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Abstract
The	strength	and	persistence	of	the	tropical	carbon	sink	hinges	on	the	long-	term	re-
sponses of woody growth to climatic variations and increasing CO2. However, the 
sensitivity of tropical woody growth to these environmental changes is poorly under-
stood, leading to large uncertainties in growth predictions. Here, we used tree ring 
records	 from	a	 Southeast	Asian	 tropical	 forest	 to	 constrain	ED2.2-	hydro,	 a	 terres-
trial biosphere model with explicit vegetation demography. Specifically, we assessed 
individual-	level	woody	growth	responses	to	historical	climate	variability	and	increases	
in atmospheric CO2 (Ca). When forced with historical Ca,	 ED2.2-	hydro	 reproduced	
the magnitude of increases in intercellular CO2 concentration (a major determinant of 
photosynthesis) estimated from tree ring carbon isotope records. In contrast, simu-
lated growth trends were considerably larger than those obtained from tree rings, 
suggesting	 that	 woody	 biomass	 production	 efficiency	 (WBPE = woody	 biomass	
production:gross primary productivity) was overestimated by the model. The esti-
mated WBPE decline under increasing Ca	based	on	model-	data	discrepancy	was	com-
parable	to	or	stronger	than	(depending	on	tree	species	and	size)	the	observed	WBPE	
changes	from	a	multi-	year	mature-	forest	CO2	fertilization	experiment.	In	addition,	we	
found	that	ED2.2-	hydro	generally	overestimated	climatic	sensitivity	of	woody	growth,	
especially	for	late-	successional	plant	functional	types.	The	model-	data	discrepancy	in	
growth sensitivity to climate was likely caused by underestimating WBPE in hot and 
dry years due to commonly used model assumptions on carbon use efficiency and al-
location. To our knowledge, this is the first study to constrain model predictions of in-
dividual	tree-	level	growth	sensitivity	to	Ca	and	climate	against	tropical	tree-	ring	data.	
Our results suggest that improving model processes related to WBPE is crucial to 
obtain better predictions of tropical forest responses to droughts and increasing Ca. 
More	accurate	parameterization	of	WBPE	will	likely	reduce	the	stimulation	of	woody	
growth by Ca rise predicted by biosphere models.
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woody growth

www.wileyonlinelibrary.com/journal/gcb
www.https://doi.org/10.1111/gcb.17075
mailto:
https://orcid.org/0000-0002-9402-9474
https://orcid.org/0000-0003-2613-2530
https://orcid.org/0000-0003-2752-6195
https://orcid.org/0000-0002-0038-6586
https://orcid.org/0000-0002-3076-3071
https://orcid.org/0000-0002-2876-4673
https://orcid.org/0000-0002-1764-6321
https://orcid.org/0000-0002-4454-8559
https://orcid.org/0000-0001-8100-1168
mailto:xx286@cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.17075&domain=pdf&date_stamp=2023-12-09


2 of 17  |     XU et al.

1  |  INTRODUC TION

Tropical forests are responsible for over half of global forest car-
bon sink (Pan et al., 2011). This large tropical carbon sink is predom-
inantly due to carbon fixation and woody biomass production of 
tropical	trees.	One	key	determinant	of	the	long-	term	integrity	of	this	
tropical forest carbon sink is the responses of tropical tree growth to 
the changing environment, such as increasing atmospheric CO2 con-
centration (Ca), gradual climate change, and increasing climatic vari-
ability (Hubau et al., 2020; McDowell et al., 2020; Pugh et al., 2019). 
However,	 it	 remains	 challenging	 to	 quantify	 and	 disentangle	 the	
sensitivity of tree growth to climatic and Ca	 changes	 (Anderson-	
Teixeira et al., 2022; Bauman et al., 2022; Peltier & Ogle, 2020). The 
limited knowledge on environmental sensitivity of tree growth con-
tributes	importantly	to	the	divergence	of	long-	term	tropical	carbon	
dynamics simulated by terrestrial biosphere models (TBMs) (Bonan 
& Doney, 2018; Huntingford et al., 2013; Sitch et al., 2008).

A challenge to constrain simulations of tropical tree growth and 
its environmental sensitivity is the scarcity of tree growth data under 
a wide range of abiotic and biotic conditions, including climatic vari-
ability,	long-	term	Ca	increase,	and	tree	size.	Tree	ring	data	can	assist	in	
filling	the	data	gap	by	providing	long-	term,	interannual	records	of	tree	
growth	(Anderson-	Teixeira	et	al.,	2022; Brienen et al., 2016; Zuidema 
et al., 2018). In addition, stable isotope signals in tree rings can further 
provide information on canopy photosynthesis and stomatal conduc-
tance as well as rooting depth (McCarroll & Loader, 2004), helping 
to interpret tree growth patterns. The increasing availability of trop-
ical	 tree-	ring	 data	 (Zuidema	 et	 al.,	2022) provides opportunities for 
benchmarking tropical forest dynamics and environmental sensitivity 
of	tropical	tree	growth	in	TBM	simulations.	While	tree-	ring	data	have	
been used to benchmark and calibrate TBMs (Anderegg et al., 2015; 
Jeong et al., 2021; Klesse et al., 2018; Rammig et al., 2015), these 
studies mostly aggregated data across trees and/or years to obtain 
stand-	level	 or	 long-	term	 average	 values	 of	 tree	 growth	 that	 can	 be	
matched with simulated values at the level of plant functional types 
(PFTs) produced by TBMs and dynamic global vegetation models 
(DGVMs). However, so far only few studies (Barichivich et al., 2021; 
Eckes-	Shephard	et	al.,	2021)	have	combined	 tree-	ring	data	and	out-
put of TBMs with dynamic vegetation demography (Fisher et al., 2018; 
Friend et al., 1997; Medvigy et al., 2009).

Model biases in environmental sensitivity of tree growth can arise 
from either photosynthesis or woody biomass production efficiency 
(WBPE), which includes the efficiency of converting gross primary 
productivity	 (GPP)	to	net	primary	productivity	 (NPP)	and	the	alloca-
tion	of	NPP	to	woody	growth.	Tree	growth	rates	in	mainstream	TBMs	
are generally determined by carbon availability from photosynthesis 
(Fatichi et al., 2019), using biomass production efficiency derived from 
biome-	specific	parameter	tuning	(Collalti	et	al.,	2020). The WBPE val-
ues applied in models are commonly insensitive to environmental fac-
tors (Fisher & Koven, 2020; Hickler et al., 2015; Xu & Trugman, 2021), 
leading to strong photosynthetic control of the interannual variability 
and	long-	term	trends	in	tree	growth.	However,	while	tree	growth	re-
quires	photosynthetic	carbon	gain,	it	 is	not	always	limited	by	carbon	

(Palacio et al., 2014; Sala et al., 2012). The decoupling of growth and 
photosynthesis is well manifested in vegetation responses to elevated 
CO2: there is mounting evidence for increased GPP under higher Ca 
from leaf level to ecosystem and landscape level, but woody growth 
shows more complex responses (Cernusak et al., 2013;	 Norby	 &	
Zak, 2011; Walker et al., 2021).	For	example,	a	recent	free-	air	CO2 en-
richment (FACE) experiment in a mature Eucalyptus forest in Australia 
found no apparent stem growth responses despite significant in-
creases in GPP (Jiang et al., 2020). Similarly, sensitivity of stem growth 
to temperature and moisture variations was also reported to differ 
from that of GPP (Cabon et al., 2022; Doughty et al., 2015; Zweifel 
et al., 2021). These empirical results suggest that a constant WBPE as 
currently implemented in most models is likely not realistic. Therefore, 
consideration of the environmental sensitivity of WBPE offers a criti-
cal, yet often overlooked, opportunity to constrain model predictions 
of woody growth.

