
Determining	flower	colors	from	images	using	artificial	intelligence
Euphytica
Wehrens,	Ron;	Afonso,	Manya;	Fonteijn,	Hubert;	Paulo,	Joao;	Polder,	Gerrit	et	al
https://doi.org/10.1007/s10681-023-03258-2

This	publication	is	made	publicly	available	in	the	institutional	repository	of	Wageningen	University
and	Research,	under	the	terms	of	article	25fa	of	the	Dutch	Copyright	Act,	also	known	as	the
Amendment	Taverne.

Article	25fa	states	that	the	author	of	a	short	scientific	work	funded	either	wholly	or	partially	by
Dutch	public	funds	is	entitled	to	make	that	work	publicly	available	for	no	consideration	following	a
reasonable	period	of	time	after	the	work	was	first	published,	provided	that	clear	reference	is	made	to
the	source	of	the	first	publication	of	the	work.

This	publication	is	distributed	using	the	principles	as	determined	in	the	Association	of	Universities	in
the	Netherlands	(VSNU)	'Article	25fa	implementation'	project.	According	to	these	principles	research
outputs	of	researchers	employed	by	Dutch	Universities	that	comply	with	the	legal	requirements	of
Article	25fa	of	the	Dutch	Copyright	Act	are	distributed	online	and	free	of	cost	or	other	barriers	in
institutional	repositories.	Research	outputs	are	distributed	six	months	after	their	first	online
publication	in	the	original	published	version	and	with	proper	attribution	to	the	source	of	the	original
publication.

You	are	permitted	to	download	and	use	the	publication	for	personal	purposes.	All	rights	remain	with
the	author(s)	and	/	or	copyright	owner(s)	of	this	work.	Any	use	of	the	publication	or	parts	of	it	other
than	authorised	under	article	25fa	of	the	Dutch	Copyright	act	is	prohibited.	Wageningen	University	&
Research	and	the	author(s)	of	this	publication	shall	not	be	held	responsible	or	liable	for	any	damages
resulting	from	your	(re)use	of	this	publication.

For	questions	regarding	the	public	availability	of	this	publication	please	contact
openaccess.library@wur.nl

https://doi.org/10.1007/s10681-023-03258-2
mailto:openaccess.library@wur.nl


Vol.: (0123456789)
1 3

Euphytica (2024) 220:6 
https://doi.org/10.1007/s10681-023-03258-2

RESEARCH

Determining flower colors from images using artificial 
intelligence

Ron Wehrens · Manya Afonso · Hubert Fonteijn · João Paulo · 
Gerrit Polder · Marcel Rijsbergen · Gerard van Hameren · Raoul Haegens · 
Mary van den Helder · Henk Zwinkels

Received: 12 April 2023 / Accepted: 7 November 2023 / Published online: 14 December 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Deep Learning and methods based on color histo-
grams lead to success rates of approximately 85%. 
Deep learning has the advantage that no preprocess-
ing is necessary—the more traditional methods lead 
to additional insight in the final color classification.
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Introduction

Flower color is one of the most important traits in flo-
riculture, a sector in which The Netherlands play an 
important role with an annual export value of over 7 
billion euros. Not only is it one of the characteristics 
based on which consumers often base their choice, 
it is also relevant in the evaluation of new varieties: 
these should be not too similar to existing varieties. 
One of the first steps in the admission procedure 
therefore is a consistent and thorough registration, 
leading to a description of a number of traits (among 
which color) that should uniquely define each variety. 
Trait descriptions such as these are also used in dis-
tinctness, uniformity and stability testing (DUS test-
ing). In that context, for each flower species sets of 
traits have been defined by the International Union for 
the Protection of New Varieties of Plants (UPOV) in 
order to achieve worldwide consistency.

Trait characterisation is still manual and highly 
skilled labor. Even partial automation of the process, 
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cally extract color descriptions from the images. Both 
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e.g., based on flower images taken under a strict 
protocol, can improve the registration process. The 
advantages include speeding up and simplifying pro-
cedures (e.g., by allowing breeders to perform part of 
the registration in house) and improving objectivity 
and consistency. In addition, automation would pro-
vide a solution for situations where it is hard to find 
or educate experts able to do the registration.

