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ABSTRACT: Parkinson’s disease (PD) is a progres-
sive neurodegenerative disorder for which only symp-
tomatic treatments are available. Both preclinical and
clinical studies suggest that moderate hypoxia induces
evolutionarily conserved adaptive mechanisms that
enhance neuronal viability and survival. Therefore,
targeting the hypoxia response pathway might provide
neuroprotection by ameliorating the deleterious effects
of mitochondrial dysfunction and oxidative stress,
which underlie neurodegeneration in PD. Here, we
review experimental studies regarding the link between
PD pathophysiology and neurophysiological adapta-
tions to hypoxia. We highlight the mechanistic differ-
ences between the rescuing effects of chronic hypoxia
in neurodegeneration and short-term moderate hyp-
oxia to improve neuronal resilience, termed “hypoxic

conditioning”. Moreover, we interpret these preclinical
observations regarding the pharmacological targeting
of the hypoxia response pathway. Finally, we discuss
controversies with respect to the differential effects of
hypoxia response pathway activation across the PD
spectrum, as well as intervention dosing in hypoxic
conditioning and potential harmful effects of such
interventions. We recommend that initial clinical stud-
ies in PD should focus on the safety, physiological
responses, and mechanisms of hypoxic conditioning,
as well as on repurposing of existing pharmacological
compounds. © 2023 International Parkinson and
Movement Disorder Society.

Key Words: hypoxia; hypoxia-inducible factor 1α; mito-
chondrial dysfunction; neuroprotection; Parkinson’s disease

Parkinson’s disease (PD) is the fastest-growing neuro-
logical disorder worldwide.1 Clinically, PD presents with
a gradually progressive variety of motor and nonmotor

symptoms with debilitating effects on quality of life.
Treatment options are limited to symptomatic therapies.
In the past decade, several novel disease-modifying
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interventions have been investigated without proof of
efficacy.2

Complex I is the first complex of the adenosine
triphosphate (ATP)-producing mitochondrial oxidative
phosphorylation (OXPHOS) system, and among the main
producers of reactive oxygen species (ROS), especially dur-
ing pathological conditions.3-5 The fact that cellular energy
shortage is a feature of PD,6 combined with the observation
that complex I deficiency can be a direct cause of progres-
sive parkinsonism,7 supports a key role for mitochondrial
energy dysfunction in PD. In this context, exposure to
chronic long-term hypoxia mitigated oxidative stress and
rescued neurodegeneration in preclinical models of mito-
chondrial dysfunction.8-10 Interestingly, evolutionarily con-
served adaptive neuronal responses to hypoxia, including
the hypoxia-inducible factor 1 (HIF-1) cascade, impact ben-
eficially on pathophysiological mechanisms in PD.11 More-
over, exposure to transient moderate hypoxia activates
pathways that increase mitochondrial volume and decrease
oxidative damage,12 potentially increasing nigrostriatal
dopamine (DA) concentration.13,14 Furthermore, it is
hypothesized that the potential neuroprotective and neuro-
plastic effects of exercise, for which there is preliminary evi-
dence supporting its disease-modifying effect in PD, could
be mediated by the hypoxia response pathway. The latter is
supported by the observation that exercise induces the HIF-
1α subunit,15 and hypoxia-induced stabilization of HIF-
1α appears necessary for exercise-induced nigral
neuroprotection.16 Furthermore, the protective effects of the
hypoxia response pathway on brain energy rescue might be
a prerequisite for targeting other energy-intensive processes
of PD pathophysiology such as lysosomal dysfunction.6

Finally, the broad interconnected action mechanism of
hypoxia-mediated metabolic adaptations might overcome
the single-pathway paradigm of most unsuccessful precision
medicine approaches of recent years.2 Taken together,
targeting the hypoxia response pathway might be a promis-
ing novel treatment strategy in PD.11

We first inventorize the hypoxia-induced neurophysi-
ological responses and adaptations to different hypoxic
stimuli. Furthermore, we link these responses to PD-
related pathophysiology and symptoms and discuss
pharmacological compounds that induce the hypoxia
response pathway. Finally, we address the controversies
associated with targeting this pathway by discussing the
safety, design, and differential effects across the PD
spectrum of hypoxic conditioning trials.

