Phenotypic and proteomic differences in biofilm formation of two Lactiplantibacillus plantarum strains in static and dynamic flow environments

Linda Huijboom, Parisa Rashtchi, Marcel Tempelaars, Mehdi Habibi, Erik van der Linden, Tjakko Abee

Besides the beneficial properties of Lactiplantibacillus plantarum, this organism can also cause problems in the food industry as a spoilage organism. One way that this spoilage organism can contaminate food products is via a biofilm. Biofilms are layers of cells attached to a surface and surrounded by an extracellular matrix that offers increased protection to the cells against external stresses, such as cleaning agents. In our study, we aimed to further investigate the biofilm formation of two strains (model strain WCFS1 and isolate CIP104448) of L. plantarum, both in the commonly studied static environment, as well as the less studied dynamic flow environment. Using proteomics and various techniques to study the phenotypical differences, we’ve gained valuable insights between the phenotypical differences and protein expression patterns of the two studied strains in biofilm formation under static and flow conditions.

Schematic model and crystal violet visualization of 24h biofilms (30°C)

Quantification of the crystal violet

The influence of flow on biofilm formation is strain dependent

Total viable counts

The total number of cells increases with flow, regardless of the total biofilm amount

Hydrophobicity & attachment of cells

CIP104448 is highly hydrophobic, likely resulting in the increased attachment

Influence of enzymatic treatments on the biofilms

Only WCFS1 static biofilm cells are influenced by enzymatic treatments indicating a role for eDNA and protein in this type of biofilm

Disinfectant resistance

Exposure to the disinfectant peracetic acid (20 µg/ml) is effective against supernatant cells, but static and flow biofilm cells show a limited reduction. The protective properties of the biofilm are lost for WCFS1 when static or flow biofilm cells are dispersed. Interestingly, CIP104448 flow biofilm cells remain resistant, even when dispersed!

Protein expression static biofilm over static supernatant

Biofilm formation is mostly a passive process with limited protein changes for both strains. Most protein changes found are related to the cell wall.

Protein expression flow biofilm over static biofilm

For both strains, most protein changes in flow biofilm cells are related to metabolic pathways, fitting with the increased availability of nutrients and higher cell counts. With flow, the cell wall related proteins continue to be lower expressed, indicating a general biofilm trend. Interestingly, most stress proteins are lower expressed in flow. However CIP104448 also has a universal stress protein higher expressed, possibly contributing to the increased stress resistance against the disinfectant for CIP104448 flow biofilm cells.

Key Points

1. For both strains, the formation of a biofilm in a static environment is mostly a passive process.

2. The response on biofilm formation with flow is strain dependent and has a strong correlation to the hydrophobicity of the cells.

3. Cells within an intact biofilm are overall more resistant to peracetic acid. Additionally, flow biofilm cells are even more resistant than static biofilm cells.

PhD Candidate

Department of Microbiology, Wageningen University & Research

14th International Symposium on Lactic Acid Bacteria
August 2023, Egmond aan Zee, The Netherlands