Automatic recognition for a variety of traits in 
roses and gerberas is described in Afonso et  al. 
(2023). Here, the focus is on flower color: we inves-
tigate and compare ways to automatically obtain 
the main color from images taken under a standard-
ized setup. Real-world data sets are considered, two 
for roses, and two for gerberas, and two different 
approaches are assessed, one based on Deep Learn-
ing (DL), the current state of the art in image process-
ing, and one more traditional approach based on color 
histograms.

Background

Automatic phenotyping

High-throughput phenotyping currently relies heav-
ily on imaging and image processing pipelines, often 
based on artificial intelligence (AI). Such an approach 
has, a.o., been used to recognise fruits (Afonso et al. 
2020) and flowers  (Afonso et  al. 2019) in tomato 
greenhouses, but the way to routine application is not 
a smooth one (Fonteijn et al. 2021).

Also in the context of horticulture much work has 
been done. Zhenjiang et al. (2006) developed a rose 
variety recognition system using petal color as one 
of the features. Image analysis was applied to meas-
ure petal shape and picotee color patterns in Lisian-
thus  (Yoshioka et  al. 2006) and Primula  (Yoshioka 
et  al. 2004) flowers. Automatic flower classification 
on a large data set of similar classes was investigated 
by (Nilsback and Zisserman 2008) using color and 
shape features.

More recently, color recognition in flowers was 
reported for orchids  (Apriyanti et  al. 2021), where 
five different neural networks were compared in their 
ability to classify orchid images into a set of eleven 
predefined combinations of primary and secondary 
colors. The flower images were obtained from the 
web and contained a wide variety of backgrounds, 

and color labels (the ground truth) were obtained 
from separate orchid databases. Somewhat similar to 
our current setup, Wang et  al. (2022) obtained pic-
tures of 213 cultivars of large-flowered chrysanthe-
mums, with at least 2–3 plants per cultivar. Top views 
were obtained, and images were manually anno-
tated. Finally, deep learning was used to classify the 
images, where color was one of the categories (the 
others being flower type and petal type).

Color representation

Colors can be represented in a variety of ways. The 
simplest and most intuitive, but also the most coarse 
and least well defined, is the use of color names like 
red, yellow and pink. Their use is ubiquitous but lim-
ited – one cannot, e.g., calculate distances between 
colors. In addition, many colors exist for which dif-
ferent people would use different names. A straight-
forward extension is to define a (limited) number 
of color classes, e.g., by combining color names or 
defining combinations of primary and secondary 
colors (Apriyanti et al. 2021).

A much more precise definition of a color is to 
use coordinates in a color space. Several color spaces 
exist, of which red-green-blue (RGB) is the most 
familiar one – very often 256 ( = 28 ) levels for each 
of the three base colors are used. Then, the RGB 
space would define 224 colors, more than enough for 
most practical purposes. This RGB color space has 
one important drawback, however: distances do not 
always correspond well to human perception. That 
means that two colors that seem very similar to the 
human eye may have a relatively large distance in 
RGB space, and vice versa (Zeileis et al. 2009). Sev-
eral other color spaces have been designed to remedy 
this, with varying degrees of success. Other well-
known color spaces include Hue-Saturation-Value 
(HSV), a direct transformation of the RGB color 
space, and the CIELAB/CIELUV color spaces from 
the International Commission on Illumination (where 
CIELUV is used for light-emitting devices such as 
televisions or computer monitors, and CIELAB for 
passive colored surfaces). Here, we use (in addition to 
RGB space) the Hue-Color-Luminance (HCL) scale, 
a transformation into polar coordinates of the CIE-
LUV color space, also known as polarLUV  (Zeileis 
et  al. 2009). This color space to a large degree suc-
ceeds in matching human perception: it is known to 
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have some problems in the blue color region, but this 
is quite irrelevant for the current application given the 
absence of blue flowers in our data sets (and the rarity 
of blue flowers in general).

An intermediate level of granularity in the con-
text of ornamentals is achieved by the colors defined 
by the color charts of the Royal Horticultural Soci-
ety (RHS). These contain almost 1000 colors, each 
exactly defined by coordinates in RGB space. Each 
of the RHS codes is assigned a main color name 
(e.g., “orange”), and a subname (“light orange”). For 
the data used in this paper, an RHS color chart was 
compared to the flower (by physically overlaying the 
flower with the color chart) to get a visual match that 
is as close as possible.

