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A B S T R A C T   

Compound extremes such as compound dry-hot events (CDHEs) have received more attention in the last decade 
due to their more devastating impacts than those caused by droughts or heatwaves separately. A daily-resolution 
CDHE index, i.e., compound dry-hot index daily (CDHId), based on the copula and conditional probability is 
proposed to identify dry and hot days to quantify the CDHE severity. Standardized precipitation index (SPI), 
standardized temperature index (STI), and CDHId are used to explore the spatial-temporal variations of droughts, 
heatwaves, and CDHEs in China from 1961 to 2020. Results show that CDHEs occurred more frequently after the 
period from the late 1970s to the early 1980s. Northeast China, Southwest China, and the Tibetan Plateau 
witnessed the most significant increases in CDHEs. CDHEs are further classified into two types based on the 
sequential order of the drought and heatwave occurrence, and the drought-preceded CDHEs accounted for 85.2% 
of all events, indicating that CDHEs were more likely to be induced by antecedent dry conditions. Stronger land- 
atmosphere coupling was observed both prior to and during CDHEs compared to periods under non-dry-hot 
conditions, which played a major role in the formation of CDHE at the local and short-time scale. However, 
the annual variation of CDHE frequency in multi-decades was dominated by heatwaves, with a more significant 
direct path coefficient than droughts over China. Overall, the increase and enhancement of CDHEs since the early 
1980s were consistent with global warming.   

1. Introduction 

Global warming has aggravated weather and climate extremes over 
the past decades all around the world. Compound extreme events were 
defined broadly as the combination of multiple drivers and/or hazards 
that contribute to societal or environmental risk (Zscheischler et al., 
2018), and have attracted more attention due to their larger impacts 
compared to individual extremes. Compound dry and hot events 
(CDHEs) are among the most impactful compound events that can have 
adverse effects on human health and ecological systems (He et al., 2022; 
Libonati et al., 2022; Osman et al., 2022). CDHE is generally defined as a 
period during which extreme dry and hot conditions occur concurrently 
and consecutively, ranging in duration from pentads to seasons (Mo and 
Lettenmaier, 2015; Zscheischler and Seneviratne, 2017). Even over a 
short span of a few days, CDHEs can contribute to the exacerbation of 
wildfires and ecological loss (Ruffault et al., 2020). Significant 

increasing and widespread trends of CDHEs have been observed in China 
over the past decades (Wu et al., 2019; Ye et al., 2019; Yu and Zhai, 
2020). 

Numerous studies have explored CDHEs using diverse identification 
methods based on different indices and timescales. In some research, 
droughts and heatwaves are independently identified using respective 
indices, and the overlapping period of the two extreme events is iden
tified as a CDHE (Mazdiyasni and AghaKouchak, 2015; Li et al., 2019; 
Feng et al., 2021). Although this method is straightforward and precise, 
it overlooks the dependence between dry and hot conditions 
(Zscheischler and Seneviratne, 2017). By constructing a joint distribu
tion function, multiple factors such as precipitation and temperature can 
be integrated to develop a bivariate index (Li et al., 2021; Zscheischler 
and Seneviratne, 2017). For example, Hao et al. (2020) proposed a 
monthly CDHE index (CDHI) using copula models to quantify CDHEs in 
Texas. However, since heatwaves often evolve over a few days to a week 
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(Perkins and Alexander, 2013), the monthly resolution may be too 
coarse for capturing short-term heatwave events effectively. A similar 
index called standardized compound drought and heat index (SCDHI) 
was then introduced at a daily resolution (Li et al., 2021). Since these 
two indices do not impose specific constraints on dry and hot conditions 
individually, some dry-cold or wet-hot events may be incorrectly iden
tified as CDHEs. 

Across the scale of days to multi-years, there are two main physical 
mechanisms contributing to the onset, evolution and intensification of 
CDHEs, i.e., persistent atmospheric processes and land-atmosphere 
feedbacks (Miralles et al., 2019; Zhang et al., 2021). At a large scale, 
some persistent circulation patterns are responsible for the initiation of 
both droughts and heatwaves, including but not limited to subtropical 
highs, blocking highs and atmospheric stagnation events (Hao et al., 
2018; Zhang et al., 2021). At the regional scale, the land-atmosphere (L- 
A) feedback also plays a significant role in the occurrence and exacer
bation of CDHEs (Gallego-Elvira et al., 2016; Stéfanon et al., 2014; 
Vicente-Serrano et al., 2014). A shortage of precipitation (P) and soil 
moisture (SM) deficiency result in an increased partitioning of energy 
towards sensible heat, subsequently leading to a temperature (T) in
crease (Hirsch et al., 2019). On the other hand, T increase elevates at
mospheric water demand and further depletes SM, which is unfavorable 
for rainfall, resulting in intensified drought (Miralles et al., 2019). Seo 
and Ha (2022) investigated the soil moisture-temperature coupling 
strength over northern East Asia and found that the L-A coupling 
enhanced the CDHEs. Zhang et al. (2019) took the actual evapotrans
piration (AET) anomaly as the primary criterion for classification, 
defining CDHEs with AET > 0 as high-temperature-induced compound 
events and those with AET < 0 as drought-induced events. However, the 
response of AET to T increases is nonlinear and highly dependent on 
local ecosystem conditions (Budyko, 1961). For example, in arid and 
semi-arid regions, AET is negatively correlated with potential ET under 
water-limited conditions (Han et al., 2014), which implies that despite 
increasing T, AET would still diminish due to an inadequate supply of 
water available for evaporation. Though several studies have demon
strated that the L-A feedback can exacerbate CDHEs, the specific 
coupling mechanism prior to and during the CDHE has not been fully 
understood on a daily basis. By employing daily indices, it becomes 
feasible to investigate the land-atmosphere coupling processes at a daily 
resolution, which have been observed to occur within a few days 
(Teuling et al., 2006). 

Regarding the dominant driver of the temporal variation of CDHE in 
multi-decades, Vogel et al. (2021) found that the rise in the number of 
CDHEs in the Mediterranean Basin was primarily driven by temperature 
changes but not precipitation, and suggested that CDHE changes may be 
dominated by heatwaves. Also, Zhang et al. (2022) suggested that 
temperature was the dominant factor influencing CDHEs globally in the 
past (1951–2014), and CDHEs will be sensitive to global warming in the 
future. However, Bevacqua et al. (2022) stated that the future frequency 
of dry-hot extreme events is primarily determined not by temperature 
trends, but by precipitation. To date, although the spatial-temporal 
characteristics of CDHEs have attracted more attention, there remains 
relatively scarce analysis regarding their long-term driving factors in 
China. 

