Controlled Atmosphere

Controlling air composition to increase storage life

Sunshine Seminar August 23rd, Eelke Westra

Postharvest Quality

Fresh produce has to bridge distance and time from where it is produced to where it is consumed while **maintaining** its properties. The resources for doing so are limited and under pressure. With our understanding of the product, technology and value chain and our unique facilities we offer services, find solutions and accelerate R&D.

85+ Years of Postharvest Research: #1 Worldwide

Wageningen Research Services

<u>Contract</u> Wageningen experts for:

- Co-development of Solutions
- Technical Validation
- Consultancy
- Training & Capacity building

Track record flowers

- Protocols for handling cut flowers for seafreight
 - https://edepot.wur.nl/401918
- Ethylene
- Botrytis
 - Storage conditions
 - Treatments
- Water balance in flowers

Typical STAR shaped flowers due to ethylene

FOOD & BIOBASED RESEARCH

Outline

- Mechanical refrigeration
- Controlled Atmosphere (CA)
- Components
- CA in transport equipment
- CA and cut roses

Quality controlled logistics is KEY

Temperature response of fresh produce

Refrigeration

Refrigeration = heat removal

Internal energy U [Joule] = potential + kinetic energy of molecules

First law of thermodynamics (conservation of energy): $\Delta Q = \Delta U + \Delta W$

Physics: Heat flows from warm to cold, so refrigeration (moving heat from cold to warm) requires (electrical) energy

Refrigeration system

4

Outline

- Mechanical refrigeration
- Controlled Atmosphere (CA)
- Components
- CA in transport equipment
- CA and cut roses

Controlled Atmosphere (CA) storage

- Stretching marketing period by "hibernating" products
- Mainly applied for climacteric products with annual harvest
 - Apples, pears, kiwi,.....but many more
- NL 2022: ~600M kg apples and pears harvested

Principle (1) – lowering oxygen

UNIVERSITY & RESEARCH

Principle (2) – product response

Principle (3) – fixed safe oxygen level

Safety margin to account for biological variation

Controlled Atmosphere

- Lowest possible temperature
- A fixed safe O₂ level is maintained during storage
- A fixed safe CO₂ level is maintained during storage
- Ultra Low Oxygen (ULO) possible since cold rooms are more air tight
- Example CA kiwi = 0°C; 1-2% O₂; 3-5% CO₂

CA brings down respiration, moisture loss and ripening

Basics of fresh product storage Summary

- Storage is NOT a hospital \rightarrow quality is not increasing
- Storage at the lowest safe temperature is the most effective method to reduce respiration and to ensure storability, transportability, shelf life and it exceeds any other post-harvest method
- Respiration can be slowed down further by lowering the oxygen concentration and increasing the CO₂ concentration
- Optimal storage conditions are always a compromise
- Order in conditioning: 1)Temperature 2)oxygen 3)CO₂,%RH, ethylene
- Limit biological variation

Outline

- Mechanical refrigeration
- Controlled Atmosphere (CA)
- Components
- CA in transport equipment
- CA and cut roses

CA components

- Insulated refrigerated room
- Air tight
 - Lungs
- Main CA components
 - N₂ generator
 - CO₂ scrubber
 - Control and registration unit

Nitrogen generator for oxygen control

- O₂ Removal
- Nitrogen injection
 - Activated carbon (VPSA, PSA)
 - Pressurised N₂
 - Membrane adsorber
- Fruit respiration

O₂ level increase: fresh air exchange

100

50

t (hour)

0

0

Carbon scrubber for CO₂-control

CO₂ level increase

Fruit respiration

CO₂ injection (gas cylinders, for high levels only, e.g. berries)

CO₂ Removal

- Scrubbers:
 - Activated carbon scrubber
 - Ca(OH)₂ (lime)
 - Membrane technology (Reefer, Everfresh)
- (Fresh air exchange)

Safety \rightarrow low oxygen is very DANGEROUS

Outline

- Mechanical refrigeration
- Controlled Atmosphere (CA)
- Components
- CA in transport equipment
- CA and cut roses

Active and passive CA-systems

Different types of CA-systems:

Active:

Active means to generate a gas flow with low O_2 to the container

Passive:

No active means to generate a gas flow with low O_2 to the container

Fruit respiration is used to lower O₂ concentration

However different active/passive systems on CO₂

Different brands and/or systems

Containers

- Starcool (AV+) & Starcare
- Carrier Everfresh & Extendfresh
- Thermo King AFAM (+)
- Daikin Active CA

Add-ons

- PURfresh
- Liventus
- Maxtend
-
- Pallets
- Transfresh

Components reefer CA-system

- Refrigeration
- Air tight container
- CA components (depending on type of CA-container)
 - CO₂ scrubber
 - N₂ generator
 - Control and registration unit

Air tight container

CA-curtain

Drain hole needs to be closed!

Open drain hole

Air tightness (1)

- Air tightness is decisive, esp. in passive CA systems
- Factors:
 - Close fresh air exchange
 - Close 4 (!) drain holes
 - Curtain at door-end
 - Pre-trip air tightness test

Drian holes

Open

Open air exchange

Air tightness (2)

Factors:

- Close fresh air exchange
- Close 4 (!) drain holes
- Curtain at door-end: air-tight and lung-function
- Pre-trip air tightness test

Equal pressure

Lower pressure in cargo hold

Outline

- Mechanical refrigeration
- Controlled Atmosphere (CA)
- Components
- CA in transport equipment
- CA and cut roses

Controlled atmosphere and rose flowers (1)

- Low oxygen storage of roses $(<2\%0_2)$
- Lower respiration
- Increased CO₂ production
 - harmful

Lower ethylene production

Controlled atmosphere and rose flowers (2)

Effect on roses

- Low O₂ inhibits respiration rate & ethylene production of cut rose flowers
- O₂ 0.5 6 kPa no real positive effect on length of vase life.
- $O_2 < 2\% \rightarrow \text{increased } CO_2 \text{-production} \rightarrow \text{ethanol, acetaldehyde}$?
- After low O₂ flower opening is inhibited and growth of petals seems to be disturbed
- Low O₂ during storage has no advantage for rose flowers

- Higher CO₂ inhibits fungal growth, however >10% phytotoxic
 - More effect from dip treatments

Recap

- CA is an additional technique to increase storage life of fresh produce
 - Temperature management is key
- Requires control over initial product quality and strict handling protocols
- CA is an available option during transport in containers

- CA has no large effect on extending storage life of roses
 - Consequential effects (ethylene, RH) might have an effect!

Thank you for your attention!

Eelke Westra

Eelke.Westra@wur.nl

+31 651 619 215

Eelke Westra

Programme Manager

Postharvest Quality

