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ABSTRACT

Residual feed intake is viewed as an important trait 
in breeding programs that could be used to enhance 
genetic progress in feed efficiency. In particular, im-
proving feed efficiency could improve both economic 
and environmental sustainability in the dairy cattle 
industry. However, data remain sparse, limiting the 
development of reliable genomic evaluations across 
lactation and parity for residual feed intake. Here, we 
estimated novel genetic parameters for genetic residual 
feed intake (gRFI) across the first, second, and third 
parity, using a random regression model. Research 
data on the measured feed intake, milk production, 
and body weight of 7,379 cows (271,080 records) from 
6 countries in 2 continents were shared through the 
Horizon 2020 project Genomic Management Tools to 
Optimise Resilience and Efficiency, and the Resilient 
Dairy Genome Project. The countries included Canada 
(1,053 cows with 47,130 weekly records), Denmark 
(1,045 cows with 72,760 weekly records), France (329 
cows with 16,888 weekly records), Germany (938 cows 
with 32,614 weekly records), the Netherlands (2,051 
cows with 57,830 weekly records), and United States 
(1,963 cows with 43,858 weekly records). Each trait had 
variance components estimated from first to third par-

ity, using a random regression model across countries. 
Genetic residual feed intake was found to be heritable 
in all 3 parities, with first parity being predominant 
(range: 22–34%). Genetic residual feed intake was high-
ly correlated across parities for mid- to late lactation; 
however, genetic correlation across parities was lower 
during early lactation, especially when comparing first 
and third parity. We estimated a genetic correlation of 
0.77 ± 0.37 between North America and Europe for 
dry matter intake at first parity. Published literature 
on genetic correlations between high input countries/
continents for dry matter intake support a high genetic 
correlation for dry matter intake. In conclusion, our re-
sults demonstrate the feasibility of estimating variance 
components for gRFI across parities, and the value of 
sharing data on scarce phenotypes across countries. 
These results can potentially be implemented in genetic 
evaluations for gRFI in dairy cattle.
Key words: genetic residual feed intake, variance 
component estimation, random regression, multitrait 
analysis

INTRODUCTION

Genetic improvement of feed efficiency represents a 
promising way to increase the environmental and eco-
nomical sustainability of the dairy cattle industry. Over 
the last century, the feed efficiency of the dairy cattle 
industry has mainly improved as an indirect effect of 
selection for milk production, which improves produc-
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tion efficiency. This effect is termed the “dilution of 
maintenance effect” (Bauman et al., 1985; VandeHaar 
et al., 2016). In other words, the “costs” of maintenance 
are diluted with increasing output (milk or meat). 
However, along with the strong selection for milk 
production, antagonistic tradeoffs for functional traits 
have been documented in the last 2 decades (Rauw 
et al., 1998; Oltenacu and Broom, 2010). Therefore, 
any future index for feed efficiency must improve both, 
efficiency and at the same time avoid antagonistic trad-
eoffs for robustness and resilience.

The main limitation for developing reliable genomic 
breeding values for feed efficiency is the expensive sys-
tem required to measure and record the feed intake of 
individual animals. Most feed intake data are obtained 
from research farms, where animals are typically used 
in nutritional experiments. Therefore, collaborations 
across country borders are needed to improve the num-
ber of records used to estimate the breeding values for 
feed efficiency (de Haas et al., 2012, 2015; Berry et al., 
2014). The Resilient Dairy Genome Project (RDGP) 
consortium aims to enhance sustainability in the dairy 
cattle industry through genetically improving feed effi-
ciency. At present, this consortium has the largest joint 
database on Holstein cows with feed intake measured 
for individual animals (12,687 cows; van Staaveren et 
al., 2024).

Berry and Crowley (2013) classified feed efficiency 
traits for genetic selection into 2 groups: (1) feed con-
version ratios (commonly used in poultry and pigs), 
and (2) residual traits, based on a linear regression. 
In dairy cattle breeding systems, residual feed intake 
(RFI) is often referred to as the desirable trait for use 
in genetic selection for feed efficiency (Pryce et al., 
2015; VandeHaar et al., 2016). Residual feed intake 
was first proposed by Koch et al. (1963), as the phe-
notypic regression for an animal’s feed intake related 
to its energy sinks (yield, maintenance, mobilization, 
pregnancy, and so on). Thus, RFI is phenotypically 
uncorrelated with the energy sinks in the model. Few 
genetic evaluation centers routinely estimate the breed-
ing values for feed efficiency traits in dairy cattle (de 
Jong et al., 2019; Jamrozik et al., 2021; Parker Gaddis 
et al., 2021; Stephansen et al., 2021a). Many of these 
institutions use RFI typically in context with the feed 
saved definition (Pryce et al., 2015).

Kennedy et al. (1993) proposed a genetic RFI (gRFI) 
model, in which the genetic correlations between the 
feed intake of a cow and its energy sinks are considered 
to be zero. The main advantage of gRFI is that the 
trait, in theory, is not genetically correlated with its 
energy sinks (Stephansen et al., 2021b) compared with 
phenotypic RFI (Veerkamp et al., 1995). Furthermore, 

in classical phenotypic RFI models, model fitting er-
rors, and measurement errors form the residual, which 
potentially ends up in EBV. For instance, Fischer et 
al. (2018) showed that 41% to 47% of variance in the 
RFI phenotype reflects model fitting errors and mea-
surement errors. Li et al. (2017) also analyzed the im-
portance of taking mobilization into consideration in a 
classical phenotypic RFI model, using partial regression 
coefficients on DMI. This model was extended by Mar-
tin et al. (2021a), who proposed a nongenetic dynamic 
RFI multitrait model. The partial regression coefficients 
on milk energy in RFI models also differ significantly 
through lactation (Li et al., 2017; Khanal et al., 2022). 
This can support the phenomenon, that dairy cows mo-
bilize body reserves to compensate the rate of energy 
demand toward milk production by a lower rate of en-
ergy intake (Roche et al., 2009). However, the estima-
tion of the changing partial regression on milk energy 
over lactation could potentially be influenced by the 
confounding effects among multiple partial regressions 
in an RFI model. The phenotypic multitrait approach 
suggested by Martin et al. (2021a) could help avoid the 
accumulation of errors in the phenotype and subsequent 
estimated breeding values for RFI. The feasibility of a 
gRFI model, with a zero genetic correlation to energy 
sinks, has earlier been studied within parity or parity 
groups (Islam et al., 2020; Khanal et al., 2022), but not 
with a covariance structure across parities.

However, a knowledge gap exists on modeling gRFI 
in a dynamic RFI multitrait model and across the first, 
second, and third parity. The novelty in this study 
consists of modeling gRFI with a covariance structure 
across parities. Thus, here, we aimed to estimate vari-
ance components for a dynamic multitrait and multi-
parity gRFI model using time series and feed intake 
data from multiple countries in North America and 
Europe.