The influence of color representation in assessing 
flower colors has been investigated in several publica-
tions. Lootens et al. (2007) assessed the tepal color of 
Begonia x tuberhybrida Voss. using traditional image 
analysis. They found that parameters based on the 
green color channel of the RGB color space resulted 
in the largest discriminating power, while parameters 
based on the HSV color space performed less well. 
Singh et al. (2011) performed image analysis on Ger-
bera images to quantify color variation based on mean 
values of the RGB components and hue and satura-
tion (HS) color channels using high-quality images 
taken with prominent blooms from consistent angles 
and reliable lighting conditions.

Van der Heijden et al. (1999) proposed a database 
system for finding and retrieving rose varieties with 
similar appearance, using binarized color histograms. 
They showed that RGB-histograms and normalized 
RG-histograms outperformed several other color 
spaces. Comparisons between several color spaces 
in flower recognition has been conducted for twelve 
species from two families by Rosyani et  al. (2018). 
In that paper, the HSV color space performed the 
worst amongst the investigated color spaces (using 
a Support Vector Machine classification approach). 
Perez-Udell et al. (2023) built an automated pipeline 
for supervised classification of petal color from pub-
lic data repositories, using k-means clustering in the 
HSV color space.

All aforementioned papers make use of cameras 
which, similarly to the human visual system, use a 
red, green and blue channel. For precise matching 
of subtle color differences, having more and smaller 
wavelength bands in the visible spectrum often 

improves performance (Stokman et al. 2000). Van der 
Heijden et al. (2000) showed that normalized spectral 
images have a better discriminating power for clas-
sifying red roses than color-constant spectral images 
and RGB-images, even when the latter had been 
recorded under highly optimized standard conditions.

Materials and methods

Data

This paper concentrates on flower color in four real-
world data sets that have been recorded over the 
course of several years. The data consist of rose and 
gerbera images from two private companies, Flori-
code (www.​flori​code.​com) and Naktuinbouw (www.​
naktu​inbouw.​nl). Floricode is doing variety registra-
tion, e.g., for use in auctions, whereas Naktuinbouw 
uses the registration for purposes such as plant breed-
ers’ rights protection – the two companies therefore 
register different (numbers of) traits and also use 
different trait levels. In all cases, however, the main 
flower color is present, either as a color name (all 
cases) or, additionally, as an RHS code (all cases 
except for Naktuinbouw Rose). This paper addresses 
possibilities to automatically obtain the name of the 
main flower color from the images. An overview of 
the four data sets is shown in Table 1. Although the 
number of flowers in each data set seems quite large, 
it should be noted that for many machine-learning 
approaches, and in particular for deep learning such 
as applied here, much larger data sets are often 
needed, depending on the specific questions asked 
and the nature of the images.

The Floricode images had a much higher resolu-
tion than the Naktuinbouw images, and therefore 
were reduced in size in order to speed up calculations. 

Table 1   Characteristics of the four data sets used in this paper

Provenance Flower # Images # Colors Avg. 
image size 
(MB)

Floricode Gerbera 1449 6 0.2
Floricode Rose 1641 7 0.2
Naktuinbouw Gerbera 570 6 0.7
Naktuinbouw Rose 768 6 0.3

http://www.floricode.com
http://www.naktuinbouw.nl
http://www.naktuinbouw.nl
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Since small details are irrelevant in this particular 
application, this does not lead to any information loss, 
as was checked in the early stages of this research. 
Colors were coded as RGB using 256 intensity lev-
els for each channel. Rare colors with fewer than 50 
cases in the data sets, such as green and brown, were 
removed since such classes are virtually impossible to 
learn in an example-based approach like deep learn-
ing, and leaving those colors in would lead to a biased 
comparison. The colors in the Naktuinbouw Rose set 
originally contained eleven distinct colors, but com-
pound colors (like orange blend or yellow orange) 
were reduced to their main color names (here: 
orange), leading to six colors overall.