The Connection between Hypoxia
and PD

Mitochondria and Oxidative Stress Are Central
to PD Pathophysiology

Although detailed etiological mechanisms are
currently lacking, a central role for mitochondrial

aberrations in PD is supported by various PD suscepti-
bility genes as well as mitochondrial dysfunction-
associated oxidative stress and neuroinflammation.
Mitochondrial deficiency in PD is characterized by
reduced neuronal OXPHOS functioning, impaired
autophagic removal of damaged mitochondria
(mitophagy), and dysfunctional signaling transduction
cascades.6 Neurons in the substantia nigra are particu-
larly vulnerable to mitochondrial deficiency as they are
among the most energy-consuming cells in the human
brain and display a high ROS production integral to
DA synthesis and their neuronal structure.6 Further-
more, nigral neurons in PD have reduced antioxidant
levels,17 which further exacerbates ROS-induced damage,
although nigral neurons can adapt to somatic mitochon-
drial DNA mutations to a considerable extent.18 Mito-
chondrial dysfunction–induced oxidative stress disturbs
metabolic homeostasis, causes neuroinflammation, accel-
erates cellular aging, and can induce programmed cell
death (apoptosis).19 In this context, it has been demon-
strated that various genes associated with early-onset PD
play a key role in (the regulation of) mitochondrial func-
tion and oxidative stress responses. These include leucine-
rich repeat kinase 2 (LRRK2), protein deglycase DJ-1
(PARK7), PTEN-induced kinase 1 (PINK1), PARKIN
(PRKN), and HtrA Serine peptidase A2 (HTRA2 or
PARK13).19 This suggests that stimulating cellular adap-
tive pathways to mitochondrial dysfunction and oxidative
stress might improve long-term neuronal resilience.8,18

Acute Hypoxia Induces Adaptive Responses
That Maintain Mitochondrial Function and

Counterbalance Oxidative Stress
Acute hypoxia induces an evolutionarily conserved

response involving the HIF-1-mediated adaptation of neu-
ronal metabolism to low-oxygen conditions (Fig. 1).8,9,20-22

During normoxic conditions the HIF-1α degradation
domain is hydroxylated by prolyl hydroxylase domain
(PHD) and factor inhibiting HIF-1 (FIH). Subsequently,
hydroxylated HIF-1α is ubiquitinated by the von Hippel-
Lindau factor (pVHL), inducing HIF-1α breakdown.22

On hypoxia induction, the enzymatic activity of PHD and
FIH is decreased, HIF-1α hydroxylation is reduced, and
pVHL binding is inhibited. As a consequence, HIF-1α is
stabilized and accumulates in the nucleus,23-25 where it
associates with HIF-1β to bind to the hypoxia response
element (HRE) in the promotor region of target genes.
HIF-1 is involved in cellular bioenergetic homeostasis and
protection against oxidative stress.26 In concert with
increased ROS production, which acts as a (co)signaling
factor27 and further stimulates HIF-1a stabilization,27,28

the aforementioned pathways converge on pro-survival
and antioxidant proteins. These include erythropoietin (EPO),
vascular endothelial growth factor (VEGF), and brain-derived
neurotrophic factor (BDNF). Importantly, HIF-1
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activation also interfaces with phosphatidylinositol-
3-kinase (PI3K)/Akt-mediated signaling, which induces
the transcription factor nuclear factor erythroid-2-related
factor 2 (Nrf2). The latter binds to antioxidant response
elements (AREs), thereby regulating the expression of oxi-
dative stress response genes.29-32 Other genetic targets of
HIF-1α were comprehensively reviewed elsewhere.26,33

Role of the Hypoxia Response Pathway in PD
Various PD susceptibility genes are directly linked to

the hypoxia response pathway. First, DJ-1 is a potent
Nrf2 activator and inhibits VHL-mediated HIF-1α
ubiquitination, and causes autosomal-recessive early-
onset PD.34 PD patients with DJ-1 mutations have
reduced HIF-1α levels and impaired cellular ROS
defense. Conversely, HIF-1α stabilization protected
against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), a precursor of the neurotoxin and complex I
inhibitor MPP+ (1-methyl-4-phenylpyridinium) in
DJ-1-deficient neurons.35 Second, hypoxia stimulates
specific PINK1-PARKIN-mediated autophagy of dysfunc-
tional mitochondria (mitophagy), which improves

