.29	
	LOC119653108	uncharacterized LOC119653108	4.57 / 3.52	
	LOC119653109	uncharacterized LOC119653109	3.57 / 3.81	
	LOC119660515	fatty acid-binding protein	2.88 / 2.66	Iwashita and Nagashima (2011)
	LOC119661115	PI-stichotoxin- She2a-like	2.75 / 3.04	Homologous to Kunitz-type serine protease inhibitors (Madio et al. 2019) Serine protease inhibits chymotrypsin, trypsin and pepsin enzyme (Park et al. 2005)
	LOC119657935	ring canal kelch homolog	2.34 / 2.30	Maintain cytoplasm transport and ring canal organization during oogenesis in <i>Drosophila</i> (Robinson and Cooley 1997)
	LOC119646589	juvenile hormone epoxide hydrolase 1	2.24 / 2.19	Catalyses the addition of water to epoxides and arene oxides to give vicinal diol products (Tzeng <i>et al.</i> 1996)
24 / 72 h	LOC119657336	extensin-3	7.36 / 6.73	
	LOC119658527	carboxypeptidase B	6.04 / 6.35	Degradation of ochratoxin A by carboxypeptidase A and engineered carboxypeptidase (Chang et al. 2015; Hu et al. 2018)
	LOC119661758	uncharacterized LOC119661758	4.17 / 4.66	
	LOC119659847	uncharacterized LOC119659847	2.73 / 3.85	
6 / 72 h	LOC119659392	uncharacterized LOC119659392	2.45 / 3.01	

Top and bottom loadings of PC1

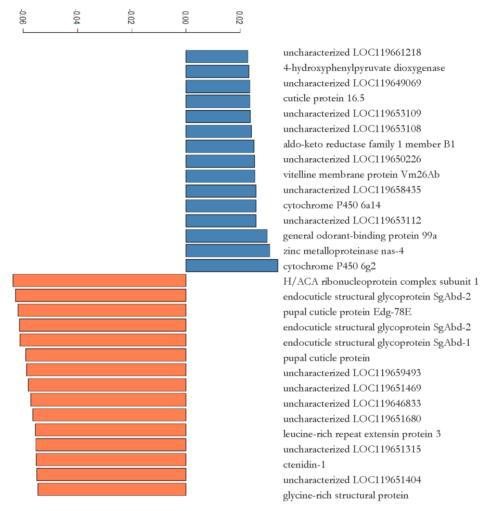
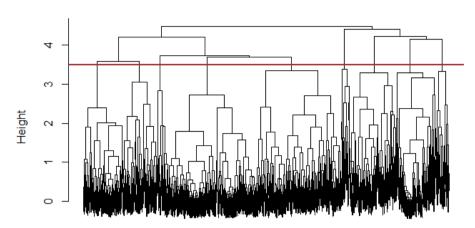



Figure S1 Genes contributing to top (*i.e.* positive axis, in blue) and bottom (*i.e.* negative axis, in orange) loadings of PC1 axis of PCA plot

Cluster Dendrogram

gene_dist hclust (*, "complete")

Figure S2 Hierarchical clustering of DEGs into nine clusters.

Chapter 7

Conversion of aflatoxin-contaminated groundnut (Arachis hypogaea L.) press cake by larvae of black soldier fly Hermetia illucens results in a complete mass balance for aflatoxin B₁

Kelly Niermans^{1,2}, Seppe P. Salari³, John Carney^{4,5}, Elise F. Hoek-van den Hil², H.J. (Ine) van der Fels-Klerx², Joop J.A. van Loon¹

¹Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; ²Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands; ³InsectoCycle, Bronland 10, 6708 WH Wageningen, the Netherlands; ⁴Mars, Incorporated, McLean, VA 22101, USA, john.carney@effem.com; ⁵JMC Consulting, Portland, OR 972229, USA

Submitted

Abstract

Groundnuts (*Arachis hypogaea* L.) are considered as one of the most important cultivated food crops globally. They are especially valued for their protein and fat content and therefore play an important role in food security and traditional cuisines. Groundnuts are used for vegetative oil production, which generate a variety of by-products, such as peanut press cake (PPC) which consists of the solids remaining after pressing. Groundnuts are sensitive to infection with aflatoxigenic fungi during production. Aflatoxins are highly toxic to both humans and livestock, and contaminated crops containing aflatoxin concentrations above a legal maximum are deemed unsafe for consumption and trade. Innovative aflatoxin management strategies are needed and the insect production sector could possibly offer one of these solutions.

In the current study, larvae of the black soldier fly (BSFL; Hermetia illucens L.) were exposed to a PPC diet naturally contaminated with aflatoxins. After an exposure lasting eleven days, data on larval survival and biomass were collected. The PPC, BSFL and the residual material were analysed by LC-MS/MS to determine the concentration of eight different aflatoxins and known metabolites. Additionally, a bio-accumulation factor and a molar mass balance were calculated. BSFL survival and biomass were not affected by exposure to the aflatoxin-contaminated PPC diet. The aflatoxins did not accumulate in the insect body, which provides a promising outlook for the safety of rearing insects on aflatoxin contaminated PPC with the purpose of using them as foodand/or feed. Aflatoxin B₁ (AFB₁) was the dominant compound found in PPC. Formation of aflatoxicol, aflatoxin P₁ and aflatoxin M₁ occurred and taking these metabolites into account, a complete molar mass balance, thus full recovery, for AFB1 was obtained. This result differs from previous studies using artificially spiked substrates in which 17-38% was recovered. According to our knowledge, this is the first study that documents complete recovery of AFB₁ after bioconversion. This finding calls for additional studies comparing naturally contaminated with artificially spiked feedstuff to establish if the assumption that artificial spiking is representative for natural contamination is valid.

Introduction

Groundnuts, also known as peanuts (*Arachis hypogaea* L.), belong to the most valued cultivated food crops worldwide. Groundnuts are especially valued as a source of protein, fat, and energy and play an important role in food security (Asare Bediako *et al.* 2019), the elimination of malnutrition (Guimón and Guimón 2012) and are a common ingredient in traditional cuisines (Kaaya *et al.* 2006; Nugraha *et al.* 2018). Additionally, groundnuts are an important incomegenerating commodity for many smallholder farmers in especially sub-Saharan Africa and Asia (Diop *et al.* 2004). Commercially, groundnuts are used for oil production, but apart from oil, groundnuts are also used as confections for the production of peanut butter and as ingredient in drinks, soups, and desserts (Arya *et al.* 2016). A major by-product during oil production is

peanut press cake (PPC), which is a product composed of the solids remaining after groundnuts have been pressed to collect the oil (Zhao *et al.* 2015).

Groundnut cultivation faces numerous challenges such as drought, infection of the plants by diseases and pest infestations. Plant stress induced by drought, high soil temperatures, and damage caused by insect feeding might lead to the invasion of aflatoxigenic fungi (Torres et al. 2014). Aflatoxin contamination following fungal infection is influenced by a variety of intrinsic, extrinsic and processing factors at both the pre- and post-harvest stage (Asare Bediako et al. 2019). Aflatoxin contamination is found in many regions around the world, but is especially prominent in many tropical and subtropical regions as climate conditions in these regions (temperature and humidity) are optimal for fungal growth and aflatoxin production (Adetunji et al. 2021; Kamika et al. 2014).

Aflatoxins are highly toxic and cause disease in humans and livestock (Lien *et al.* 2019). The International Agency for Research on Cancer (IARC) concluded that aflatoxin B₁ (AFB₁) should be considered as a Group 1 carcinogen producing liver cancer in humans (IARC 1993). Acute aflatoxicosis, caused by the consumption of moderate to high levels of aflatoxins, can cause haemorrhage, acute liver damage, and death (Bbosa *et al.* 2013b). Outbreaks of human illness caused by aflatoxins have been occurring worldwide, and the outbreak of aflatoxin poisoning in the Eastern and Central province of Kenya during January-July 2004 is just one example (CDC 2004; Lewis *et al.* 2005). More commonly, chronic subacute exposure to aflatoxins occurs (Kaaya *et al.* 2006). Chronic aflatoxicosis has been reported to cause an impaired immune function (Zain 2011), stunted growth in children, and the development of hepatocellular carcinomas, amongst others (Bbosa *et al.* 2013b; Meijer *et al.* 2021b). Besides the effects aflatoxin exposure has on humans, aflatoxin contamination has been linked to increased mortality of farm animals as well (Cao *et al.* 2022; Zain 2011).

The above mentioned health effects resulting from aflatoxin exposure make aflatoxin-contaminated crops less valuable and considered as unsafe for consumption and trade and as a consequence cannot enter the food chain. Consequently, many countries have set maximum levels (ML) of total aflatoxin in groundnut- or groundnut products intended for human and animal consumption, preventing entrance to international markets (Asare Bediako *et al.* 2019). Worldwide, the MLs set for aflatoxins for human consumption range from 4 to 30 μ g/kg (Udomkun *et al.* 2017). The European Union (EU) has set the ML for the presence of aflatoxins (sum of AFB₁, B₂, G₁ and G₂) in groundnuts directly suitable for human consumption at 4 μ g/kg (EC 2006c) and the ML for AFB₁ in all feed materials at 20 μ g/kg (EC 2002a).

Aflatoxin concentrations in groundnut (products), in reality often exceeds the set MLs (Adetunji *et al.* 2021). Lien *et al.* (2019) collected 1089 samples of groundnut and groundnut products (candy, butter, etc.), originating from a variety of countries, of which 25% tested positive for

aflatoxins (Lien *et al.* 2019). Different levels of AFB₁, AFB₂, AFG₁ and AFG₂ were also detected in groundnut (product) samples in a variety of African counties. Aflatoxins were found in almost 50% of the samples from Southern African counties, while the majority (almost 100%) of the groundnut samples from West African States were contaminated (Adetunji *et al.*). Total aflatoxin concentrations in groundnut originating from Botswana and Zimbabwe ranged from 12 to 329 μ g/kg (Mphande *et al.* 2004) and 9 to 698 μ g/kg (Maringe *et al.* 2017), respectively. Total aflatoxin concentrations in raw groundnuts originating from the Democratic Republic of Congo varied from 2 to 1258 μ g/kg (Kamika *et al.* 2014). The AFB₁ concentration in peanut (products) collected in Indonesia varied from 0 (below limit of detection) to 357 μ g/kg (Nugraha *et al.* 2018).

As a result innovative aflatoxin management strategies are needed (Udomkun *et al.* 2017) and the insect production sector could possibly offer such a strategy (*Chapter 2*; Niermans *et al.* 2021). Multiple studies have shown that vital biological variables, *i.e.* growth and survival, of black soldier fly larvae (BSFL; *Hermetia illucens* L.) fed on an aflatoxin-contaminated diet are not affected at all (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 4*; Meijer *et al.* 2019; Niermans et al. 2023b). These studies also showed that aflatoxin breakdown and metabolism in insects occur, and that AFB₁ and its related metabolites were mostly absent from the insects themselves. Studies like these were mostly performed with aflatoxin-spiked materials in a laboratory setting, but it is essential to study what happens when the BSFL are exposed to naturally contaminated materials. This study aimed to determine the fate of aflatoxins in BSFL fed on a diet of PPC that was naturally contaminated with aflatoxins. Secondary aims were to investigate if aflatoxin-contaminated PPC could serve as a suitable substrate for rearing BSFL as a safe source of insect protein.

Materials and methods

Experimental set-up

In this experiment, BSFL (originating from the colony of InsectoCycle, Wageningen, the Netherlands) were fed on either a control PPC diet or on a naturally aflatoxin-contaminated PPC diet. The final BSFL feed consisted of either clean- or aflatoxin-contaminated PPC (35%) and water (65%).

One-hundred individual five-day-old BSFL (average individual starting live weight 2,8 mg) were placed on 265 g of the prepared feed in a ventilated rearing container (2x3 raster size, 14.9 x 9.7 x 5.9 cm, Auer packaging, Schiphol-rijk, the Netherlands), and placed in a climate chamber at 28 \pm 1°C, 60% relative humidity and a day/night rhythm of 12/12 h. Exposure was performed in triplicate for the control PPC treatment and with six replicates for the contaminated PPC treatment. The water content of the PPC diet was kept at 65% by adding water on a regular basis during the experiment. Exposure ended after eleven days and BSFL were separated from the residual material (left over substrate and frass) manually. No gut cleaning step *e.g.* transfer to

clean feed was implemented after harvesting, and BSFL were neither washed nor dried after harvesting. Sample material of both the larvae and the residual material was collected, placed in plastic bags, and frozen at -18°C until analyses.

Chemicals and standards

Mycotoxin standards were purchased from Romer Labs (Getzersdorf, Austria): aflatoxin B_1 (AFB₁), aflatoxin B_2 (AFB₂), aflatoxin G_1 (AFG₁) and aflatoxin G_2 (AFG₂), aflatoxin M_1 (AFM₁); Enzo Life Sciences (Brussels, Belgium): aflatoxicol (AFL) and TRC (Toronto, ON, Canada): aflatoxin P_1 (AFP₁) and aflatoxin Q_1 (AFQ₁).

Extraction procedure

In order to obtain a fine powder, frozen BSFL were grinded under liquid nitrogen. The powder was stored at -80°C until analyses. No pre-treatment was performed on the substrate- and residual material. Extractions were performed as described by Camenzuli *et al.* (2018) and were based on an in-house method from Wageningen Food Safety Research which is validated according to SANTE/12682/2019 (EC 2019b). Extractions were done with 1 g of larval sample and the extraction procedure was adjusted accordingly. After extraction, each extract was prepared with- and without the addition of a standard mix containing AFB₁, AFB₂, AFG₁, AFG₂, AFL, AFP₁, AFM₁ and AFQ₁. The preparation without standard addition was as follows; 200 μ L sample extract was mixed with 200 μ L water in a syringeless PTFE filter vial (Mini-UniPrep, Whatman, Marlborough, MA). For the extracts with standard addition, 200 μ L of sample extract was added together with 190 μ L water and 10 μ L of the standard mix in a second syringeless PTFE filter vial (Mini-UniPrep, Whatman, Marlborough, MA). The files were capped, vortexed and placed in the refrigerator for 30 min. After 30 min the vials were closed and stored at 4°C until LC-MS/MS analyses.

LC-MS/MS analyses

The LC-MS/MS system, the process of LC-MS/MS analyses, LC separation, eluents used and the conditions set for electrospray ionization were performed as described in *Chapter 4* (Niermans *et al.* 2023b) except that, in the current study, analyses were solely performed in positive ESI mode (instrumental MS/MS parameters of the mycotoxins analysed are shown in Table S1).

Data analyses

The data on growth and biomass of the BSFL, collected after eleven days of exposure, was analysed with a Mann-Whitney test with a significance level (α) of 0.05 (GraphPad Prism v4). LC-MS/MS data was analysed with SCIEX OS-MQ v2.1.6 software (Sciex, Framingham, MA). Peaks were identified as based on criteria for identification and recovery mentioned in SANTE/12682/2019 (EC 2019b). Analysed concentrations were corrected for recovery

percentages (EC 2006a) of their respective aflatoxin or known metabolites. The recovery percentages can be found in Table S2. Concentrations were calculated by dividing the peak area of the sample by the area of the sample with standard addition minus the peak area of the sample, and multiplied by the addition level of the respective mycotoxin. A limit of detection (LOD) and limit of quantification (LOQ) of each aflatoxin and metabolite were determined based on a calibration in solvent and adjusted for the recovery (%) of the respective matrices (Table S3). The LOD was determined as the lowest concentration that complied with the following criteria: retention time (r_t) may not deviate more than \pm 0.1 min relative to the retention time as measured in the standard solution, ion ratio should be within ± 30% of the average ion ratio of the standard solution and the signal to noise ratio (S/N) should be \geq 3. The LOQ was determined following the same criteria but the S/N had to be \geq 10. For further analyses, mycotoxin (metabolite) concentrations below the LOQ were set at 0 as these values are not considered suitable for use in calculations. Replicate 2 was analysed in triplicate as during the first analysis the AFB1 concentration was outside of the quantification range. The average concentration of the second and third analysis was used as the concentration of replicate 2. Sample homogeneity was determined by calculating the relative standard deviation for the aflatoxin concentration in the PPC diets (n=6). A molar mass balance was calculated as described in Chapter 3 (Niermans et al. 2023a), and was done for the average concentrations determined over the replicates (n=6) The molecular weight of the aflatoxins used for these calculations are shown in Table S4. Figures were made in GraphPad Prism v4.

Results

Larval survival and biomass

The average survival of the BSFL varied from 90 to 93% in the PPC control diets and between 89 and 97% in the contaminated PPC diet. Although variation was higher as compared to the control diet, feeding BSFL an aflatoxin contaminated PPC diet did not significantly affect survival. The average individual larval biomass varied between 0.20 and 0.23 g for the control diet and between 0.20 and 0.24 g for the contaminated diets and did not differ significantly between the two diets.

Aflatoxin bioaccumulation and metabolism

The PPC control samples contained low aflatoxin concentrations of around $1.02 \pm 0.66 \,\mu g/kg$ AFB₁ and $0.28 \pm 0.13 \,\mu g/kg$ AFG₁. The contaminated PPC diets contained more than 10 times higher concentrations of AFB₁ ($14.66 \pm 5.28 \,\mu g/kg$) and four times higher concentrations of AFG₁ ($1.14 \pm 0.50 \,\mu g/kg$) than the control diets. Additionally AFB₂, AFG₂, and AFM₁ were detected in the contaminated PPC diet (Table 1). The contaminated PPC samples exhibited considerable variation in concentration indicating heterogeneity in aflatoxin distribution in the substrate. The

relative standard deviation of the aflatoxin (AFB₁, AFB₂, and AFG₁) concentration in the PPC varied between 36% and 61%.

Table 1. Average and standard deviation (SD) of the aflatoxin concentrations (in $\mu g/kg$) in the PPC diet, BSFL and residual samples after eleven days of feeding on either the control or aflatoxin-contaminated (cont.) diet

	AFB	1	AFB	2	AFG	ì ₁	AFG	2
Sample Name	Average	SD	Average	SD	Average	SD	Average	SD
PPC control	1.02	0.66	0.11	0.19	0.28	0.13	< LOQ	-
PPC aflatoxin- cont.	14.66	5.28	3.44	2.09	1.14	0.50	0.12 1	-
BSFL control	0.85	1.26	< LOQ	-	< LOQ	-	< LOQ	-
BSFL aflatoxin- cont.	0.46	0.31	< LOQ	-	< LOQ	-	< LOQ	=
Residue control	5.79	5.94	0.73	0.25	0.45	0.08	< LOQ	-
Residue aflatoxin-cont.	14.61	4.64	2.77	0.85	1.09	0.62	< LOQ	-

	AFL		AFP	1	AFN	11	AFQ	.1
Sample Name	Average	SD	Average	SD	Average	SD	Average	SD
PPC control	< LOQ	-	< LOQ	-	< LOQ	-	< LOQ	-
PPC aflatoxin- cont.	< LOQ	-	< LOQ	-	0.27 ¹	-	< LOQ	-
BSFL control	< LOQ	-	< LOQ	-	< LOQ	-	< LOQ	-
BSFL aflatoxin- cont.	< LOQ	-	< LOQ	-	< LOQ	-	< LOQ	-
Residue control	< LOQ	-	2.83	1.09	< LOQ	-	< LOQ	-
Residue aflatoxin-cont.	0.69	0.77	2.43	0.55	0.69	0.55	< LOQ	-

< LOQ: concentrations in all replicates of the control (n=3) or contaminated (n=6) diet were below the limit of quantification. ¹ Detected in only one of the replicates. Residue: residual material. An overview of the aflatoxin concentrations per replicate can be found in Table S5.

In BSFL fed contaminated PPC a concentration of AFB $_1$ 0.46 \pm 0.31 $\mu g/kg$ was found. None of the other aflatoxins or metabolites were detected in quantifiable concentrations in the BSFL. The levels of AFB $_1$ found in the larvae are lower than the levels found in the substrate, demonstrating that no bioaccumulation occurred.

The average calculated molar mass balance for the total aflatoxins was $99 \pm 26\%$, indicating a full recovery of the initially present amounts of aflatoxins (Figure 1).

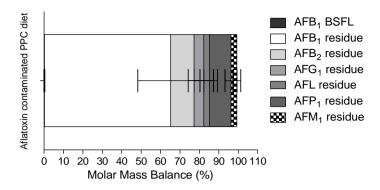


Figure 1. Molar mass balance of the aflatoxins for BSFL fed on a aflatoxin-contaminated diet. Error bars represent the SD as a measure of variability between the replicates (n=6). Residue: residual material. An overview of the average contribution of the aflatoxins to the overall molar mass balance can be found in Table S6.

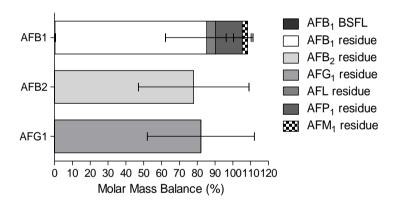


Figure 2. Molar mass balance of AFB1 and its related metabolites, AFB2 and AFG1 for BSFL fed on a aflatoxin contaminated diet. Error bars represent the SD as a measure of variability between the replicates (n=6). Residue: residual material.

Based on their chemical structure, aflatoxins are considered difuranocoumarin derivatives, and can be divided into two chemical series: 1) difurocoumarocyclopentenone: AFB₁, AFB₂, AFM₁, AFL; and 2) difurocoumarolactone: AFG₁ and AFG₂ (Bbosa *et al.* 2013a). Aflatoxins from the B-group are generally not precursors of the G-group aflatoxins, however, aflatoxins from both groups can be independently produced by fungi in the same substrate (Yabe *et al.* 1999). Additionally, AFB₂ is in general not considered as a metabolic product of AFB₁ (Bbosa *et al.* 2013a); we therefore considered it relevant to separate the contribution of the aflatoxins. This separation resulted in a molar mass balance of 108 ± 29% for AFB₁ and its related metabolites,

and $78 \pm 31\%$ for AFB₂, while this was $82 \pm 30\%$ for AFG₁ (Figure 2).AFB₁ metabolism seems to occur after ingestion of PPC by BSFL as the initial presence of AFB₁, and AFM₁ in the contaminated PPC resulted in the presence of AFB₁, AFL, AFP₁ and AFM₁ in the contaminated PPC residual material. AFQ₁ was not found in any of the materials. Taking the metabolites into account, a full recovery of AFB₁ was found.

Discussion

In the current study AFB₁ was detected in a low concentration in BSFL, but AFB₁ was either not detected in concentrations above the LOD (Bosch *et al.* 2017), LOQ (Camenzuli *et al.* 2018) or had a bioaccumulation factor of zero (*Chapter 4*; Niermans *et al.* 2023b) in previously conducted studies (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 4*; Niermans *et al.* 2023b). The difference between our findings and previous study results can be explained by the fact that in the current study, BSFL were not presented clean feed after feeding on the PPC diets, to allow gut cleaning, and were not washed after harvesting. Possibly, the small amount of AFB₁ detected in the larval material resulted from the presence of contaminated material in their gut, or on their cuticle. The concentration of AFB₁ detected in the larval materials was, however, far below the ML of AFB₁ (20 μ g/kg) in all feed materials for animal feed mentioned in the EU Directive 2002/32/EC (EC 2002a).

In this study, the aflatoxins AFB2, AFG1, AFG2 (one replicate), AFL, AFP1 and AFM1 were detected in the residual material. AFP1, AFQ1 and AFL are not mentioned in any of the food and feed related regulations. Therefore, they are often exempt from (routine) analyses and not included in the analyses reported in the literature. In some of the residual material of BSFL fed an AFB1 contaminated diet a signal (above the LOQ) for AFP₁ was detected, but this signal could not be expressed in concentrations due to matrix interferences (Camenzuli et al. 2018). Also, AFL was detected in the residual material of substrates spiked with high concentrations of AFB₁ (Camenzuli et al. 2018). Furthermore, a recently conducted study also showed the formation of AFP₁ after feeding BSFL on an AFB₁ spiked diet (*Chapter 4*; Niermans *et al.* 2023b). AFM₁ was also detected in the residual material in the current study, which is interesting as AFM1 is a hydroxylated metabolite of AFB1 and is mainly found in milk or milk products obtained from livestock that have ingested contaminated feed (Akinyemi et al. 2022; Tozzi et al. 2016). Other studies also detected AFM₁ in groundnut (product) samples (Campbell et al. 2017; Huang et al. 2010), and very low concentrations of AFM₁ were also detected in the residual material of Alphitobius diaperinus Panzer larvae after being fed an AFB1 contaminated diet (Camenzuli et al. 2018). Overall, the formation of the AFB₁ metabolite AFP₁ has been observed in BSFL feeding studies with spiked (Camenzuli et al. 2018; Chapter 4; Niermans et al. 2023b) as well as naturally contaminated material (current study). It therefore seems that AFP1 is a BSFL-specific metabolite either formed by larval CYP enzymes or larval microbiota. On the other hand, this is the first time that AFM₁ is found in a study where BSFL were fed an AFB₁ contaminated diet. AFM₁ was previously detected in other groundnut (product) samples, which might indicate that its formation is initiated by the microorganisms present in the groundnut substrate.

The molar mass balance calculated in the current study indicated a complete recovery (99 \pm 26%) of the initially present aflatoxins, however, variation between the replicates was high. This finding is in contrast with previous reports in which AFB₁ mass balances indicated an unrecovered fraction of > 83% (Bosch et al. 2017; Camenzuli et al. 2018). The calculated molar mass balance in another study with spiked AFB₁ indicated a missing fraction of 38% (Chapter 4; Niermans et al. 2023b), which is higher, but more in line with the current study when taking the observed variation into account. Data from the current study indicates a difference between aflatoxin mass balances when BSFL were fed a spiked or a naturally contaminated diet. It therefore seems relevant to investigate whether this difference is systematic. Additionally, the current study showed that, when calculating a molar mass balance for the aflatoxins AFB₁, AFB₂ and AFG₁ separately, a small (< 22%) missing fraction, and a big variation between the replicate samples was found for AFB2 and AFG1, while the mass balance of AFB1 was complete. Previous studies (Bosch et al. 2017; Camenzuli et al. 2018; Chapter 4; Niermans et al. 2023b) only performed (molar) mass balance calculations for diets spiked with AFB₁. So far, no spiking studies with other aflatoxins (AFB2, AFG1, AFG2) were performed. Based on the results of the current study, it seems that (almost) no metabolism of these aflatoxins takes place. In view of the small number of studies performed thus far, additional research is warranted.

To our knowledge, no studies in which BSFL were fed a diet naturally contaminated with aflatoxins has been performed before, but such studies that calculated mass balances are available for either other insect species or other mycotoxins. In one study, BSFL were fed a diet which was naturally contaminated with other mycotoxins (Leni et al. 2019). The latter authors fed BSFL on a diet of corn distillate residues naturally contaminated with deoxynivalenol (DON), fumonisin B₁ (FB₁) and fumonisin B₂ (FB₂), and calculated a mass balance of 81% for DON and 72% for FB₁. When comparing this to the spiked situation, a much lower mass balance (39%) was calculated when BSFL were fed on a diet in which DON was spiked at a level of 1x the guidance value (GV) set for animal feed (Camenzuli et al. 2018; EC 2006b). However, when DON was spiked at the same concentration but the diet also contained spiked concentrations of AFB₁, ochratoxin A (OTA) and zearalenone (ZEN) a mass balance of 80% was calculated (Camenzuli et al. 2018). Another study calculated a molar mass balance for FB₁, spiked at a level of 0.1x the GV set for animal feed (EC 2006b), of 72%, which is the same as calculated in the above mentioned study (Chapter 4; Niermans et al. 2023b). Based on the previously mentioned data it seems that mycotoxin recovery based on mass balance calculation is affected by the specific mycotoxin and by the type of contamination, i.e., naturally contaminated or spiked. Furthermore, these results indicate a possible effect of the type of diet on the mass balance and the possibility for insects to metabolise or excrete mycotoxins. Different feed substrates also contain different

microorganisms (bacteria, fungi, yeasts) and the role of these substrate-specific microorganisms in, for example, AFB₁ degradation/metabolism needs to be further studied.

It is known that cytochrome P450 monooxygenase enzymes play an important role in AFB $_1$ metabolism (Bbosa $et\ al.\ 2013a$), and their role in mycotoxin metabolism in a variety of insects has also been demonstrated (Berenbaum $et\ al.\ 2021$). Interactions between enzymes, e.g. (competitive) inhibition, could occur (Korzekwa 2014) resulting in competition for metabolism when multiple mycotoxins are present in the substrate (naturally contaminated and spiked) which may saturate the enzymes needed for metabolism. Furthermore, it is possible that the mycotoxins secreted by living fungi in the plant tissue are differently bound to the plant matrix, and protection of the mycotoxin by this matrix would be different when spiked (Schaarschmidt and Fauhl-Hassek 2021). Additionally, when spiked, a larger fraction of the mycotoxin may remain in 'free' form (not bound to e.g. the plant matrix) and is thereby more accessible for enzymatic breakdown. It is therefore advised to perform an experiment in which BSFL are fed on spiked as well as naturally contaminated PPC material to test whether the outcome of this study is representative. Since no completely aflatoxin-free PPC material was available, a comparison between spiking and natural contamination was not an option in the current study.

When performing a feeding study, photochemical or microbial degradation of the tested compounds could take place over time (Albert and Muñoz 2022). A spiked diet is usually prepared right before the start of the experiment, whereas the PPC diet used in the current study was stored for a longer period of time. Photochemical or microbial degradation of the aflatoxins in the PPC diet could have, for example, already taken place, leading to a stable aflatoxin concentration before the start of the feeding study. Furthermore, it needs to be mentioned that when working with naturally contaminated materials, it might be possible that fungal spores of aflatoxigenic species might still be present. This could result in additional formation of mycotoxins during the experiment, which might have led to the formation of the complete molar mass balance. However, when appropriately pre-treated, it is assumed the spores are inactive (Kutasi *et al.* 2021). As the PPC used in the current experiment was pre-treated, it seems unlikely active fungal spores were still present in the current experiment.

Overall, this experiment showed that the PPC control samples were not free of aflatoxins, but that the concentrations were low. Additionally, aflatoxins seemed to be heterogeneously distributed throughout the contaminated peanut cake samples. In the current study a full recovery of the initial aflatoxin mass is shown, and AFB₁ metabolism occurred. Most of the aflatoxins were found back in the residual material whereas a low concentration was detected in the larval body. It seems that most aflatoxins are excreted and detoxification activity seems limited. Even though grown on highly contaminated substrates, the concentrations of aflatoxins present in the BSFL were far below the maximum limit of AFB₁ (20 μ g/kg) in all feed materials for animal feed mentioned in the EU Directive 2002/32/EC (EC 2002a). This provides a promising

outlook for the safety of rearing insects on aflatoxin contaminated PPC with the purpose of further using them as food- and/or feed. Furthermore, as BSFL weight and survival were not affected, PPC can be considered as a suitable substrate for insect rearing and can be applied globally.

Acknowledgements

Our research has been financed by the Netherlands Organisation for Scientific Research (NWO; NWA programme, InsectFeed project, NWA.1160.18.144) and Mars Company. Additional funding from the Netherlands Ministry of Agriculture, Nature and Food Quality under projects KB-33-001-045 is acknowledged. We would like to thank Ed Boers and Ruud van Dam for their assistance and advice during LC-MS/MS analyses, and Marcel Dicke and Teun Veldkamp for constructive comments to the final manuscript.

Supplementary materials

Table S1
Instrumental MS/MS parameters of mycotoxins analysed in positive ionisation mode

Component	Rt	Q1	Q3	DP	EP	CE	CXP
Component	(min)	(m/z)	(m/z)	(V)	(V)	(V)	(V)
AFB ₁ (qI)	4.70	313.1	128.1	40	10	91	10
AFB ₁ (qn)	4.70	313.1	285.2	40	10	33	16
AFB_1 (ql2)	4.70	313.1	241.0	40	10	54	15
AFB_2 (qI)	4.40	315.1	259.2	40	10	43	18
AFB ₂ (qn)	4.40	315.1	287.2	40	10	37	18
AFG₁ (qI)	4.1	329.0	200.0	40	10	53	12
AFG₁ (qn)	4.1	329.0	243.2	40	10	39	14
AFG ₂ (qI)	3.8	331.1	245.2	40	10	43	14
AFG ₂ (qn)	3.8	331.1	313.2	40	10	35	18
AFL (qn)	5.40	297.1	269.0	40	10	29	16
AFL (ql)	5.40	297.1	114.9	40	10	81	12
AFL (ql2)	5.40	297.1	141.0	40	10	65	14
AFP_1 (qn)	4.20	299.0	271.0	40	10	33	18
AFP_1 (ql1)	4.20	299.0	114.9	40	10	71	12
AFP_1 (ql2)	4.20	299.0	90.9	40	10	67	10
AFM_1 (qn)	3.84	328.9	272.9	40	10	33	18
AFM_1 (qI)	3.84	328.9	229.0	40	10	55	16
AFQ₁ (qn)	3.70	329.1	310.8	40	10	29	16
AFQ_1 (qI)	3.70	329.1	177.0	40	10	45	22
AFQ ₁ (ql2)	3.70	329.1	128.0	40	10	67	14

qn: quantifier ions. ql: qualifier ions

Table S2
Recovery of the mycotoxins in the different matrices (PPC, larvae and residue) analysed

Compound	AFB ₁	AFB ₂	AFG ₁	AFG ₂	AFL	AFP ₁	AFM ₁	AFQ ₁
PPC	97%	93%	98%	104%	92%	89%	99%	96%
Larvae	86%	84%	93%	85%	91%	88%	91%	90%
Residue	148%	149%	109%	105%	122%	128%	107%	93%

Table S3 LOD and LOQ (ng/mL) per mycotoxin in the different matrices

Compound		AFB ₁	AFB ₂	AFG ₁	AFG ₂	AFL	AFP ₁	AFM ₁	AFQ ₁
PPC	LOD	< 0.2376	0.142	0.081	0.076	0.430	0.297	0.400	0.275
PPC	LOQ	< 0.2376	0.284	0.121	0.381	1.435	0.989	0.889	0.917
Larvae	LOD	< 0.2376	0.157	0.085	0.093	0.435	0.300	0.435	0.293
Laivae	LOQ	< 0.2376	0.314	0.128	0.466	1.451	1.000	0.967	0.978
	LOD	< 0.2376	0.089	0.073	0.075	0.325	0.206	0.370	0.284
Residue	LOQ	< 0.2376	0.177	0.109	0.377	1.082	0.688	0.822	0.946

LOD: limit of detection; LOQ: limit of quantification

Table S4 Molecular weight of parent compounds and analysed metabolites for mass calculation purposes

Compound	Molecular weight
	(g/mol)
AFB ₁	312.27
AFB ₂	314.29
AFG ₁	328.27
AFG ₂	330.29
AFL	314.29
AFP ₁	298.25
AFM_1	328.27
AFQ ₁	328.27

Table S5 Overview and sum of the concentration (µg/kg) of aflatoxins in the peanut cake, larval and residue samples

				Concentrat	Concentration (µg/kg)				SUM
Sample Name	AFB_1	AFB ₂	AFG_1	AFG_2	AFL	AFP_1	AFM_1	AFQ_1	aflatoxins
Peanut cake Control (1)	1.77	0.34	0.44	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	2.55
Peanut cake Control (2)	0.59	< LOQ	0.21	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	0.80
Peanut cake Control (3)	69.0	< LOQ	0.20	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	0.89
Peanut cake $AFB_1(1)$	9.82	1.80	0.68	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	12.30
Peanut cake AFB ₁ (2)	18.06	7.08	0.80	< LOQ	< LOQ	< LOQ	1.60	< LOQ	27.54
Peanut cake AFB ₁ (3)	8.64	1.69	2.08	0.74	< LOQ	< LOQ	< L0Q	< LOQ	13.15
Peanut cake AFB ₁ (4)	21.64	4.70	1.17	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	27.51
Peanut cake AFB ₁ (5)	11.82	2.51	1.17	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	15.50
Peanut cake AFB ₁ (6)	18.00	2.86	0.92	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	21.78
Larvae Control (1)	0.25	< LOQ	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	0.25
Larvae Control (2)	2.30	< LOQ	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	2.30
Larvae Control (3)	< LOQ	< LOQ	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	<10Q
Larvae AFB $_1$ (1)	0.50	< LOQ	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	0.50
Larvae AFB ₁ (2)	0.80	< L0Q	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	0.80
Larvae AFB ₁ (3)	0.80	< LOQ	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	0.80
Larvae AFB ₁ (4)	< LOQ	< LOQ	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	< L0Q
Larvae AFB ₁ (5)	0.26	< LOQ	< L0Q	< LOQ	<l0q< td=""><td>< LOQ</td><td>< L0Q</td><td>< LOQ</td><td>0.26</td></l0q<>	< LOQ	< L0Q	< LOQ	0.26
Larvae AFB ₁ (6)	0.41	< LOQ	< L0Q	< LOQ	< LOQ	< LOQ	< L0Q	< LOQ	0.41
Residue Control (1)	3.27	0.83	0.37	< LOQ	< LOQ	2.38	< L0Q	< LOQ	6.84
Residue Control (2)	12.57	0.91	0.53	< LOQ	< LOQ	4.07	< L0Q	< LOQ	18.08
Residue Control (3)	1.52	0.44	0.44	< LOQ	< LOQ	2.03	< L0Q	< LOQ	4.43
Residue AFB $_1$ (1)	13.05	2.48	1.07	< LOQ	< LOQ	2.10	0.84	< LOQ	19.54
Residue AFB ₁ (2)	19.36	3.70	0.77	< LOQ	1.63	3.34	1.24	< LOQ	30.04
Residue AFB ₁ (3)	10.90	1.95	2.20	< LOQ	1.34	2.14	< L0Q	< LOQ	18.53
Residue AFB $_1$ (4)	14.74	2.80	0.79	< LOQ	< LOQ	2.43	1.05	< LOQ	21.81
Residue AFB $_1$ (5)	8.93	1.83	0.64	< LOQ	1.19	1.81	< L0Q	< LOQ	14.40
Residue AFB $_1$ (6)	20.68	3.83	1.03	< LOQ	< LOQ	2.79	1.02	< LOQ	29.35
< LOO: below the limit of guantif	ification								

Table S6

Overview of the average contribution (n=6) of the aflatoxins to the overall molar mass balance (%)

Aflatoxin	Lar	Larvae		
Alidioxili	(%)	SD	(%)	SD
AFB ₁	0.22	0.17	65	17
AFB ₂			12	3
AFG ₁			5	5
AFL			3	4
AFM ₁			3	2
AFP ₁			11	3

Chapter 8

Conversion of mycotoxin-contaminated maize by black soldier fly larvae into feed and fertilizer

Moritz Gold^{1*}, Kelly Niermans^{2,3*}, Frans Jooste⁴, Laura Stanford⁴, Florence Uwamahoro⁵, Maryann Wanja⁴, Teun Veldkamp⁶, Alexandra Sanderson⁷, Vasco Dos Santos Nunes⁷, Alexander Mathys¹, H.J. (Ine) van der Fels-Klerx³, Elise F. Hoek-van den Hil³, Kizito Nishimwe⁸

¹ETH Zürich, Sustainable Food Processing, Zürich, Switzerland; ²Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; ³Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands; ⁴The Bug Picture, Kigali, Rwanda; ⁵Rwanda Agriculture and Animal Resources Development Board, Rubona, Rwanda; ⁶Wageningen University and Research, Livestock Research, 6708 WD Wageningen, the Netherlands; ⁷The International Finance Corporation, a member of the World Bank Group; ⁸School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine-University of Rwanda, Musanze, Rwanda.