Image preprocessing

In all cases, the images have been recorded using 
pre-specified and consistent protocols (different for 
Floricode and Naktuinbouw, however). A couple of 
example images from each of the four data sets are 
shown in Fig 1. Immediately we see some differences 
between the data sets: the Naktuinbouw images (sec-
ond and fourth rows) show flowers only, whereas the 
Floricode images show other features of the plant as 
well—stems in the case of gerberas (top row), and 
stems and leaves for roses (third row). Note that the 
image background may contribute to errors in the 
color estimation procedure: a uniform white back-
ground, e.g., may lead to overestimation of the num-
ber of white flower pixels, thereby increasing the risk 
of wrongly classifying a flower as white. To avoid 
this, in a preprocessing step the image is segmented 
into foreground (flower) and background, and all fol-
lowing steps will consider the foreground pixels only.

In both Floricode data sets, the background is 
white and relatively uniform. Thus, unless the roses 
or gerberas are white, the background can be seg-
mented by applying a threshold specific to all three 
color channels, above which a pixel is set as back-
ground. Given the large difference between the back-
ground and most flowers, choosing the threshold is 
not particularly difficult or sensitive—many different 
values will give similar results. For white flowers, a 
separate approach is followed in which the foreground 
is segmented by a combination of color thresholding 
and edge detection, in combination with connected 
components (Bovik 2010).

In the Naktuinbouw data sets the background is not 
uniform in color, and a color- or edge-based approach 
is not sufficient. In these cases, the foreground has 
been segmented using the background remover app 
(https://​github.​com/​nader​mx/​backg​round​remov​er) 
which applies a deep learning model, based on the 
U 2-Net architecture and trained on general-purpose 
data sets with semantic foreground/background 
ground truth data (Qin et al. 2020). Some images in 
the Naktuinbouw data sets contain top as well as bot-
tom views of two different flower samples of the same 
variety. In these cases only the top view is selected 
(manually, through visual inspection). In a few cases 
where the two flower samples in the image have no 
gap between them, the segmentation is corrected 
manually.

The Floricode rose data set is different from the 
other three in that the whole top of the plant is present 
in the image, including many of the leaves. For this 

Fig. 1   Examples of raw images from the four data sets. Top 
to bottom: Floricode gerbera, Naktuinbouw gerbera, Floricode 
rose, and Naktuinbouw rose

https://github.com/nadermx/backgroundremover
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particular data set, we have included a pre-processing 
step in which large areas of green were removed, by 
applying a threshold on the term G - 0.5 (R + B) , 
which emphasizes the color green. This was done 
using the I1I2I3 colorspace transform in Halcon. The 
results of applying these pre-processing steps on the 
images in Fig. 1 can be seen in Fig. 2, third row. The 
outline of the plant is still visible, due to the simple 
nature of our plant removal algorithm, but consists of 
too few pixels to influence the results. Similarly, the 
small parts of the stems that are visible in the Flori-
code gerbera images do not affect the results and have 
not been removed.

Color recognition

Recognising colors in images is a notoriously hard 
problem, even though at the same time it seems 
almost trivial. There are several reasons for this: first 
of all, the lighting in the image is of considerable 
influence. A white surface can be made to resemble 
any color, simply by changing the color of the light. 
Obviously, all other colors are affected by this, too. 
Secondly, our perception of colors is complicated and 
influenced by many characteristics other than just the 
wavelength intensities of the light reaching our eyes: 
surrounding colors have an effect, as does the nature 
of the material, to name but two (Bosten 2022; Emery 
et  al. 2017a; Emery et  al. 2017b). Thirdly, report-
ing colors in an understandable yet comprehensive 
way is not trivial: apart from the inherent subjectiv-
ity involved in the process, different color naming 
systems are in use (such as the RHS color charts and 
the UPOV color descriptions) that are not completely 
compatible.

Whereas these aspects are general and apply to 
any object, there are also considerations that are par-
ticular to the flowers that we consider here: the color 
of a flower is not uniform, but different gradients are 
present in, e.g., the petals. This also raises the ques-
tion of what color feature is being determined: the 
overall (apparent) color of the flower, or the color of 
different flower parts (such as petal tips). The more 
local the color feature is, the easier it is to objectively 
determine color by using for instance a colorim-
eter (van Eck and de Vries 1995). However, a more 
global color feature such as the main flower color will 
remain a mixture of several local features and will be 
difficult to obtain objectively.