mitochondrial function during stress and pathological
conditions.36,37 Both PINK1 and PARKIN mutations
cause autosomal-recessive PD.38 PINK1 also regulates
HTRA2, a mitochondrial serine protease that plays a role
in the degradation of damaged/misfolded proteins as well
as apoptosis induction.39,40 Mutations in the HTRA2
gene also cause autosomal-recessive PD,40 and sustained
hypoxia improves cellular functioning in a knockout
model of Htra2.41 However, there are no studies that
have investigated whether this protective effect of hypoxia
can be replicated in experimental models.
In addition to susceptibility genes, various hypoxia-

induced mechanisms are linked to PD pathophysiology
in preclinical models or associated with disease pheno-
type in humans (Fig. 1). First, although not a PD suscepti-
bility gene, Nrf2 stimulates the expression of a large
number of antioxidant response genes, and its loss in pre-
clinical models is associated with excessive ROS levels
and induction of parkinsonian pathology, including
aggravation of α-synuclein aggregation, a pathological
hallmark of PD.42,43 Conversely, Nrf2 activation was
paralleled by increased clearance of α-synuclein,44

decreased nigrostriatal neurodegeneration, and mitigation

FIG. 1. Proposed chain of events for effects of disease-modifying (direct impact on pathophysiology) and symptomatic effects (no direct effect on path-
ophysiology) of hypoxic conditioning in PD (Parkinson’s disease), including targets of pharmacological modifiers of hypoxia response (in purple). This is
a simplified illustration and selection of the biochemical pathway as discussed in this manuscript. For example, interactive effects between HIF1-α,
PGC-1α, and Nrf2 are not shown, and decreased oxidative stress and improved bioenergetic functioning also lead to decreased apoptosis. Down-
stream effects depend largely on the duration, intensity, and method of administration of the hypoxic stimulus. Akt, protein kinase B; ARE, antioxidant
response element; Bcl-2, B-cell lymphoma 2; BDNF, brain-derived neurotrophic factor; DA, dopamine; EPO, erythropoietin; GLP-1, glucagon-like
peptide-1; HIF-1, hypoxia-inducible factor 1; HRE, hypoxia response elements; Nrf2, nuclear factor erythroid 2-related factor 2; PDGF, platelet-derived
growth factor; PI3K, phosphoinositide 3-kinase; pVHL, Von Hippel-Lindau tumor suppressor; TH, tyrosine hydroxylase; VEGF, vascular endothelial
growth factor. [Color figure can be viewed at wileyonlinelibrary.com]
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of oxidative damage induced by 6-hydroxydopamine
(6-OHDA) and complex I inhibitors MPTP/MPP+ and
rotenone.45-50 These protective effects are probably medi-
ated by the PI3K/Akt/Nrf2 pathway,25,51-54 which also
appears to be involved in antioxidant effects of antidia-
betics exenatide and liraglutide.55,56 The latter are cur-
rently under investigation as disease-modifying drugs
in PD.57

Second, peroxisome proliferator-activated receptor
gamma coactivator 1α (PGC-1α) is a transcriptional
coactivator for steroid and nuclear receptors involved
in hypoxia-mediated neuroprotection through regula-
tion of energy metabolism.12,58 PGC-1α is intimately
linked to NRF2 expression59 and is included in a feed-
back loop with HIF-1α,60,61 but evidence indicates
PGC-1α might act at least partly independent of HIF-
1.58,62 Although no pathogenic PGC-1α mutations have
been reported (www.omim.org), PGC-1α polymorphisms
are associated with disease onset in PD,63 PGC-1α expres-
sion is reduced in PD,64 and PGC-1α protein levels are
lower in postmortem PD substantia nigra tissue.65 The
relevance of PGC-1α in protection against parkinsonian
pathology is further supported by the fact that nigral neu-
rons become more sensitive to α-synuclein66 and MPTP/
MPP+67 after PGC-1α knockout. Conversely, PGC-1α
overexpression rescues mitochondrial structure and func-
tion induced by mutant α-synuclein or rotenone.64 Finally,
exercise-induced PGC-1α upregulation was associated
with neuroprotection in a preclinical 6-OHDA model
of PD.68

Targeting the Hypoxia Response
Pathway in PD

Differences between Hypoxia Regimes
Importantly, most of the aforementioned preclinical

studies in PD models are conducted in continuous
(chronic) hypoxia, sometimes up to multiple months.
This differs from hypoxic conditioning, which is
defined as repeated exposure to a subtoxic hypoxic
stimulus and is a strategy that can be extrapolated to
human studies.11,69 The limited experience with
hypoxic exposure in people with PD is summarized in a
recent review.70 In the broader literature, hypoxia inter-
ventions deployed in the neuroscientific context can be
divided into chronic hypoxia, (intermittent) hypoxic
conditioning, and chronic intermittent hypoxia. These
three types of hypoxia interventions are discussed in
detail.

