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Abstract
The strength and persistence of the tropical carbon sink hinges on the long-term re-
sponses of woody growth to climatic variations and increasing CO2. However, the 
sensitivity of tropical woody growth to these environmental changes is poorly under-
stood, leading to large uncertainties in growth predictions. Here, we used tree ring 
records from a Southeast Asian tropical forest to constrain ED2.2-hydro, a terres-
trial biosphere model with explicit vegetation demography. Specifically, we assessed 
individual-level woody growth responses to historical climate variability and increases 
in atmospheric CO2 (Ca). When forced with historical Ca, ED2.2-hydro reproduced 
the magnitude of increases in intercellular CO2 concentration (a major determinant of 
photosynthesis) estimated from tree ring carbon isotope records. In contrast, simu-
lated growth trends were considerably larger than those obtained from tree rings, 
suggesting that woody biomass production efficiency (WBPE = woody biomass 
production:gross primary productivity) was overestimated by the model. The esti-
mated WBPE decline under increasing Ca based on model-data discrepancy was com-
parable to or stronger than (depending on tree species and size) the observed WBPE 
changes from a multi-year mature-forest CO2 fertilization experiment. In addition, we 
found that ED2.2-hydro generally overestimated climatic sensitivity of woody growth, 
especially for late-successional plant functional types. The model-data discrepancy in 
growth sensitivity to climate was likely caused by underestimating WBPE in hot and 
dry years due to commonly used model assumptions on carbon use efficiency and al-
location. To our knowledge, this is the first study to constrain model predictions of in-
dividual tree-level growth sensitivity to Ca and climate against tropical tree-ring data. 
Our results suggest that improving model processes related to WBPE is crucial to 
obtain better predictions of tropical forest responses to droughts and increasing Ca. 
More accurate parameterization of WBPE will likely reduce the stimulation of woody 
growth by Ca rise predicted by biosphere models.

K E Y W O R D S
biomass production efficiency, tree ring, tropical forests, vegetation demography model, 
woody growth

www.wileyonlinelibrary.com/journal/gcb
www.https://doi.org/10.1111/gcb.17075
mailto:
https://orcid.org/0000-0002-9402-9474
https://orcid.org/0000-0003-2613-2530
https://orcid.org/0000-0003-2752-6195
https://orcid.org/0000-0002-0038-6586
https://orcid.org/0000-0002-3076-3071
https://orcid.org/0000-0002-2876-4673
https://orcid.org/0000-0002-1764-6321
https://orcid.org/0000-0002-4454-8559
https://orcid.org/0000-0001-8100-1168
mailto:xx286@cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.17075&domain=pdf&date_stamp=2023-12-09


2 of 17  |     XU et al.

1  |  INTRODUC TION

Tropical forests are responsible for over half of global forest car-
bon sink (Pan et al., 2011). This large tropical carbon sink is predom-
inantly due to carbon fixation and woody biomass production of 
tropical trees. One key determinant of the long-term integrity of this 
tropical forest carbon sink is the responses of tropical tree growth to 
the changing environment, such as increasing atmospheric CO2 con-
centration (Ca), gradual climate change, and increasing climatic vari-
ability (Hubau et al., 2020; McDowell et al., 2020; Pugh et al., 2019). 
However, it remains challenging to quantify and disentangle the 
sensitivity of tree growth to climatic and Ca changes (Anderson-
Teixeira et al., 2022; Bauman et al., 2022; Peltier & Ogle, 2020). The 
limited knowledge on environmental sensitivity of tree growth con-
tributes importantly to the divergence of long-term tropical carbon 
dynamics simulated by terrestrial biosphere models (TBMs) (Bonan 
& Doney, 2018; Huntingford et al., 2013; Sitch et al., 2008).

A challenge to constrain simulations of tropical tree growth and 
its environmental sensitivity is the scarcity of tree growth data under 
a wide range of abiotic and biotic conditions, including climatic vari-
ability, long-term Ca increase, and tree size. Tree ring data can assist in 
filling the data gap by providing long-term, interannual records of tree 
growth (Anderson-Teixeira et al., 2022; Brienen et al., 2016; Zuidema 
et al., 2018). In addition, stable isotope signals in tree rings can further 
provide information on canopy photosynthesis and stomatal conduc-
tance as well as rooting depth (McCarroll & Loader, 2004), helping 
to interpret tree growth patterns. The increasing availability of trop-
ical tree-ring data (Zuidema et  al., 2022) provides opportunities for 
benchmarking tropical forest dynamics and environmental sensitivity 
of tropical tree growth in TBM simulations. While tree-ring data have 
been used to benchmark and calibrate TBMs (Anderegg et al., 2015; 
Jeong et  al.,  2021; Klesse et  al.,  2018; Rammig et  al.,  2015), these 
studies mostly aggregated data across trees and/or years to obtain 
stand-level or long-term average values of tree growth that can be 
matched with simulated values at the level of plant functional types 
(PFTs) produced by TBMs and dynamic global vegetation models 
(DGVMs). However, so far only few studies (Barichivich et al., 2021; 
Eckes-Shephard et al., 2021) have combined tree-ring data and out-
put of TBMs with dynamic vegetation demography (Fisher et al., 2018; 
Friend et al., 1997; Medvigy et al., 2009).

Model biases in environmental sensitivity of tree growth can arise 
from either photosynthesis or woody biomass production efficiency 
(WBPE), which includes the efficiency of converting gross primary 
productivity (GPP) to net primary productivity (NPP) and the alloca-
tion of NPP to woody growth. Tree growth rates in mainstream TBMs 
are generally determined by carbon availability from photosynthesis 
(Fatichi et al., 2019), using biomass production efficiency derived from 
biome-specific parameter tuning (Collalti et al., 2020). The WBPE val-
ues applied in models are commonly insensitive to environmental fac-
tors (Fisher & Koven, 2020; Hickler et al., 2015; Xu & Trugman, 2021), 
leading to strong photosynthetic control of the interannual variability 
and long-term trends in tree growth. However, while tree growth re-
quires photosynthetic carbon gain, it is not always limited by carbon 

(Palacio et al., 2014; Sala et al., 2012). The decoupling of growth and 
photosynthesis is well manifested in vegetation responses to elevated 
CO2: there is mounting evidence for increased GPP under higher Ca 
from leaf level to ecosystem and landscape level, but woody growth 
shows more complex responses (Cernusak et  al.,  2013; Norby & 
Zak, 2011; Walker et al., 2021). For example, a recent free-air CO2 en-
richment (FACE) experiment in a mature Eucalyptus forest in Australia 
found no apparent stem growth responses despite significant in-
creases in GPP (Jiang et al., 2020). Similarly, sensitivity of stem growth 
to temperature and moisture variations was also reported to differ 
from that of GPP (Cabon et al., 2022; Doughty et al., 2015; Zweifel 
et al., 2021). These empirical results suggest that a constant WBPE as 
currently implemented in most models is likely not realistic. Therefore, 
consideration of the environmental sensitivity of WBPE offers a criti-
cal, yet often overlooked, opportunity to constrain model predictions 
of woody growth.