MATERIALS AND METHODS

Data from Denmark, France, and the Netherlands 
were shared as a part of the Horizon 2020 project Gen-
TORE project (https:​/​/​www​.gentore​.eu). Data from 
the United States, Canada, and Germany were shared 
as a part of the RDGP (https:​/​/​genomedairy​.ualberta​
.ca/​; http:​/​/​www​.resilientdairy​.ca/​). The data used in 
this study are briefly described here. A detailed de-
scription of RDGP data is provided in van Staaveren et 
al. (2024). A detailed overview of the number of cows, 
number of records, and recording period is provided 
in Table 1. Only data from the first 3 lactations were 
used for this analysis. All data used were from existing 
databases, where studies were in accordance with na-
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tional guidelines. Therefore no approval statement from 
national institutions of animal care and use committees 
was necessary.

Denmark

Data from 1,045 Danish Holstein cows, with 2,000 
lactations (mean: 36.4 records/cow per lactation) were 
collected from 2003 to 2021 at the Danish Cattle Re-
search Center (DKC; Foulum, Denmark). Detailed 
information on the housing conditions and feeding be-
fore 2020 is provided in Li et al. (2017). During 2020, 
the cows were moved to the new DKC facilities, where 
cows were milked in a milking parlor (SAC, Kolding, 
Denmark). Individual feed intake was measured in feed 
boxes (RIC system, Insentec, Marknesse, the Nether-
lands). Cows were not offered concentrates in the milk-
ing parlor. Thus, from 2020 onward, they were fed ad 
libitum TMR. Cows were automatically weighed after 
milking on a scale.

The Netherlands

Data on 2,051 Dutch Holstein cows with 2,402 lacta-
tions (mean: 24.1 records/cow per lactation) were col-
lected from 1990 to 2019 at multiple research farms in 
the Netherlands. All cows were housed in commercial 
herds for nutritional experiments. All cows were kept in 
freestall barns with cubicles, and were offered a TMR 
ad libitum in feed boxes (RIC system). For a detailed 
description of basic parameters, the nutrition experi-
ments, and descriptions of data collection, please see 
Heida et al. (2021) and references therein.

France

Data from 329 French Holstein cows were collected 
from 2014 to 2020 at 2 facilities. Data on 158 cows 
were collected at Le-Pin-Au-Haras INRAE facility, 
with 208 lactations (mean 39.7 records/cow per lacta-
tion; INRAE, 2021). Data from 171 cows were collected 

at Méjusseaume INRAE facility, with 236 lactations 
(mean: 37.1 records/cow per lactation; INRAE, 2022). 
At both farms, cows were fed ad libitum using a TMR 
with an electronic gate feeding system and ear-tag iden-
tification to record individual feed intake. For detailed 
descriptions, see Fischer et al. (2018), Martin et al. 
(2021b), and Lefebvre et al. (2022).

Germany

Data were collected from 938 German Holstein 
cows between 2015 and 2021 at 4 research farms in 
Germany. These farms included: Iden (208 cows with 
236 lactations; mean 23.6 records/cow per lactation), 
Karkendamm (195 cows with 262 lactations; mean 
35.9 records/cow per lactation), Neumuehle (171 cows 
with 199 lactations; mean 22.4 records/cow per lacta-
tion), and Riswick (364 cows with 449 lactations; mean 
29.3 records/cow per lactation). Cows were housed in 
freestall barns, with no access to pasture. The cows 
were milked 2 to 3 times per day using herringbone 
(DeLaval, GEA), parallel (DeLaval), and rotary sys-
tems (GEA). Weekly milk weight was measured auto-
matically. Samples were collected in the morning and 
evening to obtain data on fat, protein, MUN, lactose, 
and SCC. Animals were fed grass and corn silage based 
on TMR (Iden and Neumuehle) or partial mixed ra-
tion (Riswick and Karkandamm). Feed intake records 
were collected for both primiparous and multiparous 
cows. Daily feed intake weight was collected over 24 h, 
and was aggregated to a single daily feed intake. Daily 
records were averaged over 44 wk of lactation to obtain 
weekly records. At 3 farms (Karkendamm, Neumuehle, 
and Riswick), BW data were collected after return-
ing from the parlor twice per day using an automated 
electronic weighing system. At the farm in Iden, BW 
was recorded manually once a month, from which daily 
weight was calculated by linear interpolation. Detailed 
descriptions of the facilities and feeding of the different 
research herds are provided in van Staaveren et al. 
(2024).

Stephansen et al.: NOVEL GENETIC PARAMETERS

Table 1. Frequency of the number of cows, lactation, average number of records per lactation, and data 
collection period for each country

Country No. of cows Lactations Weekly records
Average weekly records 

per lactation Years of data collection

Canada 1,053 1,269 47,130 37.1 2015–2021
Denmark 1,045 2,000 72,760 36.4 2003–2021
France 329 441 16,888 38.3 2014–2020
Germany 938 1,146 32,614 28.5 2015–2021
The Netherlands 2,051 2,402 57,830 24.1 1991–2019
United States 1,963 2,198 43,858 20.0 2007–2021
Total 7,379 9,456 271,080 28.7 1991–2021
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Canada

Data from 1,053 Canadian Holstein cows were col-
lected from 2015 to 2021 by 3 institutions. These were 
the University of Alberta (Dairy Research and Technol-
ogy Centre, DRTC; 285 cows with 337 lactations; mean 
33.3 records/cow per lactation), University of Guelph 
(Elora) research farms (510 cows with 666 lactations; 
mean 40.3 records/cow per lactation), and a commercial 
farm (SUNALTA; 258 cows with 266 lactations; mean 
34.0 records/cow per lactation). Detailed information 
on the facilities and feeding regimens of the various re-
search herds is provided in van Staaveren et al. (2024).

United States

Data on 1,963 Holstein cows were collected at 6 re-
search farms from 2007 to 2021 in the United States. 
Specifically Beltsville (510 cows with 665 lactations; 
mean: 28.7 records/cow per lactation), University of 
Florida (494 cows with 527 lactations; mean: 17.6 re-
cords/cow per lactation), Iowa State University (353 
cows with 354 lactations; mean: 22.5 records/cow per 
lactation), Michigan State University (88 cows with 
89 lactations; mean: 20.8 records/cow per lactation), 
University of Wisconsin (425 cows with 450 lactations; 
mean: 19.8 records/cow per lactation), and the Purina 
Animal Nutrition Center (93 cows with 113 lactations; 
mean: 25.2 records/cow per lactation). Detailed infor-
mation of the facilities and feeding regimens at the 
various research herds is provided in van Staaveren et 
al. (2024).

Phenotypes and Data Editing

Energy-corrected milk was calculated for statistical 
analysis according to the formula by Sjaunja et al. 
(1990):

ECM (kg) = raw milk (kg) × [(0.383 × fat content 

(%) + 0.242 × protein content (%) + 0.7832)/3.140].