In this study, we compare simulations from a recent version of 
Ecosystem Demography model 2.2 that includes plant hydraulics 
(ED2.2-	hydro,	 Xu	 et	 al.,	 2016, 2021)	 against	 tree-	ring	 width	 and	
isotope-	derived	intercellular	CO2 (Ci) data from a tropical seasonal 
forest at Huai Kha Khaeng, Thailand (Groenendijk et al., 2015; Van 
Der Sleen et al., 2015; Vlam et al., 2014). After evaluating model per-
formance to realistically represent contemporary forest structure 
and seasonality, we: (i) generate virtual tree ring series from model 
simulations	based	on	the	size	distribution	of	 in	situ	sampled	trees,	
(ii)	analyze	temporal	trends	observed	and	simulated	Ci	and	tree-	ring	
width,	and	(iii)	calculate	the	sensitivity	of	standardized	stem	growth	
(�SG) to historical Ca changes and climatic variability from both ob-
served	 and	 simulated	 tree-	ring	 data	 (Figure 1).	We	 then	 quantify	
the discrepancies between simulated environmental sensitivities of 
growth (Δ�SG)	against	those	estimated	from	tree-	ring	records,	which	
reflect model biases in the environmental sensitivities of WBPE. In 
all	 analyses	we	 considered	 two	 PFTs:	 an	 early-	successional	 and	 a	
late-	successional	life	history	strategy.

We used the above observations and analyses to test the fol-
lowing hypotheses: (H1) Modeled responses of Ci	 to	 long-	term	Ca 
increase are in line with empirical results from stable isotope in 
tree rings (Van Der Sleen et al., 2015); (H2) Modeled responses of 
stem	growth	to	long-	term	Ca increase are higher than observations 
from tree ring width data (Groenendijk et al., 2015; Van Der Sleen 
et al., 2015)	because	WBPE	in	ED2.2-	hydro	does	not	decline	under	
elevated Ca; (H3) Modeled responses of stem growth to interannual 
hydroclimatic	 variability	 are	 different	 from	 tree-	ring	 observations	
because of unrealistic climatic sensitivity of WBPE in the model.

2  |  MATERIAL S AND METHODS

2.1  |  Tree ring data and standardization

Tree ring data used in this study were collected in Huai Kha 
Khaeng	(HKK)	Wildlife	Sanctuary	in	Thailand	(15.60° N,	99.20° E).	
Vegetation	 in	HKK	 is	 characterized	 as	 a	 seasonal	 tropical	 forest	
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    |  3 of 17XU et al.

(Bunyavejchewin et al., 2009) with an annual mean precipitation 
of	1473 mm	and	 a	 4-		 to	6-	month	dry	 season	 from	November	 to	
April.	 Many	 species	 display	 dry	 season	 deciduousness	 or	 semi-	
deciduousness at HKK (Williams et al., 2008). Five species, Toona 
ciliata, Melia azedarach, Chukrasia tabularis, Afzelia xylocarpa, and 
Neolitsea obtusifolia were selected based on appearance of annual 
rings and relatively high local abundance. Roughly 100 trees above 
5 cm	diameter	at	breast	height	(DBH)	were	randomly	selected	and	
cored	per	species	using	5-	mm-	diameter	increment	borers	(Suunto,	
Finland and Haglöf, Sweden) in three to four directions per tree. 
This ecological tree ring sampling strategy includes individuals 
across extant diameter classes and provides more complete in-
formation on tree growth history within the tree community than 
sampling trees for climate reconstruction (dendroclimatology). 
Tree ring widths were measured using either a measuring table 
or	 high-	resolution	 scans	 with	 quality	 control	 by	 cross-	dating.	
More details of tree ring measurements can be found in Vlam 
et al. (2014).

The	 width	 of	 a	 tree	 ring	 is	 determined	 by	 (1)	 age-		 or	 size-	
dependent growth response that reflects tree ontogenetic changes 
and general microenvironmental change during plant life history and 
(2)	 growth	 responses	 to	 interannual	 and	 long-	term	 environmental	
changes.	Detecting	long-	term	growth	responses	to	CO2 and climate 
requires	 removing	 the	 age-		 or	 size-	dependent	 growth	 trend.	 This	
can	be	done	not	only	by	detrending	individual	tree-	ring	series	(e.g.,	
using	flexible	splines),	but	also	by	removing	general	growth-	size	re-
lationships	based	on	all	 tree-	ring	measurements	 together.	The	 lat-
ter	approach	 is	preferred	when	analyzing	growth	trends	over	time	

(Peters et al., 2015) and was implemented here. Specifically, we used 
regional	curve	standardization,	a	reliable	technique	to	detect	growth	
trends (Groenendijk et al., 2015; Peters et al., 2015). For each spe-
cies,	we	 therefore	 fitted	a	generalized	Michaelis–Menten	 function	
(Equation 1) to all historical basal area increment (BAI), calculated 
from individual tree ring record, and DBH:

where three parameters, BAImax, a, and b, determine the maximum 
value	 and	 curvature	 of	 growth-	size	 relationships.	 This	 equation	 is	
equivalent	to	the	commonly	used	three	parameter	generalized	logis-
tic	 growth	 function	 to	model	 growth-	size	 relationship	 (Groenendijk	
et al., 2015).	We	 also	 compared	 this	 approach	 to	 generalized	 addi-
tive model (GAM) fits which did not assume a monotonic increasing 
relationship.	 The	 two	 approaches	 produced	 consistent	 growth-	size	
relationships (Figure S1);	however,	GAM-	derived	growth	curves	were	
more variable for large DBH values due to data sparsity. Therefore, 
we used Equation (1)	to	standardize	growth	throughout	our	study.	The	
standardized	stem	growth	of	individual	i in year y (SGi,y) was then cal-
culated from observed BAI (BAIobs,i,y) and estimated BAI based on the 
general	growth-	size	relationship	(Equation 1) for the functional group 
of the individual tree (BAIest,i,y):

SG is positive when stem growth is higher than expected based on the 
general ontogenetic growth pattern and is negative when stem growth 
is lower than expected. By removing the ontogenetic effects, SG from 

(1)BAI = BAImax

DBHa

b + DBHa
,

(2)SGi,y = logeBAIobs,i,y − logeBAIest,i,y .

F I G U R E  1 Summary	of	research	goals,	hypotheses,	and	approaches	in	this	study.	First,	two	sets	of	model	simulations	with	different	
Ca configurations (CO2- inc and CO2- const) were benchmarked with contemporary forest structure and dynamics (Model benchmarking). 
Second,	simulated	tree	rings	were	extracted	from	individual	tree-	level	model	outputs	from	ED2.2-	hydro.	The	virtual	tree	coring	process	
was	constrained	by	the	tree	size	distribution	of	in	situ	tree	coring	to	reduce	sampling	bias.	Third,	temporal	trends	of	tree-	ring	width	and	Ci 
estimates	from	both	observed	and	simulated	tree	rings	were	calculated	with	the	consideration	of	tree	size	effect	to	evaluate	H1	and	H2.	To	
evaluate	H3,	tree-	ring	records	were	further	used	to	quantify	standardized	stem	growth	(SG)	sensitivity	to	Ca, average maximum temperature 
(TMAX), and dry season precipitation (PDRY) for both observations and simulations.
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different individual trees can be combined to evaluate temporal trends 
and environmental sensitivity in growth.

Carbon isotope ratios (δ13C) were measured for wood sample 
from	 selected	 trees	 in	 each	 species	 at	 8 cm	 and	 27 cm	DBH.	 The	
growth	ring	 in	which	 the	 tree	 reached	8	or	27 cm	DBH	was	 taken	
as midpoint, and the two growth rings before and after this mid-
point	were	also	sampled,	resulting	 in	a	5-	year	block	wood	sample.	
Cellulose was extracted for the wood samples and fed into an ele-
ment	analyzer	coupled	to	a	mass	spectrometer	(Sercon	Hydra	20-	20)	
at the Leicester Environmental Stable Isotope Laboratory, University 
of Leicester, UK. Estimates of intercellular CO2 (Ci in ppm) were cal-
culated from δ13C (Van Der Sleen et al., 2015).

2.2  |  Model description and simulation 
configuration

Ecosystem Demography v2.2 (ED2.2) is a TBM that tracks veg-
etation	 demographic	 dynamics	 and	 fine-	scale	 carbon,	 water,	 and	
energy balances within ecosystems (Longo et al., 2019; Medvigy 
et al., 2009). In ED2.2, plant individuals with the same PFT, similar 
size,	and	disturbance	history	are	grouped	into	cohorts.	Vital	demo-
graphic processes such as growth, mortality, and recruitment are 
simulated	at	cohort	level	at	monthly	time-	step,	based	on	the	coupled	
carbon–water–energy	dynamics	simulated	at	sub-	hourly	time-	step.	
To	simulate	the	seasonal	forest	at	HKK,	we	used	ED2.2-	hydro,	a	ver-
sion	of	the	model	that	has	cohort-	level	plant	hydraulics,	which	can	
better	capture	the	diversity	in	seasonally	dry	tropical	forest	(Smith-	
Martin et al., 2020; Xu et al., 2016)	and	has	been	parameterized	and	
benchmarked across a tropical moisture gradient (Xu et al., 2021). 
The	 stomatal	 model	 in	 ED2.2-	hydro	 was	 based	 on	 the	 optimal-
ity theory (Katul et al., 2010) and included adaptations of marginal 
water-	use	 efficiency	 under	 changes	 in	 water	 potential	 and	 CO2 
(Manzoni	et	al.,	2013).	ED2.2-	hydro	also	implemented	a	light-	driven	

plasticity of key leaf functional traits, which is critical to simulating 
realistic	forest	size	structure	(Xu	et	al.,	2021).

