WAGENINGEN

UNIVERSITY & RESEARCH

Spatial-temporal variations and drivers of the compound dry-hot
event in China

Atmospheric Research
Hu, Yanjun; Wang, Wen; Wang, Peng; Teuling, Adriaan J.; Zhu, Ye
https://doi.org/10.1016/j.atmosres.2023.107160

This publication is made publicly available in the institutional repository of Wageningen University
and Research, under the terms of article 25fa of the Dutch Copyright Act, also known as the
Amendment Taverne.

Article 25fa states that the author of a short scientific work funded either wholly or partially by
Dutch public funds is entitled to make that work publicly available for no consideration following a
reasonable period of time after the work was first published, provided that clear reference is made to
the source of the first publication of the work.

This publication is distributed using the principles as determined in the Association of Universities in
the Netherlands (VSNU) 'Article 25fa implementation' project. According to these principles research
outputs of researchers employed by Dutch Universities that comply with the legal requirements of
Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online
publication in the original published version and with proper attribution to the source of the original
publication.

You are permitted to download and use the publication for personal purposes. All rights remain with
the author(s) and / or copyright owner(s) of this work. Any use of the publication or parts of it other
than authorised under article 25fa of the Dutch Copyright act is prohibited. Wageningen University &
Research and the author(s) of this publication shall not be held responsible or liable for any damages
resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact

openaccess.library@wur.nl


https://doi.org/10.1016/j.atmosres.2023.107160
mailto:openaccess.library@wur.nl

Atmospheric Research 299 (2024) 107160

Contents lists available at ScienceDirect

Atmospheric Research

journal homepage: www.elsevier.com/locate/atmosres

ELSEVIER

Spatial-temporal variations and drivers of the compound dry-hot event
in China

Yanjun Hu®, Wen Wang ™, Peng Wang”, Adriaan J. Teuling, Ye Zhu !

@ National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China

Y School of Ecology and Environment, Hainan University, Haikou, China

¢ Hydrology and Quantitative Water Manag Group, Wageningen University and Research, Wageningen, the Netherlands
4 School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China

ARTICLE INFO ABSTRACT

Keywords: Compound extremes such as compound dry-hot events (CDHEs) have received more attention in the last decade

Compound extreme event due to their more devastating impacts than those caused by droughts or heatwaves separately. A daily-resolution

Erought CDHE index, i.e., compound dry-hot index daily (CDHId), based on the copula and conditional probability is
eatwave

proposed to identify dry and hot days to quantify the CDHE severity. Standardized precipitation index (SPI),
standardized temperature index (STI), and CDHId are used to explore the spatial-temporal variations of droughts,
heatwaves, and CDHEs in China from 1961 to 2020. Results show that CDHEs occurred more frequently after the
period from the late 1970s to the early 1980s. Northeast China, Southwest China, and the Tibetan Plateau
witnessed the most significant increases in CDHEs. CDHEs are further classified into two types based on the
sequential order of the drought and heatwave occurrence, and the drought-preceded CDHEs accounted for 85.2%
of all events, indicating that CDHEs were more likely to be induced by antecedent dry conditions. Stronger land-
atmosphere coupling was observed both prior to and during CDHEs compared to periods under non-dry-hot
conditions, which played a major role in the formation of CDHE at the local and short-time scale. However,
the annual variation of CDHE frequency in multi-decades was dominated by heatwaves, with a more significant
direct path coefficient than droughts over China. Overall, the increase and enhancement of CDHE:s since the early
1980s were consistent with global warming.

Land-atmosphere coupling

increasing and widespread trends of CDHEs have been observed in China
over the past decades (Wu et al., 2019; Ye et al., 2019; Yu and Zhai,

1. Introduction

Global warming has aggravated weather and climate extremes over
the past decades all around the world. Compound extreme events were
defined broadly as the combination of multiple drivers and/or hazards
that contribute to societal or environmental risk (Zscheischler et al.,
2018), and have attracted more attention due to their larger impacts
compared to individual extremes. Compound dry and hot events
(CDHESs) are among the most impactful compound events that can have
adverse effects on human health and ecological systems (He et al., 2022;
Libonati et al., 2022; Osman et al., 2022). CDHE is generally defined as a
period during which extreme dry and hot conditions occur concurrently
and consecutively, ranging in duration from pentads to seasons (Mo and
Lettenmaier, 2015; Zscheischler and Seneviratne, 2017). Even over a
short span of a few days, CDHEs can contribute to the exacerbation of
wildfires and ecological loss (Ruffault et al., 2020). Significant

2020).