The combined dataset was filtered to remove outli-
ers. The following steps were used to clean using SAS 
software version 9.4 (SAS Institute Inc.): (1) extreme 
values were set to missing if DMI was not in the range 
of 5 to 40 kg/d, milk yield was not in the range of 5 to 
100 kg/d, fat percentage in milk was not in the range 
of 1% to 10%, protein percentage in milk was not in the 
range of 1% to 10%, and BW was not in the range of 
300 to 1,100 kg, (2) outliers were set to missing, defined 
of the range of mean ± 3 standard deviations, (3) non-

sensical records were set to missing if one of the traits 
(DMI, ECM, and BW) exceeded a change of 5, 10, and 
50 kg, respectively, in time windows of ± 1 wk, (4) 
data from lactations with less than one-third of test-
days were excluded (minimum 14 wk with data per cow 
during parity), (5) if lactations were not cohesive for a 
cow, only the first lactation was kept, and (6) records 
were excluded when herd × year × season (calving) or 
experiment and country × year × month groups were 
smaller than 5 records.

The filtered data consisted of 9,456 lactations from 
7,379 cows and a total of 271,080 weekly records from 
first to third parity. Unfiltered data consisted of 20,703 
lactations from 14,871 cows and a total of 405,292 
weekly records. The required 14 wk minimum with 
data per cow was the criterion that caused the larg-
est reduction in the number of records. On average, 
filtering reduced the number of records by 31%, and 
affected France, Denmark, Germany, the Netherlands, 
Canada, and United States by 1%, 6%, 21%, 27%, 
38%, and 56%, respectively. The filtering criteria was 
used to reduce problems with “Runge’s phenomenon.” 
Runge’s phenomenon describes problems with poly-
nomials placing overly high emphasis on observations 
at the extremes of lactation (Meyer, 2005). A filtering 
criterion for the minimum number of weeks in records 
is typically used when developing phenotypic multitrait 
RFI models (Martin et al., 2021a). Lidauer et al. (2015) 
also excluded cows with no data at the beginning of 
first lactation in a test-day evaluation.

Pedigree

Pedigrees were provided directly from the partners 
in the GenTORE project, whereas a common pedigree 
was available for partners in the RDGP database. All 
pedigrees were combined to form a common pedigree 
(Figure 1). In the process of forming the common 
pedigree, different quality checks (sire and dam in 
the pedigree, correct wrong birth years, insert genetic 
groups) were performed to ensure a high-quality pedi-
gree. The pedigree was pruned to 5 generations for 
animals with phenotype data, using DMU trace soft-
ware (version 2, July 2020, Madsen, 2012). All non-
informative animals were excluded from the pedigree. 
The full pedigree contained information on 118,646 
individuals; after pruning, the pedigree contained 
29,537 animals. For animals with missing parent(s), 
genetic groups were assigned, taking into account the 
effect of country (Denmark, France, Canada, Unites 
States, the Netherlands, Germany, other European 
countries, and other countries), breed (Ayrshire + 
Red Dairy Cattle + Montbéliarde + Brown Swiss, 

Stephansen et al.: NOVEL GENETIC PARAMETERS
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Holstein, and other breeds), and 3 birth-year classes 
(1: <1990, 2: 1990–2005, 3: >2005). Ayrshire, Red 
Dairy Cattle, Montbéliarde, and Brown Swiss were 
grouped into one breed group, as they individually 
would have been too small. In addition, the breeds are 
a part of the population structure in the Nordic Red 
Dairy breed (SEGES Livestock Innovation Cattle, 
2021). Furthermore, the authors did not include an ef-
fect of sex in the genetic groups, as we did not expect 
an effect of selection for RFI. Figure 1A shows the 
common sires and grandsires in European countries. 
Most sires and grandsires had progeny in one country; 
however, genetics overlapped between European coun-
tries for 6 sires and grandsires, which had progeny in 
all European countries (Figure 1A). The same pattern 
was recorded for the Unites States and Canada (Fig-
ure 1B). Germany was grouped independently from 
the other European countries, because most sires and 
grandsires were common with the United States and 
Canada. Seventeen sires and grandsires had offspring 
in all countries, where Denmark, France and the Neth-
erlands were grouped (Figure 1B).

Statistical Analysis

The statistical software DMU (Madsen and Jensen, 
2013) was used for variance component estimation us-
ing AI-REML and EM-REML algorithms. We used for 
the random effect part a linear (DMI and ECM) or 
quadratic (BW) random regression models. We did not 
use higher orders because of convergence issues. For the 
fixed regressions on age at calving we used linear and 
quadratic equations. The random regression models by 
parity were as follows:

y CHYS W ACC ACC

a

ijclmnopq i jkl k
k=0

x

c c

kc
k=0

m

kc

= + + +

+ +

∑

∑

µ + Φ β β

Φ

1 2
2

ppe EXP CYM ekc
k=0

m

kc no p ijclmnopq∑ + + +Φ ,

� [1]

where yijclmnopq is the phenotypes for DMI, ECM, or BW 
for cow c on week of lactation j (j = 1, 2, …, 44); µ is 
the intercept; CHYSi is the ith fixed effect of calving 
herd × year × season (933 levels; seasons were sepa-
rated into quarters from date of calving); Wjkl is the kth 
fixed regression of the jth week of lactation and is 
nested within herd × 5-yr period l (23 levels; 5-yr peri-
ods were only used for Danish and Dutch data); Фk is 
the term of the xth order Legendre polynomial (LP) 
for week of lactation; β1 and β2 are the fixed regressions 
on age at calving (ACCc) and ACCc

2 for cow c, respec-
tively; akc is the kth regression coefficient of the mth 
order LP for the random additive genetic effect for the 
cth cow; pekc is the kth regression coefficient of the mth 
order LP for the random permanent environmental ef-
fect for the cth cow; Фkc is the term of the mth order 
LP for akc and pekc, where time is the week of lactation; 
EXPno is the random effect of the nth trial nested in the 
oth herd x × year × month (2,866 levels; year and 
month are defined from record date); CYMp is the ran-
dom effect of the pth country × year × month (898 
levels; country groups: Denmark, France, Canada, the 
United States [except Florida], Germany, the Nether-
lands, the state of Florida [the United States]; year and 
month are defined from record date); and eijclmnopq is the 
random residual error, modeled as heterogeneous by 
country and the qth lactation period (1: 1–4 wk of lac-
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Figure 1. Venn diagram showing the number of sires and grandsires with at least one offspring across countries. Plot A shows common sires 
and grandsires between European countries. Plot B shows common sires and grandsires between continents. CAN = Canada; DNK = Denmark; 
FRA = France; GER = Germany; NLD = the Netherlands; USA = United States of America.
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tation [WOL], 2: 5–36 WOL, 3: 37–44 WOL), with 20 
levels in total.