Continuous (Chronic) Hypoxia

Various in vitro and animal studies investigate
whether chronic hypoxia mitigates neurodegeneration
induced by complex I inhibitors (eg, rotenone, MPTP/
MPP+) or inherited mitochondrial disease. Examples of

the latter include primary mitochondrial diseases such
as Leigh syndrome,8,9,71 Friedreich’s ataxia,72 and com-
plex II deficiency.10 However, such conditions are diffi-
cult to extrapolate to clinical studies. In addition to
activation of neuroprotective pathways (Fig. 1), it is
thought that HIF-1 mediates a shift from OXPHOS to
glycolysis to reduce oxidative stress.73,74 Similarly,
fasting before a hypoxia bout increases adaptation
to hypoxia by promoting the efficiency of ATP con-
sumption and oxygen utilization.75 Alternatively,
chronic hypoxia might normalize oxygen overabundance
(hyperoxia) during complex I deficiency, thereby ame-
liorating neuronal oxidative stress.71 This theory is
supported by the notion that contrary to hypoxia itself,
pharmacological HIF activation in normoxia does not
induce neuroprotection in some chronic hypoxia rescue
models.71,72 HIF activation during normoxic conditions
might induce excessive oxidative stress due to forma-
tion of the highly reactive hydroxyl radical (HO•), lead-
ing to lipid peroxidation, protein damage/dysfunction,
autophagy impairment, and cell death.76 Alternatively,
pharmacological left shifting of the oxygen dissociation
curve has been proposed as a novel strategy to induce
tissue hypoxia.71

Chronic Intermittent Hypoxia

This experimental model is primarily used to study
the effects of obstructive sleep apnea (OSA) on neu-
rodegeneration.77 OSA is a disorder characterized by
recurrent episodes of partial or complete airway
obstruction, resulting in intermittent hypoxia during
nocturnal sleep (thus typically imposed for 7 to
9 hours) where oxygen saturation below 80% is com-
mon.78 Chronic intermittent hypoxia thereby simulates
the detrimental impact of long-term reoxygenation,
which causes oxidative stress and long-term sympa-
thetic activation. Although a causal relation between
sleep apnea and PD has not been established in
humans, associations between OSA incidence and PD
risk have been reported.79 Moreover, preclinical evi-
dence strongly suggests that sleep apnea induces
nigrostriatal degeneration.80,81

Acute Intermittent Hypoxia (Conditioning)

In this approach hypoxia and normoxia are
alternatingly applied for a few minutes. This avoids
hypoxia tolerance and long-term stress and sympathetic
activation caused by chronic intermittent hypoxia. Dif-
ferences in effects between hypoxic conditioning and
chronic (intermittent) hypoxia are exemplified in a few
studies. For example, in mice, sustained hypoxia at a
fraction of inspired oxygen (FiO2) of 0.13 up to 3 days
did not affect motor behavior and induced hippocam-
pal neurogenesis, but longer-term exposure negatively
affected movement, cognition, and balance.82 This
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coincided with upregulation of the pro-inflammatory
markers interleukin-1β (IL-1β), IL-6 and tumor necrosis
factor α, and hippocampal neurodegeneration.82 Inter-
mittent hypoxia at an FiO2 of 0.10 reversed this
pro-inflammatory and re-enabled neurogenesis,
suggesting postconditioning effects, that is, inducible
protection by hypoxia-based interventions after the
toxic insult.82 Through this mechanism, long-term
intermittent hypoxia might rescue iron-induced oxida-
tive injury in dopaminergic neurons,83 a common find-
ing in PD.84 Similarly, a multiple-week protocol of
15-hour (chronic) hypoxia daily, untypical for hypoxic
conditioning, did not ameliorate MPTP/MPP+-induced
neurodegeneration, although it still reduced indicators
of oxidative stress.85 Such ambiguous findings are also
apparent in stroke studies, where moderate hypoxia at
an FiO2 of 0.10 shows neuroprotective effects, but
lower FiO2 levels cause increased oxidative stress.86

Hypoxic Conditioning Upregulates
Symptomatic and Functional Pathways in PD
Hypoxic conditioning may induce disease-modifying

effects but might also ameliorate symptoms directly.