Numerous studies have explored CDHEs using diverse identification
methods based on different indices and timescales. In some research,
droughts and heatwaves are independently identified using respective
indices, and the overlapping period of the two extreme events is iden-
tified as a CDHE (Mazdiyasni and AghaKouchak, 2015; Li et al., 2019;
Feng et al., 2021). Although this method is straightforward and precise,
it overlooks the dependence between dry and hot conditions
(Zscheischler and Seneviratne, 2017). By constructing a joint distribu-
tion function, multiple factors such as precipitation and temperature can
be integrated to develop a bivariate index (Li et al., 2021; Zscheischler
and Seneviratne, 2017). For example, Hao et al. (2020) proposed a
monthly CDHE index (CDHI) using copula models to quantify CDHEs in
Texas. However, since heatwaves often evolve over a few days to a week
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(Perkins and Alexander, 2013), the monthly resolution may be too
coarse for capturing short-term heatwave events effectively. A similar
index called standardized compound drought and heat index (SCDHI)
was then introduced at a daily resolution (Li et al., 2021). Since these
two indices do not impose specific constraints on dry and hot conditions
individually, some dry-cold or wet-hot events may be incorrectly iden-
tified as CDHEs.

Across the scale of days to multi-years, there are two main physical
mechanisms contributing to the onset, evolution and intensification of
CDHEs, i.e., persistent atmospheric processes and land-atmosphere
feedbacks (Miralles et al., 2019; Zhang et al., 2021). At a large scale,
some persistent circulation patterns are responsible for the initiation of
both droughts and heatwaves, including but not limited to subtropical
highs, blocking highs and atmospheric stagnation events (Hao et al.,
2018; Zhang et al., 2021). At the regional scale, the land-atmosphere (L-
A) feedback also plays a significant role in the occurrence and exacer-
bation of CDHEs (Gallego-Elvira et al., 2016; Stéfanon et al., 2014;
Vicente-Serrano et al., 2014). A shortage of precipitation (P) and soil
moisture (SM) deficiency result in an increased partitioning of energy
towards sensible heat, subsequently leading to a temperature (T) in-
crease (Hirsch et al., 2019). On the other hand, T increase elevates at-
mospheric water demand and further depletes SM, which is unfavorable
for rainfall, resulting in intensified drought (Miralles et al., 2019). Seo
and Ha (2022) investigated the soil moisture-temperature coupling
strength over northern East Asia and found that the L-A coupling
enhanced the CDHEs. Zhang et al. (2019) took the actual evapotrans-
piration (AET) anomaly as the primary criterion for classification,
defining CDHEs with AET > 0 as high-temperature-induced compound
events and those with AET < 0 as drought-induced events. However, the
response of AET to T increases is nonlinear and highly dependent on
local ecosystem conditions (Budyko, 1961). For example, in arid and
semi-arid regions, AET is negatively correlated with potential ET under
water-limited conditions (Han et al., 2014), which implies that despite
increasing T, AET would still diminish due to an inadequate supply of
water available for evaporation. Though several studies have demon-
strated that the L-A feedback can exacerbate CDHEs, the specific
coupling mechanism prior to and during the CDHE has not been fully
understood on a daily basis. By employing daily indices, it becomes
feasible to investigate the land-atmosphere coupling processes at a daily
resolution, which have been observed to occur within a few days
(Teuling et al., 2006).

Regarding the dominant driver of the temporal variation of CDHE in
multi-decades, Vogel et al. (2021) found that the rise in the number of
CDHE:s in the Mediterranean Basin was primarily driven by temperature
changes but not precipitation, and suggested that CDHE changes may be
dominated by heatwaves. Also, Zhang et al. (2022) suggested that
temperature was the dominant factor influencing CDHEs globally in the
past (1951-2014), and CDHEs will be sensitive to global warming in the
future. However, Bevacqua et al. (2022) stated that the future frequency
of dry-hot extreme events is primarily determined not by temperature
trends, but by precipitation. To date, although the spatial-temporal
characteristics of CDHEs have attracted more attention, there remains
relatively scarce analysis regarding their long-term driving factors in
China.