It was assumed that var(a) = A⊗ ( )K a�, var(pe) 
= ⊗ ( )I K pe�, and var(e) = I = R, where A is the nu-
merator relationship matrix, ⊗ is the Kronecker prod-
uct, and K a( )� is the genetic covariance matrix between 
the LP coefficients and K pe( )� is the permanent envi-
ronmental covariance matrix between the LP coeffi-
cients (first order for DMI and ECM, and second order 
for BW). The fixed lactation curve was fitted with an 
xth order LP that was 2 orders higher than that of the 
a and pe effects.

To construct the covariance for all 9 traits (3 traits 
× 3 lactations), 36 bivariate analyses were performed. 
For analyses that did not meet the convergence crite-
ria with AI-REML in DMU, an EM-REML analysis 
was implemented with the priors from the AI-REML 
analysis. The models were analyzed as bivariate mul-
titrait:
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where y is the vector of the phenotypes, b is the vector 
of the fixed effects, X is the incidence matrix relating 
observations with fixed effects, a is the vector of addi-
tive genetic effects, Z1 is the incidence matrix relating 
observations with random additive effects, pe is the 
vector of permanent environmental effects, Z2 is the 
incidence matrix relating random permanent environ-
mental effects with observations, and e is the vector of 
residual effects.

Across-Continent Analysis

For an across-country model [1] to improve genetic 
evaluations of feed efficiency in the participating coun-
tries, the genetic correlation among countries must be 
high. To analyze this, an across-continent analysis was 
carried out for DMI during first parity between North 
America (Canada and the United States) and Europe 
(Denmark, France, Germany, and the Netherlands). A 
filtered dataset was used that only contained data from 
4 to 24 wk of lactation and data from 2005 to 2021. This 
selection was implemented to harmonize the recording 
period within lactation and over years between North 
America and Europe. The filtered dataset contained 
3,538 cows in first lactation, with 31,422 records from 
North America and 29,726 records from Europe. The 
bivariate model was solved with DMU AI-REML, and 
was presented as follows:

y CHYS W ACC ACC

 EXP

ijclnopq i
k

kl k c c

no

= + + + +

+ + + +
=
∑µ Φ β β

0

3

1 2
2

a Pec c CCYM eijclnopqp + .
� [2]

See the description of model 1 for interpretation. How-
ever, in this model, heterogeneous residual variance 
was nested within lactation periods per fourth week of 
lactation. The residual and permanent environmental 
covariance between the 2 continents were assumed to 
be 0. The asymptotic standard error on the genetic cor-
relation between continents was calculated according to 
Jensen and Madsen (2002).

Deriving the Outputs for Genetic and Phenotypic RFI

The concept of deriving gRFI solutions and output 
for further analysis was extended in comparison to the 
approaches of Kennedy et al. (1993), Islam et al. (2020), 
and Martin et al. (2021a). Variance components from 
the previous 36 bivariate trait analyses were combined 
using the iterative summing method developed by 
Mäntysaari (1999), as described in Henshall and Meyer 
(2002). The iterative summing method ensured that 
the final variance component matrix was positive defi-
nite. The genetic covariance Ĝ( ) matrix for t points over 

the 12 trajectories was derived as ˆ ,G K G= ( ) ′Φ Φ�  where 
Φ has dimension t × k, K G( )� has dimension k × k, and 
Ĝ has dimension t × t. When setting up the Φ and K̂, 
these parameters were sorted by parity and the variable 
order DMI, ECM, and BW. Covariance components of 
change in BW (ΔBW) were derived from the fitted 
slope of BW within parity. That was done by construct-
ing the Φ matrix as Equation 3 in Islam et al. (2020). 
The permanent environment covariance matrix Pe�( ) 
was derived as Ĝ by replacing K G( )� with the respective 
solution matrix. The dimensions of Ĝ and Pe� were 528 
× 528.

The residual (R) matrix was constructed as a block 
diagonal matrix for each week of lactation. Each block 
contained residual (co)variance for DMI, ECM, BW, 
and ΔBW for each parity, resulting in a matrix of 528 
× 528. The transformation matrix within each parity 
was defined according to Islam et al. (2020):

twp =

−























1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 1

,
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where twp is the transformation matrix for the wth week 
of lactation (w = 1, 2, …., 44) and the pth parity (p = 
1, 2, 3) to derive the residual variance for ΔBW. The 
first 3 rows of twp represent the residual variance for 
DMI, ECM, and BW. The fourth row represents the 
residual variance for ΔBW. R0,wp:​w+1p represents the 
block diagonal matrix with the residual variance esti-
mates for the 2 adjacent weeks of lactation in the pth 
parity, resulting in a dimension of 6 × 6. The residual 
matrix for the wth week of lactation and pth parity is 
derived as follows:

	 R t R twp wp wp w p wp= +0 1, :
´ ,	 [3]

where the dimension of the first matrix (week of lacta-
tion = 1, parity = 1) R11 is 6 × 6. The final R matrix is 
a block diagonal matrix with a dimension of 528 × 528. 
The phenotypic (co)variance matrix is defined as P = 
G + Pe + R. The genetic and phenotypic regression 
coefficients for each parity are calculated as

β βGwp G G Pwp P PB wp B wp B wp B wp= =( ) ( ) ( ) ( )− −
: : : :  .21 22

1
21 22

1and 

� [4]

The genetic and phenotypic regressions are a 3 × 1 
vector for wth week of lactation and pth parity. BG:22 is 
a 3 × 3 matrix of genetic (co)variance for ECM, BW, 
and ΔBW from each week of lactation and each parity. 
BG:21 is a 3 × 1 matrix of genetic covariance for DMI 
on ECM, BW, and ΔBW from each week of lactation 
and each parity. BP:22 is a 3 × 3 matrix of phenotypic 
(co)variance for ECM, BW, and ΔBW from each week 
of lactation and each parity. BP:21 is a 3 × 1 matrix 
of phenotypic covariance for DMI on ECM, BW, and 
ΔBW from each week of lactation and each parity.

A Ĝ (co)variance) matrix, containing gRFI, could be 
obtained from BGBˆ ′. The Ĝ matrix was derived earlier, 
and the B matrix represents a block matrix for genetic 
regressors:

BGwp =
− − −














1 0 0 0
1

0 1 0 0
0 0 1 0
0 0 0 1

β β βGwp ECM Gwp BW Gwp BW: : :∆

















,

where BGwp is the regression matrix for the wth week 
and pth parity, −βGwp:i is the genetic regression coeffi-
cient for wth week and pth parity for the ith trait. The 
BG11 matrix has a dimension of 5 × 4; BGBˆ ′ has a di-
mension of 660 × 660. The P̂ (co)variance matrix con-

taining RFI could be easily derived as Ĝ by replacing 
BGwp with BPwp. Thus, the heritability of gRFI could 
be obtained as the diagonal elements from BGB′ di-
vided by the diagonal elements from BPB′.