To accurately quantify CDHEs, a daily compound dry-hot index 
(CDHId) is proposed in Section 2. In Section 3, SPI, STI, and CDHId are 
used to identify and evaluate the variations of droughts, heatwaves, and 
CDHEs in China during 1961– 2020; the CDHEs are further classified 
into two types based on the sequential order of the drought and heat
wave occurrence. At the regional scale, the land-atmosphere (L-A) 
feedback both prior to and during two types of CDHEs are statistically 
investigated using two L-A coupling indices. For decadal variations, we 
quantitatively analyze the dominant factor (either drought or heatwave) 
influencing long-term changes in CDHEs through path analysis. The 
analyses are expected to provide an in-depth insight into dry and hot 
extremes in China and would be helpful for climate change adaptation 

and mitigation. 

2. Materials and Methods 

2.1. Data used 

Due to the vast territory and diverse topography, the climate in 
China varies from the subtropical zone in the south to the cold temperate 
zone in the north. The Tibetan Plateau has an alpine climate and far 
inland regions in the northwest are mostly very dry. For the convenience 
of describing the changes in different regions, we divide mainland China 
into 6 sub-regions, Northwest China (NW), Central North China (CN), 
Northeast China (NE), Tibetan Plateau (TP), Southwest China (SW), and 
Southeast China (SE), according to administrative districts and climate 
zones (see Fig. 1). 

Gridded daily precipitation (P) and daily maximum temperature (T) 
data during 1961–2020 are obtained from the China Ground Precipita
tion/Temperature Daily 0.5◦ × 0.5◦ Gridded Dataset (V2.0) at the Na
tional Meteorological Information Center (2012; http://www.nmic. 
cn/). These datasets were resampled from ground observation station 
data, and have undergone cross-validation and error analysis. Data from 
the China Meteorological Forcing Dataset (Chen et al., 2011; Yang and 
He, 2016) and the China Land Data Assimilation System (http://data. 
cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0_NRT.html; Shi 
et al., 2014) are used to fill in the missing data. The gridded data are 
developed based on over 2000 ground-based national meteorological 
stations (http://www.nmic.cn/; there is no data in the Taiwan region). 
The number of meteorological stations in each 0.5◦ × 0.5◦ grid cell is 
indicated in Fig. 1. The density of stations used for generating the 
gridded data is relatively high in the eastern part of China, while low in 
the western part of China (especially in Xinjiang and the western part of 
the Tibetan Plateau), which makes the data less reliable. 

In addition, data of 2 m mean temperature, 2 m dewpoint temper
ature, latent heat flux (LH) and volumetric soil water (0-100 cm; SM) 
from 1961 to 2020 are retrieved from the ERA5-Land hourly 0.1◦ dataset 
(Muñoz-Sabater et al., 2021), and subsequently aggregated to daily 
values at 0.5◦. According to the National Specifications for Surface 
Meteorological Observation (GB/T 35221–2017), the daily boundary for 
meteorological observations in China is 20:00 Beijing time (UTC + 8). 
Thus, the daily aggregation period starts from 20:00 Beijing time the 
previous day to 20:00 Beijing time the current day when aggregating 
ERA5-Land hourly data to the daily data. The vapor pressure deficit 
(VPD) is estimated using the 2 m mean temperature and dewpoint 
temperature. 

2.2. Identification of droughts and heatwaves 

The standardized precipitation index (SPI) is among the most 
commonly used indices for meteorological drought identification. To 
calculate the SPI, the cumulative precipitation data are often assumed to 
follow a gamma distribution and then transformed to the standard 
normal distribution by applying the inverse normal function (McKee 
et al., 1995). The cumulative precipitation is usually calculated on a 
monthly or annual basis, but can also be calculated at a daily temporal 
resolution so as to provide details of the drought development process 
(Stagge et al., 2015). According to the investigation of Wang et al. 
(2021), a 90-day timescale SPI is suitable for assessing meteorological 
drought in different climate regions over China. In this study, SPI is 
calculated using cumulative precipitation in a moving window of 90 
days on a daily basis (unless otherwise specified, the SPI hereafter refers 
specifically to the 90-day timescale SPI). In general, droughts are typi
cally identified as having a minimum duration of one month. However, 
in recent years, shorter-duration events known as flash droughts have 
been widely observed and proven to have significant impacts (Otkin 
et al., 2018; Yuan et al., 2023). In this paper, a meteorological drought 
event is identified if the daily SPI ≤ -1 for at least 20 consecutive days. 
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Two adjacent drought events are merged as one drought event if the 
time interval between the two preliminary events is no >5 days with SPI 
≤ 0 during the interval. 

Assuming that the daily maximum temperature follows the normal 
distribution, the daily maximum temperature is normalized to construct 
the standardized temperature index (STI) as follows (Zscheischler et al., 
2014): 

STI(i) =
T(i) − Tμ

Tσ
(1)  

where Tμ and Tσ refer to the mean and standard deviation of the daily 
maximum temperature series, which is constructed from the daily 
maximum temperature of a 31-day window centered on the day i in each 
year. A heatwave is preliminarily identified if STI ≥ 1 in at least 5 
consecutive days, and two preliminary heatwaves are merged if they 
have an interval ≤ 3 with STI ≥ 0 during the interval. 

2.3. Identification and characterization of CDHE 

In this study, the CDHE is defined as a period of at least 10 consec
utive days during which both dry and hot anomalies occur simulta
neously (SPI ≤ -1 and -STI ≤ -1). A day when both SPI and -STI break the 
threshold (− 1) is identified as a dry-hot day. The copula function is used 
to estimate the occurrence probability and quantify the severity of those 
dry-hot days in the present study. Copulas are great tools for modeling 
and simulating correlated random variables so as to examine the 
dependence between many variables. Here, the copula function is used 
to link SPI and STI to construct an index on a daily basis, i.e., the 
compound dry-hot index daily (CDHId). The detailed process for 
calculating CDHId is as follows:  

1. Calculate the daily SPI and STI and their correlations. If they show a 
significant correlation (at the 0.05 significance level), the joint dis
tribution function can be constructed from a copula function.  