In this study, we compare simulations from a recent version of 
Ecosystem Demography model 2.2 that includes plant hydraulics 
(ED2.2-hydro, Xu et  al.,  2016, 2021) against tree-ring width and 
isotope-derived intercellular CO2 (Ci) data from a tropical seasonal 
forest at Huai Kha Khaeng, Thailand (Groenendijk et al., 2015; Van 
Der Sleen et al., 2015; Vlam et al., 2014). After evaluating model per-
formance to realistically represent contemporary forest structure 
and seasonality, we: (i) generate virtual tree ring series from model 
simulations based on the size distribution of in situ sampled trees, 
(ii) analyze temporal trends observed and simulated Ci and tree-ring 
width, and (iii) calculate the sensitivity of standardized stem growth 
(�SG) to historical Ca changes and climatic variability from both ob-
served and simulated tree-ring data (Figure  1). We then quantify 
the discrepancies between simulated environmental sensitivities of 
growth (Δ�SG) against those estimated from tree-ring records, which 
reflect model biases in the environmental sensitivities of WBPE. In 
all analyses we considered two PFTs: an early-successional and a 
late-successional life history strategy.

We used the above observations and analyses to test the fol-
lowing hypotheses: (H1) Modeled responses of Ci to long-term Ca 
increase are in line with empirical results from stable isotope in 
tree rings (Van Der Sleen et al., 2015); (H2) Modeled responses of 
stem growth to long-term Ca increase are higher than observations 
from tree ring width data (Groenendijk et al., 2015; Van Der Sleen 
et al., 2015) because WBPE in ED2.2-hydro does not decline under 
elevated Ca; (H3) Modeled responses of stem growth to interannual 
hydroclimatic variability are different from tree-ring observations 
because of unrealistic climatic sensitivity of WBPE in the model.

2  |  MATERIAL S AND METHODS

2.1  |  Tree ring data and standardization

Tree ring data used in this study were collected in Huai Kha 
Khaeng (HKK) Wildlife Sanctuary in Thailand (15.60° N, 99.20° E). 
Vegetation in HKK is characterized as a seasonal tropical forest 
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(Bunyavejchewin et al., 2009) with an annual mean precipitation 
of 1473 mm and a 4-  to 6-month dry season from November to 
April. Many species display dry season deciduousness or semi-
deciduousness at HKK (Williams et al., 2008). Five species, Toona 
ciliata, Melia azedarach, Chukrasia tabularis, Afzelia xylocarpa, and 
Neolitsea obtusifolia were selected based on appearance of annual 
rings and relatively high local abundance. Roughly 100 trees above 
5 cm diameter at breast height (DBH) were randomly selected and 
cored per species using 5-mm-diameter increment borers (Suunto, 
Finland and Haglöf, Sweden) in three to four directions per tree. 
This ecological tree ring sampling strategy includes individuals 
across extant diameter classes and provides more complete in-
formation on tree growth history within the tree community than 
sampling trees for climate reconstruction (dendroclimatology). 
Tree ring widths were measured using either a measuring table 
or high-resolution scans with quality control by cross-dating. 
More details of tree ring measurements can be found in Vlam 
et al. (2014).

The width of a tree ring is determined by (1) age-  or size-
dependent growth response that reflects tree ontogenetic changes 
and general microenvironmental change during plant life history and 
(2) growth responses to interannual and long-term environmental 
changes. Detecting long-term growth responses to CO2 and climate 
requires removing the age-  or size-dependent growth trend. This 
can be done not only by detrending individual tree-ring series (e.g., 
using flexible splines), but also by removing general growth-size re-
lationships based on all tree-ring measurements together. The lat-
ter approach is preferred when analyzing growth trends over time 

(Peters et al., 2015) and was implemented here. Specifically, we used 
regional curve standardization, a reliable technique to detect growth 
trends (Groenendijk et al., 2015; Peters et al., 2015). For each spe-
cies, we therefore fitted a generalized Michaelis–Menten function 
(Equation  1) to all historical basal area increment (BAI), calculated 
from individual tree ring record, and DBH:

where three parameters, BAImax, a, and b, determine the maximum 
value and curvature of growth-size relationships. This equation is 
equivalent to the commonly used three parameter generalized logis-
tic growth function to model growth-size relationship (Groenendijk 
et  al.,  2015). We also compared this approach to generalized addi-
tive model (GAM) fits which did not assume a monotonic increasing 
relationship. The two approaches produced consistent growth-size 
relationships (Figure S1); however, GAM-derived growth curves were 
more variable for large DBH values due to data sparsity. Therefore, 
we used Equation (1) to standardize growth throughout our study. The 
standardized stem growth of individual i in year y (SGi,y) was then cal-
culated from observed BAI (BAIobs,i,y) and estimated BAI based on the 
general growth-size relationship (Equation 1) for the functional group 
of the individual tree (BAIest,i,y):

SG is positive when stem growth is higher than expected based on the 
general ontogenetic growth pattern and is negative when stem growth 
is lower than expected. By removing the ontogenetic effects, SG from 

(1)BAI = BAImax

DBHa

b + DBHa
,

(2)SGi,y = logeBAIobs,i,y − logeBAIest,i,y .

F I G U R E  1 Summary of research goals, hypotheses, and approaches in this study. First, two sets of model simulations with different 
Ca configurations (CO2-inc and CO2-const) were benchmarked with contemporary forest structure and dynamics (Model benchmarking). 
Second, simulated tree rings were extracted from individual tree-level model outputs from ED2.2-hydro. The virtual tree coring process 
was constrained by the tree size distribution of in situ tree coring to reduce sampling bias. Third, temporal trends of tree-ring width and Ci 
estimates from both observed and simulated tree rings were calculated with the consideration of tree size effect to evaluate H1 and H2. To 
evaluate H3, tree-ring records were further used to quantify standardized stem growth (SG) sensitivity to Ca, average maximum temperature 
(TMAX), and dry season precipitation (PDRY) for both observations and simulations.
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different individual trees can be combined to evaluate temporal trends 
and environmental sensitivity in growth.

Carbon isotope ratios (δ13C) were measured for wood sample 
from selected trees in each species at 8 cm and 27 cm DBH. The 
growth ring in which the tree reached 8 or 27 cm DBH was taken 
as midpoint, and the two growth rings before and after this mid-
point were also sampled, resulting in a 5-year block wood sample. 
Cellulose was extracted for the wood samples and fed into an ele-
ment analyzer coupled to a mass spectrometer (Sercon Hydra 20-20) 
at the Leicester Environmental Stable Isotope Laboratory, University 
of Leicester, UK. Estimates of intercellular CO2 (Ci in ppm) were cal-
culated from δ13C (Van Der Sleen et al., 2015).

2.2  |  Model description and simulation 
configuration

Ecosystem Demography v2.2 (ED2.2) is a TBM that tracks veg-
etation demographic dynamics and fine-scale carbon, water, and 
energy balances within ecosystems (Longo et  al.,  2019; Medvigy 
et al., 2009). In ED2.2, plant individuals with the same PFT, similar 
size, and disturbance history are grouped into cohorts. Vital demo-
graphic processes such as growth, mortality, and recruitment are 
simulated at cohort level at monthly time-step, based on the coupled 
carbon–water–energy dynamics simulated at sub-hourly time-step. 
To simulate the seasonal forest at HKK, we used ED2.2-hydro, a ver-
sion of the model that has cohort-level plant hydraulics, which can 
better capture the diversity in seasonally dry tropical forest (Smith-
Martin et al., 2020; Xu et al., 2016) and has been parameterized and 
benchmarked across a tropical moisture gradient (Xu et al., 2021). 
The stomatal model in ED2.2-hydro was based on the optimal-
ity theory (Katul et al., 2010) and included adaptations of marginal 
water-use efficiency under changes in water potential and CO2 
(Manzoni et al., 2013). ED2.2-hydro also implemented a light-driven 

plasticity of key leaf functional traits, which is critical to simulating 
realistic forest size structure (Xu et al., 2021).