Standard errors for heritability and genetic correla-
tions were calculated according to the approximate 
method of Fischer et al. (2004). Approximate asymp-
totic standard errors were calculated as described by 
Fischer et al. (2004), using the appropriate elements of 
the inverse of the average information matrix.

RESULTS

Descriptive Statistics for Records and Phenotypes

The overview of records per week (Figure 2) showed 
that the recording strategy differed among the involved 
countries. Most data across countries were recorded 
from 0 to 30 wk of lactation. For all countries, the 
number of records declined during late lactation, par-
ticularly in the United States and the Netherlands. 
With increasing parity number, the number of records 
per week of lactation also decreased (Figure 2).

Descriptive plots of phenotypes for DMI, ECM, and 
BW are presented in Supplemental Figures S1, S2, and 
S3 (https:​/​/​doi​.org/​10​.7910/​dvn/​sxxdcy; Stephansen, 
2023). Average DMI was lowest at first parity, with 
peak feed intake occurring at a later time point for 
first parity compared with later parities (Supplemental 
Figure S1). Feed intake only declined after the peak in 
later parities for Denmark, France, Germany, and the 
Netherlands. The average DMI was highest in Canada 
and the United States, and lowest in the Netherlands. 
The lower feed intake in the Netherlands have been 
affected by the longer recording period (Table 1). For 
DMI, the average ECM was lower for first-parity cows 
compared with later parities (Supplemental Figure S2). 
The lactation curve for ECM was less steep for first-
parity cows after peak production compared with later 
parities. The highest producing Holstein cows were 
those in Canada and the United States, whereas the 
lowest producing cows were in the Netherlands, reflect-
ing the pattern obtained for DMI. For BW, the heaviest 
cows across parities were in Canada, while the lightest 
cows were in the Netherlands (Supplemental Figure 
S3). For all countries and parities, the expected pattern 
of mobilization during early lactation and deposition in 
mid and late lactation was observed.

Variance Component Estimates

Heritability and additive variance estimates for ECM, 
BW, and ΔBW are shown in Supplemental Figure S4 
(https:​/​/​doi​.org/​10​.7910/​dvn/​sxxdcy; Stephansen, 
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2023) and heritability approximate standard errors are 
shown in ST1. The highest heritability was observed 
for ECM at first parity (range: 22–34%, depending on 
lactation week). Additive variance increased more at 
the end of lactation for ECM in second and third par-
ity compared with first parity. For BW, heritability 
was highest in first parity (range: 39–52%). Extreme 
“tails” on additive variance were only present for BW 
in third parity. The derivative trait ΔBW showed a 
low level of heritability (<2%) in all parities (Supple-
mental Figure S4).

Heritability and additive variance estimates were 
obtained for DMI and gRFI (Figure 3). Stable additive 
variance was estimated for DMI in first and second par-
ity; however, an extreme tail was reported at the end 
of third parity. Additive variance had a similar pattern 
for gRFI (Figure 3). The highest average heritability 
for DMI was estimated in first parity (range: 20–37%). 

Heritability for DMI in third parity was moderate at 
early and mid lactation, but was moderately high at 
late lactation. Third parity had the largest approximate 
standard errors (ASE) for DMI heritability. Additive 
variance and heritability had a similar pattern for DMI 
and gRFI (Figure 3); however, numerical values were 
lower for gRFI. Approximate standard errors for herita-
bility tended to be larger for gRFI compared with DMI, 
and were highest at third parity (Table 2).

Phenotypic and Genetic Regression for DMI  
on Energy Sinks

The calculated genetic (Figure 4) and phenotypic 
(Figure 5) regression coefficients from Equation 4 were 
obtained for lactation during first, second, and third 
parity. The genetic regression coefficients for DMI|ECM 
was stable in all parities, and was highest in third par-

Stephansen et al.: NOVEL GENETIC PARAMETERS

Figure 2. Number of records per week of lactation within parity, and grouped by country. Each bin represents the individual number of 
records for each specific week of lactation. CAN = Canada; DNK = Denmark; FRA = France; GER = Germany; NLD = the Netherlands; USA 
= United States of America.

Figure 3. Plot showing additive variance (left y-axis), heritability (right y-axis), and week of lactation (x-axis) for DMI (A) and genetic 
residual feed intake (B). Solid line = additive variance; dashed line = heritability; blue = first parity; green = second parity; red = third parity.
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ity. Genetic regression coefficients for DMI|ECM were 
higher than the phenotypic regression coefficients for 
these traits. The genetic regression for DMI|BW was 
stable over the lactation period and 3 parities (mean: 
0.012, 0.012, and 0.021 for first, second, and third par-
ity, respectively). Phenotypic regression coefficients 
showed a similar pattern for DMI|BW (mean: 0.014, 
0.015, and 0.014 for first, second, and third parity, re-
spectively). The regression coefficients for DMI|ΔBW 
were close to zero for the phenotypic values (Figure 
5); however, there was variation for the genetic regres-
sion coefficients of DMI|ΔBW (Figure 4). The pattern 
across lactation for the genetic regression coefficients of 
DMI|ΔBW was similar in first and second parity, but 
differed in third parity.

Estimated Genetic Correlation Across Lactation  
and Among Parities

Heatmaps showing the structure of genetic correla-
tion within lactation and across parities are presented 
for ECM, BW, and ΔBW in Supplemental Figures 
S5, S6, and S7 (https:​/​/​doi​.org/​10​.7910/​dvn/​sxxdcy; 
Stephansen, 2023). For ECM (Supplemental Figure 
S5), the heat map shows that ECM was almost the 

same trait throughout first parity. In later parities, 
ECM changed during lactation, and the genetic correla-
tion between early and late lactation was close to zero. 
Across parities on the same test day, ECM was highly 
correlated. The heatmap for BW showed that the trait 
was very stable, and was highly correlated both within 
lactation and across parities (Supplemental Figure S6). 
For ΔBW, a moderately high negative genetic correla-
tion was obtained for all 3 parities between early and 
late lactation (Supplemental Figure S7). Across parities 
on the same test day, a moderate to moderately high 
genetic correlation was observed, showed that mobiliza-
tion and deposition were genetically correlated across 
parities.

The genetic correlation structure for DMI (Figure 6) 
showed that DMI was stable during first and second 
parity. Early and late lactation were moderately to 
highly correlated. However, third parity showed more 
variability, with early and late lactation being moder-
ately to highly negatively correlated. Across parities 
on the same test day, a moderate high correlation was 
observed, especially for consecutive parities.

The genetic correlation structure for gRFI (Figure 
7) across parities showed that gRFI was highly cor-
related in mid to late lactation. The genetic correlation 
between early lactation and the later periods showed 
a zero to moderately high negative correlation within 
parity, particularly in third parity. The genetic corre-
lation between parities for gRFI was presented with 
ASE (Figure 8). Genetic correlations with the lowest 
ASE were obtained between first and second parity, 
whereas the highest ASE was obtained between second 
and third parity. The highest genetic correlations were 
obtained between consecutive parities, and for the mid 
and late lactation periods.

