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Registration of new varieties of ornamental flowers is an important process in protecting plant breeders’ 
intellectual property as well as consumer rights. One of the first steps in the admission procedure for a new 
candidate variety is a consistent and thorough registration, leading to a description of a number of traits that 
should uniquely define each variety. Similar trait descriptions are used in other applications like distinctness, 
uniformity and stability testing (DUS testing). Typical traits relevant for ornamentals are flower color, color 
distribution and petal shape. For each species the set of traits will differ. This process is time consuming, 
susceptible to error, and depends on skilled expertise. In this work, we aim to increase the level of automation 
in this process by using computer vision to estimate/classify the selected traits from images of the flowers, 
considering real world data sets of roses and gerberas. Using standard deep learning architectures, accuracies of 
35-99% have been obtained for selected traits.
1. Introduction

Ornamental flowers have important social, aesthetic, and cultural 
roles in society, and floriculture is an economically important activity. 
The Netherlands alone are responsible for more than 50% of the world’s 
production of flowers and ornamental plants with an export value of € 
12 billion per year.1 Of course, it is important to protect the rights of 
retailers, consumers, and plant breeders developing flower varieties as 
well as others in the floriculture ecosystem. In this context, a registry 
or catalog of flower varieties with a set of traits that uniquely define a 
variety is an important tool. These traits include color or combination of 
colors, level of filling/opening of the flower center, distribution on the 
plant (individual or in trusses), and dimensions of the surface, florets, 
or petals. To name just one application, it can be used to decide if a 
new candidate variety developed by a breeder is too similar to existing 
varieties or if it is novel enough to be admitted as a new one. In addition 
to this aspect of distinctness, similar descriptions are used in uniformity 
and stability testing (together forming Distinctness Uniformity Stability 
(DUS) testing).
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Currently, this process is done manually by experts who inspect 
flower samples of a potentially new variety sent by a breeder, and note 
the respective trait values. For traits that are visible in flower images, 
this process could be partially automated. Imaging and computer vision 
have been used in a number of applications in agriculture and the plant 
sciences such as phenotyping [19,10], plant health monitoring [2], and 
harvesting [5,17]. In the current context of registering flower charac-

teristics, automation based on image analysis has the potential to be 
quicker, more consistent (free from subjective interpretation errors by 
humans), and less dependent on specialized expertise. In addition, au-

tomated registration can also be performed on sites where no experts 
are available, such as e.g., breeders’ sites.

Here, we focus on predicting traits for roses and gerberas using 
deep learning [11,16], with the aim to assess the possibilities of such 
techniques for characterizing flower varieties. The present paper deals 
with predicting categorical traits across varieties within species. Color-

related traits from the same databases have been addressed in Wehrens 
et al. [36]. The results presented herein show that it is possible to au-

tomate the extraction of certain traits, even though neither the images 
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nor the databases used were set up for this specific purpose. Thus, this 
initial foray into predicting floricultural traits using machine learning 
shows promise.

2. Related work

While deep learning and computer vision techniques are already 
being used in horticultural and agricultural applications, they are usu-

ally focused on counting objects (fruits, flowers) via object detection 
or segmentation, or on identifying the species, and less on obtaining 
descriptor values for varieties within species, as is the case here. Seg-

mentation and object detection based on classical computer vision or 
deep learning have been applied to many cases in agriculture, such as 
tomatoes [3,21], apples [8], and grapes [4] for the purposes of count-

ing, yield prediction, and pruning, respectively.

For flowers, published work usually concentrates on segmentation 
and counting applications, using deep learning methods such as YOLO 
[26], FasterRCNN [27] and Deeplab [7]. In Ruizendaal et al. [28], Hem-

ming [13], a FasterRCNN model was used for bounding box detection of 
gerbera flowers in a production greenhouse, for an automatic harvest-

ing system, with separate object classes for buds and flowers. Another 
gerbera harvester focused on detecting the stems using classical vision 
methods [25].

Deep learning architectures for segmentation in 3D of the leaves, 
stems, and flowers in rose bushes were proposed in Turgut et al. [32,

33], along with a synthetic data set for training [9]. This kind of point-

wise segmentation at the level of a plant is necessary for phenotyping 
as well as robotic operations such as trimming or harvesting [25].