*These authors contributed equally to this work.

Abstract

Globally, large amounts of various crops such as cereals, oilseeds, nuts and spices are contaminated with mycotoxins during pre-harvest, postharvest handling, processing and/or storage. Mycotoxin contamination results into economic and health issues, and valorisation options of contaminated crops are urgently needed. The aim of this research was to evaluate whether quality feed and fertilizer can be safely produced from naturally mycotoxincontaminated crops using black soldier fly larvae (BSFL, Hermetia illucens L.) under realistic field conditions in East Africa. Naturally mycotoxin-contaminated maize (corn; Zea mays L.) was used as a model due its prevalence as food and feed and utilized by BSFL together with local agri-food by-products at a research facility in Rwanda. To assess the influence of the initial maize mycotoxin contamination and maize inclusion, larval diets with three mycotoxin contamination level and two maize inclusion levels were tested. BSFL were tolerant against the high mycotoxin concentrations (e.g. 99.4 µg aflatoxin B₁ kg dry mass⁻¹) as the presence of mycotoxins in the substrate did not affect BSFL mass. Product safety was assessed by quantifying the presence of 38 common and emerging mycotoxins and metabolites in the maize, substrates and BSFL products (e.g. larvae and frass). The results show that it is possible to produce feed and fertilizer with BSFL considered safe within EU and East African legal limits from maize contaminated with mycotoxin-contaminated maize typical for East Africa. Thereby, this research works towards the safe recycling of nutrients from mycotoxin-contaminated maize within the food system in East Africa and beyond.

Introduction

Mycotoxins are secondary metabolites produced by fungi. Mycotoxins count in hundreds and exposure to them can affect human and animal health (Zain 2011). However, the type of toxicity depends on the chemical structure, the dose and duration of exposure (Bennett and Klich 2003; Chilaka et al. 2022). In general, mycotoxins can cause both acute toxicity and chronic carcinogenicity and are known to be carcinogenic, mutagenic, teratogenic, and immunosuppressive amongst others. Furthermore, exposure may lead to gastrointestinal symptoms e.q. feed refusal and vomiting which affects productivity in livestock (Fink-Grernmels 1999; Prelusky et al. 1994). Amongst the mycotoxins, the aflatoxins are considered as the most toxic human carcinogens (IARC 2012). It is worth noting that there are hundreds of different types of mycotoxins; most concerning are aflatoxins (e.g. aflatoxin B₁ (AFB₁)), fumonisins (e.g. fumonisin B₁ (FB₁)), zearalenone (ZEN), and deoxynivalenol (DON), mainly produced by Aspergillus, Fusarium, and Penicillium (Ankwasa et al. 2021). Mycotoxin contamination is especially a challenge in tropical countries due to favourable fungi growth conditions (i.e. warm and humid environmental conditions), poor crop management practices, and non-existing standard enforcement (Chilaka et al. 2022; Matumba et al. 2017). In addition, mycotoxin contamination causes economic impact due to low market value of contaminated products, or their rejection from high-value markets (Adeyeye *et al.* 2022). It is expected that climate change will worsen the current situation (Medina *et al.* 2015). Different management strategies are used to mitigate mycotoxin contamination, along value chain. Pre-harvest measurements include agronomic (*e.g.* planting and harvesting timing, crop rotation), biological (*e.g.* fungal antagonists) and chemical (*i.e.* fungicides and insecticides) means (Conte *et al.* 2020). Post-harvest strategies include a good storage management (*e.g.* control of temperature and humidity control), and biological (*e.g.* bacteria, fungi, enzymes), physical (*e.g.* sorting, drying, thermal inactivation, irradiation) and chemical (*e.g.* ozone, organic acids) methods (Peng *et al.* 2018). Although there are strategies in place, the issue of mycotoxin contamination along crop value chains remains significant. Contaminated batches of crops are regularly present in food systems; therefore, more solutions are needed to manage contaminated crops.

Black soldier fly larvae (BSFL; Hermetia illucens L.) have emerged as a promising approach because they can grow on a variety of low value and mycotoxin-contaminated substrates (Camenzuli et al. 2018; Chapter 2; Gold et al. 2018; Niermans et al. 2021). Growing BSFL on mycotoxin-contaminated food and by-products is different from using pre- and post-harvest technologies that protect agricultural products from mycotoxin contamination. Instead, BSFL feed on mycotoxin-contaminated products and thereby convert it into nutrient-rich larval biomass and compost-like frass (i.e. BSFL excreta and undigested substrate). The larval biomass has particular value as animal feed (e.g. pets, poultry, pigs) (Barragan-Fonseca et al. 2017) or food but also for biotechnological, cosmetic and pharmaceutical applications. In low-income countries, larval biomass (e.g. live, dried or defatted) can increase the availability, quality and affordability of animal feeds important for food security and livelihoods. In addition, the frass remaining from larval bioconversion has value as organic fertilizer (Fuhrmann et al. 2022).

Interestingly, research to date has shown that BSFL are highly tolerant and do not bioaccumulate AFB₁, DON, FB₁, OTA and ZEN present in the substrate (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 4*; Leni *et al.* 2019; Niermans *et al.* 2023b; Purschke *et al.* 2017). Only Heuel *et al.* (2023) has observed a slower larval development in comparison to an uncontaminated control after spiking food waste with 800 µg AFB₁ kg DM⁻¹. Similar to the other studies, even at these high concentrations, only small amounts of AFB₁, below legal limits for feed in the EU were found in the larvae and frequently attributed to undigested substrate in the larval digestive tract. Even though considerable amounts of mycotoxins and decomposition metabolites are found in the frass, concentrations are frequently less than in the initial substrate suggesting that similar to other insects, BSFL and associated microbes have mycotoxin metabolization pathways (Evans and Shao 2022; Meijer *et al.* 2019; Suo *et al.* 2023). These results are promising but evidence is lacking on the utilization of naturally contaminated maize in subtropical and tropical regions. To date, most studies on the utilization of mycotoxin-contaminated substrates with BSFL were completed at a laboratory scale, with high quality substrates and/or one or several artificially

spiked mycotoxin contaminations (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Heuel *et al.* 2023). This is a shortcoming considering that in reality, mycotoxins frequently co-occur (Ankwasa *et al.* 2021). In addition, artificially spiking with one or several mycotoxins may produce different results than naturally contaminated materials. Purschke *et al.* (2017) and Leni *et al.* (2019) studied naturally contaminated crops but only at relatively low mycotoxin concentration relative to peak concentrations found in crops in subtropical and tropical regions.

The objective of this study was to assess the viability of producing high-quality feed and fertilizer using BSFL from crops contaminated with mycotoxins, in real-world field conditions in Rwanda, Africa. By doing so, this research aims to promote the safe recycling of nutrients from mycotoxin-contaminated maize in the food system of East Africa and other regions.

Materials and methods

Experimental design and substrates

The study consisted of maize and BSFL substrate analyses, larval feeding trials and post-harvest analyses of products (*i.e.* larvae and frass). Six different substrates (Table 1) were used to test the influence of maize inclusion and substrate maize mycotoxin contamination levels on product mycotoxin concentrations and BSFL growth. Clean maize (4.8 µg kg⁻¹ total aflatoxins, AgraStrip Pro Total Aflatoxin WATEX, Rober Labs, Getzendorf, Austria) was mixed with contaminated maize (> 460 µg kg⁻¹ total aflatoxins) at increasing ratios starting from the clean maize to produce maize with three mycotoxin contamination levels: control maize (CM, 0% mycotoxin-contaminated maize), low mycotoxin-contaminated maize (LM, 25% mycotoxin-contaminated maize) and high mycotoxin-contaminated maize (HM, 100% mycotoxin-contaminated maize) (Table 1).

Maize with the three mycotoxin-contaminated levels (CM, LM and HM) was then mixed at two levels with local agri-food by-products resulting in 50% and 80% of maize (based on dry mass (DM) of substrate, Table 1). Clean maize was provided by a maize handling company (AflaSight, Kigali, Rwanda) following automatic sorting (SORTEX A LumoVision, Bühler, Uzwil, Switzerland) and unprocessed contaminated maize was purchased from a local food market (Nyabugogo, Kigali, Rwanda). Both clean and contaminated maize were milled to 1.2 mm maize flour (Figure S1) and classified as clean and contaminated based on limits for whole grains in the East African Community (EAC) (10 μg kg DM⁻¹, Table S16). The agri-food by-products (see Figure S2) consisted of homogenized brewers spent grain and fresh fruits stored for four days to mimic typical decomposition of agri-food by-products.

Table 1. Summary of substrates assessed in this study and their proportion of maize and agrifood by-products and clean and contaminated maize

Cubatuata	Abbassistica	com	ostrate position 6DM)	Maiz	e compos	ition (%)
Substrate	Abbreviation	Maize	Agri-food by- product	Mycotoxin level	Clean	Contaminated
1	CM50	50%	50%	Control	100%	0%
2	LM50	50%	50%	Low	75%	25%
3	HM50	50%	50%	High	0%	100%
4	CM80	80%	20%	Control	100%	0%
5	LM80	80%	20%	Low	75%	25%
6	HM80	80%	20%	High	0%	100%

DM: dry matter; CM50: with control maize, 50% DM maize; LM50: Low mycotoxin-contaminated maize, 50% DM maize; HM50: high mycotoxin-contaminated maize, 50% DM maize; CM80: with control maize, 80% DM maize; LM80: Low mycotoxin-contaminated maize; 80% DM maize, HM80: high mycotoxin-contaminated maize, 80% DM maize

Black soldier fly larvae feeding trials

Young BSFL from a colony at The Bug Picture at Bishenyi, Rwanda, were reared on pig feed for seven days according to procedures described in the supplementary material to around 0.3 mg larva⁻¹. Thereafter, the larvae were separated from the pig feed residue and reared for twelve days in plastic trays (56 cm x 38 cm) containing 6,705 g substrate (70% moisture content, Table S1) and 7,500 larvae (3.5 larvae per cm -2, 74.5 mg (larva x day)⁻¹) according to Gold *et al.* (2020). Temperature and relative humidity measured daily (9 am, 1 pm and 5 pm) with a handheld thermometer during the trial are summarized in the Table S2 and S3. Following twelve days, larval mass was determined, and residue and larval samples were collected by manual separation. No specific procedure allowing larvae to empty their gut was applied. Larvae and residue were placed in plastic zip lock bags and stored at -18°C until further analyses.

Substrate and product nutrient and chemical composition

One pooled sample of the four biological replicates for the substrates and larvae were analysed for moisture content and gross nutrient composition (*i.e.* crude protein from total nitrogen, crude fat, ash) and the frass was analysed for moisture content, typical physicochemical (see Table 4) metrics for compost quality and *Aspergillus*. Analyses were done by an external certified laboratory (Cropnuts, Nairobi, Kenya) according to standard procedures (ISO 1999a; ISO 1999b; ISO 2008a; ISO 2008b; ISO 2009; ISO 2022). One soybean and fishmeal sample from Nyabugogo market in Kigali was analysed in parallel to BSFL using the same procedures as a benchmark for the animal feed quality in Rwanda. Crude protein was estimated by multiplying the nitrogen value with sample-specific factors: 5.6 for substrates (based on maize) (Mariotti *et al.* 2008), 4.7

for larvae (Janssen *et al.* 2017), 5.7 for soybean meal (Mariotti *et al.* 2008) and 6.25 for fishmeal. In parallel, the true protein content was also analysed as the sum of all amino acids by external laboratories for the larvae fed on CM50 (Agrolab, Kiel, Germany), and soybean and fishmeal (Groen Agro Control, Delfgauw, Netherlands) according to EC (2009).

Mycotoxin analyses

The maize, substrates, larvae and frass were analysed in quadruplicate for 38 common and emerging mycotoxins and metabolites (Table 2, Table S4) with an in-house method validated according to EC (2019) at Wageningen Food Safety Research. Samples were ground under liquid nitrogen and then stored at -80°C until analysis (EC 2019b). Sample extraction, quantification of the mycotoxin concentration and LC-MS/MS analyses were mostly done according to Camenzuli et al. (2018). In the current study a smaller sample mass (1.0 g) of the substrate, larvae and frass samples was used as mentioned in the original method (2.5 g). The used reagents were adjusted accordingly. Mycotoxin concentration in the sample was quantified by means of standard addition, and the mycotoxin concentrations were analysed with LC-MS/MS. A detailed description of the extraction procedure, method of quantification, LC-MS/MS analyses and the parameters used can be found in the supplementary material.

Data analyses

LC-MS/MS data was analysed with SCIEX OS-MQ v2.1.6 software (Sciex, Framingham, MA USA). Peak identification was performed according to criteria set in an in-house validated method at Wageningen Food Safety Research and identification and recovery criteria outlined (EC 2019b). A detailed description of the methods utilized to determine a limit of detection (LOD) and limit of quantification (LOQ) of the LC-MS/MS method, final LOD and LOQ concentrations, as well as the formula used for quantification of the mycotoxin concentration in the samples can be found in the supplementary material (Table S5 to S8). For statistical analyses all mycotoxins below the LOQ were considered to be of lower analysis quality and set to 0. Mycotoxin concentrations were analysed together with the maize, substrate and frass compositional data, larval mass as well as substrate/frass temperature from feeding trials in R software and RStudio version 3.6.3 (RStudio Inc., Boston, MA, USA). Mean and standard deviation of results between replicates were calculated. Significance of differences in mean results was assessed using analysis of variance (ANOVA) followed by pairwise Tukey post-hoc comparisons. A p-value of < 0.05 was chosen to declare significance.

Results

Maize and substrates

The contaminated maize had 16 mycotoxins (Table 2), was significantly higher in AFB₁, FB₁ and NPA and included five additional mycotoxins (AFG₂, AFM₁, ZEN, AOH, AC) than the clean maize. In the clean maize relatively small amounts of 13 mycotoxins were detected, whereas the concentration of 15AcDON was significantly higher than that found in the contaminated maize.

The substrates used in the BSFL feeding trials had a moisture content of 65-80%, *i.e.* in the typical range of BSFL substrates. The substrate was low in protein (8-9 %DM), fat (5 %DM), ash (2-3 %DM) and crude fibre (3% DM) with similar results regardless of the maize inclusion level (Table S9).

As expected, mycotoxins found in the substrates were generally those present in the clean and contaminated maize (Table 2). Only, ENNB, ENNB1 and AME were found in small amounts in one or more of the substrates but not in the clean and contaminated maize. AFM₁, 15AcDON and AC were found in very low concentrations in the maize but not in the substrates. Similarly, as expected, substrates formulated with contaminated maize were rich in mycotoxins and the composition of the substrate changed the mycotoxin concentrations in the substrate. Inclusion of a higher percentage of maize with a higher mycotoxin contamination increased the mycotoxin concentrations in the substrate. Overall, aflatoxins (AFB₁, AFB₂, AFG₁) and fumonisins (FB₁, FB₂, FB₃) were significantly higher in LM80 than LM50 and HM80 than HM50 (Table 2). Substrates with clean maize had low mycotoxin concentrations (Table 2) with significantly higher concentration for CM80 than CM50. CM50 and CM80 had significantly lower mycotoxin concentrations than LM50 and LM80, respectively. As expected, concentration of mycotoxins (AFB₁, AFB₂, AFG₁, FB₁, FB₂, FB₃, BEA, MON and NPA) were highest in HM80 as compared to all other substrates (Table 2, Table S10 for statistical analysis). HM80 had 123 ± 17 μg kg DM⁻¹ total aflatoxins (AFB₁+AFB₂+AFG₁+AFG₂), $135 \pm 17 \mu g \text{ kg DM}^{-1} DON \text{ and } 1,622 \pm 251 \mu g \text{ kg DM}^{-1} \text{ total}$ fumonisins (FB₁+FB₂+FB₃). ZEN was only detected in HM80 and no other substrate.

Influence of maize inclusion and mycotoxin contamination on larval mass

The mean larval mass of CM50, LM50 and HM50 were not significantly different. Larval mass was also not significantly different between CM80, LM80 and HM80 (Figure 1a). However, these conclusions should be interpreted with caution due to the limited data per replicate (n=4) and relatively high standard deviation of the results, and it is plausible that increasing the number of replicates and reducing the standard deviation could reveal significant differences in performance. In contrast, it could be carefully concluded that the maize inclusion level influenced larval growth (Figure 1b). Larval mass was significantly lower on the substrate containing more maize when considering all maize mycotoxin levels (i.e. CM80, LM80 and LM80

vs. CM50, LM50 and HM50), however the differences were small. Mean larval mass ranged from 72.8-108.0 mg with 50% DM maize and 72.2-75.8 mg with 80%DM in the substrates. Substrate/frass temperature appeared to be similar between treatments, ranging from 21-27°C. Over the entire feeding trial, mean temperature in the substrate/frass was 23-24°C (Table S2 and S3).

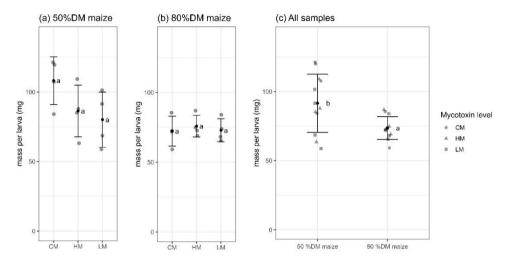


Figure 1. (a, b) Effect of maize mycotoxin contamination on larval mass. (c) Effect of maize inclusion level on larval mass. Means, standard deviations and results per biological replicate are displayed. CM: Control maize, LM: Low mycotoxin-contaminated maize, HM: High mycotoxin-contaminated maize

Mycotoxin transfer from substrate to products

Despite the partially or very high concentration of mycotoxins in the substrate (Table 2), mycotoxins were either only found in low amounts or not detected in BSFL (Table 3). As expected, in the larvae from clean maize (CM50 and CM80) few mycotoxins (*e.g.* AFG₁, FB₁, FB₂ and AME) were detected in low amounts (Table 3). However, also larvae from LM50 and LM80 were not significantly different from larvae from CM50 and CM80, respectively. Even though mycotoxin concentrations in larvae were generally very low, mycotoxin concentration in BSFL appear to increase with higher substrate mycotoxin contamination. Larvae from the substrate with the highest mycotoxin contamination (HM80, Table 2) had significantly more AFB₁, FB₂, FB₃ and BEA than larvae from CM80. Larvae from HM50 contained only significantly higher concentrations of FB₁, FB₂, FB₃ and BEA than larvae from CM50.

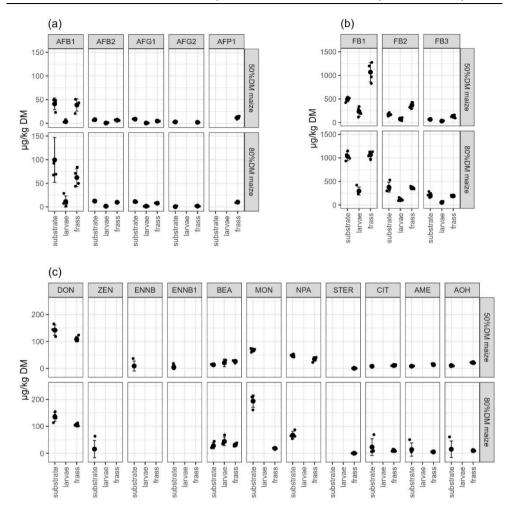


Figure 2. Evolution of mycotoxins between substrate and products (i.e. larvae and frass) for the highest contaminated maize inclusion level HM50 and HM80 (n=4). Results < LOQ were set to 0. Significant differences are indicated in Table S13

Table 2. Concentrations of all mycotoxins found in the maize and different substrates ($\mu g \ kg \ DM^{-1}$)

Parameter	Clean maize	Contaminated maize	CM50	LM50	HM50	CM80	LM80	HM80
Aflatoxins1								
AFB ₁	$2.3(3.2)^a$	172.3 (136.7) ^b	$0.4 (0.5)^a$	16.2 (1.7) ^b	41.0 (12.4)c	$1.5(0.2)^a$	18.8 (3.8) ^b	99.4 (47.5) ^c
AFB ₂	$0.2(0.4)^{a}$	17.5 (19.8) ^a	< LOQª	2.5 (0.2) ^b	$7.5 (1.1)^{c}$	< LOQª	$2.7 (0.1)^{b}$	$12.2 (1.4)^{c}$
AFG_1	$0.5 (0.5)^a$	16.9 (28) ^a	$0.4 (0.3)^{a}$	3.7 (1.2) ^b	8.6 (0.4) [€]	$1.0(0.1)^a$	3.3 (0.7) ^b	$11.3 (1.6)^{c}$
AFG_2	< LOQª	2.3 (4.2) ^a	< LOQª	< LOQª	2.7 (0.6) ^b	< LOQª	< LOQª	$0.5 (1.1)^{a}$
AFM_1	< LOQª	$1.1 (1.5)^{a}$	< L0Q	< L0Q	< LOQ	< LOQ	< LOQ	< LOQ
Fusarium mycotoxins ²	toxins ²							
15AcDON	38.3 (30)ª	< LOQ⁵	<100	<100	< LOQ	< LOQ	< LOQ	< LOQ
DON	$121.2 (33.8)^a$	104.7 (50) ^a	$115.9 (3.6)^a$	$131.1 (6.3)^{a,b}$	142.1 (19) ^b	127.6 (7.8) ^a	$130.7 (7.5)^a$	$135.2 (17.3)^{a}$
ZEN	< LOQª	3.4 (6.8) ^a	< LOQª	< LOQª	< LOQª	< LOQª	< LOQª	$15.9 (31.7)^{a}$
FB_1	290 (225.3) ^a	2340.4 (1976.1) ^b	$109.7 (11.1)^a$	347.4 (73.3) ^b	493.3 (50.3) ^c	215.8 (13.5) ^a	469.2 (49.2) ^b	1034.6 (93.5) ^c
FB ₂	$149.7 (110.2)^{a}$	1446.3 (1780.9) ^a	37.8 (8.9) ^a	121.8 (34.1) ^b	169.2 (31.4) ^b	66.8 (5.9) ^a	$156.3 (30.7)^{a}$	378.6 (104.6) ^b
FB ₃	$35.6 (19.2)^a$	$208.4 (140.6)^{a}$	$12.7 (8.6)^a$	$45.6 (12.6)^{b}$	65.7 (5.3) ^c	$29.1 (1.4)^{a}$	$69.9 (9.2)^a$	208.5 (55.9) ^b
ENNB	< L0Q	< L0Q	< LOQª	< LOQª	$9.2 (18.4)^{a}$	< LOQª	< LOQª	< LOQª
ENNB ₁	<100	< L0Q	< LOQª	< LOQª	$4.6(9.3)^a$	< LOQª	< LOQª	< LOQª
BEA	$6.9(2.5)^a$	69.9 (53.4)a	< LOQª	$3.0(5.9)^{a}$	$13.5(1.4)^{\rm b}$	< LOQª	3.7 (7.3) ^a	28.1 (11) ^b
MON	$62.1 (33.1)^a$	26.5 (52.9) ^a	$36.1 (4.4)^a$	54.9 (8.4) ^b	68.3 (5.9) ^c	$54.6 (3.7)^{a}$	$79.2 (12.9)^a$	193.5 (23.1) ^b
Aspergillus, Per	Aspergillus, Penicillium, and Alter	rnaria mycotoxins³						
NPA	20 (28.4) ^a	101.2 (15.2) ^b	< LOQª	< LOQª	47.8 (4.6) ^b	< LOQª	< LOQª	67.4 (13.9) ^b
STER	$2.1(3.9)^a$	4.7 (1.4) ^a	< LOQª	$0.2 (0.5)^a$	< LOQª	< LOQª	< LOQª	< LOQª
CIT	$2.1(3.9)^a$	4.7 (1.4) ^a	< LOQª	$0.9 (1.9)^a$	8 (1.9) ^b	< LOQª	$0.9 (1.9)^a$	$23.2 (30.8)^{a}$
AME	<100	< L0Q	9.9 (0.9)ª	$12(1)^{b}$	8.4 (0.6) ^a	$4.4(5.3)^a$	< LOQª	$13.9 (24.6)^{a}$
АОН	< LOQª	1.0 (2) ^a	$12 (0.9)^{a,b}$	13.9 (1.8) ^b	$10.7 (1.4)^a$	2.2 (4.3) ^a	< LOQª	$15.2 (30.5)^{a}$
AC	< LOQª	$0.1 (0.2)^a$	< L0Q	<100	< LOQ	< L0Q	< L0Q	< LOQ
Average and stan	dard deviation in na	Aversee and standard deviation in narentheses with n=4. Results with no shared letter are significantly different from each other (comparing CMSO 1 MSO 1 MSO 1 MSO 2 and CMSO 1 MSO 2 and CMSO 3 and	th no shared letter are	significantly different	from each other (com	naring CM50 1A	ASO HMSO and (Pue OSMI OSM

contaminated maize, 50% DM maize. CM80: with control maize, 80% DM maize; LM80: Low mycotoxin-contaminated maize; 80% DM maize, HM80: high mycotoxin-contaminated maize, 80% DM maize. ¹afatoxin Bı (AFBı), aflatoxin Bı (AFBı), aflatoxin Gı (AFGı), aflatoxin Gı (AFGı) aflatoxin Gı (AFGı) aflatoxin Mı (AFMı) . ²15-acetyldeoxynivalenol (15AcDON), deoxynivalenol HM80 separately). LOQs see Table S8. DM: dry matter. CM50: with control maize, 50% DM maize; LM50: Low mycotoxin-contaminated maize, 50% DM maize, HM50: high mycotoxin-Average and standard deviation in parentneses with n=4. Kesuits with no shared letter are significantly different from each other (comparing Civisu, Livisu, Alvisu, and Civisu, Livisu and (DON), zearalenone (ZEN), fumonisin B1 (FB1), fumonisin B2 (FB2), fumonisin B3 (FB3), enniatin B (ENNB), enniatin B1 (ENNB1), beauvericin (BEA) and moniliformin (MON). nitropropionicacid (NPA), sterigmatocystin (STER), citrinin (CIT), alternariol-monomethylether (AME), alternariol (AOH) and agrodavine (AC). In summary, larvae reared on HM50 and HM80 are the most relevant regarding BSFL product safety and shown in Figure 2 to illustrate the transfer and potential bioaccumulation of mycotoxins from substrates to BSFL products. Except for BEA, mycotoxins in the BSFL were much lower than in the substrates or even absent confirming that no bioaccumulation took place. BEA was the only mycotoxin that bioaccumulated with a factor of 1.6 (concentration BEA in larvae/concentration BEA in substrate) for HM50 and HM80 reared BSFL (Figure 2b). In contrast to the larvae, aflatoxins, DON, fumonisins, BEA, CIT, AME and AOH were detected in the frass (Figure 2). Frass mycotoxin concentrations relative to the initial substrate mycotoxin concentration varied among substrates (0-3.9, frass concentration/substrate concentration) and mycotoxins (Figure 2, Table S11 to S13). Most often, frass mycotoxins were significantly lower or not significantly different from the substrate. For example, AFB₁ in frass from HM50 and HM80 was significantly lower than AFB1 in the substrate but not significantly different between frass and substrate for DON. However, frass mycotoxins could also be significantly higher from the substrate. For example, frass from HM50 was significantly higher in FB₁, FB₂, FB₃, STER, AME and AOH than the substrate. Interestingly AFP₁, a known metabolite of AFB₁, was only found in the frass, but not the larvae and substrate, indicating that metabolism of AFB₁ occurred (Figure 2a).

Table 3. Mycotoxins in unprocessed larvae from different substrates containing different amounts of mycotoxin-contaminated maize and maize (µg kg DM⁻¹)

Parameter	CM50	LM50	HM50	CM80	LM80	HM80
AFB ₁	< LOQ ^a	< LOQ ^a	3.4 (3.2) ^{a,b}	< LOQ ^a	3.61 (1.2) ^{a,b}	11.4 (11.8) ^b
AFB_2	< LOQ ^a	< LOQ ^a	0.4 (0.6) ^a	< LOQ ^a	0.4 (0.3) ^a	1.5 (1.5) ^a
AFG_1	< LOQ ^a	0.1 (0.2) ^a	0.4 (0.7) ^a	0.3 (0.3) ^a	0.3 (0.4) ^a	1.5 (1.4) ^a
FB_1	46.8 (9.15) ^a	84.9 (13.4) ^a	232.7 (99.7) ^b	41.6 (31.0) ^a	99.3 (30.6) ^a	296.0 (85.2) ^b
FB_2	15.3 (2.58) ^a	28.6 (4.9) ^a	73.5 (30.8) ^{b,c}	15.9 (11.5) ^a	37.6 (7.4) ^{a,b}	114.3 (31.1) ^c
FB ₃	< LOQ ^a	3.5 (7.0) ^a	30.2 (12.4)b	< LOQ ^a	15.3 (3.5) ^{a,b}	54.6 (16.2) ^c
BEA	< LOQ ^a	< LOQ ^a	20.9 (14.3) ^b	< LOQ ^a	< LOQ ^a	44.2 (15.8) ^c
AME	1.0 (2.1) ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a

Results with no shared letter are significantly different from each other (comparing CM50, LM50, HM50 and CM80, LM80 and HM80 separately). CM50: with control maize, 50% DM maize; LM50: Low mycotoxin-contaminated maize, 50% DM maize; HM50: high mycotoxin-contaminated maize, 50% DM maize. CM80: with control maize, 80% DM maize; LM80: Low mycotoxin-contaminated maize; 80% DM maize, HM80: high mycotoxin-contaminated maize, 80% DM maize. Aflatoxin B₁ (AFB₁), aflatoxin B₂ (AFB₂), aflatoxin G₁ (AFG₁) fumonisin B₁ (FB₁), fumonisin B₂ (FB₂), fumonisin B₃ (FB₃), beauvericin (BEA) and alternariol-monomethylether (AME).

Product composition

BSFL from substrates with the two maize inclusion levels were low in ash (4 %DM) and had 26-29 %DM crude protein and 23 %DM crude fat (Table S14). BSFL from 50 %DM maize had 26.1 %DM true protein confirming that an appropriate nitrogen to crude protein conversion factor

was used. BSFL had 13-16 %DM more crude protein, while having less crude fibre and a similar ash content than soybean meal. Fishmeal had 13-16 %DM more crude protein than BSFL. Soybean meal and fishmeal had 10.2 %DM and 45.0 %DM true protein, respectively. *Aspergillus spp.* was not detected in any of the frass samples. The frass was high in nitrogen, phosphorus, potassium, and carbon (Table 4). Noteworthy, frass from both maize inclusion levels had an overall high electrical conductivity (EC) (4.0 and 6.0 mS cm⁻¹) and pH was much higher with 50% than 80 %DM maize.

Discussion

Mycotoxin contamination of crops is a global problem with enormous health and economic impacts. Particularly in tropical and subtropical low-income countries where crops are indispensable for food security and livelihoods, new approaches are needed to valorise mycotoxin-contaminated crops. Given the economic importance of crops in low-income countries, these approaches do not only increase food security and safety but provide economic value to farmers producing mycotoxin-contaminated crops. Such economic value could come from producing feed and fertilizer from mycotoxin-contaminated crops with BSFL.

The mycotoxin-contaminated maize used in this study was representative for mycotoxincontaminated maize in Rwanda, or elsewhere. The contaminated maize was sourced from a public food market in Kigali, heavily contaminated with various mycotoxins confirming that mycotoxins co-occur (Ankwasa et al. 2021). Maize was unsafe as food and feed based on EAC, and EU legal limits/guiding values (5 µg AFB₁ kg⁻¹, 75 µg DON kg⁻¹, 75 µg ZEN kg⁻¹, 3 µg OTA kg⁻¹, 2,000 µg fumonisins kg⁻¹) (EC 2002a; EC 2006b); Table S16). The contaminated maize in this study (172 µg AFB₁ kg DM⁻¹, 3,995 µg fumonisins kg DM⁻¹) exceeded EAC legal limits for food by 17times for AFB₁ (5 µg kg⁻¹) and 2-times for fumonisins (2,000 µg kg⁻¹) (Table S16). AFB₁ exceeded the EAC limits as feed (20 µg kg⁻¹) while fumonisins, DON, ZEN and OTA were below the EU guiding values for maize as feed (Table S16). AFB1 and fumonisin concentrations found in this study were in the range as earlier found in Rwanda (0-500 µg kg⁻¹ total aflatoxins and 6,000 µg kg⁻¹ fumonisins) (Nishimwe et al. 2017). These results highlight the potential risks associated with mycotoxin-contaminated maize entering the food chain as food and/or feed, the potential for acute or toxic impacts to humans or animals, and the urge to find viable solutions such as recycling into feed and fertilizer by BSFL. The clean maize after sorting-out of aflatoxincontaminated maize had AFB1 and fumonisins concentrations below EAC and EU limits.

As anticipated, formulating the mycotoxin-contaminated maize with agri-food by-products, presumably absent or low in mycotoxins, resulted in a decrease in mycotoxin concentrations in the substrate. This study aimed to utilize maize that is naturally heavily contaminated with AFB₁, as other studies have only achieved high AFB₁ concentration (400-800 μ g/kg DM) by spiking. In comparison to previous studies, the HM80 substrate (Table 2) had the highest AFB₁ (99.4 μ g kg

DM⁻¹) and FB₁ concentration (1,035 μ g kg DM⁻¹) in naturally contaminated substrates used with BSFL so far (13.3 μ g AFB₁ kg DM⁻¹, 727 μ g FB₁ kg DM⁻¹). DON, ZEN and OTA were lower in this study in comparison to previous work that used naturally contaminated maize and by-products (Bosch *et al.* 2017; Camenzuli *et al.* 2018; Heuel *et al.* 2023) (Table S15).

Table 4. Physicochemical frass characteristics in comparison to compost and literature values (% DM)

		Frass (this study)	Fertilizer	Compost	Frass
Parameter	Unit	50% DM maize	80% DM maize	Standard Rwanda ¹	Rwanda ²	Typical range ³
DM	%	41.6 (3.6)	43.9 (0.7)	≥ 70	63.4	-
EC	mS cm ⁻¹	4.0 (0.09)	6.0 (0.15)	< 5.0	772	1.2-5-73,5
рН	-	8.0 (0.1)	5.9 (1.4)	6-9	7.5	$5.4 - 9.0^4$
N	g kg ⁻¹	18.6 (0.2)	20 (0.3)	> 10	15.0 (1.1)	18-51 ⁴
С	g kg ⁻¹	517 (0)	527.7 (1.2)		173.5 (9.5)	268-4884
C:N ratio	-	27.8 (0.3)	26.4 (0.3)	≤ 20:1	11.6 (0.3)	7-274
Р	g kg ⁻¹	1.9 (0.2)	2.3 (0.2)	-	2.4 (0.2)	3-524
K	g kg ⁻¹	13.4 (0.5)	6.6 (0.5)	-	3.0 (0.2)	2-414
Ca	g kg ⁻¹	< 5.0	< 5.0	> 10	23.7 (3.8)	$0.2 - 45^4$
Mg	g kg ⁻¹	1.3 (0.1)	1.1 (0.1)	> 5.0	3.2 (0.5)	0.2-114
Na	mg kg ⁻¹	15.8 (7.8)	17.6 (6.5)	-	0.5 (0.0)	$0.3 - 5.0^4$
Fe	mg kg ⁻¹	590 (99.9)	337 (112)	1,000-2,500	21.0 (6.4)	4-896 ⁴
Mn	mg kg ⁻¹	22.4 (1)	12.8 (2.1)	200-800	0.9 (0.1)	$0.2 - 149^4$
Zn	mg kg ⁻¹	12.7 (1.6)	18.7 (4)	40-1000	0.1 (0.0)	0.1-1824
Cu	mg kg ⁻¹	3.9 (0.1)	2.3 (0.7)	8-300	28.6 (5.2)	0.7-464

¹RSB (2021), ²Fuhrmann *et al.* (2022), ³Lopes *et al.* (2022). DM: Dry mass, EC: Electric conductivity, N: total nitrogen, C: total carbon, P: total phosphorus, K: Total potassium, Ca: total calcium, Mg: total magnesium, Na: Total sodium, Fe: total iron, Mn: total magnesee, Zn: Total zinc, Cu: total copper.

