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j Centro Euro-Mediterraneo sui Cambiamenti Climatici and Università Ca' Foscari Venezia, CMCC@Ca'Foscari–Edificio Porta dell'Innovazione, 2nd floor, Via della 
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A B S T R A C T   

There is growing concern over climate models that project significant changes in the oceans, with consequences 
on marine biodiversity and human well-being. However, marine and coastal ecosystems respond differently to 
climate change-related stressors depending on the ecosystem, species composition and interactions, geo
morphologic settings, and spatial distribution, but also on the presence of local stressors interacting cumulatively 
with climate change-related pressures. Our paper provides a comprehensive review of the current literature 
about the effects of climate-related pressures on marine and coastal ecosystems and how local stressors affect 
their resilience. Our work focuses on key marine and coastal ecosystems from three ecoregions: the Caribbean 
Sea (coral reefs, mangrove forests, seagrass beds), the Mediterranean Sea (the coral Cladocora caespitosa, maërl 
beds and seagrass beds) and the North-East Atlantic, which include kelp forests, maërl beds, salt marshes and 
seagrass beds. This review highlights the need for a more comprehensive, multi-species, and multi-stressors 
approach to predict better changes at the ecosystem and seascape levels of marine and coastal ecosystems. 
Nevertheless, there is enough evidence to argue that addressing locally key manageable stressors common to 
multiple ecosystems, such as nutrient enrichment, coastal development, hydrologic disturbances, anchoring or 
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sedimentation, will reduce the identified adverse effects of climate change. This knowledge is critical for prac
tical conservation actions and coastal and marine spatial management at the ecoregion scale and beyond.   

1. Introduction 

Despite the implementation of the Paris Agreement, climate models 
project significant changes in the state of the oceans over the next 
century with consequences on the entire Earth system, including marine 
biodiversity and human well-being (Bindoff et al., 2019; IPCC, 2022). 
Globally, coral reefs, kelp and mangrove forests, salt marshes, seagrass 
beds and other bio-engineers rank among the most vulnerable marine 
and coastal ecosystems (hereafter MCE) to climate change (Duarte et al., 
2013; Roberts et al., 2017; Spalding et al., 2014). Apart from global 
stressors, local anthropogenic stressors are also known to severely 
impact MCEs and can affect the safe operating space, or tolerance, of 
MCEs to the effects of climate change (Carilli et al., 2009; Scheffer et al., 
2015). As a consequence, the combined effects of local anthropogenic 
stressors make it difficult to define the magnitude of these climate 
change-related impacts (Bindoff et al., 2019). Rising temperatures and 
extreme weather events have already affected marine environments 
globally (Wernberg et al., 2013; Halpern et al., 2015; Poloczanska et al., 
2016; Pinsky et al., 2019). While climate change (hereafter CC) cannot 
be locally managed or contained, local stressors can be (Elliott et al., 
2015). Besides, local actions to support healthy natural environments 
can contribute to CC mitigation and adaptation (Roberts et al., 2017). 
Therefore, without devaluing the urgency to drastically reduce green
house gas emissions into the atmosphere, it is crucial to understand 
which local stressors (hereafter LS) need to be managed to increase the 
resilience of MCEs to CC, where resilience is defined as the ability of an 
ecosystem or species to resist and recover from a disturbance (Holling, 
1973). Nevertheless, few studies consider the interactive effects of CC 
and LS or whether the outcomes of such interactions are species- or 
ecoregion-specific (Gissi et al., 2021; Furlan et al., 2019). 

To address this knowledge gap, this paper aims to provide a 
comprehensive review of the current literature about the effects of 
climate-related pressures on MCEs and how local anthropogenic 
stressors affect their resilience. Our review has been done within the 
frame of the European Commission-funded project MaCoBioS (maco
bios.eu). Therefore, it focuses on six key MCEs that are predominant in 
Europe and its Overseas Territories, covering three ecoregions: North- 
East Atlantic kelp forests, salt marshes and seagrass beds; Mediterra
nean coral Cladocora caespitosa, maërl and seagrass beds; and Caribbean 
coral reefs, mangrove forests and seagrass beds. While the conservation 
interest of seagrasses, mangroves and coral reefs is unquestionable, the 
inclusion of maërl beds and the single species C. caespitosa is not less 
important. Similar to tropical corals, C. caespitosa primarily thrives in 
shallow habitats and shares the main traits of tropical reef-building 
corals (Kružić and Benković, 2008; Kersting and Linares, 2012). More
over, it is one of the best studied bioindicators of long-term climate 
change effects (Kersting et al., 2013; Kersting and Linares, 2019). For 
those reasons, this species was deemed more appropriate than other 
species from the Mediterranean coralligenous assemblages. The ecology 
of North-East Atlantic and Mediterranean maërl beds has received little 
attention in contrast to other MCEs (Barbera et al., 2003), but their 
structural functionality is analogous to kelp forests or even coral reefs, 
through the complex habitats they provide, supporting a very rich 
biodiversity. Yet, gathering and consolidating existing knowledge, as 
well as addressing critical gaps, is paramount for their preservation 
(Tuya et al., 2023). 

These subtidal and intertidal MCEs are among the most productive 
and valuable ecosystems on Earth, providing habitat for a wide range of 
commercial and non-commercial species, food and raw materials, 
coastal protection from storms and erosion, and cultural services, such 
as tourism and recreative activities (Liquete et al., 2013). Moreover, 

some of these MCEs are key contributors to CC mitigation due to their 
high carbon storage (e.g., seagrasses, mangroves, salt marshes) (Duarte 
et al., 2013). Nevertheless, these MCEs remain highly vulnerable to the 
effects of CC and LS (Simeoni et al., 2023). Therefore, studies from all 
three ecoregions in Europe (Mediterranean, North-East Atlantic), and 
the Caribbean, were included in this review, to cover a wide range of 
environmental contexts representative of where strong human pressures 
and vulnerability to CC drivers combine in threatening MCEs. 

The specific objectives of the paper are threefold: to identify the state 
of knowledge regarding (i) the impact of different CC stressors on key 
MCEs and (ii) the safe operating space limits of these MCEs, and (iii) to 
identify key LS that can be managed to reduce the identified adverse 
effects of CC per MCE framed within its local and regional socio- 
ecological context. Such knowledge is critical for practical conserva
tion actions and coastal and marine spatial management at the ecor
egion scale and beyond. 

2. Literature review methods 

A literature review on the Scopus database was conducted, consid
ering any research papers published until December 2021. Search 
strings for each MCE were constructed in the following form: climate 
change driver (e.g., climate change, global change, warming, heat wave, 
acidification) AND local stressor (e.g., impact, disturbance, pressure) 
AND ecosystem limit (e.g., threshold, tipping point, recovery, loss, shift) 
AND ecosystem type (e.g., seagrass beds, salt marshes, kelp forests, 
maërl beds, coral reefs, or mangroves) AND region (North-East Atlantic, 
Caribbean, Mediterranean). Full search strings are included in the 
Supplementary material (SM-1). For seagrasses, the literature review 
focused on the species considered representative of the three ecoregions: 
Zostera marina in the North-East Atlantic, Posidonia oceanica in the 
Mediterranean and Thalassia testudinum in the Caribbean. Although the 
review focused on studies from those three ecoregions, we also included 
other ecoregions considered relevant, such as the Gulf of Mexico 
(associated with the Caribbean) or the Arctic (related to the North-East 
Atlantic). Global studies were considered if they included our study 
ecoregions. However, we will refer only to the three targeted ecoregions 
to simplify the reading. Only publications in English were included. In 
total, 2576 articles were returned by these searches. 

Articles were screened according to the following eligibility criteria, 
(i) studies conducted on the focal species or MCE within a defined 
geographical area (see above) or results from laboratory and mesocosm 
experiments, (ii) studies focusing on the effects of CC with or without LS 
on the selected MCEs. Articles were first screened based on title and 
abstract, resulting in 705 articles. The full texts of these remaining ar
ticles were screened, and 295 articles were retained for this work: 108 
focused on coral reefs in the Caribbean; 17 on the Mediterranean coral 
Cladocora caespitosa; 34 on kelp forests in the North-East Atlantic; 13 on 
maërl beds in North-East Atlantic and the Mediterranean; 50 on 
mangrove forests in the Caribbean; 25 on salt marshes in the North-East 
Atlantic and the Mediterranean; 48 on seagrasses in the North-East 
Atlantic (n = 14), Mediterranean (n = 25), and the Caribbean (n = 9). 

When an article included more than one response variable for the 
ecosystem of interest, each response was included as a separate entry in 
the results table and referred to as studies hereafter. Therefore, the total 
number of studies analysed exceeds the number of articles retained. 
Meta-data, i.e., information describing the study, was extracted from the 
295 articles resulting in 946 studies analysed (the complete list of arti
cles from which data were extracted is included in Supplementary ma
terial SM-2). Data was compiled in an output table built on the key 
questions underpinning this review paper: the nature of the study (e.g., 
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experiments in fieldwork or laboratory, temporal series, models), the 
response variables assessed (i.e., the ecological variable measured in the 
study), the CC drivers and LS, and identification of operational limits or 
ecosystem tipping points. 

Response variables are measurable features of an organism, indi
vidual, population, habitat or ecosystem responding to environmental 
change. A total of 581 response variables were identified and iteratively 
coded into eight response variable categories to facilitate data analysis: 
(i) density/abundance (includes survival or mortality), (ii) distribution, 
(iii) growth, (iv) habitat structure, (v) metabolism, (vi) photosynthesis/ 
respiration, (vii) reproduction, (viii) other (e.g., “sediment accretion 
rate”, “grazing”, or variables related to “paleo-ecology”). 