The	carbon	allocation	to	aboveground	woody	growth	in	ED2.2-	
hydro is determined by a series of processes, including leaf and fine 
root turnover, tissue maintenance respiration, reproductive in-
vestment,	 growth	 respiration,	 and	 aboveground-	to-	belowground	
partitioning.	 None	 of	 the	 model	 parameters	 controlling	 these	
processes (e.g., leaf turnover rate, reproductive allocation, etc.) 
are sensitive to Ca. In fact, most parameters are constant except 
that maintenance respiration parameters are dependent on tem-
perature.	 Nutrient	 limitation	 influences	 carbon	 allocation	 and	
regulates tropical forest growth (Cunha et al., 2022; Fleischer 
et al., 2019; Waring et al., 2019; Wright, 2019). ED2.2 can esti-
mate	nutrient	 limitation	on	tree	growth	(Levy-	Varon	et	al.,	2019; 
Medvigy et al., 2019; Moorcroft et al., 2001); however, we did not 
enable	 nutrient	 limitation	 in	 this	 study	 because	 nutrient-	related	
parameters and local biogeochemistry information were largely 
unknown.	Cohort-	level	tree	mortality	is	modeled	as	a	function	of	
growth and PFT (Camac et al., 2018).

We	 defined	 two	 PFTs	 along	 a	 general	 resource-	use	 strategy	
axis to represent the diversity at the HKK site (Table 1).	The	early-	
successional	 PFT	 (PFT-	ES)	 was	 characterized	 by	 acquisitive	 func-
tional traits such as lower wood density, higher leaf turnover rate, 
higher photosynthetic capacity and dark respiration, higher hydrau-
lic efficiency, and lower hydraulic safety compared with the more 
conservative	 late-	successional	PFT	 (PFT-	LS).	Wood	density	 values	
were	based	on	reported	range	of	species	at	HKK	(Nock	et	al.,	2009) 
and was used to assign PFT to the five study species while another 
key	trait	in	ED2.2-	hydro,	leaf	turnover	rate,	was	parameterized	using	
default	values	in	ED2.2-	hydro	that	is	representative	of	the	range	of	
leaf longevity in the tropics. Other ecophysiological parameters such 
as	parameters	for	the	Farquhar	photosynthesis	module	were	derived	
from	wood	density	and	leaf	longevity	based	on	previous	trait	meta-	
analysis (Longo et al., 2020; Xu et al., 2016). Height measurements 

Parameters PFT- ES PFT- LS

Species Toona ciliate Chukrasia tabularis

Melia azedarach Afzelia xylocarpa

Neolitsea obtusifolia

Wood	density	(g cm−3) 0.5 0.75

Leaf turnover rate (year−1) 1.5 0.5

Specific leaf area (m2 kgC−1) 25.8 16.1

Vc,max (μmol m
−2 s−1, 15°C)a 27.9 22.0

Rdark (μmol m
−2 s−1, 15°C) 0.40 0.32

Leaf turgor loss point (MPa) −1.56 −2.18

Xylem conductivity (kgH2O m−2 s−1) 0.035 0.016

Xylem P50 (MPa) −2.16 −3.25

b1Ht (dimensionless)b 1.59 1.57

b2Ht (dimensionless)b 0.46 0.44

aJmax:Vc,max	ratio	is	1.797	at	15°C.
bHeight = exp(b1Ht + b2Ht × loge(DBH)).

TA B L E  1 Key	functional	trait	
parameterization	for	the	early-	
successional	plant	functional	type	(PFT-	
ES)	and	late-	successional	plant	functional	
type	(PFT-	LS)	in	ED2.2-	hydro	for	Huai	Kha	
Khaeng.
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of	all	sampled	trees	were	obtained	using	a	digital	hypsometer	(Nikon	
Forestry 550) and were used to construct height allometry relation-
ships (Table 1).

We	 conducted	 “near-	bare-	ground”	 simulations,	 that	 is,	 model	
initialization	with	a	few	small	seedlings,	since	forest	stand	structure	
in	pre-	industrial	era	at	HKK	was	unknown.	The	simulation	started	
in	the	year	1600	with	0.5 m	tall	seedlings	at	a	stem	density	of	0.1	
individuals	per	meter	squared	for	both	PFTs.	We	ran	the	simulation	
to 2010, the year of in situ tree ring sampling, forced by monthly 
historical atmospheric CO2 concentrations compiled by the Institute 
for Atmospheric and Climate Science at Eidgenössische Technische 
Hochschule	in	Zürich,	Switzerland.	In	the	simulation,	we	cycled	cli-
mate data from the Princeton Global Meteorological Forcing (PGMF) 
0.25°	3-	hourly	reanalysis	dataset	(Sheffield	et	al.,	2006) that spans 
1901	to	2012.	The	raw	PGMF	data	were	corrected	using	long-	term	
in	 situ	observations	 from	 the	nearby	Nakhon	Sawan	weather	 sta-
tion. For each month, an additive correction factor was applied to 
temperature and relative humidity to ensure that the corrected 
reanalysis data had the same monthly seasonality as the station 
data. Similarly, a multiplicative correction factor was applied to pre-
cipitation to reduce biases in precipitation. Vapor pressure deficit 
was then calculated from the corrected temperature and relative 
humidity.	The	first	250 years	(before	1850)	was	discarded	as	model	
spin-	up.	We	also	conducted	another	“near-	bare-	ground”	simulation	
with the same configuration except that Ca	was	 fixed	 at	 285 ppm	
after 1850. This simulation was labeled as “CO2- const”	while	the	pre-
vious simulation was labeled as “CO2- inc”	(Figure 1). The difference 
between the two simulations reflected the net effect of historical Ca 
increase on tree growth in our model. Historical disturbance events 
such as storm and fire can also shape the sampling distribution and 
growth patterns in tree rings (Baker et al., 2005; Vlam et al., 2017) 
and model simulations. However, the exact timing and magnitude of 
those disturbances were unknown and thus could not be included in 
model simulations and we used a constant disturbance rate of 0.5% 
per year for both simulations based on the rainfall regime at HKK.

2.3  |  Evaluation of simulated contemporary forest 
structure and seasonality

Simulated forest structure was benchmarked against forest census 
data	at	the	50 ha	HKK	plot	 (Bunyavejchewin	et	al.,	2009). Average 
basal	 area	 and	 stem	 density	 of	 different	 DBH	 size	 classes	 from	
simulations	 in	1990	and	1991	were	calculated	and	compared	with	
field surveys conducted at the same time. We also compared simu-
lated aboveground biomass with reported values for the site (Chave 
et al., 2008; Zuleta et al., 2023), which however showed large varia-
tion across studies due to uncertainty in allometry.

Given the strong seasonality of rainfall of the site, we further 
examined simulated GPP seasonality to benchmark model perfor-
mance of seasonal water stress. This benchmarking can also shed 
lights upon the model's performance on GPP responses to interan-
nual variability. Since no local carbon flux data were available, we 

compared average GPP seasonality with the flux tower data from a 
mixed	deciduous	forest	at	Mae	Klong	(14°34′34.2″ N,	98°50′37.2″ E),	
which	is	about	160 km	to	the	south	of	HKK.	Mae	Klong	has	an	annual	
rainfall of 1650, which is ~200 mm	higher	 than	HKK,	and	a	strong	
rainfall seasonality similar to HKK (Huete et al., 2008). The flux tower 
sits on a mixed deciduous forest despite the forest is younger at Mae 
Klong.	We	extracted	monthly	GPP	averaged	over	2001–2004	from	
Huete et al. (2008) and compared the seasonality with simulated 
monthly GPP over the same period.