Consistent with previous research (Table S15), BSFL exhibited tolerance to substrate mycotoxins. To date, only Heuel *et al.* (2023) has observed a slower BSFL development with food waste containing 842 µg AFB₁ kg⁻¹ DM. In contrast to substrate mycotoxins, our study found that substrate composition (*i.e.* amount of maize and agri-food by-products) significantly influenced larval growth. Greater inclusion of agri-food by-products increased larval mass, likely due to changes in nutrient digestibility that affected larval growth, even though gross nutrients remained similar (Gold *et al.* 2020). Purschke *et al.* (2017) obtained a similar larval mass (75 mg larva⁻¹) using a maize-based substrate. However, overall, larval mass in this study was low (73-108 mg larva⁻¹) in comparison to high-performing insect substrates such as restaurant food waste (200 mg larva⁻¹). This could be due to low substrate protein (8-9% DM) and fat contents fat (5% DM) crucial for larval development in comparison to higher performing food wastes (*e.g.*

12-32 %DM protein, 29-35 %DM fat, Gold *et al.* 2020). Larval mass could potentially be further improved by incorporating biowaste with higher protein and lipid content, such as animal manure, food waste, oilseed press cakes, or starch or ethanol facility by-products. Additionally, optimizing context-specific rearing conditions (*e.g.* larval density, ventilation rates, substrate texture) and ambient and substrate/frass temperatures which were relatively low in this study (Harnden and Tomberlin 2016) could result in more efficient bioconversion and larval growth. BSFL were reared using the natural climate in Kigali, suggesting that the results could be transferrable to similar climates across Africa.

This study found that BSFL do not generally accumulate substrate mycotoxins, and that larvae from mycotoxin-contaminated substrates were safe as animal feed considering legal standards. Even larvae from substrates with the highest mycotoxin concentrations (HM80, Table 3) had AFB₁ (11.4 μ g kg DM⁻¹), FB₁ (296 μ g kg DM⁻¹), FB₂ (114 μ g kg DM⁻¹) and FB₃ (55 μ g kg DM⁻¹) concentrations below legal limits for compound animal feeds in the EU (20 µg AFB₁ kg⁻¹, 5,000 μg DON kg⁻¹, 100-500 μg ZEN kg⁻¹, 10 μg OTA kg⁻¹, 5,000-20,000 μg fumonisins kg⁻¹) (EC 2002a; EC 2006b) and dried insect products for animal feeds in the EAC (20 μg AFB₁ kg DM⁻¹, Table S16). Although larvae at the highest substrate mycotoxin contamination had more AFB₁ than permitted in fish, pig and poultry starter feeds in the EAC (10 μg AFB₁ kg DM⁻¹, Table S16), the authors suggest that a starter compound feed with BSFL and clean other feed ingredients would result in a compound feed AFB1 concentration below the legal limits considering that they typically include less than 30% of a high-protein ingredient. Overall, this suggests that even at high substrate mycotoxin contamination, BSFL and BSFL-based animal feeds are safe for fish, poultry, and pigs considering current legal limits in the EU and EAC. The authors note that there is currently no legislation for BSFL for food production, but assuming that such legislation would have similar values to unprocessed grains (5 μg AFB₁ kg DM⁻¹, 2,000 μg fumonisins kg DM⁻¹, Table S16), BSFL from all substrates except for HM80 were below legal limits. This suggests that BSFL could be raised for food even on substrates contaminated with mycotoxins up to a certain level of contamination, if BSFL are to be considered as a viable food source in the future (Bessa et al. 2020). However, our data confirm that metabolism of AFB₁ took place, likely via the larval cytochrome P450 enzyme system (Meijer et al. 2019). It is not fully elucidated if other (unknown) toxic metabolites of mycotoxins could be formed in BSFL which should be further studied to ensure food and feed safety.

Our study confirms previous findings that AFB₁, DON, ZEN, OTA and fumonisins do not bioaccumulate in BSFL, with these mycotoxins typically being below the LOQ (Table S15). However, in studies with higher substrate mycotoxins concentrations (Camenzuli *et al.* 2018; Heuel *et al.* 2023), AFB₁ (4.3 µg kg DM⁻¹), DON (275 µg kg DM⁻¹), ZEN (27.5 µg kg DM⁻¹) and OTA (3.9 µg kg DM⁻¹) concentration in BSFL above the LOQ were reported. Even though BSFL mycotoxin contamination levels are low, substrates with a higher mycotoxin concentration tend

to result in BSFL with higher mycotoxin concentrations. This could also be due to small amounts of undigested substrate in the larval digestive tract. Even though these minor contaminations still make BSFL safe as feed according to legal limits, future research should investigate if they can be removed with egestion approaches of substrates from the BSFL digestive tract. This study is the first to identify bioaccumulation of BEA, with low amounts being detected in BSFL. High contaminated substrates with BEA could potentially result in high concentration of BEA in larvae. This could have caused by the lipophilic nature of this mycotoxin (Tran *et al.* 2020a), potentially accumulating in the larval biomass that is rich in fat.

Frass from mycotoxin-contaminated substrates were high in mycotoxins. However, this does not appear to limit its application as fertilizer as mycotoxins are not regulated in compost and fertilizer (Table S16). However, considering that mycotoxins in frass were partially similar or above the initial high substrate values, post-processing (e.q. composting, mixing with compost or fertilizer) and appropriate application and management practices should be considered to prevent negative health impacts following ingestion or inhalation. The contaminated maize and BSFL substrates were rich in aflatoxins produced by the mycotoxin producing fungus Aspergillus, suggesting that they contained this import mycotoxin production group of fungi (not quantified). However, no Aspergillus were detected in frass with mycotoxin-contaminated substrate suggesting that at least this group of mycotoxin-producing fungi are not propagated to soil when frass is used as fertilizer. Mycotoxins in the frass can help draw conclusion on whether they were decomposed by BSFL and/or the associated microbiome. Because BSFL and microbes reduce the substrate/frass mass during bioconversion (not quantified in this study), a lower or not significantly different frass concentration relative to the initial substrate suggests that mycotoxins were metabolized in the process. Consequently, in this study some part of the aflatoxins and DON were metabolized by BSFL and/or associated microbes. This is similar to previous studies who found 11-18 % AFB₁ and 39-55 % of initial DON in the substrate in larvae and frass (Camenzuli et al. 2018). AFP1, a typical AFB1 metabolite, was detected in frass and confirms that metabolism took place as mentioned above. In contrast, no conclusions can be drawn on other mycotoxins such as fumonisins because concentration in frass were significantly higher in the frass than the substrate. Previous studies with spiked and naturally contaminated wheat bran and olive pomace have found that 70% of total fumonisins are found in larvae and frass (Leni et al. 2019; Chapter 4; Niermans et al. 2023b). Different trends, meaning that some mycotoxins in frass were below and some above initial concentrations in the substrate, suggest that metabolization during the bioconversion process could vary among mycotoxins. Suo et al. (2023) recently concluded for AFB1, that such decomposition is partially mediated by the digestive tract microbiome which should be investigated for other mycotoxins.

Our study suggests that the frass from maize and agri-food by-products has potential as compost and/or fertilizer. Frass nutrients were comparable to a Rwandan compost (Fuhrmann et al.

2022)(Table 4), indicating that frass has a similar fertilizer value. Frass contained 19-20 N, 1.9-2.3 P and 7-13 K (mg kg DM⁻¹), whereas compost had 15 N, 2.4 P and 3 K (mg kg DM⁻¹). Frass contained 3-times more carbon than the compost (520-530 vs. 173 mg kg DM⁻¹). Frass varies greatly among substrates, particularly in terms of P, K and micronutrients (Lopes et al. 2022), but the frass fell within the typical range (Table 4). Our frass was higher in EC (4-6 vs. 1.2-5.7 mS cm⁻¹ 1), C (517-528 vs. 268-488 mg kg DM⁻¹), C:N (26-28 vs. 7-24 mg kg DM⁻¹) and Na (16-18 vs. 0.3-5.0 mg kg DM⁻¹) than the frass reviewed by Lopes (2022). Future research should determine whether the high frass EC is due to ammonia produced by BSFL excretions, which could be a valuable nutrient for plants, or related to salt, which could be toxic to plants, especially those that are salt-sensitive (Beesigamukama et al. 2021; Liu et al. 2019b). This research should also measure soluble nutrients (e.g. P2O5-K2O), assess optimal plant applications (e.g. soil and plant type, dose), and investigate nutrient supplementation to meet crop-specific nutrient requirements and fertilizer standards in Rwanda (Table 4) (Table S16) where the frass from our study falls short in terms of EC, C:N ratio, and some micronutrients (Ca, Fe, Mn, Zn, Cu). As highlighted previously, such plant trials with frass could also reveal effects of additional frass compounds, such as bioactive compounds (e.g. hemic substances, phytohormones, chitin), and beneficial microorganisms that could promote high plant health and yield (Fuhrmann et al. 2022; Lopes et al. 2022).

The unprocessed BSFL appear to have value as feed and food due to their protein and fat content. However, the protein content of the larvae (26-29% DM) was lower than the typical range for BSFL (32-58% DM), while fat content (23% DM) fell within the typical range (18-39% DM) (Gold et al. 2018). The larvae's protein and fat content is influenced by substrate composition and operational parameters, such as temperature, humidity, air flow, larval densities, and feeding rate. Future research should focus on optimizing these parameters to increase larval protein content and thereby improve the economics of using BSFL to manage mycotoxin-contaminated by-products such as maize. While the larval protein content was below average, unprocessed larvae from our substrates including mycotoxin-contaminated maize had twice as much protein (26-29% DM) than soybean meal (13% DM) in Rwanda. After optimizing substrate and bioconversion conditions, BSFL could be competitive with soybean and fishmeal. Removing fat from BSFL with an oil press can increase protein content up to 59% DM (Maurer et al. 2016). This would also be required to make the BSFL competitive with high-quality soybean and fishmeal other than those analysed in this study. Future research should include feeding trials with target animals to optimize larval product quality, considering ash and crude fibre contents, which are typically considered undesirable and indigestible by livestock. BSFL had similar ash (4% DM) and lower fiber content (16-17% DM) than soybean meal, and lower ash than fishmeal (4% DM vs. 21% DM). Only fishmeal had a lower fiber content than BSFL (6% DM vs. 16-17% DM), possibly due to chitin in the larval exoskeleton.

Conclusions

BSFL can be used to produce feed and fertilizer within legally safe limits from maize contaminated with mycotoxins at concentrations typical for African. Mycotoxins in the substrate did not affect BSFL process performance and mycotoxins in BSFL were found in low amounts, not detected and below the legal limits in the EU and EAC. BSFL grown on contaminated maize had a superior feed value as compared to locally obtained soybean meal. Frass was absent in *Aspergillus* and rich in plant nutrients. Future research should elucidate if unknown toxic metabolites of mycotoxins could be formed in BSFL and optimize the substrate composition and BSFL production system to maximize feed and fertilizer production. Given that BSFL amounts that can be included in feed are a lot lower than the initial crops, pre- and post-harvest strategies to prevent and minimize crop mycotoxin contamination should be prioritized before utilization by BSFL.

Acknowledgements

This research was funded by the International Finance Corporation, a member of the World Bank Group, in partnership with the Global Agriculture and Food Security Program (GAFSP).

Supplementary Materials

Supplementary Information

Materials and methods

Rearing feedstocks

Experimental design and substrates

- Maize was milled (ring sieve pore size 1.2 mm) using a disk mill (model FFC-15, Qingdao RuiDa Machinery Co., Ltd., Qingdao, China)
- Spent grain (approximately 20% barley, 80% sorghum, based on wet mass) was obtained from a brewery (Kweza Craft Brewery, Kigali, Rwanda).
- Fruits were green banana (45%), pineapple (23%), tree tomato (10%), avocado (9%), and yellow banana (9%) from Nyabugogo market (Kigali, Rwanda, all values based on wet mass).

Black soldier fly larvae feeding trials

The black soldier fly eggs were from a colony at The Bug Picture at Bishenyi, Rwanda. Eggs were removed from the egg media and placed for 24 h on pig feed (40% moisture content). Following, eggs were removed, and neonates were allowed to feed for seven days to around 0.3 mg larva-

Substrate and larvae composition

Moisture content was determined as the gravimetric loss while drying at 103°C until constant mass loss. Total nitrogen was determined by combustion and the substrate. Crude fat was estimated by extraction with petroleum ether after hydrolysis using hydrochloric acid. Crude fibre of larvae, soybean and fishmeal was estimated as the gravimetric loss during treatment with boiling sulphuric acid and sodium hydroxide. Ash was determined based on the gravimetric loss during combustion at 550°C for at least 3 h.

- International Organization for Standardization;, 2022. ISO 5984. Animal feeding stuffs-Determination of crude ash.
- International Organization for Standardization;, 2009. ISO 5983. Animal feeding stuffs-Determination of nitrogen content and calculation of crude protein content.
- International Organization for Standardization;, 2008a. ISO 13906. Animal feeding stuffs-Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents.

- International Organization for Standardization;, 1999a. ISO 6492. Animal feeding stuffs-Determination of fat content.
- International Organization for Standardization;, 1999b. ISO 6496. Animal Feeding Stuffs-Determination of Moisture and Other Volatile Matter Content.

Frass composition

Electric conductivity (EC) and pH with a handheld EC and pH meter. Total carbon (C) and nitrogen (N) was determined by combustion, and phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) was determined with ICP-OES following nitric and hydrochloric acid digestion. *Aspergillus spp.* were enumerated by plate counts on selective media. All physicochemical metrics except for C and N were determined with US EPA methods (see supplementary material).

- Association of Official Analytical Chemists (AOAC), 1997. Microchemical Determination
 of Carbon, Hydrogen, and Nitrogen, Automated Method, in: Official Methods of
 Analysis of AOAC International. Arlington VA, USA.
- United States Environmental Protection Agency (EPA), 2004. Method 9045D: Soil and Waste pH. Washington DC, USA.
- United States Environmental Protection Agency (EPA), 1996. Method 9050A: Specific Conductance. Washington DC, USA.
- United States Environmental Protection Agency (EPA), 1994. Method 200.7:
 Determination of Metals and Trace Elements in Water and Wastes by Inductively
 Coupled Plasma-Atomic Emission Spectrometry. Cincinnati OH, USA.
- International Organization for Standardization;, 2008b. ISO 21527-2: Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of yeasts and moulds — Part 2: Colony count technique in products with water activity less than or equal to 0.95

Mycotoxin analyses

Sample preparation, extraction and analysis

Mycotoxin standards were purchased from BioAustralis: enniatin A (ENNA), enniatin A_1 (ENNA₁), enniatin B (ENNB), enniatin B_1 (ENNB₁); CoringSystem DiagnostiX: alternariol-monomethylether (AME), alternariol (AOH), agroclavine (AC), diacetoxyscirpenol (DAS), deoxynivalenol-3-glucoside (DON3G), fumonisin B_3 (FB₃), HT-2 toxin (HT-2), mycophenolic acid (MPA), nivalenol (NIV), penicillic acid (PA), roquefortine C (ROQ), sterigmatocystin (STER), T-2 toxin (T-2); Enzo Life Sciences (Brussels, Belgium): aflatoxicol (AFL); Romer Labs (Getzersdorf, Austria): aflatoxin M_1 (AFM₁); Sigma-Aldrich: 15-acetyldeoxynivalenol (15AcDON), 3-acetyldeoxynivalenol (3AcDON),

aflatoxin B_1 (AFB₁), aflatoxin B_2 (AFB₂), aflatoxin G_1 (AFG₁) and aflatoxin G_2 (AFG₂), beauvericin (BEA), citrinin (CIT), deoxynivalenol (DON), fumonisin B_1 (FB₁), fumonisin B_2 (FB₂), moniliformin (MON), nitropropionic acid (NPA), ochratoxin A (OTA), α -zearalenol (α -ZEL), zearalenone (ZEN), β -zearalenol (β -ZEL) and TRC (Toronto, ON, Canada): aflatoxin P_1 (AFP₁) and aflatoxin Q_1 (AFQ₁). These standards were used to prepare an aflatoxin standard mix (AFP₁, AFQ₁, AFL, AFM₁), and a mycotoxin standard mix (all other mycotoxins as well as AFB₁, AFB₂, AFG₁ and AFG₂) and were utilized for quantification purposes.

Extraction was similar among the samples apart from a smaller sample mass being used for the substrate, larvae and frass samples (1.0 g) than the maize samples (2.5 g). The used reagents were adjusted accordingly. For the maize, 2.5 g of ground sample were weighed into a 50 mL tube, after which 7.5 mL water was added. The maize/water mixture was then vortexed and allowed to settle for 15 min. Then, 10 mL of extraction solvent, which consists of 99% acetonitrile (HPLC supra gradient, Biosolve Chimie, Dieuze, France) and 1% acetic acid (Merck KgaA, Darmstadt, Germany), was added, followed by vortexing of the samples and 30 min mixing in a head-over-head shaker (Reax 2, Heidolph Instruments GmbH & Co, Schwabach, Germany). Subsequently, 4 g of magnesium sulphate (VWR Chemicals, Radnor, VS) was added, manually shaken and vortexed for 1 min, after which the samples were centrifuged (Falcon 6-30, MSE, Nuaillé, France) at 3000 rpm for 10 min.

Mycotoxin concentration in the sample was quantified by means of standard addition (see supplementary material). The sample without standard addition was prepared by adding 200 μ L of sample extract and 200 μ L of water into a syringeless PTFE filter vial (Mini-UniPrep, Whatman, Marlborough, MA). The sample with standard addition was prepared by transferring 200 μ L of sample extract from the same sample to a second PTFE filter vial after which 10 μ L of mycotoxin standard mix, 10 μ L aflatoxin standard mix, and 180 μ L water were added. After preparation, the vials were capped, vortexed for 30 sec, and stored for a minimum of 30 min at 4°C. After 30 min, the vials were closed and stored at 4°C until LC-MS/MS analyses.

The mycotoxin concentrations were analysed with LC-MS/MS (Waters Acquity injection and pump system, Milford, MA). Additionally, the AB Sciex QTRAP 6500 triple quad system equipped with an electrospray ionization (ESI) source was operated in positive- and negative mode (LC-MS/MS parameters shown in the supplementary material). LC separation was performed by an Acquity UPLC HSS T3 1.8 μ m 100x2.1 mm column (Waters). The composition of the eluents used for the positive and negative ionization mode and the LC eluent gradient for both ionisation modes was the same as reported in Camenzuli *et al.* (2018). The flow rate was 0.4 mL/min, the column temperature was 35°C, and the injection volume 5 μ L. The conditions set for ESI were as follows: spray voltage 4.0 kV/-4 kV, temperature, 400°C, Ion Source Gas 1 and 2 were both set at 50 arbitrary units.

Data analyses

The mycotoxin concentration was calculated by dividing the sample area without standard addition by the sample area with standard addition minus the sample area without standard addition, multiplied by the mycotoxin concentration in the mycotoxin/aflatoxin standard mix used for standard addition purposes (see equation below).

Concentration

Sample area no addition

 $\overline{(Sample\ area\ with\ addition)-Sample\ area\ no\ addition}}\ \ x\ concentration\ in\ standard\ mix$

To obtain the final sample concentrations, the results were corrected for the determined average recovery of the mycotoxins in the different matrices (see supplementary material) to include for possible uncertainties (extraction efficiency, matrix effect, etc) and was done according to EC (2006a).

In order to determine a limit of detection (LOD) and limit of quantification (LOQ) of the method used, a calibration curve (in extraction solvent) was prepared. The LOD and LOQ were determined as the lowest concentration included in the calibration curve with a signal to noise ratio of ≥ 3 and ≥ 10 , respectively. However, for some mycotoxins, the lowest point in the calibration curve complied to all set rules. As these concentrations were far (at least 0.13 times) below the legal limits or guidance values (GV) set for animal feed in the EU (see Table 8) (EC 2002a; EC 2006b), or currently no limits or guiding values exist for these mycotoxins, the lowest point of the calibration curve was considered as the LOQ. Final LOD and LOQ concentrations (see supplementary material) were obtained by correcting the concentrations determined in solvent by average recovery of the mycotoxins in the different matrices (EC 2006a).

Supplementary Materials

Table S1

Amounts (in kg) of uncontaminated maize, contaminated maize, agri-food by-products and tap water mixed to produce the six BSFL rearing substrates with two maize inclusion and three maize mycotoxin levels at around 70% moisture content

Abbreviation	Maize	Maize mycotoxin contamination	Uncontaminated maize	Contaminated maize	Agri-food by-product	Tap water
CM50	50%	Control	5.7	0	25.4	1.1
	DM					
LM50	50%	Low	4.3	1.4	25.4	1.1
	DM		4.5	1.4	25.4	1.1
HM50	50%	High	0	г 7	25.4	1 1
	DM		0	5.7	25.4	1.1
CM80	80%	Control	0.1	0	10.2	12.0
	DM		9.1	0	10.2	12.9
LM80	80%	Low	6.0	2.2	40.2	42.0
	DM		6.8	2.3	10.2	12.9
HM80	80%	High	0	0.4	40.2	42.0
	DM		0	9.1	10.2	12.9

Table S2

Ambient temperature and relative humidity during black soldier fly larvae feeding trials

		Temp	erature		Relative hu	midity
Rearing	Daytime ¹	Range	Day	Day	Daytime ¹	Range
day	Daytiille	Daytime ²	maximum³	minimum³	Daytime	Daytime ²
1	30.5	25-34	34.2	17.8	44.9	36-67
2	30.6	27-34	34.6	19.4	48.3	37-63
3	26.5	22-34	33.1	16.6	62.5	39-83
4	21.1	20-23	23.4	19.5	81.4	69-95
5	24.9	18-31	32.6	16.5	65.6	44-91
6	23.4	17-28	31.4	17.5	68.6	44-93
7	30.7	26-34	34.6	17.0	45.1	37-61
8	27.0	22-31	32.0	19.2	57.3	45-79
9	28.6	24-34	34.1	17.9	51.1	35-65
10	27.5	25-31	32.9	18.8	53.4	40-65
11	28.5	24-34	36.2	19.0	53.1	38-70
Mean	27.2	22-31	32.6	18.1	57.4	42-57

 $^{^1}$ mean based on point measurements recorded between 7 am and 5 pm; 2 minimum and maximum of point measurements recorded between 7 am and 5 pm; 3 Overall minimum and maximum over the entire day; 4 Mean of daily means over all rearing days

Table S3
Mean substrate/frass temperature of the different treatments over all rearing days (n=4).
Frass/substrate temperature was measured with a digital thermometer at 9 am, 1 pm and 5 pm

Rearing day	CM50	CM80	LM50	LM80	HM50	HM80
1	21.9	21.4	21.4	21.9	21.8	22.0
2	24.2	23.6	23.7	23.8	24.2	24.3
3	23.1	22.7	22.8	23.0	23.5	23.3
4	20.6	20.6	20.6	20.4	20.8	20.8
5	21.8	21.5	21.3	21.7	21.3	21.8
5	22.0	21.4	21.5	21.5	21.7	21.9
7	23.6	23.0	22.6	23.2	22.7	23.4
8	23.9	23.1	23.3	23.3	23.1	23.7
9	24.6	23.1	23.9	23.3	24.1	23.4
10	27.1	25.1	26.1	25.3	26.4	25.5
11	27.1	24.2	26.0	24.2	25.9	24.3
Mean	23.6 (2.1)	22.7 (1.3)	23.0 (1.8)	22.9 (1.4)	23.3 (1.8)	22.7 (1.3)

Table S4
Mycotoxins and metabolites analysed in this study.

Aflatoxins	Fusarium mycotoxins	Aspergillus, Penicillium, and
		Alternaria mycotoxins
aflatoxin B_1 (AFB ₁)	15-acetyldeoxynivalenol	Nitropropionic acid (NPA)
	(15AcDON)	
aflatoxin B ₂ (AFB ₂)	3-acetyldeoxynivalenol	sterigmatocystin (STER)
	(3AcDON)	
aflatoxin G ₁ (AFG ₁)	diacetoxyscirpenol (DAS)	citrinin (CIT)
aflatoxin G ₂ (AFG ₂)	deoxynivalenol (DON)	Mycophenolic acid (MPA)
aflatoxicol (AFL)	deoxynivalenol-3-glucoside (DON3G)	ochratoxin A (OTA)
aflatoxin M ₁ (AFM ₁)	HT-2 toxin (HT-2)	Penicillic acid (PA)
aflatoxin P ₁ (AFP ₁)	nivalenol (NIV)	roquefortine C (ROQ)
aflatoxin Q ₁ (AFQ ₁)	T-2 toxin (T-2)	alternariol-monomethylether
		(AME)
	α-zearalenol (α-ZEL)	alternariol (AOH)
	zearalenone (ZEN)	agroclavine (AC)
	β-zearalenol (β-ZEL)	
	fumonisin B ₁ (FB ₁)	
	fumonisin B ₂ (FB ₂)	
	fumonisin B ₃ (FB ₃)	
	enniatin A (ENNA)	
	enniatin A_1 (ENN A_1)	
	enniatin B (ENNB)	
	enniatin B_1 (ENN B_1)	
	beauvericin (BEA)	
	moniliformin (MON)	

Table S5
Instrumental MS/MS parameters of mycotoxins analysed in positive ionisation mode

Component	Rt	Q1	Q3	DP	EP	CE	CXP
·	(min)	(m/z)	(m/z)	(V)	(V)	(V)	(V)
15AcDON (ql)	3.3	355.9	321.1	40	10	17	20
15AcDON (qn)	3.3	355.9	137.1	40	10	22	10
AFB ₁ (ql)	4.70	313.1	128.1	40	10	91	10
AFB ₁ (qn)	4.70	313.1	285.2	40	10	33	16
AFB ₁ (ql2)	4.70	313.1	241.0	40	10	54	15
AFB ₂ (qI)	4.40	315.1	259.2	40	10	43	18
AFB ₂ (qn)	4.40	315.1	287.2	40	10	37	18
AFG ₁ (ql)	4.1	329.0	200.0	40	10	53	12
AFG ₁ (qn)	4.1	329.0	243.2	40	10	39	14
AFG ₂ (qI)	3.8	331.1	245.2	40	10	43	14
AFG ₂ (qn)	3.8	331.1	313.2	40	10	35	18
AFL (qn)	5.40	297.1	269.0	40	10	29	16
AFL (ql)	5.40	297.1	114.9	40	10	81	12
AFL (ql2)	5.40	297.1	141.0	40	10	65	14
AFP ₁ (qn)	4.20	299.0	271.0	40	10	33	18
AFP ₁ (ql1)	4.20	299.0	114.9	40	10	71	12
AFP ₁ (ql2)	4.20	299.0	90.9	40	10	67	10
AFM_1 (qn)	3.84	328.9	272.9	40	10	33	18
AFM ₁ (ql)	3.84	328.9	229.0	40	10	55	16
AFQ₁ (qn)	3.70	329.1	310.8	40	10	29	16
AFQ₁ (qI)	3.70	329.1	177.0	40	10	45	22
AFQ₁ (ql2)	3.70	329.1	128.0	40	10	67	14
AC (ql)	3.2	239.1	208.2	40	10	27	10
AC (qn)	3.2	239.1	183.2	40	10	27	12
BEA (ql)	8.0	784.4	262.3	30	10	41	13
BEA (qn)	8.0	784.4	244.2	30	10	41	13
DON (ql)	2.7	297	231	30	10	17	15
DON (qn)	2.7	297	249	30	10	15	15
DAS (ql)	4.3	384.2	105.1	40	10	61	7
DAS (qn)	4.3	384.2	307.2	40	10	17	9
ENNA (ql)	8.2	699.4	228	40	10	20	16
ENNA (qn)	8.2	699.4	210.1	40	10	20	14
ENNA ₁ (ql)	8.0	685.4	228.2	40	10	20	16
ENNA ₁ (qn)	8.0	685.4	210.1	40	10	20	14
ENNB (ql)	7.7	657.5	214.1	40	10	20	22
ENNB (qn)	7.7	657.5	196.3	40	10	20	14
ENNB ₁ (ql)	7.9	671.4	210	40	10	20	14
ENNB ₁ (qn)	7.9	671.4	196	40	10	20	14
FB ₁ (ql)	5.4	722.5	352.3	40	10	55	12
FB ₁ (qn)	5.4	722.5	334.4	40	10	57	4
FB ₂ (qI)	6.2	706.4	318.5	40	10	51	2
FB ₂ (qn)	6.2	706.4	336.3	40	10	53	8
FB ₃ (qI)	5.9	706.4	318.5	40	10	51	2

Cha	pter	8
-----	------	---

FB ₃ (qn)	5.9	706.4	336.3	40	10	53	8
HT-2 (ql)	5.1	441.9	215.1	40	10	17	16
HT-2 (qn)	5.1	441.9	263.1	40	10	19	6
MPA (ql)	5.7	338.3	303.2	1	10	19	26
MPA (qn)	5.7	338.3	207	1	10	31	16
OTA (ql)	6.4	404	102	40	10	91	14
OTA (qn)	6.4	404	239	40	10	33	16
ROQ (ql)	4.9	390.2	322.2	30	10	30	15
ROQ (qn)	4.9	390.2	193.1	30	10	38	15
STER (ql)	7.0	325.1	310.2	40	10	35	18
STER (qn)	7.0	325.1	281.1	40	10	51	16
T-2 (ql)	5.7	484.3	185.1	40	10	27	11
T-2 (qn)	5.7	484.3	215.2	40	10	25	18
and an analitical take all and	-1:£::						

qn: quantifier ions. ql: qualifier ions

Table S6
Instrumental MS/MS parameters of mycotoxins analysed in negative ionisation mode

<u> </u>	Rt	Q1	Q3	DP	EP	CE	СХР
Component	(min)	(m/z)	(m/z)	(V)	(V)	(V)	(V)
3AcDON (qn)	3.4	397.1	337	-20	-10	-12	-23
3AcDON (ql)	3.4	397.1	59	-20	-10	-52	-7
AOH (qn)	6.0	257	212.9	-95	-10	-34	-11
AOH (ql)	6.0	257	214.9	-95	-10	-36	-11
AME (qn)	7.2	271.1	256	-90	-10	-32	-13
AME(ql)	7.2	271.1	227	-90	-10	-50	-9
CIT (qn)	4.4	281.2	249.2	-50	-10	-30	-8
CIT (ql)	4.4	281.2	205.2	-50	-10	-37	-8
DON3G (qn)	2.7	517.2	457.1	-45	-10	-18	-13
DON3G (ql)	2.7	517.2	247	-45	-10	-32	-17
MON (qn)	0.9	96.6	41.2	-95	-10	-27	-5
NPA (qn)	1.0	118	46	-35	-10	-16	-15
NIV (qn)	2.5	371.1	281	-55	-10	-20	-19
NIV (ql)	2.5	371.1	311	-55	-10	-14	-21
PA (qn)	3.0	168.9	110	-40	-10	-12	-9
PA (qI)	3.0	168.9	92.9	-40	-10	-22	-9
β-ZEL (qn)	6.0	319.3	160	-110	-10	-41	-13
β-ZEL (ql)	6.0	319.3	130	-110	-10	-47	-20
ZEN (qn)	6.5	317.1	175	-175	-10	-32	-15
ZEN (ql)	6.5	317.1	131.1	-175	-10	-36	-11
α-ZEL (qn)	6.6	319.2	160	-110	-10	-41	-13
α-ZEL (ql)	6.6	319.2	130	-110	-10	-47	-20

qn: quantifier ions. ql: qualifier ions

8

Table S7
Recovery per mycotoxin (based on QC samples) in different samples

Compound	AFB ₁	AFB ₂	AFG ₁	AFG ₂	AFL	AFP ₁	AFM ₁	AFQ ₁
Maize	87%	102%	92%	93%	85%	86%	83%	89%
Substrate	98%	88%	88%	88%	91%	93%	93%	96%
Larvae	97%	101%	93%	98%	88%	94%	99%	87%
Frass	104%	105%	118%	102%	95%	84%	98%	97%
Compound	3AcDON	15AcDON	AC	BEA	DON	DAS	ENNA	ENNA ₁
Maize	71%	92%	85%	87%	77%	60%	106%	102%
Substrate	87%	96%	85%	88%	90%	92%	113%	116%
Larvae	101%	90%	83%	45%	84%	92%	48%	68%
Frass	98%	109%	100%	97%	112%	109%	120%	121%
Compound	ENNB	ENNB ₁	HT-2	MPA	OTA	PA	ROQ	STER
Maize	102%	112%	124%	102%	95%	108%	84%	94%
Substrate	111%	121%	89%	89%	93%	105%	88%	89%
Larvae	64%	75%	95%	94%	90%	87%	74%	87%
Frass	137%	132%	107%	111%	102%	99%	101%	106%
Compound	T-2	АОН	AME	DON3G	NPA	NIV	ZEN	α-ZEL
Maize	60%	72%	81%	73%	82%	71%	77%	65%
Substrate	92%	92%	90%	88%	103%	96%	92%	82%
Larvae	92%	91%	82%	74%	69%	80%	88%	84%
Frass	112%	81%	113%	81%	104%	94%	90%	90%
Compound	β-ZEL	CIT	FB_1	FB ₂	FB ₃	MON		
Maize	69%	264%	99%	95%	97%	92%		·
Substrate	101%	119%	98%	103%	101%	111%		
Larvae	98%	112%	117%	118%	114%	165%		
Frass	72%	91%	95%	92%	93%	102%		

Table S8 Limit of quantification (LOQ) and limit of detection (LOD) of all mycotoxins analysed in this study in $\mu g/kg$

	LOQ					LOD			
- D	Raw	Substrat	1	F	Raw	Substrat	1	F	
Parameter	maize	е	Larvae	Frass	maize	е	Larvae	Frass	
AFB ₁	0.29	0.25	0.26	0.24	0.14	0.13	0.13	0.12	
AFB ₂	0.12	0.14	0.12	0.12	0.12	0.14	0.12	0.12	
AFG_1	0.14	0.14	0.13	0.11	0.09	0.09	0.08	0.07	
AFG_2	0.54	0.57	0.51	0.49	0.13	0.14	0.13	0.12	
AFL	1.55	1.45	1.5	1.38	0.46	0.44	0.45	0.41	
AFM_1	1.06	0.95	0.89	0.9	0.32	0.28	0.27	0.27	
AFP ₁	1.02	0.94	0.94	1.04	0.46	0.42	0.42	0.47	
AFQ_1	0.99	0.92	1.01	0.91	0.3	0.28	0.3	0.27	
15AcDON	21.7	20.83	22.13	18.3	10.85	10.42	11.06	9.15	
3AcDON	56.47	45.73	39.58	40.8	28.24	22.87	19.79	20.4	
DAS	4.14	2.71	2.72	2.29	1.03	0.68	0.68	0.57	
DON	32.3	27.79	29.82	22.41	32.3	27.79	29.82	22.41	
DON3G	137.19	113.1	135.78	123.31	102.89	84.82	101.84	92.48	
HT2	4.03	5.59	5.27	4.67	2.01	2.8	2.63	2.34	
NIV	141.18	103.9	125.04	106.23	105.88	77.92	93.78	79.67	
T2	4.15	2.72	2.72	2.23	4.15	2.72	2.72	2.23	
α-ZEL	15.46	12.22	11.84	11.06	7.73	6.11	5.92	5.53	
ZEN	8.13	6.78	7.12	6.96	8.13	6.78	7.12	6.96	
β-ZEL	14.53	9.94	10.15	13.91	7.26	4.97	5.08	6.96	
FB_1	12.64	12.7	10.65	13.12	12.64	12.7	10.65	13.12	
FB ₂	5.28	4.83	4.24	5.42	5.28	4.83	4.24	5.42	
FB ₃	5.18	4.93	4.38	5.39	5.18	4.93	4.38	5.39	
ENNA	5.87	5.53	13.03	5.22	5.87	5.53	13.03	5.22	
$ENNA_1$	6.13	5.4	9.21	5.15	6.13	5.4	9.21	5.15	
ENNB	6.15	5.61	9.77	4.58	6.15	5.61	9.77	4.58	
$ENNB_1$	5.58	5.16	8.35	4.72	5.58	5.16	8.35	4.72	
BEA	2.87	2.83	5.52	2.56	1.44	1.41	2.76	1.28	
MON	3.41	2.81	1.89	3.06	3.41	2.81	1.89	3.06	
NPA	6.13	4.84	7.21	4.8	3.06	2.42	3.61	2.4	
STER	0.13	0.14	0.14	0.12	0.13	0.14	0.14	0.12	
CIT	0.47	1.05	1.12	1.38	0.47	1.05	1.12	1.38	
MPA	12.23	13.97	13.3	11.23	6.12	6.99	6.65	5.61	
OTA	0.53	0.54	0.55	0.49	0.26	0.27	0.28	0.25	
PA	55.32	57.21	68.68	60.48	13.83	14.3	17.17	15.12	
ROQ	0.15	0.14	0.17	0.12	0.15	0.14	0.17	0.12	
AME	1.55	1.39	1.53	1.1	0.77	0.7	0.76	0.55	
AOH	3.45	2.72	2.73	3.09	3.45	2.72	2.73	3.09	
Ac	0.15	0.15	0. 15	0.13	0.15	0.15	0.15	0.13	

Abbreviations see "Sample preparation, extraction and analysis"

Table S9

Moisture content and gross nutrient composition of substrates with two different maize inclusion levels (% DM except for moisture content in %)

Maize inclusion	Moisture content	Crude protein	Crude fat	Ash	Crude fibre
50% maize	66.3 (4.0)	8.4 (0.7)	5.4 (0.3)	3.0 (0.1)	2.9 (0.8)
80% maize	68.8 (1.9)	8.8 (0.7)	4.9 (0.1)	1.8 (0.3)	3.0 (0.7)