The carbon allocation to aboveground woody growth in ED2.2-
hydro is determined by a series of processes, including leaf and fine 
root turnover, tissue maintenance respiration, reproductive in-
vestment, growth respiration, and aboveground-to-belowground 
partitioning. None of the model parameters controlling these 
processes (e.g., leaf turnover rate, reproductive allocation, etc.) 
are sensitive to Ca. In fact, most parameters are constant except 
that maintenance respiration parameters are dependent on tem-
perature. Nutrient limitation influences carbon allocation and 
regulates tropical forest growth (Cunha et  al.,  2022; Fleischer 
et  al., 2019; Waring et  al., 2019; Wright, 2019). ED2.2 can esti-
mate nutrient limitation on tree growth (Levy-Varon et al., 2019; 
Medvigy et al., 2019; Moorcroft et al., 2001); however, we did not 
enable nutrient limitation in this study because nutrient-related 
parameters and local biogeochemistry information were largely 
unknown. Cohort-level tree mortality is modeled as a function of 
growth and PFT (Camac et al., 2018).

We defined two PFTs along a general resource-use strategy 
axis to represent the diversity at the HKK site (Table 1). The early-
successional PFT (PFT-ES) was characterized by acquisitive func-
tional traits such as lower wood density, higher leaf turnover rate, 
higher photosynthetic capacity and dark respiration, higher hydrau-
lic efficiency, and lower hydraulic safety compared with the more 
conservative late-successional PFT (PFT-LS). Wood density values 
were based on reported range of species at HKK (Nock et al., 2009) 
and was used to assign PFT to the five study species while another 
key trait in ED2.2-hydro, leaf turnover rate, was parameterized using 
default values in ED2.2-hydro that is representative of the range of 
leaf longevity in the tropics. Other ecophysiological parameters such 
as parameters for the Farquhar photosynthesis module were derived 
from wood density and leaf longevity based on previous trait meta-
analysis (Longo et al., 2020; Xu et al., 2016). Height measurements 

Parameters PFT-ES PFT-LS

Species Toona ciliate Chukrasia tabularis

Melia azedarach Afzelia xylocarpa

Neolitsea obtusifolia

Wood density (g cm−3) 0.5 0.75

Leaf turnover rate (year−1) 1.5 0.5

Specific leaf area (m2 kgC−1) 25.8 16.1

Vc,max (μmol m
−2 s−1, 15°C)a 27.9 22.0

Rdark (μmol m
−2 s−1, 15°C) 0.40 0.32

Leaf turgor loss point (MPa) −1.56 −2.18

Xylem conductivity (kgH2O m−2 s−1) 0.035 0.016

Xylem P50 (MPa) −2.16 −3.25

b1Ht (dimensionless)b 1.59 1.57

b2Ht (dimensionless)b 0.46 0.44

aJmax:Vc,max ratio is 1.797 at 15°C.
bHeight = exp(b1Ht + b2Ht × loge(DBH)).

TA B L E  1 Key functional trait 
parameterization for the early-
successional plant functional type (PFT-
ES) and late-successional plant functional 
type (PFT-LS) in ED2.2-hydro for Huai Kha 
Khaeng.
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of all sampled trees were obtained using a digital hypsometer (Nikon 
Forestry 550) and were used to construct height allometry relation-
ships (Table 1).

We conducted “near-bare-ground” simulations, that is, model 
initialization with a few small seedlings, since forest stand structure 
in pre-industrial era at HKK was unknown. The simulation started 
in the year 1600 with 0.5 m tall seedlings at a stem density of 0.1 
individuals per meter squared for both PFTs. We ran the simulation 
to 2010, the year of in  situ tree ring sampling, forced by monthly 
historical atmospheric CO2 concentrations compiled by the Institute 
for Atmospheric and Climate Science at Eidgenössische Technische 
Hochschule in Zürich, Switzerland. In the simulation, we cycled cli-
mate data from the Princeton Global Meteorological Forcing (PGMF) 
0.25° 3-hourly reanalysis dataset (Sheffield et al., 2006) that spans 
1901 to 2012. The raw PGMF data were corrected using long-term 
in  situ observations from the nearby Nakhon Sawan weather sta-
tion. For each month, an additive correction factor was applied to 
temperature and relative humidity to ensure that the corrected 
reanalysis data had the same monthly seasonality as the station 
data. Similarly, a multiplicative correction factor was applied to pre-
cipitation to reduce biases in precipitation. Vapor pressure deficit 
was then calculated from the corrected temperature and relative 
humidity. The first 250 years (before 1850) was discarded as model 
spin-up. We also conducted another “near-bare-ground” simulation 
with the same configuration except that Ca was fixed at 285 ppm 
after 1850. This simulation was labeled as “CO2-const” while the pre-
vious simulation was labeled as “CO2-inc” (Figure 1). The difference 
between the two simulations reflected the net effect of historical Ca 
increase on tree growth in our model. Historical disturbance events 
such as storm and fire can also shape the sampling distribution and 
growth patterns in tree rings (Baker et al., 2005; Vlam et al., 2017) 
and model simulations. However, the exact timing and magnitude of 
those disturbances were unknown and thus could not be included in 
model simulations and we used a constant disturbance rate of 0.5% 
per year for both simulations based on the rainfall regime at HKK.

2.3  |  Evaluation of simulated contemporary forest 
structure and seasonality

Simulated forest structure was benchmarked against forest census 
data at the 50 ha HKK plot (Bunyavejchewin et al., 2009). Average 
basal area and stem density of different DBH size classes from 
simulations in 1990 and 1991 were calculated and compared with 
field surveys conducted at the same time. We also compared simu-
lated aboveground biomass with reported values for the site (Chave 
et al., 2008; Zuleta et al., 2023), which however showed large varia-
tion across studies due to uncertainty in allometry.

Given the strong seasonality of rainfall of the site, we further 
examined simulated GPP seasonality to benchmark model perfor-
mance of seasonal water stress. This benchmarking can also shed 
lights upon the model's performance on GPP responses to interan-
nual variability. Since no local carbon flux data were available, we 

compared average GPP seasonality with the flux tower data from a 
mixed deciduous forest at Mae Klong (14°34′34.2″ N, 98°50′37.2″ E), 
which is about 160 km to the south of HKK. Mae Klong has an annual 
rainfall of 1650, which is ~200 mm higher than HKK, and a strong 
rainfall seasonality similar to HKK (Huete et al., 2008). The flux tower 
sits on a mixed deciduous forest despite the forest is younger at Mae 
Klong. We extracted monthly GPP averaged over 2001–2004 from 
Huete et  al.  (2008) and compared the seasonality with simulated 
monthly GPP over the same period.