The CC drivers of ecosystem change were catalogued as (i) warming, 
including heatwaves, (ii) extreme weather events, with specific 
emphasis on storms and hurricanes, (iii) atmospheric CO2 concentra
tion, (iv) ocean acidification, (v) sea level rise, (vi) salinity (hypo- or 
hypersalinity), (vii) cooling, reflected by the duration and severity of 
freezing events, (viii) rainfall regimes, and (ix) inundation. To summa
rise the general effect of CC drivers on MCEs from multiple studies, we 
considered the overall effect of a CC stressor to be positive, negative, 
neutral or unclear when >50 % of the responses were positive, negative, 
neutral or unclear, respectively (e.g., 60 % negatives and 40 % positives 
= negative overall effect). An ‘unclear’ overall effect was assigned when 
it was uncertain whether the response of a variable was negative, pos
itive or neutral to the ecosystem, population, or individual, and not 
explicitly specified in the reviewed articles. We visually nuanced the 
effects between fully (100 %) and mostly [51 %–99 %] positive, nega
tive, neutral or unclear with two shades of colour in the figures. The 
overall effect was considered ‘mixed’ if there was an equal number of 
responses between positive, negative, neutral, unclear, or none of the 
responses reached a 51 % threshold (e.g., 50 % positive and 50 % 
negative, or 20 % negative, 40 % neutral, 40 % positive). Details about 
the exact number of studies per type of effect are summarised in Sup
plementary materials (SM-3, Figs. S1, S3 and S5). 

The LS were classified into 12 categories (Table 1). When interactive 
effects between CC drivers and LS were tested, the outcome was recor
ded (i.e., significant interaction or no interaction) as well as the nature 
of the interaction, if any (i.e., additive, synergistic, antagonistic) and the 
overall effect (negative, positive, neutral, mixed, unclear) of tested in
teractions on the MCE. The cumulative overall effect from CC drivers 
combined with LS was determined following the rules previously 
described. Details about the exact number of studies per type of effect 
are summarised in Supplementary materials (SM-3, Tables S2, S4 and 
S6). 

The output table included descriptions of any tipping points or 
response data that can aid in identifying the safe operating space of the 
MCE, when such data were reported. Tipping points are understood as 
the point where following a perturbation, a self-propagated change can 
eventually cause a system to shift to a qualitatively different state. Safe 
operating space is understood as the range of environmental conditions 
that lies between tipping points for which the functioning of the 
ecosystem remains stable (Scheffer et al., 2015). 

3. Results 

3.1. Caribbean 

3.1.1. Coral reefs 
Among all 108 articles, studies of CC effects on Caribbean corals are 

heavily slanted towards warming (85 % of the studies) (Fig. 1). 
Marine heat waves are a primary concern of warming studies (75 %) 

as they have triggered bleaching events responsible for massive coral 
mortality worldwide (Eakin et al., 2010; Eakin et al., 2022). Repeated 
exposure to elevated temperatures can cause general net tissue loss 
(Neal et al., 2017) and switching to thermal-tolerant symbionts can 
decrease calcification rates (Ortiz et al., 2013). Sexual reproduction is Ta
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Fig. 1. Summary of studies per climate change drivers and general effects on broad response variable categories in marine and coastal ecosystems of the Caribbean, 
including the Gulf of Mexico. Percentage values represent the proportion of studies per response variable from the total number of studies per CC driver, indicated in 
bold for each ecosystem. 
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critical for resilience, but many studies demonstrated negative effects of 
thermal stress on coral reproduction, including decreases in larvae 
survivorship and settlement, inhibition of fertilisation, increased post- 
settlement mortality and loss of genotypic diversity (LaJeunesse et al., 
2009; Randall and Szmant, 2009; Baums et al., 2013; Ross et al., 2013; 
Davies et al., 2016; Ross et al., 2017); however, inter-species variability 
is observed (Ross et al., 2013; Randall and Szmant, 2009). In many 
cases, when temperatures are 1–1.5 ◦C above the maximum monthly sea 
surface temperature, increased mortality (Langdon et al., 2018), 
reduced larvae survivorship (LaJeunesse et al., 2009) and slower healing 
time (Kaufman et al., 2021) were observed. However, not only the 
magnitude but also the duration of thermal anomalies is crucial. For 
example, the number of days at >30.5 ◦C was the most significant metric 
characterising bleaching years (Manzello et al., 2007a), although 
threshold values can be affected by physical or biological factors such as 
depth or symbiont type (Smith et al., 2016; Buddemeier et al., 2011). 

Ocean acidification was the second most studied CC driver (25 % of 
studies) affecting Caribbean coral reefs. Growth assessments accounted 
for 43 % of studies and examined the formation or dissolution of coral 
skeletons, or reef framework, in the face of changes in carbonate pa
rameters, such as aragonite saturation state and dissolved inorganic 

carbon. Overall, results showed negative effects on coral calcification 
(Mumby et al., 2013; Camp et al., 2016; Langdon et al., 2018; Martinez 
et al., 2019), reproduction (Albright et al., 2010; Albright and Langdon, 
2011; Davies et al., 2016), and photosynthesis (Bedwell-Ivers et al., 
2017; Martinez et al., 2019), but in many cases exhibited neutral (Towle 
et al., 2015; Bedwell-Ivers et al., 2017; Langdon et al., 2018) or unclear 
(Kennedy et al., 2013) responses. Akin to thermal stress, some species 
may be more sensitive to ocean acidification (Langdon et al., 2018; 
Bedwell-Ivers et al., 2017; Martinez et al., 2019). 

Warming and acidification are predicted to interact with each other 
(Kennedy et al., 2013; Freeman et al., 2013; Buddemeier et al., 2008; 
Davies et al., 2016). Modelled data suggests that a warming of 2.6 ◦C 
reduces cover by 15 %, but when saturation state is considered at CO2 
values for 2100 (710 ppmv), declines in cover reach 41 %–60 % (Bud
demeier et al., 2008). 

Sea level rise comprised 4 % of studies focused on the ability of coral 
reefs to protect our coasts. However, with increased sea level, wave 
energy dissipation is reduced, resulting in enhanced reef erosion (cata
logued here as part of growth), compromising reef accretion, and 
affecting habitat structure (Blanchon et al., 2017; Yates et al., 2017; 
Wegner and Ellis, 2017; de Bakker et al., 2019). 

Fig. 2. Cumulative overall effects of local stressors combined with climate change drivers for marine and coastal ecosystems in the Caribbean. Top left: coral reefs; 
top right: mangrove forests; bottom: seagrass beds (i.e. Thalassia testudinum). 
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Extreme weather events (13 % of studies) are generally negative for 
corals as they cause physical destruction, resulting in coral cover decline 
and affecting the number of juveniles and small-size corals (Steneck 
et al., 2019; Crabbe, 2011). In particular cases, these events can increase 
asexual reproduction (Foster et al., 2013). The interaction of hurricanes 
with other climate drivers is complex. In fact, hurricanes can induce 
local cooling, mitigating the effects of marine heat waves and reducing 
the recovery time after bleaching (Manzello et al., 2007b). 

Studies on the interactive effects of CC and LS have intensely focused 
on warming, terrestrial run-off (pollution, nutrients, and sediments) and 
grazing (Table 1, Fig. 2). Higher nutrient concentration, resulting from 
coastal run-off, acts in synergy with increased temperatures to favour 
shifts to algal-dominated communities (DeBose et al., 2013) and pro
mote pathological affections (Castañeda-Chávez et al., 2018). The effect 
of nutrients and thermal stress varied between species and showed 
mixed effects, such as increased larval settlement and mortality (Serrano 
et al., 2018). 

3.1.2. Mangrove forests 
Out of 50 articles, associated studies reported the effects of warming 

(24 %) and cooling (11 %), hypersalinity (22 %), extreme weather 
events (10 %), sea level rise (7 %), rainfall regime (8 %), atmospheric 
CO2 concentration and inundation (5 %) on mangrove forests (Fig. 1). 

Warming and atmospheric CO2 concentration were the only inves
tigated drivers that had a positive effect on the growth rate of a 
mangrove Avicennia germinans (McKee and Rooth, 2008; Chapman et al., 
2021; Akaji et al., 2019), although the overall effect remains mixed, 
unlike the overall effect of warming on metabolism classified as positive 
(Akaji et al., 2019). The effects of cooling, however, negatively impact 
all aspects of mangrove forests, such as habitat structure, metabolism, 
and photosynthesis, with a mixed overall effect on density/abundance 
(Cavanaugh et al., 2015; Osland et al., 2017; Krauss et al., 2008). 
Rooting gets inhibited below 15 ◦C and above 37 ◦C for A. germinans and 
Rhizophora mangle (Krauss et al., 2008). Photosynthesis will cease if leaf 
temperature climbs to 38–40 ◦C (McKee et al., 2012), and photo
inactivation generally occurs below − 6.1 ◦C, − 5.3 ◦C, and − 3.7 ◦C for 
A. germinans, R. mangle and Laguncularia racemosa, respectively (Cav
anaugh et al., 2015). 

Sea level rise affects mangrove distribution, causing shoreline retreat 
and mangrove forest degradation (Cohen et al., 2021). However, un
derstanding the ability of mangrove forests to cope with sea level rise is 
difficult given the multiple factors in the equation (e.g., rooting 
expansion, sediment accretion, subsidence, sea level rise). Half of the 
studies on sea level rise focused on sediment accretion rate or vertical 
growth. Increased sediment inputs may promote forest expansion in 
some cases (Cohen et al., 2021), but the interaction of sedimentation 
with sea level rise remains complex and unclear (Xie et al., 2020). Two 
studies (McKee, 2011; Koch et al., 2015) attempted to assess thresholds 
in the rate of sea level rise, and these were site-specific. Koch et al. 
(2015) estimated that above 3 mm year− 1 of sea level rise, mangrove 
forests would be lost in the Everglades with varying degrees of tolerance 
according to the type of mangroves (fringe, dwarf, scrub). 

Reduced rainfall generally tends to lessen the growth rate of Avi
cennia marina, R. mangle and L. racemosa (Bompy et al., 2014). Mangrove 
forests have adapted to survive in a saline environment with species- 
specific tolerances. However, drought episodes can lead to hypersaline 
conditions, which increase R. mangle propagule mortality. Krauss et al. 
(2008) state that salinity ranging between 0 and 57 PSU is optimal for 
rooting success. Under hypersaline conditions of 60 PSU and above, 
Devaney et al. (2021) observed a 100 % mortality of propagules for 
R. mangle. The global-scale threshold of mean annual precipitation is 
0.78 m, below which mangrove forests abundance strongly decreases 
(Osland et al., 2017; Gabler et al., 2017). 