Average and standard deviation in parentheses of pooled sample from the three maize mycotoxin contamination levels (CM: control maize; LM: low mycotoxin-contaminated maize, HM: high mycotoxin-contaminated maize)

Table S10 Concentrations of mycotoxins found in the different rearing substrates in $\mu g/kg$ DM

		_				
	CM50	LM50	HM50	CM80	LM80	HM80
Aflatoxii	15 ¹					
AFB_1	0.4 (0.5) ^a	16.2 (1.7) ^a	41.0 (12.4) ^a	1.5 (0.2) ^a	18.8 (3.8) ^a	99.4 (47.5) ^b
AFB_2	< LOQ ^a	2.5 (0.2) ^b	7.5 (1.1) ^c	< LOQ ^a	2.7 (0.1) ^b	12.2 (1.4) ^d
AFG_1	0.4 (0.3)a	3.7 (1.2)b	8.6 (0.4) ^c	1.0 (0.1) ^a	3.3 (0.7) ^b	11.3 (1.6)d
AFG ₂	< LOQ ^a	< LOQ ^a	2.7 (0.6) ^a	< LOQ ^a	< LOQ ^a	0.5 (1.1) ^b
Fusariur	n mycotoxins²					
						135.2
DON	115.9 (3.6)ª	131.1 (6.3)ª	142.1 (19)ª	127.6 (7.8)ª	130.7 (7.5)a	(17.3) ^a
ZEN	< LOQ ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a	15.9 (31.7) ^a
				215.8	469.2	1034.6
FB ₁	109.7 (11.1) ^a	347.4 (73.3) ^b	493.3 (50.3) ^c	(13.5) ^a	(49.2) ^{b,c}	(93.5) ^d
						378.6
FB_2	37.8 (8.9)a	121.8 (34.1) ^{a,b}	169.2 (31.4)b	66.8 (5.9) ^{a,b}	156.3 (30.7)b	(104.6) ^c
FB ₃	12.7 (8.6) ^a	45.6 (12.6) ^{a,b}	65.7 (5.3) ^{a,b}	29.1 (1.4) ^{a,b}	69.9 (9.2) ^b	208.5 (55.9) ^c
ENNB	< LOQ ^a	< LOQ ^a	9.2 (18.4) ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a
$ENNB_1$	< LOQ ^a	< LOQ ^a	4.6 (9.3) ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a
BEA	< LOQ ^a	3.0 (5.9) ^{a,b}	13.5 (1.4) ^b	< LOQ ^a	3.7 (7.3)a,b	28.1 (11)c
MON	36.1 (4.4) ^a	54.9 (8.4) ^{a,b}	68.3 (5.9) ^b	54.6 (3.7) ^{a,b}	79.2 (12.9) ^b	193.5 (23.1) ^c
Aspergil	lus, Penicillium,	and Alternaria m	nycotoxins³			
NPA	< LOQª	< LOQ ^a	47.8 (4.6)b	< LOQª	< LOQa	67.4 (13.9) ^c
STER	< LOQ ^a	0.2 (0.5) ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a	< LOQ ^a
CIT	< LOQ ^a	0.9 (1.9) ^a	8 (1.9)a	< LOQa	0.9 (1.9)ª	23.2 (30.8)a
AME	9.9 (0.9) ^a	12 (1) ^a	8.4 (0.6) ^a	4.4 (5.3) ^a	< LOQ ^a	13.9 (24.6) ^a
AOH	12 (0.9)a	13.9 (1.8)ª	10.7 (1.4) ^a	2.2 (4.3) ^a	< LOQ ^a	15.2 (30.5)a

All values are based on dry mass; Average and standard deviation in parentheses with n=4; Results with no shared letter are significantly different from each other (comparing all treatments with each other); 1 aflatoxin B_1 (AFB₁), aflatoxin B_2 (AFB₂), aflatoxin G_1 (AFG₁) and aflatoxin G_2 (AFG₂); 2 deoxynivalenol (DON), zearalenone (ZEN), fumonisin B_1 (FB₁), fumonisin B_2 (FB₂), fumonisin B_3 (FB₃), enniatin B_1 (ENNB), enniatin B_1 (ENNB₁), beauvericin (BEA) and moniliformin (MON); 3 nitropropionicacid (NPA), sterigmatocystin (STER), citrinin (CIT), alternariol-monomethylether (AME) and alternariol (AOH)

Table S11 Mycotoxin concentrations in substrate, larvae and frass with the clean maize in $\mu g/kg$ DM

	CM50				CM80	
	Substrate	Larvae	Frass	Substrate	Larvae	Frass
AFB ₁	0.4 (0.5) ^a	< LOQª	0.2 (0.3)a	1.4 (0.2)b	< LOQª	1.2 (0.2)b
AFG ₁	0.4 (0.3)b	< LOQ ^a	< LOQ ^a	1.0 (0.1)b	0.2 (0.3) ^a	0.7 (0.1) ^b
DON	115.9 (3.6) ^c	< LOQa	69.4 (15.1) ^b	127.6 (7.8) ^c	< LOQ ^a	112.6 (7.9)b
FB_1	109.7 (11.1) ^b	46.9 (9.1) ^a	125.4 (36.3) ^b	215.8 (13.5) ^b	41.6 (31.0)ª	252.1 (15.1) ^b
FB ₂	37.8 (8.9)b	15.5 (2.6)a	40.6 (11.8)b	66.8 (5.9)b	15.9 (11.5) ^a	76.7 (1.4) ^b
FB ₃	12.7 (8.6)b	< LOQ ^a	21.3 (1.3) ^b	29.0 (1.4)b	< LOQ ^a	32.2 (1.0) ^c
MON	36.1 (4.4) ^c	< LOQa	10.6 (1.1)b	54.6 (3.7)b	< LOQa	< LOQ ^a
AME	9.9 (0.9)b	1.1 (2.1)a	14.9 (2.2) ^c	4.4 (5.3) ^a	< LOQ ^a	5.1 (1.0) ^a
АОН	12.0 (0.9)b	< LOQ ^a	20.9 (2.0)b	2.2 (4.3) ^a	< LOQ ^a	8.5 (1.5) ^b
BEA	< LOQ	< LOQ	< LOQ	< LOQ ^a	< LOQ ^a	5.0 (3.4)b

All values are based on dry mass; Average and standard deviation in parentheses with n=4; Results with no shared letter are significantly different from each other (comparing all treatments with each other); Results < LOQ were set to 0; Aflatoxin B_1 (AF B_1), aflatoxin G_1 (AF G_1), deoxynivalenol (DON), fumonisin B_1 (FB $_1$), fumonisin B_2 (FB $_2$), fumonisin B_3 (FB $_3$), moniliformin (MON), alternariol-monomethylether (AME), alternariol (AOH) and beauvericin (BEA)

8

Table S12 Mycotoxin concentrations in substrate, larvae and frass at the low maize mycotoxin contamination level in $\mu g/kg$ DM.

		LM50			LM80	
	Substrate	Larvae	Frass	Substrate	Larvae	Frass
AFB ₁	16.2 (1.7)b	< LOQ ^a	14.4 (7.8) ^b	18.8 (3.8)b	3.6 (1.2) ^a	15.8 (1.0)b
AFB ₂	2.5 (0.2)b	< LOQa	1.7 (0.7)b	2.7 (0.1)b	0.4 (0.3)a	2.1 (0.2)b
AFG ₁	3.7 (1.2)b	0.1 (0.2)a	1.7 (1.2)a,b	3.3 (0.7)b	0.3 (0.4)a	2.1 (0.2) ^{a,b}
AFP ₁	< LOQa	< LOQ ^a	0.8 (1.7) ^a	< LOQ ^a	< LOQ ^a	3.5 (1.0) ^a 126.6
DON	131.1 (6.3) ^c 347.4	< LOQ ^a	88.9 (6.4) ^b	130.7 (7.5) ^c 469.2	< LOQ ^a	(12.9) ^b
FB ₁	(73.3) ^b 121.8	84.9 (13.4) ^a	444.6 (17.4) ^c	(49.2) ^b 156.3	99.4 (30.6) ^a	608 (96.3) ^c 188.7
FB ₂	(34.1) ^b	28.6 (4.9)a	151.0 (9.6)b	(30.7) ^b	37.6 (7.4) ^a	(22.1) ^b
FB ₃	45.6 (12.6)b	3.5 (7) ^a	58.5 (3.5)b	69.9 (9.2)b	15.3 (3.5)ª	82.1 (14.3)b
BEA	3 (5.9) ^a	< LOQ ^a	10.2 (1.7)b	3.7 (7.3) ^a	< LOQ ^a	12.4 (1.3)b
MON	54.9 (8.4)b	< LOQa	< LOQ ^a	79.2 (12.9)b	< LOQa	3.7 (4.3)a
STER	0.2 (0.5) ^a	< LOQ ^a	< LOQ ^a	< LOQ	< LOQ	< LOQ
CIT	0.9 (1.9) ^a	< LOQ ^a	1.4 (2.7) ^a	0.9 (1.9) ^a	< LOQ ^a	< LOQ ^a
AME	12 (1) ^b	< LOQ ^a	16.5 (1.9) ^c	< LOQ ^b	< LOQ ^a	4.8 (0.6) ^c
AOH	13.9 (1.8)b	< LOQ ^a	24 (3.1) ^c	< LOQ ^b	< LOQ ^a	6.3 (4.2) ^c

All values are based on dry mass; Average and standard deviation in parentheses with n=4; Results with no shared letter are significantly different from each other (comparing all treatments with each other); Aflatoxin B_1 (AFB₁), aflatoxin B_2 (AFB₂), aflatoxin G_1 (AFG₁), aflatoxin G_1 (AFP₁), deoxynivalenol (DON), fumonisin G_1 (FB₁), fumonisin G_2 (FB₂), fumonisin G_3 (FB₃), beauvericin (BEA), moniliformin (MON), sterigmatocystin (STER), citrinin (CIT), alternariol-monomethylether (AME) and alternariol (AOH)

Table S13 Mycotoxin concentrations in substrate, larvae and frass at the high maize mycotoxin contamination level in $\mu g/kg\ DM$

		HM50			HM80	
	Substrate	Larvae	Frass	Substrate	Larvae	Frass
AFB ₁	41 (12.4)b	3.4 (3.2) ^a	38.5 (12.8)b	99.4 (47.5) ^c	11.4 (11.8)a	62.1 (18.8)b
AFB ₂	7.5 (1.1)b	0.4 (0.6) ^a	6.4 (0.5) ^b	12.2 (1.4)b	1.4 (1.5) ^a	9.8 (1) ^b
AFG_1	8.6 (0.4) ^c	0.4 (0.7) ^a	4.5 (0.7) ^b	11.3 (1.6) ^c	1.5 (1.4) ^a	7.8 (0.8)b
AFG_2	2.7 (0.6)b	< LOQ ^a	1.9 (0.5)b	0.5 (1.1) ^{a,b}	< LOQ ^a	1.7 (0.4)b
AFP ₁	< LOQa	< LOQ ^a	12.1 (2.8)b	< LOQa	< LOQ ^a	10.1 (1.1)b
DON	142.1 (19) ^c	< LOQ ^a	108.5 (10.1) ^b	135.2 (17.3) ^c	< LOQ ^a	105.1 (5.1)b
FB_1	493.3 (50.3) ^a	232.7 (99.7) ^a	1067.8 (206.5) ^b	1034.6 (93.5) ^b	296 (85.2)a	1064.6 (79.9) ^b
FB_2	169.2 (31.4) ^b	73.5 (30.8) ^a	365.5 (69.3) ^c	378.6 (104.6) ^b	114.3 (31.1) ^a	363.7 (25.2)b
FB ₃	65.7 (5.3) ^a	30.2 (12.4) ^a	132.2 (29.1) ^b	208.5 (55.9)b	54.6 (16.2) ^a	191.5 (12.9)b
ENNB	9.2 (18.4) ^b	< LOQ ^a	< LOQ ^a	< LOQ	< LOQ	< LOQ
ENNB ₁		< LOQ*	< LOQ*	< LOQ < LOQ	< LOQ < LOQ	< LOQ < LOQ
_	4.6 (9.3) ^b					
BEA	13.5 (1.4) ^a	20.9 (14.3) ^a	26.2 (4.3) ^a	28.1 (11) ^a	44.2 (15.8) ^a	31.1 (5.7) ^a
MON	68.3 (5.9)b	< LOQ ^a	< LOQ ^a	193.5 (23.1) ^b	< LOQ ^a	18.2 (1.9) ^a
NPA	47.8 (4.6) ^c	< LOQ ^a	35.1 (8.6) ^b	67.4 (13.9) ^b	< LOQ ^a	< LOQ ^a
STER	< LOQ ^a	< LOQ ^a	0.5 (0.1) ^b	< LOQ ^a	< LOQ ^a	0.3 (0) ^a
CIT	8 (1.9)b	< LOQ ^a	10.9 (2.2)b	23.2 (30.8)a	< LOQ ^a	10.2 (3.5)ª
AME	8.4 (0.6)b	< LOQ ^a	13.9 (2.7) ^c	13.9 (24.6)a	< LOQ ^a	5.3 (0.8)a
AOH	10.7 (1.4)b	< LOQ ^a	21.6 (1) ^c	15.2 (30.5)a	< LOQ ^a	10 (1.3) ^a
ZEN	< LOQ	< LOQ	< LOQ	15.9 (31.7)a	< LOQ ^a	< LOQ ^a

All values are based on dry mass; Average and standard deviation in parentheses with n=4; Results with no shared letter are significantly different from each other (comparing all treatments with each other); Aflatoxin B₁ (AFB₁), aflatoxin B₂ (AFB₂), aflatoxin G₂ (AFG₂), aflatoxin P₁ (AFP₁), deoxynivalenol (DON), fumonisin B₁ (FB₁), fumonisin B₂ (FB₂), fumonisin B₃ (FB₃), enniatin B (ENNB), enniatin B₁ (ENNB₁), beauvericin (BEA), moniliformin (MON), nitropropionicacid (NPA), sterigmatocystin (STER), citrinin (CIT), alternariol-monomethylether (AME), alternariol (AOH) and zearalenone (ZEN)

Table S14
BSFL gross nutrient composition in comparison to fishmeal and soybean meal sampled in Rwanda (% DM)

Feed type	Crude protein	Crude fat	Ash	Crude fibre
Larvae (50% DM maize)	26.1 (2.2)	23.4 (1.6)	3.8 (0.3)	15.7 (0.6)
Larvae (80% DM maize)	29.4 (4.1)	23.1 (1.9)	4.2 (0.4)	16.7 (0.6)
Fishmeal	42.0	15.8	20.6	5.6
Soybean meal	13.2	5.0	4.2	25.4

Average and standard deviation in parentheses of pooled samples (all replicates per maize inclusion level) from the three maize mycotoxin contamination levels (CM, LM, HM). Single biological replicate per substrate.

Table S15 Literature summary of mycotoxins in BSFL feeding trials (µg kg DM $^{\text{-1}}$)

Reference	Substrate	Contamination	Мусс	otoxin concentra	tions
Reference	type	type	Substrate	Larva	Frass
This study	Maize and agri-food by- products	Natural	AFB ₁ : 16.2- 99.4 AFB ₂ : 2.5-12.2 AFG ₂ : 0.5-2.7 DON: 130.7- 142.1 FB ₁ : 347- 1,035 FB ₂ : 122-379 ZEN: < 6.8- 15.9 OTA: < 0.54	AFB ₁ : < 0.3- 11.4 AFB ₂ : < 0.1- 1.4 AFG ₂ : < 0.5 DON: < 29.8 ZEN: < 7.1 FB ₁ : 85-296 FB ₂ : 29-114 OTA: < 0.5	AFB ₁ : 14.4- 62.1 AFB ₂ : 1.7-9.8 AFG ₂ : 1.7-7.8 DON: 88.9- 126.6 FB ₁ : 89-1068 FB ₂ : 151-365 ZEN: < 6.7- 24.0 OTA: < 0.5
Purschke et al. (2017)	Maize and maize by- products	Natural	AFB ₁ :13.3 AFB ₂ : 2.6 AFG ₂ : 7.0 DON: 697.7 ZEN: 130.4 OTA: 39.4	< LOD (not provided)	AFB ₁ :10.9 AFB ₂ : < 4 AFG ₂ : < 16 DON: 1135.7 ZEN: 103.7 OTA: < 20
Leni <i>et al</i> . (2019)	Corn distillation residue and corn gluten feed	Natural	DON: 779- 1,207 ZEN: 173 FB ₁ : 573-727 FB ₂ : 294-441	DON: < 10 ZEN: < 10 FB ₁ : < 25 FB ₂ : < 25	DON: < LOD- 1,473 ZEN: < LOD- 334 FB ₁ : < LOD- 951 FB ₂ : < LOD- 344
Bosch <i>et</i> <i>al.</i> (2017)	Chicken feed	Artificial	AFB ₁ : 13-415	AFB ₁ : < 0.0001	AFB₁: 10- 1,270
Camenzuli et al. (2018)	Chicken feed	Artificial	AFB ₁ : 18-430 DON: 4,100- 100,000 ZEN: 400- 9,400 OTA: 80- 2,000	AFB ₁ : < 1 DON: < 80- 257 ZEN: < 20- 27.5 OTA: < 1-3.9	AFB ₁ : 5.5-353 DON:7.7-317 ZEN: 0.7-35.3 OTA:0.2-5.1
Heuel <i>et</i> <i>al.</i> (2023)	Food waste	Artificial	AFB ₁ : 842	AFB ₁ : 4.0	Not analysed

LOQ: limit of quantification, LOD: limit of detection

8

Table S16 Legal mycotoxin limits ($\mu g/kg$ relative to a feeding stuff with a moisture content of 12%) in food and feed in the East Africa Community (EAC) and the European Union (EU)

	Fo	od				
Typo	Maize	Complete	Complete	Insects	Maize	Maize
Туре	iviaize	feed	feed	ilisects	grains	grains
Region	EU	EU	EAC	EAC	EU	EAC ⁴
Total aflatoxins	-	-	50-100 ³ 200 ⁴	50 ⁷	10 ⁸	10 ⁹
AFB ₁	20 ¹	20 ¹	10⁵ 20 ⁶	20 ⁷	5 ⁸	5 ⁹
DON	12,000 ²	5,000 ²	-	-	75 ⁸	-
ZEN	$3,000^2$	100-500 ^{2,3}	-	-	750 ⁸	-
OTA	250 ²	10 ²	-	-	38	-
Fumonisins (FB ₁ +FB ₂)	60,000 ²	5,000- 20,000 ^{2,3}	-	-	2,000 ⁸	2,000 ⁹

¹Legal values (EC 2002a), ²Guidance values (EC 2006b), ³poulty and fish, pig starter feed (RSB 2019a; RSB 2019b; RSB 2019c), ⁴grower feed for pigs, finishing and lactating sow feed (RSB 2019a), ⁵poultry and pig starter feed, fish feed (RSB 2019a; RSB 2019b; RSB 2019c), ⁶grower feed for pigs, finishing and lactating sow feed and grower feed for pigs, finishing and lactating sow feed (RSB 2019b), ¬RSB (2022), ¬RSB (2022), ¬RSB (2017)

Figure S1
Pictures of the final materials used for formulation of a BSFL rearing diet. Left: maize flour following grinding of whole maize grains. Right: mixture of agri-food by-products

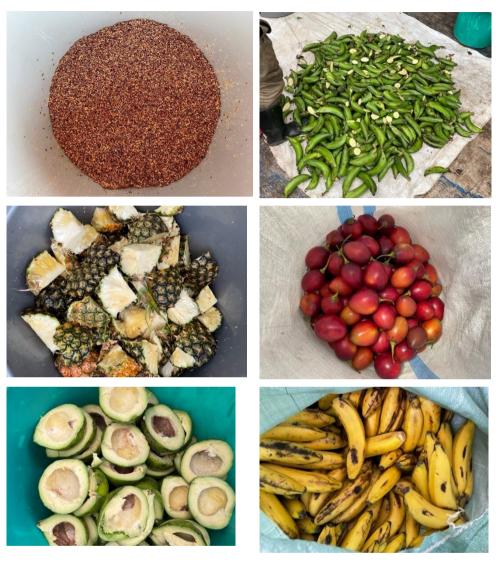


Figure S2
Pictures of raw materials making up the agri-food by-products used in this study. Top, left: spent grain. Top, right: green banana. Centre, left: pineapple. Centre, right: tree tomato, Bottom, left: avocado. Bottom, right: banana

Chapter 9

General discussion

In this thesis, we aimed to understand whether upcycling of mycotoxin-contaminated commodities, via insects into animal feed might contribute to global sustainability by ensuring food security and food safety. We proposed a circular approach (Figure 1) in which we aimed to feed larvae of the black soldier fly (BSF, Hermetia illucens) and housefly (HF, Musca domestica) with commodities contaminated with mycotoxins.

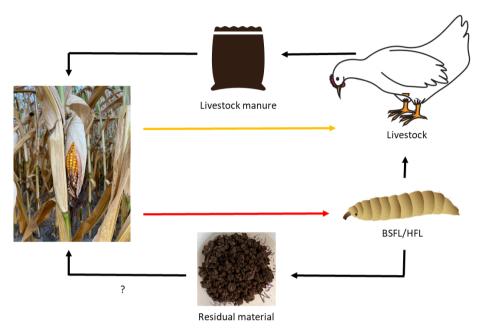


Figure 1. Proposed circular approach. The yellow line represents commodities contaminated with mycotoxins at concentrations higher than the maximum levels (MLs) or guidance values (GVs) for food, as defined by the European Commission, but lower than those for feed. The red line indicates the use of commodities that exceed the mycotoxin levels, e.g. MLs and GVs, for feed. The black lines show how insect larvae can be fed to animals such as pigs and poultry, and then their manure (frass) can be used to fertilize food crops. The material that remains from insect larvae that consumed mycotoxins could also be a fertilizer, but this is beyond the scope of this thesis. Pictures: own pictures.

First, in *Chapter 2* we performed a systematic literature review in which we summarized the scientific literature about mycotoxin exposure of insects, mycotoxin accumulation and biotransformation available until 2021 and aimed to identify knowledge gaps. Most data available were on insect species potentially used as food or feed in the EU and agricultural pests. We found that there were clear species-specific differences in the effects of mycotoxin exposure on survival, biomass, tolerance and metabolization. Tolerance differences were also observed between mycotoxins, their concentration, the type of substrate used, type of contamination (spiked or naturally contaminated), and the presence of supplements in the substrate. In general, literature showed that accumulation of mycotoxins in the insect body did not occur and was mostly below the limit of detection (LOD)/limit of quantification (LOQ) of the analytical method

used. Cytochrome P450s (CYP450s) were suggested as main enzymes involved in aflatoxin B_1 (AFB₁) metabolism in some insects; however, further research was recommended on unravelling metabolic pathways, involvement of phase II enzymes, the formation of possible unknown metabolites, and their toxicity. From the review we concluded that generalization of the already existing data is not possible and that further research on other insect species considered for food/feed, and mycotoxins of interest is necessary.

In Chapter 2, we identified two older studies on the effects of aflatoxin exposure on HFL, showing that accumulation of AFB₁ occurred in this species. This was contradicting the findings for other insect species. As HFL receive increasing attention as a possible feed source for livestock we therefore aimed in this thesis to reach the same level of understanding for HFL regarding the effects of mycotoxin exposure on their tolerance, accumulation and metabolism as was obtained previously for BSFL. We experimentally studied the effects of AFB₁, deoxynivalenol (DON) and zearalenone (ZEN) on survival, biomass and toxin accumulation in HFL in Chapter 3. In Chapter 3, we found that survival and biomass of HFL were not affected upon exposure to AFB₁, DON or ZEN in concentrations of 1x and 10x the ML or GV set for feed materials by the European Commission (EC 2002a; EC 2006b). Moreover, we found that accumulation in HFL did not occur for any of the mycotoxins in the concentrations tested. Metabolism of AFB1 and ZEN did seem to occur as the molar mass balance revealed an unrecovered fraction of ca. 40 – 50%. Formation of the ZEN metabolites α - and β -zearalenol (ZEL) were observed in the residual material. On the other hand, most of the initially present DON was found back unchanged, indicating that little DON metabolism occurred. We concluded that further research is needed to identify the fate of the unrecovered fractions of AFB₁ and ZEN in the HFL-model.

In *Chapter 4* we studied the survival, biomass and mycotoxin accumulation of BSFL and HFL after exposure to either 0.1x or 1x the ML of regular AFB₁, fumonisin B₁ (FB₁), ochratoxin A (OTA), ZEN and their isotopically labelled versions ($^{13}C_{17}$ -AFB₁, $^{13}C_{34}$ -FB₁, $^{13}C_{20}$ -OTA, $^{13}C_{18}$ -ZEN). We anticipated to identify unknown novel metabolites via isotopic label-tracking in combination with HRMS analyses with the aim to obtain a full molar mass balance. Results reported in *Chapter 4* confirmed what was previously found regarding survival, biomass and mycotoxin accumulation for BSFL (Camenzuli *et al.* 2018) and HFL (*Chapter 3*) after feeding on substrates spiked with AFB₁, OTA (BSFL) or ZEN in a concentration of 1x the ML or GV. Also, similar results were found for feeding on a diet spiked with OTA (HFL) and FB₁ (BSFL and HFL) in concentrations of 1x its GV or 0.1x the GV, respectively. The recovered fraction of AFB₁ in the BSFL-model was higher (38%) than previously reported (4 - 17%; Bosch *et al.* 2017; Camenzuli *et al.* 2018), while for the HFL this was similar to what had been found in *Chapter 3*. In the BSFL study, formation of the AFB₁ metabolite aflatoxin P₁ (AFP₁) was observed and contributed (± 14%) to the mass balance. Recovered fractions of 72% and 60% were found for FB₁ in the BSFL and HFL-models, respectively. The recovered fraction for FB in the BSFL was similar to what was found in another

study (Leni *et al.* 2019), while for the HFL this was the first time this species-toxin combination was studied. We identified that the metabolite ochratoxin-alpha (OT α) contributed for a large proportion to the recovery of OTA, and were, for the first time, able to fully reconstruct the molar mass balance for OTA for both the BSFL and the HFL. The mass balance of ZEN was complete for the BSFL, while a missing fraction of 42% remained for the HFL. α - and β -ZEL contributed to the mass balance in both insect species. Furthermore, isotopic label-tracking identified the formation of two possibly new zearalenone metabolites detected for both insect species. No novel metabolites were found for AFB₁, FB₁ or OTA. Overall, mass balances for AFB₁ (BSFL, HFL) and ZEN (HFL) remained incomplete. We hypothesized that it is possible that additional (unknown) metabolites *e.g.* larger or more polar molecules, as for example, metabolites conjugated with glucoside or sulphate were not extracted as effectively in the used extraction method. As we might have not extracted such metabolites with the currently used methods, they could, partly of fully, explain this missing fraction.

Afterwards, we wanted to examine whether enzymatic degradation of AFB₁ was caused by insect enzymes and/or by microbial enzymes of MOs in the feed substrate and whether non-enzymatic degradation took place. In *Chapter 5*, we observed that AFB₁ degradation can also take place in the substrate without the presence of larvae. However, AFB₁ degradation was more efficient in the treatment with BSFL as compared to the treatment without the larvae from day nine onwards, whereas no difference was observed for the HFL treatments. AFB₁ was differently metabolized in treatments with- (AFP₁) and without BSFL (aflatoxicol (AFL)), which indicated that both BSFL as well as substrate-specific MOs seem to play a role in AFB₁ metabolism. For HFL, the absence of aflatoxin metabolites in the residual material, and the fact that the percentual decrease of AFB₁ over time was not affected by the presence of HFL in the diets indicate that the HFL themselves do not have a role in AFB₁ degradation. Based on the collected data, it can be concluded that a longer exposure time results in a higher degradation and therefore a lower mass balance. No conclusion could be drawn on the occurrence of non-enzymatic degradation of AFB₁ in the feed substrates due to possible limitations in the extraction method used.

Throughout this thesis (*Chapter 4, Chapter 5, Chapter 7* and *Chapter 8*), formation of the AFB₁ metabolite AFP₁ has repeatedly been observed in BSFL studies. In *Chapter 5* we observed that formation of AFP₁ only occurred in the treatments with BSFL, which indicates that the BSFL, and not the substrate MOs, are responsible for this transformation. Formation of AFL only occurred in the treatments without BSFL, therefore, formation of AFL seems to be substrate-dependent. This is in contradiction with what was found by Meijer *et al.* (2019) who exposed S9 cell-free fractions of BSFL to AFB₁ and observed formation of both AFP₁ and AFL (Meijer *et al.* 2019). A recently conducted study confirmed that AFL was the main metabolite found after incubation of AFB₁ with a BSFL S9 fraction (personal communication, 2023). AFL can be reconverted back to AFB₁ and is therefore known to act as a reservoir for AFB₁ (Murcia and Diaz 2020b). It could

therefore be that conversion of AFB₁ into AFL by BSFL occurs during the first minutes/hours, and that AFL is converted back into AFB₁ or other metabolites before day seven, which is when we harvested the residual samples in our experiments. These findings highlight that results obtained *in vitro* cannot straightforwardly be extrapolated to *in vivo* conditions.

In general it can be stated that the substate is the main determinant of the larval gut bacterial community (Schreven et al. 2021). Over time, the larvae also alter the composition of the substrate bacterial community by inhibiting certain bacteria, changing the population sizes of resident bacteria, and by introducing gut bacteria into the substrate (Schreven et al. 2021). Furthermore, the impact of BSFL microbial composition of the substrate is substrate-dependent and bacterial communities in larvae and substrates can differ in composition depending on the feed substrate (Schreven et al. 2022). The use of the different feed substrates therefore result in different substrate- and insect-specific MOs and possibly a different AFB₁ degradation pattern. Formation of AFL was also observed in Chapter 7, therefore the substrate specificity of the MOs and their possibility to metabolize certain mycotoxins likely differs. Possibly, the conversion of AFB₁ into AFL occurs specifically in chickenfeed due to the microbiome that develops in it and/or the plant-derived enzymes it contains. Formation of AFM₁ was never observed in the residual material of BSFL feeding on AFB₁-spiked chickenfeed, and only occurred in peanut press cake (Chapter 7). However, in another study in which BSFL S9 extracts were used to test their potential to eliminate aflatoxins from naturally contaminated groundnut kernels, formation of AFM₁ was not observed (unpublished confidential report, 2018). On the other hand, formation of AFM₁ was observed in AFB₁ feeding experiments with the beetle Alphitobius diaperinus (Meijer et al. 2022). Whether A. diaperinus or the substrate MOs are responsible for this conversion cannot be concluded based on the existing data.

From literature it is known that CYP450 enzymes play an important role in mammalian AFB₁ metabolism (Bbosa 2013a). Their role in mycotoxin metabolism in a variety of insects has also been proven (Berenbaum *et al.* 2021; *Chapter 2*; Niermans *et al.* 2021). In *Chapter 5* we concluded that HFL do not contribute to AFB₁ metabolism and, therefore, we continued our search with BSFL in *Chapter 6*. In *Chapter 5* we could not distinguish between the role of the insect enzyme system and gut microbiota in AFB₁ metabolism. In *Chapter 6* we exposed BSFL to an AFB₁ spiked diet (1x ML) and collected larvae at three different timepoints (6 h, 48 h, 72 h) and extracted RNA which was sent for sequencing. RNA-Sequencing analyses showed that BSFL contain a wide variety of enzymes (*e.g.* CYP450 family and glutathione S-transferases) which are known to be involved in AFB₁ metabolism in mammals. Therefore, enzyme systems seem to be conserved amongst species. Furthermore, BSFL gene-expression data resulting from AFB₁ feeding gave a clear indication of three possible metabolic pathways *e.g.* CYP450 dependent demethylation into AFP₁, conjugation with glutathione (GSH) and glucose which seem to be involved in AFB₁ detoxification. We furthermore saw that there is a clear indication for a trade-

off of developmental *vs.* immunity-related gene expression in BSFL after feeding on an AFB₁-spiked diet, which could be detrimental when co-exposure with for example substrate pathogens occurs.

The first chapters of this thesis, as well as most of the studies published prior to this thesis, were performed with one or more spiked mycotoxins, on laboratory scale, with high quality substrates (e.g. poultry feed). In Chapter 7 and Chapter 8, BSFL were fed on naturally contaminated substrates on both laboratory- and pilot scale. In Chapter 7, a feeding experiment was performed using peanut press cake (PPC) which was naturally contaminated with a mix of aflatoxins (AFB₁, aflatoxin B₂ (AFB₂), aflatoxin G₁ (AFG₁), aflatoxin G₂ (AFG₂), aflatoxin M₁ (AFM₁)), in concentrations below or around the respective MLs for animal feed (EC 2002a). Exposure to the aflatoxin-contaminated PPC did not affect survival and biomass of the BSFL, and for the first time, we found an average molar mass balance of 99 ± 26%, though a high variation between the replicates was noticed. Like the observations described in Chapter 4, formation of AFP₁, contributing with ± 11% of the molar mass balance, occurred in this study as well. Furthermore, as we aimed to understand whether upcycling of mycotoxin-contaminated local agricultural residual streams into protein-rich and low-mycotoxin insect biomass would be possible, we performed a feeding study in Kigali, Rwanda. In Chapter 8 we showed that quality feed and fertilizer could be produced from naturally mycotoxin-contaminated crops mixed with agri-food by-products using BSFL in East Africa. We found that feeding on a substrate containing high concentrations of a mixture of various mycotoxins did not affect BSFL survival and biomass, but indicated that substrate composition e.g. maize inclusion level, seems to be most important for a good larval yield. For the first time we observed accumulation of the mycotoxin beauvericin (BEA) in BSFL, while accumulation of the other present mycotoxins did not take place. Additionally, we observed formation of AFP₁ in the residual material, confirming results from the BSFL studies performed in Chapters 4 and 5.

Insects in a circular system/economy

By now, various studies have shown that insects can help in upcycling 'waste' streams into high-quality animal protein (Gold *et al.* 2018; Lalander *et al.* 2019), while the residual material of the mass-rearing consisting of frass and exuviae can be used as a fertilizer for plants. Earlier studies suggested that insects are a more sustainable food and/or feed source as compared to conventional livestock, as they more efficiently convert feed to body mass (Nakagaki and Defoliart 1991; Ramos-Elorduy 2008). However, recent data showed that farmed insects are not always more efficient feed converters than livestock (Lalander *et al.* 2019; Parodi *et al.* 2020a; Parodi *et al.* 2021; Peters *et al.* 2014). Yield of larval biomass is directly affected by the suitability of the substrates, in particular their nutritional profile and other abiotic and biotic rearing conditions (Barragan-Fonseca *et al.* 2017; Lalander *et al.* 2019).

This we also observed in *Chapter 8*, where we observed that substrate composition *e.g.* maize inclusion level, seems to be most important for a high larval yield. Decreasing yields can affect profitability and process optimalisation and mixing of 'waste' substrates into more favourable nutritional profiles could be a solution. Insect value chains could only have environmental benefits if they replace compound feed production with very efficient systems (Smetana *et al.* 2023). For example, insects that are grown on left-over materials or low-cost feeds, and use alternative sources of heat and energy (Smetana *et al.* 2023). Moreover, insect farming will only support a sustainable circular economy if it uses feed that is not suitable for livestock. This includes manure (Parodi *et al.* 2022) and contaminated commodities that exceed the EU legal limits for contaminants *e.g.* mycotoxins. The EU currently doesn't allows this due to expected food- and feed safety issues.

Insect farming provides an alternative solution for mycotoxin-contaminated commodities by the opportunity to re-introduce part of these resources into the feed chain. Re-introduction of (mycotoxin) contaminated commodities and other wasted foods as substrates for insect farming into the cycle might prevent them from being either wasted or introduced in the informal food market, improves the sustainability of food systems, and contributes to food safety, and global food security. However, this will not be possible without changing regulatory frameworks in the EU. If the current regulations stay in force, insect production needs to compete with the conventional livestock for its feedstocks (Parodi *et al.* 2022). When enough experimental evidence on the safety of the proposed solutions is available, regulatory frameworks could be revised and adapted accordingly (Parodi *et al.* 2022). Moreover, insect farming will not reduce global mycotoxin contamination and food waste. Prevention of food waste should at all times be prioritised (Parodi *et al.* 2022).

Safety of insects as food and feed

This thesis and other work conducted in this research field show that in insects reared on mycotoxin-contaminated substrates mycotoxin accumulation generally (except for BEA, *Chapter 8*; Gold *et al.* 2023) not occurs (Bosch *et al.* 2017; Camenzuli *et al.* 2018; *Chapter 3*; *Chapter 4*; *Chapter 7*; Leni *et al.* 2019; Niermans *et al.* 2023a; Niermans *et al.* 2023b; Niermans *et al.* 2023c). This means that in general the larvae themselves are suitable as feed when considered under the EU legislation. However is needs to be kept in mind that when the larvae are fed on highly contaminated feed substrates some of the left-over feed in the larval gut might contain high mycotoxin concentrations. Nonetheless, it should be pointed out that levels of genotoxic carcinogens, such as AFB₁, in food and feed should generally be kept as low as possible.