To accurately quantify CDHEs, a daily compound dry-hot index
(CDHIA) is proposed in Section 2. In Section 3, SPI, STI, and CDHId are
used to identify and evaluate the variations of droughts, heatwaves, and
CDHEs in China during 1961- 2020; the CDHEs are further classified
into two types based on the sequential order of the drought and heat-
wave occurrence. At the regional scale, the land-atmosphere (L-A)
feedback both prior to and during two types of CDHEs are statistically
investigated using two L-A coupling indices. For decadal variations, we
quantitatively analyze the dominant factor (either drought or heatwave)
influencing long-term changes in CDHEs through path analysis. The
analyses are expected to provide an in-depth insight into dry and hot
extremes in China and would be helpful for climate change adaptation
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and mitigation.
2. Materials and Methods
2.1. Data used

Due to the vast territory and diverse topography, the climate in
China varies from the subtropical zone in the south to the cold temperate
zone in the north. The Tibetan Plateau has an alpine climate and far
inland regions in the northwest are mostly very dry. For the convenience
of describing the changes in different regions, we divide mainland China
into 6 sub-regions, Northwest China (NW), Central North China (CN),
Northeast China (NE), Tibetan Plateau (TP), Southwest China (SW), and
Southeast China (SE), according to administrative districts and climate
zones (see Fig. 1).

Gridded daily precipitation (P) and daily maximum temperature (T)
data during 1961-2020 are obtained from the China Ground Precipita-
tion/Temperature Daily 0.5° x 0.5° Gridded Dataset (V2.0) at the Na-
tional Meteorological Information Center (2012; http://www.nmic.
cn/). These datasets were resampled from ground observation station
data, and have undergone cross-validation and error analysis. Data from
the China Meteorological Forcing Dataset (Chen et al., 2011; Yang and
He, 2016) and the China Land Data Assimilation System (http://data.
cma.cn/data/cdedetail/dataCode/NAFP_CLDAS2.0_NRT.html; Shi
et al., 2014) are used to fill in the missing data. The gridded data are
developed based on over 2000 ground-based national meteorological
stations (http://www.nmic.cn/; there is no data in the Taiwan region).
The number of meteorological stations in each 0.5° x 0.5° grid cell is
indicated in Fig. 1. The density of stations used for generating the
gridded data is relatively high in the eastern part of China, while low in
the western part of China (especially in Xinjiang and the western part of
the Tibetan Plateau), which makes the data less reliable.

In addition, data of 2 m mean temperature, 2 m dewpoint temper-
ature, latent heat flux (LH) and volumetric soil water (0-100 cm; SM)
from 1961 to 2020 are retrieved from the ERA5-Land hourly 0.1° dataset
(Munoz-Sabater et al., 2021), and subsequently aggregated to daily
values at 0.5°. According to the National Specifications for Surface
Meteorological Observation (GB/T 35221-2017), the daily boundary for
meteorological observations in China is 20:00 Beijing time (UTC + 8).
Thus, the daily aggregation period starts from 20:00 Beijing time the
previous day to 20:00 Beijing time the current day when aggregating
ERA5-Land hourly data to the daily data. The vapor pressure deficit
(VPD) is estimated using the 2 m mean temperature and dewpoint
temperature.

2.2. Identification of droughts and heatwaves

The standardized precipitation index (SPI) is among the most
commonly used indices for meteorological drought identification. To
calculate the SPI, the cumulative precipitation data are often assumed to
follow a gamma distribution and then transformed to the standard
normal distribution by applying the inverse normal function (McKee
et al., 1995). The cumulative precipitation is usually calculated on a
monthly or annual basis, but can also be calculated at a daily temporal
resolution so as to provide details of the drought development process
(Stagge et al., 2015). According to the investigation of Wang et al.
(2021), a 90-day timescale SPI is suitable for assessing meteorological
drought in different climate regions over China. In this study, SPI is
calculated using cumulative precipitation in a moving window of 90
days on a daily basis (unless otherwise specified, the SPI hereafter refers
specifically to the 90-day timescale SPI). In general, droughts are typi-
cally identified as having a minimum duration of one month. However,
in recent years, shorter-duration events known as flash droughts have
been widely observed and proven to have significant impacts (Otkin
et al., 2018; Yuan et al., 2023). In this paper, a meteorological drought
event is identified if the daily SPI < -1 for at least 20 consecutive days.


http://www.nmic.cn/
http://www.nmic.cn/
http://data.cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0_NRT.html;
http://data.cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0_NRT.html;
http://www.nmic.cn/;
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Fig. 1. Sub-regions and the number of meteorological stations in each 0.5° x 0.5° grid cell over mainland China.