Extreme weather events can profoundly affect habitat structure, 
often increasing the number of dead and decaying trees (Walcker et al., 
2019), reducing growth rate, and causing a lower leaf area index in 

R. mangle and A. germinans (Feller et al., 2015). Studies show that 
R. mangle is much more sensitive than A. germinans with any damage to 
its tree structure, except for small branch breaks, associated with over 
60 % mortality. Conversely, only significant damage, such as toppling or 
trunk break below breast height, caused mortality of A. germinans stems 
to rise by over 10 %. Imbert (2018) found that basal area loss increased 
significantly above 110–150 km h− 1 for basin mangroves and above 
178–209 km h− 1 for fringe and scrub mangroves in east Caribbean 
mangrove forests. 

Few articles examined the interactions between CC drivers and LS 
(Table 1, Fig. 2). Coastal development (2 % of mangrove studies), often 
combined with hydrologic disturbances (2 %) and nutrient enrichment 
(10 %), were the main threats reported as reducing mangrove forest 
resilience to the effects of CC. Nutrient inputs can increase the growth of 
scrub mangrove trees. Still, that benefit is offset by a decrease in their 
resilience to hurricane damage, potentially destabilising the system 
(Feller et al., 2015; Walcker et al., 2019). If undisturbed by LS, the 
reduced density of R. mangle trees following hurricanes can increase 
average diameter at breast height and aboveground biomass (Gulf of 
Mexico, Griffiths and Mitsch, 2021). Hayden and Granek (2015) showed 
that sediment elevation increased at intact mangrove plots but 
decreased at cleared mangrove plots. Attempts to increase sedimenta
tion (for instance, from beach nourishment) were found to benefit 
mangrove forests temporarily (Cohen et al., 2021). Hughes et al. (2018) 
studied the response of A. germinans to oiling and found a greater 
reduction in survival when A. germinans grew alone (21 % reduction) 
rather than with S. alterniflora (12 % reduction) throughout the exper
iment. No threshold was reported relative to LS interacting with CC 
drivers. 

3.1.3. Seagrass beds – Thalassia testudinum 
Research efforts on the effect of CC on T. testudinum (9 articles) have 

mainly focused on hypersalinity (44 % of the studies) but also warming 
(22 %), extreme weather events (22 %) and sea level rise (11 %; Fig. 1). 

Hypersalinity had a negative effect on plant growth rate (Koch et al., 
2007c; Koch et al., 2007b), density/abundance (Koch et al., 2007c; Koch 
et al., 2007b) and photosynthesis (Koch et al., 2007c; Koch et al., 2007b; 
Howarth and Durako, 2013; Johnson et al., 2018; Fig. 1). T. testudinum 
was highly tolerant to hypersaline conditions up to a 60 PSU threshold 
level when salinity was slowly increased (1 PSU day− 1). However, 
pulsed salinity treatments, without a slow osmotic adjustment period, 
reduced threshold levels of salinity by 20 PSU to approximately 45 PSU 
(Koch et al., 2007c). Hypersalinity at 65 PSU seems to affect the 
oxidizing capacity of T. testudinum and places subtle demands on the 
positive oxygen balance in the ecosystem (Koch et al., 2007b). 

Warming affects the spatial distribution of seagrass, specifically from 
long-term and acute heat stress (Carlson et al., 2018). Experimentally 
increased temperature reduced growth rate and photosynthesis effi
ciency (Koch et al., 2007a), although it did not affect biomass (Koch 
et al., 2007a). While plants survived 38 days of temperature treatments, 
there was a clear thermal threshold above 33 ◦C where T. testudinum 
growth declined, and leaf quantum efficiencies (Fv/Fm) fell below the 
lower “stress” threshold of 0.7 (Koch et al., 2007a). 

Extreme weather events reduced cover, especially in exposed 
meadows (Hernández-Delgado et al., 2020; James et al., 2021). Most of 
the documented impacts of hurricanes were associated with sediment 
bedload (horizontal transport) and displacement of coral rubble, which 
resulted in plant burial and suffocation of T. testudinum (Hernández- 
Delgado et al., 2020; James et al., 2021). 

Sea level rise had a negative impact on spatial distribution, with a 
predicted decline in cover of 20 % for every metre of sea level rise along 
the Florida Gulf Coast (McHenry et al., 2021). However, the exact 
impact of sea level rise on the distribution and total cover of a 
T. testudinum population seemed to depend heavily on the local context 
(e.g., the possibility of moving shoreward). 

Very few articles looked at interactions between CC drivers and LS 
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(Fig. 2); however, Hernández-Delgado et al. (2020) found that a shift in 
vegetation cover triggered by hurricanes favours the invasion of inva
sive seagrass (i.e., Halophila stipulacea) over T. testudinum (Fig. 2). In 
addition, an increased oxygen demand and high sulfate reduction rates 
in sediments were suggested to explain the frequent die-off events in 
Florida Bay, particularly after periods of high temperature and salinity 
(Koch et al., 2007b). As such, it was hypothesized that the interaction 
between hypersalinity and sulfide toxicity in T. testudinum is their syn
ergistic effect on the critical oxygen balance of the plant (Koch et al., 
2007b; Johnson et al., 2018). The oxygen threshold for sulfide intrusion 
in T. testudinum was found to be 1.3 (at 35 PSU) to 1.5 kPa O2 (at 65 PSU) 
in the meristem or 7–8 % of overlying water saturation with no signif
icant difference in the salinity treatments (Johnson et al., 2018). Results 
also indicated that high temperatures (>33 ◦C), high salinity (>45 PSU) 
and organic loading-induced porewater sulfide stressors have the po
tential to disrupt carbon metabolism in T. testudinum (Koch et al., 2007a; 
Koch et al., 2007b). 

3.2. Mediterranean 

3.2.1. Coral – Cladocora caespitosa 
In total 13 articles were analysed, of which warming is the most 

studied CC driver in Cladocora caespitosa coral beds and micro-reefs (88 
%) (Fig. 3). Summer heatwaves have been impacting this coral since the 
beginning of the 2000s, triggering widespread and recurrent mass 
mortality events (Kersting et al., 2013; Garrabou et al., 2009). Although 
there are differences among regions, seawater temperature maintained 
over the 26 ◦C–28 ◦C threshold range has been reported to trigger 
warming-induced necrosis in this coral. 

Experimental studies assessing the impact of acidification (12 % of 
the studies) show contrasting results. On one side, pH values projected 
for the end of the century caused a reduction of ~30 % in C. caespitosa 
calcification rates (Movilla et al., 2012). On the other side, Rodolfo- 
Metalpa et al. (2009) found that a similar decrease in pH, alone or in 
combination with warming, had no significant effect on photosynthesis 
and calcification. 

Two studies (12 %) have shown interactive effects of CC and LS on 
C. caespitosa (Table 1, Fig. 4). Invasive algae could interact synergisti
cally with warming, increasing mortality in this species (Kersting et al., 

Fig. 3. Summary of studies per climate change drivers and general effects on broad response variable categories in marine and coastal ecosystems of the Medi
terranean. Percentage values represent the proportion of studies per response variable from the total number of studies per CC driver, indicated in bold for each 
ecosystem. Mediterranean outputs on maërl beds and salt marshes are included in Fig. 5. 
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2015), and local nutrient enrichment could reduce the adverse effects of 
summer heatwaves on the corals (Hadjioannou et al., 2019). 

Cladocora caespitosa shows highly parsimonious population dy
namics (slow growth and low recruitment rates), which makes it highly 
vulnerable to catastrophic disturbances such as warming-related mor
tality events (Kersting et al., 2014b). However, recoveries from CC 
disturbances have also been reported for this species, showing a survival 
strategy that allows it to withstand and partially recover from thermal 
stress (Kersting and Linares, 2019). 

3.2.2. Maërl beds 
Only two articles focused on Mediterranean maërl beds, with acidi

fication (50 %) and warming (50 %) as primary concerns. There is no 
empirical information on the effects of warming on maërl beds; how
ever, it is expected to affect their extension due to their fragmented 
distribution ranges and poor dispersal capacity (Kružić, 2014). 

Regarding acidification, field-based studies in the Mediterranean 
have identified the presence of maërl only a few metres away from hy
drothermal vents, at a pH between 7.7 and 8.2; however, maërl was 
absent at pH below 7 (Linares et al., 2015). Experiments have observed 
that below optimal pH conditions 8.16–8.21, the maërl-forming species 
increase calcification rates to compensate for the adverse effects of the 
acidified environment until reaching a pH threshold at 7.7–7.9 (Kružić, 
2014). 

In terms of LS, trawling activities in the deep areas cause massive 
mortality of maërl by crushing and burying the rhodoliths (de Juan 
et al., 2013). Increased near-bottom turbidity caused by trawling also 
affects maërl beds due to light attenuation, identified in the global 
modelling study by Fragkopoulou et al. (2021). 

In the shallower areas with higher light irradiance, maërl beds would 
be more affected by invasive algae species. At least three species are 
known to threaten these habitats in the Mediterranean: Womersleyella 
setacea, Caulerpa racemosa v. cylindracea and Caulerpa taxifolia. By 

covering the basal stratum, invasive algal species decrease rhodolith 
survival (Kružić, 2014). 

3.2.3. Seagrass beds – Posidonia oceanica 
The effects of CC drivers were principally negative on P. oceanica (25 

articles), except for ocean acidification (8 % of the studies), which 
generally has a neutral impact (Fig. 3), probably due to the pH buffering 
capacity of Posidonia (Cox et al., 2016). 