In *Chapter 4* we observed that no novel unknown metabolites of AFB₁, FB₁, OTA or ZEN were present in the larvae, however, we also concluded that extraction methods could be optimized. We therefore advised to test the toxicity of extracts of BSFL and HFL fed on an mycotoxin-

contaminated diet *in vitro*. We have performed such a study in collaboration with the European SUSINCHAIN project. In the latter study (unpublished data) we have tested extracts of BSFL and HFL on an AFB₁-spiked diet (1x ML) for their cytotoxic and genotoxic potential in the Ames MPFTM assay. BSFL extracts were concluded not suitable for *in vitro* testing in this assay, due to matrix interferences, and no conclusion on the genotoxic potential of extracts of BSFL fed on an AFB₁ spiked diet could thus be made in that study. Extracts of the HFL showed no cytotoxic and genotoxic potential in the Ames MPFTM assay. The same HFL extracts were further evaluated by Charles River Laboratories Den Bosch BV (the Netherlands) which concluded that the HFL extracts did not induce mutagenicity (bacterial reverse mutation test; Ames test; OECD guidelines 471, non-GLP), and neither caused an increase in the number of micronuclei in human lymphoblastoid TK6 cells (Cryovial 300357, Vital: 330357, CLS, Eppelheim, Germany) which is a measure of DNA damage (*in vitro* micronucleus assay; non-GLP).

Similar results were found in a study in which *Tenebrio molitor* larvae were fed on an AFB₁-spiked diet in a much higher concentration (10,700 μ g/kg). In this study the authors tested *T. molitor* extracts in another *in vitro* model (γ H2Ax assay) in which histone H2Ax phosphorylation in human liver cells was analysed as an indicator for genotoxicity (Gützkow *et al.* 2021). The authors concluded that the *T. molitor* extracts did not exhibit an elevated toxic potential and that the resulting mutagenicity of the edible larvae appeared to be low (Gützkow *et al.* 2021). These two studies provide promising outlooks for the safe use of aflatoxin-fed insects as feed for livestock, however, generalizing between insects does not seem appropriate (*Chapter 2, Chapter 5*), and safety studies for *e.g.* BSFL are required.

Overall we conclude that HFL fed on an AFB₁-contaminated diet are safe to be used as feed for livestock due to the absence of accumulation and negative results for cytotoxicity, genotoxicity, mutagenicity and DNA damage when tested *in vitro*. However, we also learned that the development of proper methods for extracting compounds from insect biomass prior to *in vitro* bioassays is required. Furthermore, more research is needed to determine the cause of inhibition by insect matrices and how this can be prevented. Additional *in vitro* safety studies need to be performed on extracts from BSF and HF larvae fed on diets containing other mycotoxins and mycotoxin mixtures. *In vitro* assays need to be carefully selected and suitable for the expected mode of action of the respective mycotoxin. In *Chapter 4* we observed formation of the ZEN metabolites α - and β -ZEL in both insect species. The relative oestrogenic potency of α -ZEL is 60 times higher than for its parent compound ZEN, whereas β -ZEL has a relative potency of 0.2 as compared to ZEN (EFSA 2016). Even though ZEN and its metabolites did not accumulate in the larvae, subjecting such larval extracts to *in vitro* assays seems appropriate. Oestrogenic potential of the insect extracts can, for example, be investigated via an oestrogen receptor (ER) binding assay and reporter gene assays (Mukherjee *et al.* 2020), amongst others.

Insect welfare

During the past years, welfare in animal production systems including welfare of farmed insects, has received increasing attention (IPIFF 2019; Parodi *et al.* 2022; Van Huis 2019; Van Loon and Bovenkerk 2021). Increasing evidence led to infer that many insect species are sentient and possess cognitive and emotional abilities (Lambert *et al.* 2021; Parodi *et al.* 2020b). However, debates are ongoing on whether sentience *i.e.* being equated with phenomenal consciousness should be considered as a prerequisite for animal welfare or whether *e.g.* the frustration of desires (even though phenomenally unconscious) should be considered as a sufficient condition for moral standing (Van Loon and Bovenkerk 2021).

Currently, the European animal welfare Directive 98/58/EC for animal farming does not apply to insects and invertebrates (EC 1998). Ethicists argue that exclusion of farmed insects from such policies is not justified and that by the current state of evidence application of a precautionary principle (and therefore including farmed insects in the current legislation) would be suitable (Baracchi and Baciadonna 2020; RDA 2018; Van Loon and Bovenkerk 2021). This would mean that welfare standards for insect farming need to be developed and are required to guide good insect welfare in both commercial rearing systems and research (Van Loon and Bovenkerk 2021).

This thesis proposes the use of insects as a bioremediation or waste management tool to reduce food waste and improve food security by feeding them on a mycotoxin-contaminated diet, applications for which ethical considerations are relevant. Traditionally, biological markers e.g. health, growth and reproduction have been useful in monitoring animal welfare (RDA 2018). Chapters 2, 3, 4, 5, 6 and 8 of this thesis provide evidence that survival and biomass of BSFL and HFL feeding on a mycotoxin-contaminated substrate are not affected. Thus far, only one study has observed a slower BSFL development with food waste containing a much higher (\pm 800 μ g kg $^{-1}$ DM) concentration of AFB₁ (Heuel *et al.* 2023).

However, welfare generally goes further than health, growth and reproduction, though such signs *e.g.* stress, pain, fear, natural behaviour, amongst others, are much more difficult to investigate (RDA 2018). Studies on insect behaviour in response to the presence of filamentous fungi or mycotoxins in the rearing substrate are existing but scarce. These studies showed that *Drosophila* adults did not avoid fungus-infested substrates as oviposition sites (Trienens *et al.* 2010), and that *Drosophila* larvae showed preference for fungal infested substrates rather than avoidance (Trienens *et al.* 2017). However, in *T. molitor* larvae fed on DON-spiked diets a dose-dependent decrease in locomotor activity (reduced time in movement and travel distance) was observed (Janković-Tomanić *et al.* 2019). Limited knowledge on 'normal' insect behaviours, especially regarding BSFL (Kortsmit *et al.* 2022), makes it difficult to determine whether such observations can be considered as indicators of stressed or abnormal behaviour.

From observations in *Chapter 6* we hypothesized that, although no larval mortality occurred in BSFL during the AFB₁ feeding trial, potential trade-offs due to increased investments in detoxification processes could result in developmental issues (low adult emergence, failure to emerge as adults or emergence of dysfunctional/malformed adults) and an impaired immunity. Impaired immunity can result in a lower resistance/increased susceptibility upon co-exposure with *e.g.* substrate-borne pathogens, which might affect BSFL survival and consequently could be detrimental in an insect rearing system. *Chapter 6* only focussed on exposure to AFB₁, and as we aim to grow larvae on naturally contaminated commodities, exposure to multiple mycotoxins may be expected to enhance detrimental effects. In general, chronic effects as shown in mammals, such as carcinogenicity, are not considered relevant in insects due to their much shorter life cycle (Gützkow *et al.* 2021). However, we believe that further studies in which pupation rate, adult emergence, oviposition and neonate hatching are studied after feeding on a mycotoxin-contaminated diet are warranted.

Mycotoxin contamination of agricultural commodities is of increasing concern. Based on a modelling study, the current probability of aflatoxin contamination was classified as very low to low in 93% of the grids representing Europe (Focker *et al.* 2023). For the current European situation, the aflatoxin problem and the ability of insect larvae to reduce it by about 22% (this may be an underestimate due to matrix interferences; *Chapter 5*) for both BSFL and HFL, seem not urgent enough to outbalance possible ethical issues. However, it is predicted that in the future (2050) aflatoxin contamination in maize cultivation in Europe will dramatically increase, particularly in Central and Southern Europe (Focker *et al.* 2023). This expected change in risk might allow use of insects for aflatoxin bioremediation as a suitable solution for the longer term, despite the possible welfare issues.

Furthermore, we believe that there are ample opportunities in the Global South where socio-economic issues caused by mycotoxin contamination are apparent and short-term solutions are needed. Insect rearing does not require big investments when executed on a community level. Currently, efficient techniques preventing mycotoxin contamination are non-existent, therefore using insects as a bioremediation tool to reduce food waste and improve food security and food safety by feeding them on a mycotoxin-contaminated diet may have a tremendous impact. We believe this application will limit the sales of mycotoxin-contaminated commodities on the informal market without wasting food sources, and positively affects global health due to a reduced consumption of mycotoxins. Furthermore, smaller scale (smallholder farmers at community level) insect rearing contributes to economic sustainability and social status, as proven in various initiatives (Barragán-Fonseca *et al.* 2020; Hanboonsong *et al.* 2013).

Ideally, current prevention and control measures for aflatoxin contamination are properly applied, and novel efficient techniques, such as the use of beneficial fungi as an active ingredient in biological control of mycotoxigenic fungi, are further developed in the near future. In order to

make our insect based solution, as well as such other initiatives successful, a more holistic approach is needed. Multidisciplinary teams including academia, the government and industry therefore need to work together to solve complex problems to improve health, society, and safeguard natural resources, amongst others (Garcia *et al.* 2020).

Methodological limitations

One of the main topics repeatedly discussed in this thesis is the importance of suitable extraction steps. For the mycotoxin analyses we used a QuEChERS (quick, easy, cheap, effective, rugged and safe) extraction method. This method is an in-house method at Wageningen Food Safety Research (WFSR) which is validated according to SANTE/12682/2019 (EC 2019b). This method has been used as part of the statutory task of analyses of mycotoxins in animal feed samples at WFSR for years. However, the downside is that this method is optimized for the analyses of a specific set of mycotoxins 1. This means that the used extraction method might not be optimal for extracting other mycotoxins or mycotoxin metabolites which are more polar or conjugated with e.g. sulphate, glucuronide or glutathione. Other studies have observed low aflatoxin recovery rates after spiking a food/feed matrix (Sulyok et al. 2020; Warth et al. 2012). This suggests that non-enzymatic conjugation of AFB1 to, for example, the cell walls of substrate MOs, proteins in e.g. the plant matrix present in the feed substrates could be an additional cause of the incomplete mass balance. Resulting from this, extraction of mycotoxins in the residual material may have been less efficient with the currently used extraction method. Extraction efficiency and matrix effect of the substrate, larvae and residual material was repeatedly investigated throughout the experimental work reported in thesis, and was mostly acceptable or good. However, incubation time during an experiment varied between five to seven days whereas extraction efficiency was determined after incubation of maximally a couple of hours, and is therefore not fully representing the "real" situation. This unextracted fraction could account for a part of the missing fraction in the molar mass balance. Addition of a hydrolysis step or enzymatic treatment to free bound mycotoxins and/or conjugated metabolites during extraction, and/or analyses of the water phase obtained from the QuEChERS partitioning step might be essential. Optimization of the extraction method as well as the method of analyses for mycotoxin metabolites which are conjugated, but also DNA and/or protein adducts is therefore advised.

Feeding studies were conducted at a relatively small scale with three to six replicates per treatment in the current thesis, which made statistical validation challenging. To study multiple mycotoxins and insect species, a compromise was made by decreasing the number of replicates.

¹ 15AcDON, 3AcDON, AFB₁, AFB₂, AFG₁, AFG₂, agroclavine, alternariol, alternariol methylether, beauvericin, citrinin, DON, DON3G, diacetoxyscirpenol, enniatin A, enniatin A, enniatin B, enniatin B₁, fumonisin B₂, fumonisin B₃, HT-2, moniliformin, mycophenolic acid, nitropropionic acid, nivalenol, ochratoxin A, penicillic acid, roquefortine C, β-ZEL, sterigmatocystin, T-2, ZEN, α-ZEL

In this thesis, we have mainly chosen to statistically analyse our data with non-parametric tests, as the criteria needed to perform parametric tests cannot be justified if the distribution type of the data cannot be verified due to the low number of replicates. Therefore the significance of possible interactions between factors could not always be investigated, however, we believe that the tests performed were informative for answering our research questions.

Implications for industry and government

Before using mycotoxin-contaminated substrates as feed for insect larvae can be considered as a safe and suitable solution, more research is required. Further studies on the hypothesized trade-offs due to increased investments in detoxification processes on insect development and immunity are needed. Such consequences could, but do not necessary have to be detrimental for insect-producing companies. However, the business model is a determining factor in this regard *e.g.* when the larvae are the end product further developmental effects may not be of interest. Additionally the safety of *e.g.* left-over mycotoxins present in the frass and its use as fertilizer (worker safety, leaching into the ground water, alternative exposure routes (via plant/agricultural commodity), further metabolism in the soil) needs to be investigated.

Furthermore, though both survival and biomass of the BSFL and HFL were not affected by mycotoxin exposure under the tested conditions, we did observe species (BSFL, HFL)- and substrate-specific differences regarding mycotoxin metabolism. HFL do not seem to play a role in the metabolism of AFB1 (Chapter 5), but might be involved in the metabolism of other mycotoxins. Furthermore, the quick development time of HFL provides opportunities. It may however also provide difficulties; due to the quick development time using live HFL will not be an option in livestock feeding, while for BSFL this is possible. Furthermore, BSFL or HFL can be used to transform contaminated waste streams into valuable insect biomass and proteins, though it has been shown that the larvae play a minor role (± 22%) in aflatoxin bioremediation. Still, growing insects on these mycotoxin-contaminated streams, which are unsuitable for human and livestock consumption, results in valuable insect biomass. Investigation on whether transformation of mycotoxin- contaminated side-streams into e.g. biogas might be more sustainable or profitable is interesting, though this would not contribute to solving the food security issue. According to Moerman's ladder, which is a model that shows the 'optimum utilization' of residual flows, feeding animals with residual streams is usually more beneficial than converting them into biogas or other forms of energy (Waarts et al. 2011).

Results reported in *Chapter 6* of this thesis suggest BSFL possess the genetic repertoire to metabolize and degrade mycotoxins such as AFB₁. It could be interesting for the industry to explore the potential of these insect enzymes as a biological reagent. Bioinformatics could be used to investigate the possible suitability of enzymes of interest and their possibility to/efficiency to degrade certain mycotoxins.

Thus far it seems that HFL fed on an AFB $_1$ diet seem to be safe to feed to livestock, due to the absence of accumulation and negative results for *in vitro* cytotoxicity, genotoxicity, mutagenicity and DNA damage. We, however, do advise to perform additional *in vitro* toxicity assays on extracts of insects fed other mycotoxins, mycotoxin mixtures and naturally contaminated substrates. If the required future research proves that our proposed solution is safe, legislative changes need to be made in order to be able to implement this in Europe.

General conclusions

- The impact of mycotoxin exposure on survival and biomass differs between insect species.
- The metabolism of mycotoxins varies among insect species, therefore considering speciesspecific responses is important.
- Differences in tolerance between mycotoxins, their concentration, the type of substrate used, type of contamination (spiked or naturally contaminated), and the presence of supplements in the substrate were indicated.
- In our feeding studies with spiked substrates we observed that accumulation of the tested mycotoxins (aflatoxin B₁, fumonisin B₁, deoxynivalenol, ochratoxin A, zearalenone) did not occur in BSFL and HFL.
- When feeding BSFL a naturally contaminated diet containing various mycotoxins, only beauvericin accumulated.
- BSFL as well as substrate-specific microorganisms seem to play a role in aflatoxin B₁ metabolism, and the BSFL seem to be responsible for the partial metabolism of aflatoxin B₁ into aflatoxin P₁; on the contrary, HFL do not have a role in AFB₁ degradation.
- BSFL express a wide variety of enzymes (*e.g.* CYP450 family and glutathione S-transferases) required for aflatoxin B₁ metabolism.
- HFL fed on an aflatoxin B₁ spiked diet can be considered safe as livestock feed.

Recommendations and future outlook

During the past years the topic of insects as food and feed has received increasing attention and various aspects of the value chain have been studied. Questions have been answered, and new questions came up. Despite dedicating the past four years to comprehending the impact of feeding a substrate contaminated with mycotoxins on the survival and biomass of BSFL and HFL, as well as the occurrence of mycotoxin transfer, metabolism, and metabolic product formation, we have concluded that further research is necessary. This is particularly true with respect to method optimization and development.

The gene-expression data of BSFL from *Chapter 6* provided evidence of three potential metabolic pathways involved in the detoxification of AFB₁. Conducting feeding studies with AFB₁ and utilizing extraction and analytical methods that can extract and detect AFB₁ metabolites conjugated with glutathione (GSH), glucose, or AFB₁ mercapturate could be a relevant first step. Additionally, investigating the formation of DNA/protein adducts could be of interest. To obtain

a comprehensive understanding of AFB₁ degradation in insect feed substrates, tracking and identifying organic degradation substances such as carbon dioxide with ¹³C isotopically labelled standards in respiratory experiments could provide more valuable insights. Additionally, *Chapter* 6 showed that feeding on mycotoxin-contaminated substrates might affect insect welfare. However, the limited knowledge regarding 'normal' insect behaviours, particularly for BSFL, necessitates further studies to identify 'normal' behaviour before drawing conclusions on abnormal/stressed behaviours and insect welfare.

Further research is required to identify the cause of inhibition by insect matrices and to determine how it can be prevented. Additionally, feed safety studies should be conducted on extracts from BSF and HF larvae that have been fed diets containing other mycotoxins and mycotoxin mixtures.

In Chapter 5 we were not able to distinguish between the role of the insect enzyme system and its gut microbiota in AFB₁ metabolism. Therefore studies on the role of the insect gut microbiota in mycotoxin degradation are needed. In order to do this, we can use antibiotics to inactivate specific bacteria present in the insect gut and/or inoculation of the feed substrate to increase the initial abundance of specific bacteria known to be associated with BSFL/HFL and/or their feed substrates to observe performance and/or formation of metabolites after this treatment (Gurung et al. 2019; Lin et al. 2015). Furthermore, gut bacteria reported to be associated with BSFL or HFL can be grown in mycotoxin-containing media to quantify bacterial multiplication in the presence of mycotoxins and the mycotoxin-metabolizing capacity of the bacteria with HPLC-MS/MS (De Almeida et al. 2017).

In the current thesis we only focussed on the upcycling of mycotoxin-contaminated substrates, however, organic streams *i.e.* manure and left-overs from restaurants or households, could contain a wide range of contaminants. However, also for these contaminants safety studies need to be conducted in order to guarantee the safety of the consumers later in the value chain. In the past years a lot regarding this topic has happened, and a variety of feeding studies have been performed. The effects of contaminants such as heavy metals and arsenic (Van der Fels-Klerx *et al.* 2016), veterinary drugs (Hoek-van den Hil *et al.* 2022), pharmaceuticals (Zhang *et al.* 2014), insecticides (Meijer *et al.* 2021a; Meijer *et al.* 2023b), plant toxins (Meijer *et al.* 2023a), per- and poly- fluoroalkyl substances (unpublished data SUSINCHAIN), but also the transfer of livestock DNA (unpublished data) have been investigated.

In the years to come, we anticipate gathering adequate data to determine whether the utilization of contaminated organic streams as substrates for insect rearing can be deemed safe. If it is deemed safe, we expect that legislative modifications will be implemented to enable its adoption in Europe.

Novel protein sources that are sustainable and circular are essential for animal feed production. Insect larvae, such as black soldier fly (BSFL; Hermetia illucens L.) and housefly (HFL; Musca domestica L.), have emerged as promising alternatives for animal feed during the past years. Insects offer several advantages, such as their ability to consume various organic residual streams and convert them into high-quality protein. However, such organic side-streams may be chemically contaminated by naturally occurring toxins e.g. mycotoxins. Mycotoxins are secondary fungal metabolites that frequently contaminate agricultural crops. Globally, large amounts of various crops such as cereals, oilseeds, nuts and spices are contaminated with mycotoxins during pre-harvest, postharvest handling, processing and/or storage. Mycotoxin exposure affects human and animal health and can cause both acute toxicity and chronic carcinogenicity. Border rejection due to mycotoxin contamination has financial consequences and directly impacts global trade. Furthermore, mycotoxin contaminations hamper global food safety and security, and valorisation options of contaminated crops are urgently needed.

In this thesis we proposed a circular approach in which we aimed to feed larvae of the BSF and HF with commodities contaminated with mycotoxins. However, the safety of insect biomass reared on mycotoxin-contaminated substrates should be evaluated before using it as feed or food. We, therefore, investigated whether survival and biomass of BSFL and HFL are affected after feeding on a mycotoxin-contaminated substrate and whether transfer of the mycotoxins from the rearing substrates into the larvae takes place. Furthermore, we studied whether insect larvae metabolise the mycotoxins fed and what metabolic products are formed.

Chapter 1 provides a general introduction on the need for novel and sustainable solutions to address the global challenges of food safety and food security. It presents various concepts and frameworks that have been proposed by the United Nations (UN) and the European Commission (EC) to tackle these issues, and especially focused on the Sustainable Development Goals (SDGs). In particular, it explains the concept of food security and food safety in relation to SDG2 (zero hunger). A brief overview on the food safety legislation in the European Union (EU) and the definition of different topics related to food contaminants, such as natural toxins, is given. This chapter furthermore explains that mycotoxins are globally main food contaminants, which cause serious health and economic problems. The main mycotoxins that are investigated in this thesis, such as aflatoxins, deoxynivalenol (DON), fumonisins, ochratoxins and zearalenone (ZEN), as well as emerging mycotoxins and mycotoxin co-occurrence, are introduced. It also discusses the regulatory and guidance limits and the socio-economic impacts of mycotoxin contamination. Finally, the rationale for the proposal to use fly larvae as a potential solution for the global challenges of food safety and food security is presented. The chapter contains objectives and outlines of the thesis, offering an overview on the content of the next chapters.

Chapter 2 entails a systematic literature review that provides a comprehensive overview of the published evidence on effects of mycotoxin exposure on insect growth and survival, mycotoxin

accumulation within the insect body, and metabolization of various mycotoxins by insects. We furthermore provide an overview of enzyme systems (putatively) involved in mycotoxin metabolism in different insect species. The review includes 54 scientific articles published in the past 55 years, in total covering 32 insect species. We discuss the information per insect order *e.g.* Diptera, Coleoptera, Lepidoptera and "other orders". The main conclusions of the review are that insects of the order Coleoptera show lower mortality after exposure to aflatoxin B₁ (AFB₁) when compared to Lepidoptera and Diptera, and that effects of mycotoxins on larval growth and survival are less detrimental in later larval stages. Furthermore, this chapter shows that accumulation of mycotoxins is low in most insect species, and that mycotoxins are metabolized within the insect body, the degree of which depends on the particular mycotoxin and insect species. Cytochrome P450s (CYP450s) were identified as the main family of enzymes involved in biotransformation of mycotoxins in some insect species. The results obtained in this review provided the basis for the following experimental chapters.

Chapter 3 discusses a mycotoxin-feeding study performed with HFL on lab scale. In this study, the HFL were exposed to a feed substrate spiked with AFB₁, DON or ZEN at concentrations of either 1 or 10 times the maximum levels or guidance values allowed for feed materials as set by the EC. Mortality and biomass of HFL were recorded over five days of exposure. LC-MS/MS analysis was used to determine the concentration of the mycotoxins in the substrate offered, the larvae and the residual feed material. A molar mass balance was calculated to estimate how much of the spiked mycotoxins (and several metabolites) was recovered in the larval body and the residual material (mixture of faeces and unconsumed feed). Exposure to either of the three mycotoxins did not affect larval mortality and biomass, and accumulation in the larval body did not take place. Metabolism did seem to occur for AFB₁ and ZEN as the molar mass balance revealed an unrecovered fraction of ca. 40 - 50%. Little DON metabolism occurred as most of the initially present DON was found back unchanged.

Chapter 4 entails another lab-scale feeding study. As previous feeding experiments with spiked and naturally contaminated feed substrates indicated that formation of possible unknown metabolites of mycotoxins occurred in insects, tracking of conversion products through e.g. isotopic labelling was considered necessary. Therefore, in this chapter, BSFL and HFL were exposed to substrates spiked with regular and isotopically labelled AFB₁, fumonisin B₁ (FB₁), ochratoxin A (OTA) or ZEN. Exposure to the spiked substrates lasted either seven (BSF) or five (HF) days. Samples of the substrate, the residual material and the reared insects were analysed by LC-MS/MS and high resolution mass spectrometry (HRMS), in order to detect and quantify the mycotoxins and their metabolites present. The molar mass balance was found to be complete for OTA (BSFL, HFL) and ZEN (BSFL). For all tested mycotoxins insect survival and biomass were not affected and bio-accumulation in the insects did not occur. No isotopic labels were found back in unknown compounds except for two possibly new ZEN metabolites detected

in both insect species. Overall, mass balances for AFB₁ (HFL, BSFL) and ZEN (HFL) remained incomplete, indicating the need for further research.

In Chapter 5 we investigated whether biotransformation of AFB₁ is caused by insect enzymes and/or by enzymes of microorganisms (MOs) in the feed substrate. Sterile- and non-sterile feed substrates were spiked with AFB₁ and incubated either with or without insect larvae (BSFL or HFL), and the AFB₁ concentration was recorded over time. Results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB₁ as well as in conversion of AFB₁ into AFP₁ and AFL, respectively. In contrast, HFL did not seem to contribute to AFB₁ degradation. We could not conclude whether non-enzymatic degradation of AFB₁ in the feed substrates occurred due to possible limitations in the extraction method.

In Chapter 6 we aimed to identify the underlying mechanisms that allow BSFL to metabolize AFB₁. To elucidate these mechanisms, five-day-old BSFL were fed with a control or AFB₁-spiked diet. Larval samples were collected and subjected to RNA-Seq analysis to determine gene expression patterns. Provision of an AFB₁-spiked diet resulted in up-regulation of 357 and down-regulation of 929 unique genes. Upregulated genes included multiple genes that are known to be involved in AFB₁ metabolism in other (insect) species. Downregulated genes were generally involved in growth, development and immunity of the insects. Overall, BSFL possess a diverse genetic arsenal that encodes for enzymes capable of metabolizing AFB₁ without trade-offs for larval survival and growth. Negative effects of AFB₁ exposure on immunity-related processes are observed in the transcriptomic response indicative of a trade-off between detoxification and immune responses.

The first chapters of this thesis, as well as most of the studies published prior to this thesis, were performed with one or more spiked mycotoxins, on laboratory scale, with high quality substrates (e.g. poultry feed). Therefore in the last chapters we investigated whether our earlier findings could be extrapolated to a more realistic situation via the use of naturally contaminated substrates on both laboratory- and pilot scale.

In *Chapter 7* we explored whether naturally aflatoxin contaminated peanut press cake (PPC) would be a suitable rearing substrate for BSFL. Generally, groundnuts (peanuts; *Arachis hypogaea* L.) are used for vegetative oil production, which generate a variety of by-products, such as PPC, which consists of the solids remaining after oil pressing. BSFL were exposed to the PPC diets for eleven days. Data on larval survival and biomass were collected, and the PPC, BSFL and the residual material were analysed by LC-MS/MS to determine the concentration of eight different aflatoxins and known metabolites. Additionally, a bio-accumulation factor and a molar mass balance were calculated. BSFL survival and biomass were not affected by exposure to the aflatoxin-contaminated PPC diet. The aflatoxins did not accumulate in the insect body, which provides a promising outlook for the safety of rearing insects on aflatoxin contaminated PPC with

the purpose of using them as food- and/or feed. AFB₁ was the dominant compound found in PPC. Formation of aflatoxicol, aflatoxin P_1 (AFP₁), and aflatoxin M_1 occurred and taking these metabolites into account, a complete molar mass balance, thus full recovery, for AFB₁ was obtained. This result differs from previous studies using artificially spiked substrates in which no complete mass balance for AFB₁ could be constructed. This finding calls for additional studies comparing naturally contaminated with artificially spiked feedstuff to establish if the assumption that artificial spiking is representative for natural contamination is valid.

In *Chapter 8* we studied whether quality feed and fertilizer can be safely produced from naturally mycotoxin-contaminated crops using BSFL under realistic field conditions in East Africa. Naturally mycotoxin-contaminated maize (corn; *Zea mays* L.) was used as a model due its prevalence as food and feed and utilized by BSFL together with local agri-food by-products at a research facility in Rwanda. To assess the influence of the initial maize mycotoxin contamination and maize inclusion in the larval diet, feed substrates with three mycotoxin contamination levels and two maize inclusion levels were tested. BSFL were tolerant against the high mycotoxin concentrations (*e.g.* 99.4 µg aflatoxin B₁ per kg dry mass) as the presence of mycotoxins in the substrate did not affect BSFL biomass production. Product safety was assessed by quantifying the presence of 38 common and emerging mycotoxins and metabolites in the maize, substrates and BSFL products (*e.g.* larvae and residual material). The results show that it is possible to produce feed and fertilizer with BSFL that are considered safe within EU and East African legal limits from mycotoxin-contaminated maize commonly found in East Africa. For the first time we observed accumulation of the mycotoxin beauvericin in the BSFL.

In *Chapter 9*, we discuss the main results reported in the previous chapters and compare the outcomes of these studies with each other and other relevant literature. We observed clear trends across the chapters regarding the absence of effects on survival and biomass growth and the lack of bioaccumulation after feeding on a mycotoxin-contaminated diet in the insect larvae. Thus far, for only one of the mycotoxins studied (beauvericin) accumulation in the BSFL occurred. BSFL and their substrate-specific MOs contribute to the metabolism and degradation of AFB₁, while HFL do not show any evidence of AFB₁ metabolism. Furthermore, formation of the AFB₁ metabolite AFP₁ is common in BSFL studies. Additionally, it was observed that BSFL express a variety of enzymes involved in mycotoxin metabolism, such as CYP450s and glutathione Stransferases. This chapter also discusses the role of insects in a circular system and the concept of insect welfare, and some methodological limitations and challenges are addressed. The chapter concludes with implications for industry and government, recommendations for future research, and outlooks for the development of an insect-based circular economy.

References

- Abado-Becognee K, Fleurat-Lessard F, Creppy EE, Melcion D (1998) Effects of fumonisin B₁ on growth and metabolism of larvae of the yellow mealworm, *Tenebrio molitor*. Entomol Exp Appl 86:135-143 doi: https://doi.org/10.1046/j.1570-7458.1998.00274.x
- Abbès S, Salah-Abbès JB, Sharafi H, Jebali R, Noghabi KA, Oueslati R (2013) Ability of *Lactobacillus rhamnosus* GAF01 to remove AFM₁ *in vitro* and to counteract AFM₁ immunotoxicity *in vivo*. J Immunotoxicol 10:279-286 doi: https://doi.org/10.3109/1547691X.2012.718810
- Abraham N et al. (2022) Structure–function characterization of an aldo–keto reductase involved in detoxification of the mycotoxin, deoxynivalenol. Sci Rep 12:14737 doi: https://doi.org/10.1038/s41598-022-19040-8
- Accinelli C, Abbas HK, Zablotowicz RM, Wilkinson JR (2008) *Aspergillus flavus* aflatoxin occurrence and expression of aflatoxin biosynthesis genes in soil. Can J Microbiol 54:371-379 doi: https://doi.org/10.1139/W08-018
- Adetunji M, Akinola S, Nleya N, Mulunda M (2021) Nutrient composition and aflatoxin contamination of African sourced peanuts and cashew nuts: Its implications on health. In: Nuts and nut products in human health and nutrition. IntechOpen. doi: 10.5772/intechopen.95082. Available from: https://www.intechopen.com/chapters/74589
- Adeyeye SAO, Ashaolu TJ, Idowu-Adebayo F (2022) Mycotoxins: food safety, consumer health and Africa's food security. Polycycl Aromat Compd 42:5779-5795 doi: https://doi.org/10.1080/10406638.2021.1957952
- Agriopoulou S, Stamatelopoulou E, Varzakas T (2020) Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods 9:137 doi: https://doi.org/10.3390/foods9020137
- Akinyemi MO, Braun D, Windisch P, Warth B, Ezekiel CN (2022) Assessment of multiple mycotoxins in raw milk of three different animal species in Nigeria. Food Control 131:108258 doi: https://doi.org/10.1016/j.foodcont.2021.108258
- Al-Adil KM, Kilgore WW, Painter RR (1972) Toxicity and sterilization effectiveness of aflatoxins B_1 and G_1 and distribution of aflatoxin B_1 - 14 C in house flies. J Econ Entomol 65(2):375-378. doi: attps://doi.org/10.1093/jee/65.2.375
- Albert J, Muñoz K (2022) Kinetics of microbial and photochemical degradation of aflatoxin B_1 in a sandy loam and clay soil. Sci Rep 12:16849 doi: https://doi.org/10.1038/s41598-022-20727-1
- Alexa A, Rahnenfuhrer J (2022) topGO: Enrichment analysis for gene ontology
- Alias Z (2016) The role of glutathione transferases in the development of insecticide resistance. In: Insecticides resistance. IntechOpen. doi: 10.5772/61972
- Allameh A, Farahani M, Zarghi A (2000) Kinetic studies of aflatoxin B₁-glutathione conjugate formation in liver and kidneys of adult and weanling rats. Mech Ageing Dev 115:73-83 doi: https://doi.org/10.1016/S0047-6374(00)00105-6
- Almazroo OA, Miah MK, Venkataramanan R (2017) Drug metabolism in the liver. Clin Liver Dis 21:1-20 doi: https://doi.org/10.1016/j.cld.2016.08.001
- Alshannaq A, Yu J-H (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res 14:632 doi: https://doi.org/10.3390/ijerph14060632
- Alshannaq A, Yu J-H (2021) Analysis of EU rapid alert system (RASFF) notifications for aflatoxins in exported US food and feed products for 2010–2019. Toxins (Basel) 13:90 doi: https://doi.org/10.3390/toxins13020090

- Altafini A, Roncada P, Guerrini A, Minkoumba Sonfack G, Fedrizzi G, Caprai E (2021) Occurrence of ochratoxin A in different types of cheese offered for sale in Italy. Toxins (Basel) 13:540 doi: https://doi.org/10.3390/toxins13080540
- Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data.
- Angle JS, Wagner GH (1980) Decomposition of aflatoxin in soil. Soil Sci Soc Am J 44:1237-1240 doi: https://doi.org/10.2136/sssaj1980.03615995004400060021x
- Ankwasa EM, Francis I, Ahmad T (2021) Update on mycotoxin contamination of maize and peanuts in East African Community countries. J Food Sci Nutr Ther 81:1-10 doi: https://doi.org/10.17352/jfsnt.000026
- Anspaugh DD, Roe RM (2005) Regulation of JH epoxide hydrolase versus JH esterase activity in the cabbage looper, *Trichoplusia ni*, by juvenile hormone and xenobiotics. J Insect Physiol 51:523-535 doi: https://doi.org/10.1016/j.jinsphys.2004.12.008
- Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Technol 53:31-41 doi: https://doi.org/10.1007/s13197-015-2007-9
- Asare Bediako K, Ofori K, Offei SK, Dzidzienyo D, Asibuo JY, Adu Amoah R (2019) Aflatoxin contamination of groundnut (*Arachis hypogaea* L.): predisposing factors and management interventions. Food Control 98:61-67 doi: https://doi.org/10.1016/j.foodcont.2018.11.020
- Balázs A, Faisal Z, Csepregi R, Kőszegi T, Kriszt B, Szabó I, Poór M (2021) *In vitro* evaluation of the individual and combined cytotoxic and estrogenic effects of zearalenone, its reduced metabolites, alternariol, and genistein. Int J Mol Sci 22:6281 doi: https://doi.org/10.3390/ijms22126281
- Baracchi D, Baciadonna L (2020) Insect sentience and the rise of a new inclusive ethics. Anim Sentience 29 doi: 10.51291/2377-7478.1604
- Barragán-Fonseca KB, Dicke M, Van Loon JJA (2017) Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed a review. J Insects Food Feed 3:105-120 doi: https://doi.org/10.3920/JIFF2016.0055
- Barragán-Fonseca KY, Barragán-Fonseca KB, Verschoor G, Van Loon JJA, Dicke M (2020) Insects for peace. Curr Opin Insect Sci 40:85-93 doi: https://doi.org/10.1016/j.cois.2020.05.011
- Barragán-Fonseca KY, Nurfikari A, Van de Zande EM, Wantulla M, Van Loon JJA, De Boer W, Dicke M (2022) Insect frass and exuviae to promote plant growth and health. Trends Plant Sci 27:646-654 doi: https://doi.org/10.1016/j.tplants.2022.01.007
- Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40:553-624 doi: https://doi.org/10.1080/03602530802431439
- Battilani P et al. (2016) Aflatoxin B₁ contamination in maize in Europe increases due to climate change. Sci Rep 6:24328 doi: https://doi.org/10.1038/srep24328
- Baumann T, Kämpfer U, Schürch S, Schaller J, Largiadèr C, Nentwig W, Kuhn-Nentwig L (2010) Ctenidins: antimicrobial glycine-rich peptides from the hemocytes of the spider *Cupiennius salei*. CMLS 67:2787-2798 doi: https://doi.org/10.1007/s00018-010-0364-0
- Bbosa G, Kitya D, Odda J, Ogwal-Okeng J (2013a) Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health 5:14-34 doi: 10.4236/health.2013.510A1003
- Bbosa GS, Kitya D, Lubega A, Ogwal-Okeng J, Anokbonggo WW, Kyegombe DB (2013b) Review of the biological and health effects of aflatoxins on body organs and body systems. In: Aflatoxins recent advances and future prospects. IntechOpen doi: https://doi.org/10.5772/51201

- Beesigamukama D et al. (2021) Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly. Waste Manag 119:183-194 doi: https://doi.org/10.1016/j.wasman.2020.09.043
- Ben Taheur F, Kouidhi B, Al Qurashi YMA, Ben Salah-Abbès J, Chaieb K (2019) Review: biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160:12-22 doi: https://doi.org/10.1016/j.toxicon.2019.02.001
- Benkerroum N (2020) Aflatoxins: producing-molds, structure, health issues and incidence in Southeast Asian and sub-Saharan African countries. Int J Environ Res 17:1215 doi: https://doi.org/10.3390/ijerph17041215
- Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497-516 doi: http://dx.doi.org/10.1128/CMR.16.3.497-516.2003
- Berenbaum MR, Bush DS, Liao L-H (2021) Cytochrome P450-mediated mycotoxin metabolism by plant-feeding insects. Curr Opin Insect Sci 43:85-91 doi: https://doi.org/10.1016/j.cois.2020.11.007
- Berenbaum MR, Johnson RM (2015) Xenobiotic detoxification pathways in honey bees. Curr Opin Insect Sci 10:51-58 doi: https://doi.org/10.1016/j.cois.2015.03.005
- Berthiller F, Sulyok M, Krska R, Schuhmacher R (2007) Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals. Int J Food Microbiol 119:33-37 doi: https://doi.org/10.1016/j.ijfoodmicro.2007.07.022
- Bessa LW, Pieterse E, Marais J, Hoffman LC (2020) Why for feed and not for human consumption? The black soldier fly larvae. Compr Rev Food Sci Food Saf 19:2747-2763 doi: https://doi.org/10.1111/1541-4337.12609
- Bhatnagar D, Ehrlich KC, Moore GG, Payne GA (2014) ASPERGILLUS | *Aspergillus flavus*. In: Batt CA, Tortorello ML (eds) Encyclopedia of Food Microbiology (Second Edition). Academic Press, Oxford, pp 83-91. doi: https://doi.org/10.1016/B978-0-12-384730-0.00012-4
- Bily AC et al. (2004) Analysis of *Fusarium graminearum* mycotoxins in different biological matrices by LC/MS. Mycopathologia 157:117-126 doi: https://doi.org/10.1023/B:MYCO.0000012218.27359.ec
- Binder SB, Schwartz-Zimmermann HE, Varga E, Bichl G, Michlmayr H, Adam G, Berthiller F (2017)

 Metabolism of zearalenone and its major modified forms in pigs. Toxins (Basel) 9:56

 doi: https://doi.org/10.3390/toxins9020056
- Birnbaum SSL, Abbot P (2018) Insect adaptations toward plant toxins in milkweed–herbivores systems a review. Entomol Exp Appl 166:357-366 doi: https://doi.org/10.1111/eea.12659
- Blackman RL, Spence JM, Field LM, Javed N, Devine GJ, Devonshire AL (1996) Inheritance of the amplified esterase genes responsible for insecticide resistance in *Myzus persicae* (Homoptera: Aphididae). Heredity 77:154-167 doi: https://doi.org/10.1038/hdy.1996.120
- Bock KW (2016) The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochem Pharmacol 99:11-17 doi: https://doi.org/10.1016/j.bcp.2015.10.001
- Bosch G, Van der Fels-Klerx HJ, de Rijk TC, Oonincx DGAB (2017) Aflatoxin B₁ tolerance and accumulation in black soldier fly larvae (*Hermetia illucens*) and yellow mealworms (*Tenebrio molitor*). Toxins (Basel) 9:185 doi: https://doi.org/10.3390/toxins9060185
- Bouhet S, Oswald IP (2007) The intestine as a possible target for fumonisin toxicity. Mol Nutr Food Res 51:925-931 doi: https://doi.org/10.1002/mnfr.200600266

- Brodehl A, Möller A, Kunte H-J, Koch M, Maul R (2014) Biotransformation of the mycotoxin zearalenone by fungi of the genera *Rhizopus* and *Aspergillus*. FEMS Microbiol Lett 359:124-130 doi: https://doi.org/10.1111/1574-6968.12586
- Buss DS, Callaghan A (2008) Interaction of pesticides with p-glycoprotein and other ABC proteins:

 A survey of the possible importance to insecticide, herbicide and fungicide resistance.