Two adjacent drought events are merged as one drought event if the
time interval between the two preliminary events is no >5 days with SPI
< 0 during the interval.

Assuming that the daily maximum temperature follows the normal
distribution, the daily maximum temperature is normalized to construct
the standardized temperature index (STI) as follows (Zscheischler et al.,
2014):

stig) = [0 =T a
TO'

where T, and T; refer to the mean and standard deviation of the daily
maximum temperature series, which is constructed from the daily
maximum temperature of a 31-day window centered on the day i in each
year. A heatwave is preliminarily identified if STI > 1 in at least 5
consecutive days, and two preliminary heatwaves are merged if they
have an interval < 3 with STI > 0 during the interval.

2.3. Identification and characterization of CDHE

In this study, the CDHE is defined as a period of at least 10 consec-
utive days during which both dry and hot anomalies occur simulta-
neously (SPI < -1 and -STI < -1). A day when both SPI and -STI break the
threshold (—1) is identified as a dry-hot day. The copula function is used
to estimate the occurrence probability and quantify the severity of those
dry-hot days in the present study. Copulas are great tools for modeling
and simulating correlated random variables so as to examine the
dependence between many variables. Here, the copula function is used
to link SPI and STI to construct an index on a daily basis, i.e., the
compound dry-hot index daily (CDHId). The detailed process for
calculating CDHId is as follows:

1. Calculate the daily SPI and STI and their correlations. If they show a
significant correlation (at the 0.05 significance level), the joint dis-
tribution function can be constructed from a copula function.

2. Select the preferred copula function and obtain the joint distribution.
Assuming two random variables X and Y, representing SPI and -STI
respectively (for the convenience of the probability calculation, we
set Y = -STI), the marginal distributions can be denoted by U(x) =

$(x) and V(y) = ¢(y) since both X and Y follow the standard normal
distribution. Here, we consider various copula models, including the
Gaussian copula and three commonly used copulas of the Archime-
dean family (Clayton, Gumbel and Frank), which have mathematical
tractability and can capture varieties of dependence structures
(Ganguli and Reddy, 2013). These copulas are selected as candidates
for fitting the joint distribution of SPI and STI. The ‘VineCopula’
package in R (Nagler et al., 2021) is used to fit the optimal model
based on Akaike’s information criteria (AIC). Once the copula model
(denoted as C) is determined, the joint distribution can be expressed
as:

C(UKx),V(y)) =P(U<u,V<v)=PX<xY<y) 2

3. Identify dry-hot days. The dry-hot days are identified under the
conditions that SPI < -1 and STI > 1,i.e.,, X <-land Y < -1.

4. Calculate CDHId. For each dry-hot day (x’, y’), its severity relative to
the drought and heatwave thresholds (SPI = -1, STI = 1) can be
expressed using the conditional probability Py calculated below:

Cc(U,v) .

—— (x

PX<-1,Y< 1)

< -lLy<-1) ©)

Pp=PX<x,Y<yX< -1,Y< —1)=

where P(X < —1,Y < —1) can be estimated by the proportion of dry-hot
days in total days, and Py represents the severity of compound dry and
hot conditions relative to the drought and heatwave thresholds. A lower
value of Py implies a more severe condition of dry and hot. In order to
characterize the severity of CDHEs using the cumulative values on a
daily basis during the whole duration, the CDHId is defined as CDHId =
1-Py. The index ranges between [0,1], and the larger the value, the more
extreme the CDHE condition is. The CDHId cumulative distribution
exhibited a negative skew.

