Precision agriculture with variable rate and spot application

Calculation example and possible consequences for the risk assessment

9 June 2022, Mechteld ter Horst, Steven Droge, Louise Wipfler, Koen van Boheemen, Jan Huijsmans





### Outline

Precision techniques for crop protection

- Use of reduced dose in Groundwater Risk Assessment?
  - Case study Groundwater Risk Assessment
    - Variable rate application
    - Calculations (method, input data)
    - Results
    - Conclusions
    - Consequences for Groundwater Risk Assessment

Ecotox options for adapted in-soil organism RA



Precision techniques for crop protection

Plant receives pesticide treatment, based upon fieldspecific data, using the latest technology

Various drivers for precision application

- Ambition EU Farm to Fork strategy (Green Deal)
  - 50% less PPP in 2030
- Rapid technical advancements
  - smart scanning/full spray nozzle control
- Full digitalization of (local scale) crop management
  - inform farmers / consultants / risk assessors







## Precision techniques for crop protection

- Treatment to be determined per m<sup>2</sup> or per plant
- Spatial resolutions differ



#### Chained precisionapplications

1. Biomass scan in potato field for a desiccant spray task





2. task map variable rate applications via spray boom nozzle sections On-the-go application based
on scan/drone images, of field
thistle as weed
-> spot application

Source Boheemen et al., 2022

# Precision techniques for crop protection

- At present, mainly used for variable rate application or spot application of <u>herbicides</u>
  - Herbicides for haulm destruction
  - Soil herbicides



Picture from akkerwijzer.nl

- Sensors making variable rate or spot application possible
  - Biomass sensors (herbicides for haulm destruction or targeting specific weeds)
  - Sensors for making soil scans to map spatial variability of soil properties (soil herbicide).

Maps can also be based on droneor satellite images





Van Boheemen et al., 2022

## Use of reduced dose in Groundwater RA?

- ERA for PPP registration in EU and NL: homogenous pesticides application according the advised dose is assumed.
- No guidance on how to assess precision applications in the current evaluation methods
- Possible option: include reduced dose as result of precision applications as a mitigation option in GW RA
  - If precision application technique leads on average to using 40% of advised dose (60% reduction) -> perform risk assessment using 40% of advised dose
- Underlying assumption: risks are averaged out over the entire field – Is this justified?



## Use of reduced dose in Groundwater RA?

- Selected case: Groundwater risk assessment and variable rate application based on measured organic matter content
- EU GW endpoint: 80<sup>th</sup> percentile leaching concentration at 1 m depth below a treated field; spatial unit = field
- Hypothesis: For substances with non-linear sorption risks are not averaged out over the field.
  - Use of average applied reduced dose on the field does NOT result in a leaching concentration that is the same as the area weighted average leaching concentration as result of a series of different dose applications applied per patch in the field.



B. Freundlich Isotherm



### Case study GW RA – Variable rate application

- Variable rate applications of (soil) herbicide on 8.3 ha field with seed onions
- Soil scan: organic matter content (OM) in top 30 cm



Decision model Kempenaar et al. 2013 used: Dose<sub>(min,max)</sub> = a · OM + b

- average of the minimal effective dose: 1.38 L (product)/ha
  - ~35% of advised dose (4 L/ha, so ~ 65% reduction)
- with a maximum of 1.54 L/ha and a minimum of 1.13 L/ha

#### Task map of spraying volume made





## Case study GW RA – Calculation method

- For each of 164 patches 1 PEARL simulation with dose of active ingredient specific for each patch
- SWAP/PEARL not parameterized for specific field FOCUS GW Kremsmünster scenario taken
  - However, measured organic matter content of top 30 cm used (patch specific)
- Result: 164 80<sup>th</sup> percentile leaching concentrations at 1 m depth
  - Calculate area weighted average 80<sup>th</sup> perc. leaching conc.
- Compare with 1 PEARL simulation for Kremsmünster scenario using the reduced dose (35% of advised dose):
  - 1. Area weighted OM of field of case study (4.7%)
  - 2. OM Kremsmünster scenario (3.6%)



## Case study GW RA – Calculation input

- a.i.  $\rightarrow$  Kom<sub>soil</sub> : 66 L/kg, N: 0.965, DegT50<sub>soil</sub>: 13 d
- Task map: spraying volume of PPP for each patch of treated field, calculated back to dose PPP and dose of active ingredient
- For each patch the area (1.6 7146 m<sup>2</sup>) and the average soil organic matter content of the top 30 cm soil (3.6 - 6%)

| Patch | Average soil organic  | Area of the | Spraying | Dose PPP   | Dose active  |
|-------|-----------------------|-------------|----------|------------|--------------|
| ID    | matter content of the | patch       | volume   | (L PPP/ha) | ingredient   |
|       | top 30 cm             | (m²)        | (L/ha)   |            | (kg a.i./ha) |
|       | (%)                   |             |          |            |              |
| 1     | 3.7                   | 180.49      | 360      | 1.2600     | 0.2678       |
| 2     | 3.5                   | 24.40       | 360      | 1.2600     | 0.2678       |
| 3     | 3.5                   | 617.05      | 365      | 1.2775     | 0.2715       |
|       |                       |             |          |            |              |
|       |                       |             |          |            |              |
| 162   | 5.6                   | 437.96      | 430      | 1.5050     | 0.3198       |
| 163   | 5.3                   | 240.49      | 435      | 1.5225     | 0.3235       |
| 164   | 5.4                   | 226.34      | 440      | 1.5400     | 0.3273       |