In this work we use and compare two different 
approaches to recognising colors. The first is the 
machine-learning approach implemented through 
deep learning, casting the task into a classification 
framework. This basically constitutes a black box in 
which the individual images are linked to the associ-
ated color labels, based on a training process using 
as many examples as possible. The second, more 
conventional approach is based on grouping pixels 
together on the basis of their color, leading to so-
called color histograms. Then, one of these groups is 
chosen as the main color, usually based on the num-
ber of pixels in each group. The final step is then to 
convert this color, identified by coordinates in a color 
space, to a color name.

Each of the four data sets was randomly divided in 
training and test sets in the ratio of 2/3—as usual, the 
training data are used to obtain a model, and the test 
data allow us to obtain a measure of accuracy of the 
model predictions. In all approaches, the same divi-
sions in training and test data were used to allow unbi-
ased comparisons. It should be noted that the color 
histogram approach using the color translation table 
does not use a training set per se; it simply applies the 
predefined strategy to all images in the training and 
test sets. For purposes of comparison, only the results 
of the test sets are reported here – their characteristics 
are summarized in Table 2.

Note that in principle it would be possible to 
aggregate the four data sets into, e.g., two sets, one 
for rose and one for gerbera, or even one large set. 
This would increase the number of examples, and 
would make application of especially deep-learning 
approaches easier. Here we have opted for a separate 
analysis for each data set: roses and gerberas are dif-
ferent, and flower-specific features may be picked up 
by our methods leading to improved performance. In 
addition, the data sets have been set up using different 

Table 2   Test set characteristics for the four data sets. In the 
column “Class size range” the numbers of images in the small-
est and largest color classes, respectively, are shown

Provenance Flower # Images # Colors Class size range

Floricode Gerbera 450 5 45–149
Floricode Rose 529 6 22–220
Naktuinbouw Gerbera 144 5 11–70
Naktuinbouw Rose 249 5 36–62
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protocols with slightly different aims, and use differ-
ent color names—although a consensus color defini-
tion may be possible it is not easy to create it auto-
matically. This would add an additional uncertainty 
to the classification task. As a consequence, we have 
chosen to analyse each set separately.

Deep Learning

The problem of predicting the color using deep learn-
ing is a multiple class classification problem, with the 
labels being the colors. The neural network architec-
ture therefore used is a standard 18-layer ResNet (He 
et  al. 2016) with the final softmax layer having as 
many outputs as colors to be predicted. ResNet18, 
while significantly deeper than architectures such 
as VGG  (Simonyan and Zisserman 2015), can work 
with fewer labelled images than ResNets with more 
layers, which in this case with relatively low numbers 
of examples is a definite advantage.

A fixed number of training epochs was used to 
avoid the need for a validation set: such a set is often 
used to determine when to stop training. Given the 
relative scarcity of the data it was felt that results 
would improve by making the training set as large 
as possible, while keeping the size of the test set 
large enough to have meaningful estimates of error 
rates even in cases where categories were sparsely 
populated.

Color histograms

In the color-histogram approach we first cluster all 
pixels in RGB or HCL space, aiming to obtain a low 
number of groups, where each group corresponds 
to one color or color shade. As a clustering method, 
we applied model-based clustering  (Fraley and Raf-
tery 2002), which has the advantage of automati-
cally suggesting an optimal number of clusters. Each 
cluster is characterised by multivariate normal distri-
bution, defined by a center and a covariance matrix 
describing the shape of the cluster. To speed up the 

fitting procedure, we applied the clustering on a ran-
dom sample of 1000 pixels, a simpler version of the 
strategies suggested in Wehrens et  al. (2004), which 
is appropriate here because we are only interested in 
the major cluster(s), and not in a correct grouping of 
smaller clusters. We have found that in some cases it 
is beneficial to further merge clusters. Since cluster-
ing involves an element of randomness repeated clus-
terings may lead to somewhat different results. It may 
happen, e.g., that a particular color is described with 
two or more groups instead of one, and in such case 
choosing the main color on the basis of the number 
of pixels in each individual group would lead to a 
wrong selection. Grouping very similar colors using a 
single-linkage criterion should avoid this. The imple-
mentation is based on the Bhattacharyya distance 
between normal distributions, using 1.5 as the cutoff 
for merging clusters. Once this grouping has been 
achieved, the center of the largest cluster from the 
largest group is picked as the main color.