5. Identify compound events based on the CDHId. A CDHE is identified
as a period when the CDHId>0 persists for at least 10 consecutive
days. We use a minimum duration criterion of 10 days to capture
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those short-term but potentially ecologically damaging CDHEs
(Ruffault et al., 2020). If the interval between two adjacent events is
no >3 days, and either the SPI or -STI index is consistently below —1
during the period, the two events are merged into one event. On
normal days, the CDHId value remains 0. The CDHEs are investigated
in the year-round period rather than only in the warm season since
extremes outside the warm season also pose threats to agriculture
and ecosystems, which cannot be ignored (Ben-Ari, 2018; Bras et al.,
2021).

To characterize the extremes (including droughts, heatwaves and
CDHEs), the following metrics are calculated at each grid (if an event
spans two years, the event is only counted in the year when it starts):

(1) Frequency (F): the total number of extreme events in a year (unit:
times).

(2) Duration (D): the total days of extreme events in a year (unit:
days).

(3) Severity (S) of drought and heatwave: the average of the SPI and
STI during events in a year, expressed as follows:

M=

I;

i=1

(when I refers to STI)
4

e w‘

i

(when I refers to SPI)

o

where I; refers to the index (SPI or STI) of the ith day in the whole
duration of a year. When I refers to the SPI, the S is made negative so that
the signs of S give a consistent indication of the severity for droughts and
heatwaves (i.e., the higher the S, the more severe the dry/hot condition).

(4) Coverage (A): the ratio of the area where extreme events occurred
(i.e., frequency F > 1) during a year to the total area of the study
area (unit: %).

(5) Magnitude (M) of CDHE: the sum of the indices during CDHEs in a
year:

D
M =" CDHId, 5
i=1

To get annual areal averages of those metrics over China, the area-
weighted averages are calculated considering the size of grid cells.

2.4. CDHE Classifications

With the usage of daily indices, it is intuitive to investigate the
triggering factor of CDHEs by distinguishing the sequential order of the
drought and heatwave. We further define two types of CDHEs, that is, (a)
drought-preceded CDHE (CDHE,): the CDHE with a drought occurs first;
(b) heatwave-preceded CDHE (CDHEy): the CDHE with a heatwave oc-
curs first. The indicator used to identify these two types of events here is
the dry-hot lag (Ad), which is the time difference between the onset of
the drought and that of the heatwave involved in a CDHE, given by:

Ad = dz - dl (6)

where d;/dy is the first day of a drought/heatwave. A CDHE with a
positive Ad refers to the drought-preceded CDHE (CDHEy), indicating
that the drought occurs before heatwaves, while a negative Ad refers to a
heatwave-preceded CDHE (CDHEy).

The proportions of CDHEq, i.e., the CDHEq4 frequency (Fcpued)
divided by the frequency of total CDHEs (Fy.,)) at each grid are calcu-
lated. The higher the proportion, the greater the possibility of drought-
preceded CDHEs occurrence at the grid.
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2.5. Land-atmosphere coupling index

The land-atmosphere (L-A) coupling is investigated by the terrestrial
coupling index and atmospheric coupling index (Dirmeyer et al., 2013;
Hirsch et al., 2019), which are calculated as:
_ COV(SMY("alem LH:ralz’d)

OSMcatea

)

T

5= COV(VPD,eqioqs LH seated) (8)

OLH cqtea

where SM_scaled, LH_scaled and VPD_scaled denote the soil moisture,
latent heat flux and vapor pressure deficit, respectively, each normalized
through z-score standardization; ¢ denotes the standard deviation
(approximately 1); COV(a,b) is the covariance between a and b. The
physical meaning of I+ (I4) is the change in LH (VPD) caused by a one-
unit change in SM (LH). A positive I indicates that the LH decreases
together with SM, responding to a water-limited regime; a negative It
indicates the LH increases despite a decrease in SM, suggesting that
there is an energy-limited regime (Hsu and Dirmeyer, 2022).

For each CDHE occurred from the kth to mth day of the year i
(Day:,_,,), the coupling indices are calculated in three periods separately:
(a) 10-days prior to the onset of the CDHE (Dayf(fwwkfl); (b) during the
CDHE (Day!_,,); (c) the counterpart period in each year (Dayj261~2020),
These three periods are selected for assessing the L-A coupling charac-
teristics before/during CDHEs and under normal circumstances.