 Pestic Biochem Phys 90:141-153 doi: https://doi.org/10.1016/j.pestbp.2007.12.001
- Camenzuli L, Van Dam R, De Rijk T, Andriessen R, Van Schelt J, Van der Fels-Klerx HJ (2018)

 Tolerance and excretion of the mycotoxins aflatoxin B₁, zearalenone, deoxynivalenol, and ochratoxin A by *Alphitobius diaperinus* and *Hermetia illucens* from contaminated substrates. Toxins (Basel) 10:91 doi: https://doi.org/10.3390/toxins10020091
- Campbell K et al. (2017) Evaluation of an alternative spectroscopic approach for aflatoxin analysis: comparative analysis of food and feed samples with UPLC–MS/MS. Sens Actuators B Chem 239:1087-1097 doi: https://doi.org/10.1016/j.snb.2016.08.115
- Cao LJ, Jiang W, Hoffmann AA (2019) Life history effects linked to an advantage for wAu *Wolbachia* in *Drosophila*. Insects 10 doi: https://doi.org/10.3390/insects10050126
- Cao W, Yu P, Yang K, Cao D (2022) Aflatoxin B₁: metabolism, toxicology, and its involvement in oxidative stress and cancer development Toxicol Mech Methods 32:395-419 doi: https://doi.org/10.1080/15376516.2021.2021339
- CDC (2004) Center for Disease Control (CDC). Outbreak of aflatoxin poisoning Eastern and Central provinces, Kenya, January July, 2004. Morbidity and mortality weekly report, 53(34);790-793. Available via: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5334a4.htm
- Chang X, Wu Z, Wu S, Dai Y, Sun C (2015) Degradation of ochratoxin A by *Bacillus* amyloliquefaciens ASAG1. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:564-571 doi: https://doi.org/10.1080/19440049.2014.991948
- Charlton AJ et al. (2015) Exploring the chemical safety of fly larvae as a source of protein for animal feed. J Insects Food Feed 1(1):7-16. doi: https://doi.org/10.3920/JIFF2014.0020
- Chen J et al. (2021) Research progress on fumonisin B1 contamination and toxicity: a review. Molecules 26:5238 doi: https://doi.org/10.3390/molecules26175238
- Chen Y et al. (2022) Occurrence and exposure assessment of deoxynivalenol and its acetylated derivatives from grains and grain products in Zhejiang province, China (2017-2020). Toxins (Basel) 14 doi: https://doi.org/10.3390/toxins14090586
- Chilaka CA, Obidiegwu JE, Chilaka AC, Atanda OO, Mally A (2022) Mycotoxin regulatory status in Africa: a decade of weak institutional efforts. Toxins (Basel) 14:442 doi: https://doi.org/10.3390/toxins14070442
- Chinnici JP, Erlanger L, Charnock M, Jones M, Stein J (1979) Sensitivity differences displayed by *Drosophila melanogaster* larvae of different ages to the toxic effects of growth on media containing aflatoxin B1. Chem Biol Interact 24(3):373-380. doi: https://doi.org/10.1016/0009-2797(79)90084-X
- Cito A, Barzanti GP, Strangi A, Francardi V, Zanfini A, Dreassi E (2016) Cuticle-degrading proteases and toxins as virulence markers of *Beauveria bassiana* (Balsamo) Vuillemin. J Basic Microbiol 56:941-948 doi: https://doi.org/10.1002/jobm.201600022
- Conte G, Fontanelli M, Galli F, Cotrozzi L, Pagni L, Pellegrini E (2020) Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins (Basel) 12:486 doi: https://doi.org/10.3390/toxins12080486
- Cooper AJL, Hanigan MH (2018) Metabolism of glutathione S-conjugates: Multiple pathways. In C. A. McQueen (Ed.), Comprehensive Toxicology (Second Edition) (Vol. 4, pp. 323-366).

- Elsevier. In: (Ed.) CAM (ed) Comprehensive Toxicology (Second Edition), vol 4. Elsevier, pp 323-366
- Coskun E et al. (2019) Aflatoxin-guanine DNA adducts and oxidatively induced DNA damage in aflatoxin-treated tice *in vivo* as measured by liquid chromatography-tandem mass spectrometry with isotope dilution. Chem Res Toxicol 32:80-89 doi: https://doi.org/10.1021/acs.chemrestox.8b00202
- Cucina M, Tacconi C (2022) Recovery of energy and nutrients from mycotoxin-contaminated food products through biological treatments in a circular economy perspective: A review. Agron 12:3198 doi: https://doi.org/10.3390/agronomy12123198
- Davis GRF, Schiefer HB (1982) Effects of dietary T-2 toxin concentrations fed to larvae of the yellow mealworm at three dietary protein levels. Comp Biochem Physiol 73:13-16 doi: https://doi.org/10.1016/0306-4492(82)90159-9
- De Almeida LG, De Moraes LAB, Trigo JR, Omoto C, Cônsoli FL (2017) The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE 12:e0174754 doi: https://doi.org/10.1371/journal.pone.0174754
- De Zutter N et al. (2016) Aphids transform and detoxify the mycotoxin deoxynivalenol via a type II biotransformation mechanism yet unknown in animals. Sci Rep 6:38640 doi: https://doi.org/10.1038/srep38640
- Dermauw W, Van Leeuwen T (2014) The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol 45:89-110 doi: https://doi.org/10.1016/j.ibmb.2013.11.001
- Diaz GJ, Murcia HW, Cepeda SM (2010) Cytochrome P450 enzymes involved in the metabolism of aflatoxin B_1 in chickens and quail. Poult Sci 89:2461-2469 doi: https://doi.org/10.3382/ps.2010-00864
- Díaz Nieto CH, Granero AM, Zon MA, Fernández H (2018) Sterigmatocystin: a mycotoxin to be seriously considered. Food Chem Toxicol 118:460-470 doi: https://doi.org/10.1016/j.fct.2018.05.057
- Diop N, Beghin J, Sewadeh M (2004) Groundnut policies, global trade dynamics, and the impact of trade liberalization. Available via: https://ssrn.com/abstract=610267
- Dobin A et al. (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21 doi: https://doi.org/10.1093/bioinformatics/bts635
- Dörper A, Veldkamp T, Dicke M (2021) Use of black soldier fly and house fly in feed to promote sustainable poultry production. J Insects Food Feed 7:761-780 doi: https://doi.org/10.3920/JIFF2020.0064
- Dow JAT, Davies SA (2006) The Malpighian tubule: Rapid insights from post-genomic biology. J Insect Physiol 52:365-378 doi: https://doi.org/10.1016/j.jinsphys.2005.10.007
- Dowd PF (1988) Toxicological and biochemical interactions of the fungal metabolites fusaric acid and kojic acid with xenobiotics in *Heliothis zea* (F.) and *Spodoptera frugiperda* (J.E. Smith). Pestic Biochem Physiol 32:123-134 doi: https://doi.org/10.1016/0048-3575(88)90005-3
- Dowd PF (1989) Fusaric acid a secondary fungal metabolite that synergizes toxicity of cooccurring host allelochemicals to the corn earworm, *Heliothis zea* (Lepidoptera). J Chem Ecol 15:249-254 doi: https://doi.org/10.1007/BF02027786
- Dowd PF (1990) Responses of representative midgut detoxifying enzymes from *Heliothis zea* and *Spodoptera frugiperda* to trichothecenes. Insect Biochem 20:349-356 doi: https://doi.org/10.1016/0020-1790(90)90054-X

- Dowd PF (1993) Toxicity of the fungal metabolite griseofulvin to *Helicoverpa zea* and *Spodoptera frugiperda*. Entomol Exp Appl 69:5-11 doi: https://doi.org/10.1111/j.1570-7458.1993.tb01722.x
- Dowd PF (1999) Relative inhibition of insect phenoloxidase by cyclic fungal metabolites from insect and plant pathogens. Nat Toxins 7:337-341 doi: <a href="https://doi.org/10.1002/1522-7189(199911/12)7:6<337::AID-NT69>3.0.CO;2-0">https://doi.org/10.1002/1522-7189(199911/12)7:6<337::AID-NT69>3.0.CO;2-0
- Dowd PF, Cole RJ, Vesonder RF (1988) Toxicity of selected tremorgenic mycotoxins and related compounds to *Spodoptera frugiperda* and *Heliothis zea*. J Antibiot 41:1868-1872 doi: https://doi.org/10.7164/antibiotics.41.1868
- Dunkov BC et al. (1997) The Drosophila cytochrome P450 gene *Cyp6a2*: Structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol 16:1345-1356 doi: https://doi.org/10.1089/dna.1997.16.1345
- EAC (2017) East African Community (EAC), 2017. Maize grains specifications. Arusha, Tanzania.

 Available via: https://members.wto.org/crnattachments/2017/TBT/BDI/17 5584 00 e.pdf
- Eachus H et al. (2017) Genetic disruption of 21-hydroxylase in Zebrafish causes interrenal hyperplasia. Endocrinology 158:4165-4173 doi: https://doi.org/10.1210/en.2017-00549
- EC (1993) European Commission (EC). Council Regulation (EEC) No 315/93 of 8 February 1993 laying down Community procedures for contaminants in food. Available via: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A31993R0315
- EC (1998) European Commision (EC). Council Directive 98/58/EC of 20 July 1998 concerning the protection of animals kept for farming purposes. Available via: https://eurlex.europa.eu/eli/dir/1998/58/oj
- EC (2002a) European Commision (EC). Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed Council statement. Available via: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32002L0032
- EC (2002b) European Commision (EC). Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Available via: https://eurlex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32002R0178
- EC (2006a) European Commision (EC). Commision Regulation No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Available via: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R0401
- EC (2006b) European Commision (EC). Consolidated text: Commission Recommendation of 17
 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT2 and fumonisins in products intended for animal feeding (Text with EEA relevance)
 (2006/576/EC). Available via: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006H0576
- EC (2006c) European Commission (EC). Consolidated text: Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance). Available via: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006R1881
- EC (2009) European Commission (EC). Commission Regulation No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text

- with EEA relevance). Available via: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R0152
- EC (2015) European Commission (EC). Decision C 2453: Horizon 2020 work programme 2014 2015: Food security, sustainable agriculture and forestry, marine and maritime and inland water research and bioeconomy (revised). Available via: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014 2015/main/h2 020-wp1415-food en.pdf
- EC (2019a) European Commision (EC). Communication from the Commisson to the European Parliament, the European Council, the Council, the European Ecnomic and social committee and the committee of the regions. The European Green Deal. Brussels.

 Available via: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640
- EC (2019b) European Commission (EC). Directorate general for health and food safety. SANTE/12682/2019 Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Available via: https://www.eurl-pesticides.eu/docs/public/tmplt article.asp?CntID=727
- EC (2020) European Commision (EC). Communication from the Commisson to the European Parliament, the Council, the European economic and social committee and the committee of the regions. A farm to fork strategy for a fair, healthy and environmentally-friendly food system. Available via: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020DC0381
- EC (2022) European Commision (EC). Proposal for a Regulation of the European Parliament and of the Council on the sustainable use of plant protection products and amending Regulation (EU) 2021/2115. Available via: https://eur-lex.europa.eu/legal-content/EN/HIS/?uri=CELEX%3A52022PC0305
- EC (2023) European Commission (EC). Farm to Fork strategy for a fair, healthy and environmentally-friendly food system. Available via: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy en
- EFSA (2004) EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Opinion of the Scientific Panel on Contaminants in the food chain on a request from the Commission related to aflatoxin B₁ as undesirable substance in animal feed. EFSA J 39:1-27 doi: https://doi.org/10.2903/j.efsa.2004.39
- EFSA (2005) European Food Safety Authority (EFSA). Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. EFSA J 3:282 doi: https://doi.org/10.2903/j.efsa.2005.282
- EFSA (2006) European Food Safety Authority (EFSA). Opinion of the Scientific Panel on contaminants in the food chain (CONTAM) related to aflatoxin B₁ as undesirable substance in animal feed. EFSA J 39:1-27 doi: https://doi.org/10.2903/j.efsa.2004.39
- EFSA (2011a) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J 9:2197 doi: https://doi.org/10.2903/j.efsa.2011.2197
- EFSA (2011b) European Food Safety Authority (EFSA). EFSA Scientific Committee. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J 2379 doi: https://doi.org/10.2903/j.efsa.2011.2379
- EFSA (2014) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on the risks to human and animal

- health related to the presence of beauvericin and enniatins in food and feed. EFSA J 12:3802 doi: https://doi.org/10.2903/j.efsa.2014.3802
- EFSA (2016) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion on the appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J 14:4425 doi: https://doi.org/10.2903/j.efsa.2016.4425
- EFSA (2017a) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 15 doi: https://doi.org/10.2903/j.efsa.2017.4718
- EFSA (2017b) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific Opinion on the risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J 15:e04851 doi: https://doi.org/10.2903/j.efsa.2017.4851
- EFSA (2018a) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J 16:e05172. doi: https://doi.org/10.2903/j.efsa.2018.5172
- EFSA (2018b) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J 5242 doi: https://doi.org/10.2903/j.efsa.2018.5242
- EFSA (2020a) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2020. Risk assessment of aflatoxins in food. EFSA J 18:6040 doi: https://doi.org/10.2903/j.efsa.2020.6040
- EFSA (2020b) European Food Safety Authority (EFSA). EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Risk assessment of ochratoxin A in food. EFSA J 18 doi: https://doi.org/10.2903/j.efsa.2020.6113
- EFSA (2021) European Food Safety Authority (EFSA). EFSA Scientific Committee. Statement on the derivation of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. EFSA J 19:e06479 doi: https://doi.org/10.2903/j.efsa.2021.6479
- Ellis EM, Judah DJ, Neal GE, Hayes JD (1993) An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B₁ defines a subfamily of aldo-keto reductases. Proc Natl Acad Sci 90:10350-10354 doi: https://doi.org/10.1073/pnas.90.21.10350
- Elzaki MEA, Xue RR, Hu L, Wang JD, Zeng RS, Song YY (2019) Bioactivation of aflatoxin B₁ by a cytochrome P450, CYP6AE19 induced by plant signalling methyl jasmonate in *Helicoverpa armigera* (Hübner). Pestic Biochem Physiol 157:211-218 doi: https://doi.org/10.1016/j.pestbp.2019.03.020
- Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R (2020) Worldwide contamination of foodcrops with mycotoxins: validity of the widely cited 'FAO estimate' of 25%. Crit Rev Food Sci 60:2773-2789 doi: https://doi.org/10.1080/10408398.2019.1658570
- Esteves F, Rueff J, Kranendonk M (2021) The central role of cytochrome P450 in xenobiotic metabolism A brief review on a fascinating enzyme family. J Xenobiot 11:94-114 doi: https://doi.org/10.3390/jox11030007
- Evans NM, Shao S (2022) Mycotoxin metabolism by edible insects. Toxins (Basel) 14:217 doi: https://doi.org/10.3390/toxins14030217

- Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047-3048 doi: https://doi.org/10.1093/bioinformatics/btw354
- FAO (2001) Food and Agriculture Organization of the United Nations (FAO). The state of food insecurity in the world 2001. Rome, Italy. Available via: https://www.fao.org/agrifood-economics/publications/detail/en/c/122100/
- FAO (2003) Food and Agriculture Organization of the United Nations (FAO). Worldwide regulations for mycotoxins in food and feed in 2003. Food and Nutrition. Paper 81. Rome, Italy. Available via: https://www.fao.org/3/y5499e/y5499e00.htm
- FAO (2020) Food and Agriculture Organization of the United Nations (FAO). Climate change: unpacking the burden on food safety. Food safety and quality series No. 8. Rome, Italy. Available via: http://www.fao.org/documents/card/en/c/ca8185en
- FAO/WHO (2014) Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). General standard for contaminants and toxins in food and feed. Codex Alimentarius 193 1995. Available via: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS\$ 193e.pdf
- FAO/WHO/WTO (2019) Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO)/World Trade Organization (WTO). Joint statement by FAO, WHO and WTO, International forum on food safety and trade. Geneva, Switzerland. Available via: https://www.who.int/docs/default-source/resources/joint-statement
- Fasuan AA, Akin-Obasola B, Abiodun BO (2022) Water activity relations of spoilage fungi associated with smoke-dried catfish (*Clarias gariepinus*) sold in some open markets in Nigeria. J Food Sci Technol 59:2168-2176 doi: https://doi.org/10.1007/s13197-021-05229-8
- FDA (2000) Food and Drug Administration (FDA). Guidance document. Guidance for industry: action levels for poisonous or deleterious substances in human food and animal feed.

 Available via: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed
- FDA (2001) Food and Drug Administration (FDA). Guidance document. Guidance for industry: fumonisin levels in human foods and animal feeds. Available via: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds.
- FDA (2010) Food and Drug Administration (FDA). Guidance document. Guidance for industry and FDA: advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grain by-products used for animal feed. Available via: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human
- Feizi H, Tahan V, Kariman K (2023) *In vitro* antibacterial activity of essential oils from *Carum copticum* and *Ziziphora clinopodioides* plants against the phytopathogen *Pseudomonas syringae* pv. syringae. Plant Biosyst 157:487-492 doi: https://doi.org/10.1080/11263504.2023.2165564
- Feyereisen R (2006) Evolution of insect P450. Biochem Soc Trans 34:1252-1255 doi: https://doi.org/10.1042/BST0341252

- Fiby I, Sopel MM, Michlmayr H, Adam G, Berthiller F (2021) Development and validation of an LC-MS/MS based method for the determination of deoxynivalenol and its modified forms in maize. Toxins (Basel) 13:600 doi: https://doi.org/10.3390/toxins13090600
- Field ML, Devonshire LA (1998) Evidence that the *E4* and *FE4* esterase genes responsible for insecticide resistance in the aphid *Myzus persicae* (Sulzer) are part of a gene family. Biochem J 330:169-173 doi: https://doi.org/10.1042/bj3300169
- Finet C, Slavik K, Pu J, Carroll SB, Chung H (2019) Birth-and-death evolution of the fatty acyl-CoA reductase (FAR) gene family and diversification of cuticular hydrocarbon synthesis in *Drosophila*. Genome Biol Evol 11:1541-1551 doi: https://doi.org/10.1093/gbe/evz094
- Fink-Grernmels J (1999) Mycotoxins: Their implications for human and animal health. Vet Q 21:115-120 doi: https://doi.org/10.1080/01652176.1999.9695005
- Fletcher MT, Netzel G (2020) Food safety and natural toxins. Toxins (Basel) 12:236 doi: https://doi.org/10.3390/toxins12040236
- Focker M, Van Eupen M, Verweij P, Liu C, Van Haren C, Van der Fels-Klerx HJ (2023) Effects of climate change on areas suitable for maize cultivation and aflatoxin contamination in Europe. Toxins (Basel) 15:599 doi: https://doi.org/10.3390/toxins15100599
- Fodor J et al. (2008) Absorption, distribution and elimination of fumonisin B₁ metabolites in weaned piglets. Food Addit Contam Chem Anal Control Expo Risk Assess 25:88-96 doi: https://doi.org/10.1080/02652030701546180
- Freire L et al. (2019) The presence of ochratoxin A does not influence *Saccharomyces cerevisiae* growth kinetics but leads to the formation of modified ochratoxins. Food Chem Toxicol 133:110756 doi: https://doi.org/10.1016/j.fct.2019.110756
- Fuhrmann A et al. (2022) Residues from black soldier fly (*Hermetia illucens*) larvae rearing influence the plant-associated soil microbiome in the short term. Front Microbiol 13:1-19 doi: https://doi.org/10.3389/fmicb.2022.994091
- Gadallah AI, Marei N (1973) Changes in soluble protein, dehydrogenases, and esterases of unfertilized and fertilized eggs of *Musca domestica*. Insect Biochem 3:163-169 doi: https://doi.org/10.1016/0020-1790(73)90004-8
- Ganesan AR, Balasubramanian B, Park S, Jha R, Andretta I, Bakare AG, Kim IH (2021) Ochratoxin A: carryover from animal feed into livestock and the mitigation strategies. Anim Nutr 7:56-63 doi: https://doi.org/10.1016/j.aninu.2020.06.006
- Garcia SN, Osburn BI, Jay-Russell MT (2020) One health for food safety, food security, and sustainable food production. Front Sustain Food Syst 4 doi: https://doi.org/10.3389/fsufs.2020.00001
- Generalovic TN et al. (2021) A high-quality, chromosome-level genome assembly of the black soldier fly (*Hermetia illucens* L.). G3: Genes Genomes Genet 11 doi: https://doi.org/10.1093/g3journal/jkab085
- Gold M, Cassar CM, Zurbrügg C, Kreuzer M, Boulos S, Diener S, Mathys A (2020) Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag 102:319-329 doi: https://doi.org/10.1016/j.wasman.2019.10.036
- Gold M et al. (2023) Conversion of mycotoxin-contaminated maize by black soldier fly larvae into feed and fertilizer. J Insects as Food Feed [in press]
- Gold M, Tomberlin JK, Diener S, Zurbrügg C, Mathys A (2018) Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: a review. Waste Manag 82:302-318 doi: https://doi.org/10.1016/j.wasman.2018.10.022

- González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl 142:1-16 doi: https://doi.org/10.1111/j.1570-7458.2011.01187.x
- Gruber-Dorninger C, Jenkins T, Schatzmayr G (2019) Global mycotoxin occurrence in feed: a tenyear survey. Toxins (Basel) 11:375 doi: https://doi.org/10.3390/toxins11070375
- Gruber-Dorninger C, Novak B, Nagl V, Berthiller F (2017) Emerging mycotoxins: beyond traditionally determined food contaminants. J Agric Food Chem 65:7052-7070 doi: https://doi.org/10.1021/acs.jafc.6b03413
- Guimón J, Guimón P (2012) How ready-to-use therapeutic food shapes a new technological regime to treat child malnutrition. Technol Forecast Soc Change 79:1319-1327 doi: https://doi.org/10.1016/j.techfore.2012.04.011
- Gulsunoglu Z, Aravind S, Bai Y, Wang L, Kutcher HR, Tanaka T (2019) Deoxynivalenol (DON) accumulation and nutrient recovery in black soldier fly larvae (*Hermetia illucens*) fed wheat infected with *Fusarium spp*. Fermentation 5 doi: https://doi.org/10.3390/fermentation5030083
- Gunst K, Chinnici JP, Llewellyn GC (1982) Effects of aflatoxin B₁, aflatoxin B₂, aflatoxin G₁, and sterigmatocystin on viability, rates of development, and body length in two strains of *Drosophila melanogaster* (Diptera). J Invertebr Pathol 39:388-394 doi: https://doi.org/10.1016/0022-2011(82)90064-7
- Gurung K, Wertheim B, Falcao Salles J (2019) The microbiome of pest insects: it is not just bacteria. Entomol Exp Appl 167:156-170 doi: https://doi.org/10.1111/eea.12768
- Gützkow KL et al. (2021) Metabolic fate and toxicity reduction of aflatoxin B₁ after uptake by edible *Tenebrio molitor* larvae. Food Chem Toxicol 155: 112375. doi: https://doi.org/10.1016/j.fct.2021.112375
- Halder T et al. (2019) Glycine rich proline rich protein from *Sorghum bicolor* serves as an antimicrobial protein implicated in plant defense response. Plant Mol Biol 101:95-112 doi: https://doi.org/10.1007/s11103-019-00894-y
- Hanboonsong Y, Jamjanya T, Durst PB (2013) Six-legged livestock: edible insect farming, collection and marketing in Thailand. Food and Agriculture Organisation, Bangkok RAP publication 3
- Harnden LM, Tomberlin JK (2016) Effects of temperature and diet on black soldier fly, *Hermetia illucens* (L.) (Diptera: Stratiomyidae), development. Forensic Sci Int 266:109-116 doi: https://doi.org/10.1016/j.forsciint.2016.05.007
- Harrer H, Humpf HU, Voss KA (2015) *In vivo* formation of N-acyl-fumonisin B₁. Mycotoxin Res 31:33-40 doi: https://doi.org/10.1007/s12550-014-0211-5
- Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT (2001) Surface binding of aflatoxin B₁ by lactic acid bacteria. Appl Environ Microbiol 67:3086-3091 doi: https://doi.org/10.1128/AEM.67.7.3086-3091.2001
- He W-J et al. (2017) An aldo-keto reductase is responsible for *Fusarium* toxin-degrading activity in a soil *Sphingomonas* strain. Sci Rep 7:9549 doi: https://doi.org/10.1038/s41598-017-08799-w
- Hegde UC, Chandra T, Shanmugasundaram ER (1967) Toxicity of different diets contaminated with various fungi to rice moth larvae (*Corcyra cephalonica st*). Can J Comp Med Vet Sci 31:160-163
- Henry SH, Bosch FX, Troxell TC, Bolger PM (1999) Reducing liver cancer global control of aflatoxin. Science 286:2453-2454 doi: 10.1126/science.286.5449.2453

- Heperkan D, Güler FK, Oktay HI (2012) Mycoflora and natural occurrence of aflatoxin, cyclopiazonic acid, fumonisin and ochratoxin A in dried figs. Food Addit Contam 29:277-286 doi: https://doi.org/10.1080/19440049.2011.597037
- Herrero M et al. (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452-461 doi: https://doi.org/10.1038/nclimate2925
- Heuel M et al. (2023) Low transfer of cadmium, lead and aflatoxin B_1 to eggs and meat of laying hens receiving diets with black soldier fly larvae reared on contaminated substrates. Anim Feed Sci Technol 304:115733 doi: https://doi.org/10.1016/j.anifeedsci.2023.115733
- Heussner A, Bingle L (2015) Comparative ochratoxin toxicity: a review of the available data. Toxins (Basel) 7:4253-4282 doi: https://doi.org/10.3390/toxins7104253
- Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys 143:66-79 doi: https://doi.org/10.1016/0003-9861(71)90186-X
- Hoek-van den Hil E, Van de Schans M, Bor G, Van der Fels-Klerx H (2022) Effects of veterinary drugs on rearing and safety of black soldier fly (*Hermetia illucens*) larvae. J Insects Food Feed 8:1097-1106 doi: https://doi.org/10.3920/JIFF2021.0122
- Hong C et al. (2005) Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor *SLC5A8*. Cancer Res 65:3617-3623 doi: https://doi.org/10.1158/0008-5472.CAN-05-0048
- Hu HN, Jia X, Wang YP, Liang ZH (2018) Removal of ochratoxin A by a carboxypeptidase and peptides present in liquid cultures of *Bacillus subtilis* CW14. World Mycotoxin J 11:559-570 doi: https://doi.org/10.3920/WMJ2017.2296
- Huang B, Han Z, Cai Z, Wu Y, Ren Y (2010) Simultaneous determination of aflatoxins B_1 , B_2 , G_1 , G_2 , M_1 and M_2 in peanuts and their derivative products by ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal Chim Acta 662:62-68 doi: https://doi.org/10.1016/j.aca.2010.01.002
- Huang Y et al. (2020) Dual oxidase *Duox* and Toll-like receptor 3 *TLR3* in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in *Hermetia illucens* L. PLoS ONE 15:e0225873 doi: https://doi.org/10.1371/journal.pone.0225873
- Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167:101-134 doi: https://doi.org/10.1016/S0300-483X(01)00471-1
- IARC (1993) International Agency for Research on Cancer (IARC). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr Eval Carcinog Risks Hum, 56: 1–599. Avaliable via: https://publications.iarc.fr/Book-And-Report-Series/larc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Naturally-Occurring-Substances-Food-Items-And-Constituents-Heterocyclic-Aromatic-Amines-And-Mycotoxins-1993
- IARC (2012) International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 100. Availble via: https://monographs.iarc.fr/iarc-monographs-on-the-evaluation-of-carcinogenic-risks-to-humans-16/
- IPIFF (2019) International Platform of Insects for Food and Feed (IPIFF). Ensuring high standards of animal welfare in insect production. Availble via: https://ipiff.org/wp-content/uploads/2019/02/Animal-Welfare-in-Insect-Production.pdf

- ISO (1999a) International Organization for Standardization (ISO). ISO 6492. Animal feeding stuffs-Determination of fat content.
- ISO (1999b) International Organization for Standardization (ISO). ISO 6496. Animal feeding stuffs-Determination of moisture and other volatile matter content.
- ISO (2008a) International Organization for Standardization (ISO). ISO 13906. Animal feeding stuffs-Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents.
- ISO (2008b) International Organization for Standardization (ISO). ISO 21527-2: Microbiology of food and animal feeding stuffs Horizontal method for the enumeration of yeasts and moulds Part 2: Colony count technique in products with water activity less than or equal to 0,95.
- ISO (2009) International Organization for Standardization (ISO). ISO 5983. Animal feeding stuffs-Determination of nitrogen content and calculation of crude protein content.
- ISO (2022) International Organization for Standardization (ISO). ISO 5984. Animal feeding stuffs-Determination of crude ash.
- Iwashita K, Nagashima H (2011) Rubratoxin B induces signs of fatty acid oxidation disorders (FAODs) in mice. Toxicol Lett 206:238-243 doi: https://doi.org/10.1016/j.toxlet.2011.07.027
- Jang I-H et al. (2006) A Spätzle-processing enzyme required for toll signalling activation in *Drosophila** innate immunity. Dev Cell 10:45-55 doi: *https://doi.org/10.1016/j.devcel.2005.11.013
- Jang S, Mergaert P, Ohbayashi T, Ishigami K, Shigenobu S, Itoh H, Kikuchi Y (2021) Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. Proc Natl Acad Sci 118:e2020922118 doi: https://doi.org/10.1073/pnas.2020922118
- Janković-Tomanić M, Petković B, Todorović D, Vranković J, Perić-Mataruga V (2019) Physiological and behavioral effects of the mycotoxin deoxynivalenol in *Tenebrio molitor* larvae. J Stored Prod Res 83:236-242 doi: https://doi.org/10.1016/j.jspr.2019.07.008
- Janssen RH, Vincken J-P, Van den Broek LAM, Fogliano V, Lakemond CMM (2017) Nitrogen-to-protein conversion factors for three edible insects: *Tenebrio molitor*, *Alphitobius diaperinus*, and *Hermetia illucens*. J Agric Food Chem 65:2275-2278 doi: https://doi.org/10.1021/acs.jafc.7b00471
- Ji C, Fan Y, Zhao L (2016) Review on biological degradation of mycotoxins. Anim Nutr 2:127-133 doi: https://doi.org/10.1016/j.aninu.2016.07.003
- Johnson RM, Mao W, Pollock HS, Niu G, Schuler MA, Berenbaum MR (2012) Ecologically appropriate xenobiotics induce cytochrome P450s in *Apis mellifera*. PLoS ONE 7:e31051 doi: https://doi.org/10.1371/journal.pone.0031051
- Jongema Y (2017) List of edible insect species of the world. Laboratory of Entomology, Wageningen UR, Wageningen, the Netherlands. Available via: https://www.wur.nl/upload_mm/8/a/6/0fdfc700-3929-4a74-8b69-f02fd35a1696 Worldwide%20list%20of%20edible%20insects%202017.pdf
- Juraschek LM, Kappenberg A, Amelung W (2022) Mycotoxins in soil and environment. Sci Total Environ 814:152425 doi: https://doi.org/10.1016/j.scitotenv.2021.152425
- Kaaya AN, Harris C, Eigel W (2006) Peanut aflatoxin levels on farms and in markets of Uganda.