Warming (68 % of studies) was reported to have a negative impact 
due to enhanced mortality (Marbà and Duarte, 2009; Guerrero-Mese
guer et al., 2017; Hernán et al., 2017; Pazzaglia et al., 2020), reduced 
growth rate (Olsen et al., 2012; Guerrero-Meseguer et al., 2017; Ruiz 
et al., 2018; Marín-Guirao et al., 2018; Traboni et al., 2018; Marín- 
Guirao et al., 2019; Ruocco et al., 2019), reduced distribution (Chefaoui 
et al., 2018; Papaki et al., 2020), and increased grazing rate (Hernán 
et al., 2017). Temperature above 27 ◦C has been found to limit the 
growth of P. oceanica (Guerrero-Meseguer et al., 2017; Ruiz et al., 2018). 
If the water temperature increases by 15 %, more than half of P. oceanica 
meadows may be replaced by Cymodocea nodosa (Papaki et al., 2020). 
The negative effect of warming was also observed at the physiological 
level by modifying the carbon balance (Hernán et al., 2017; Marín- 
Guirao et al., 2018) and photosynthesis/respiration rates (Marín-Guirao 
et al., 2016; Guerrero-Meseguer et al., 2017; Marín-Guirao et al., 2018; 
Ruocco et al., 2019; Nguyen et al., 2021). Nevertheless, the physiolog
ical resistance to warming seems to vary with depth, latitudinal range, 
and level of eutrophication. Plants in deeper areas experience higher 
heat-induced photosynthetic injury and impaired carbon balance 
(Marín-Guirao et al., 2016; Marín-Guirao et al., 2017a; Tutar et al., 
2017); plants in more eutrophic waters show reduced physiological 
resistance to warming (see Fig. 4, Pazzaglia et al., 2020); and pop
ulations adapted to colder waters accumulated significantly more fatty 
acids following heat stress than the ones adapted to warmer waters 
(Beca-Carretero et al., 2018; Marín-Guirao et al., 2019). However, most 

Fig. 4. Cumulative overall effects of local stressors combined with climate change drivers for marine and coastal ecosystems in the Mediterranean. Left: Coral (i.e. 
Cladocora caespitosa); right: Seagrass beds (i.e., Posidonia oceanica). 
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studies that investigated the effect of warming on metabolism in 
P. oceanica could not determine whether the response was negative, 
positive or neutral at the ecosystem, population or individual level. As 
such, the overall effect of warming on metabolism in P. oceanica was 
considered unclear. 

Hypersalinity (16 %) has a negative impact on habitat structure 
(Ruiz et al., 2009; Marín-Guirao et al., 2017b) and distribution 
(Houngnandan et al., 2019), while no effect was found on photosyn
thesis or respiration (Marín-Guirao et al., 2013; Marín-Guirao et al., 
2017b). Hypersalinity also has negative effects on metabolism: a 

Fig. 5. Summary of studies per CC drivers and general effects on broad response variable categories in marine and coastal ecosystems of the North-East Atlantic. For 
maërl beds, articles from the Mediterranean (2) and North Atlantic (9) are merged due to the low number of articles. For salt marshes, the four articles (39 studies) 
covering the Mediterranean were also included, considering they studied genus and/or species found in the North-East Atlantic and were thus deemed relevant for 
our analysis. Percentage values represent the proportion of studies per response variable from the total number of studies per CC driver, indicated in bold for 
each ecosystem. 
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negative effect on rhizome non-structural carbohydrate content (Ruiz 
et al., 2009) and leaf pigment content (Marín-Guirao et al., 2013), and a 
positive effect on necrotic leaf area (Ruiz et al., 2009). However, some 
studies reported no effect on non-photochemical quenching (NPQ) and 
level of xanthophyll de-epoxidation (Marín-Guirao et al., 2013) or 
mixed effects on metabolism (Marín-Guirao et al., 2017b). The impact of 
hypersalinity is not considered to be driven by CC but instead was 
attributed to LS, such as hypersaline effluents from desalinisation plants 
or coastal lagoons (Ruiz et al., 2009; Marín-Guirao et al., 2017b). 
Salinity tolerance was identified to be 38 PSU, which is close to the mean 
salinity in the Mediterranean Sea (Ruiz et al., 2009). However, 
P. oceanica meadows experiencing long-term salinity fluctuation show 
adaptive capacity by reducing shoot size (Marín-Guirao et al., 2017b). 

Increased sedimentation due to extreme weather events (4 %) can be 
detrimental to P. oceanica, for which 4–5 cm of sedimentation starts to 
induce shoot mortality with near-complete mortality at a burial level of 
8–9 cm (Gera et al., 2014). 

Sea level rise (4 %) was suggested to have a negative impact on 
distribution and habitat structure. This negative effect was attributed to 
an attenuation of the amount of light at the seabed, reducing photo
synthetic activity in P. oceanica, which eventually can cause mortality, 
especially in meadows at the lower limit (Pergent et al., 2015). 

Only one study by Pazzaglia et al. (2020) tested for interactive effects 
between CC stressors and LS on various response variables in P. oceanica 
plants collected from populations from two environments with different 
nutrient load history (i.e., growing under chronic cultural eutrophica
tion or growing in oligotrophic pristine waters). Plants experiencing 
chronic cultural eutrophication were more sensitive to further exposure 
to multiple stressors than plants growing in oligotrophic habitats and 
appeared to be weaker during the treatments, showing the highest 
mortality rate, especially under increased temperature (Pazzaglia et al., 
2020). 

3.3. North-East Atlantic 

3.3.1. Kelp forests 
All reviewed articles (34 articles) had warming as their main CC 

driver, from which 35 % of the studies had heatwaves, 15 % had salinity, 
and 6 % had storms (Fig. 5). Most studies corresponded to laboratory or 
modelling experiments where a response variable changed depending 
on a limited number of established conditions (often one or two 
variables). 

Temperature threshold values that differ between sporophyte and 
gametophyte have been defined for several kelp species. For example, in 
Laminaria digitata and Laminaria hyperborea, the sporophyte dies at 
temperatures higher than 23 ◦C (Derrien-Courtel et al., 2013; Liesner 
et al., 2020) while the gametophytes of both species show different 
thermal behaviour. Gametophytes of L. digitata can tolerate tempera
tures around 25 ◦C (Martins et al., 2020), while gametophytes of 
L. hyperborea have a maximum temperature of 18 ◦C for growth and 
reproduction (Derrien-Courtel et al., 2013). Laminaria ochroleuca, with 
southern distribution limits, presents a higher tolerance to temperature 
with threshold values of 25 ◦C for gametophyte and sporophyte (Der
rien-Courtel et al., 2013). The warming temperature may change the 
distribution of some species, as seen along the Cantabrian coast of Spain 
(Díez et al., 2012). Here two species, Saccorhiza polyschides and 
L. ochroleuca were lost entirely from 1991 to 2008, whereas Araújo et al. 
(2016) showed that the same two species had an unchanged presence on 
the Galician coast of Spain and in north Portugal. Warming may also 
alter the species' dominance, where the warm-water species 
L. ochroleuca takes over the cold-water species L. hyperborea (Teagle 
et al., 2018). Thermal stress might trigger a shift from a kelp forest to a 
turf community (Filbee-Dexter et al., 2016; Filbee-Dexter and Wernberg, 
2018; Feehan et al., 2019), and as turf communities trap sediments, such 
a shift prevents kelp from re-establishing (Feehan et al., 2019). There are 
additional suggested drivers for this change, like eutrophication leading 

to epiphytism, pollution and storms (Filbee-Dexter and Wernberg, 
2018). Warming and radiation, as well as their interaction, can alter the 
physiological processes of kelp, such as photosynthesis (Fredersdorf 
et al., 2009; Pereira et al., 2015; Hargrave et al., 2017) or metabolism 
(Müller et al., 2012; Olischläger and Wiencke, 2013). In Arctic regions, 
ice-thickness, which is tightly linked to warming, was also found to in
fluence the distribution of kelp due to its influence in the light regimes 
(Assis et al., 2018; Assis et al., 2016). 

Regarding the effects of salinity, sporophytes of Alaria esculenta 
showed minor effects of decreased salinity, while zoospores were more 
sensitive (Fredersdorf et al., 2009). Only a few studies reported 
threshold values for salinity. For example, Fredersdorf et al. (2009) 
found that a salinity below 5 PSU affects the photosynthesis of 
A. esculenta. In comparison, Assis et al. (2018) observed that salinity 
values lower than 7.9 PSU trigger bleaching and stop the growth in 
L. hyperborea. According to Franco et al. (2018), the golden kelp 
(L. ochroleuca) will not enter the Baltic Sea (PSU < 15), even if the 
temperature changes. 

Extreme weather events have also been considered through models 
or experiments that simulate the storm effects, but no studies looked at 
the state of kelp populations before and after real storms. These 
modelled experiments report negative effects, including a severe 
reduction in invertebrate and fish populations after mechanical stress, 
like the physical removal of kelp (Norderhaug et al., 2020). 

Most studies considering the interaction of CC and LS focused on 
Saccharina latissima. The LS were physical stress such as grazing (8 %), 
followed by nutrient enrichment and eutrophication (3 %) and sedi
mentation (3 %) (Table 1, Fig. 6). Grazing has been found to negatively 
affect kelp populations in most cases (O'Brien and Scheibling, 2018), 
except for grazing on turf communities. Under certain conditions, 
grazing may have positive effects that counteract the negative effects of 
sedimentation. For example, after laboratory experiments, Zacher et al. 
(2016) reported that with 1 g of sediment cover, sporophytes of 
S. latissima only developed when grazers were present (sediment 
removal). Nutrient enrichment, including eutrophication, generally 
negatively affects kelp populations; however, the magnitude of these 
effects is species-specific. While Moy and Christie (2012) reported 
eutrophication to have a negative effect on the abundance of S. latissima, 
Martins et al. (2017) did not find any significant effect of nutrient 
enrichment or its interaction with temperature on the life stage transi
tions of Laminaria digitata. The physical stress included a variety of 
factors that can produce different effects on kelp populations. The ones 
resulting from fishing activities (i.e. kelp trawling), which are analogous 
to the effects of extreme weather events, negatively affected kelp and its 
associated populations. For example, Norderhaug et al. (2020) con
ducted experiments of kelp trawling on L. hyperborea populations and 
reported a reduction of 67 % in epiphytes and 87 % in invertebrate 
populations. 

3.3.2. Maërl beds 
The review identified nine articles on North-East Atlantic maërl beds 

and two global articles on warming (Cornwall et al., 2019) and trawling 
effects on maërl (Fragkopoulou et al., 2021) for a total of 22 studies. 