2.6. Evaluation of the temporal changes of dry and hot events

The piecewise linear fitting model (PLFIM) is a statistical method
that utilizes linear regression to model temporal series divided into
several intervals, with breakpoints selected using the least-squares
method to determine the best fit, which has been widely employed to
investigate the change point of long-term linear tendencies of diverse
climate parameters (Tomé and Miranda, 2004). In this paper, PLFIM was
applied to detect the shifts assuming that there is only one single
breakpoint with trends in different directions before and after the
breakpoint. The data length before and after the breakpoint should be at
least ten years. In addition, we applied F-test to test the significance of
the linear trend. If the p-value<0.05 for at least one segment, the
breakpoint is considered to be significant at the significance level of o =
0.05. If no breakpoint is detected, the Mann-Kendall trend test (MK test;
Kendall, 1955; Mann, 1945) and linear regression will be applied to the
whole series to assess the significance of the overall trend. The MK test
calculates the Kendall rank correlation coefficient (Kendall’s 7) between
the time series and time, which is a statistic measuring the strength of
the monotonic trend and taking values between [—1,1]. A positive
Kendall’s 7 indicates an increasing trend in the time series, while a
negative one indicates a decreasing trend.

{Vlz:le+r12Pzz ©

ry; = Pp 4+ raPy

where r () is the Pearson correlation coefficient of x; and x; (2); Py is
the direct path coefficient of x; on 2, indicating the direct effect from x; to
2; r12P;; is the indirect path coefficient from Xx; to z through x;. The direct
path coefficient represents only the direct effect of x; (drought and
heatwave) on z (CDHE), excluding any indirect or mediated effects
through other variables.

The path analyses were performed at each sub-region and over
China, using the package ‘lavaan’ in R (Rosseel, 2012). All results of path
analysis presented in this paper have a standardized root mean squared
residual (SRMR) <0.1, indicating a good fit for the model. R-squared
(R%) was provided to reflect the proportion of variance in z that is
explained by x; and x5.
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3. Spatial and temporal variations of droughts, heatwaves, and
CDHEs

3.1. Negative relationships between P and T

When building a Copula model for two variables, a dependent rela-
tionship between the two is the prerequisite, thus firstly we calculate the
Pearson correlation coefficients between SPI and STI. Fig. 2 illustrates
the spatial distribution of the correlation coefficients over China in
different seasons. In general, significant (at the 0.05 level) negative
correlations prevail in the majority of the nation all year round. In spring
and summer, there are stronger negative P-T correlations, with negative
correlations observed in 99.8% and 98.7% of areas, respectively,
compared to autumn and winter (where negative correlations were
observed in 84.6% and 88.4% of areas). In eastern China, the correlation
is generally higher during the summer compared to the spring season.
Conversely, in western regions, especially in western Xinjiang, the
opposite pattern is observed, with a higher correlation during spring
than in summer. Since the correlations are significant in most areas, the
joint distributions are constructed for the whole region.

Atmospheric Research 299 (2024) 107160

3.2. Characteristics of CDHId

Several multivariate indices have been proposed for identifying
CDHE:s in the literature to avoid the limitations of traditional univariate
methods, such as the CDHI (Hao et al., 2020) and the SCDHI (Li et al.,
2021). However, both of these two indices have no constraints on the
dryness or hotness when constructing joint distribution for SPI and STI,
leading to the identification of dry-cold (SPI < 0, STI < 0) or wet-hot
(SPI > 0, STI > 0) situations. Here we illustrate the effectiveness of
CDHId for avoiding such issues, taking a randomly selected grid cell at
96° 45'E, 39° 15' N as an example.

The scatter plot of joint probability calculated with Eq. (2) about the
relation of SPI (X) and -STI (Y) at the cell is shown in Fig. 3a. Note that
only days with a joint cumulative probability below 0.3 were presented.
Results suggest that, though the joint probability successfully quantifies
the severity of CDHEs (lower probability indicates more severe condi-
tions), conditions like dry-cold and wet-hot cannot be ruled out relying
on the value of joint probability alone. For instance, the orange cross
signs which indicate days that compose a CDHE during the period from
30 August to 7 October 2016 according to their joint probability are
actually quite normal in temperature (i.e., STI < 0, see Fig. 3b). On the
other hand, the pink plus signs indicate a CDHE from 27 January to 5
February 2007, with SPI > O for all the time, which is clearly not in a