## Case study GW RA – Calculation input

Relationship between dose and the mass organic matter fraction



11

## Case study GW RA - Results

| <ul><li>164 PEARL simulations</li><li>Kremsmünster scenario</li></ul>                    | <ol> <li>PEARL simulation</li> <li>Kremsmünster scenario</li> <li>Area weighted average OM of field</li> </ol> |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Patch specific OM     Datch specific dasa                                                | <ul> <li>of case study</li> <li>Reduced dose (35% of advised</li> </ul>                                        |  |  |
| • Paten specific dose                                                                    | dose)                                                                                                          |  |  |
| area weighted average of 80 <sup>th</sup><br>percentile leaching concentration<br>(µg/L) | 80 <sup>th</sup> percentile leaching concentration<br>(µg/L)                                                   |  |  |
| 2.47E-4                                                                                  | 2.25E-4                                                                                                        |  |  |



### Case study GW RA - Results



## Case study GW RA - Results



slightly mobile a.i. (Kom<sub>soil</sub> 66 L/kg)

#### -> organic matter driving factor for leaching concentration





## Case study GW RA - Conclusions

**Hypothesis**: For substances with non-linear sorption risks are not averaged out over the field

**Case study**: Using average reduced dose  $\rightarrow$  slightly lower concentration than area weighted average concentration from the 164 simulations with variable rate applications

- Small difference due to rather weak non-linearity of sorption of a.i. (Freundlich coefficient 0.965).
- Substances with stronger non-linearity of sorption will show larger differences





## Case study GW RA – Consequence for RA

Can the reduced dose based on organic matter content of a specific field be used in the current (field scale) Groundwater RA?

Not recommended as reduced dose is very site specific.

- Reduced dose is determined for a specific field, taking into account:
  - Soil
  - PPP
  - Crop type
  - Pest pressure
  - Maximum dose (can be farmer input, but limited by advised dose)



## Ecotox options for adapted in-soil organism RA

Large PEC<sub>soil</sub> variation may influence RA of **in-soil invertebrates** *Irrelevant for most herbicide, but of interest for nematicides...?* 

### Variable rate application:

- Minor PEC<sub>soil</sub> variations expected. RA likely follows GAP dose

### **Spot application:**

- Part in-field is without application. Define specifics on label
- In soil risk assessment (current):
  - Focus on <u>very low</u> <u>dispersal capacity of</u> <u>soil organisms</u>
  - PEC<sub>soil</sub> >5x lower than chronic No Observed Effect Concentr.

### Ecosystem Services-based risk assessment (future\*?):

- Focus on <u>recovery</u> <u>potential</u> of Service Providing Units (SPUs)
- Small effects may be tolerated, for a defined period

Ecotox options for adapted in-soil organism RA Spot application as part of in-soil RA?



### **Key question:**

 Can spot-application enhance recovery potential of in-soil invertebrates via dispersal within the field?

Treated patches, If small/medium effect allowed: ensure recovery!

Non-treated area, Is this a healthy population: Suitable source for recovery?



Ecotox options for adapted in-soil organism RA Spot application as part of in-soil RA?

spots



Also Band/furrow/strip?



### To be clarified, research needs to:

- Define maximum patch radius for the most vulnerable in-soil SPU
- Define the maximum patch area to be repopulated (source-sink cap.)
- Healthy in-field population during full cropseason (in non-treated area):

Can negligible impact from full PPP scheme (apart from spot application) be shown?

Can these limitations be checked during precision application with on-the-go detection?



Thank you for your attention

### Any questions?



### mechteld.terhorst@wur.nl



### Literature

- Boheemen, K. van, Riepma, J. & Huijsmans, J.F.M., 2022. Precision Agriculture and Crop Protection. Definitions and the relation between precision-applications and the authorisation procedure of PPPs.
   Wageningen Research, Report WPR-1118.
   <a href="https://doi.org/10.18174/566499">https://doi.org/10.18174/566499</a> in prep
- Kempenaar, C.; Heijting, S.; Kessel, G.J.T.; Michielsen, J.G.P.; Wijnholds, K.H. 2013. Modellen en beslisregels voor variabel doseren van gewasbeschermingsmiddelen op basis van variatie in bodem en gewas. Rapportage PPL-project 80. PRI-WUR Rapport 496b