This procedure leads to an estimate of the main 
flower color, represented as an RGB or HCL value, 
depending on the color space in which the calcula-
tions have been performed. To back-transform this 
into a color name, one possibility is to use a transla-
tion table linking RHS codes to RGB triplets. If our 
clusters are obtained in HCL space, the back-trans-
formation uses HCL values, calculated from the RGB 
values in the lookup table, in order to determine the 
closest RHS code. Finally, the color associated with 
the closest RHS code is the color name that we are 
after.

As an alternative to the approach based on a 
lookup table, a machine-learning approach to obtain 
color names, based on Random Forests  (Breiman 
2001), was implemented as well. In all instances ran-
dom forest default settings were used. This approach 
is using the same training/test set divisions as the 
deep learning approach, so that results are directly 
comparable between these two techniques—note that, 
again, reported results pertain to the test data only.

Software

Background removal for the images was imple-
mented using a combination of in-house developed 
Python code and the MVTec Halcon software  (Hal-
con User Guide 2022). The deep learning meth-
ods were implemented in Python/Jupyter, using the 

Fig. 2   Examples of color histograms obtained in RGB and 
HCL space. Top to bottom: Floricode gerbera, Naktuinbouw 
gerbera, Floricode rose, and Naktuinbouw rose. For each data 
set, two examples are shown. The color selected as the main 
color is indicated below the corresponding color bar in hexa-
decimal RGB notation. Background pixels, determined during 
preprocessing the images, are shown in black

◂
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PyTorch framework (www.​pytor​ch.​org) (Paszke et al. 
2019). All calculations regarding the color histogram 
approaches were executed in R   version 4.2.1  (R 
Core Team 2022), making heavy use of the pack-
ages randomForest (Liaw and Wiener 2002), color-
space (Zeileis et al. 2020) and mclust (Scrucca et al. 
2016).

Results

The deep learning approach is, as already stated, a 
black box, and not much can be shown except for 
the final results, later in this paragraph. The color 
histograms, however, can lead to interesting obser-
vations, especially in cases where predictions are 
not what one would expect. A few examples, cor-
responding to the raw images in Fig.  1, are shown 
in Fig. 2. The color histograms next to each flower 
image indicate which colors have been detected. 
The “main” color is identified with a hexadecimal 
RGB code under the selected color bar. In general, 
RGB and HCL spaces lead to very similar results. 
Sometimes they differ in the number of classes, 
but usually very similar colors are picked in the 
two approaches. As discussed earlier, differences 
between results of the two color spaces can occur 

because distances between colors in RGB space are 
different from distances in HCL space: this, in turn, 
influences the clustering of the pixels, and the sub-
sequent grouping of the main cluster colors. A case 
in point is the second Naktuinbouw rose example, 
bottom right in Fig.  2. The RGB analysis picks a 
dark orange color as the main color (corresponding 
to the petal tips), whereas the HCL approach selects 
a shade of white, more in line with the central petal 
areas. In this example, the HCL result is the correct 
one; there are also cases where RGB leads to better 
results. It is very hard to define an optimal strategy 
because of the enormous variety in color distribu-
tion across flowers and, indeed, across petals or 
locations within petals of a flower.

Summary results for the recognition of colors 
in the four data sets for all analysis strategies are 
shown in Fig. 3. The interpretation is quite clear. The 
machine-learning approaches (deep learning, indi-
cated with DL, and the color histogram approaches 
using random forests to obtain color names) show the 
lowest errors, for each data set achieving more or less 
similar results. For Naktuinbouw Rose DL is slightly 
better; for the other three data sets the random forest 
is better. The overall best error rate is 13.8%, again 
indicating that the task of recognising colors is by no 
means trivial.

Fig. 3   Error rates (percentages) for color name recognition 
in the four data sets, using five different analysis methods. DL 
indicates deep learning, methods starting with CH indicate 
color-histogram-based methods. TT indicates that the trans-
lation table has been used to convert color space coordinates 

to color names, and RF indicates that this has been achieved 
with Random Forests. Finally, RGB and HCL refer to the color 
spaces employed in identifying the main color and obtaining 
the corresponding color name through the color-histogram-
based approach

http://www.pytorch.org
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Of particular interest is the Floricode rose set – the 
results here, as stated before, are generated after hav-
ing removed leaves and stems from the images. Deep 
learning, however, has been shown in many applica-
tions to be able to ignore irrelevant information in 
images. Indeed, Deep Learning applied to the origi-
nal Floricode rose images, with background removed, 
as before, but including stems and leaves, leads to an 
error rate of 27.5%, virtually the same as the error 
rate shown in Fig.  3 (28.0%). This is a significant 
advantage, since it decreases the preprocessing effort 
drastically. Indeed, even removing the background 
is not necessary: Deep Learning will lead to virtu-
ally identical results when applied to the original, 
unprocessed images. Also for other traits than color 
we have seen that removing the background is not 
necessary to achieve good results using deep learn-
ing (Afonso et al. 2023).