It should be noted that model parameters were not tuned or cal-
ibrated by either the observed forest structure or flux tower GPP. 
The evaluation aims to demonstrate our model configuration can 
generate reasonable forest structure and seasonality.

2.4  |  Extracting tree rings from simulations

Although in situ tree ring data at HKK covered growth history of a 
wide	range	of	tree	sizes	(5–150 cm),	the	size	distribution	of	the	sam-
pled trees was different from that of the whole forest. Simply com-
paring the full growth history of all individuals from simulations with 
observations	would	suffer	from	biases	due	to	the	different	size	dis-
tribution (Jeong et al., 2021). To make a fair comparison, we selected 
simulated tree cohorts present at the end of 2010 using a strati-
fied	sampling	strategy	to	generate	a	similar	tree	size	distribution	as	
in situ tree ring collection for each PFT (Figure S2). The in situ tree 
ring	data	contained	151	trees	for	PFT-	ES	and	307	trees	for	PFT-	LS.	
Based	on	the	observed	DBH	distribution,	47	cohorts	were	selected	
for	PFT-	ES	and	86	cohorts	were	selected	for	PFT-	LS	from	the	out-
put of CO2- inc	simulation	while	the	cohort	sample	size	was	44	for	
PFT-	ES	and	65	for	PFT-	LS	from	the	output	of	CO2- const simulation. 
Kolmogorov–Smirnov	tests	implied	that	the	size	distribution	of	simu-
lated	cohorts	is	not	different	for	the	size	distribution	of	in	situ	data	
for	either	PFT-	ES	or	PFT-	LS.

To	 back-	trace	 individual	 cohort	 growth	 history	 from	 standard	
model	 output,	 we	 generated	 and	 tracked	 a	 unique	 label	 for	 each	
new cohort in the model. In a model simulation, two cohorts can 
be	 fused	 if	 they	are	very	 similar	 in	 size	and	microenvironment	 for	
the sake of computational efficiency. Also, a single cohort splits 
into two once its leaf area index exceeds a certain threshold. The 
cohort splitting helps to avoid biases due to the model assumption 
that leaves within a cohort receive the same amount of light. During 
cohort fusion, the growth history of the smaller cohort (often less 
abundant) is discarded. During cohort splitting, each new cohort is 
assigned a new label that is linked to the original label. In this way, 
we	could	extract	a	unique	full	growth	record	for	each	extant	cohort	
at any point of a simulation that is most consistent with the observed 
tree-	ring	sampling.

For	each	simulated	tree	ring,	we	also	calculated	the	average	sub-	
hourly Ci weighted by GPP within each growing season. We then 
extracted the average Ci	for	the	5–10 cm	and	25–30 cm	rings,	which	
are	directly	comparable	to	the	observed	8	and	27 cm	Ci values de-
scribed in Section 2.1.
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6 of 17  |     XU et al.

2.5  |  Temporal trends of Ci and stem growth

We compared the temporal trends of Ci and growth for each PFT 
from	both	observed	and	simulated	tree-	ring	records	using	ordinary	
least	 squares	 (OLS)	 regression	 to	evaluate	hypothesis	H1	and	H2.	
We	 removed	 size	 effect	when	 calculating	 trends	 since	 size	 effect	
arising from various ontogenetic and microenvironmental sources 
can bias temporal signals (van der Sleen et al., 2017). In the regres-
sion analysis for Ci,	we	modeled	size	as	a	categorical	variable	which	
influences the mean of Ci but has no interactive effect with time, 
since	there	were	only	two	size	categories	for	Ci data.

We	estimated	the	nonlinear	size	dependence	of	tree	growth	by	
fitting	the	generalized	Michaelis–Menten	function	 (as	described	 in	
Equation 1) to the observed and simulated growth records, respec-
tively. We then calculated the temporal trends of SG, which resulted 
from	growth	deviations	from	the	average	growth-	size	relationships	
(as described in Equation 2). We also conducted the same trend anal-
ysis	using	GAM	to	standardize	stem	growth	to	examine	whether	the	
trend	analysis	was	influenced	by	the	choice	of	growth	standardiza-
tion.	We	further	conducted	a	size	class-	specific	trend	analysis,	fol-
lowing Groenendijk et al. (2015),	 to	 investigate	whether	 long-	term	
growth	 trends	 depended	 on	 tree	 size.	We	 used	 a	 20 cm	 window	
to	 ensure	 enough	 sampling	 for	 each	 size	 class	 from	10	 to	 110 cm	
DBH.	We	assessed	the	likelihood	of	“juvenile	selection	bias”,	which	
could	lead	to	artificial	negative	growth	trend,	using	a	90%-	quantile	
regression.

2.6  |  Analysis of growth sensitivity to 
Ca and climate

We estimated the sensitivity of SG to Ca and key climatic factors, 
using	the	following	equation:

where Ca indicates annual mean atmospheric concentration, PDRY 
indicates dry season total rainfall of the current year, and TMAX in-
dicates annual mean maximum daily temperature. The two climatic 
variables were selected based on Vlam et al. (2014), which suggested 
dry season precipitation and maximum temperature were more cor-
related with growth at HKK. Here, dry season was defined as pre-
vious	year	November	to	current	year	April.	Ca	was	log-	transformed	
following Walker et al. (2021) and SG	 was	 also	 log-	transformed	
growth (as indicated in equation 2). For the CO2- const simulation, 
we still used realistic historical atmospheric CO2 concentration as 
Ca, expecting the regression coefficient would be nonsignificant. 
Although ontogenetic effect was removed when calculating SG, we 
applied	 the	 regression	 for	 large	 (DBH ≥ 60 cm)	 and	 relatively	 small	
(DBH < 60 cm)	trees	because	SG	sensitivity	to	environment	can	de-
pend	on	 size	 classes	which	 have	 different	microenvironment.	 The	
DBH threshold was chosen because growth trends were more 

consistent	 after	60 cm	 in	observations	during	our	 size	 class	analy-
sis. The regression coefficients and confidence interval for Ca, PDRY 
and TMAX (�SG,Ca

, �SG,PDRY, and �SG,TMAX) were extracted and compared 
between	observation	and	simulations	across	PFT	and	size	groups	to	
evaluate hypotheses H2 and H3. We did not conduct the sensitivity 
analysis for Ci because observed Ci	 data	was	5-	year	 average,	 and	
the temporal resolution was too coarse to robustly investigate re-
sponses to interannual variability in climate.

We	 further	 calculated	 the	 model-	data	 discrepancy	 in	 stem	
growth sensitivity as the difference between �SG derived from sim-
ulated tree rings and the corresponding sensitivity derived from 
in situ tree rings:

Positive or negative Δ�SG values imply model predicted higher or lower 
stem growth sensitivity compared with tree rings, respectively. When 
calculating Δ�SG,Ca

 (Equation 4.1), we subtracted �SG,Ca
 from the CO2- inc 

simulation by �SG,Ca
 of the CO2- const simulation because any apparent 

Ca sensitivity from the CO2- const simulation must come from the col-
linearity between historical Ca trend and transient decadal dynamics 
in model simulations (e.g., forest recovering from earlier disturbances). 
The transient dynamics was less of a concern for PDRY and TMAX 
since they had very weak temporal trend compared with interannual 
variability. Therefore, the correction was not necessary. We estimated 
the uncertainty of all ΔβSG values by bootstrapping the distribution of 
βSG values derived from OLS regressions. Calculation of growth sen-
sitivities	was	 conducted	 for	 all	 combinations	 of	 two	 size	 categories	
(<60 cm,	≥60 cm)	and	two	PFTs.

The rate of stem growth is the product of GPP and WBPE. 
Therefore, Δ�SG can arise from discrepancies in either GPP or WBPE 
sensitivities. In this study, we focused on WBPE sensitivities and 
compared Δ�SG,Ca

 in our study with reported WBPE responses to el-
evated CO2 at the EucFACE experiment in Australia (extended fig. 7 
from Jiang et al., 2020). In particular, we calculated the Δ�SG,Ca

 value 
if the observed WBPE response from the FACE experiment would 
have	been	included	in	our	model.	No	field-	based	estimates	of	WBPE	
sensitivity to interannual variation in temperature and precipita-
tion	were	available	for	tropical	forests	and	therefore	a	quantitative	
evaluation of Δ�SG,PDRY and Δ�SG,TMAX was not possible. We assumed 
model biases in GPP sensitivities were generally negligible because 
TBMs based on similar photosynthesis modules largely captured ob-
served GPP responses to Ca and climatic variability (Piao et al., 2020; 
Walker et al., 2021). The assumption was indirectly evaluated by 
comparing	the	long-	term	Ci trend between model and simulation (for 
Ca sensitivity) as well as GPP seasonality between model and the 
Mae Klong flux tower (for water sensitivity).