Ocean acidification (82 % of the studies) generally alters the meta
bolism of maërl-forming species (e.g., Burdett et al., 2012; Sordo et al., 
2018) and reduces their calcification rates (e.g., Donald et al., 2017; 
Legrand et al., 2017; Burdett et al., 2018) although it remains a mixed 
result due to neutral and unclear effects (Fig. 5). Similar to Mediterra
nean studies, Donald et al. (2017) suggests that for Neogoniolithon sp., 
the optimal pH is 8, and the limit is 7.5. Ocean acidification might also 
negatively affect grazers (e.g., gastropods, sea urchins) and thus 
decreasing their control on epiphytes growth over maërl beds, which has 
negative consequences on rhodolith photosynthesis (Legrand et al., 
2017). 

Warming is causing negative effects on the calcification (referred to 
as growth in Fig. 5) of maërl-forming species (e.g., Cornwall et al., 
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2019). Higher latitudes are expected to be the refuge for maërl beds in 
the North-East Atlantic due to the lower temperatures (Simon-Nutbrown 
et al., 2020). However, while one study by Cornwall et al. (2019) 
observed that a 5.23 ◦C increase above baseline temperature decreases 
calcification, there is limited knowledge of the temperature tolerance for 
maërl-forming species. One species (Lithothamnium coralloides) is re
ported to have a higher affinity for low temperatures (Qui-Minet et al., 
2019); however, for temperature, pH, or light availability, the limiting 
thresholds would probably differ between rhodolith species (Fragko
poulou et al., 2021), with species-specific responses. 

A combined effect of warming and ocean acidification implies that 
under all RCPs, a significant decrease in suitable habitat for maërl beds is 
predicted, with at least a 38 % decline by 2050, down to 83,7 % in 2100 
under RCP 8.5 (Simon-Nutbrown et al., 2020). 

Other interactions with LS involve fishing activities, invasive species 
and sedimentation (Fig. 6). On top of the direct physical impact of 
bottom trawling, increased near-bottom turbidity caused by trawling 
affects maërl beds distributed nearby fishing areas due to light attenu
ation, which causes additional losses of rhodoliths (Fragkopoulou et al., 
2021). Few studies provide empirical evidence on the effects of 
increased sediment input on maërl survival. In the case of Lithothamnion 
sp. in the Bay of Brest (Brittany), the death of the rhodoliths occurs after 
41 days of being buried by sediment (Ehrhold et al., 2021). 

3.3.3. Salt marshes 
While there is extensive literature on the effects of CC stressors on 

salt marshes, only 25 relevant articles were found for the European area, 
with 128 studies extracted. Four articles focus on the Mediterranean, 

Fig. 6. Cumulative overall effects of local stressors combined with climate change drivers for marine and coastal ecosystems in the North-East Atlantic. Top left: kelp 
forests; top right: maërl beds; bottom left: seagrass beds (i.e., Zostera marina); bottom right: salt marshes. 

E. Trégarot et al.                                                                                                                                                                                                                                



Biological Conservation 289 (2024) 110394

12

with genus and/or species also found in the North-East Atlantic and 
therefore deemed relevant for our analysis here. Sea level rise (47 % of 
the studies) and warming (29 %) were the main CC drivers affecting salt 
marshes. However, the effects of rainfall regime (13 %), atmospheric 
CO2 concentration (11 %) and extreme weather events (1 %) were also 
studied to a lesser extent (Fig. 5). It is worth noticing that the effects of 
these stressors were highly mixed due to the different species' responses 
in these often highly diverse environmental settings. 

The effects of increased temperature on salt marshes were mixed, 
with some studies reporting a decrease in salt marshes' extent area and 
the growth of some species (Duarte et al., 2021; Mateos-Naranjo et al., 
2021), while other studies reported increase in extent areas, growth 
(Duarte et al., 2021; Bitoun et al., 2018; Gray and Mogg, 2001), and 
biomass, therefore contributing to carbon sequestration (Couto et al., 
2014; Gray and Mogg, 2001; Strain et al., 2017). Interestingly, increased 
temperatures also led to opposite responses in the photosynthetic effi
ciency of the plants depending on species studied in the same region 
(Duarte et al., 2016; Carreiras et al., 2020; Duarte et al., 2021), but also 
for the same species (Halimione portulacoides) studied twice in the same 
region (Carreiras et al., 2020; Duarte et al., 2021). 

Increased salinity associated with sea-level rise would lead to a 
community shift from species with stiff stems to species with more 
flexible stems, characteristics of pioneer/low marsh communities (Zhu 
et al., 2020b). Boorman (1992) further found that increasing sea level 
rise, combined to some extent with coastal development, would lead to a 
progressive loss of marsh zones with only pioneer/low marsh commu
nities remaining at the highest level of sea level rise. Whether in the 
North-East Atlantic or the Mediterranean, studies found that sea level 
rise would overall negatively affect salt marshes' extent area (Boorman, 
1992; Duarte et al., 2021) and biomass (Strain et al., 2017; González- 
Orenga et al., 2020; Brown et al., 2006; Wong et al., 2015; Reents et al., 
2021), but also their growth (Duarte et al., 2021), survival and abun
dance (Castillo et al., 2000; Duarte et al., 2021; Brown et al., 2006), and 
reproduction (Szymansky et al., 2021; Zhu et al., 2020a; Mesa-Marín 
et al., 2019). 

Only five articles have identified thresholds or tipping points for salt 
marshes, all related to sea level rise. Some studies in the Mediterranean 
looked at the effect of the inundation period related to the mean sea 
level, for which a 37.5 % period (and above) relating to a decrease of 5 
cm below the current mean sea level could lead to a die-off of Spartina 
veneta (Strain et al., 2017). Spartina spp. showed a higher tolerance with 
a threshold at 73 % of the inundation period corresponding to a 10 cm 
rise above the current mean sea level (Strain et al., 2017). Other studies 
in the North-East Atlantic looked at the sea level rise threshold itself, 
varying from 0.5 m to 1.5 m, with successive mortality from high to low 
marshes plants (Boorman, 1992; Castillo et al., 2000). Furthermore, 
besides the increase in inundation period, the wave-imposed sheer water 
stress on the tidal flat associated with sea level rise could significantly 
affect the reproduction of Spartina anglica, with <10 % of seed retention 
from a threshold of 0.022 Pa and above (Zhu et al., 2020a). Finally, sea 
level rise could also significantly affect the reproduction of Salicornia 
ramosissima through the associated increased salinity, considering no 
germination was observed above a 1030 mM NaCl threshold under 
laboratory conditions (Mesa-Marín et al., 2019). 

Nine articles looked at LS, which were coastal development, 
dredging, grazing, invasive species, nutrient enrichment, pollution, and 
sedimentation, but only two of them looked at the interactions between 
CC drivers and LS, and both focused on heavy metal pollution (Table 1, 
Fig. 6). Indeed, in the Tagus estuary, Portugal, Spartina patens and 
Halimione portulacoides from heavy metal contaminated areas seemed 
more resilient and tolerant to salt stress resulting from sea level rise and 
more resistant to heat stress, respectively, than the same species from 
pristine areas. However, the underlying mechanisms remain unclear 
(Carreiras et al., 2020; Carreiras et al., 2021). Finally, while the inter
action is not formally tested, coastal development would hamper salt 
marshes' ability to cope with sea level rise by preventing their landward 

migration even where their accretion rate would be sufficient to keep up 
with sea level rise (Boorman, 1992), a phenomenon better known as 
“coastal squeeze” (e.g., Doody, 2013). 

3.3.4. Seagrass beds – Zostera marina 
Out of the 14 articles, the major CC stressor studied for Z. marina is 

warming (72 % of the studies), which has a negative effect on density 
and abundance (Holmer and Bondgaard, 2001; Ehlers et al., 2008; 
Bergmann et al., 2010; Salo and Pedersen, 2014; Franssen et al., 2014; 
Moreno-Marín et al., 2018), rates of photosynthesis (Holmer and 
Bondgaard, 2001; Winters et al., 2011; Mota et al., 2018), habitat 
structure (Holmer and Bondgaard, 2001; Ehlers et al., 2008; Salo and 
Pedersen, 2014), distributional range (Torn et al., 2020), and growth 
(Holmer and Bondgaard, 2001; Salo and Pedersen, 2014; Moreno-Marín 
et al., 2018), although some studies found no effect of warming on 
growth (Bergmann et al., 2010; Salo and Pedersen, 2014). Looking at the 
metabolism, warming was reported to decrease the non-structural car
bohydrate reserves in roots (Holmer and Bondgaard, 2001) and leaves 
(Moreno-Marín et al., 2018), increased heat-shock-protein up-regulation 
which indicated molecular stress (Franssen et al., 2011; Franssen et al., 
2014; Jueterbock et al., 2016), and increased toxic sulfide intrusion 
(Pedersen et al., 2004). In contrast, warming was reported to reduce the 
abundance of the pathogen Labyrinthula zosterae in Z. marina tissues (i.e. 
wasting disease; Brakel et al., 2019). Overall, a temperature above 25 ◦C 
had a negative impact on Z. marina's survival (Moreno-Marín et al., 
2018). 

Hyposalinity was reported to have a negative effect on the distri
butional range (Torn et al., 2020), density and abundance, growth, 
habitat structure and metabolism (Salo and Pedersen, 2014; Villazán 
et al., 2015), necrotic lesion coverage due to infection with L. zosterae (i. 
e., wasting disease; Brakel et al., 2019) and carbon balance through 
increased respiration rates (Villazán et al., 2015). Below 12.5 PSU, the 
growth of Z. marina decreases, and mortality increases (Villazán et al., 
2015). 

Only three articles investigated the effects of CC-drivers combined 
with LS on Z. marina performance (Fig. 6). Experimental work by 
Villazán et al. (2015) showed that increased ammonium availability, 
which is considered a LS (nutrient enrichment), amplified the adverse 
effect of low salinity on growth-related variables and survival. In addi
tion, Moreno-Marín et al. (2018) showed that individual exposure to 
either heat or shade had a negative effect on Z. marina performance, 
which, to some extent, was also the case for the effect of high nitrogen 
availability. While the combined effects of these stressors were additive, 
a synergistic effect on mortality was found for Z. marina plants exposed 
to all three stressors simultaneously (Moreno-Marín et al., 2018). 
Finally, Brakel et al. (2019) found that light conditions had no interac
tive effects with elevated temperatures on the physiological resistance of 
Z. marina to infection by the pathogen L. zosterae, nor on a cluster of 
Z. marina fitness variables (i.e., leaf growth rate, shoot survival, leaf 
sucrose content). They also found that light conditions did not alter the 
negative effect of reduced salinity on necrotic lesion coverage (%) 2 days 
after inoculation with L. zosterae. Interestingly, Brakel et al. (2019) did 
find a negative synergistic interaction between high temperatures and 
low salinity on the abundance of the pathogen L. zosterae within leaf 
tissue, preventing wasting disease symptoms. 