An early work on image level classification was on the species recog-

nition of wild flowers [29]. This approach used hand crafted features 
such as shape, roundness, number of corners, etc extracted from images 
of flowers and leaves taken against a black background in laboratory 
settings, followed by a linear discriminant function classifier. An accu-

racy of 96% was reported for 34 locally growing species. In Nilsback 
and Zisserman [20], a support vector machine (SVM) classifier was 
used with hand-crafted features such as color, shape, texture, bound-

ary shape, spatial distribution of petals, etc leading to a classification 
accuracy of 73% on the 102-class Oxford flowers data set.

In all these cases machine/deep learning was used to count, seg-

ment, or identify flowers. In contrast, the current paper focuses on 
obtaining descriptors of the objects (flowers) in an automated way.

3. Materials and methods

3.1. Data

We investigate two species, rose and gerbera, each of which is rep-

resented by data sets from the two private foundations involved, Flori-

code2 and Naktuinbouw.3 Each of the four data sets comprises a set of 
images and a database with variety entries, containing the various traits 
of interest. The images were taken for the purpose of keeping a record, 
and were thus not intended nor optimized for image analysis. As the 
two organizations are involved in different tasks, the traits in their re-

spective data sets differ in number and level of detail. Moreover, a trait 
may have a different meaning depending on the origin of the database, 
or the flower species. For example, due to the differences in the bio-

logical structures of the centers of roses and gerberas, the flower-type 
of a rose could be either filled or appear as a spinning confluence of 
the petals. On the other hand for gerberas, the flower-type refers to the 
level of the center region that is covered by inner ray florets. Here, we 
focus on categorical traits, having two to five different possible values, 
depending on the trait.

2 www .floricode .com.
2

3 www .Naktuinbouw .com.
Smart Agricultural Technology 7 (2024) 100383

Clearly, not all traits in the databases could be recognized by consid-

ering images alone. Some traits are simply impossible to determine due 
to characteristics which are invisible in images. Examples include fra-

grance which cannot be captured in an image, but also visible ones that 
are not captured in the images due to the perspective, such as the pres-

ence of thorns in a rose variety. Furthermore, the imaging protocol used 
in the Floricode dataset leads to flowers being of roughly equal size in 
the image, regardless of their real size, thus flower sizes and dimen-

sions cannot be determined since the images do not contain any size 
reference. When prioritizing the categorical traits in the data sets, we 
first of all focused on those traits that we and the experts from Floricode 
and Naktuinbouw gave a reasonable probability of identification.

A next consideration concerns the number of examples for each trait 
and trait category. Not all flower records are completely filled with all 
traits, and for some traits the number of data points for some classes 
is simply too small. In addition, since we are looking at categorical 
traits, all categories of interest should be populated well enough and in 
a balanced way to allow the deep learning networks to recognize them. 
We maintain a minimum level of at least 50 examples per category. If 
a trait has fewer than two categories satisfying this requirement, it is 
eliminated. In case a trait has several categories that satisfy the count 
requirement and several others that don’t, the number of categories is 
reduced. If the categories are ordered (e.g., from “very small” to “very 
large” in, say, five steps) small categories are merged with a neigh-

boring category; if there is no natural ordering, categories that are too 
small are simply be discarded. These steps lead to the traits for the four 
data sets listed in Table 1.

3.2. Image pre-processing

Some examples from each data set are shown in Fig. 1. It can be 
seen that while the images were taken in controlled settings, unlike 
those of a production greenhouse, there is considerable variation in the 
background, even within an image in the case of the Naktuinbouw data 
sets (bottom two rows). For both Floricode data sets, the background is 
white and relatively uniform. Thus, except for white roses or gerberas, 
the background can be segmented by applying a threshold on the three 
image channels to consider as background the pixels for which all three 
channels are equal and above this threshold. For white flowers, this 
segmentation is achieved by a combination of color thresholding and 
edge detection, followed by connected components.

Such a color or edge based approach is not sufficient to segment a 
non-uniform background, as in the case of the Naktuinbouw data sets. In 
these cases, the foreground is segmented using the background remover 
(BGR) app4 which applies a deep learning model based on the U2-Net 
architecture and has been trained on general purpose data sets with 
semantic foreground background ground truth data [23]. In all cases, 
the pixels corresponding to the background are set to black (pixel values 
of zero for each of the R, G and B channels).