In analyses of trends and sensitivity, we only used observations 
and	simulations	after	1950	when	the	climate	records	are	more	avail-
able and trustworthy. All statistical analysis was conducted with the 

(3)

SG = �SG,Ca
logeCa + �SG,PDRYPDRY + �SG,TMAXTMAX + constant,

(4.1)ΔβSG,Ca
=
(

βSG,Ca,CO2−inc − βSG,Ca,CO2−const

)

− βSG,Ca,OBS,

(4.2)ΔβSG,PDRY = βSG,PDRY,CO2−inc − βSG,PDRY,OBS,

(4.3)ΔβSG,TMAX = βSG,TMAX,CO2−inc − βSG,TMAX,OBS.
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    |  7 of 17XU et al.

statsmodels 0.13.2 package (Seabold & Perktold, 2010) in Python 
3.10.

3  |  RESULTS

3.1  |  Benchmarking simulated contemporary forest 
structure and seasonality

The	field	census	at	HKK	50 ha	plot	in	the	early	1990s	(Bunyavejchewin	
et al., 2009) reported a mean (±SD)	basal	area	of	28.64 ± 5.7 m2 ha−1 
for trees >10 cm	DBH,	 20.33 ± 5.43 m2 ha−1	 for	 ≥30 cm	 trees,	 and	
5.57 ± 4.46 m2 ha−1	 for	≥100 cm	 trees.	Both	 the	CO2- inc and CO2- 
const simulations generated basal area values within the reported 
range; however, the CO2- inc simulation had higher basal area 
values	 closer	 to	 field	 observations,	 especially	 for	 ≥100 cm	 trees	
(5.95 m2 ha−1, Figure 2a).	Stem	densities	in	the	10–30,	30–100,	and	
>100 cm	size	classes	were	438,	83,	and	5.6	individuals	per	hectare	
in the field data. The corresponding stem densities in the CO2- inc 
simulation	were	277.4,	87.4,	and	6.7	individuals	per	hectare	respec-
tively	indicating	underestimation	of	the	density	of	small	trees	(10–
30 cm).	The	CO2- const	simulation	had	stem	densities	of	262.0,	84.4,	
and	3.4	individuals	per	hectare	respectively	in	the	three	size	classes	
indicating	underestimation	of	the	density	of	both	small	(10–30 cm)	
and	 large	 (≥100 cm)	 trees	 (Figure 2b). The predicted aboveground 
biomass	 was	 344 Mg ha−1 in the CO2- inc simulation, which was 
higher	than	the	value	of	264 Mg ha−1 in the CO2- const simulation as 
expected. Previous studies (Chave et al., 2008; Zuleta et al., 2023) 
reported	values	ranging	from	200	to	300 Mg ha−1 with large uncer-
tainties depending on height and biomass allometry used given that 
no local biomass allometry was available. In particular, the lower 
end estimate was based on allometry fitted with three dry forest 

stands	with	a	maximum	DBH	of	63.4 cm	(Chave	et	al.,	2005), which 
does not represent the HKK site well.

ED2.2-	hydro	predicted	a	strong	seasonality	in	GPP	(Figure 2c) 
due to stomatal and phenological responses to rainfall seasonality. 
GPP from the CO2- inc simulation peaked in the early wet season 
(June–July,	 ~11 gC m−2 day−1) and was lowest in late dry season 
(March–April).	The	CO2- const simulation showed very similar sea-
sonality with consistently lower GPP values. Flux tower data at 
Mae Klong exhibits weaker GPP seasonality with a similar timing 
of high and low values because the forest contains a larger frac-
tion of evergreen species than the main study forest, which is al-
most fully deciduous. Mean annual GPP of the Mae Klong data 
was	 7.53 gC m−2 day−1 while the CO2- inc simulation predicted a 
value	of	7.01 gC	m−2 day−1 and the CO2- const simulation predicted 
5.65 gC m−2 day−1, consistent with its underestimation of basal 
area and stem density (Figure 2a,b).

3.2  |  Temporal trends of Ci and growth

The	isotope-	derived	Ci data from observed tree rings increased from 
1950	to	2010	at	a	 rate	of	80–95 ppm	per	100 years	 for	both	PFTs	
(Figure 3). Ci trend of the CO2- inc simulation was slightly lower than 
the observed trend, which nevertheless fell inside the confidence 
interval of the observed Ci trend. In contrast, the Ci trend of the 
CO2- const simulation, in which atmospheric CO2 concentration was 
held	constant	at	285 ppm,	was	not	significantly	different	from	zero	
for	PFT-	ES	and	slightly	negative	for	PFT-	LS.	Canopy	stomatal	con-
ductance also declined in CO2- inc simulation but remained relatively 
constant in the CO2- const simulation (Figure S3f). Overall, the com-
parison	suggests	that	our	model	could	capture	long-	term	CO2 effect 
on	leaf-	level	gas	exchanges.

F I G U R E  2 Comparison	of	contemporary	ecosystem-	level	variables	between	simulations	and	various	independent	observations.	(a,	b)	
Stand	basal	area	and	stem	density	across	tree	size	groups	from	ground	census	data	at	the	Huai	Kha	Khaeng	(HKK)	50 ha	forest	plot	and	
ED2.2-	hydro	simulations	(white	bars)	driven	by	different	Ca	scenarios	(colored	bars).	Error	bars	reflect	standard	deviation	of	basal	area	
across	subplots	within	the	HKK	plot.	(c)	Average	GPP	seasonality	from	ED2.2-	hydro	simulations	and	the	Mae	Klong	flux	tower	site	located	in	
a mixed deciduous forest similar to HKK. Colored dots indicate the mean annual GPP from the three different data sources.
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Basal area increment from tree ring observations increased rap-
idly	with	tree	DBH	until	about	40–50 cm	for	both	PFT-	ES	and	PFT-	LS,	
beyond which average BAI started to level off (Figure 4a,b). The 
upper	value	of	BAI	was	about	75 cm2 year−1	for	the	PFT-	ES	and	about	
55 cm2 year−1	 for	 PFT-	LS.	 BAI	 from	 the	 CO2- inc simulation closely 
matched	 the	 BAI–size	 relationship	 from	 tree	 rings,	 suggesting	 the	
model	can	capture	the	general	growth-	size	relationship.	The	simula-
tion	underestimated	growth	of	trees	smaller	than	50 cm	for	both	PFTs	
and	overestimated	growth	 for	 trees	bigger	 than	60 cm	 for	PFT-	ES.	
BAI from the CO2- const simulation was consistently lower than the 
observations	by	about	10%–30%.	Both	simulations	predicted	higher	
growth	rates	for	the	smallest	trees	(DBH < 15 cm)	of	PFT-	LS.

Standardized	stem	growth	of	observed	tree	rings	(Figure 4c,d) 
showed significant negative trends for both PFTs with a more neg-
ative	trend	for	PFT-	LS,	which	is	consistent	with	previous	analyses	
at the site (Groenendijk et al., 2015; Van Der Sleen et al., 2015). In 
contrast, simulated tree ring records showed significantly positive 
growth	 trends	 for	PFT-	ES	 in	 both	CO2- inc and CO2- const. Using 
alternative	stem	growth	standardization	methods	generated	com-
parable growth trends (Figure S4). The positive growth trend from 
the CO2- const simulation was unexpected since no CO2 increase 

was included. The transient model behavior was likely caused by 
a	drought	period	around	1980	in	the	meteorological	forcing	that	
led	to	decline	in	productivity	and	a	subsequent	recovery	in	model	
simulations (Figure S3). However, the positive growth trend in 
CO2- inc is larger than the trend in CO2- const (Figure 4c), imply-
ing an overall growth boosting effect of higher CO2 in the model. 
For	PFT-	LS,	 the	growth	 trend	 in	CO2- const was not significantly 
different	 from	 zero	 as	 expected,	 implying	 a	weaker	 response	 to	
the	 1980	 dry	 period	 due	 to	 its	more	 conservative	 and	 resistant	
hydraulic	traits	compared	with	PFT-	ES	(Table 1). Interestingly, the 
growth	trend	of	PFT-	LS	in	CO2- inc was also nonsignificant, which 
was	 due	 to	 a	 strong	 size-	dependent	 growth	 response	 to	 CO2 
(Figure 4e,f) as explained below.