 Peanut Sci 33:68-75 doi: https://doi.org/10.3146/0095-3679(2006)33[68:PALOFA]2.0.CO;2
- Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, Hatzigeorgiou AG, Savakis C (2012) Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate

- insecticide resistance mechanisms. PLoS ONE 7:e40296 doi: https://doi.org/10.1371/journal.pone.0040296
- Kamika I, Mngqawa P, Rheeder JP, Teffo SL, Katerere DR (2014) Mycological and aflatoxin contamination of peanuts sold at markets in Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa. Food Addit Contam: B Surveill 7:120-126 doi: https://doi.org/10.1080/19393210.2013.858187
- Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Suzuki A, Tamura S (1978) Bassianolide, a new insecticidal cyclodepsipeptide from *Beauveria bassiana* and *Verticillium lecanii*. Chem Biol Technol Agric 42:629-635 doi: https://doi.org/10.1016/S0040-4039(01)83709-6
- Kauppi S-M, Pettersen I, Boks C (2019) Consumer acceptance of edible insects and design interventions as adoption strategy. Int J Food Des 4:39-62 doi: https://doi.org/10.1386/ijfd.4.1.39 1
- Kawashima LM, Vieira AP, Soares LMV (2007) Fumonisin B₁ and ochratoxin A in beers made in Brazil. Food Sci Technol 27 doi: https://doi.org/10.1590/S0101-20612007000200019
- Kelly EJ, Erickson KE, Sengstag C, Eaton DL (2002) Expression of human microsomal epoxide hydrolase in *Saccharomyces cerevisiae* reveals a functional role in aflatoxin B₁ detoxification. Toxicol Sci 65:35-42 doi: https://doi.org/10.1093/toxsci/65.1.35
- Khairullina A, Tsardakas Renhuldt N, Wiesenberger G, Bentzer J, Collinge DB, Adam G, Bülow L (2022) Identification and functional characterisation of two oat UDP-Glucosyltransferases involved in deoxynivalenol detoxification. Toxins (Basel) 14:446 doi: https://doi.org/10.3390/toxins14070446
- Khayami R, Hashemi SR, Kerachian MA (2020) Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J Cell Mol Med 24:8890-8902 doi: https://doi.org/10.1111/jcmm.15581
- Kirk HD, Ewen AB, Emson HE, Blair DGR (1971) Effect of aflatoxin B₁ on development of Drosophila melanogaster (Diptera). J Invertebr Pathol 18:313-315 doi: https://doi.org/10.1016/0022-2011(71)90031-0
- Knight LP, Primiano T, Groopman JD, Kensler TW, Sutter TR (1999) cDNA cloning, expression and activity of a second human aflatoxin B₁-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis 20:1215-1223 doi: https://doi.org/10.1093/carcin/20.7.1215
- Kortsmit Y, Van der Bruggen M, Wertheim B, Dicke M, Beukeboom L, Van Loon JJA (2022) Behaviour of two fly species reared for livestock feed: optimising production and insect welfare. J Insects Food Feed 0:1-22 doi: https://doi.org/10.3920/JIFF2021.0214
- Korzekwa K (2014) Enzyme kinetics of oxidative metabolism: cytochromes P450. In: Nagar S, Argikar UA, Tweedie DJ (eds) Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications. Humana Press, Totowa, NJ, pp 149-166. doi: https://doi.org/10.1007/978-1-62703-758-7 8
- Kőszegi T, Poór M (2016) Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins (Basel) 8:111 doi: https://doi.org/10.3390/toxins8040111
- Krogh P et al. (1979) Porcine nephropathy induced by long-term ingestion of ochratoxin A. Vet Pathol 16:466-475 doi: https://doi.org/10.1177/030098587901600410
- Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Walczak J, Buszewski B (2018) Microbiology neutralization of zearalenone using *Lactococcus lactis* and *Bifidobacterium sp.* Anal Bioanal Chem 410:943-952 doi: https://doi.org/10.1007/s00216-017-0555-8

- Kuilman MEM, Maas RFM, Fink-Gremmels J (2000) Cytochrome P450-mediated metabolism and cytotoxicity of aflatoxin B₁ in bovine hepatocytes. Toxicol In Vitro 14:321-327 doi: https://doi.org/10.1016/S0887-2333(00)00025-4
- Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG (2016) Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol 7:2170 doi: https://doi.org/10.3389/fmicb.2016.02170
- Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from *Azadirachta indica A. Juss.* that produces azadirachtin. World J Microbiol Biotechnol 28:1287-1294 doi: https://doi.org/10.1007/s11274-011-0876-2
- Kutasi K, Recek N, Zaplotnik R, Mozetič M, Krajnc M, Gselman P, Primc G (2021) Approaches to inactivating aflatoxins-a review and challenges. Int J Mol Sci 22 doi: https://doi.org/10.3390/ijms222413322
- Lalander C, Diener S, Zurbrügg C, Vinnerås B (2019) Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (*Hermetia illucens*). J Clean Prod 208:211-219 doi: https://doi.org/10.1016/j.jclepro.2018.10.017
- Lambert H, Elwin A, D'Cruze N (2021) Wouldn't hurt a fly? A review of insect cognition and sentience in relation to their use as food and feed. Appl Anim Behav 243:105432 doi: https://doi.org/10.1016/j.applanim.2021.105432
- Lee HJ, Ryu D (2017) Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem 65:7034-7051 doi: https://doi.org/10.1021/acs.jafc.6b04847
- Lee SU, Campbell BC (2000) *In vitro* metabolism of aflatoxin B₁ by larvae of navel orangeworm, *Amyelois transitella* (Walker) (insecta, lepidoptera, pyralidae) and codling moth, *Cydia pomonella* (L.) (insecta, lepidoptera, tortricidae). Arch Insect Biochem Physiol 45:166-174 doi: <a href="https://doi.org/10.1002/1520-6327(200012)45:4<166::AID-ARCH4>3.0.CO;2-8">https://doi.org/10.1002/1520-6327(200012)45:4<166::AID-ARCH4>3.0.CO;2-8
- Leni G, Cirlini M, Jacobs J, Depraetere S, Gianotten N, Sforza S, Dall'Asta C (2019) Impact of naturally contaminated substrates on *Alphitobius diaperinus* and *Hermetia illucens*: uptake and excretion of mycotoxins. Toxins (Basel) 11:479 doi: https://doi.org/10.3390/toxins11080476
- Leroy JL, Wang J-S, Jones K (2015) Serum aflatoxin B₁-lysine adduct level in adult women from Eastern Province in Kenya depends on household socio-economic status: a cross sectional study. Soc Sci Med 146:104-110 doi: https://doi.org/10.1016/j.socscimed.2015.10.039
- Lewis L et al. (2005) Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in Eastern and Central Kenya. Environ Health Perspect 113:1763-1767 doi: https://doi.org/10.1289/ehp.7998
- Li H et al. (2003) *SLC5A8*, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci 100:8412-8417 doi: https://doi.org/10.1073/pnas.1430846100
- Li H, Wan Q, Zhang S, Wang C, Su S, Pan B (2019) Housefly larvae (*Musca domestica*) significantly accelerates degradation of monensin by altering the structure and abundance of the associated bacterial community. Ecotoxicol Environ Saf 170:418-426 doi: https://doi.org/10.1016/j.ecoenv.2018.12.013
- Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231-253 doi: https://doi.org/10.1146/annurev.ento.51.110104.151104

- Liao Y-J et al. (2009) Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: implications of the gender disparity in liver cancer susceptibility. Int J Cancer 124:816-826 doi: https://doi.org/10.1002/ijc.23979
- Lien K-W, Wang X, Pan M-H, Ling M-P (2019) Assessing aflatoxin exposure risk from peanuts and peanut products imported to Taiwan. Toxins (Basel) 11:80 doi: https://doi.org/10.3390/toxins11020080
- Lin X-L, Kang Z-W, Pan Q-J, Liu T-X (2015) Evaluation of five antibiotics on larval gut bacterial diversity of *Plutella xylostella* (Lepidoptera: Plutellidae). Insect Sci 22:619-628 doi: https://doi.org/10.1111/1744-7917.12168
- Liu J et al. (2019a) Metabolism of selected model substrates and insecticides by recombinant CYP6FD encoded by its gene predominately expressed in the brain of *Locusta migratoria*. Pestic Biochem Phys 159:154-162 doi: https://doi.org/10.1016/j.pestbp.2019.06.011
- Liu M et al. (2022) Invited review: remediation strategies for mycotoxin control in feed. J Anim Sci Biotechnol 13:19 doi: https://doi.org/10.1186/s40104-021-00661-4
- Liu R et al. (2010) Photodegradation kinetics and byproducts identification of the aflatoxin B_1 in aqueous medium by ultra-performance liquid chromatography—quadrupole time-of-flight mass spectrometry. J Mass Spectrom 45:553-559 doi: https://doi.org/10.1002/ims.1741
- Liu S-P et al. (2011) Higher susceptibility to aflatoxin B_1 -related hepatocellular carcinoma in glycine N-methyltransferase knockout mice. Int J Cancer 128:511-523 doi: https://doi.org/10.1002/ijc.25386
- Liu T, Awasthi MK, Chen H, Duan Y, Awasthi SK, Zhang Z (2019b) Performance of black soldier fly larvae (Diptera: Stratiomyidae) for manure composting and production of cleaner compost. J Environ Manage 251:109593 doi: https://doi.org/10.1016/j.jenvman.2019.109593
- Llewellyn GC, Gee CL, Sherertz PC (1988) Toxic responses of developing fifth instar milkweed bugs, *Oncopeltus fasciatus* (Hemiptera), to aflatoxin B₁. Bull Environ Contam Toxicol 40:332-338 doi: https://doi.org/10.1007/BF01689088
- Llewellyn GC, Sherertz PC, Mills RR (1976) The response of dietary stressed *Periplaneta* americana to chronic intake of pure aflatoxin B₁. Bull Environ Contam Toxicol 15:391-397 doi: https://doi.org/10.1007/BF01685060
- Loe DW, Stewart RK, Massey TE, Deeley RG, Cole SP (1997) ATP-dependent transport of aflatoxin B₁ and its glutathione conjugates by the product of the multidrug resistance protein (MRP) gene. Mol Pharmacol 51:1034-1041 doi: https://doi.org/10.1124/mol.51.6.1034
- Logrieco A, Bottalico A, Mulé G, Moretti A, Perrone G (2003) Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol 109:645-667 doi: https://doi.org/10.1023/A:1026033021542
- Loiseau N et al. (2015) New insights into the organ-specific adverse effects of fumonisin B₁: comparison between lung and liver. Arch Toxicol 89:1619-1629 doi: https://doi.org/10.1007/s00204-014-1323-6
- Lopes IG, Yong JWH, Lalander C (2022) Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Manag 142:65-76 doi: https://doi.org/10.1016/j.wasman.2022.02.007
- Lorenzini DM, da Silva PI, Fogaça AC, Bulet P, Daffre S (2003) Acanthoscurrin: a novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider *Acanthoscurria gomesiana*. Dev Comp immunol 27:781-791 doi: https://doi.org/10.1016/S0145-305X(03)00058-2

- Lorico A, Nesland J, Emilsen E, Fodstad O, Rappa G (2002) Role of the multidrug resistance protein 1 gene in the carcinogenicity of aflatoxin B₁: investigations using mrp1-null mice. Toxicology 171:201-205 doi: https://doi.org/10.1016/S0300-483X(01)00584-4
- Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550 doi: https://doi.org/10.1186/s13059-014-0550-8
- Madala N, Saeger S, Boevre M, Olotu I, Njobeh P, Adebo O, Gbashi S (2019) The socio-economic impact of mycotoxin contamination in Africa. In: Mycotoxins Impact and Management Strategies. IntechOpen, London
- Madau FA, Arru B, Furesi R, Pulina P (2020) Insect farming for feed and food production from a circular business model perspective. Sustainability 12:5418 doi: https://doi.org/10.3390/su12135418
- Madio B, King GF, Undheim EAB (2019) Sea anemone toxins: a structural overview. Mar Drugs 17:325 doi: https://doi.org/10.3390/md17060325
- Mantle P, Kulinskaya E, Nestler S (2005) Renal tumourigenesis in male rats in response to chronic dietary ochratoxin A. Food Addit Contam 22:58-64 doi: https://doi.org/10.1080/02652030500358431
- Marin S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218-237 doi: https://doi.org/10.1016/j.fct.2013.07.047
- Maringe DT et al. (2017) Natural postharvest aflatoxin occurrence in food legumes in the smallholder farming sector of Zimbabwe. Food Addit Contam: B Surveill 10:21-26 doi: https://doi.org/10.1080/19393210.2016.1240245
- Marini F, Binder H (2019) pcaExplorer: An R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinform 20:331 doi: https://doi.org/10.1186/s12859-019-2879-1
- Mariotti F, Tomé D, Mirand PP (2008) Converting nitrogen into protein Beyond 6.25 and Jones' factors. Crit Rev Food Sci 48:177-184 doi: https://doi.org/10.1080/10408390701279749
- Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads [next generation sequencing; small RNA; microRNA; adapter removal].

 EMBnetjournal 17:3 doi: https://doi.org/10.14806/ej.17.1.200
- Martínez-Chantar ML et al. (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191-1199 doi: https://doi.org/10.1002/hep.22159
- Matsumura F, Knight SG (1967) Toxicity and chemosterilizing activity of aflatoxin against insects.

 J Econ Entomol 60:871-872 doi: https://doi.org/10.1093/jee/60.3.871
- Matumba L, Van Poucke C, Njumbe Ediage E, De Saeger S (2017) Keeping mycotoxins away from the food: Does the existence of regulations have any impact in Africa? Crit Rev Food Sci Nutr 57:1584-1592 doi: https://doi.org/10.1080/10408398.2014.993021
- Maurer V, Holinger M, Amsler Z, Früh B, Wohlfahrt J, Stamer A, Leiber F (2016) Replacement of soybean cake by *Hermetia illucens* meal in diets for layers. J Insects Food Feed 2:83-90 doi: https://doi.org/10.3920/JIFF2015.0071
- Medina A, Akbar A, Baazeem A, Rodríguez A, Magan N (2017) Climate change, food security and mycotoxins: do we know enough? Fungal Biol Rev doi: https://doi.org/10.1016/j.fbr.2017.04.002

- Medina Á, Rodríguez A, Magan N (2015) Climate change and mycotoxigenic fungi: impacts on mycotoxin production. Curr Opin Food Sci 5:99-104 doi: https://doi.org/10.1016/j.cofs.2015.11.002
- Meijer N, De Rijk TC, Van Loon JJA, Zoet L, Van der Fels-Klerx HJ (2021a) Effects of insecticides on mortality, growth and bioaccumulation in black soldier fly (*Hermetia illucens*) larvae. PLoS ONE 16:e0249362 doi: https://doi.org/10.1371/journal.pone.0249362
- Meijer N, Kleter G, De Nijs M, Rau M-L, Derkx R, Van der Fels-Klerx HJ (2021b) The aflatoxin situation in Africa: systematic literature review. CRFSFS 20:2286-2304 doi: https://doi.org/10.1111/1541-4337.12731
- Meijer N, Mulder PPJ, Mueller-Maatsch JTL, Bosch M, Zoet L, Van der Fels-Klerx HJ (2023a)

 Effects of dietary exposure to plant toxins on bioaccumulation, survival, and growth of black soldier fly (*Hermetia Illucens*) larvae and lesser mealworm (*Alphitobius Diaperinus*). Available at SSRN: https://dx.doi.org/10.2139/ssrn.4498727
- Meijer N, Nijssen R, Bosch M, Boers E, Van der Fels-Klerx HJ (2022) Aflatoxin B₁ metabolism of reared *Alphitobius diaperinus* in different life-stages. Insects 13:357 doi: https://doi.org/10.3390/insects13040357
- Meijer N, Stoopen G, Van der Fels-Klerx HJ, Van Loon JJA, Carney J, Bosch G (2019) Aflatoxin B₁ conversion by black soldier fly (*Hermetia illucens*) larval enzyme extracts. Toxins (Basel) 11:532 doi: https://doi.org/10.3390/toxins11090532
- Meijer N, Zoet L, De Rijk T, Zomer P, Rijkers D, Van der Fels-Klerx HJ, Van Loon JJA (2023b) Effects of pyrethroid and organophosphate insecticides on reared black soldier fly larvae (*Hermetia illucens*). Insect Sci doi: https://doi.org/10.1111/1744-7917.13269
- Melone PD, Chinnici JP (1986) Selection for increased resistance to aflatoxin B_1 toxicity in Drosophila melanogaster. J Invertebr Pathol 48:60-65 doi: https://doi.org/10.1016/0022-2011(86)90143-6
- Mencarelli M, Accinelli C, Vicari A (2013) Implications of European corn borer, *Ostrinia nubilalis*, infestation in an *Aspergillus flavus*-biocontrolled corn agroecosystem. Pest Manag Sci 69:1085-1091 doi: https://doi.org/10.1002/ps.3472
- Menezes MR, Waisertreiger ISR, Lopez-Bertoni H, Luo X, Pavlov YI (2012) Pivotal role of inosine triphosphate pyrophosphatase in maintaining genome stability and the prevention of apoptosis in human cells. PLoS ONE 7:e32313 doi: https://doi.org/10.1371/journal.pone.0032313
- Meyer UA (1996) Overview of enzymes of drug metabolism. J Pharmacokinet Pharmacodyn 24:449-459 doi: https://doi.org/10.1007/BF02353473
- Miles CO et al. (1996) Ovine metabolism of zearalenone to α -zearalanol (zeranol). J Agric Food Chem 44:3244-3250 doi: https://doi.org/10.1021/jf9601325
- Miller JD, Sumarah MW, Adams GW (2008) Effect of a rugulosin-producing endophyte in *Picea glauca* on *Choristoneura fumiferana*. J Chem Ecol 34:362-368 doi: https://doi.org/10.1007/s10886-007-9412-0
- Mogensen JM, Frisvad JC, Thrane U, Nielsen KF (2010) Production of fumonisin B_2 and B_4 by Aspergillus niger on grapes and raisins. J Agric Food Chem 58:954-958 doi: https://doi.org/10.1021/jf903116q
- Moretti A, Pascale M, Logrieco AF (2019) Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci Technol 84:38-40. doi: https://doi.org/10.1016/j.tifs.2018.03.008
- Moretti AF, Gamba RR, Puppo J, Malo N, Gómez-Zavaglia A, Peláez Á L, Golowczyc MA (2018) Incorporation of *Lactobacillus plantarum* and zeolites in poultry feed can reduce

- aflatoxin B_1 levels. J Food Sci Technol 55:431-436 doi: https://doi.org/10.1007/s13197-017-2923-y
- Moss EJ, Neal GE, Judah DJ (1985) The mercapturic acid pathway metabolites of a glutathione conjugate of aflatoxin B_1 . Chem Biol Interact 55:139-155 doi: https://doi.org/10.1016/S0009-2797(85)80124-1
- Mphande FA, Siame BA, Taylor JE (2004) Fungi, aflatoxins, and cyclopiazonic acid associated with peanut retailing in Botswana. J Food Prot 67:96-102 doi: https://doi.org/10.4315/0362-028X-67.1.96
- Mukherjee R et al. (2020) Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms. PLoS Comput Biol 16:e1008191 doi: https://doi.org/10.1371/journal.pcbi.1008191
- Murcia H, Diaz GJ (2020a) Dealing with aflatoxin B_1 dihydrodiol acute effects: impact of aflatoxin B_1 -aldehyde reductase enzyme activity in poultry species tolerant to AFB₁ toxic effects. PLoS ONE 15:e0235061 doi: https://doi.org/10.1371/journal.pone.0235061
- Murcia HW, Diaz GJ (2020b) In vitro hepatic aflatoxicol production is related to a higher resistance to aflatoxin B_1 in poultry. Sci Rep 10:5508 doi: https://doi.org/10.1038/s41598-020-62415-y
- Mutegi CK, Cotty PJ, Bandyopadhyay R (2018) Prevalence and mitigation of aflatoxins in Kenya (1960-to date). World Mycotoxin J 11:341-357 doi: https://doi.org/10.3920/WMJ2018.2362
- Nakagaki BJ, Defoliart GR (1991) Comparison of diets for mass-rearing *Acheta domesticus* (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. J Econ Entomol 84:891-896 doi: https://doi.org/10.1093/jee/84.3.891
- Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by *Burkholderia phytofirmans* PsJN and *Enterobacter sp.* FD17. Environ Exp Bot 97:30-39 doi: https://doi.org/10.1016/j.envexpbot.2013.09.014
- Nelson LS, Rosoff ML, Li C (1998) Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in *Caenorhabditis elegans*. Science 281:1686-1690 doi: 10.1126/science.281.5383.1686
- Nevins MP, Grant DW (1971) Bioconcentration and biotransfer of aflatoxin. Bull Environ Contam Toxicol 6(6):522-558. doi: https://doi.org/10.1007/BF01796865
- Niermans K, Hoek-van den Hil EF, Van Dam R, Van der Fels-Klerx HJ, Van Loon JJA (2023a) Effects of the mycotoxins aflatoxin B₁, deoxynivalenol and zearalenone on survival, biomass and toxin accumulation in *Musca domestica* larvae. World Mycotoxin J doi: https://doi.org/10.1163/18750796-20222826
- Niermans K et al. (2023b) The metabolic fate and biological effects of isotopically labelled aflatoxin B₁, fumonisin B₁, ochratoxin A and zearalenone in reared *Hermetia illucens* and *Musca domestica* larvae [Manuscript submitted for publication]. Wageningen University and Research
- Niermans K, Meyer AM, Hoek-van den Hil EF, Van Loon JJA, Van der Fels-Klerx HJ (2021) A systematic literature review on the effects of mycotoxin exposure on insects and on mycotoxin accumulation and biotransformation. Mycotoxin Res 37:279-295 doi: https://doi.org/10.1007/s12550-021-00441-z
- Niermans K, Salari SP, Carney J, Hoek-van den Hil EF, Van der Fels-Klerx HJ, Van Loon JJA (2023c) Conversion of aflatoxin-contaminated groundnut (*Arachis hypogaea* L.) press cake by larvae of black soldier fly *Hermetia illucens* results in a complete mass balance for

- aflatoxin B_1 . [Manuscript submitted for publication] Wageningen University and Research
- Niermans K, Woyzichovski J, Kröncke N, Benning R, Maul R (2019) Feeding study for the mycotoxin zearalenone in yellow mealworm (*Tenebrio molitor*) larvae investigation of biological impact and metabolic conversion. Mycotoxin Res 35(3):231-242. doi: https://doi.org/10.1007/s12550-019-00346-y
- Nishimwe K, Hoffmann V, Herrman TJ (2022) Market-driven strategies for combating aflatoxins in Rwanda. Final report RWA-21162. Available via: https://www.theigc.org/sites/default/files/2022/05/Nishimwe-et-al-May-2022.pdf
- Nishimwe K, Wanjuki I, Karangwa C, Darnell R, Harvey J (2017) An initial characterization of aflatoxin B₁ contamination of maize sold in the principal retail markets of Kigali, Rwanda. Food Control 73:574-580 doi: https://doi.org/10.1016/j.foodcont.2016.09.006
- Niu G, Johnson RM, Berenbaum MR (2011) Toxicity of mycotoxins to honeybees and its amelioration by propolis. Apidologie 42:79 doi: https://doi.org/10.1051/apido/2010039
- Niu G, Siegel J, Schuler MA, Berenbaum MR (2009) Comparative toxicity of mycotoxins to navel orangeworm (*Amyelois transitella*) and corn earworm (*Helicoverpa zea*). J Chem Ecol 35:951-957 doi: https://doi.org/10.1007/s10886-009-9675-8
- Niu G, Wen Z, Rupasinghe SG, Ren SZ, Berenbaum MR, Schuler MA (2008) Aflatoxin B₁ detoxification by CYP321A1 in *Helicoverpa zea*. Arch Insect Biochem Physiol 69:32-45 doi: https://doi.org/10.1002/arch.20256
- Niyonsaba H, Höhler J, Kooistra J, Van der Fels-Klerx HJ, Meuwissen M (2021) Profitability of insect farms. J Insects Food Feed 7 doi: https://doi.org/10.3920/JIFF2020.0087
- Nji QN, Babalola OO, Ekwomadu TI, Nleya N, Mwanza M (2022) Six main contributing factors to high levels of mycotoxin contamination in African foods. Toxins (Basel) 14:318 doi: https://doi.org/10.3390/toxins14050318
- Nugraha A, Khotimah K, Rietjens IMCM (2018) Risk assessment of aflatoxin B₁ exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food Chem Toxicol 113:134-144 doi: https://doi.org/10.1016/j.fct.2018.01.036
- Obata F, Miura M (2015) Enhancing S-adenosyl-methionine catabolism extends *Drosophila* lifespan. Nat Commun 6:8332 doi: https://doi.org/10.1038/ncomms9332
- Ochoa Sanabria C et al. (2019) Yellow mealworm larvae (*Tenebrio molitor*) fed mycotoxin-contaminated wheat-a possible safe, sustainable protein source for animal feed? Toxins (Basel) 11 doi: https://doi.org/10.3390/toxins11050282
- Oesch F, Jerina DM, Daly JW (1971) Substrate specificity of hepatic epoxide hydrase in microsomes and in a purified preparation: Evidence for homologous enzymes. Arch Biochem Biophys 144:253-261 doi: https://doi.org/10.1016/0003-9861(71)90476-0
- Ohtomo T, Murakoshi S, Sugiyama J, Kurata H (1975) Detection of aflatoxin B₁ in silkworm larvae attacked by an *Aspergillus flavus* isolate from a sericultural farm. Appl Microbiol 30:1034-1035 doi: https://doi.org/10.1128/am.30.6.1034-1035.1975
- Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM (2010) Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 120:S49-S75 doi: https://doi.org/10.1093/toxsci/kfq338
- Oonincx DGAB, Van Broekhoven S, Van Huis A, Van Loon JJA (2015) Feed conversion, survival and development, and composition of four insect species on diets composed of food

- by-products. PLoS ONE 10:e0144601 doi: https://doi.org/10.1371/journal.pone.0144601
- Osborne DJ, Hamilton PB (1981) Decreased pancreatic digestive enzymes during aflatoxicosis. Poult Sci 60:1818-1821 doi: https://doi.org/10.3382/ps.0601818
- PACA (2020) Partnership for Aflatoxin Control in Africa (PACA). Strengthening aflatoxin control in Malawi: policy recommendations. Available online: https://www.aflatoxinpartnership.org/wp-content/uploads/2021/05/Malawi Aflatoxin Control MAY15.pdf
- Pal S, St. Leger RJ, Wu LP (2007) Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in *Drosophila melanogaster*. J Biol Chem 282:8969-8977 doi: https://doi.org/10.1074/jbc.M605927200
- Pan Y et al. (2020) UDP-glycosyltransferases contribute to spirotetramat resistance in *Aphis gossypii* Glover. Pestic Biochem Phys 166:104565 doi: https://doi.org/10.1016/j.pestbp.2020.104565
- Park DL (2002) Effect of processing on aflatoxin. In: DeVries JW, Trucksess MW, Jackson LS (eds) Mycotoxins and Food Safety. Springer US, Boston, MA, pp 173-179. doi: https://doi.org/10.1007/978-1-4615-0629-4 17
- Park DL, Njapau H, Boutrif E (1999) Minimizing risks posed by mycotoxins utilizing the HACCP concept. JNFA:49-56. Available via: https://api.semanticscholar.org/CorpusID:132453855
- Park JW, Kim EK, Shon DH, Kim YB (2002) Natural co-occurrence of aflatoxin B₁, fumonisin B₁ and ochratoxin A in barley and corn foods from Korea. Food Addit Contam 19:1073-1080 doi: https://doi.org/10.1080/02652030210151840
- Park JY, Zheng W, Kim D, Cheng JQ, Kumar N, Ahmad N, Pow-Sang J (2007) Candidate tumor suppressor gene *SLC5A8* is frequently down-regulated by promoter hypermethylation in prostate tumor. Cancer Detect Prev 31:359-365 doi: https://doi.org/10.1016/j.cdp.2007.09.002
- Park Y, Choi BH, Kwak J-S, Kang C-W, Lim H-T, Cheong H-S, Hahm K-S (2005) Kunitz-type serine protease inhibitor from potato (*Solanum tuberosum* L. cv. Jopung). J Agric Food Chem 53:6491-6496 doi: https://doi.org/10.1021/jf0505123
- Parodi A et al. (2020a) Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing a mass balance approach. J Clean Prod 271:122488 doi: https://doi.org/10.1016/j.jclepro.2020.122488
- Parodi A, Gerrits WJJ, Van Loon JJA, De Boer IJM, Aarnink AJA, Van Zanten HHE (2021) Black soldier fly reared on pig manure: bioconversion efficiencies, nutrients in the residual material, greenhouse gas and ammonia emissions. Waste Manag 126:674-683 doi: https://doi.org/10.1016/j.wasman.2021.04.001
- Parodi A, Ipema AF, Van Zanten HHE, Bolhuis JE, Van Loon JJA, De Boer IJM (2022) Principles for the responsible use of farmed insects as livestock feed. Nat Food 3:972-974 doi: https://doi.org/10.1038/s43016-022-00641-5
- Parodi A, Van Dijk K, Van Loon JJA, De Boer IJM, Van Schelt J, Van Zanten HHE (2020b) Black soldier fly larvae show a stronger preference for manure than for a mass-rearing diet. J Appl Entomol 144:560-565 doi: https://doi.org/10.1111/jen.12768
- Paterson RRM, Simmonds MJS, Kemmelmeier C, Blaney WM (1990) Effects of brevianamide A, its photolysis product brevianamide D, and ochratoxin A from two Penicillium strains on the insect pests *Spodoptera frugiperda* and *Heliothis virescens*. Mycol Res 94:538-542 doi: https://doi.org/10.1016/S0953-7562(10)80017-6

- Paterson RRM, Simmonds MSJ, Blaney WM (1987) Mycopesticidal effects of characterized extracts of *Penicillium* isolates and purified secondary metabolites (including mycotoxins) on *Drosophila melanogaster* and *Spodoptora littoralis*. J Invertebr Pathol 50:124-133 doi: https://doi.org/10.1016/0022-2011(87)90112-1
- Paulussen C et al. (2017) Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 10:296-322 doi: https://doi.org/10.1111/1751-7915.12367
- Peles F et al. (2019) Adverse effects, transformation and channeling of aflatoxins into food raw materials in livestock. Front Microbiol 10:2861-2861 doi: https://doi.org/10.3389/fmicb.2019.02861
- Peltonen K, El-Nezami H, Haskard C, Ahokas J, Salminen S (2001) Aflatoxin B₁ binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci 84:2152-2156 doi: https://doi.org/10.3168/jds.S0022-0302(01)74660-7
- Peng WX, Marchal JLM, Van der Poel AFB (2018) Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Anim Feed Sci Technol 237:129-153 doi: https://doi.org/10.1016/j.anifeedsci.2018.01.017
- Peters CJ, Picardy JA, Darrouzet-Nardi A, Griffin TS (2014) Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems. Agric Syst 130:35-43 doi: https://doi.org/10.1016/j.agsy.2014.06.005
- Piacenza N, Kaltner F, Maul R, Gareis M, Schwaiger K, Gottschalk C (2020) Distribution of T-2 toxin and HT-2 toxin during experimental feeding of yellow mealworm (*Tenebrio molitor*). Mycotoxin Res 37:11-21. doi: https://doi.org/10.1007/s12550-020-00411-x
- Pigłowski M (2019) Comparative analysis of notifications regarding mycotoxins in the rapid alert system for food and feed (RASFF). Qual Assur Saf Crops Foods 11:725-735 doi: https://doi.org/10.3920/QAS2018.1398
- Pinton P et al. (2012) Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci 130:180-190 doi: https://doi.org/10.1093/toxsci/kfs239
- Poon IKH, Patel KK, Davis DS, Parish CR, Hulett MD (2011) Histidine-rich glycoprotein: the Swiss army knife of mammalian plasma. Blood 117:2093-2101 doi: https://doi.org/10.1182/blood-2010-09-303842
- Poppenberger B et al. (2006) Heterologous expression of *Arabidopsis* UDP-glucosyltransferases in *Saccharomyces cerevisiae* for production of zearalenone-4-O-glucoside. Appl Environ Microbiol 72:4404-4410 doi: https://doi.org/10.1128/AEM.02544-05
- Prelusky DB, Gerdes RG, Underhill KL, Rotter BA, Jui PY, Trenholm HL (1994) Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Nat Toxins 2:97-104 doi: https://doi.org/10.1002/nt.2620020302
- Purschke B, Scheibelberger R, Axmann S, Adler A, Jäger H (2017) Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (*Hermetia illucens*) for use in the feed and food value chain. Food Addit Contam Chem Anal Control Expo Risk Assess 34:1410-1420 doi: https://doi.org/10.1080/19440049.2017.1299946
- Ramirez JL, Muturi EJ, Dunlap C, Rooney AP (2018) Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito *Aedes aegypti* by members of the fungal entomopathogenic genus *Isaria*. Sci Rep 8:9896 doi: https://doi.org/10.1038/s41598-018-28210-6

- Ramos-Elorduy J (2008) Energy supplied by edible insects from Mexico and their nutritional and ecological importance. Ecol Food Nutr 47:280-297 doi: https://doi.org/10.1080/03670240701805074
- Ran R, Wang C, Han Z, Wu A, Zhang D, Shi J (2013) Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Food Control 34:138-148 doi: https://doi.org/10.1016/j.foodcont.2013.04.026
- RDA (2018) Dutch Council on Animal Affairs (2018). The Emerging Insect Industry: invertebrates as production animals. The Hague, the Netherlands: Raad voor Dieraangelegenheden.
- Rheeder JP, Marasas WF, Vismer HF (2002) Production of fumonisin analogs by *Fusarium* species. Appl Environ Microbiol 68:2101-2105 doi: https://doi.org/10.1128/AEM.68.5.2101-2105.2002
- Rice LG, Ross PF (1994) Methods for detection and quantitation of fumonisins in corn, cereal products and animal excreta J Food Prot 57:536-540 doi: https://doi.org/10.4315/0362-028X-57.6.536
- Rizwan-Ul-Haq M, Hu QB, Hu MY, Zhong G, Weng Q (2009) Study of destruxin B and tea saponin, their interaction and synergism activities with *Bacillus thuringiensis kurstaki* against *Spodoptera exigua* (Hübner) (Lepidoptera: Noctuidae). Appl Entomol Zool 44:419-428 doi: https://doi.org/10.1303/aez.2009.419
- Robinson DN, Cooley L (1997) *Drosophila* kelch is an oligomeric ring canal actin organizer. J Cell Biol 138:799-810 doi: https://doi.org/10.1083/jcb.138.4.799
- Rockström J et al. (2009a) A safe operating space for humanity. Nature 461:472-475 doi: https://doi.org/10.1038/461472a
- Rockström J et al. (2009b) Planetary boundaries: exploring the safe operating space for humanity.

 Available via: http://www.ecologyandsociety.org/vol14/iss2/art32/EcolSoc14
- RSB (2017) Rwanda Standards Board (RSB). RS EAS 2: 2017. Maize grains Specification.
- RSB (2019a) Rwanda Standards Board (RSB). RS EAS 55: 2019. Compounded pig feeds Specification.
- RSB (2019b) Rwanda Standards Board (RSB). RS EAS 90: 2019,Amd 1: 2021. Compounded poultry feeds Specification.
- RSB (2019c) Rwanda Standards Board (RSB). RS EAS 973: 2019. Compounded fish feeds Specification.
- RSB (2021) Rwanda Standards Board (RSB). RS 279: 2021. Organic fertilizer Specification.
- RSB (2022) Rwanda Standards Board (RSB). RS 486: 2022. Dried insect products for animal feeds
 Specification
- Rushing BR, Selim MI (2019) Aflatoxin B₁: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol 124:81-100 doi: https://doi.org/10.1016/j.fct.2018.11.047
- Rydengård V et al. (2008) Histidine-rich glycoprotein protects from systemic *Candida* infection. PLoS Pathog 4:e1000116 doi: https://doi.org/10.1371/journal.ppat.1000116
- Sadek MM (1996) The chemosterilizing activity of some mycotoxins and their influence on the development and survival of *Spodoptera littoralis* (Boisd.) (Lep., Noctuidae). J Appl Entomol 120:53-61 doi: https://doi.org/10.1111/j.1439-0418.1996.tb01567.x
- Saner C, Weibel B, Würgler FE, Sengstag C (1996) Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae. Environ Mol Mutagen 27:46-58 doi: <a href="https://doi.org/10.1002/(SICI)1098-2280(1996)27:1<46::AID-EM7>3.0.CO;2-C">https://doi.org/10.1002/(SICI)1098-2280(1996)27:1<46::AID-EM7>3.0.CO;2-C

- Schaarschmidt S, Fauhl-Hassek C (2021) The fate of mycotoxins during secondary food processing of maize for human consumption. CRFSFS 20:91-148 doi: https://doi.org/10.1111/1541-4337.12657
- Schreven S et al. (2022) Black soldier fly larvae influence internal and substrate bacterial community composition depending on substrate type and larval density. Appl Environ Microbiol 88:e00084-00022 doi: https://doi.org/10.1128/aem.00084-22
- Schreven S, De Vries H, Hermes G, Smidt H, Dicke M, Van Loon JJA (2021) Relative contributions of egg-associated and substrate-associated microorganisms to black soldier fly larval performance and microbiota. FEMS Microbiol Ecol 97 doi: https://doi.org/10.1093/femsec/fiab054
- Schrögel P, Wätjen W (2019) Insects for food and feed safety aspects related to mycotoxins and metals. Foods 8(8):288. doi: https://doi.org/10.3390/foods8080288
- Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097-2098 doi: https://doi.org/10.1021/es5002105
- Seefelder W, Gossmann M, Humpf H-U (2002) Analysis of fumonisin B₁ in *Fusarium proliferatum*-infected asparagus spears and garlic bulbs from Germany by liquid chromatography–electrospray ionization mass spectrometry. J Agric Food Chem 50:2778-2781 doi: https://doi.org/10.1021/if0115037
- Seiferlein M, Humpf HU, Voss KA, Sullards MC, Allegood JC, Wang E, Merrill Jr AH (2007) Hydrolyzed fumonisins HFB₁ and HFB₂ are acylated *in vitro* and *in vivo* by ceramide synthase to form cytotoxic N-acyl-metabolites. Mol Nutr Food Res 51:1120-1130 doi: https://doi.org/10.1002/mnfr.200700118
- Shah PN, Ruan X, Van Loon JJA, Dicke M (2023) Temperature-modulated host-pathogen interactions between *Hermetia illucens* L. (Diptera: Stratiomyidae) and *Pseudomonas protegens* Pf-5. J Invertebr Pathol 198:107934 doi: https://doi.org/10.1016/j.jip.2023.107934
- Silvert DJ, Doctor J, Quesada L, Fristrom JW (1984) Pupal and larval cuticle proteins of *Drosophila melanogaster*. Biochem 23:5767-5774 doi: https://doi.org/10.1021/bi00319a015
- Şişman T (2006) The protective effect of hydrated sodium calcium aluminosilicate against the adverse effects of aflatoxin B₁ on *D. melanogaster*. Toxicol Ind Health 22:173-179 doi: https://doi.org/10.1191/0748233706th2540a
- Smetana S, Bhatia A, Batta U, Mouhrim N, Tonda A (2023) Environmental impact potential of insect production chains for food and feed in Europe. Anim Front 13:112-120 doi: https://doi.org/10.1093/af/vfad033
- Smetana S, Palanisamy M, Mathys A, Heinz V (2016) Sustainability of insect use for feed and food: life cycle assessment perspective. J Clean Prod 137:741-751 doi: https://doi.org/10.1016/j.jclepro.2016.07.148
- Sontowski R, Guyomar C, Poeschl Y, Weinhold A, Van Dam NM, Vassão DG (2022) Mechanisms of isothiocyanate detoxification in larvae of two belowground herbivores, *Delia radicum* and *D. floralis* (Diptera: Anthomyiidae). Front Physiol 13 doi: https://doi.org/10.3389/fphys.2022.874527
- Sree KS, Padmaja V (2008) Destruxin from *Metarhizium anisopliae* induces oxidative stress effecting larval mortality of the polyphagous pest *Spodoptera litura*. J Appl Entomol 132:68-78 doi: https://doi.org/10.1111/j.1439-0418.2007.01239.x
- Stanley J, Patras A, Pendyala B, Vergne MJ, Bansode RR (2020) Performance of a UV-A LED system for degradation of aflatoxins B₁ and M₁ in pure water: kinetics and cytotoxicity study. Sci Rep 10:13473 doi: https://doi.org/10.1038/s41598-020-70370-x

- Streit E et al. (2012) Current situation of mycotoxin contamination and co-occurrence in animal feed focus on Europe. Toxins (Basel) 4:788-809 doi: https://doi.org/10.3390/toxins4100788
- Sulyok M, Stadler D, Steiner D, Krska R (2020) Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: challenges and solutions. Anal Bioanal Chem 412:2607-2620 doi: https://doi.org/10.1007/s00216-020-02489-9
- Sumarah M, Adams G, Berghout J, Slack G, Wilson A, Miller J (2008) Spread and persistence of a rugulosin-producing endophyte in *Picea glauca* seedlings. Mycological research 112:731-736 doi: 10.1016/j.mycres.2008.01.007
- Sun W et al. (2006) Genome-wide analysis of phenobarbital-inducible genes in *Drosophila melanogaster*. Insect Mol Biol 15:455-464 doi: https://doi.org/10.1111/j.1365-2583.2006.00662.x
- Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y (2022) Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Arch Toxicol 96:2639-2654 doi: https://doi.org/10.1007/s00204-022-03337-8
- Suo J et al. (2023) Characteristics of aflatoxin B₁ degradation by *Stenotrophomonas* acidaminiphila and its combination with black soldier fly larvae. Life 13:234 doi: https://doi.org/10.3390/life13010234
- Topcu A, Bulat T, Wishah R, Boyacı IH (2010) Detoxification of aflatoxin B₁ and patulin by *Enterococcus faecium* strains. Int J Food Microbiol 139:202-205 doi: https://doi.org/10.1016/j.ijfoodmicro.2010.03.006
- Torres AM, Barros GG, Palacios SA, Chulze SN, Battilani P (2014) Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res Int 62:11-19 doi: https://doi.org/10.1016/j.foodres.2014.02.023
- Tozzi B, Liponi GB, Meucci V, Casini L, Dall'Asta C, Intorre L, Gatta D (2016) Aflatoxins M_1 and M_2 in the milk of donkeys fed with naturally contaminated diet. Dairy Sci Technol 96:513-523 doi: https://doi.org/10.1007/s13594-016-0285-2
- Tran VN et al. (2020a) *In silico* and *in vitro* studies of mycotoxins and their cocktails; Their toxicity and its mitigation by silibinin pre-treatment. Toxins (Basel) 12:148 doi: https://doi.org/10.3390/toxins12030148
- Tran VN, Viktorová J, Ruml T (2020b) Mycotoxins: biotransformation and bioavailability assessment using Caco-2 cell monolayer. Toxins (Basel) 12:628 doi: https://doi.org/10.3390/toxins12100628
- Trebak F, Alaoui A, Alexandre D, El Ouezzani S, Anouar Y, Chartrel N, Magoul R (2015) Impact of aflatoxin B₁ on hypothalamic neuropeptides regulating feeding behavior. NeuroToxicology 49:165-173 doi: https://doi.org/10.1016/j.neuro.2015.06.008
- Trienens M, Keller NP, Rohlfs M (2010) Fruit, flies and filamentous fungi experimental analysis of animal–microbe competition using *Drosophila melanogaster* and *Aspergillus* mould as a model system. Oikos 119:1765-1775 doi: https://doi.org/10.1111/j.1600-0706.2010.18088.x
- Trienens M, Kraaijeveld K, Wertheim B (2017) Defensive repertoire of *Drosophila* larvae in response to toxic fungi. Mol Ecol 26:5043-5057 doi: https://doi.org/10.1111/mec.14254
- Tzeng H, Laughlin LT, Lin S, Armstrong RN (1996) The catalytic mechanism of microsomal epoxide hydrolase involves reversible formation and rate-limiting hydrolysis of the alkylenzyme intermediate. J Am Chem Soc 118:9436-9437 doi: https://doi.org/10.1021/ja961826x

- Udomkun P, Wiredu AN, Nagle M, Müller J, Vanlauwe B, Bandyopadhyay R (2017) Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application a review. Food Control 76:127-138 doi: https://doi.org/10.1016/j.foodcont.2017.01.008
- Ueno Y, Ishii K, Omata Y, Kamataki T, Kato R (1983) Specificity of hepatic cytochrome P-450 isoenzymes from PCB-treated rats and participation of cytochrome b5 in the activation of aflatoxin B₁. Carcinogenesis 4:1071-1073 doi: https://doi.org/10.1093/carcin/4.8.1071
- UN (1975) United Nations (UN). Report of the world food conference, Rome 5-16 November 1974. New York, USA. Available via: https://digitallibrary.un.org/record/701143
- UN (2015) United Nations (UN). World population prospects: key findings and advance tables.