2. Select the preferred copula function and obtain the joint distribution. 
Assuming two random variables X and Y, representing SPI and -STI 
respectively (for the convenience of the probability calculation, we 
set Y = -STI), the marginal distributions can be denoted by U(x) =

ϕ(x) and V(y) = ϕ(y) since both X and Y follow the standard normal 
distribution. Here, we consider various copula models, including the 
Gaussian copula and three commonly used copulas of the Archime
dean family (Clayton, Gumbel and Frank), which have mathematical 
tractability and can capture varieties of dependence structures 
(Ganguli and Reddy, 2013). These copulas are selected as candidates 
for fitting the joint distribution of SPI and STI. The ‘VineCopula’ 
package in R (Nagler et al., 2021) is used to fit the optimal model 
based on Akaike’s information criteria (AIC). Once the copula model 
(denoted as C) is determined, the joint distribution can be expressed 
as: 

C(U(x) ,V(y) ) = P(U ≤ u,V ≤ v) = P(X ≤ x, Y ≤ y) (2)    

3. Identify dry-hot days. The dry-hot days are identified under the 
conditions that SPI ≤ -1 and STI ≥ 1, i.e., X ≤ -1 and Y ≤ -1.  

4. Calculate CDHId. For each dry-hot day (x’, y’), its severity relative to 
the drought and heatwave thresholds (SPI = -1, STI = 1) can be 
expressed using the conditional probability P0 calculated below: 

P0 = P(X ≤ x′,Y ≤ y′|X ≤ − 1,Y ≤ − 1) =
C(U′,V′)

P(X ≤ − 1,Y ≤ − 1)
(x′

≤ − 1, y′ ≤ − 1) (3)  

where P(X ≤ − 1,Y ≤ − 1) can be estimated by the proportion of dry-hot 
days in total days, and P0 represents the severity of compound dry and 
hot conditions relative to the drought and heatwave thresholds. A lower 
value of P0 implies a more severe condition of dry and hot. In order to 
characterize the severity of CDHEs using the cumulative values on a 
daily basis during the whole duration, the CDHId is defined as CDHId =
1-P0. The index ranges between [0,1], and the larger the value, the more 
extreme the CDHE condition is. The CDHId cumulative distribution 
exhibited a negative skew.  

5. Identify compound events based on the CDHId. A CDHE is identified 
as a period when the CDHId>0 persists for at least 10 consecutive 
days. We use a minimum duration criterion of 10 days to capture 

Fig. 1. Sub-regions and the number of meteorological stations in each 0.5◦ × 0.5◦ grid cell over mainland China.  
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those short-term but potentially ecologically damaging CDHEs 
(Ruffault et al., 2020). If the interval between two adjacent events is 
no >3 days, and either the SPI or -STI index is consistently below − 1 
during the period, the two events are merged into one event. On 
normal days, the CDHId value remains 0. The CDHEs are investigated 
in the year-round period rather than only in the warm season since 
extremes outside the warm season also pose threats to agriculture 
and ecosystems, which cannot be ignored (Ben-Ari, 2018; Brás et al., 
2021). 

To characterize the extremes (including droughts, heatwaves and 
CDHEs), the following metrics are calculated at each grid (if an event 
spans two years, the event is only counted in the year when it starts):  

(1) Frequency (F): the total number of extreme events in a year (unit: 
times).  

(2) Duration (D): the total days of extreme events in a year (unit: 
days).  

(3) Severity (S) of drought and heatwave: the average of the SPI and 
STI during events in a year, expressed as follows: 

S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑D

i=1
Ii

D
(when I refers to STI)

−

∑D

i=1
Ii

D
(when I refers to SPI)

(4)  

where Ii refers to the index (SPI or STI) of the ith day in the whole 
duration of a year. When I refers to the SPI, the S is made negative so that 
the signs of S give a consistent indication of the severity for droughts and 
heatwaves (i.e., the higher the S, the more severe the dry/hot condition).  

(4) Coverage (A): the ratio of the area where extreme events occurred 
(i.e., frequency F ≥ 1) during a year to the total area of the study 
area (unit: %).  

(5) Magnitude (M) of CDHE: the sum of the indices during CDHEs in a 
year: 

M =
∑D

i=1
CDHIdi (5) 

To get annual areal averages of those metrics over China, the area- 
weighted averages are calculated considering the size of grid cells. 

2.4. CDHE Classifications 

With the usage of daily indices, it is intuitive to investigate the 
triggering factor of CDHEs by distinguishing the sequential order of the 
drought and heatwave. We further define two types of CDHEs, that is, (a) 
drought-preceded CDHE (CDHEd): the CDHE with a drought occurs first; 
(b) heatwave-preceded CDHE (CDHEh): the CDHE with a heatwave oc
curs first. The indicator used to identify these two types of events here is 
the dry-hot lag (Δd), which is the time difference between the onset of 
the drought and that of the heatwave involved in a CDHE, given by: 

Δd = d2 − d1 (6)  

where d1/d2 is the first day of a drought/heatwave. A CDHE with a 
positive Δd refers to the drought-preceded CDHE (CDHEd), indicating 
that the drought occurs before heatwaves, while a negative Δd refers to a 
heatwave-preceded CDHE (CDHEh). 

The proportions of CDHEd, i.e., the CDHEd frequency (FCDHEd) 
divided by the frequency of total CDHEs (Ftotal) at each grid are calcu
lated. The higher the proportion, the greater the possibility of drought- 
preceded CDHEs occurrence at the grid. 

2.5. Land-atmosphere coupling index 

The land-atmosphere (L-A) coupling is investigated by the terrestrial 
coupling index and atmospheric coupling index (Dirmeyer et al., 2013; 
Hirsch et al., 2019), which are calculated as: 

IT =
COV(SMscaled ,LHscaled)

σSMscaled

(7)  

IA =
COV(VPDscaled, LHscaled)

σLHscaled

(8)  

where SM scaled, LH scaled and VPD scaled denote the soil moisture, 
latent heat flux and vapor pressure deficit, respectively, each normalized 
through z-score standardization; σ denotes the standard deviation 
(approximately 1); COV(a, b) is the covariance between a and b. The 
physical meaning of IT (IA) is the change in LH (VPD) caused by a one- 
unit change in SM (LH). A positive IT indicates that the LH decreases 
together with SM, responding to a water-limited regime; a negative IT 
indicates the LH increases despite a decrease in SM, suggesting that 
there is an energy-limited regime (Hsu and Dirmeyer, 2022). 

For each CDHE occurred from the kth to mth day of the year i 
(Dayi

k∼m), the coupling indices are calculated in three periods separately: 
(a) 10-days prior to the onset of the CDHE (Dayi

k− 10∼k− 1); (b) during the 
CDHE (Dayi

k∼m); (c) the counterpart period in each year (Day1961∼2020
k∼m ). 

These three periods are selected for assessing the L-A coupling charac
teristics before/during CDHEs and under normal circumstances. 