The	 growth	 trends	 varied	 across	 size	 classes	 (Figure 4e,f). In 
observed tree rings, growth trends were negative for <60 cm	trees	
and	 were	 nonsignificant	 (PFT-	ES)	 or	 positive	 (PFT-	LS)	 for	 ≥60 cm	
trees.	Simulated	tree	rings	also	showed	a	positive	size	dependence	
of	 growth	 trends	 until	 50–60 cm	 size	 classes	 although	 the	 growth	
trends values were generally higher than the corresponding ob-
served	values.	It	is	also	noteworthy	that,	for	≥60 cm	of	PFT-	LS,	the	
simulated growth trends became comparable with observed growth 
trends. Therefore, the difference in overall growth trends (Figure 4d) 
between observation and simulations was mainly caused by small 
trees.	These	size-	specific	trends	did	not	change	when	an	alternative	
growth	standardization	method	was	used	(Figure S4). Furthermore, 
the growth trends from observed tree rings remained negative when 
we	used	the	90th	quantile	regression	and	the	relative	relationships	
between observed and simulated growth trends also remained the 
same (Figure S5). Therefore, the negative trend was unlikely to be 
caused	by	“juvenile	selection	bias”	(cf.	Groenendijk	et	al.,	2015).

3.3  |  Sensitivity of standardized stem growth to 
Ca and climate

The	 partial	 sensitivity	 of	 standardized	 stem	 growth	 to	 Ca (�SG,Ca
) 

showed consistent patterns with the growth trend analysis across 
PFT	and	size	classes.	For	PFT-	ES,	�SG,Ca

	derived	from	observed	tree-	
ring data was negative for both <60 cm	and	≥60 cm	trees,	 respec-
tively, while �SG,Ca

	was	positive	for	all	size	classes	in	both	the	CO2- inc 
simulation and CO2- const simulations (Figure 5a,b). As mentioned 
above, the positive �SG,Ca

 in the CO2- const simulation in part reflected 
a	transient	temporal	trend	of	PFT-	ES.	This	also	implies	that	�SG,Ca

 of 
the CO2- inc simulation was likely overestimated and the difference 
between the CO2- inc and CO2- const values was a better estimate of 
�SG,Ca

 for our model. In contrast, for PFT Late (Figure 5c,d), the CO2- 
const �SG,Ca

	 was	 not	 significantly	 different	 from	 zero	 as	 expected,	
while the in situ and CO2- inc �SG,Ca

 was negative for <60 cm	trees	but	
positive	for	≥60 cm	trees.

The growth sensitivity to climate varied more between the two 
PFTs	than	across	tree	size	classes.	 In	situ	tree-	ring	data	showed	
significantly positive growth sensitivities to dry season rainfall 
(�SG,PDRY  )	 for	 both	 <60 cm	 and	 ≥60 cm	 size	 classes	 of	 PFT-	ES	

F I G U R E  3 Temporal	trends	of	Ci based on observed and 
simulated	tree	ring	data	from	1950	to	2010	for	two	plant	functional	
types:	early-	successional	(PFT-	ES,	a)	and	late-	successional	(PFT-	LS,	
b).	Tree	size	effect	was	removed	when	estimating	the	trend	values.
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    |  9 of 17XU et al.

(Figure 5e,f).	In	contrast,	the	growth	of	PFT-	LS	trees	was	not	sen-
sitive to interannual variability in dry season rainfall (Figure 5g,h). 
Similarly, growth sensitivities to maximum temperature (�SG,TMAX) 
were	significantly	negative	for	PFT-	ES,	but	was	nonsignificant	for	
PFT-	LS	 (Figure 5i–l). The CO2- inc simulation generated signifi-
cantly positive �SG,PDRY and negative �SG,TMAX	 values	 for	 all	 PFT-	
size	classes	except	for	the	�SG,PDRY	of	≥60 cm	PFT-	ES	trees,	which	
was nonsignificant (Figure 5e–l). The magnitude of simulated 
growth climatic sensitivity generally agreed with the values de-
rived	 from	 in	 situ	 tree-	ring	data	 for	PFT-	ES	although	 there	was	
overestimation for �SG,TMAX. Meanwhile, the model greatly over-
estimated	growth	climatic	sensitivity	for	PFT-	LS.	The	CO2- inc and 
CO2- const simulations generated comparable �SG,PDRY and �SG,TMAX 
values suggesting higher Ca did not change growth responses to 
temperature and moisture in the model. Similar to our trend anal-
ysis results, the estimated environmental sensitivities of growth 
showed similar values and relationships across observations and 

models,	 when	 alternative	 growth	 standardization	 method	 was	
used (Figure S6).

Based on Equation (4.1), we calculated the discrepancies in sensi-
tivities	between	model	and	tree-	ring	data.	We	found	that	differences	
in growth sensitivity to Ca (Δ�SG,Ca

)	 were	 positive	 for	 all	 PFT-	size	
classes with more positive values for <60 cm	trees	 (Figure 6a), im-
plying	higher	sensitivities	from	our	model	than	from	tree-	ring	data.	
Yet, all Δ�SG,Ca

 estimates had large uncertainties. In comparison, the 
EucFACE experiment reported ~21% reduction in WBPE under 38% 
Ca increase in a more open Australian mature Eucalyptus forest. This 
WBPE	response	 is	equivalent	to	a	Δ�SG,Ca

 of 0.81, a value close to 
the estimated Δ�SG,Ca

	 for	big	PFT-	LS	trees	with	comparable	uncer-
tainty (Figure 6a), suggesting that the lower observed WBPE under 
elevated CO2 accounts for a large share of model biases in growth 
sensitivity	for	late-	successional	canopy	trees.

In	similar	fashion,	we	also	quantified	the	model	biases	in	growth	
sensitivities to climate (Figure 6b,c).	For	both	size	classes	of	PFT-	LS,	

F I G U R E  4 Size	dependence	and	
temporal trends in observed and 
simulated	tree-	ring	growth	records	from	
1950	to	2010	for	the	two	plant	functional	
types:	early	successional	(PFT-	ES)	and	late	
successional	(PFT-	LS).	(a,	b)	Average	basal	
area	increment	(BAI)	changes	with	size,	
estimated	from	generalized	Michaelis–
Menten model fitting. (c, d) Temporal 
trends	of	standardized	stem	growth	(SG).	
(e,	f)	Standardized	stem	growth	(SG)	
trends	for	different	tree	size	classes.	For	
panels	(c)–(f),	the	unit	denotes	the	trend	
in	standardized	growth	as	defined	in	
Equation (2).	A	value	of	1	per	100 years	
indicates growth has increased by 2.72 
times	in	a	century	or	1.64	times	from	
1950	to	2010.	Similarly,	a	value	of	−1	per	
100 years	indicates	growth	in	2010	is	1.64	
times	less	than	growth	in	1950.

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17075 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [12/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 17  |     XU et al.

Δ�SG,PDRY was significantly positive and Δ�SG,TMAX was significantly 
negative.	In	contrast,	for	PFT-	LS,	Δ�SG,PDRY was not significantly dif-
ferent	from	zero	for	PFT-	ES.	Δ�SG,TMAX	of	≥60 cm	PFT-	ES	trees	was	
comparable	to	the	value	of	PFT-	LS	but	had	large	uncertainty	while	
Δ�SG,TMAX for <60 cm	PFT-	ES	 trees	was	 small	 and	not	 significantly	
different	from	zero.