It should be noted that model parameters were not tuned or cal-
ibrated by either the observed forest structure or flux tower GPP. 
The evaluation aims to demonstrate our model configuration can 
generate reasonable forest structure and seasonality.

2.4  |  Extracting tree rings from simulations

Although in situ tree ring data at HKK covered growth history of a 
wide range of tree sizes (5–150 cm), the size distribution of the sam-
pled trees was different from that of the whole forest. Simply com-
paring the full growth history of all individuals from simulations with 
observations would suffer from biases due to the different size dis-
tribution (Jeong et al., 2021). To make a fair comparison, we selected 
simulated tree cohorts present at the end of 2010 using a strati-
fied sampling strategy to generate a similar tree size distribution as 
in situ tree ring collection for each PFT (Figure S2). The in situ tree 
ring data contained 151 trees for PFT-ES and 307 trees for PFT-LS. 
Based on the observed DBH distribution, 47 cohorts were selected 
for PFT-ES and 86 cohorts were selected for PFT-LS from the out-
put of CO2-inc simulation while the cohort sample size was 44 for 
PFT-ES and 65 for PFT-LS from the output of CO2-const simulation. 
Kolmogorov–Smirnov tests implied that the size distribution of simu-
lated cohorts is not different for the size distribution of in situ data 
for either PFT-ES or PFT-LS.

To back-trace individual cohort growth history from standard 
model output, we generated and tracked a unique label for each 
new cohort in the model. In a model simulation, two cohorts can 
be fused if they are very similar in size and microenvironment for 
the sake of computational efficiency. Also, a single cohort splits 
into two once its leaf area index exceeds a certain threshold. The 
cohort splitting helps to avoid biases due to the model assumption 
that leaves within a cohort receive the same amount of light. During 
cohort fusion, the growth history of the smaller cohort (often less 
abundant) is discarded. During cohort splitting, each new cohort is 
assigned a new label that is linked to the original label. In this way, 
we could extract a unique full growth record for each extant cohort 
at any point of a simulation that is most consistent with the observed 
tree-ring sampling.

For each simulated tree ring, we also calculated the average sub-
hourly Ci weighted by GPP within each growing season. We then 
extracted the average Ci for the 5–10 cm and 25–30 cm rings, which 
are directly comparable to the observed 8 and 27 cm Ci values de-
scribed in Section 2.1.
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6 of 17  |     XU et al.

2.5  |  Temporal trends of Ci and stem growth

We compared the temporal trends of Ci and growth for each PFT 
from both observed and simulated tree-ring records using ordinary 
least squares (OLS) regression to evaluate hypothesis H1 and H2. 
We removed size effect when calculating trends since size effect 
arising from various ontogenetic and microenvironmental sources 
can bias temporal signals (van der Sleen et al., 2017). In the regres-
sion analysis for Ci, we modeled size as a categorical variable which 
influences the mean of Ci but has no interactive effect with time, 
since there were only two size categories for Ci data.

We estimated the nonlinear size dependence of tree growth by 
fitting the generalized Michaelis–Menten function (as described in 
Equation 1) to the observed and simulated growth records, respec-
tively. We then calculated the temporal trends of SG, which resulted 
from growth deviations from the average growth-size relationships 
(as described in Equation 2). We also conducted the same trend anal-
ysis using GAM to standardize stem growth to examine whether the 
trend analysis was influenced by the choice of growth standardiza-
tion. We further conducted a size class-specific trend analysis, fol-
lowing Groenendijk et al.  (2015), to investigate whether long-term 
growth trends depended on tree size. We used a 20 cm window 
to ensure enough sampling for each size class from 10 to 110 cm 
DBH. We assessed the likelihood of “juvenile selection bias”, which 
could lead to artificial negative growth trend, using a 90%-quantile 
regression.

2.6  |  Analysis of growth sensitivity to 
Ca and climate

We estimated the sensitivity of SG to Ca and key climatic factors, 
using the following equation:

where Ca indicates annual mean atmospheric concentration, PDRY 
indicates dry season total rainfall of the current year, and TMAX in-
dicates annual mean maximum daily temperature. The two climatic 
variables were selected based on Vlam et al. (2014), which suggested 
dry season precipitation and maximum temperature were more cor-
related with growth at HKK. Here, dry season was defined as pre-
vious year November to current year April. Ca was log-transformed 
following Walker et  al.  (2021) and SG was also log-transformed 
growth (as indicated in equation  2). For the CO2-const simulation, 
we still used realistic historical atmospheric CO2 concentration as 
Ca, expecting the regression coefficient would be nonsignificant. 
Although ontogenetic effect was removed when calculating SG, we 
applied the regression for large (DBH ≥ 60 cm) and relatively small 
(DBH < 60 cm) trees because SG sensitivity to environment can de-
pend on size classes which have different microenvironment. The 
DBH threshold was chosen because growth trends were more 

consistent after 60 cm in observations during our size class analy-
sis. The regression coefficients and confidence interval for Ca, PDRY 
and TMAX (�SG,Ca

, �SG,PDRY, and �SG,TMAX) were extracted and compared 
between observation and simulations across PFT and size groups to 
evaluate hypotheses H2 and H3. We did not conduct the sensitivity 
analysis for Ci because observed Ci data was 5-year average, and 
the temporal resolution was too coarse to robustly investigate re-
sponses to interannual variability in climate.

We further calculated the model-data discrepancy in stem 
growth sensitivity as the difference between �SG derived from sim-
ulated tree rings and the corresponding sensitivity derived from 
in situ tree rings:

Positive or negative Δ�SG values imply model predicted higher or lower 
stem growth sensitivity compared with tree rings, respectively. When 
calculating Δ�SG,Ca

 (Equation 4.1), we subtracted �SG,Ca
 from the CO2-inc 

simulation by �SG,Ca
 of the CO2-const simulation because any apparent 

Ca sensitivity from the CO2-const simulation must come from the col-
linearity between historical Ca trend and transient decadal dynamics 
in model simulations (e.g., forest recovering from earlier disturbances). 
The transient dynamics was less of a concern for PDRY and TMAX 
since they had very weak temporal trend compared with interannual 
variability. Therefore, the correction was not necessary. We estimated 
the uncertainty of all ΔβSG values by bootstrapping the distribution of 
βSG values derived from OLS regressions. Calculation of growth sen-
sitivities was conducted for all combinations of two size categories 
(<60 cm, ≥60 cm) and two PFTs.

The rate of stem growth is the product of GPP and WBPE. 
Therefore, Δ�SG can arise from discrepancies in either GPP or WBPE 
sensitivities. In this study, we focused on WBPE sensitivities and 
compared Δ�SG,Ca

 in our study with reported WBPE responses to el-
evated CO2 at the EucFACE experiment in Australia (extended fig. 7 
from Jiang et al., 2020). In particular, we calculated the Δ�SG,Ca

 value 
if the observed WBPE response from the FACE experiment would 
have been included in our model. No field-based estimates of WBPE 
sensitivity to interannual variation in temperature and precipita-
tion were available for tropical forests and therefore a quantitative 
evaluation of Δ�SG,PDRY and Δ�SG,TMAX was not possible. We assumed 
model biases in GPP sensitivities were generally negligible because 
TBMs based on similar photosynthesis modules largely captured ob-
served GPP responses to Ca and climatic variability (Piao et al., 2020; 
Walker et  al.,  2021). The assumption was indirectly evaluated by 
comparing the long-term Ci trend between model and simulation (for 
Ca sensitivity) as well as GPP seasonality between model and the 
Mae Klong flux tower (for water sensitivity).