2.6. Evaluation of the temporal changes of dry and hot events 

The piecewise linear fitting model (PLFIM) is a statistical method 
that utilizes linear regression to model temporal series divided into 
several intervals, with breakpoints selected using the least-squares 
method to determine the best fit, which has been widely employed to 
investigate the change point of long-term linear tendencies of diverse 
climate parameters (Tomé and Miranda, 2004). In this paper, PLFIM was 
applied to detect the shifts assuming that there is only one single 
breakpoint with trends in different directions before and after the 
breakpoint. The data length before and after the breakpoint should be at 
least ten years. In addition, we applied F-test to test the significance of 
the linear trend. If the p-value<0.05 for at least one segment, the 
breakpoint is considered to be significant at the significance level of α =
0.05. If no breakpoint is detected, the Mann-Kendall trend test (MK test; 
Kendall, 1955; Mann, 1945) and linear regression will be applied to the 
whole series to assess the significance of the overall trend. The MK test 
calculates the Kendall rank correlation coefficient (Kendall’s τ) between 
the time series and time, which is a statistic measuring the strength of 
the monotonic trend and taking values between [− 1,1]. A positive 
Kendall’s τ indicates an increasing trend in the time series, while a 
negative one indicates a decreasing trend. 
{

r1z = Pz1 + r12Pz2
r2z = Pz2 + r12Pz1

(9)  

where rij (riz) is the Pearson correlation coefficient of xi and xj (z); Pzi is 
the direct path coefficient of xi on z, indicating the direct effect from xi to 
z; r12Pzj is the indirect path coefficient from xi to z through xj. The direct 
path coefficient represents only the direct effect of xi (drought and 
heatwave) on z (CDHE), excluding any indirect or mediated effects 
through other variables. 

The path analyses were performed at each sub-region and over 
China, using the package ‘lavaan’ in R (Rosseel, 2012). All results of path 
analysis presented in this paper have a standardized root mean squared 
residual (SRMR) <0.1, indicating a good fit for the model. R-squared 
(R2) was provided to reflect the proportion of variance in z that is 
explained by x1 and x2. 
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3. Spatial and temporal variations of droughts, heatwaves, and 
CDHEs 

3.1. Negative relationships between P and T 

When building a Copula model for two variables, a dependent rela
tionship between the two is the prerequisite, thus firstly we calculate the 
Pearson correlation coefficients between SPI and STI. Fig. 2 illustrates 
the spatial distribution of the correlation coefficients over China in 
different seasons. In general, significant (at the 0.05 level) negative 
correlations prevail in the majority of the nation all year round. In spring 
and summer, there are stronger negative P-T correlations, with negative 
correlations observed in 99.8% and 98.7% of areas, respectively, 
compared to autumn and winter (where negative correlations were 
observed in 84.6% and 88.4% of areas). In eastern China, the correlation 
is generally higher during the summer compared to the spring season. 
Conversely, in western regions, especially in western Xinjiang, the 
opposite pattern is observed, with a higher correlation during spring 
than in summer. Since the correlations are significant in most areas, the 
joint distributions are constructed for the whole region. 

3.2. Characteristics of CDHId 

Several multivariate indices have been proposed for identifying 
CDHEs in the literature to avoid the limitations of traditional univariate 
methods, such as the CDHI (Hao et al., 2020) and the SCDHI (Li et al., 
2021). However, both of these two indices have no constraints on the 
dryness or hotness when constructing joint distribution for SPI and STI, 
leading to the identification of dry-cold (SPI < 0, STI < 0) or wet-hot 
(SPI > 0, STI > 0) situations. Here we illustrate the effectiveness of 
CDHId for avoiding such issues, taking a randomly selected grid cell at 
96◦ 45′ E, 39◦ 15′ N as an example. 

The scatter plot of joint probability calculated with Eq. (2) about the 
relation of SPI (X) and -STI (Y) at the cell is shown in Fig. 3a. Note that 
only days with a joint cumulative probability below 0.3 were presented. 
Results suggest that, though the joint probability successfully quantifies 
the severity of CDHEs (lower probability indicates more severe condi
tions), conditions like dry-cold and wet-hot cannot be ruled out relying 
on the value of joint probability alone. For instance, the orange cross 
signs which indicate days that compose a CDHE during the period from 
30 August to 7 October 2016 according to their joint probability are 
actually quite normal in temperature (i.e., STI < 0, see Fig. 3b). On the 
other hand, the pink plus signs indicate a CDHE from 27 January to 5 
February 2007, with SPI > 0 for all the time, which is clearly not in a 

Fig. 2. Pearson correlations between daily SPI and STI during (a) spring, (b) summer, (c) autumn and (d) winter in 1961–2020. The cross denotes that the correlation 
is significant at the 0.05 level. 
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drought situation (see Fig. 3c). Such excessive identification is common 
in other cells all over China when using indices based on joint proba
bility without setting individual conditions for variables, and would lead 
to overestimation of the frequency of CDHEs, whereas CDHId avoids 
such problems by adding the conditional probability. For the same cell, 
dry-hot days identified by CDHId are revealed in Fig. 3d. Possible events 
are constrained in the space with SPI < -1 and STI > 1, thus non-extreme 
conditions such as those shown in Fig. 3b and Fig. 3c are excluded. 
Restricted by the criterion of temporal continuity (10 days), only one 
CDHE that occurred from 26 May to 4 June 1995 (represented by the red 
crosses in Fig. 3d, the corresponding progress in Fig. 3e) is identified 
among all dry-hot days. 

3.3. Temporal changes of droughts, heatwaves, and CDHEs 

The annual areal averages of the frequency, duration, severity (for 

droughts and heatwaves), magnitude (for CDHEs) and coverage of 
droughts, heatwaves and CDHEs over China during 1961– 2020 are 
presented in Table 1. The variations for the average frequency (F), 
duration (D), Severity (S) of droughts and heatwaves, magnitude (M) of 
CDHEs, and Coverage (A) of droughts, heatwaves, and CDHEs, 

Fig. 3. The scatter plots of the SPI and STI at the example cell centered at 96◦ 45′ E, 39◦ 15′ N during 1961– 2020. The group of crosses and plus signs indicate CDHEs 
identified by (a) the joint probability without individual limits for dry and hot conditions, and (d) CDHId. The corresponding processes of SPI and -STI in CDHEs are 
shown in (b), (c), and (e), where blue lines represent SPI, red -STI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
The annual areal averages of characteristics of droughts, heatwaves, and CDHEs 
in China from 1961 to 2020.  