4  |  DISCUSSION

4.1  |  Reduced woody biomass production 
efficiency under long- term Ca increase

Previous benchmarking of TBMs' sensitivity to elevated Ca is mostly 
based on manipulative experiments that do not extend beyond the 

decadal time scale (Fleischer & Terrer, 2022; Hickler et al., 2015). Our 
study	provides	novel	model	constraints	based	on	tree-	ring	data	that	
records	multi-	species	growth	responses	to	gradual	Ca increases over 
60 years.	Trend	analysis	over	 simulated	 and	observed	 tree	 ring	data	
supported	hypothesis	H1	and	H2	that	ED2.2-	hydro	could	capture	Ci 
trend but not growth trends because a positive CO2 effect on pho-
tosynthesis	 is	 included	 in	 its	photosynthesis-	stomata	module,	which	
improves	growth	under	a	source-	driven	growth	scheme.	Furthermore,	
we found that model overestimation of the stem growth trend at Huai 
Kha Khaeng can be largely explained by a high and invariant WBPE. 
These results lend further support to limited CO2	fertilization	effects	
on tropical vegetation biomass production (Fleischer et al., 2019; 
Fleischer & Terrer, 2022; Jiang et al., 2020; Terrer et al., 2019). In par-
ticular,	 the	magnitude	of	WBPE	decline	for	≥60 cm	 late-	successional	
trees (~50% of total biomass in simulation) is comparable to observed 

F I G U R E  5 Partial	sensitivities	of	standardized	stem	growth	(SG)	to	(a–d)	the	logarithm	of	atmospheric	CO2 concentration (Ca),	(e–h)	
dry	season	rainfall	(PDRY),	and	(i–l)	annual	mean	maximum	daily	temperature	(TMAX).	All	sensitivities	are	shown	for	both	observed	and	
simulated	tree-	ring	records.	Each	column	of	panels	presents	regression	analyses	using	Equation (3) for a combination of plant functional 
type	and	size	class	(indicated	in	column	label).	The	units	indicate	changes	in	standardized	growth,	defined	in	Equation (2), per unit change 
in Ca	(log-	transformed),	PDRY,	and	TMAX.	Error	bars	in	each	panel	represent	95%	confidence	interval	from	OLS	regression.	To	reasonably	
estimate growth sensitivity to Ca for the CO2- const simulation, we used historical atmospheric CO2 concentration in the regression analysis 
although CO2	was	set	as	constant	at	285 ppm	(see	Section	2.6 for details).
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WBPE decline at the EucFACE experiment (Jiang et al., 2020) while the 
estimated	WBPE	decline	for	early-	successional	trees	and	<60 cm	trees	
was even stronger. This novel model constraint from tree ring data 
suggested absolute WBPE should have decreased from 0.2 to 0.15 (or 
~25% relative decrease) under historical Ca increase in our study period 
(Figure 7a). A simple extrapolation of our results to the recently es-
tablished	AmazonFACE	experiments,	which	plans	to	raise	Ca	from	410	
to	600 ppm	(Grossman,	2016), would predict a relative WBPE reduc-
tion of 25% (±30%)	for	≥60 cm	late-	successional	trees,	48%	(±39%)	for	
≥60 cm	early-	successional	trees,	and	close	to	70%	(±10%) for <60 cm	
trees of both PFTs. Our analysis could not distinguish the contribution 
of	carbon	use	efficiency	(CUE = NPP:GPP)	and	plant	NPP	allocation	to	
WBPE reduction under higher CO2. We suggest that increases in be-
lowground carbon investment into fine roots (which typically have high 
rates of turnover), and priming (in order to alleviate nutrient limitation) 
likely dominate these responses, based on available knowledge from 
experiments,	modeling,	and	meta-	analysis	 (Collalti	&	Prentice,	2019; 
Fleischer et al., 2019; Jiang et al., 2020; Vicca et al., 2012).

Our attribution of model biases in growth sensitivity to CO2 
hinges on the assumption of relatively small biases in simulated GPP 
sensitivity to Ca. GPP can be approximated as multiplication of Ci and 
leaf carboxylation capacity (Vcmax). Although Vcmax was observed 
to decline under CO2 enrichment experiment, the magnitude of de-
cline was around 10% or smaller for tree species when CO2 was el-
evated	for	200 ppm	or	more	(Ainsworth	&	Long,	2005). Particularly, 
recent experiments for tropical tree species (Fauset et al., 2019; Slot 
et al., 2021) reported insignificant to 10% decline in Vcmax for CO2 
increases	that	were	considerably	larger	(400 ppm)	than	experienced	
by	trees	in	our	study	(80 ppm).	Therefore,	the	consistent	Ci trends be-
tween observed and simulated tree rings (Figure 3) under a relatively 
constant Vcmax provides indirect support of the assumption that bi-
ases in simulated GPP sensitivity to Ca were small. Unfortunately, no 
direct	measurements	of	whole-	stand	tropical	forest	GPP	responses	
to CO2 rise are available to verify this. The sensitivity of simulated 

GPP	 (normalized	 to	per	 leaf	area	 to	 remove	 the	 influence	of	 tran-
sient dynamics in leaf area index) to logarithm Ca (�GPP,aCO2) from our 
CO2- inc	simulation	was	0.60 ± 0.09	(equivalent	to	~50% increase for 
a doubling of Ca) estimated with OLS regression. When accounting 
for Vcmax acclimation to higher CO2,	for	example,	2%	from	1950	to	
2010, this would only slightly reduce our estimated �GPP,aCO2 by 0.08. 
Our estimated �GPP,aCO2	 is	very	close	to	the	mean	value	of	a	meta-	
analysis over field and greenhouse experiments (0.65 with a large 
standard	deviation	of	0.84,	Walker	et	al.,	2021)	and	a	recent	model-	
based	estimate	(47%	based	on	a	doubling	Ca, Haverd et al., 2020), but 
it is higher than the sensitivity calculated from the recent EucFACE 
study (�GPP,Ca

= 0.34). Overall, we argue that WBPE changes have a 
dominant effect on forest woody production responses to elevated 
CO2.	Further	studies,	such	as	the	new	AmazonFACE	experiment,	are	
necessary	to	disentangle	and	better	quantify	the	effects	of	Ca rise 
on GPP and WBPE in tropical forests.

In our analysis, we also assumed the scaling between BAI and 
woody biomass production, which is sensitive to the relationship be-
tween DBH and height, did not change under increasing Ca. Ideally, 
repeated, paired measurements of DBH and height would be used to 
determine	 the	sensitive	of	DBH-	height	allometry	 to	Ca. Such mea-
surements are not common and were unavailable at our study site. 
However, at one FACE experiment in a temperate forest, elevated Ca 
caused Pinus taeda trees to be taller for a given DBH (Kim et al., 2020). 
This is a possible alternative hypothesis for model overestimation in 
growth responses to Ca although further studies on the magnitude of 
tropical tree allometry responses to Ca changes are needed to evalu-
ate the hypothesis. In addition, changes in allometry might be possi-
ble	for	smaller	trees,	which	prioritize	height	growth	due	to	increased	
shading	(Holbrook	&	Putz,	1989) under higher Ca, resulting in a lack of 
stem	growth	increase	despite	higher	biomass	production.	This	light-	
driven allometry plasticity is not included in our model and might 
explain	the	larger	model-	data	discrepancies	in	growth	trend	and	Ca 
sensitivity	for	smaller	size	classes	(10–60 cm,	Figures 4e,f and 6a).

F I G U R E  6 Differences	in	climatic	and	atmospheric	sensitivities	between	model	and	tree-	ring	data.	Differences	are	shown	for	stem	
growth (SG) sensitivity to (a) atmospheric CO2 concentration (Ca), (b) dry season rainfall (PDRY), and (c) annual mean daily maximum 
temperature	(TMAX).	Error	bars	indicate	95th	confidence	interval	calculated	from	bootstrapping.	Positive	values	indicate	that	the	modeled	
sensitivities	are	higher	than	those	obtained	from	tree-	ring	data.	In	panel	(a),	woody	biomass	production	efficiency	(WBPE)	responses	to	
elevated CO2 were obtained from the EucFACE experiment (see Section 2.6 for details).
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4.2  |  Increased woody biomass production 
efficiency in hot and dry years

ED2.2-	hydro	 predicted	 significant	 positive	 growth	 sensitivity	 to	
dry season rainfall and negative growth sensitivity to maximum 

temperature	 for	 the	 late-	successional	 PFT,	 while	 tree-	ring	 data	
showed no growth sensitivity to interannual variability in these cli-
matic variables (Figure 5e–l).	In	contrast,	for	the	early-	successional	
PFT, simulated climatic sensitivity of growth was comparable to the 
observed values. Thus, we found support for our hypothesis H3 for 
the	late-	successional	PFT	only.	Given	that	simulated	growth	is	mostly	
driven	 by	 carbon	 availability,	 this	 comparison	 suggests	 source-	
driven growth scheme in our model might well capture growth sen-
sitivity	to	hydroclimatic	variations	for	early-	successional	species	but	
would	overpredict	the	sensitivity	for	late-	successional	species	in	this	
seasonally dry tropical forest. This finding seems to contrast recent 
results based on flux towers and tree ring data in temperate for-
ests (Cabon et al., 2022), which showed that responses to climatic 
variation are weaker and delayed in woody growth compared to 
photosynthesis. Meanwhile, our results do not contradict field ob-
servations in tropical forests: sensitivity of tropical tree growth to 
moisture is reported to range from weak negative to strong posi-
tive (Zuidema et al., 2022) and species with higher wood density 
and hydraulic safety can maintain growth in dry years (Mendivelso 
et al., 2013; Xu et al., 2016).