The methods using the color translation table for 
the conversion of color coordinates to color names 
(instead of the random forest) show consistently 
worse error rates, typically by 10–20%. This is some-
what surprising, since it indicates that there are cases 
where the color names and the coordinates in color 
space are not quite matching. However, it should be 
noted that the six or seven main color names each 
cover a large part of the color space, and some RHS 
codes will of course be close to the boundary. In fact, 
training a random forest model on a random subset of 
two thirds of the 969 RHS codes and predicting the 
main color names of the remainder we obtain a suc-
cess rate of only 85%, similar to the best results here. 
One possible reason is that the boundaries between 
the main colors are not smooth functions of the coor-
dinates in color space; another, perhaps more cred-
ible, is that the data contain biases (perhaps at the 
level of the images) that both random forests and 
deep learning are able to learn in the training process.

Finally, it is interesting to assess the effect of the 
color space (relevant only in the methods relying on 
color histograms). When random forests are used to 
convert color coordinates to color names, the effect of 
using a different color space are consistent but lim-
ited, with HCL having an advantage of 0–5% over 
RGB. For the translation table approach, however, 
the differences are much larger. An overview of the 
confusion matrices obtained by the color translation 
table approach is given in Fig.  4, gerbera data sets 
only. The diagonals in each plot indicate the numbers 

of correct classifications. Looking at, e.g., the top left 
panel, Floricode Gerbera RGB, we see that all red 
flowers are indeed categorized as red, and that some 
yellow flowers have been given the label orange. The 
Floricode results show that white and yellow lead to 
substantially improved results when using the HCL 
color space, orange and pink show a slight improve-
ment with HCL, purple shows equal performance for 
both color spaces and red shows the highest perfor-
mance in the RGB color space. The HCL color space 
shows a tendency to classify red flowers as pink. The 
same effects are observed in the Naktuinbouw data, 
with the exception of orange, which now shows better 
performance in RGB space. Overall, when using the 
color translation table, for three out of four data sets 
the HCL color space leads to superior performance, 
improving upon RGB by 12–18%. The Naktuinbouw 
Gerbera data set is different, showing an advantage of 
almost 7% for the RGB space. This difference in per-
formance patterns for the Naktuinbouw Gerbera data 
set can be explained by the relatively high proportion 
of red flowers in the data set: RGB simply does better 
than HCL for red flowers. These results also indicate 
that recognising the main color and finding the right 
name for it are two separate sides of the coin, the lat-
ter being non-trivial for a straightforward approach 
based on look-up tables.

A final remark on computation times: these are of 
course highly dependent on software and hardware, 
and no attempts have been made to optimize our 
pipelines in that respect. Nevertheless, some rough 
figures may be useful information. Whereas the train-
ing of a deep learning neural network can take quite 
a lot of time (in our case using a NVIDIA Titan XP 
GPU, a couple of hours of training for each data set), 
subsequent predictions for new (or old) images are 
basically instantaneous. In contrast, processing an 
individual image using the color histogram approach 
(on a regular desktop) takes a minute in our pipeline. 
Almost all time is spent in identifying the main color 
(in RGB or HCL space)—translation to a color name, 
either through the look-up table or through random-
forest classification, is very quick.

Conclusions and outlook

Recognizing colors from images may seem like a 
trivial task, especially when performed at a relatively 
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coarse level like everyday color names. Still, it pre-
sents a significant challenge for automatic analysis. 
Apart from experimental factors such as lighting, 
there is quite some variability because flowers can 
have a complex structure, making shading and impor-
tant factor. Often, multiple colors are present in one 

flower, which presents an additional complication in 
defining the main color.