Events Frequency 
(times) 

Duration 
(days) 

Severity (for droughts 
and heatwaves) 
/Magnitude (for 
CDHEs) 

Coverage 
(%) 

Droughts 0.74 39.77 0.88 26 
Heatwaves 2.39 17.19 1.38 86 
CDHEs 0.07 1.02 0.83 6  
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respectively, over the whole mainland China and/or different regions 
during 1961– 2020, are presented in three columns in Fig. 4. We con
ducted the PLFIM to detect the breakpoint for each series and calculate 
the linear trends before and after it; the MK test and linear regression 
were employed to assess the overall trend and the change rate if there 
was no significant breakpoint. 

As illustrated in column (a) in Fig. 4, the frequency of droughts 
showed a significant downward trend at a rate of − 0.04 times/decade. 
The duration and severity of drought both showed overall negative 
trends based on the Mann-Kendall (MK) test and the linear regression. 
The coverage also decreased significantly (α = 0.05) at a rate of − 1.7% 
per decade. Generally, the drought in China got less frequent, shorter, 
and less severe. Column (b) in Fig. 4 presented upward trends in fre
quency and duration (increased by 0.05 times/year and 0.44 days/year, 
respectively) of heatwaves since 1976. The severity exhibited similar 
change patterns but broke in 1983. As for coverage, heatwave events 
covered more areas in China since the 1970s. At the national average 
level, the heatwave decreased in frequency and severity before the late 
1970s or the early 1980s, but increased in frequency, duration, severity, 

and coverage afterwards, especially since the 1990s. Regarding the 
CDHE shown in column (c) of Fig. 4, there has been a common 
increasing trend in its frequency, duration, severity, and coverage across 
all regions of China since the 1970s. Although the CDHE reached its peak 
in 1963, with frequency, duration and magnitude all being the highest, it 
experienced a period of low levels during the 1970s to the 1990s and 
became more frequent and severe after the end of the 1990s. 

Some studies suggest that heatwaves have become more frequent 
and severe across China since the 1990s (Xie et al., 2020; Ding and Ke, 
2015), which is much later than the breakpoint of the 1970s detected in 
this study. The major reason for the difference is the type of breakpoint. 
Breakpoints may exist in the mean, variance or trend in a time series. In 
the aforementioned studies, the breakpoints in the 1990s were detected 
based on the distributions and mean values. In our study, the PLFIM is 
applied to detect breakpoints in trends. The detected breakpoint in 
trends would occur earlier than the breakpoint of the mean value 
because the change of trend would not affect the mean value much until 
there is a substantial accumulation of trend changes. 

Fig. 4. Variations of the average frequency (F), duration (D), Severity (S) (of droughts and heatwaves)/magnitude (M) (of CDHEs), and Coverage (A) of (a) droughts, 
(b) heatwaves, and (c) CDHEs, respectively in three columns, over the whole mainland China and/or different regions during 1961– 2020. Breakpoints were detected 
by the piecewise linear fitting model (PLFIM) and denoted by blue triangles. For the series without significant breakpoints, the MK test and the linear regression were 
applied. The red dash lines denote the linear trends for the time series segment before (Trend1) and after (Trend2) the breakpoints, or for the whole series. The 
asterisks denote the trend is significant at the 0.05 level (*) or the 0.01 level (**). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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3.4. Spatial distribution of changes in droughts, heatwaves, and CDHEs 

To examine the spatial patterns of CDHE changes, the PLFIM and MK 
tests were performed in each region. Fig. 5 illustrates the MK trend at 
each grid and region during the time period from 1961 to 2020. Note 
that, as the four characteristics (i.e., F, D, S and M) showed consistency 
in their temporal variations (see Fig. 4), only the frequency (F) for 
droughts and heatwaves and magnitude (M) for CDHEs were presented 
to save space. 

Regionally, drought frequency in NW and TP decreased significantly 
in the whole period (Kendall’s τ equals − 0.22 and − 0.33, with p-val
ues<0.05). In SE, CN and NE, droughts decreased slightly (τ less than 
− 0.10, p-value>0.05). There was a discernible belt extending from the 
western part of NE to SW (especially in Yunnan Province), which pre
sented an increasing trend in droughts. Most parts in SW and small parts 
of southern TP experienced significant increases in frequency. The 
spatial distribution of trends during the whole period presented in Fig. 5 
(b) exhibited a nationwide increase in heatwave frequency. The 
increasing trends were strong except for the western and northern Xin
jiang, eastern NE, small areas in Sichuan province and southern CN. As 
for CDHEs, overall significant increases in CDHE magnitude were 
observed in NE and SW, with SW exhibiting the most severe increases (τ 
= 0.33). Only 17% of areas of the nation exhibited significant decreases 
in CDHE magnitude, including northern Xinjiang and lower reaches of 
the Yangtze River basin. 

3.5. Characteristics and typical processes of two types of CDHEs 

To investigate potential triggering factors of CDHEs, we compared 
the sequence of drought and heatwave occurrences within each event 
and calculated Δd according to eq. (6). The density histogram of Δd for 
CDHEs across all grids from 1961 to 2020 is presented in Fig. 6a. The 
larger the positive Δd is, the longer it indicates the lead time of drought 

before the heatwave. In 5.0% of the CDHEs, Δd falls within the range of 
100 to 391 days, representing exceptional cases linked to long-lasting 
droughts. To highlight the details of regular situations, values of 
Δd exceeding 100 days are not displayed in the histogram. Among all 
CDHEs, 85.0% of cases have Δd > 0, with an average leading time of 32 
days. In 10.4% of events, heatwave precedes drought (Δd < 0), with an 
average leading time of 4.2 days. Additionally, 4.6% of cases have 
Δd equal to 0, suggesting the simultaneous onset of drought and heat
waves on the same day. Furthermore, events with Δd within the range of 
±5 days account for 25.5% of the total. Based on the Δd, CDHEs were 
categorized into two types: drought-preceded CDHEs (CDHEd, Δd > 0) 
and heatwave-preceded CDHEs (CDHEh, Δd < 0). The proportion of 
CDHEd, i.e., the CDHEd frequency (FCDHEd) divided by the frequency of 
total CDHEs (Ftotal) at each grid is illustrated in Fig. 6b. It is evident that 
the CDHEd prevailed all across China, with an average proportion of 
85.2%. Only in scattered areas of TP, NW, and NE, the heatwave occurs 
before drought within a CDHE more frequently. 