The	model-	data	discrepancy	 in	growth	sensitivity	 resulted	 in	
positive Δ�SG,PDRY values and negative Δ�SG,TMAX values (Figure 6a), 
which most likely arose because WBPE in our model was too low 
in hot and dry years. In our CO2- inc simulation, carbon use effi-
ciency	 (NPP:GPP)	declined	 from	0.4	 to	~0.2 in hot and dry (low 
GPP) years (Figure 7b) because autotrophic respiration in the 
model does not decline much in drought unless significant can-
opy	 loss	occurs.	 In	 addition,	NPP	allocation	 to	woody	growth	 in	
the model also declined from ~0.55	to	0.2–0.3	during	drought	be-
cause	the	model	always	prioritizes	leaf	and	fine	root	growth	and	
replacement	over	woody	growth:	ED2.2-	hydro	accumulates	NPP	
into a nonstructural carbohydrate storage pool and only allows 
for woody allocation when the storage pool reaches a threshold. 
As a result, WBPE declined from over 0.2 to below 0.1. Although 
studies	 looking	 at	 longer-	term	 forest	 responses	 to	 water	 stress	
reported	that	forest	production	efficiency	decreased	under	multi-	
year throughfall exclusion experiment (Metcalfe et al., 2010) and 
is generally lower in hotter and drier regions (Collalti et al., 2020), 
WBPE was observed to have temporarily increased during 
droughts when woody production remained at the level of normal 
years	despite	a	reduction	in	GPP	in	Amazonian	forests	 (Doughty	
et al., 2015).	This	observed	 short-	term	 increase	 in	WBPE	during	
drought	years	in	the	Amazon	resulted	from	significant	reductions	
in autotrophic respiration indicating temporary increase in plant 
carbon	 use	 efficiency	while	NPP	 allocation	 to	woody	 growth	 in	
drought years remained comparable to the allocation in normal 
years. Therefore, correcting model WBPE biases during drought 
years	 likely	 requires	 implementation	 of	maintenance	 respiration	
down-	regulation,	a	sink-	driven	growth	scheme	that	increases	pri-
ority of woody growth (Fatichi et al., 2019), and a more mechanis-
tic	module	for	plant	nonstructural	carbohydrate	dynamics	(Dietze	
et al., 2014;	Martínez-	Vilalta	et	al.,	2016).

Model-	data	discrepancies	 in	 growth	 climatic	 sensitivity	were	
much	 smaller	 for	 early-	successional	 than	 for	 late-	successional	

F I G U R E  7 (a)	Magnitude	of	estimated	woody	biomass	
production efficiency (WBPE) decline constrained by tree ring 
data. Orange dots represent annual WBPE as a function of 
atmospheric CO2 concentration (Ca) predicted by the CO2- inc 
simulation. Solid orange line results from LOWESS (locally weighted 
scatterplot smoothing). Solid black line indicates estimated WBPE 
to match stem growth from simulation and tree ring observations 
(constrained).	It	is	calculated	using	the	orange	line	and	a	biomass-	
weighted average Δ�SG,Ca

 as shown in Figure 6a. Grey shading 
indicates the range of estimated WBPE across plant functional 
type-	size	class	as	defined	in	Figure 6.	(b)	Decline	of	ecosystem-	
level	carbon	use	efficiency	(NPP:GPP,	red),	woody	NPP	allocation	
(woody	NPP:NPP,	blue)	and	WBPE	(equal	to	the	product	of	the	
previous two values, orange) with GPP in the CO2- inc simulation. 
Each	dot	represents	relative	change	of	CUE	or	woody	NPP	
allocation compared with their respective maximum values against 
the GPP of the year. Solid lines are results from LOWESS smoothing 
to facilitate comparison.
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PFTs,	 suggesting	 that	early-	successional	 trees	might	not	be	able	
to maintain regular stem growth in hot and dry years and there-
fore are more sensitive to climatic fluctuations than predicted by 
our model. This discrepancy could be caused by a stronger sink 
limitation	of	growth	for	early	compared	to	than	late-	successional	
species during in hot and dry years. During water stress, tree 
growth	of	early-	successional	 species	 could	be	more	 limited	by	a	
lack of turgor (Friend et al., 2019; Steppe et al., 2015) due to their 
higher hydraulic vulnerability hydraulic (Table 1). Therefore, the 
magnitude	of	 the	short-	term	 increases	 in	WBPE,	which	can	help	
to maintain stem growth in hot and dry years, likely depends on 
plant hydraulic traits.

While annual growth records from tree rings provide the op-
portunity of constraining modeled growth sensitivity to interannual 
climatic	variations,	the	subset	of	ring-	forming	species	in	tropical	for-
ests may not be fully representative of the tree community. Tropical 
tree species with distinct growth ring boundaries are more likely to 
be deciduous (Worbes, 1999),	although	a	fair	share	of	ring-	forming	
species is evergreen. Among the five sampled species in our study, 
one	is	evergreen	and	two	are	brevi-	deciduous	(<0.5 months	leafless;	
Vlam et al., 2014). Growth of deciduous tree species have been found 
to be more sensitive to moisture fluctuations (Xu et al., 2016). If the 
ring-	forming	 species	 analyzed	 in	 our	 study	 have	 relatively	 higher	
sensitivity to moisture within the tree community, one would expect 
the	community-	average	sensitivity	to	moisture	should	be	even	lower	
than our results based on tree ring data. Given our model is already 
overestimating growth sensitivity to moisture (Figure 5), this implies 
model biases in WBPE should be even stronger. More comprehen-
sive	high-	resolution	growth	observations	across	moisture	gradients	
are necessary to evaluate possible differences in drought responses 
between	ring-	forming	and	other	species	in	tropical	forests.

5  |  CONCLUSIONS

The response of woody biomass production to CO2 and climate is 
a major determinant of the tropical forest carbon sink under global 
change.	Our	study	provides	novel	benchmarking	options	for	TBM-	
generated	 woody	 growth	 using	 long-	term	 tree-	ring	 data.	 Our	 re-
sults	suggest	that:	(1)	ED2.2-	hydro,	a	representative	modern	TBM,	
overestimates tropical woody growth sensitivity to Ca and climate, 
although it correctly captures Ci responses to Ca,	and	(2)	this	model-	
data mismatch may be resolved by incorporating WBPE responses 
to environmental factors (e.g., through autotrophic respiration or 
belowground investment). Implementing environmental constraints 
of	WBPE	based	on	tree-	ring	data	would	reduce	the	effects	of	CO2 
rise and hydroclimatic variability on modeled woody production. We 
also call for improving mechanistic representation of tree growth in 
TBMs by including more complete nonstructural carbohydrate dy-
namics	 and	 implementing	 sink-	driven	 growth	 (Dietze	 et	 al.,	 2014; 
Fatichi et al., 2019).

More	generally,	our	study	also	highlights	the	potential	of	tree-	ring	
records	to	constrain	TBMs'	long-	term	woody	growth	predictions	and	

reduce	model	uncertainty	at	decadal	to	multi-	decadal	timescales.	In	
particular,	tree-	ring	data	provide	novel	opportunities	to	constrain	(1)	
size-	related	changes	in	tree	growth,	(2)	long-	term	growth	responses	
to Ca and climate, and (3) forest biomass responses to extreme 
events.	 Yet,	 constraining	 TMBs	 using	 tree-	ring	 data	 is	 challenging	
due to scale mismatches between model and data, the inherent 
sampling	 biases	 in	 data,	 and	 the	 influence	 of	 site-	specific	 distur-
bance history (Jeong et al., 2021).	Nevertheless,	the	increasing	data	
availability	of	 tropical	 tree-	ring	 studies	 (Zuidema	et	 al.,	2022) and 
development of vegetation demography modules in TBMs (Fisher 
et al., 2018), offers exciting opportunities to produce more realistic 
long-	term	predictions	of	tropical	forest	dynamics.
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