Stephansen et al.: NOVEL GENETIC PARAMETERS

Table 2. Approximate SE for DMI and genetic residual feed intake 
(gRFI), presented as 10th, 50th, and 90th quantiles (P10, P50, and 
P90, respectively) 

Parity

DMI

 

gRFI

P10 P50 P90 P10 P50 P90

First 0.03 0.06 0.10 0.05 0.10 0.15
Second 0.02 0.05 0.11 0.02 0.03 0.04
Third 0.06 0.15 0.26 0.09 0.18 0.26

Figure 4. Plot showing genetic regression coefficients for the first to third parity. Red = ECM; blue = BW; black = change in BW.

https://doi.org/10.7910/dvn/sxxdcy
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Genetic Correlations Across Continents

Bivariate analysis between North America and Eu-
rope showed a high genetic correlation for DMI in first 
parity (0.77). The asymptotic standard error associated 
with the genetic correlation was 0.37.

DISCUSSION

Methodology of gRFI

Most breeding goal traits are genetically evaluated 
taking parity into account; however, some traits are 

Stephansen et al.: NOVEL GENETIC PARAMETERS

Figure 5. Plot showing phenotypic regression coefficients for the first to third parity. Red = ECM; blue = BW; black = change in BW.

Figure 6. Genetic correlations across lactation for DMI in the first, second, and third parity. First, second, and third parity are shown in 
the upper left box, middle box, and lower right box, respectively. The genetic correlation between parities is presented in the off-diagonal boxes. 
Each pixel represents 1 wk of lactation (132 wk of lactation in total, when combining all 3 parities). 
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evaluated using random regression models (RRM), 
such as milk production (https:​/​/​interbull​.org). This 
approach is used because most traits change geneti-
cally with respect to lactation and parity. However, 
feed intake data tend to be sparse, limiting the use 
of advanced statistical methods to estimate breeding 
values for RFI. Here, we constructed a model that had 
similarities to models used for test-day evaluations (Li-
dauer et al., 2009; Oliveira et al., 2019) and Manzanilla 
Pech et al. (2014). However, the mentioned studies on 
production traits, used higher orders of LP (3–5) on 
the random additive effect and estimated the variance 
components in a multitrait model. It is a limitation in 
this study that we could not model higher orders of 
LP and estimate variance components in a multitrait 
model due to the limited number of cows and records 
with individual DMI. The calving herd × year × season 
(CHYS) effect was calving season within a herd and has 
been used to assess the effect of herd × year × season 
in test-day evaluations (Lidauer et al., 2009; Oliveira 
et al., 2019). Random experiment nested within herd 
× year × month (EXP) was used in the current study 
to combine the 2 random effects of EXP and year × 

month (YM) used in Manzanilla Pech et al. (2014). 
Consequently, the random effect of EXP in this study 
captured monthly changes within the herd and experi-
ment (e.g., changes to feed or management). The ran-
dom effect of country × year × month (CYM) was used 
to capture the effects of monthly changes within each 
country. The research herd in Florida (United States) 
was treated as an independent country, because it is in 
a subtropical climate compared with the other research 
herds in the United States.

Some genetic evaluation centers use an across parity 
classical 2-stage evaluation of RFI (Parker Gaddis et 
al., 2021; Stephansen et al., 2021a) to estimate breeding 
values in a subindex for feed saved. The classical RFI 
model works well on small datasets with a small num-
ber of herds, but has some limitations. For instance, 
the handling of model fitting and measurement errors 
(Fischer et al., 2018) with respect to phenotypic RFI 
is not genetically uncorrelated to energy sinks, which is 
preferable as a breeding goal (Stephansen et al., 2021b). 
These problems could be addressed by using a multi-
trait approach in combination with RRM. For instance, 
Shirali et al. (2017) first used a multitrait gRFI RRM 

Stephansen et al.: NOVEL GENETIC PARAMETERS

Figure 7. Genetic correlations across lactation for genetic residual feed intake (gRFI) during the first, second, and third parity. First, second, 
and third parity are shown in the in upper left box, middle box, and lower right box, respectively. The genetic correlation between parities is 
presented in the off-diagonal boxes. Each pixel represents 1 wk of lactation (132 wk of lactation in total, when combining all 3 parities).

https://interbull.org
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in pigs, while Islam et al. (2020) included ΔBW as 
derivative of BW in a multitrait gRFI RRM for dairy 
cattle. A requirement for data from first parity proba-
bly helps to avoid selection bias on variance component 
estimates, as shown by Lidauer et al. (2015). However, 
introducing this requirement to individual feed intake 
data in the present study would reduce the quantity of 
usable data significantly.

The ASE used here was based on the approximate 
method of Fischer et al. (2004). However, asymptotic 
standards errors provided directly from variance com-
ponent estimation software would have been prefer-

able. However, a full multitrait model that includes all 
traits (9 traits and 21 variance components) did not 
converge with the current dataset. Therefore, bivariate 
models were used in combination with the interactive 
summing method (Henshall and Meyer, 2002). Future 
research should focus on multitrait analyses of gRFI 
with RRM that provide asymptotic standard errors 
from REML analysis or Bayesian analysis present-
ing posterior standard deviations. However, using a 
Bayesian approach in a large-scale multitrait analysis 
of gRFI could be infeasible in terms of computational 
power.

Stephansen et al.: NOVEL GENETIC PARAMETERS

Figure 8. Genetic correlations and approximate SE between parities for genetic residual feed intake (gRFI). Plots are rotated by 40° com-
pared with Figure 7. Genetic correlations between (A) first and second parity, (B) first and third parity, and (C) second and third parity. Colors 
indicate the level of approximate SE: black: SE >0.20; red: SE 0.20–0.40; yellow: SE 0.40–0.60; green: SE 0.60–0.80; blue: SE <0.80.
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Variance Component Estimate Results

Published data on RRM of gRFI remain sparse, with 
no studies presenting covariance between parities for 
gRFI. Several studies have estimated variance com-
ponents for ECM and BW or metabolic body weight 
(MBW), as energy sink traits in gRFI. Body weight 
was used over MBW to reduce the number of traits in 
the model. The concept of reducing the gRFI model for 
one trait, was earlier described in Islam et al. (2020), by 
deriving ΔBW from BW. Furthermore, Tempelman and 
Lu (2020) demonstrated that BW was nearly a linear 
function of MBW, which also was stated in Khanal et 
al. (2022). However, an effect can be found in compari-
son of maintenance requirements for a very small (e.g., 
500-kg Holstein cow) and a very heavy (e.g., 1,000-kg 
Holstein cow) cow. As earlier discussed, BW was used 
instead of MBW to reduce the number of traits in the 
variance components estimation. Tempelman and Lu 
(2020) suggested BW to be incorporated in a TMI, as 
it is already included in the Net Merit Index. The heri-
tability for energy toward milk production ranged from 
22% to 43% in first-parity Dutch cows in a study by 
Manzanilla Pech et al. (2014), which was supported by 
the current study. The current study obtained similar 
results to Khanal et al. (2022) with respect to the level 
and pattern of energy for milk production (Supple-
mental Figure S4). Specifically, first-parity cows had 
the highest heritability (30–38%), with this level being 
lower for later parities (13–24%). However, Khanal et 
al. (2022) only modeled milk energy from 50 to 200 
DIM, and did not consider very early and late lactation.