In analyses of trends and sensitivity, we only used observations 
and simulations after 1950 when the climate records are more avail-
able and trustworthy. All statistical analysis was conducted with the 

(3)

SG = �SG,Ca
logeCa + �SG,PDRYPDRY + �SG,TMAXTMAX + constant,

(4.1)ΔβSG,Ca
=
(

βSG,Ca,CO2−inc − βSG,Ca,CO2−const

)

− βSG,Ca,OBS,

(4.2)ΔβSG,PDRY = βSG,PDRY,CO2−inc − βSG,PDRY,OBS,

(4.3)ΔβSG,TMAX = βSG,TMAX,CO2−inc − βSG,TMAX,OBS.
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    |  7 of 17XU et al.

statsmodels 0.13.2 package (Seabold & Perktold,  2010) in Python 
3.10.

3  |  RESULTS

3.1  |  Benchmarking simulated contemporary forest 
structure and seasonality

The field census at HKK 50 ha plot in the early 1990s (Bunyavejchewin 
et al., 2009) reported a mean (±SD) basal area of 28.64 ± 5.7 m2 ha−1 
for trees >10 cm DBH, 20.33 ± 5.43 m2 ha−1 for ≥30 cm trees, and 
5.57 ± 4.46 m2 ha−1 for ≥100 cm trees. Both the CO2-inc and CO2-
const simulations generated basal area values within the reported 
range; however, the CO2-inc simulation had higher basal area 
values closer to field observations, especially for ≥100 cm trees 
(5.95 m2 ha−1, Figure 2a). Stem densities in the 10–30, 30–100, and 
>100 cm size classes were 438, 83, and 5.6 individuals per hectare 
in the field data. The corresponding stem densities in the CO2-inc 
simulation were 277.4, 87.4, and 6.7 individuals per hectare respec-
tively indicating underestimation of the density of small trees (10–
30 cm). The CO2-const simulation had stem densities of 262.0, 84.4, 
and 3.4 individuals per hectare respectively in the three size classes 
indicating underestimation of the density of both small (10–30 cm) 
and large (≥100 cm) trees (Figure 2b). The predicted aboveground 
biomass was 344 Mg ha−1 in the CO2-inc simulation, which was 
higher than the value of 264 Mg ha−1 in the CO2-const simulation as 
expected. Previous studies (Chave et al., 2008; Zuleta et al., 2023) 
reported values ranging from 200 to 300 Mg ha−1 with large uncer-
tainties depending on height and biomass allometry used given that 
no local biomass allometry was available. In particular, the lower 
end estimate was based on allometry fitted with three dry forest 

stands with a maximum DBH of 63.4 cm (Chave et al., 2005), which 
does not represent the HKK site well.

ED2.2-hydro predicted a strong seasonality in GPP (Figure 2c) 
due to stomatal and phenological responses to rainfall seasonality. 
GPP from the CO2-inc simulation peaked in the early wet season 
(June–July, ~11 gC m−2 day−1) and was lowest in late dry season 
(March–April). The CO2-const simulation showed very similar sea-
sonality with consistently lower GPP values. Flux tower data at 
Mae Klong exhibits weaker GPP seasonality with a similar timing 
of high and low values because the forest contains a larger frac-
tion of evergreen species than the main study forest, which is al-
most fully deciduous. Mean annual GPP of the Mae Klong data 
was 7.53 gC m−2 day−1 while the CO2-inc simulation predicted a 
value of 7.01 gC m−2 day−1 and the CO2-const simulation predicted 
5.65 gC m−2 day−1, consistent with its underestimation of basal 
area and stem density (Figure 2a,b).

3.2  |  Temporal trends of Ci and growth

The isotope-derived Ci data from observed tree rings increased from 
1950 to 2010 at a rate of 80–95 ppm per 100 years for both PFTs 
(Figure 3). Ci trend of the CO2-inc simulation was slightly lower than 
the observed trend, which nevertheless fell inside the confidence 
interval of the observed Ci trend. In contrast, the Ci trend of the 
CO2-const simulation, in which atmospheric CO2 concentration was 
held constant at 285 ppm, was not significantly different from zero 
for PFT-ES and slightly negative for PFT-LS. Canopy stomatal con-
ductance also declined in CO2-inc simulation but remained relatively 
constant in the CO2-const simulation (Figure S3f). Overall, the com-
parison suggests that our model could capture long-term CO2 effect 
on leaf-level gas exchanges.

F I G U R E  2 Comparison of contemporary ecosystem-level variables between simulations and various independent observations. (a, b) 
Stand basal area and stem density across tree size groups from ground census data at the Huai Kha Khaeng (HKK) 50 ha forest plot and 
ED2.2-hydro simulations (white bars) driven by different Ca scenarios (colored bars). Error bars reflect standard deviation of basal area 
across subplots within the HKK plot. (c) Average GPP seasonality from ED2.2-hydro simulations and the Mae Klong flux tower site located in 
a mixed deciduous forest similar to HKK. Colored dots indicate the mean annual GPP from the three different data sources.
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8 of 17  |     XU et al.

Basal area increment from tree ring observations increased rap-
idly with tree DBH until about 40–50 cm for both PFT-ES and PFT-LS, 
beyond which average BAI started to level off (Figure  4a,b). The 
upper value of BAI was about 75 cm2 year−1 for the PFT-ES and about 
55 cm2 year−1 for PFT-LS. BAI from the CO2-inc simulation closely 
matched the BAI–size relationship from tree rings, suggesting the 
model can capture the general growth-size relationship. The simula-
tion underestimated growth of trees smaller than 50 cm for both PFTs 
and overestimated growth for trees bigger than 60 cm for PFT-ES. 
BAI from the CO2-const simulation was consistently lower than the 
observations by about 10%–30%. Both simulations predicted higher 
growth rates for the smallest trees (DBH < 15 cm) of PFT-LS.

Standardized stem growth of observed tree rings (Figure 4c,d) 
showed significant negative trends for both PFTs with a more neg-
ative trend for PFT-LS, which is consistent with previous analyses 
at the site (Groenendijk et al., 2015; Van Der Sleen et al., 2015). In 
contrast, simulated tree ring records showed significantly positive 
growth trends for PFT-ES in both CO2-inc and CO2-const. Using 
alternative stem growth standardization methods generated com-
parable growth trends (Figure S4). The positive growth trend from 
the CO2-const simulation was unexpected since no CO2 increase 

was included. The transient model behavior was likely caused by 
a drought period around 1980 in the meteorological forcing that 
led to decline in productivity and a subsequent recovery in model 
simulations (Figure  S3). However, the positive growth trend in 
CO2-inc is larger than the trend in CO2-const (Figure 4c), imply-
ing an overall growth boosting effect of higher CO2 in the model. 
For PFT-LS, the growth trend in CO2-const was not significantly 
different from zero as expected, implying a weaker response to 
the 1980 dry period due to its more conservative and resistant 
hydraulic traits compared with PFT-ES (Table 1). Interestingly, the 
growth trend of PFT-LS in CO2-inc was also nonsignificant, which 
was due to a strong size-dependent growth response to CO2 
(Figure 4e,f) as explained below.