Whereas the gerbera data sets and the Naktuinbouw rose data con-

centrate on the flowers, the Floricode rose data set shows quite a bit 
of plant leaves. When analyzing the images using deep learning, it ap-

peared that the presence of these leaves did not influence the results, so 
the images did not receive further pre-processing other than the back-

ground removal. This was also true for the color results obtained by 
deep learning, presented in Wehrens et al. [36], but there it was shown 
that for a more classical image analysis approach (in this case based 
on color histograms) the leaves had to be removed before analysis in 
order to get acceptable results. The fact that deep learning approaches 
can handle distracting information in the image data is an important 
advantage in many practical applications.

Some images in these data sets contain top as well as bottom views 
of two different flower samples of the same variety. In these cases only 
4 https://github .com /nadermx /backgroundremover.
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Table 1

Characteristics of the four data sets used in this paper.

Dataset Trait Classes # images (train/test)

Floricode, Rose Flower type spinning center 195 (136/59)

filled 318 (222/96)

Inflorescence single flowered 1271 (889/382)

truss 332 (232/100)

Floricode, Gerbera Flower type filled 172 (120/52)

half filled 341 (238/103)

slightly filled 460 (322/138)

unfilled 456 (319/137)

Inflorescence flattened spherical 76 (53/23)

little head 1353 (947/406)

Naktuinbouw, Rose Flower diameter medium 334 (233/101)

small 81 (56/25)

Flower shape irregularly rounded 413 (289/124)

round 49 (34/15)

Petal number few 149 (104/45)

many 69 (48/21)

medium 176 (123/53)

very many 63 (44/19)

Petal shape obovate 380 (266/114)

transverse elliptic 163 (114/49)

Petal edge bending medium 182 (127/55)

strong 144 (100/44)

weak 93 (65/28)

Petal number colors one 616 (431/185)

two 173 (121/52)

Naktuinbouw, Gerbera Disk diameter large 93 (65/28)

medium 139 (97/42)

medium large 97 (67/30)

small medium 88 (61/27)

very large 58 (40/18)

Flower head type semi double 413 (289/124)

single 222 (155/67)

Head diameter medium 112 (78/34)

medium large 222 (155/67)

small medium 246 (172/74)

Outer floret length long 182 (127/55)

medium 163 (114/49)

Outer floret shape pointed 171 (119/52)

rounded 473 (331/142)

Outer floret width broad 67 (46/21)

medium 216 (151/65)
the top view is selected through visual inspection. When the two flower 
samples in the image have no gap between them, the segmentation is 
corrected manually by editing the segmented image in a standard image 
editor.

As a final preprocessing step, the Floricode images (average image 
size 9 MB) were resized to be similar in size to the Naktuinbouw images 
(on average 0.9 MB). This not only allows for a more fair comparison, 
but also speeds up calculations considerably.

3.3. Deep learning analytics

For the categorical traits that are the focus of the current paper, the 
goal of the deep learning methods is to provide a prediction of the trait, 
given an image of the flower. The prediction problem can be either a bi-

nary or a multiple class classification problem, with the labels being the 
respective trait values. As a neural network architecture we use a stan-

dard 18 layer residual network, ResNet18 [12] with an additional layer 
followed by a softmax classifier over the final fully connected layer, 
having as many outputs as classes to be predicted. This architecture was 
previously successfully applied to binary classification problems such as 
classifying potato plants into healthy or sick [2]. ResNet18, while sig-
3

nificantly deeper than architectures such as VGG [30], can work with 
fewer labeled images than ResNets with more layers. Preliminary cal-

culations with a 50-layer Resnet essentially led to the same results as 
reported here.

Since some of the categories for the data in this paper have rela-

tively few cases, we decided to split the data into training- and test sets 
with a division of roughly 70% and 30%, respectively, and to dispense 
with separate validation sets – these are often used to stop the training 
process in order to avoid over-fitting. Here, we simply set the number 
of epochs to a fixed number and stop the training when that number 
has been reached.

The train-test splits for each trait can be found in Table 1.

3.4. Software

The data pre-selection and filtering was done using R [24]. The im-

age pre-processing operations were done using MVTec Halcon5 [1] for 
color based foreground segmentation, and python/opencv [6] for edge-

based foreground segmentation.
5 https://www .mvtec .com /products /halcon.
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Fig. 1. Examples of raw images from the four data sets. Top to bottom: Floricode rose, Floricode gerbera, Naktuinbouw rose, and Naktuinbouw gerbera. The first 
and third columns show the original images, and the second and fourth ones show the respective pre-processed images after removing the background.
The deep learning classifiers were implemented using python/

Jupyter notebooks and the PyTorch framework [22]. The final output is 
a comma separated value (CSV) file containing the true (ground truth) 
values of the traits and their respective predicted values, over the im-

ages in the test set.