4. Discussion 

4.1. Drivers of change of marine coastal ecosystems in the Caribbean 
ecoregion 

The Caribbean coastal and marine ecosystems are threatened by sea 
level rise, warming, stronger hurricanes, and drier conditions, with coral 
reefs, mangroves, and seagrass particularly vulnerable (Beckford and 
Rhiney, 2016; Rull, 2022). 

Sea level rise and ocean acidification are mostly a concern for 
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mangrove forests and coral reefs, respectively. The pace at which 
mangroves can cope with sea level rise is highly dependent on the 
geomorphology and the net balance between sedimentation and erosion. 
As such, understanding the mechanisms that determine sediment ac
cretion rate is crucial to assessing the adaptive capacity of mangrove 
forests to sea level rise. Even though the impacts of ocean acidification 
on coral calcification rates are mostly negative and species dependent, 
they remain, in many cases, not severe. The severity of marine heat 
waves is, however, of primary concern for coral reefs as these events can 
decimate coral populations through bleaching and associated mortality, 
leading to communities dominated by thermal-resistant species (Smith 
et al., 2013) or dominated by algae (McCook et al., 2001) if the reef is 
under the influence of local stressors such as increased nutrient inputs, 
which further favour algae dominance over corals (Lapointe, 1997). The 
combination of warming and nutrient enrichment also favours the 
prevalence of coral diseases (Randall and van Woesik, 2015; Randazzo- 
Eisemann et al., 2022). Based on models trained with environmental 
data from the Caribbean/Atlantic, global coral reef loss by 2100 is 
predicted to be 83 % for Representative Concentration Pathway (RCP) 
RCP4.5 and 88 % for RCP8.5 (Freeman et al., 2013). Tropical seagrass 
beds dominated by native T. testudinum might suffer from rapid, large- 
scale die-off events from the combination of high temperatures, high 
salinity and the interactive stressor sulfide (Koch et al., 2007a; Koch 
et al., 2007b; Johnson et al., 2018). Mangrove forests are also highly 
vulnerable hypersaline conditions due to drought episodes resulting 
from warming and longer dry seasons. 

In the context of coral mortality and acidification, calcification rates 
decrease, vertical growth cannot keep up with sea level rise, and the reef 
is flattening from bioerosion and continues its shift to weedy species. 
With a flattened reef, the services provided by the reef are strongly 
affected, and the risk of coastal hazards from the combination of sea 
level rise and extreme weather events is a concern for coastal commu
nities, including associated ecosystems. The increase in their intensity 
and frequency threatens all MCEs, especially if the recovery period be
tween two successive events is not sufficient. In this case, opportunistic 
(invasive) or more resilient species might dominate during recovery 
(Snedaker et al., 1992). If coral reefs' ability to attenuate wave energy 
decreases, seagrass and mangrove forests could attenuate the remaining 
waves' energy and still protect the coast during extreme weather events, 
but higher hydrodynamics on the long term is not ideal for the settle
ment of mangrove trees. Short-term and long-term CC impacts, there
fore, depend heavily on the local context of MCEs (e.g., exposure, 
presence of invasive species, and local stressors). Since the invasive 
seagrass species Halophila stipulacea has spread across most of the 
Eastern Caribbean islands (Winters et al., 2020), extreme weather events 
might facilitate the shift from native to invasive vegetation. The com
bined effects could have significant consequences on seagrass ecosystem 
resilience and on the ability of the native seagrass species T. testudinum 
to persist and adapt to projected climate change impacts (Hernández- 
Delgado et al., 2020). 

4.1.1. Management recommendations for the Caribbean ecoregion 

4.1.1.1. Towards a watershed approach to coastal ecosystems con
servation. Due to tropical coastal ecosystems' intrinsic complexity and 
spatial variability, management cannot be designed using a “one size fits 
all” approach. Instead, local dynamics and stressors must be carefully 
considered (Blackwood et al., 2018). Reducing land-based local stressors 
from the catchment areas will increase MCEs resilience to CC (e.g., 
reduced nutrient input increased resilience to hurricanes in mangrove 
forests, see Walcker et al., 2019) and, in turn, contribute to mitigating its 
effects through the regulating services they provide (e.g., climate 
regulation and coastal protection). Therefore, a watershed approach to 
coastal ecosystem conservation is fundamental to reducing the impact of 
LS and allowing these ecosystems to adapt naturally to climate change. 

Moreover, extreme weather events generally accentuate the negative 
effects of human alterations on the coastal environment and adjacent 
catchment areas, which increase sedimentation, turbidity and inputs of 
land-based nutrients and pollutants from terrestrial run-offs, translating 
into negative effects on coral reef benthic communities (Przeslawski 
et al., 2008; Otaño-Cruz et al., 2019) and associated ecosystems. For 
example, land clearing (if not directly mangrove forests) tends to in
crease turbidity and sedimentation, while agriculture (e.g., sugar cane) 
and poor water treatment facilities will strongly increase nutrient load in 
the coastal environment. These will strongly affect community structure 
on coral reefs, with the overgrowth of macroalgae (Pandolfi and Jack
son, 2006) and survival of seagrass beds through eutrophication and 
light-limitation-induced sulfide stress (Johnson et al., 2018). Limiting 
land clearing and soil artificialisation, increasing wastewater treatment 
capacity, and reducing the use of fertilisers are just a few directions that 
could benefit MCEs greatly and sustain the service they provide to 
coastal communities. 

4.1.1.2. Consider the connectivity between MCEs. The interconnectivity 
of coral reefs, seagrass beds and mangrove forests implies that managing 
a local stressor specifically for coral reefs will indirectly benefit 
mangrove forests and seagrass beds, and vice versa. For instance, 
managing fisheries, mainly to protect herbivorous species, can reduce 
reef degradation associated with warming and extreme events (Mumby 
et al., 2014; Edwards et al., 2011) by preventing macroalgal growth and 
promoting the recovery in coral cover and density (Bozec et al., 2016; 
Steneck et al., 2019). Healthy reefs provide sheltered conditions for 
seagrass and mangrove to develop, providing additional coastal pro
tection against extreme weather events and sea level rise. Managing 
mangroves and seagrass beds can benefit fish populations as they pro
vide shelter and food for juveniles and adults. It will also significantly 
improve the water quality by absorbing excess nutrients and trapping 
sediment, all having cascading benefits on coral reefs (Barbier et al., 
2011; Lamb et al., 2017). Mangroves can also act as light refuges and 
mediate coral bleaching and survival during marine heat waves (Stewart 
et al., 2021), just like upwelling areas in the Caribbean that have a 
particular conservation value because of lower rates of thermal warming 
(Chollett and Mumby, 2013). 

4.1.1.3. Promote community-based ecological restoration actions. Work
ing with nature to consider MCEs ecology and biology to restore 
degraded MCEs by mimicking natural processes is necessary. For 
instance, any climate change driver or hydrologic disturbances that 
might lead to hypersaline conditions will significantly affect mangrove 
forests' structure, distribution, and productivity (Yoshikai et al., 2022). 
These changing conditions might alter the structure of the mangrove 
forests, going from tall mangrove forests to shrub mangroves and dead 
mudflat zones. del Mar Delgado-Serrano et al. (2017) provide a portfolio 
of successful cases of community-based management of environmental 
challenges in Latin America and the Caribbean. More recently, an 
excellent example of community-based ecological mangrove restoration 
can be found in Bonaire, in the Caribbean, aiming at maintaining and 
restoring the channels to restore water flow between the front and back 
of the mangroves in order to prevent the harmful effects of hypersalinity 
(van Zee, 2022). If successful, this initiative will give a chance to 
mangrove trees to thrive and be more resilient to CC. 

4.2. Drivers of change of MCEs in the Mediterranean ecoregion 

The Mediterranean is a climate change hotspot, and the sea surface 
temperature increase rate is 3 to 4 times higher than in the global ocean 
(Juza and Tintoré, 2021). Since the beginning of the 2000s, the Medi
terranean Sea has been impacted by recurrent marine heat waves 
(Garrabou et al., 2009; Kersting et al., 2013; Marbà et al., 2015), whose 
intensity has significantly increased during the last years threatening 
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ecosystems' condition and functioning (Garrabou et al., 2022). Against 
this background, most of the studies on the impact of warming on 
Mediterranean benthic organisms started after the widespread mass 
mortality event of 2003 in the North-West Mediterranean Sea (Garrabou 
et al., 2009; Kersting et al., 2013). 

Mediterranean shallow zooxanthellate corals (C. caespitosa) are 
among the benthic organisms most impacted by warming (Garrabou 
et al., 2009; Kersting et al., 2013), and future predictions will most likely 
increase the already worrying mortalities. Nevertheless, despite their 
vulnerability to increased temperatures, it has been found that these 
corals own specific mechanisms that could improve their long-term 
resilience to warming, like the long-term recovery processes described 
in warming-impacted C. caespitosa populations (Kersting and Linares, 
2019). Likewise, in seagrass beds, a warming-induced flowering has 
been observed in Posidonia oceanica, which could be an adaptative 
strategy to increase the diversity of genetic and phenotypic responses to 
warming, escaping stressful temperature conditions, and potentially 
populating new areas (Ruiz et al., 2018; Marín-Guirao et al., 2019). 
However, P. oceanica-dominated seagrass beds could be replaced by 
Cymodocea nodosa-dominated seagrass beds if the water temperature 
increases significantly (Papaki et al., 2020). On the other hand, the 
deeper extension of maërl beds in the Mediterranean will most likely 
have a refuge function due to moderate increases in temperature and 
acidification at these depths, as long as they remain trawling-free 
(Fragkopoulou et al., 2021). In the shallower areas though, the higher 
irradiance might drive the proliferation of filamentous algae that over
grow on maërl beds when temperatures and nutrients load increase. 
Over 1000 non-indigenous species have been reported in the Mediter
ranean Sea (Zenetos et al., 2010, 2012), many originating from the Red 
Sea or the Atlantic, finding suitable environmental conditions as the 
Mediterranean Sea is getting warmer (Öztürk, 2021); invasive algae 
threaten key coastal ecosystems such as seagrass meadows (Klein and 
Verlaque, 2008) or coral beds (Kersting et al., 2014a). 