The growth trends varied across size classes (Figure  4e,f). In 
observed tree rings, growth trends were negative for <60 cm trees 
and were nonsignificant (PFT-ES) or positive (PFT-LS) for ≥60 cm 
trees. Simulated tree rings also showed a positive size dependence 
of growth trends until 50–60 cm size classes although the growth 
trends values were generally higher than the corresponding ob-
served values. It is also noteworthy that, for ≥60 cm of PFT-LS, the 
simulated growth trends became comparable with observed growth 
trends. Therefore, the difference in overall growth trends (Figure 4d) 
between observation and simulations was mainly caused by small 
trees. These size-specific trends did not change when an alternative 
growth standardization method was used (Figure S4). Furthermore, 
the growth trends from observed tree rings remained negative when 
we used the 90th quantile regression and the relative relationships 
between observed and simulated growth trends also remained the 
same (Figure S5). Therefore, the negative trend was unlikely to be 
caused by “juvenile selection bias” (cf. Groenendijk et al., 2015).

3.3  |  Sensitivity of standardized stem growth to 
Ca and climate

The partial sensitivity of standardized stem growth to Ca (�SG,Ca
) 

showed consistent patterns with the growth trend analysis across 
PFT and size classes. For PFT-ES, �SG,Ca

 derived from observed tree-
ring data was negative for both <60 cm and ≥60 cm trees, respec-
tively, while �SG,Ca

 was positive for all size classes in both the CO2-inc 
simulation and CO2-const simulations (Figure  5a,b). As mentioned 
above, the positive �SG,Ca

 in the CO2-const simulation in part reflected 
a transient temporal trend of PFT-ES. This also implies that �SG,Ca

 of 
the CO2-inc simulation was likely overestimated and the difference 
between the CO2-inc and CO2-const values was a better estimate of 
�SG,Ca

 for our model. In contrast, for PFT Late (Figure 5c,d), the CO2-
const �SG,Ca

 was not significantly different from zero as expected, 
while the in situ and CO2-inc �SG,Ca

 was negative for <60 cm trees but 
positive for ≥60 cm trees.

The growth sensitivity to climate varied more between the two 
PFTs than across tree size classes. In situ tree-ring data showed 
significantly positive growth sensitivities to dry season rainfall 
(�SG,PDRY  ) for both <60 cm and ≥60 cm size classes of PFT-ES 

F I G U R E  3 Temporal trends of Ci based on observed and 
simulated tree ring data from 1950 to 2010 for two plant functional 
types: early-successional (PFT-ES, a) and late-successional (PFT-LS, 
b). Tree size effect was removed when estimating the trend values.
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    |  9 of 17XU et al.

(Figure 5e,f). In contrast, the growth of PFT-LS trees was not sen-
sitive to interannual variability in dry season rainfall (Figure 5g,h). 
Similarly, growth sensitivities to maximum temperature (�SG,TMAX) 
were significantly negative for PFT-ES, but was nonsignificant for 
PFT-LS (Figure  5i–l). The CO2-inc simulation generated signifi-
cantly positive �SG,PDRY and negative �SG,TMAX values for all PFT-
size classes except for the �SG,PDRY of ≥60 cm PFT-ES trees, which 
was nonsignificant (Figure  5e–l). The magnitude of simulated 
growth climatic sensitivity generally agreed with the values de-
rived from in  situ tree-ring data for PFT-ES although there was 
overestimation for �SG,TMAX. Meanwhile, the model greatly over-
estimated growth climatic sensitivity for PFT-LS. The CO2-inc and 
CO2-const simulations generated comparable �SG,PDRY and �SG,TMAX 
values suggesting higher Ca did not change growth responses to 
temperature and moisture in the model. Similar to our trend anal-
ysis results, the estimated environmental sensitivities of growth 
showed similar values and relationships across observations and 

models, when alternative growth standardization method was 
used (Figure S6).

Based on Equation (4.1), we calculated the discrepancies in sensi-
tivities between model and tree-ring data. We found that differences 
in growth sensitivity to Ca (Δ�SG,Ca

) were positive for all PFT-size 
classes with more positive values for <60 cm trees (Figure 6a), im-
plying higher sensitivities from our model than from tree-ring data. 
Yet, all Δ�SG,Ca

 estimates had large uncertainties. In comparison, the 
EucFACE experiment reported ~21% reduction in WBPE under 38% 
Ca increase in a more open Australian mature Eucalyptus forest. This 
WBPE response is equivalent to a Δ�SG,Ca

 of 0.81, a value close to 
the estimated Δ�SG,Ca

 for big PFT-LS trees with comparable uncer-
tainty (Figure 6a), suggesting that the lower observed WBPE under 
elevated CO2 accounts for a large share of model biases in growth 
sensitivity for late-successional canopy trees.

In similar fashion, we also quantified the model biases in growth 
sensitivities to climate (Figure 6b,c). For both size classes of PFT-LS, 

F I G U R E  4 Size dependence and 
temporal trends in observed and 
simulated tree-ring growth records from 
1950 to 2010 for the two plant functional 
types: early successional (PFT-ES) and late 
successional (PFT-LS). (a, b) Average basal 
area increment (BAI) changes with size, 
estimated from generalized Michaelis–
Menten model fitting. (c, d) Temporal 
trends of standardized stem growth (SG). 
(e, f) Standardized stem growth (SG) 
trends for different tree size classes. For 
panels (c)–(f), the unit denotes the trend 
in standardized growth as defined in 
Equation (2). A value of 1 per 100 years 
indicates growth has increased by 2.72 
times in a century or 1.64 times from 
1950 to 2010. Similarly, a value of −1 per 
100 years indicates growth in 2010 is 1.64 
times less than growth in 1950.
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10 of 17  |     XU et al.

Δ�SG,PDRY was significantly positive and Δ�SG,TMAX was significantly 
negative. In contrast, for PFT-LS, Δ�SG,PDRY was not significantly dif-
ferent from zero for PFT-ES. Δ�SG,TMAX of ≥60 cm PFT-ES trees was 
comparable to the value of PFT-LS but had large uncertainty while 
Δ�SG,TMAX for <60 cm PFT-ES trees was small and not significantly 
different from zero.