To better understand the onset and evolvement of different types of 
CDHEs and facilitate the verification of CDHId, we present the processes 
of SPI, STI, CDHId and anomalies in VPD, SM and LH of four typical 
CDHEs in different regions in Fig. 6c-f. Fig. 6c and e both represent 
typical drought-preceded CDHEs (CDHEd). Before the onsets, the mean 
VPD anomaly remained positive, indicating higher atmospheric water 
demand; the SM was already deficit due to the prior droughts; the actual 
evapotranspiration (in another form of LH) in this period was at the 
average level in case (c) and notably lower in (e). During the CDHEs, 
VPD continued to increase, SM further decreased, and LH remained 
consistently low, possibly due to insufficient SM available for evapo
transpiration. In Fig. 6f, despite having SM in a deficit state, the SM was 
not depleted during the preceding drought, which is related to its 
location in a relatively humid region (SE); consequently, during the 
CDHE, LH continued to rise due to the high temperature; the VPD did not 
show significant elevation in the prior drought period, but began to rise 

Fig. 5. MK trends of the frequency of droughts (a), heatwaves (b) and the magnitude of CDHEs (c) over China. The cross sign indicates the trend is significant at the 
0.05 significance level. The blank grid indicates that there are insufficient events to conduct the MK test. 
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only after the onset of the CDHE. Fig. 6d represents a typical CDHEh, 
characterized by significantly elevated VPD and LH in the antecedent 
heatwave; however, during the CDHE, LH decreased noticeably, 
possibly due to the soil moisture depletion. 

3.6. Land-atmosphere coupling characteristics during CDHEs 

To investigate the L-A coupling characteristics during the onset and 
evolution periods of CDHEs, we calculated anomalies in VPD, SM, and 
LH for the 10 days preceding and during each CDHE, as well as the L-A 
coupling indices (IT and IA for SM-LH and LH-VPD coupling, respec
tively). In addition, the coupling indices during the counterpart periods 
within each year were also computed to serve as a reference of the 
normal L-A coupling strength under non-dry-hot conditions. The sta
tistical characteristics of these indicators for all events are depicted in 
the empirical probability distributions in Fig. 7. 

In Fig. 7a, it is evident that the VPD already increased 10 days prior 
to CDHEs, with a positive VPD anomaly making up 75.9% of the total; 
during CDHEs, there was a substantial increase in VPD (with a positive 
value accounting for 96.3%). Before the event, the VPD anomaly of 

CDHEh (with an average of 1.3 hPa) was more severe than that of CDHEd 
(with an average of 1.2 hPa); however, during the event, the VPD 
anomaly of CDHEd (averaging 3.5 hPa) became more severe than that of 
CDHEh (2.9 hPa). The SM depicted in Fig. 7b did not exhibit significant 
variations either over time or between different types of events. In 
Fig. 7c, LH anomalies were almost symmetrically centered around 
0 prior to the occurrence of CDHE, with an average of − 0.1 W/m2; 
however, they predominantly shifted to positive values during CDHEs, 
signifying an increase in LH. During CDHEd, the LH anomaly was more 
pronounced compared to CDHEh, averaging at 3.8 W/m2 and 2.9 W/m2, 
respectively. 

Figure 7d and e depict the density distributions of terrestrial and 
atmospheric coupling index (IT and IA) during the pre-CDHE period, 
CDHE period, and under non-dry-hot conditions. Both prior to and 
during two kinds of CDHEs, the SM-LH coupling was significantly 
stronger than under normal conditions. When examining the range >0.3 
or less than − 0.3 (indicating a relatively strong coupling), the likelihood 
of IT falling within this range was 23.4% under non-dry-hot conditions. 
During the 10-days preceding and during CDHEs, the average proba
bility of IT falling within this range was 66.7%. During CDHEs, the 

Fig. 6. Characteristics and spatial distribution of two types of CDHEs. (a) Probability histogram of Δd (only those lower than 100 days are presented). (b) Spatial 
distribution of the drought-preceded CDHEs (CDHEd) proportion; the blank grid indicates that there are insufficient events for calculating the proportion. (c-f) 
Processes of SPI, -STI, CDHId and anomalies in vapor pressure deficit (VPD), soil moisture (SM) and latent heat flux (LH) during and 10-days prior to typical CDHEs in 
four distinct regions; the grid locations of panels c-f are all labelled in panel (b); blue lines represent SPI, red for STI, and purple for CDHId. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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coupling strength (IT = 0.34) increased compared to the 10 days prior to 
its onset (IT = 0.23). The LH exhibited more negative coupling with SM 
before the onset of CDHE than after its occurrence (32.5% compared to 
25.2%), which signifies that there was a transition of SM-LH coupling 
from an energy-limited to a water-limited regime. For the LH-VPD 
coupling, the average IA under non-dry-hot conditions was 0.45, indi
cating a positive relation. The proportions of negative LH-VPD coupling 
(i.e., IA < 0) were higher during the 10-days prior to and the occurrence 
of CDHE, which averaged 22.8% and 30.5%, respectively, compared to 
the 11.4% under non-dry-hot conditions. 

3.7. The dominant driver of long-term temporal variations of CDHEs 

We calculated the correlation between annual P and T over China to 
examine the long-term relationship between droughts and heatwaves. 
As shown in Fig. 8a, the annual maximum T and P averaged over China 
exhibit similar trends and have a positive correlation with a coefficient 
of 0.51 (at the 0.05 significance level). The grid-based correlation co
efficients between annual P and T show that there are more parts that 
exhibit significant positive relations than those that exhibit negative 
relations (Fig. 8b). Positively correlated P ~ T account for 57% of the 
country, and can be found mainly in NW, NE, TP and the lower reaches 
of the Yangtze River basin. In SW and CN, negative correlations remain 
prevailing. 

Classifying CDHEs into two types (CDHEh and CDHEd), their annual 
variations are depicted in Fig. 8c. There is a similarity in the variation 
patterns of these two types, both of which exhibited a significant 

increase since the 1990s. To further quantify the contribution of changes 
in heatwaves and droughts to CDHEs, we conducted the path analysis on 
their annual frequency over China and in each region, shown in Fig. 8d 
and e. The direct path coefficient of heatwave on CDHE over China was 
0.64 (significant at the 0.01 level), while it was only 0.17 (not signifi
cant) for droughts on CDHEs, indicating that changes in CDHE were 
more related to heatwaves than to droughts. At the regional level, most 
sub-regions witnessed more contributions from heatwaves than 
droughts to CDHE changes, with significant and larger direct path co
efficients of heatwaves. When comparing the spatial distribution of the 
trends of heatwave, drought and CDHE in Fig. 5, the northwestern half 
of Xinjiang and the lower Yangtze River basin showed different patterns 
with other regions, where CDHEs and droughts decreased significantly 
while heatwaves increased. Such regional discrepancy was also pre
sented in Fig. 8e, that is, the gaps between the contributions of heat
waves and droughts were smaller in the SW and SE. Furthermore, the R2 

values were generally low in most regions (around 0.3), except for the 
SW (0.63), suggesting that factors other than droughts and heatwaves, 
such as their interactions, may also contribute to the long-term variation 
of CDHEs. 