Other significant effects include acidification, which is expected to 
drop by 0.4 unit by 2100, while the sea level is expected to rise between 
0.43 and 2.5 m by 2100, depending on scenarios and projections 
(MedECC, 2020). Ocean acidification threatens mostly calcifying or
ganisms such as the coral C. caespitosa and maërl. The fragmentation of 
the rhodoliths by the physical impact of trawling would probably 
accelerate de-calcification processes. The liberation of the carbon pools 
into CO2 would further increase ocean acidification and atmospheric 
CO2 emissions. Sea level rise will increase the risk of coastal flooding and 
storm surges and will likely affect the deep seagrass meadows at their 
lower limit. Mediterranean salt marshes might also suffer from sea level 
rise due to a combination of increased inundation period and salinity 
(Strain et al., 2017; González-Orenga et al., 2020). 

In the Mediterranean, human-induced pressures such as coastal 
development, pollution, anchoring, fishing, and invasive species reduce 
the resilience of seagrass meadows, corals and maërl beds to CC drivers, 
increasing the risk of collapse by reaching a tipping point. Given that the 
reach of tipping points has already been evidenced after the recurrent 
heatwaves in summer over the past decade that caused impaired phys
iological and physical damage to P. oceanica meadows (Guerrero- 
Meseguer et al., 2017; Ruiz et al., 2018; Hernán et al., 2017) and mass 
mortality events since the beginning of the 2000s for the coral 
C. caespitosa (Kersting et al., 2013), environmental management actions 
must be reinforced. 

4.2.1. Management recommendations for the Mediterranean ecoregion 

4.2.1.1. Promote transnational actions. In the Mediterranean region, key 
management actions include regulating fishing activities over vulner
able habitats, a single action that is challenged by the large proportion of 
international waters in a region shared by many European and non- 
European countries (de Juan et al., 2012). The European Union has 

implemented such regulations, prohibiting trawl fishing over Mediter
ranean coralligenous and maërl bottoms as specified in EC Regulation 
1997/2006. In 2008, a Mediterranean-wide Action Plan for the Con
servation of the Coralligenous and Other Calcareous Bio-concretions in 
the Mediterranean Sea was adopted under UN Environment/MAP. 
Furthermore, two common maërl-forming Mediterranean species, Lith
othamnion corallioides and Phymatolithon calcareum, are covered by 
Annex V of the Habitats Directive. However, effective protection of 
maërl beds is hampered by limited published information on their actual 
presence, which challenges the implementation of protective measures. 

Slowing the transit of non-indigenous species to the Mediterranean 
Sea through regional cooperation is another critical management action 
which should be prioritised and thoroughly investigated. Prevention, 
surveillance, citizen awareness raising, and control strategies should all 
be increased to prevent the introduction of alien species, detect their 
presence early and implement the right control measure. Furthermore, 
effectively protecting key species and habitats (Öztürk, 2021) makes 
them more resistant to invaders (i.e., biotic resistance hypothesis - Elton, 
1958; Levine and D'Antonio, 1999). 

An essential regional-level strategy involves the efficient imple
mentation of marine protected areas networks that simultaneously 
monitor the impact of various management measures such as the 
reduction of destructive bottom-contact fishing nets, the implementa
tion of invasive species monitoring program, and the stringent protec
tion of highly sensitive species such as coral and Cladocora. However, 
implementing effective marine protected areas requires consensus or 
compromises among users (Costa et al., 2022) and nations, a challenge 
in the Mediterranean basin with multiple nations and policy frameworks 
(de Juan et al., 2012). But this is an important goal to achieve in the 
region as the connectivity between MCEs means they all benefit from 
each other. 

4.2.1.2. Consider cumulative pressures. Henceforth, forthcoming pro
tection measures and restoration programs must adopt a large-scale 
approach, exemplified by well-connected MPA networks, to effectively 
address the cumulative risks stemming from climate change-related and 
local stressors, which operate across various scales. The Mediterranean 
Sea is one of the basins where high coastal development and sea-based 
economies collide with ecological peculiarities requiring a careful con
servation and management, so that a cumulative impact assessment can 
be particularly useful and recommendable. Between 60 and 99 % of the 
territorial waters of EU member states are subject to high cumulative 
impacts (Micheli et al., 2013). The paucity of quantified cumulative 
pressures and impacts assessment stresses the need for more incisive 
efforts to collect empirical evidence on ecosystem-specific responses to 
human pressure (Bevilacqua et al., 2018). As demonstrated by Pazzaglia 
et al. (2020), different nutrient loads impact P. oceanica physiological 
performance and morphological traits, highlighting the influence of 
local pressures in eliciting diverse adaptive strategies in response to 
global environmental changes, such as marine heatwaves that affect 
regional scales. With the predicted sea surface temperature increase, it 
has been suggested that P. oceanica would lose its functionality by 
reducing 90 % of its shoot density globally by 2049 (Jordà et al., 2012). 
While we need to be prepared for the loss of ecosystem services provided 
by P. oceanica meadows, we should also anticipate the loss of func
tionality of associated habitats due to collateral damages from the loss of 
P. oceanica meadows. This seascape approach extends its benefits to 
multiple key ecosystems. For instance, when conservation measures are 
implemented at the seascape level, seagrasses enhance water quality by 
efficiently filtering out pollution, pathogens, and nutrients, as demon
strated by Lamb et al. (2017). This, in turn, contributes to the well-being 
of associated habitats, including maërl beds and coralligenous habitats 
featuring C. caespitosa. 
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4.3. Drivers of change of marine coastal ecosystems in the North-East 
Atlantic ecoregion 

In Northern Europe, temperatures will rise at a rate exceeding global 
mean temperature changes. The frequency and intensity of hot ex
tremes, including marine heatwaves, are projected to continue 
increasing regardless of the greenhouse gas emissions scenario used. 
Extreme sea level rise events will become more frequent and more 
intense, leading to more coastal flooding, and severe windstorms are 
projected to increase at global warming of 2 ◦C and above (IPCC, 2022). 
Finally, pluvial flooding, attributed to human influence, is projected to 
increase further. 

As seawater temperatures increase, scientists expect to see poleward 
expansions and contractions at lower latitudes of suitable habitats for 
kelp forests and maërl beds, with adverse effects on the associated 
biodiversity. For instance, assemblages associated with the cold-water 
species Laminaria hyperborea were on average > 12 times more diverse 
and supported >3600 times more biomass than the warm-water species 
L. ochroleuca because the latter has a stipe devoid of epibionts (Teagle 
et al., 2018). However, increased temperature could also have a positive 
effect on kelp forests. In northern Norway, increasing temperature along 
the coast allowed the southern population of crabs to move northwards, 
controlling sea urchins' grazing pressure on the kelp (Christie et al., 
2019). Fagerli et al. (2013) found that increased temperature could 
reduce the sea urchins' fecundity, meaning less offspring, which benefits 
kelp forests. However, warming is also a driver for invasive species that 
could particularly influence the warmer shallow areas, generating 
competition for resources or a niche (Brodie et al., 2014). If ocean 
acidification and warming were to affect grazers' physiology (e.g., sea 
urchins), their control over epiphytes would decrease, resulting in 
negative consequences for maërl beds and potentially for kelp forests 
too. 

The increased frequency and intensity of rainfall events result in 
many secondary effects such as increased pluvial flooding, terrestrial 
run-off transporting terrigenous material (e.g., humus substances, 
sediment), and freshwater discharge lowering the salinity and 
increasing nutrient inputs into the sea. Underwater light limitation due 
to freshwater discharge-related sediment and nutrient input will lead to 
a shallower growth maximum with a concurrent reduction in biodiver
sity for kelp, maërl, and seagrasses. Lower salinity and warming are also 
likely to reduce Zostera marina growth, density, and subsequently, their 
productivity and habitat complexity (Holmer and Bondgaard, 2001; 
Ehlers et al., 2008; Salo and Pedersen, 2014), the latter being essential 
for associated species. Given the predicted salinity decrease and 
warming of the Baltic Sea, these results supported the idea that isolates 
of wasting disease pathogen Labyrinthula zosterae do not represent an 
immediate risk for Z. marina beds in the Baltic Sea. 

Finally, sea level rise would mostly affect salt marshes, although with 
some variability depending on species and regions. Indeed, in some 
cases, salt marshes are currently able to keep up with sea level rise 
considering high enough accretion rates (Ladd et al., 2019), but in other 
cases, the extent area of the ecosystem has already started declining or is 
projected to decline in the future (Duarte et al., 2021; Richards et al., 
2008; Carrasco et al., 2021). For instance, the native Spartina spp. shows 
a higher tolerance to inundation related to sea level rise. However, a 
shift from this perennial plant to the annual succulent Salicornia veneta 
has already been observed under the combined effect of heat waves and 
drought, increasing the long-term vulnerability of the ecosystem in the 
face of sea level rise (Strain et al., 2017). Furthermore, there is also quite 
a variability depending on the model used to predict future sea level rise 
scenarios. For example, physical models such as general atmosphere- 
ocean circulation models reported increments of 0.28–0.98 m in 2100, 
with respect to the levels in 1986–2005 (Church et al., 2013), while 
semi-empirical models report predictions by 2100 of 0.5–1.4 m, with 
respect to 1990 levels (Vermeer and Rahmstorf, 2009) or 0.57–1.1 m by 
2100 considering the levels in 1980–2000 (Jevrejeva et al., 2012). More 

recent studies that considered ice-sheet contributions have estimated 
that the global mean sea level could exceed 2 m by 2100 with respect to 
the levels in 2000 (DeConto and Pollard, 2016). Predicting how salt 
marshes and other MCEs in the North-East Atlantic are going to be 
affected by sea level rise, therefore, remains a significant challenge. 