Body weight has the highest heritability, with various 
studies showing ranges of 25% to 48% (Manzanilla Pech 
et al., 2014), 50% to 70% (Islam et al., 2020), 59% to 
65% and 46% to 57% (Khanal et al., 2022) for first and 
later parities, respectively. The results of the current 
study supported these ranges (Supplemental Figure 
S4). In our study, the derivative trait of BW had very 
low weekly heritability, similar to Islam et al. (2020), 
with heritability being close to zero in Khanal et al. 
(2022). However, Khanal et al. (2022) showed that 
lactation-based heritability for ΔBW was 11% and 13% 
for primiparous and multiparous cows, respectively. 
Islam et al. (2020) obtained higher additive variance 
for ΔBW compared with the current study. Additive 
variance of ΔBW might have been higher in Islam et 
al. (2020) due to a higher level of additive variance for 
BW, and a higher acceleration for additive variance at 
the end of lactation.

Manzanilla Pech et al. (2014), Islam et al. (2020), 
and Khanal et al. (2022) reported similar levels for the 
heritability of DMI in first-parity Holsteins, with the 

results from the current study supporting these find-
ings (Figure 3). For later parities, Khanal et al. (2022) 
reported heritability ranging from 13% to 24% at from 
50 to 200 DIM, with our data also providing similar 
results (Figure 3). Covariance functions for DMI us-
ing RRM were first reported in the late 1990s (Koenen 
and Veerkamp, 1998; Veerkamp and Thompson, 1999). 
Only Islam et al. (2020) reported the level of addi-
tive variance for DMI, with extremely high levels being 
obtained at the end of lactation. This phenomenon 
was only observed for DMI in late lactation for third 
parity in the current study (Figure 3), thus we should 
be careful with the interpretation of these results. The 
extremely low or high additive variance level at the end 
of lactation has earlier been obtained by RRM (Bohm-
anova et al., 2008). This is because RRM places high 
emphasis on observations at the extremes of the time 
period for the measured trait, especially high order LP 
(Meyer, 2005).

Islam et al. (2020) and Khanal et al. (2022) reported 
the heritability for gRFI using partial regression co-
efficients (range: 10–15% and 3–13%, respectively). 
Veerkamp et al. (1995) and Difford et al. (2020) 
also reported heritability from repeatability analysis 
(range: 5–14%). For first-parity Holstein cows, addi-
tive variance was reported to vary around 0.5 in Islam 
et al. (2020), and 0.48 for Denmark and 0.27 for the 
Netherlands in Difford et al. (2020). In the current 
study, average additive variance was 0.95, 0.90, and 
1.6 for first, second, and third parity, respectively. No 
studies have reported the level of additive variance in 
later parities for gRFI. The higher heritability of gRFI 
reported in the current study might be caused by the 
construction of gRFI. The genetic variance of gRFI is 
not affected by the residual covariance between feed 
intake and energy sink traits, as obtained for pheno-
typic RFI (Islam et al., 2020). Therefore, phenotypic 
RFI is expected to have higher heritability compared 
with gRFI, with some exceptions (Islam et al., 2020). 
In the current study gRFI explained 43% and 48% 
(range: 28–70%) of additive variance in DMI for first 
parity and later parities, respectively, on average. Is-
lam et al. (2020) reported a lower range (15–40%). 
Difford et al. (2020) found that gRFI explained 17% 
and 42% of the additive variance in DMI for Danish 
and Dutch Holstein cows, respectively. In a symposium 
review, Tempelman and Lu (2020) estimated that 35% 
of gRFI explained DMI, which represents unexplained 
genetic variation of DMI. In comparison to the per-
centage of gRFI explaining DMI in the current study, 
the studies by Difford et al. (2020), Islam et al. (2020), 
and Tempelman and Lu (2020) showed clear hetero-
geneity; however, all studies showed that ECM and 
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BW accounted for at least half of variance in DMI, on 
average.

RFI Regression Coefficients

Difford et al. (2020) reported genetic regression coef-
ficients to calculate gRFI in Danish Holstein cows as 
0.31 for DMI|ECM and 0.016 for DMI|BW. An energy 
sink for change in body tissue was not included. In Islam 
et al. (2020), partial genetic regressions showed that 
DMI|ECM increased during lactation (from 0.2 to 0.5). 
Khanal et al. (2022) reported the levels of DMI|milk 
energy (Tempelman et al., 2015) in first parity (from 
0.5 to 0.7) versus later parities (from 0.4 to 0.6) during 
the lactation period from 50 to 200 DIM. The pattern 
and level of genetic regression for DMI|ECM (Figure 
4) obtained in the current study was similar to that 
obtained by Islam et al. (2020). In contrast, Khanal et 
al. (2022) obtained higher level and more fluctuating 
regression coefficients during first parity. This higher 
level might be explained by differences in the definition 
of energy in milk between studies. The levels for second 
and third parity in the current study were similar to the 
level of later parities obtained in Khanal et al. (2022); 
however, the pattern fluctuated more during lactation 
in Khanal et al. (2022). The genetic regression for 
DMI|BW or DMI|MBW was stable in all studies. The 
genetic regression for DMI|ΔBW differed with respect 
to the level and pattern during lactation in the same 
studies. In addition, the level of the DMI|ΔBW in all 
weeks of lactation in this study, was lower than feeding 
norms reported from NRC (2001). This inconsistency 
for DMI|ΔBW and feeding norms, has earlier been 
found in Tempelman et al. (2015), Li et al. (2017), and 
Islam et al. (2020). This difference might be because it 
is difficult to model changes in different body tissues 
and change in gut fill, which could mask changes in 
body tissue. Thorup et al. (2012) reported that the mo-
bilization of proteins and lipids in the body generated 
13.5 MJ/kg protein and 39.6 MJ/kg lipid, respectively. 
Deposition of proteins and lipids in the body required 
50 MJ/kg protein and 56 MJ/kg lipid, respectively. 
Adipose tissue is the most efficient tissue; however, it 
is important to distinguish between the 2 body tissues, 
along with mobilization and deposition. Furthermore, 
Thorup et al. (2018) showed that residual gut fill dur-
ing early lactation could mask up to 30 kg empty BW.