4. Discussion 

4.1. Mechanisms triggering the formation of CDHEs 

From the perspective of the local land-atmosphere feedback, two 
main routes can be identified depicting the formation mechanisms of 

Fig. 7. Kernel density estimates of (a) VPD anomaly, (b) SM anomaly, (c) LH anomaly, (d) terrestrial coupling (SM-LH coupling) index and (e) atmospheric coupling 
(LH-VPD coupling) index 10-days prior to and during all CDHEs over China from 1961 to 2020, constructed using the gaussian kernel. Orange lines represent CDHEh, 
and blue lines represent CDHEd. The dashed lines are during the 10 days preceding the events and the solid lines are during the events. Green lines in (d) and (e) 
indicate the coupling index under non-dry-hot conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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CDHE (see Fig. 9), that is, (a) the orange route, the decrease in precip
itation (P) brings about the soil moisture (SM) deficits and the decrease 
in latent heat flux (LH), hence tending to increase the sensible heat flux 
and causing the temperature (T) to rise (Gallego-Elvira et al., 2016; 
Stéfanon et al., 2014; P. Wang et al., 2019a); and (b) the blue route from 
T to P, which includes two branches, that is: firstly, as the temperature 
rises, the air becomes drier (with higher vapor pressure deficit, i.e., 
VPD), which hinders the occurrence of rainfall; and secondly, high 
temperatures cause an increase of potential evapotranspiration (Ep) and 
LH, subsequently reduce the SM and LH when the SM is depleted, thus 
increasing the VPD and leading to precipitation deficits (Vicente- 
Serrano et al., 2014). 

In Section 3.5, we found that CDHEs in China are more likely to occur 
with droughts occurring before heatwaves, in line with the findings in 
previous studies (Zhang et al., 2019), and only northern regions of China 
experienced more CDHEs with heatwaves occurring first. Why a drought 
mostly precedes a heatwave in the formation of a CDHE is first because 
the average drought duration in China is more than twice the heatwave 
duration (see Table 1), consequently, the CDHE has more than twice the 
opportunity of occurring in a drought than in a heatwave. Secondly, 
from the perspective of the land-atmosphere feedback, the route from T 
to P has some seasonal and regional constraints and thus is harder to be 
achieved: precipitation may be dominated mainly by the moisture 
availability rather than the moisture storage capacity in cold seasons 
(characterized by VPD; Berg et al., 2009), thus P is less sensitive to the 

VPD change and the route T-VPD-P is less effective. In addition, the 
route T-LH-VPD-P relies on the precondition that the SM has depleted to 
the “critical value” (Zeppetello et al., 2019). However, in humid regions 
in southern parts of China, it takes relatively long for the soil to deplete, 
which makes it harder for this route to take effect after a heatwave. This 
could be the reason why heatwave-preceded CDHEs mainly occurred in 
dry northern China (see Fig. 6a). In summary, the local short-term (days 
to seasons) negative P ~ T correlations controlled by the land- 
atmosphere interactions played an important role in the formation 
mechanism of CDHEs, especially in warm seasons when the CDHE is 
most likely to occur. 

Although we classify CDHE into two categories by the occurrence 
order of drought and heatwave, it does not suggest that the triggering 
factor of CDHEd/CDHEh is only the antecedent dry/hot condition. Large- 
scale circulation patterns may also result in both high temperature and 
precipitation deficit and trigger the CDHE, which are more likely to be 
found in CDHEs with Δd close to 0. Taking the 2019 spring-early sum
mer CDHE over Yunnan province for example, the dry and hot anomalies 
occurred at very close dates (within 5 days), and subsequently evolved 
into a typical CDHE, in which the persistent strengthening Western 
Pacific Subtropical High (WPSH) has been proven to play a crucial role 
(S. Wang et al., 2019b). 

Fig. 8. Relationships between the annual maximum temperature (T) and precipitation (P), and between drought (DR), heatwave (HW) and CDHE frequency. (a) 
Variations of the annual T and P averaged over China during 1961–2020. (b) Pearson correlations (r) between the annual T and P calculated on a grid basis. (c) 
Variations of the annual frequency of CDHEh and CDHEd over China. (d) Variations of the annual frequency of DR, HW and CDHE over China; (e) Regional path 
analysis of the annual frequency of DR, HW and CDHE; the red arrow denotes the path of contribution, and the number next to it indicates the direct coefficient; the 
black two-sided arrow and the number represent the Pearson correlation between HW and DR. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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4.2. Heatwaves dominate trends in CDHEs 

The negative P ~ T relationships were widely observed in many land 
regions of the world at the seasonal scale (Berg et al., 2015; Zscheischler 
and Seneviratne, 2017). However, the long-term variations of P and T in 
multi-decades tell differently (see Fig. 8a). According to the Clausius- 
Clapeyron (C–C) equation, every 1 ◦C temperature increase would 
lead to a 7% increase in water holding capacity of air, and in the real- 
world 1% to 3% increase in global precipitation according to observa
tions (Adler et al., 2008). That could be the major physical cause of the 
long-term positive P ~ T correlation over China, which was in line with 
the findings of Liu and Wu (2022), and reflected by opposite trends of 
droughts (decreasing) and heatwaves (increasing) in Fig. 4a and b. 
Previous studies also showed the overall decrease in drought over China 
in the past half-century (e.g., Wang et al., 2015) while temperature 
increased significantly. One important feature that needs to be noticed is 
the contradiction between the negative P ~ T relationship at the sea
sonal short temporal scale (see Fig. 2) and the positive P ~ T relationship 
at the long temporal scale (see Fig. 8) in most regions. The former plays 
an important role in the onset and formation of CDHE, while the latter is 
the direct cause of the opposite trends of droughts and heatwaves. 

Global warming and heatwaves show strong increasing trends under 
different warming scenarios (Dosio et al., 2018; Russo et al., 2014). In 
comparison, precipitation trends are often much weaker and more 
ambiguous. Bevacqua et al. (2022) stated that precipitation trends 
would determine future occurrences of compound dry-hot events over 
land, because local warming would be large enough that future droughts 
would always coincide with at least moderately hot extremes. While our 
results show that the variation of heatwaves plays a dominant role in the 
temporal variation of CDHEs, it should be noted that the warming 
process may be interrupted by natural variability or human 

intervention, leading to a temperature drop in a short period, e.g., the 
period during 1960 to the mid-1980s shown in Fig. 4b-F. During the 
period from 1960 to the mid-1980s, there was no significant change in 
the frequency of droughts (Fig. 4a-F), but a significant decrease in the 
frequency of CDHEs is observed (Fig. 4c-F). Also, the hot thresholds 
determined by historical behaviors may be obsolete in the future 
because of human and ecological system adaptations (Wang et al., 
2018). Thus, at the long-term scale, we believe that the temporal vari
ation of CDHEs was dominated by the trend of hot extremes rather than 
droughts. 