4. Results and discussion

To evaluate the performance of our classification models, we focus 
on results of the test sets, not seen during the training of the deep learn-

ing models. Our parameter of interest is accuracy, the proportion of 
correctly classified samples to the total number of samples. In the case 
of ordinal variables, an estimate is counted as correct if the predicted 
category exactly matches the ground truth – a more detailed perfor-

mance measure could be to calculate distances between predictions and 
ground truth, where ordered levels are represented by integers, for ex-

ample. Such a measure would discriminate between gross errors and 
smaller errors. Since in real-life applications trait databases are going 
to be used as references, sometimes even with legal implications, here 
we choose to stay on the conservative side and simply count everything 
that is not exactly equal to the ground truth as an error. We’ll first fo-

cus on one trait in particular (flower type for Floricode gerberas) and 
then present the results for all traits in the four data sets.

4.1. Example trait - Floricode gerbera, flower type

Flower type for Floricode gerberas is an ordered categorical trait, 
related to the presence and distribution of a set of inner ray florets, 
also called trans florets. “Unfilled” means that inner ray florets are not 
present; “slightly-filled” means that there is a thin layer of inner ray 
4

florets; “half-filled” means that inner ray florets cover about half of 
the outer ray florets, whereas “Filled” means that the inner ray florets 
mostly overlap the outer ray florets. Examples of the four classes are 
shown in Fig. 2. The differences between the four classes are clearly 
not immediately obvious; manual classification is hard to do without 
specific training.

Fig. 3 shows the confusion matrix for the test set of this trait. Al-

though the majority of the cases are predicted correctly (the diagonal is 
the darkest area of the plot) there are misclassifications, too: the over-

all accuracy is 72.8%. However, it is clear that most of the errors are 
found between neighboring classes: especially the “Slightly-filled” class 
is predicted too often, also in cases where the true label is “Unfilled” 
or “Half-filled”. Apart from the fact that there will be cases which are 
simply very close to the boundaries of these classes and therefore will 
be harder to predict, it is also true that the ground-truth labels are not 
infallible: different observers may arrive at (slightly) different conclu-

sions, especially in a more difficult trait such as this one. In addition, 
there is some variation between flowers, and the flower that has been 
used to obtain the database entry may not be the same specimen visible 
in the image. Finally, real-life databases that have been built up over 
years, with many different people contributing, are bound to contain 
some inconsistencies.

Observations such as this does give confidence that the deep-

learning models pick up relevant information. However, their black-

box nature makes it very hard to find out why a particular answer is 
given, and where in more classical models it often is possible to as-

sess model coefficients and relate them to expert knowledge, such a 
common-sense model validation is not straightforward with current in-

terpretation techniques of deep learning. If the model would find the 
distinction between the two extreme categories equally hard as the 
difference between neighbors, this could be taken as a warning that 

maybe the model is focusing on the wrong characteristics (unless all off-
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Fig. 2. Training set examples. Data set: Floricode Gerbera, Trait: Flower-type. Class labels (from left to right): (a) Filled, (b) Half-filled, (c) Slightly-filled, (d) Unfilled.
Fig. 3. Prediction results for Floricode gerbera, trait flower type.

diagonal elements in the confusion matrix contain very low numbers, 
of course). This is clearly not the case here, and the neural networks 
indeed seem to be able to pick up relevant class information from the 
images.

4.2. Overall results

In order to assess the variability of the training process, five repeated 
training runs with the Resnet18 architecture were done starting from 
different (random) initializations. The average classification error rates 
for all the traits, again based on predictions of unseen test sets, are 
shown in Fig. 4. The figure also shows the 95% confidence intervals 
over the multiple runs per trait. Some spread is visible, but it is clear 
that the differences in performance across traits cannot be attributed to 
random learning effects alone.