Dopamine Release

HIF-1 stabilization stimulates tyrosine hydroxylase
(TH) expression,87,88 whereas Hif-1α knockout in
mice reduced this expression.89 As TH is the main rate-
limiting enzyme in DA production, hypoxia- or HIF-
1-induced TH upregulation augments striatal DA
release13,23,25 and may thereby mitigate parkinsonian
symptoms.90,91 Similarly, the glucagon-like peptide-1
(GLP-1) receptor agonist exenatide might also induce
TH.25,92,93 Except anecdotal evidence of transient PD
symptom improvement at high altitude,94 it is unknown
whether hypoxia interventions mitigate reduced striatal
dopaminergic activity in PD. Furthermore, striatal DA
release in mice with different levels of hypoxia is dose
dependent,13 and applying these hypoxic levels to
humans is not feasible. In one nonblinded PD trial, a
14-day intermittent hypoxia protocol in 18 individuals
resulted in decreased DOPA (DA precursor) and DA in
serum.95 However, it should be noted that the latter
effect is not indicative of the dopaminergic state in the
nigrostriatal pathway.

Adaptive Plasticity

Hypoxic conditioning induces adaptive plasticity in
the central and peripheral respiratory motor network,
meaning that hypoxia remodels neuronal networks and
thereby improves breathing function.21,96-104 One such
study has been conducted in PD and demonstrated
improved ventilatory responses to hypoxia.105 This
could be a novel addition to respiratory function train-
ing in PD, as complications of respiratory dysfunction

are associated with high mortality.106 Furthermore,
there is evidence for motor cortex plasticity induced by
hypoxia.101,103,107-110 Supporting this idea, adaptive
plasticity induced by exercise correlated with cognitive
improvement and stabilization of motor symptoms in
PD patients.111,112

Exercise-Related Effects

The effects of exercise and hypoxia are (partially)
mediated by the same hypoxia response pathway. This
is exemplified by HIF-1α being required for the neuro-
protective effects of exercise in preclinical models and
the fact that exercise and hypoxia both induce antioxi-
dant responses and pathways involving EPO, VEGF,
and PGC-1α.15,16 Exercise also induces functional hyp-
oxia in muscle, but it is unclear how this affects the
cerebral hypoxia response. Recent studies suggest that
BDNF has both nigrostriatal restorative effects113-115

and mediates exercise-induced plasticity,116 suggesting
that this might be an important mediator of hypoxia-
and exercise-induced plasticity and hypoxia- and
exercise-related improvement in motor and cognitive
functioning. To which extent respiratory and non-
respiratory motor plasticity will translate to clinical
improvement in PD remains to be determined.
Potential improvements in hypoxic conditioning in

aerobic capacity117 and exercise tolerance118-121 may
improve physical fitness of PD patients, which is espe-
cially important with regard to the progressive reduc-
tion in exercise after diagnosis.122,123 Finally, higher
EPO levels in the brain might increase the hypoxic ven-
tilatory response124 and, in concert with VEGF,
increase synaptogenesis and angiogenesis.125-127 This is
beneficial because it enhances axonal regeneration103

and increases the viability of dopaminergic neurons.89

Some evidence indicates that EPO also increases mito-
chondrial volume and OXPHOS function in the
brain.128 It remains to be determined whether these
effects positively impact on PD-related outcomes.

Platelet-Derived Growth Factor–Related Effects

Hypoxia stimulates platelet-derived growth factor BB
(PDGF-BB) receptor and PDGF receptor β
signaling.51,129 PDGF-BB induces a conserved neuronal
pro-survival pathway via the Akt pathway,51,130 and
preclinical studies suggest PDGF-BB-induced protective
effects against 6-OHDA and increased dopaminergic
activity.130-132 In contrast, intraventricular PDGF-BB
injection did not improve the clinical phenotype of PD
patients in a first-in-human trial.133

Pharmacological Targeting of the Hypoxia
Response Pathway

Various preclinical PD studies suggest that the
hypoxia response pathway induces neuroprotection in
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PD-relevant networks via the effects of either chronic
hypoxia or hypoxic conditioning. The hypoxia
response pathway can also be activated pharmacologi-
cally.8,23,83,89 Table 1 summarizes the important studies
that target the hypoxia response pathway in animal
models or human studies relevant to PD. Prime advance-
ments have been made with inhibitors of PHD, which
augments HIF-1α stabilization, and iron chelators. Pre-
treatment with PHD inhibitors in dopaminergic cell
models exposed to 6-OHDA or MPTP/MPP+ protects
against mitochondrial membrane potential decline,
reduces oxidative stress, and increases cell viability.25,35