4.3. Strengths and limitations of CDHId 

In Section 3.2, we highlighted the tendency of the joint-probability- 
based method to excessively identify non-dry or non-hot conditions as 
CDHE, and demonstrated the effectiveness of the CDHId in excluding 
those situations. To further analyze the impact of solely relying on the 
joint probability for CDHE identification, we calculated the proportion 
of non-dry-hot conditions within CDHEs as identified by the joint 
probability. When the joint probability remains below a specified 
threshold for >10 consecutive days, a CDHE is identified. In this section, 
three representative thresholds (− 0.10, 0.05, and 0.02) are selected to 
identify CDHEs respectively, ranging in severity from severe to mild. 
Among all identified CDHEs, we calculate the number of days where the 
daily SPI > -1 or STI < 1 (indicating non-dry or non-hot conditions) and 
days where SPI > -1 and STI < 1 (neither dry nor hot), as shown in 
Fig. 10. 

Using a threshold of 0.10, the multi-year average duration of CDHEs 
was 49.8 days, but within these periods, 80% of the days were non-dry 
or non-hot (SPI > -1 or STI < 1), and an average of 3.6 days were neither 
dry nor hot (SPI > -1 and STI < 1). When the threshold was raised to 
0.05, the multi-year average duration of CDHEs was 22.0 days, with 
71.1% of the days being non-dry or non-hot, and 0.09 days being neither 
dry nor hot. With a threshold of 0.02, the average CDHE duration was 
7.7 days, with the proportion of non-dry or non-hot conditions 
decreasing to 64.4%, averaging 4.9 days. Overall, regardless of the 
threshold used, identifying CDHE solely based on joint probability re
sults in a considerable proportion of non-dry or non-hot conditions being 
misidentified as dry-hot conditions. This proportion decreases as the 
threshold level increases, but even at a joint probability as low as 0.02, 
more than half of the identified CDHE duration is non-dry or non-hot. 
Therefore, although an index solely based on joint probability can 
grade dry-hot conditions, it is important to note that it quantifies the 
dry-or-hot conditions, rather than the dry-and-hot conditions. The 
CDHId proposed in our study focuses only on the latter, which is 
included in the former category but subject to more stringent criteria. 

The extreme events were identified at daily resolution in our study, 
which is less commonly employed in the literature compared to the 
monthly resolution (Hao et al., 2020; Mazdiyasni and AghaKouchak, 
2015; Li et al., 2019). In recent years, with the improvement in the 
quality and accessibility of daily datasets, along with the more frequent 
occurrence of sub-monthly scale droughts and heatwaves, there has 
been an increasing usage of daily resolution when identifying droughts 
and CDHEs (Li et al., 2021; Wang et al., 2022). Nevertheless, daily 
indices also have certain limitations, such as being susceptible to short 
interruptions. During continuous dry-hot days, there may be several 
days of mild interruption in dry-hot conditions, which might not be 
sufficient to recover the affected water availability and ecosystems, and 
thus should not be considered as the end of the CDHE. Daily indices 
might overlook such discontinuous CDHEs. The method of merging two 
adjacent CDHEs when the interval between them is relatively small, 
which is also widely used in drought identification, provides an 
improvement to this issue. However, determining thresholds for merg
ing two adjacent CDHEs is relatively subjective and needs further 
analysis and refinement. 

Fig. 9. Simplified formation mechanisms of CDHEs from the perspective of 
land-atmosphere feedbacks. T, P, SM, LH, Ep and VPD represent temperature, 
precipitation, soil moisture, latent heat flux, potential evapotranspiration and 
vapor pressure deficit, respectively. The red triangles indicate variables that 
increase and the green inverted triangles that decrease. The routes in blue 
indicate feedback from temperature rising to precipitation deficits, the orange 
the reverse. The dashed routes are based on local conditions (water-limited 
regime or energy-limited regime). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusions 

A daily index called CDHId was proposed to identify the compound 
dry-hot events (CDHEs) in the present study, and the spatiotemporal 
variations of droughts, heatwaves, and CDHEs in mainland China from 
1961 to 2020 were analyzed using standardized precipitation index 
(SPI), standardized temperature index (STI), and CDHId. CDHEs were 
classified into two types depending on the onset time difference between 
the drought and heatwave with each CDHE. Land-atmosphere (L-A) 
interactions prior to and during two types of CDHEs were investigated 
using the L-A coupling indices. The dominant factors driving CDHE 
changes were analyzed by conducting the path analysis between CDHEs 
and droughts/heatwaves. The results show that:  

1. Droughts exhibited a slight decrease in frequency, shortening in 
duration, and weakening in severity in most parts of mainland China, 
except for most parts of SW and small parts of southern TP where 
drought increased significantly. Both heatwaves and CDHEs 
occurred more frequently after the early 1980s. Northeast China, 
Southwest China, and the Tibetan Plateau witnessed the most sig
nificant rise in CDHEs.  

2. From the view of onset and evolution at the short-time scale, CDHEs 
in China were more likely to be induced by antecedent dry condi
tions, with 85.2% of CDHEs occurring when the drought preceding 
heatwave. A stronger L-A coupling than non-dry-hot conditions was 
observed in both the 10-days before and during the occurrence of 
CDHEs. With the occurrence of CDHEs, there is a shift in SM-LH 

Fig. 10. Interannual variations of CDHE durations identified by the joint cumulative probability of SPI and STI using different thresholds (a. 0.10; b. 0.05; c. 0.02), 
with a minimal duration of 10 consecutive days. Grey bars represent the CDHE durations; orange bars represent non-dry or non-hot conditions (the daily SPI > -1 or 
STI < 1) within the identified CDHEs; red bars represent non-dry-hot conditions (the daily SPI > -1 and STI < 1) within CDHEs. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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coupling from negative to positive, indicating a transition from an 
energy-limited regime to a water-limited regime. 

3. Although temperature and precipitation present a negative correla
tion at the seasonal scale, their long-term relationship in multi- 
decades was positive over China (with a correlation coefficient of 
0.51 at the 0.05 significance level). The direct path coefficient of 
annual heatwave frequency on CDHE frequency over China indicated 
that the variation of CDHEs in multi-decades was more closely 
related to heatwaves than to droughts. Overall, the increase in 
heatwaves dominated the long-term increase of CDHEs in China 
during 1961–2020. 
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