4  |  DISCUSSION

4.1  |  Reduced woody biomass production 
efficiency under long-term Ca increase

Previous benchmarking of TBMs' sensitivity to elevated Ca is mostly 
based on manipulative experiments that do not extend beyond the 

decadal time scale (Fleischer & Terrer, 2022; Hickler et al., 2015). Our 
study provides novel model constraints based on tree-ring data that 
records multi-species growth responses to gradual Ca increases over 
60 years. Trend analysis over simulated and observed tree ring data 
supported hypothesis H1 and H2 that ED2.2-hydro could capture Ci 
trend but not growth trends because a positive CO2 effect on pho-
tosynthesis is included in its photosynthesis-stomata module, which 
improves growth under a source-driven growth scheme. Furthermore, 
we found that model overestimation of the stem growth trend at Huai 
Kha Khaeng can be largely explained by a high and invariant WBPE. 
These results lend further support to limited CO2 fertilization effects 
on tropical vegetation biomass production (Fleischer et  al.,  2019; 
Fleischer & Terrer, 2022; Jiang et al., 2020; Terrer et al., 2019). In par-
ticular, the magnitude of WBPE decline for ≥60 cm late-successional 
trees (~50% of total biomass in simulation) is comparable to observed 

F I G U R E  5 Partial sensitivities of standardized stem growth (SG) to (a–d) the logarithm of atmospheric CO2 concentration (Ca), (e–h) 
dry season rainfall (PDRY), and (i–l) annual mean maximum daily temperature (TMAX). All sensitivities are shown for both observed and 
simulated tree-ring records. Each column of panels presents regression analyses using Equation (3) for a combination of plant functional 
type and size class (indicated in column label). The units indicate changes in standardized growth, defined in Equation (2), per unit change 
in Ca (log-transformed), PDRY, and TMAX. Error bars in each panel represent 95% confidence interval from OLS regression. To reasonably 
estimate growth sensitivity to Ca for the CO2-const simulation, we used historical atmospheric CO2 concentration in the regression analysis 
although CO2 was set as constant at 285 ppm (see Section 2.6 for details).
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    |  11 of 17XU et al.

WBPE decline at the EucFACE experiment (Jiang et al., 2020) while the 
estimated WBPE decline for early-successional trees and <60 cm trees 
was even stronger. This novel model constraint from tree ring data 
suggested absolute WBPE should have decreased from 0.2 to 0.15 (or 
~25% relative decrease) under historical Ca increase in our study period 
(Figure 7a). A simple extrapolation of our results to the recently es-
tablished AmazonFACE experiments, which plans to raise Ca from 410 
to 600 ppm (Grossman, 2016), would predict a relative WBPE reduc-
tion of 25% (±30%) for ≥60 cm late-successional trees, 48% (±39%) for 
≥60 cm early-successional trees, and close to 70% (±10%) for <60 cm 
trees of both PFTs. Our analysis could not distinguish the contribution 
of carbon use efficiency (CUE = NPP:GPP) and plant NPP allocation to 
WBPE reduction under higher CO2. We suggest that increases in be-
lowground carbon investment into fine roots (which typically have high 
rates of turnover), and priming (in order to alleviate nutrient limitation) 
likely dominate these responses, based on available knowledge from 
experiments, modeling, and meta-analysis (Collalti & Prentice, 2019; 
Fleischer et al., 2019; Jiang et al., 2020; Vicca et al., 2012).

Our attribution of model biases in growth sensitivity to CO2 
hinges on the assumption of relatively small biases in simulated GPP 
sensitivity to Ca. GPP can be approximated as multiplication of Ci and 
leaf carboxylation capacity (Vcmax). Although Vcmax was observed 
to decline under CO2 enrichment experiment, the magnitude of de-
cline was around 10% or smaller for tree species when CO2 was el-
evated for 200 ppm or more (Ainsworth & Long, 2005). Particularly, 
recent experiments for tropical tree species (Fauset et al., 2019; Slot 
et al., 2021) reported insignificant to 10% decline in Vcmax for CO2 
increases that were considerably larger (400 ppm) than experienced 
by trees in our study (80 ppm). Therefore, the consistent Ci trends be-
tween observed and simulated tree rings (Figure 3) under a relatively 
constant Vcmax provides indirect support of the assumption that bi-
ases in simulated GPP sensitivity to Ca were small. Unfortunately, no 
direct measurements of whole-stand tropical forest GPP responses 
to CO2 rise are available to verify this. The sensitivity of simulated 

GPP (normalized to per leaf area to remove the influence of tran-
sient dynamics in leaf area index) to logarithm Ca (�GPP,aCO2) from our 
CO2-inc simulation was 0.60 ± 0.09 (equivalent to ~50% increase for 
a doubling of Ca) estimated with OLS regression. When accounting 
for Vcmax acclimation to higher CO2, for example, 2% from 1950 to 
2010, this would only slightly reduce our estimated �GPP,aCO2 by 0.08. 
Our estimated �GPP,aCO2 is very close to the mean value of a meta-
analysis over field and greenhouse experiments (0.65 with a large 
standard deviation of 0.84, Walker et al., 2021) and a recent model-
based estimate (47% based on a doubling Ca, Haverd et al., 2020), but 
it is higher than the sensitivity calculated from the recent EucFACE 
study (�GPP,Ca

= 0.34). Overall, we argue that WBPE changes have a 
dominant effect on forest woody production responses to elevated 
CO2. Further studies, such as the new AmazonFACE experiment, are 
necessary to disentangle and better quantify the effects of Ca rise 
on GPP and WBPE in tropical forests.

In our analysis, we also assumed the scaling between BAI and 
woody biomass production, which is sensitive to the relationship be-
tween DBH and height, did not change under increasing Ca. Ideally, 
repeated, paired measurements of DBH and height would be used to 
determine the sensitive of DBH-height allometry to Ca. Such mea-
surements are not common and were unavailable at our study site. 
However, at one FACE experiment in a temperate forest, elevated Ca 
caused Pinus taeda trees to be taller for a given DBH (Kim et al., 2020). 
This is a possible alternative hypothesis for model overestimation in 
growth responses to Ca although further studies on the magnitude of 
tropical tree allometry responses to Ca changes are needed to evalu-
ate the hypothesis. In addition, changes in allometry might be possi-
ble for smaller trees, which prioritize height growth due to increased 
shading (Holbrook & Putz, 1989) under higher Ca, resulting in a lack of 
stem growth increase despite higher biomass production. This light-
driven allometry plasticity is not included in our model and might 
explain the larger model-data discrepancies in growth trend and Ca 
sensitivity for smaller size classes (10–60 cm, Figures 4e,f and 6a).

F I G U R E  6 Differences in climatic and atmospheric sensitivities between model and tree-ring data. Differences are shown for stem 
growth (SG) sensitivity to (a) atmospheric CO2 concentration (Ca), (b) dry season rainfall (PDRY), and (c) annual mean daily maximum 
temperature (TMAX). Error bars indicate 95th confidence interval calculated from bootstrapping. Positive values indicate that the modeled 
sensitivities are higher than those obtained from tree-ring data. In panel (a), woody biomass production efficiency (WBPE) responses to 
elevated CO2 were obtained from the EucFACE experiment (see Section 2.6 for details).
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4.2  |  Increased woody biomass production 
efficiency in hot and dry years

ED2.2-hydro predicted significant positive growth sensitivity to 
dry season rainfall and negative growth sensitivity to maximum 

temperature for the late-successional PFT, while tree-ring data 
showed no growth sensitivity to interannual variability in these cli-
matic variables (Figure 5e–l). In contrast, for the early-successional 
PFT, simulated climatic sensitivity of growth was comparable to the 
observed values. Thus, we found support for our hypothesis H3 for 
the late-successional PFT only. Given that simulated growth is mostly 
driven by carbon availability, this comparison suggests source-
driven growth scheme in our model might well capture growth sen-
sitivity to hydroclimatic variations for early-successional species but 
would overpredict the sensitivity for late-successional species in this 
seasonally dry tropical forest. This finding seems to contrast recent 
results based on flux towers and tree ring data in temperate for-
ests (Cabon et al., 2022), which showed that responses to climatic 
variation are weaker and delayed in woody growth compared to 
photosynthesis. Meanwhile, our results do not contradict field ob-
servations in tropical forests: sensitivity of tropical tree growth to 
moisture is reported to range from weak negative to strong posi-
tive (Zuidema et  al.,  2022) and species with higher wood density 
and hydraulic safety can maintain growth in dry years (Mendivelso 
et al., 2013; Xu et al., 2016).