4.3.1. Management recommendations in North-East Atlantic 

4.3.1.1. Improve water quality by reducing nutrient and sediment load. 
Nutrient enrichment from run-off can cause the opportunistic algae to 
overgrow the kelps, maërl and seagrasses, limiting light and CO2 
availability for healthy growth. Increased ammonium loading due to 
freshwater discharge will amplify the adverse effect of low salinity on 
growth-related variables and survival in Z. marina, putting estuarine 
seagrass beds particularly at risk (Villazán et al., 2015). Overall, MCEs in 
North-East Atlantic are all vulnerable to terrestrial run-off, sedimenta
tion, and nutrient loading from agriculture, aquaculture, and coastal 
development. All those local stressors that strongly affect the water 
quality should be the primary focus of coastal management, knowing 
that some MCEs contribute to increased water quality, like seagrass 
beds, salt marshes or kelp forests. Still, reducing nutrient releases 
through better treatment of sewage and lowering fertiliser use could 
counteract the excessive growth of epiphytes over vegetated coastal 
habitats. 

4.3.1.2. Allow recovery by reducing coastal and marine resources 
exploitation. Overfishing may lead to the same result as nutrient 
enrichment, creating a cascade effect. Removing large predatory fishes 
will increase the number of smaller fishes that eat the grazers (e.g., snails 
and small crustaceans). With fewer grazers, the epiphytes can flourish. 
In combination with other local factors, the replacement of kelp forests 
by turf communities (Filbee-Dexter and Wernberg, 2018; Nepper- 
Davidsen et al., 2019; Moy and Christie, 2012) would have a severe 
impact on the ability of kelp to re-establish because of a thick sediment 
layer on the bottom trapped by turf communities, preventing kelp spores 
from finding a hard bottom substrate where they can germinate. Pes
sarrodona et al. (2021) showed that the shift from kelp communities to 
ground-covering turf assemblages resulted in global miniaturisation and 
homogenisation of underwater habitat structures. Therefore, sustainable 
management of coastal fisheries (artisanal and recreational) is a priority 
too. Local removal actions of sea urchins could help kelp forest eco
systems by releasing the grazing pressure and avoiding shifting into 
large, denuded areas. In the last decades, harvesting wild kelp pop
ulations at sea has increased in northern Europe, where kelp is used as 
human food, a source of alginate for many applications, fertiliser for 
agriculture, and biofuel production (Peteiro et al., 2016). The imple
mentation of long-term conservation measures is necessary for sustain
able exploitation and the protection of the resource. 

4.3.1.3. Promote a better management of coastal urbanisation. Given sea 
level rise predictions, salt marshes' integrity could be at stake. Ensuring 
salt marshes have enough space to shift inland as sea level rises and 
restoring sediment inputs would maintain their presence and the ser
vices they provide to coastal communities, particularly controlling 
coastal erosion and protecting our coastline against flooding and storm 
surge events. Policy towards coastal management should continue 
moving away from land claims for economic growth in favour of salt 
marsh conservation to maintain the seascape's integrity and sustain 
ecosystem services (Foster et al., 2013; Ladd et al., 2021). 

4.4. Knowledge gaps and future recommendations for assessing safe 
operating space and thresholds 

Limitations that inevitably come with an extensive literature review 
also mean that many valuable articles, or grey literature, could have 
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been missed in English or other languages. Additionally, as this review 
focused on the effects of climate change with or without local stressors 
and conditioned by a list of keywords relative to thresholds or safe 
operating spaces, many valuable studies were omitted, including the 
ones looking solely at the impact of local stressors. Despite those limi
tations, the effects of climate change drivers are relatively well-defined 
in the scientific literature, although their interaction and the frequency 
of consequent events (e.g., extreme weather, heat waves) remain poorly 
studied. However, important knowledge gaps remain, mostly about 
their interaction with local stressors, many of which, such as recrea
tional activities (anchoring, recreational fishing) in the Mediterranean 
Sea, holopelagic Sargassum rafts in the Caribbean (Banaszak, 2021), 
aquaculture in North-East Atlantic (Haugland et al., 2021) along with 
global pressures such as pollution, marine litter, over-sedimentation, 
bottom trawling, and hydrologic disturbances that are known to 
impact MCEs and therefore, affect their resilience to climate change 
drivers (Boudouresque et al., 2009; Orth et al., 2006; Fragkopoulou 
et al., 2021; Lincoln et al., 2022). 

Information on thresholds and safe operating space were retrieved 
from the literature for most ecosystems for at least one CC-related 
pressure. However, the current state of knowledge also highlights the 
difficulty of precisely determining thresholds and safe operating spaces, 
but see Papaki et al. (2020), who used current seagrass distribution in 
the Mediterranean with environmental conditions to identify safe 
operating spaces. Experiment size, costs, and project time constraints 
often limit experimental settings to test two or three temperature targets 
based on IPCC-predicted future scenarios. Therefore, it is difficult to 
establish when a threshold for an environmental factor is exactly crossed 
(de Juan et al., 2018). Furthermore, the complex interactions with other 
climate change drivers and local stressors make thresholds not fixed 
values, and we were not able to assess the effect of local stressors on 
those CC thresholds or safe operating space from this literature review. 

Another limitation when investigating threshold values for CC 
drivers and local stressors is that these have only been experimentally 
tested for a limited number of coral or salt marsh species, for instance, 
and responses can vary significantly between species. For example, 
corals' control of pH and calcification response are species-specific and 
have only been tested for very few species. Knowing the thresholds and 
optimal values for a few species limits our capacity to translate physi
ological responses to population and community as coral reefs are 
diverse ecosystems. Some species interaction studies conclude that the 
response of the maërl bed community to climate change will be strongly 
conditioned by changes in species interactions (Legrand et al., 2017). 

Local biophysical factors may affect acclimatisation potential further 
hampering the establishment of species-specific threshold values for 
MCEs. For instance, in the temperate North-East Atlantic, the seagrass 
Z. marina is distributed along an extensive thermal range from low to 
high latitudes. Their populations respond differently to heat stress, with 
the southern population recovering faster from heat stress than the 
northern population (Winters et al., 2011; Jueterbock et al., 2016), 
which also has been shown for P. oceanica populations studied along a 
latitudinal gradient in the Mediterranean Sea's (Beca-Carretero et al., 
2018). 

In addition, benefits arising from the connectivity between MCEs 
could increase the adaptive capacity of MCEs to cumulative pressures. 
For example, mangroves can reduce bleaching susceptibility by 
providing light refugia to corals (Stewart et al., 2021), while coral reefs 
protect mangrove communities (Wegner and Ellis, 2017) and seagrass 
beds against waves and storms. These mutual synergies increase the 
resilience and services of individual MCEs to different stressors. They 
should, thus, be further explored, particularly in relation to the com
bined effects of climate change and local stressors. 

5. Conclusion 

As illustrated in this review, environmental conditions in the 

different ecoregions are changing with time, and climate change and 
local stressors can considerably affect the physiology of foundation 
species, populations, and communities. The potential impacts that could 
arise from co-occurring climate change and local stressors have started 
to be defined and quantified, but many have not been tested yet, or the 
effects remain unclear. Given species-specific nonlinear responses and 
thresholds, we can still anticipate future climate impacts from the 
reviewed ecological studies. Some authors have even been able to 
simulate IPCC scenarios on MCEs, using the upper tolerance limit for 
several species to predict future distribution if the temperature is 
increasing (Assis et al., 2016; Assis et al., 2018; Fernández-Martínez 
et al., 2019). This review highlights the need for a more comprehensive, 
multi-species, multi-ecosystems, and multi-stressors approach to predict 
better changes at the ecosystem and seascape levels of MCEs. Research 
needs broad-spanned long-term monitoring of the ecological condition 
and extent of MCEs, using field-based surveys coupled, if relevant, with 
remote sensing applications. These prolonged monitoring programs and 
observational networks are necessary for detecting and attributing 
ecological changes in response to climate change and other human 
pressures. Furthermore, research should continue with laboratory and 
field process studies, manipulative experiments, and modelling from 
small-scale process simulations to large-scale coupled biophysical 
models. Developing ambitious management techniques such as nature- 
based solutions to maintain, enhance or recover the ecological condi
tion of MCEs is thus an urgent need to build more resilient ecosystems to 
face climate change threats. While it is difficult to predict future 
changes, improving ecological forecasting capabilities to support 
climate adaptation strategies and policy decisions is key for effectively 
implementing nature-based solutions. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.biocon.2023.110394. 
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Experimental evidence of the synergistic effects of warming and invasive algae on a 
temperate reef-builder coral. Sci. Rep. 5, 18635 https://doi.org/10.1038/srep18635. 

Klein, J., Verlaque, M., 2008. The Caulerpa racemosa invasion: a critical review. Mar. 
Pollut. Bull. 56 (2), 205–225. 

Koch, M.S., Schopmeyer, S., Kyhn-Hansen, C., Madden, C.J., 2007a. Synergistic effects of 
high temperature and sulfide on tropical seagrass. J. Exp. Mar. Biol. Ecol. 341, 
91–101. https://doi.org/10.1016/j.jembe.2006.10.004. 

Koch, M.S., Schopmeyer, S.A., Holmer, M., Madden, C.J., Kyhn-Hansen, C., 2007b. 
Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and 
hypoxia. Aquat. Bot. 87, 104–110. https://doi.org/10.1016/j.aquabot.2007.03.004. 

Koch, M.S., Schopmeyer, S.A., Kyhn-Hansen, C., Madden, C.J., Peters, J.S., 2007c. 
Tropical seagrass species tolerance to hypersalinity stress. Aquat. Bot. 86, 14–24. 
https://doi.org/10.1016/j.aquabot.2006.08.003. 

Koch, M.S., Coronado, C., Miller, M.W., Rudnick, D.T., Stabenau, E., Halley, R.B., 
Sklar, F.H., 2015. Climate change projected effects on coastal foundation 
communities of the Greater Everglades using a 2060 scenario: need for a new 
management paradigm. Environ. Manag. 55, 857–875. https://doi.org/10.1007/ 
s00267-014-0375-y. 

Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M.L., Sousa, W.P., 
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