Some PHD inhibitors protect against MPTP/MPP+-
induced cellular toxicity in the striatum,134,135 paralleled
by reduced ROS, increased Nrf2 and PGC-1α levels, and
decreased apoptosis.135 An important mediator for neuro-
nal survival was ATP13A2, a PD susceptibility gene
known as PARK9, through improved lysosomal iron
homeostasis.136 Dimethyloxalylglycine (DMOG) inhibits
both PHD and FIH, and protects against dopaminergic
cell death and parkinsonism in a mouse model of
manganism.137

However, various challenges and limitations exist,
including the occurrence of serious cardiovascular side
effects with some PHD inhibitors149 or inability to
cross the blood–brain barrier (eg, DMOG). One excep-
tion is the competitive PHD inhibitor roxadustat, which
has demonstrated target engagement by EPO
upregulation in anemia patients on dialysis.148 VHL
small-molecule inhibitors have been developed but have
not been tested in vivo.182,183

Table 1 does not cover pharmacological com-
pounds that target specific components selectively,
including PGC-1α,64,184 PI3K (by GLP-1 agonists),56

or the antioxidative pathway of Nrf2
selectively,44-46,49,50,185,186 although these also show
neuroprotective properties against preclinical parkinso-
nian cell models through anti-inflammatory and antioxi-
dant effects. Some of these have been proposed in
clinical trial protocols (NCT05855577, NCT05084365).
It should be noted that these are not specific to hypoxia
but can be activated by other transcription factors and
ROS sources. It is unclear whether specific targeting of a
single component of the hypoxia response pathway will
be sufficiently neuroprotective, given the many other
constituents of this pathway for which no (master)
regulator(s) have been identified yet.71 Future mechanis-
tic research will likely guide more selective targeting of
the hypoxia response pathway.

Controversies
Differential Effects across the PD Spectrum
Is the hypoxia response pathway a relevant target for

everyone with PD? An important research gap of

hypoxia applications in PD is that many studies investi-
gated the mechanisms of hypoxia in preclinical PD
models or with specific (often mitochondrial-related)
mutations. This gap between preclinical models and the
heterogeneous clinical population with multifactorial
disease causes provides an important limitation to the
translatability of those preclinical findings to clinical tri-
als. For example, effects on adaptive plasticity and
BDNF and target engagement markers such as EPO
seem to be smaller in elderly individuals, suggesting
smaller hypoxia-induced conditioning effects in
PD.187-190 Whether putative effects on mitochondrial
function and oxidative stress decrease with increasing
disease severity compared to common age-dependent
decline is unknown. As previously noted, the various
studies that deploy chronic hypoxia are not feasible to
replicate in or extrapolate to human trials.8,9,71 With
regard to downstream effects and extrapolation to PD
trials, preclinical evidence suggests that the HIF-1
response to hypoxia in the striatum may be reduced in
parkinsonism models.191 Dysfunction of OXPHOS,
and complex I dysfunction specifically, even appears to
reduce HIF-1α stabilization in severe hypoxia.192,193

Indeed, gene expression of HIF-1α and its target genes
is reduced in PD compared to age-matched controls,
including VEGF. In postmortem substantia nigra pars
compacta, PHD is upregulated, indicating reduced HIF-
1α stabilization.194,195 DJ-1 or PINK1 deficiency leads
to increased ROS and HIF-1α stabilization in normoxia
but to reduced HIF-1α stabilization in cancer cells
under hypoxia35,196 Gain-of-function LRRK2 muta-
tions are the most important causes for autosomal-
dominant PD, and LRRK2 has two HRE for HIF-1 to
bind. This suggests that theoretically hypoxia could
aggravate LRRK2 overactivity in people with LRRK2
mutations.197 In short, despite the fact that mutations
in mitochondria-related susceptibility genes comprise
only a small subset of individuals with PD, these
observations suggest differential effects of hypoxia
interventions by causative factors and disease severity.
Gain-of-function LRRK2 mutations are the most
important causes for autosomal-dominant PD, and
LRRK2 has two HRE for HIF-1 to bind. This suggests
that theoretically hypoxia could aggravate LRRK2
overactivity in people with LRRK2 mutations.197