 Department of Economic and Social Affairs, New York, USA. Available via: https://population.un.org/wpp/publications/Files/Key Findings WPP 2015.pdf
- UN (2019) United Nations (UN). World population prospects 2019: highlights (ST/ESA/SER.A/423). Department of economic and social affairs, population division. New York, USA. Available via: https://digitallibrary.un.org/record/3813698/files/WPP2019 Highlights.pdf
- UN (2021) United Nations (UN). On climate, food and agriculture. Climate action. fast facts. New York, USA. Available via: https://www.un.org/sites/un2.un.org/files/fastfacts-food-and-agriculture-february-2022.pdf
- UN (2023) United Nations (UN). Sustainable Development Goals. Communication materials. New York, USA. Available via: https://www.un.org/sustainabledevelopment/news/communications-material/
- UNEP (2021) United Nations Environment Programme (UNEP). UNEP food waste index report 2021. Nairobi, Kenya. Available via: https://www.unep.org/resources/report/unep-food-waste-index-report-2021
- Uwaifo AO (1980) In vitro effects of aflatoxin B_1 on the activities of three hydrolases. Toxicol Lett 7:131-135 doi: https://doi.org/10.1016/0378-4274(80)90045-4
- Vaclavikova M, Malachova A, Veprikova Z, Dzuman Z, Zachariasova M, Hajslova J (2013) 'Emerging' mycotoxins in cereals processing chains: changes of enniatins during beer and bread making. Food Chem 136:750-757 doi: https://doi.org/10.1016/j.foodchem.2012.08.031
- Van Broekhoven S, Doan QHT, Van Huis A, Van Loon JJA (2014) Exposure of tenebrionid beetle larvae to mycotoxin-contaminated diets and methods to reduce toxin levels. In: Netherlands Entomological Society Meeting; FAO: Rome, Italy.
- Van Broekhoven S, Mota Gutierrez J, De Rijk TC, De Nijs WCM, Van Loon JJA (2017) Degradation and excretion of the *Fusarium* toxin deoxynivalenol by an edible insect, the yellow mealworm (*Tenebrio molitor* L.). World Mycotoxin J 10:163-169 doi: https://doi.org/10.3920/WMJ2016.2102
- Van der Fels-Klerx HJ, Camenzuli L, Belluco S, Meijer N, Ricci A (2018) Food safety issues related to uses of insects for feeds and foods. CRFSFS 17:1172-1183. doi: https://doi.org/10.1111/1541-4337.12385
- Van der Fels-Klerx HJ, Camenzuli L, Van der Lee MK, Oonincx DG (2016) Uptake of cadmium, lead and arsenic by *Tenebrio molitor* and *Hermetia illucens* from contaminated substrates. PLoS ONE 11:e0166186 doi: https://doi.org/10.1371/journal.pone.0166186
- Van Egmond HP (2002) Worldwide regulations for mycotoxins. In: DeVries JW, Trucksess MW, Jackson LS (eds) Mycotoxins and Food Safety. Springer US, Boston, MA, pp 257-269. doi: https://doi.org/10.1007/978-1-4615-0629-4 27

- Van Huis A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58:563-583 doi: https://doi.org/10.1146/annurev-ento-120811-153704
- Van Huis A (2016) Edible insects are the future? Proc Nutr Soc 75:294 305 doi: https://doi.org/10.1017/S0029665116000069
- Van Huis A (2019) Welfare of farmed insects. J Insects Food Feed 5:159-162 doi: https://doi.org/10.3920/JIFF2019.x004
- Van Huis A (2020) Insects as food and feed, a new emerging agricultural sector: a review. J Insects Food Feed 6:27-44 doi: https://doi.org/10.3920/JIFF2019.0017
- Van Huis A, Oonincx DGAB (2017) The environmental sustainability of insects as food and feed. a review. Agron Sustain Dev 37:43 doi: https://doi.org/10.1007/s13593-017-0452-8
- Van Huis A, Oonincx DGAB, Rojo S, Tomberlin JK (2020) Insects as feed: house fly or black soldier fly? J Insects Food Feed 6:221-229 doi: https://doi.org/10.3920/JIFF2020.x003
- Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013)
 Edible insects: future prospects for food and feed security. Food and Agriculture
 Organiation of the United Nations (FAO), Rome, Italy. Available via:
 https://www.fao.org/fsnforum/resources/reports-and-briefs/edible-insects-future-prospects-food-and-feed-security
- Van Loon MS, Bovenkerk B (2021) The ethics and mindedness of insects. In: Schübel H, Walliman-Helmer I (eds) Justice and food security in a changing climate. Wageningen Academic Publishers, pp 218 223. doi: https://doi.org/10.3920/978-90-8686-915-2 32
- Vanhoutte I, Audenaert K, De Gelder L (2016) Biodegradation of mycotoxins: tales from known and unexplored worlds. Front Microbiol 7:561 doi: https://doi.org/10.3389/fmicb.2016.00561
- Verheecke C, Liboz T, Mathieu F (2016) Microbial degradation of aflatoxin B₁: current status and future advances. Int J Food Microbiol 237:1-9 doi: https://doi.org/10.1016/j.ijfoodmicro.2016.07.028
- Vogel M et al. (2022) Health of the black soldier fly and house fly under mass-rearing conditions: innate immunity and the role of the microbiome. J Insects Food Feed 8:857-878 doi: https://doi.org/10.3920/JIFF2021.0151
- Waarts YR, Eppink M, Oosterkamp EB, Hiller SRCH, Van der Sluis AA, Timmermans T (2011) Reducing food waste: obstacles experienced in legislation and regulations. (LEI report / LEI Wageningen UR; No. 2011-059). LEI. https://edepot.wur.nl/188798.
- Walgren RA, Karnaky KJJ, Lindenmayer GE, Walle T (2000) Efflux of dietary flavonoid quercetin 4'-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. J Pharmacol Exp Ther 294:830-836 doi: https://www.ncbi.nlm.nih.gov/pubmed/10945830
- Wamba ANR et al. (2021) The cytochrome P450 *CYP325A* is a major driver of pyrethroid resistance in the major malaria vector *Anopheles funestus* in Central Africa. Insect Biochem Mol Biol 138:103647 doi: https://doi.org/10.1016/j.ibmb.2021.103647
- Wang C, Yan R, Luo D, Watabe K, Liao D-F, Cao D (2009) Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. J Biol Chem 284:26742-26748 doi: https://doi.org/10.1074/jbc.M109.022897
- Warth B, Parich A, Atehnkeng J, Bandyopadhyay R, Schuhmacher R, Sulyok M, Krska R (2012)
 Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using
 a modern LC-MS/MS multitoxin method. J Agric Food Chem 60:9352-9363 doi: https://doi.org/10.1021/jf302003n

- Waśkiewicz A (2014) MYCOTOXINS | Natural occurrence of mycotoxins in food. In: Batt CA, Tortorello ML (eds) Encyclopedia of Food Microbiology (Second Edition). Academic Press, Oxford, pp 880-886. doi: https://doi.org/10.1016/B978-0-12-384730-0.00231-7
- WHO (2016) World Health Organization (WHO). WHO estimates of the global burden of foodborne diseases. Foodborne disease burden epidemiology reference group 2007-2015. Geneva, Switzerland. Availble via: https://apps.who.int/iris/handle/10665/199350
- WHO (2022a) World Health Organisation (WHO). UN report: global hunger numbers rose to as many as 828 million in 2021. Geneva, Switzerland. Available via: https://www.who.int/news/item/06-07-2022-un-report--global-hunger-numbers-rose-to-as-many-as-828-million-in-2021
- WHO (2022b) World Health Organization (WHO). WHO global strategy for food safety 2022–2030: towards stronger food safety systems and global cooperation. Geneva, Switzerland.

 Available via: https://www.who.int/publications/i/item/9789240057685:86
- WHO (2023) World Health Organisation (WHO). Natural toxins in food (Factsheet). 2023. Geneva, Switzerland. Available via: https://www.who.int/news-room/fact-sheets/detail/natural-toxins-in-food
- WHO/FAO (2018) World Health Organization (WHO)/Food and Agriculture Organization of the United Nations (FAO). Safety evaluation of certain contaminants in food: prepared by the eighty-third meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva, Switzerland. Available via: https://apps.who.int/iris/handle/10665/276868.
- Wilkinson CF (1986) Xenobiotic conjugation in insects. In: Xenobiotic conjugation chemistry., vol 299. ACS Symposium Series, vol 299. American Chemical Society, pp 48-61. doi: https://doi.org/10.1021/bk-1986-0299.ch003
- Wright VF, De Las Casas E, Harein PK (1976) The response of *Tribolium confusum* to the mycotoxins zearalenone (F-2) and T-2 toxin. Environ Entomol 5:371-374 doi: https://doi.org/10.1093/ee/5.2.371
- Wu L, Li L, Xu Y, Li Q, Liu F, Zhao H (2023) Identification and characterization of *CYP307A1* as a molecular target for controlling the small hive beetle, *Aethina tumida*. Pest Manag Sci 79:37-44 doi: https://doi.org/10.1002/ps.7146
- Yabe K, Nakamura M, Hamasaki T (1999) Enzymatic formation of G-group aflatoxins and biosynthetic relationship between G- and B-group aflatoxins. Appl Environ Microbiol 65:3867-3872 doi: https://doi.org/10.1128/AEM.65.9.3867-3872.1999
- Yakubu A, Vyas A (2020) Aflatoxin: occurrence, regulation, and detection in food and feed. In: Singh J, Vyas A, Wang S, Prasad R (eds) Microbial Biotechnology: Basic Research and Applications. Springer Singapore, Singapore, pp 337-353. doi: https://doi.org/10.1007/978-981-15-2817-0 15
- Yan P, Liu Z, Liu S, Yao L, Liu Y, Wu Y, Gong Z (2020) Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat collected in 2017. Toxins (Basel) 12 doi: https://doi.org/10.3390/toxins12030200
- Yang Z, Xue KS, Sun X, Williams PL, Wang J-S, Tang L (2018) Toxicogenomic responses to zearalenone in *Caenorhabditis elegans* reveal possible molecular mechanisms of reproductive toxicity. Food Chem Toxicol 122:49-58 doi: https://doi.org/10.1016/j.fct.2018.09.040

- Ye C, Song Z, Wu T, Zhang W, Saba NU, Xing L, Su X (2021) Endocuticle is involved in caste differentiation of the lower termite. Curr Zool 67:489-499 doi: https://doi.org/10.1093/cz/zoab005
- Yen C-H et al. (2009) Glycine N-methyltransferase affects the metabolism of aflatoxin B₁ and blocks its carcinogenic effect. Toxicol Appl Pharmacol 235:296-304 doi: https://doi.org/10.1016/j.taap.2008.12.013
- Yen C-H, Lin Y-T, Chen H-L, Chen S-Y, Chen Y-MA (2013) The multi-functional roles of GNMT in toxicology and cancer. Toxicol Appl Pharmacol 266:67-75 doi: https://doi.org/10.1016/j.taap.2012.11.003
- Yi P-J, Pai C-K, Liu J-R (2011) Isolation and characterization of a *Bacillus licheniformis* strain capable of degrading zearalenone. World J Microbiol Biotechnol 27:1035-1043 doi: https://doi.org/10.1007/s11274-010-0548-7
- Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15:129-144 doi: https://doi.org/10.1016/j.jscs.2010.06.006
- Zeng RS, Niu G, Wen Z, Schuler MA, Berenbaum MR (2006) Toxicity of aflatoxin B₁ to *Helicoverpa zea* and bioactivation by cytochrome P450 monooxygenases. J Chem Ecol 32:1459-1471 doi: https://doi.org/10.1007/s10886-006-9062-7
- Zeng RS, Wen Z, Niu G, Berenbaum MR (2013) Aflatoxin B₁: toxicity, bioactivation and detoxification in the polyphagous caterpillar *Trichoplusia ni*. Insect Sci 20:318-328 doi: https://doi.org/10.1111/1744-7917.12007
- Zeng RS, Wen Z, Niu G, Schuler MA, Berenbaum MR (2007) Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in *Helicoverpa zea*. J Chem Ecol 33:449-461 doi: https://doi.org/10.1007/s10886-006-9238-1
- Zeng RS, Wen Z, Niu G, Schuler MA, Berenbaum MR (2009) Enhanced toxicity and induction of cytochrome P450s suggest a cost of "eavesdropping" in a multitrophic interaction. J Chem Ecol 35:526-532 doi: https://doi.org/10.1007/s10886-009-9640-6
- Zhan S et al. (2020) Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res 30:50-60 doi: https://doi.org/10.1038/s41422-019-0252-6
- Zhang B-Z et al. (2020) Multiple detoxification genes confer imidacloprid resistance to *Sitobion avenae Fabricius*. Crop Prot 128:105014 doi: https://doi.org/10.1016/j.cropro.2019.105014
- Zhang Y-f, He L-y, Chen Z-j, Zhang W-h, Wang Q-y, Qian M, Sheng X-f (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720-1725 doi: https://doi.org/10.1016/j.jhazmat.2010.12.069
- Zhang Z et al. (2014) Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (*Musca domestica*). Sci Rep 4:6844 doi: https://doi.org/10.1038/srep06844
- Zhang Z, Wang H, Zhu J, Suneethi S, Zheng J (2012) Swine manure vermicomposting via housefly larvae (*Musca domestica*): the dynamics of biochemical and microbial features. Bioresour Technol 118:563-571 doi: https://doi.org/10.1016/j.biortech.2012.05.048
- Zhao J, Zhou T, Zhang Y, Ni Y, Li Q (2015) Optimization of arachin extraction from defatted peanut (*Arachis hypogaea*) cakes and effects of ultra-high pressure (UHP) treatment on physiochemical properties of arachin. Food Bioprod 95:38-46 doi: https://doi.org/10.1016/j.fbp.2015.03.009

- Zhao X, Wang D, Fields PG, Li H (2018) Effect of aflatoxin B₁ on development, survival and fecundity of *Ahasverus advena* (Waltl). J Stored Prod Res 77:225-230 doi: https://doi.org/10.1016/j.jspr.2018.04.005
- Zhong Y-S, Mita K, Shimada T, Kawasaki H (2006) Glycine-rich protein genes, which encode a major component of the cuticle, have different developmental profiles from other cuticle protein genes in *Bombyx mori*. Insect Biochem Mol Biol 36:99-110 doi: https://doi.org/10.1016/j.ibmb.2005.07.005
- Zingales V, Fernández-Franzón M, Ruiz M-J (2020) Sterigmatocystin: occurrence, toxicity and molecular mechanisms of action a review. Food Chem Toxicol 146:111802 doi: https://doi.org/10.1016/j.fct.2020.111802
- Zingales V, Taroncher M, Martino PA, Ruiz MJ, Caloni F (2022) Climate change and effects on molds and mycotoxins. Toxins (Basel) 14 doi: https://doi.org/10.3390/toxins14070445
- Zomer P, Mol HGJ (2015) Simultaneous quantitative determination, identification and qualitative screening of pesticides in fruits and vegetables using LC-Q-Orbitrap™-MS. Food Addit Contam Chem Anal Control Expo Risk Assess 32:1628-1636 doi: https://doi.org/10.1080/19440049.2015.1085652

Acknowledgements

The journey towards a PhD degree is not one that can be undertaken alone. It requires the support and guidance of many individuals, including family, friends, colleagues, and mentors. In this section, I would like to express my gratitude to those who have supported me throughout my PhD journey.

I am extremely grateful to my promotors and co-promotor Joop van Loon, Ine van de Fels-Klerx, and Elise Hoek for their invaluable guidance and support throughout my PhD research. Your mentorship and encouragement have been a source of inspiration and motivation for me, and your insightful feedback has been instrumental in shaping my research and personal growth.

I would like to extend my sincere thanks to the InsectFeed consortium researchers and partners Leo Beukeboom, Arjen Borghuis, Bernice Bovenkerk, Joana Falcao Salles, Arnout Fisher, Lenny van Erp-van der Kooij, Henk Hogeveen, Peter Jacobs, Helmut Saatkamp, Teun Veldkamp, Marcel Verweij, Bregje Wertheim, Andreas Bauman, Marieke Augustijn, Thijs Companjen, Ali Hosseini, Jeroen van den Hurk, Walter Jansen, Marijke de Jong, Henk Lommers, Eric Schmitt, Caroline Huetink, Mark Leipertz, Martijn van Loon, Marrit van der Bruggen, Maaike Vogel, Anna Voulgari-Kokota, for their invaluable contributions to my research, and for sharing their knowledge and expertise.

Thank you Leo, Anna V-K, Lennard Pisa, Dennis Oonincx for your invaluable advice on housefly rearing. Your guidance has been instrumental in helping me to get started with my own rearing.

Throughout my PhD journey, I had the opportunity to collaborate with several teams within Wageningen Food Safety Research (WFSR). I would like to express my gratitude to the people of the toxicology lab, Ans, Meike and Ad, for our valuable brainstorming sessions. I am especially grateful to Geert and Yoran for working together with me in the lab, having great talks, sharing knowledge, support, lab space, and resources. I would also like to thank the rest of the team for welcoming me to fun coffee and lunch breaks.

I would like to express my gratitude to Ed and Ruud from the mycotoxin team for their endless brainstorming sessions, working together in the lab, help given, and sharing of resources. Ed, it has always been fun to work together with you, and I am grateful to Ruud for always being available when needed. I would also like to thank the rest of the mycotoxin team for their great conversations and providing help when needed.

I would like to express my gratitude to the Agrochains team for their support and collaboration. I am especially grateful to Marloes for the pleasant conversations, and to Katja, Winnie, and Kristian for their great collaboration. I would also like to thank Karlijn and Menno for their valuable advice and input, and Nathan for his excellent collaboration in several projects.

I would like to express my gratitude to Denise van de Kamer, Rosalie Nijssen, and Lisa Zoet for their great collaboration and sharing of expertise. I have learned a lot from them and am grateful for their help.

Thank you, Océane Lemartinel, for your invaluable contribution during your internship with me, your positive attitude, and hard work in the lab.

I would like to express my gratitude to Seppe Salari for performing the peanut experiment and taking the time to show us around at InsectoCycle, and John Carney for the inspiring conversations and valuable feedback.

I would like to express my sincere gratitude to Moritz Gold, Frans Jooste, Laura Stanford, Florence Uwamahoro, Maryann Wanja, Teun Veldkamp, Alexandra Sanderson, Vasco Dos Santos Nunes, Alexander Mathys and Kizito Nishimwe for welcoming me to the BSF4G team. Your teamwork and dedication have been a great inspiration to me. I would like to especially thank Alex, Katie, Kizito, Wanja, Frans, Daniel, and all others I met during the experiment in Kigali. Your hard work, help, and support have been greatly appreciated. I felt extremely welcome and supported throughout the project.

I feel incredibly fortunate to have spent four years at the Laboratory of Entomology. It has been an absolute privilege to conduct my PhD research in such a wonderful environment. I would like to express my sincere gratitude to all my colleagues who worked on other projects and made my time here so special. The friendly atmosphere in the lab, during coffee breaks, parties, W-days, bowling sessions and outings, has made my experience truly unforgettable.

Marcel, Yavanna, Savina, thank you for your invaluable contributions to my learning journey. The great discussions every other Friday have been instrumental in helping me gain a deeper understanding of entomology and insects as food and feed. Your knowledge and guidance have been greatly appreciated. I would like to extend my heartfelt appreciation to my fellow WUR Entomology InsectFeed PhDs, Anna, Parth, and Yvonne, for their unwavering support throughout our journey together. Your support has truly been invaluable. Thank you, Riddhi, Sergei and Vito for allowing our PhDs to take over your lives as well, and the fun activities shared. Amelia you have been an integral part of the start of my PhD journey. Your friendship during the lockdown, and the many great conversations and fun times we spent together are appreciated.

Hariëtte and Angelique, thank you for keeping Ento running and forcing us to go on holidays. Pieter, thank you for taking care of the BSF rearing. Thanks Rick, for the nice talks and lab support when needed. Mitchel, it was fun to see the Oehoe in Wageningen. Thibault, thank you for the great conversations. Sami, I feel inspired by your dedication in everything you do. Shaphan, Tu' layn ma. Bram, I enjoyed organising the PhD lunches together. Stefan, Hanneke, Luuk, Marieke, I had fun rocking with you at the Bony Macaroni concert. Carlotta, I enjoyed our sports sessions.

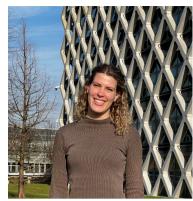
Thanks Julien, for the Dutch conversations. Kris, Akbar, Filippo, Zoë, Laura, Alexander, Carlijn, Charlotte, Els, Gabe, Gabriele, Janneke, Karen, Maxence, Rob, Sarah, Simone, thank you for your help in distracting me from my final PhD deadline. Our game of Werewolves was a great way to take my mind off things and have some fun during those last few weeks. Rody, I'll forever have trust issues after your great werewolf performance, and I enjoyed trying to go to concerts together. Tessa, thank you for making sure we got to eat plenty of cakes. And thank you to all other colleagues who have made my time at Ento one I will never forget.

Bedankt, Davy en Ruben voor de gezellig trainingsavonden en wedstrijddagen, en Stijn voor de leuke momenten tijdens de afrodance lessen. Giacomo, I appreciate your periodic check-ins and the enjoyable BSF talks. Astrid en Lijsje ik waardeer jullie getoonde interesse en de fijne momenten die we samen hebben doorgebracht.

Ana, Maria-Francesca, Caterina, Charlotte, thank you all for the wonderful moments we shared together. You are truly inspiring individuals, I feel so lucky to have had the opportunity to get to know each of you and to have shared in your experiences. Ettore and Makrina, thank you both for being such supportive friends. Your support and encouragement have been a source of strength for me, and I'm so lucky to have you both in my life. Katri, from our taco-evening, to our opera adventure in Verona, ballet tradition and Rome rugby-trip, I appreciate every adventure we spent together.

Vik, Basil, and Simon, thank you for the incredible adventures we shared together. From mountaineering in Slovenia to playing padel in Croatia and practicing acroyoga on the beach in Albania, our trips have been nothing short of amazing. Luis and Benni you have both been such valuable friends, even though we are separated by distance, I really appreciate the times we spent together.

Anna, Maria, Geartsje and Frisbee you have been the most supportive roommates.


Niels en Demi, bedankt voor jullie interesse en support. Fiona, John, Thimo, Josephine, Jeff, Koendoe, Co, Frankey, Vincent ik wil jullie bedanken voor de gezellige avonden, goede gesprekken, pubquizen, foute party's, smijtathlon, legendary pentathlon en absurd fanatieke potjes bierpong. Jullie zorgen altijd voor de nodige ontspanning. Anique en Jo, ik waardeer jullie ontzettend omdat jullie er altijd voor mij zijn. Bedankt daarvoor.

Bedankt Marelle, Kevin, paps, mams, opa's en oma's voor jullie onvoorwaardelijke support in alles wat ik doe.

About the author

Curriculum Vitae

Kelly Niermans was born on July 16, 1993, in Amsterdam, The Netherlands. She completed her secondary education (VWO) at the Da Vinci College in Purmerend. In 2015, she graduated with a Bachelor of Nutrition and Dietetics from the Amsterdam University of Applied Sciences (HvA). During her studies, she completed two internships, one at the Research and Development department of the Archer Daniels Midland Company (ADM) in Zaandam, and the other at the Quality department of NewCakes BV in Wormerveer.

In 2015, Kelly began the MSc programme in Applied Food Safety at Wageningen University. She wrote her MSc thesis at Wageningen Food Safety Research (WFSR, formerly RIKILT) on the evaluation of the use of the Neuro-2a bioassay as an alternative method for the detection of diarrheic marine biotoxins. She also completed an internship at the National Reference Laboratory (NRL) for Mycotoxins in the Bundesinstitut für Risikobewertung (BfR) in Berlin, Germany, where she performed a feeding study investigating the effects of exposure to the mycotoxin zearalenone on yellow mealworm (*Tenebrio molitor*) larvae.

After successfully obtaining her MSc degree in 2018, Kelly worked as a scientist in the Department of Safety in the Food Chain at the BfR, where she continued the work she did during her internship. From December 2018 until November 2019, she did a traineeship in the BIOCONTAM unit at the European Food Safety Authority (EFSA) in Parma, Italy. Here, she supported the CONTAM working groups with the work on the scientific opinions regarding glycoalkaloids, chlorinated paraffins, meat inspection, hexabromocyclododecane, and polybrominated diphenyl ethers.

She began her PhD research in January 2020 at the Wageningen University Laboratory of Entomology and WFSR under the supervision of Prof. dr. ir. J. J. A. van Loon, Prof. dr. ir. H. J. van der Fels-Klerx, and dr. E. F. Hoek- van den Hil. Her research focused on studying the effects of mycotoxins in the feeding substrate on insect species reared for food and feed. During her PhD, Kelly pursued the postgraduate Education in Toxicology (PET) to become a European Registered Toxicologist (ERT). In March 2024, she began working as a researcher at the WFSR Agrochains group.

List of publications

Peer-reviewed publications

Niermans, K., Woyzichovski, J., Kröncke, N., Benning, R., Maul, R. (2019). Feeding study for the mycotoxin zearalenone in yellow mealworm (*Tenebrio molitor*) larvae - investigation of biological impact and metabolic conversion. Mycotoxin Research, 35(3):231-242. doi: https://doi.org/10.1007/s12550-019-00346-y

Niermans, K., Meyer, A. M., Hoek- van den Hil, E. F., Van Loon, J. J. A., Van der Fels-Klerx, H. J. (2021). A systematic literature review on the effects of mycotoxin exposure on insects and on mycotoxin accumulation and biotransformation. Mycotoxin Research, 37, 279-295. doi: https://doi.org/10.1007/s12550-021-00441-z

Saatkamp, H. W., Aartsma, Y., Hogeveen, H., Augustijn, M., Baumann, A., Beukeboom, L. W., Borghuis, A., Bovenkerk, B., Van der Bruggen, M., Companjen, M. H., Dörper, A., Falcão Salles, J., Van der Fels-Klerx, H. J. Fischer, A. R. H., Haenen, O., Hosseini, A., Van den Hurk, J., Jacobs, P., Jansen, W. L., De Jong, M., Kortsmit, Y., Leipertz, M., Lommers, H., Van Loon, J. J. A., Van Loon, M. S., Maistrou, S., **Niermans, K.**, Schmitt, E., Shah, P. N., Spaans, A., Veldkamp, T., Verweij, M. F., Vogel, M., Voulgari Kokota, A., Wertheim, B., Dicke, M. (2022). Development of sustainable business models for insect-fed poultry production: opportunities and risks. Journal of Insects as Food and Feed, 8(12), 1469-1483. doi: https://doi.org/10.3920/JIFF2021.0216

Niermans, K., Hoek- van den Hil, E. F., Van Dam, R., Van der Fels-Klerx, H. J., Van Loon, J. J. A. (2023). Effects of the mycotoxins aflatoxin B_1 , deoxynivalenol and zearalenone on survival, biomass and toxin accumulation in *Musca domestica* larvae. World Mycotoxin Journal doi: https://doi.org/10.1163/18750796-20222826

Gold, M., **Niermans, K.**, Jooste, F., Stanford, L., Uwamahoro, F., Wanja, M., Veldkamp, T., Sanderson, A., Dos Santos Nunes, V., Mathys, A., Van der Fels-Klerx, H. J., Hoek-van den Hil, E. F., Nishimwe, K. (2023). Conversion of mycotoxin-contaminated maize by black soldier fly larvae into feed and fertilizer. Journal of Insects as Food and Feed. doi: https://doi.org/10.1163/23524588-00001006

Submitted

Niermans, K., Meijer, N., Hoek- van den Hil, E. F., Nijssen, R., Zoet, L., Boers, E., Van Loon, J. J. A., Van der Fels-Klerx, H. J. (2024). The metabolic fate and biological effects of isotopically labelled aflatoxin B₁, fumonisin B₁, ochratoxin A and zearalenone in reared *Hermetia illucens* and *Musca domestica* larvae.

Niermans, K., Salari, S. P., Carney, J., Hoek- van den Hil, E. F., Van der Fels-Klerx, H. J., Van Loon, J. J. A. (2024). Conversion of aflatoxin-contaminated groundnut (*Arachis hypogaea* L.) press cake by larvae of black soldier fly *Hermetia illucens* results in a complete mass balance for aflatoxin B_1

Shah, P. N., **Niermans, K.**, Hoek- van den Hil, E. F., Dicke, M., Van Loon, J. J. A. (2024). Effects of aflatoxin B_1 on metabolism- and immunity-related gene expression in *Hermetia illucens* L. (Diptera: Stratiomyidae)

PE&RC Training and Education Statement

With the training and education activities listed below the PhD candidate has complied with the requirements set by the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) which comprises of a minimum total of 32 ECTS (= 22 weeks of activities)

PRODUCTION ECOLOGY ## RESOURCE CONSERVATION

Review/project proposal (9 ECTS)

- Systematic review on the effect of mycotoxin exposure on the biological parameters, life-cycle and metabolism/conversion of mycotoxins by insects
- Insect health and substrate safety

Post-graduate courses (6 ECTS)

- PET Course: molecular toxicology; LACDR, Vrije Universiteit Amsterdam (2022)
- Insects as feed: interdisciplinary approach to insects as sustainable feed component;
 PE&RC Wageningen UR (2022)
- PET Training: organ toxicology; Radboud University Nijmegen (2023)
- PET Course: human exposure assessment; Radboud University Nijmegen (2023)

Laboratory training and working visits (4.5 ECTS)

- PET Training: pathobiology; UMC Utrecht (2020)
- PET Training: immunotoxicology; IRAS, Utrecht University (2021)
- PET Course: cell toxicology; Leiden University (2021)

Invited review of journal manuscripts (1 ECTS)

JIFF: substrate safety/insects as food and feed (2021)

Deficiency, refresh, brush-up courses (10.5 ECTS)

- Insects as food and feed; Wageningen UR (2020)
- General toxicology; Wageningen UR (2020)
- Environmental toxicology; Wageningen UR (2023)

Competence, skills and career-oriented activities (2 ECTS)

 Project: testing the viability of aflatoxin-infected maize for black soldier fly consumption, Kigali, Rwanda skills in: communication and discussion/time planning and management/writing and presenting; Wageningen Food Safety Research, ETH Zürich, The University of Kigali, The Bug Picture, Rwanda Agriculture Board (2022)

Scientific integrity/ethics in science activity (2.1 ECTS)

- Scientific integrity; Wageningen UR (2020)
- PET Course: laboratory animal science; Utrecht University (2021)

PE&RC Annual meetings, seminars and the PE&RC weekend/retreat (1.5 ECTS)

- PE&RC First years weekend (2020)
- PE&RC Midterm weekend (2021)

Discussion groups/local seminars or scientific meetings (6 ECTS)

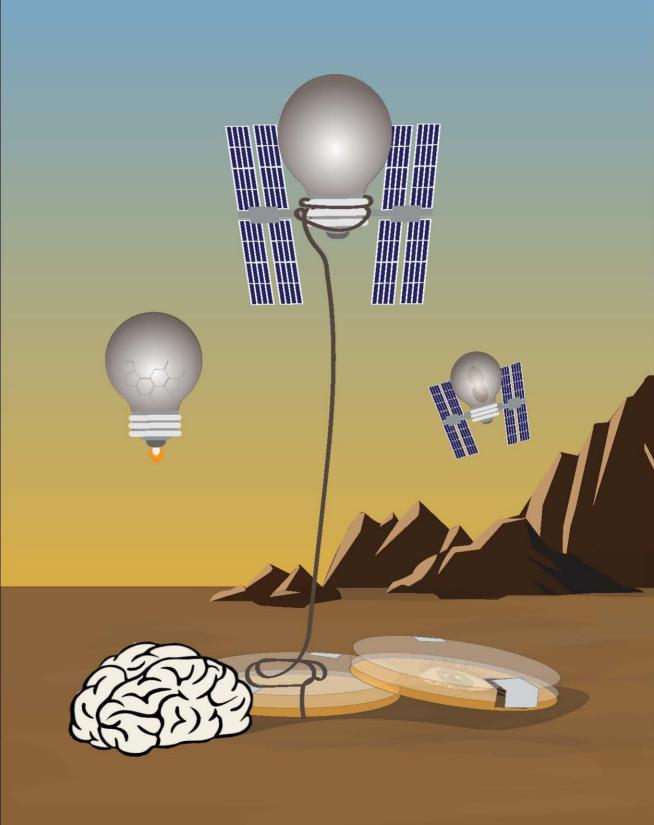
- PhD lunch meetings (2020-2024)
- Insect plant interactions entomology lunch meetings (2020-2024)
- WEES Seminars (2020-2024)
- Annual insectfeed meetings (2020-2024)

International symposia, workshops and conferences (6.3 ECTS)

- Insects to feed the world (2020)
- EAAP (2021)
- World mycotoxin forum (2022)
- EAAP (2023)

Societally relevant exposure (0.9 ECTS)

Parma summerschool; online (2021)


Lecturing/supervision of practicals/tutorials (3 ECTS)

- Insects as food and feed (2021-2023)
- Fundamentals of plant pathology & entomology (2021-2023)

BSc/MSc thesis supervision (3 ECTS)

Identification of the role of reared *Hermetia illucens*, *Musca domestica* and the rearing substrate on degradation and metabolism of aflatoxin B_1 in a spiked diet

The research described in this thesis was conducted at the Wageningen University Laboratory of Entomology and Wageningen Food Safety Research (WUR) and financially supported by the Dutch Research Council (NWO; NWA programme InsectFeed, grant number NWA.1160.18.144). Additional funding from the Netherlands Ministry of Agriculture, Nature and Food Quality under project KB-33-001-045 is acknowledged. Cover design by Kelly Niermans Printed by proefschriftenprinten.nl, Ede, the Netherlands