Phenotypic regression coefficients were similar across 
studies for gRFI, whereby DMI|ECM was low during 
early lactation and subsequently increased over the 
entire period. The phenotypic regression coefficients for 
DMI|BW or DMI|MBW were at a stable and low level. 
Furthermore, the phenotypic regression coefficient for 
DMI|ΔBW or DMI|ΔMBW varied minimally along 

lactation when compared with the genetic regression 
coefficients.

Genetic Structure Within and Across Parities

The estimated genetic correlations within lactation 
and across parities for energy sink traits per week are 
presented in Supplemental Figures S5, S6, and S7. For 
ECM in first parity, there was a high genetic correlation 
between the weeks of mid to late lactation, and a moder-
ate to moderately high genetic correlation between the 
weeks of early and mid to late lactation. This result sup-
ported those of Manzanilla Pech et al. (2014) and Kha-
nal et al. (2022). Second and third parity showed similar 
results to first parity; however, the genetic correlation 
between early and mid to late lactation was close to zero. 
Khanal et al. (2022) did not estimate covariance between 
parities for ECM, preventing comparison. The current 
study obtained high genetic correlations between parities 
for ECM (Supplemental Figure S5) on the same test day, 
similar to the covariance obtained by genetic evaluation 
centers (De Roos et al., 2001; NAV, 2022). For BW, ge-
netic correlation was high across lactation and parities in 
the current study (Supplemental Figure S6), supporting 
Manzanilla Pech et al. (2014) and Khanal et al. (2022). 
This high genetic correlation for BW across parities was 
similar with the results in Mehtiö et al. (2021).

The current study is the first to report how genetic 
correlation is structured across lactation and parities 
for ΔBW (Supplemental Figure S7). The same pattern 
was found in all parities, with cows that intensively 
mobilize ΔBW during early lactation also intensively 
depositing it during mid to late lactation. Biologically, 
recovery is logical after a mobilization period in cows. 
Across parities, a moderate to moderately high genetic 
correlation was recorded on the same test day. Thus, in-
tensive mobilization early in life and at later life stages 
appears to be genetically correlated in cows.

Genetic correlations per week for DMI (Figure 6) 
showed a high genetic correlation between mid and late 
lactation, and a moderate correlation between early and 
mid to late lactation for first and second parity. A high 
genetic correlation was obtained for mid and late lacta-
tion, whereas a moderately high negative correlation 
was obtained between early and mid to late lactation 
for third parity. Of note, third parity had the fewest re-
cords for estimating variance components. Manzanilla 
Pech et al. (2014) obtained a negative genetic correla-
tion between early and mid to late lactation for first 
parity. Khanal et al. (2022) obtained a high genetic cor-
relation between days in mid lactation for DMI within 
parity (in Supplemental File S1 in Khanal et al, 2022).

Genetic correlations per week for gRFI (Figure 7) 
showed a genetically stable trait at mid to late lacta-
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tion, whereas gRFI seemed to be another trait during 
early lactation. Based on the definition of RFI, this 
trait should be stable through lactation. Genetic RFI 
might have differed in early lactation to mid/late 
lactation because different genes control it along the 
lactation. Alternatively, this difference might be due to 
the difficulty in modeling mobilization and deposition. 
Komaragiri and Erdman (1997) showed that adipose 
tissue stores energy more efficiently compared with 
muscle tissue. Thus, gRFI models need to be developed 
that distinguish between mobilization and deposition in 
different tissues to account for this complexity.

This study is the first to evaluate genetic correla-
tions between parities for gRFI in an RRM. This novel 
finding is of high importance for breeding dairy cattle 
that are more feed efficient and climate friendly. This 
is because it allows us to select feed efficient cattle at 
mid to late lactation during first parity, with our data 
indicating that they would likely also be efficient in 
second and third parity. Furthermore, genetic correla-
tion structure per week showed that early lactation is 
separate trait to mid and late lactation. When assess-
ing between parities on the same test day, a moderate 
to moderately high correlation was obtained for gRFI. 
Thus, some of the animals that are efficient during the 
early part of first parity are expected to be efficient in 
the early part of second parity.

Across Country Estimates

In our study, we assumed a genetic correlation of 
one across countries in the analyses. For energy sink 
traits, a high genetic correlation across countries for 
Holstein cows is expected. For milk production, Inter-
bull previously reported genetic correlations between 
countries for Holstein (median: 0.79; range 0.60–0.99; 
Interbull, 2021). For BW, a very high genetic correla-
tion is expected between countries. Interbull previously 
reported high genetic correlations between countries 
(median: 0.79–0.91; Interbull, 2021) for conformation 
traits used to calculate body size composition (stature, 
chest width, body depth, angularity, and rump width; 
Parker Gaddis et al., 2021).

In our study, we expected energy sink traits in gRFI 
to have high genetic correlations across countries; 
however, Interbull provides no information on DMI. 
Typically, records exist for thousands of cows across 
countries on milk production and BW or body size 
traits; however, DMI is different. Few studies have in-
vestigated genetic correlation across countries for DMI 
(de Haas et al., 2012, 2015; Berry et al., 2014). The cur-
rent study obtained a high genetic correlation (0.77 ± 
0.37) between North America and Europe, supporting 
the results of Berry et al. (2014) (genetic correlations: 

0.76–0.84). de Haas et al. (2015) calculated genetic 
correlations between separate research herds. Using a 
dendrogram, the herds were placed in 3 groups: (1) 
heifers and lactating animals in Australia, Ireland, and 
New Zealand; (2) lactating animals in Denmark, Ger-
many, and the United States; and (3) lactating animals 
in Canada and the Netherlands. The genetic correla-
tions between groups 2 and 3 were not estimated with 
sufficient accuracy to establish whether they should 
be treated as different traits. Of note, the accuracy of 
genomic predictions showed that all countries benefited 
from sharing phenotypes for DMI collaboratively. Thus, 
sharing phenotypes for DMI and energy sink traits rep-
resents an important next step together with improving 
the model, to achieve reasonable accuracy for breeding 
values of gRFI.

CONCLUSIONS

This study estimated variance components for gRFI 
and its component traits. We used a multitrait model 
where traits were modeled by parities, with data from 
multiple countries. We used a REML procedure to esti-
mate the variance components with random regression 
methodology. Our results showed that gRFI is heritable, 
and that the genetic correlation structure was highly 
genetically correlated between lactation weeks in mid 
and late lactation within each parity. However, the ge-
netic correlation between early and mid/late lactation 
showed low, or even negative, correlations within each 
parity. A moderately high genetic correlation was esti-
mated across parity in mid and late lactation, but this 
correlation was low to moderate low in early lactation. 
Our study demonstrates that it is possible to estimate 
variance components for gRFI using a multitrait RRM, 
and that this trait is genetically correlated across 
parities in mid and late lactation. However, more focus 
needs to be placed on early lactation. In conclusion, 
it is feasible to select for feed efficiency in different 
parities without affecting the production and size of the 
cows, conforming with global feed saved evaluations.
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