Despite these limitations, evidence from both physiolog-
ical and pharmacological activation of the hypoxia
response pathway is promising and likely relevant for
PD. The most common genetic risk factor for PD is
glucocerebrosidase (GBA),198 which is a primary lysosomal-
related gene leading to dysfunctional autophagy. Although
there are no experimental GBA models investigating hyp-
oxia, moderate hypoxia upregulates mitochondrial-selective
autophagy (mitophagy) through HIF-1α-induced
BNIP3 expression, promoting Beclin-1 release from
Bcl-2.199 Upregulation of autophagy and Bcl-2 is
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associated with improved neuronal survival,200 whereas
pharmacological inhibition with chloroquine is associated
with impaired mitochondrial function and increases oxi-
dative stress and apoptosis in neurons.201 This
mitochondrial–lysosomal cross-talk through mitophagy to
create a healthy mitochondrial turnover202 is likely part
of PD pathogenesis irrespective of causative factors, and
has therefore been proposed as a prime disease-modifying
target.203,204 Indeed, in PD dopaminergic neurons, mito-
chondrial and autophagy-related genes are concomitantly
downregulated.194,195 In short, despite the fact that muta-
tions in mitochondria-related susceptibility genes comprise
only a small subset of individuals with PD, these observa-
tions suggest differential effects of hypoxia interventions
by causative factors and disease severity.

Safety and Risk Profile of Hypoxic Conditioning
in PD

Although most studies in geriatric and cardiorespiratory
patients report no or mild and transient side effects of con-
trolled intermittent hypoxia interventions,115,119,120,205-210

cardiac and respiratory alterations in PD need to be con-
sidered. First, the hypoxic ventilatory response is substan-
tially lower in elderly, and this response might be even
lower in individuals with PD, potentially worsening with
disease progression.105,211 This suggests a risk of insuffi-
cient cardiopulmonary adaptation to hypoxia, resulting in
severe hypoxemia, physical stress, and possibly exhaus-
tion. In our recent trial (manuscript in preparation), we
saw evidence for reduced hypoxic ventilatory response in
PD and altered breathing patterns at rest. The reduction
of hypoxic ventilatory response brought about by
exogenic DA212 additionally infers an interactive effect of
hypoxia interventions and conventional PD therapy.
Individuals with PD in combination with cardiorespi-

ratory comorbidities might be at increased risk of
adverse respiratory responses such as larger-
than-expected decreases in oxygen saturation211 and
speculatively adverse effects such as angina pectoris,213

especially considering the fact that low hypoxic ventila-
tory response is associated with high-altitude illness
with prolonged hypoxic exposure.214 Next, prolonged
hypoxia, contrary to acute intermittent hypoxia,215

induces significant sympathetic activation,216 especially
in extracerebral systems,217 and may cause increased
blood pressure, dyslipidemia, and dysglycemia.76,215

Chronic hypoxia also leads to increased risk of pulmo-
nary edema, pulmonary hypertension, and right-sided
heart failure. Sustained sympathetic overactivity could
be especially harmful in PD, as high stress is speculated
to negatively affect disease progression.218 Although
mechanisms are uncertain, excess stress may also
inhibit various mediating mechanisms, such as neuro-
plasticity.219 Dose-finding studies should take this sym-
pathetic activity into account as outcome measure inT
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PD trials, even when deploying acute moderate
normobaric hypoxia. Both hypoxic conditioning and
dopaminergic medication may lower blood pressure220

and cause transient dizziness,221 increasing the risk of
falls, although there is no evidence of hypoxic
conditioning-induced blood pressure reduction in non-
hypertensive individuals. Depending on the magnitude
of symptomatic effects, we hypothesize the reducing
impact on conventional drugs is limited. We envision
hypoxic conditioning as an adjuvant intervention to
dopaminergic therapy that putatively improves symp-
toms and potentially disease progression.
The HIF-1 pathway has received considerable interest

from oncology, as HIF stabilization is also seen in vari-
ous neoplasms and HIF inhibitors are therefore consid-
ered a putative oncological treatment. However,
carcinogenicity evaluation of one PHD inhibitor does
not demonstrate neoplastic effects, even at supra-
maximal dosages.222 Finally, chronic hypoxia, espe-
cially in chronic hypobaric hypoxia,223-225 leads to
increased ROS formation and is associated with
increased α-synuclein misfolding.226 Reoxygenation
during the normoxic phase of acute intermittent hyp-
oxia also causes ROS, although it seems that some
ROS production is necessary for HIF-1α stabilization
and activation of downstream targets and is likely not
excessive in short-duration hypoxic conditioning.27,28