Mean accuracies range from 35.2% (Naktuinbouw Disk-diameter) 
to 99.1% (Floricode Inflorescence). This large difference is caused by 
several factors. First of all, some traits have more clear cut differences 
between the classes and are thus easier than other. An example is the 
rose inflorescence in the Floricode data set, e.g., which is the difference 
between plants where roses are individual flowers or trusses of flowers, 
something that is very easily seen in the images. Other traits, such as 
the Floricode Flower-type trait for gerberas as discussed in Section 4.1, 
5

are much more difficult.
Secondly, traits with multiple possible values are much more diffi-

cult to predict than traits with only two possible values (binary classi-

fication problems). In the Naktuinbouw data sets this is clearly visible: 
the two worst traits in roses are the ones with four (Petal number) and 
three (Petal edge bending) levels – the worst trait overall (Naktuin-

bouw gerbera, Disk diameter) even has five categories. Again, we are 
only counting exact matches with the ground truth as correct predic-

tions. Inspecting the confusion matrices for all ordered traits, however, 
in all cases we see the behavior also observed for Floricode gerbera 
Flower type: the confusion is mainly between neighboring classes, and 
much less between classes that are far apart.

Thirdly, imbalanced class sizes are difficult for prediction models. 
The best score, e.g., is obtained for Floricode gerbera Inflorescence, but 
there the test set contains only 23 examples for “flattened spherical”, 
and 406 examples for the other category, “little head”. In other words, 
predicting everything as “little head” would already lead to a 94.6% 
accuracy. The very fact that the model is able to improve on this number 
is surely impressive, but the context is needed to view the accuracy in 
the correct light. Note that the imbalance is not only a difficulty in 
training the network, but also in the evaluation of the results.

Overall, it is clear that the images provide information to learn 
different traits, and although most of the accuracies should still be in-

creased before they are useful in everyday practice this work shows 
definite promise. Several ways are available to achieve this – tuning 
the network architecture and hyper-parameters to the trait at hand will 
definitely help. Heat-map analysis could also be worth investigating 
by way of explainability, to determine what the network learns. Data 
augmentation by translation and/or rotation could be helpful in the 
presence of contextual information such as stems or leaves.

5. Conclusions and future work

In this work, we have reported results on a first foray of deep learn-

ing into the estimation of floricultural traits. Reasonable results were 
obtained even though the data have been acquired over a number of 
years, with different observers, and not specifically for this objective.

Several avenues are available to further improve results for the cur-

rent set of traits. The first is simply to increase data set sizes, perhaps by 
merging databases from growers or other (international) organizations 
using the same sets of characteristics. This not only increases coverage 
for the less populated classes, but in general will lead to better, more 
accurate and more robust AI models. The second is to pursue an even 
higher level of data standardization. On the image side of things, this 
could be achieved by controlled lighting conditions and image acqui-
sition protocols – sometimes very simple elements like including color 
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Fig. 4. Average classification accuracies for the traits, grouped by data set, based on five repeated runs. 95% Confidence intervals, based on the spread over these 

runs, are indicated in the figure by horizontal line segments.

reference charts or rulers to measure absolute sizes in the images will 
make already a big difference. Furthermore, more advanced learning 
architectures can be assessed and optimized for specific traits. For traits 
such as sizes or lengths, regression models [37,31] could have better 
performance with data comprising actual measured dimensions. Ordi-

nal regression [34] in which ordered categorical classes are predicted 
may also be a helpful approach. CNNs with attention modules [38]

which work with soft embeddings rather than hard labels, as well as 
attention followed by text decoder model for generating description of 
visual traits of flowers [18,14] may be approaches worth investigating. 
The latter will require training on a broader dataset but specifically re-

lated to plants. Finally it might be interesting to investigate transfer 
learning of similar traits across flower species, i.e., if models trained on 
one species or dataset can be applied on a different species or dataset.

Synthetic data obtained through methods such as Generative Ad-

versarial Networks (GANs) are also worth investigating as a means of 
generating training data [35]. Extending the deep learning approach to 
object detection with different classes could offer a way to detect flow-

ers with defects or blemishes.

Conversely, the question could in some cases be turned around: 
rather than investigating which traits of a predefined set can be ob-

tained from image material, we can ask ourselves what information 
can be retrieved from the images – this could form the basis of a new 
set of characteristics, leading to a different but perhaps equally valid 
description of ornamentals, most probably being complemented with 
other descriptors based on genetics. While this paper addressed only 
those traits with information present in 2D images, using multiple cam-

eras or RGB-plus-depth sensors such as Intel Realsense cameras [15]

could be used to reconstruct a point cloud representation and extract 
information on 3D traits such as cross-sectional profile and petal struc-

ture.

Automation of the process also makes it possible to decentralize the 
trait assessment, and registration could become similar to sending in a 
digital tax form. The reproducibility of the results based on generally 
available models, would form a solid legal basis for such a procedure.
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