The model-data discrepancy in growth sensitivity resulted in 
positive Δ�SG,PDRY values and negative Δ�SG,TMAX values (Figure 6a), 
which most likely arose because WBPE in our model was too low 
in hot and dry years. In our CO2-inc simulation, carbon use effi-
ciency (NPP:GPP) declined from 0.4 to ~0.2 in hot and dry (low 
GPP) years (Figure  7b) because autotrophic respiration in the 
model does not decline much in drought unless significant can-
opy loss occurs. In addition, NPP allocation to woody growth in 
the model also declined from ~0.55 to 0.2–0.3 during drought be-
cause the model always prioritizes leaf and fine root growth and 
replacement over woody growth: ED2.2-hydro accumulates NPP 
into a nonstructural carbohydrate storage pool and only allows 
for woody allocation when the storage pool reaches a threshold. 
As a result, WBPE declined from over 0.2 to below 0.1. Although 
studies looking at longer-term forest responses to water stress 
reported that forest production efficiency decreased under multi-
year throughfall exclusion experiment (Metcalfe et al., 2010) and 
is generally lower in hotter and drier regions (Collalti et al., 2020), 
WBPE was observed to have temporarily increased during 
droughts when woody production remained at the level of normal 
years despite a reduction in GPP in Amazonian forests (Doughty 
et al.,  2015). This observed short-term increase in WBPE during 
drought years in the Amazon resulted from significant reductions 
in autotrophic respiration indicating temporary increase in plant 
carbon use efficiency while NPP allocation to woody growth in 
drought years remained comparable to the allocation in normal 
years. Therefore, correcting model WBPE biases during drought 
years likely requires implementation of maintenance respiration 
down-regulation, a sink-driven growth scheme that increases pri-
ority of woody growth (Fatichi et al., 2019), and a more mechanis-
tic module for plant nonstructural carbohydrate dynamics (Dietze 
et al., 2014; Martínez-Vilalta et al., 2016).

Model-data discrepancies in growth climatic sensitivity were 
much smaller for early-successional than for late-successional 

F I G U R E  7 (a) Magnitude of estimated woody biomass 
production efficiency (WBPE) decline constrained by tree ring 
data. Orange dots represent annual WBPE as a function of 
atmospheric CO2 concentration (Ca) predicted by the CO2-inc 
simulation. Solid orange line results from LOWESS (locally weighted 
scatterplot smoothing). Solid black line indicates estimated WBPE 
to match stem growth from simulation and tree ring observations 
(constrained). It is calculated using the orange line and a biomass-
weighted average Δ�SG,Ca

 as shown in Figure 6a. Grey shading 
indicates the range of estimated WBPE across plant functional 
type-size class as defined in Figure 6. (b) Decline of ecosystem-
level carbon use efficiency (NPP:GPP, red), woody NPP allocation 
(woody NPP:NPP, blue) and WBPE (equal to the product of the 
previous two values, orange) with GPP in the CO2-inc simulation. 
Each dot represents relative change of CUE or woody NPP 
allocation compared with their respective maximum values against 
the GPP of the year. Solid lines are results from LOWESS smoothing 
to facilitate comparison.
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PFTs, suggesting that early-successional trees might not be able 
to maintain regular stem growth in hot and dry years and there-
fore are more sensitive to climatic fluctuations than predicted by 
our model. This discrepancy could be caused by a stronger sink 
limitation of growth for early compared to than late-successional 
species during in hot and dry years. During water stress, tree 
growth of early-successional species could be more limited by a 
lack of turgor (Friend et al., 2019; Steppe et al., 2015) due to their 
higher hydraulic vulnerability hydraulic (Table  1). Therefore, the 
magnitude of the short-term increases in WBPE, which can help 
to maintain stem growth in hot and dry years, likely depends on 
plant hydraulic traits.

While annual growth records from tree rings provide the op-
portunity of constraining modeled growth sensitivity to interannual 
climatic variations, the subset of ring-forming species in tropical for-
ests may not be fully representative of the tree community. Tropical 
tree species with distinct growth ring boundaries are more likely to 
be deciduous (Worbes, 1999), although a fair share of ring-forming 
species is evergreen. Among the five sampled species in our study, 
one is evergreen and two are brevi-deciduous (<0.5 months leafless; 
Vlam et al., 2014). Growth of deciduous tree species have been found 
to be more sensitive to moisture fluctuations (Xu et al., 2016). If the 
ring-forming species analyzed in our study have relatively higher 
sensitivity to moisture within the tree community, one would expect 
the community-average sensitivity to moisture should be even lower 
than our results based on tree ring data. Given our model is already 
overestimating growth sensitivity to moisture (Figure 5), this implies 
model biases in WBPE should be even stronger. More comprehen-
sive high-resolution growth observations across moisture gradients 
are necessary to evaluate possible differences in drought responses 
between ring-forming and other species in tropical forests.

5  |  CONCLUSIONS

The response of woody biomass production to CO2 and climate is 
a major determinant of the tropical forest carbon sink under global 
change. Our study provides novel benchmarking options for TBM-
generated woody growth using long-term tree-ring data. Our re-
sults suggest that: (1) ED2.2-hydro, a representative modern TBM, 
overestimates tropical woody growth sensitivity to Ca and climate, 
although it correctly captures Ci responses to Ca, and (2) this model-
data mismatch may be resolved by incorporating WBPE responses 
to environmental factors (e.g., through autotrophic respiration or 
belowground investment). Implementing environmental constraints 
of WBPE based on tree-ring data would reduce the effects of CO2 
rise and hydroclimatic variability on modeled woody production. We 
also call for improving mechanistic representation of tree growth in 
TBMs by including more complete nonstructural carbohydrate dy-
namics and implementing sink-driven growth (Dietze et  al.,  2014; 
Fatichi et al., 2019).

More generally, our study also highlights the potential of tree-ring 
records to constrain TBMs' long-term woody growth predictions and 

reduce model uncertainty at decadal to multi-decadal timescales. In 
particular, tree-ring data provide novel opportunities to constrain (1) 
size-related changes in tree growth, (2) long-term growth responses 
to Ca and climate, and (3) forest biomass responses to extreme 
events. Yet, constraining TMBs using tree-ring data is challenging 
due to scale mismatches between model and data, the inherent 
sampling biases in data, and the influence of site-specific distur-
bance history (Jeong et al., 2021). Nevertheless, the increasing data 
availability of tropical tree-ring studies (Zuidema et  al., 2022) and 
development of vegetation demography modules in TBMs (Fisher 
et al., 2018), offers exciting opportunities to produce more realistic 
long-term predictions of tropical forest dynamics.
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