In this paper we have attempted to reproduce 
expert opinion in four large data sets using advanced 
data analytics. We found that the best methods 
achieve success rates of 75–85%, something that in 

Fig. 4   Breakdown of classification errors for color-histogram 
methods using the translation table, gerbera data sets. The size 
and the color of the circle indicates the number of examples 
in each category. Rows indicate true colors, columns indicate 

estimates. Top row: Floricode gerberas; bottom row: Naktuin-
bouw gerberas. Left column: RGB-based analysis; right col-
umn: HCL-based analysis
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our experience is not too different from the reproduc-
ibility of color assessments within the same organi-
sation—with color assessments at different locations, 
under different conditions or with slightly different 
aims the reproducibility will be even lower. There 
are several other reasons why this performance level, 
while not 100%, is deemed quite good. In the first 
place, no color reference is present in the images, 
so that the effects of different lighting effects, cam-
era settings and reflectance cannot be compensated 
for. Note that the images have been taken under rela-
tively constant conditions, but still this may induce 
a bias, as suggested above. Especially when assess-
ments from different locations are to be combined, 
some form of color calibration is expected to lead to 
marked improvements (see, e.g., Sunoj et al. (2018)). 
Secondly, flower color is a somewhat ill-defined con-
cept. In the color-histogram strategy we have adopted 
a simple counting approach, that assumes that the 
color that dominates appearance is the main flower 
color, but this is not always correct. In contrast, the 
deep-learning approach (and to some extent, the com-
bination of the color histograms with random forests) 
sidesteps this issue by learning the ground truth clas-
sification using all features available in the images, 
including any (consistent) biases. Thirdly, different 
individual flowers from the same variety will differ in 
their color features, and in many cases the flower that 
was photographed was not identical to the flower that 
was used by the expert in when entering the color fea-
tures into the database.

This work does allow us to draw some conclusions 
on the suitability of the different methods for obtain-
ing flower color in practical applications. Deep learn-
ing is—by far—the method that takes least prepara-
tion: basically one has to select a suitable network 
architecture, decide on a training scheme, and divide 
the data into training, validation (optional, as in this 
paper) and test sets. If enough data are available, this 
should lead to results that are state of the art. Moreo-
ver, prediction for new, hitherto unseen images will 
be very fast, making it possible to include this kind 
of prediction modules in real-time applications. The 
two downsides are that many examples are needed 
(where obtaining the ground truth for all examples 
usually is the bottleneck), and that it is very hard to 
say anything about the reasons for a particular clas-
sification – this is where the black-box nature of the 
method rears its head.

The color-histogram approach is fundamentally 
different, showing the user all colors constituting the 
image (typically, segmented images using only the 
clustered colors will give a very reasonable approxi-
mation of the original image), and also showing the 
choices that are made during the execution of the 
pipeline. This particular approach makes it possible to 
apply species-specific rules of thumb. An example is 
shown in Fig. 5. Gerberas show a distinct symmetry, 
where colors are usually dependent on the distance to 
the heart of the flower. The colors from the color his-
tograms can be shown as a function of radius, allow-
ing for specific choices such as the color at the tips of 

Fig. 5   Distribution of the 
flower colors in a Floricode 
Gerbera as a function of 
radius
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the petals, or at the heart of the flower. In fact, such 
plots can also be used to determine other character-
istics, such as flower size and the size of the heart—
note that the Naktuinbouw images in Fig. 1 include a 
ruler, allowing direct conversion of numbers of pixels 
to a measure like millimeters.

Two further conclusions can be drawn from the 
results in this paper: first of all, the use of lookup 
tables to convert color coordinates to color names is 
inferior to simply training a machine learning algo-
rithm. Secondly, the use of the HCL color space in 
most cases is to be preferred over the RGB color 
space, the exception being the (rather important) cat-
egory of red flowers.

It is to be expected that automatic extraction of 
information from flower images will become more 
and more important in horticulture. This paper has 
shown that although color recognition is far from 
trivial, there is ample potential for application. The 
low-hanging fruit will be to standardize the imaging 
protocol as much as possible, and at the very least 
include standard color charts in the images so that 
post-hoc color correction becomes possible. Further 
improvements very much will depend on the exact 
goal of the experiment, and may include imaging 
individual petals and other parts of the plants. At 
the very least, such protocols will make a big step 
towards interoperability of the data, something that 
with ever increasing economic interests will become 
more and more important.
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