Longer protocols do not appear to induce additional
therapeutic benefit, despite their higher risk
profile.115,117

Dose of Intervention
First, future hypoxia trials in PD should take the

uncertainties regarding the hypoxia dosage into consid-
eration with regard to safety as discussed. Second, evi-
dence suggests the magnitude of activation of relevant
mechanisms, such as neuroplasticity, is larger in brief
minute-long bouts compared to sustained protocols
with the same total duration.227,228 As longer hypoxia
bouts are associated with increased oxidative stress (see
earlier), especially in PD due to reduced
hypoxic ventilatory response, intermittent hypoxia with
3- to 5-minute exposures to hypoxia is likely opti-
mal.115,225 In our recent phase 1 trial (manuscript in
preparation), we deployed a dose-finding protocol by
administering four different hypoxic conditioning ses-
sions once a week and compared it to placebo.229 The
low-frequency administration allowed for sufficient
wash-off of potential lingering effects. We evaluated
target engagement (eg, EPO) and measured the acute
cardiovascular, respiratory, and symptomatic responses
to all hypoxic conditioning sessions. We selected an
average intervention duration of 45 minutes and
5-minute hypoxia-normoxia bouts, and FiO2 levels that
fall on the upper (FiO2 0.16) and lower (0.127)

boundaries of what is considered effective for condi-
tioning effects and what is expected from markers of
target engagement.115,230,231 It remains uncertain to
what extent such biomarkers reflect PD-relevant neuro-
protective properties and how this translates to clinical
benefits. In our follow-up trial, we deploy a thrice-
a-week 4-week protocol. There is debate on whether
hypoxia should be dosed based on the FiO2 or based
on the resultant oxygen saturation.115,232 If activation
of downstream mechanisms is ultimately determined by
the resultant hypoxemia, dosage based on the resultant
oxygen saturation might be superior for optimal indi-
vidualized downstream effects.232 In our first systematic
hypoxic conditioning trial in PD however, we applied a
fixed FiO2 to determine intervention uniformity and
study replicability, and to investigate whether inter-
individual variability in target engagement or symptom-
atic outcomes can be explained by differences in
physiological responses or target engagement. Finally,
CO2 clamping is a method often used to control CO2

during hypoxic exposure to prevent onset of
hypocapnia. However, due to the diminished ventila-
tory response in PD, physiological responses might
differ.
Total treatment duration depends on the target

mechanism and outcome (mechanistic or clinical). For
clinical effects in cardiorespiratory applications, three-
weekly11,115,233-235 to five-weekly treatments are
reported.119,120,236 The minimum total protocol dura-
tion for cardiorespiratory effects is likely 3 to
4 weeks.119,120 It is conceivable that the intervention
period for long-term neurological effects, dependent on
neuroplasticity, is substantially longer,207 although
improvement in walking distance and hand opening
function was already measurable after five interventions
in patients with spinal cord injury.205,206 Trials investi-
gating neuroprotective or even disease-modifying effects
in PD will likely require at least a year of follow-up.

Conclusions

Following several decades of work on the effects of
hypoxia in other disciplines, hypoxic conditioning has
only recently been proposed for application in neurode-
generative disease. This application is further supported
by mechanistic insights into exercise research in neuro-
degenerative disease. Through hypoxic conditioning,
hypoxia may exert neuroprotective effects in PD, possi-
bly through amelioration of mitochondrial dysfunction
and oxidative stress. In addition, accumulating evidence
suggests that hypoxic conditioning induces adaptive
neuroplasticity and facilitates dopaminergic activation,
subsequently translating to acute symptomatic effects in
PD. Further opportunities exist for pharmacological
approaches that target the hypoxia response pathway.
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Although the predominant mechanisms and optimal
dosage have yet to be elucidated and several lines of
research suggest adverse effects of high-dose chronic
hypoxia, well-controlled, randomized trials investigat-
ing hypoxic conditioning in PD are now warranted to
establish its safety and to explore a wide range of possi-
ble clinical and mechanistic outcomes.

Data Availability Statement
Data sharing is not applicable to this article as no

datasets were generated or analysed during the current
study.
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