53°N -(a) Spring 53°N - (b) Summer
43°N - 43°N -
33°N - 33°N -
23°N 23°N :
i & x a=0.0 | & x a=0.05
72°E 82°E  92°E  102°E  112°E  122°E  132°E 72°E 82°E  92°E  102°E 112°E  122°E  132°E
53°N -(c) Autumn 53°N - (d) Winter
43°N - 43°N -
33°N - 33°N -
23°N | 0 23°N 0
il x 0=0.05 _ & x 0=0.05
72°E 82°E  92°E  102°E 112°E  122°E  132°E 72°E  82°E  92°E  102°E 112°E  122°E  132°E
|
T T T T T T T |
-043 031 -0.19 -0.07 0.05 0.17

Correlation coefficients

Fig. 2. Pearson correlations between daily SPI and STI during (a) spring, (b) summer, (c) autumn and (d) winter in 1961-2020. The cross denotes that the correlation

is significant at the 0.05 level.
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Scatter plot
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drought situation (see Fig. 3c). Such excessive identification is common
in other cells all over China when using indices based on joint proba-
bility without setting individual conditions for variables, and would lead
to overestimation of the frequency of CDHEs, whereas CDHId avoids
such problems by adding the conditional probability. For the same cell,
dry-hot days identified by CDHId are revealed in Fig. 3d. Possible events
are constrained in the space with SPI < -1 and STI > 1, thus non-extreme
conditions such as those shown in Fig. 3b and Fig. 3c are excluded.
Restricted by the criterion of temporal continuity (10 days), only one
CDHE that occurred from 26 May to 4 June 1995 (represented by the red
crosses in Fig. 3d, the corresponding progress in Fig. 3e) is identified
among all dry-hot days.

3.3. Temporal changes of droughts, heatwaves, and CDHEs

The annual areal averages of the frequency, duration, severity (for

droughts and heatwaves), magnitude (for CDHEs) and coverage of
droughts, heatwaves and CDHEs over China during 1961- 2020 are
presented in Table 1. The variations for the average frequency (F),
duration (D), Severity (S) of droughts and heatwaves, magnitude (M) of
CDHEs, and Coverage (A) of droughts, heatwaves, and CDHEs,

Table 1
The annual areal averages of characteristics of droughts, heatwaves, and CDHEs
in China from 1961 to 2020.

Events Frequency Duration Severity (for droughts Coverage
(times) (days) and heatwaves) (%)
/Magnitude (for
CDHEs)
Droughts 0.74 39.77 0.88 26
Heatwaves  2.39 17.19 1.38 86
CDHEs 0.07 1.02 0.83 6
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respectively, over the whole mainland China and/or different regions
during 1961- 2020, are presented in three columns in Fig. 4. We con-
ducted the PLFIM to detect the breakpoint for each series and calculate
the linear trends before and after it; the MK test and linear regression
were employed to assess the overall trend and the change rate if there
was no significant breakpoint.

As illustrated in column (a) in Fig. 4, the frequency of droughts
showed a significant downward trend at a rate of —0.04 times/decade.
The duration and severity of drought both showed overall negative
trends based on the Mann-Kendall (MK) test and the linear regression.
The coverage also decreased significantly (a« = 0.05) at a rate of —1.7%
per decade. Generally, the drought in China got less frequent, shorter,
and less severe. Column (b) in Fig. 4 presented upward trends in fre-
quency and duration (increased by 0.05 times/year and 0.44 days/year,
respectively) of heatwaves since 1976. The severity exhibited similar
change patterns but broke in 1983. As for coverage, heatwave events
covered more areas in China since the 1970s. At the national average
level, the heatwave decreased in frequency and severity before the late
1970s or the early 1980s, but increased in frequency, duration, severity,

Northwest China (NW)
Tibetan Plateau (TP)

—@— mainland China

= === Linear Trend

(a) Droughts

Central North China (CN)
Southwest China (SW)

(b) Heatwaves
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and coverage afterwards, especially since the 1990s. Regarding the
CDHE shown in column (c¢) of Fig. 4, there has been a common
increasing trend in its frequency, duration, severity, and coverage across
all regions of China since the 1970s. Although the CDHE reached its peak
in 1963, with frequency, duration and magnitude all being the highest, it
experienced a period of low levels during the 1970s to the 1990s and
became more frequent and severe after the end of the 1990s.

Some studies suggest that heatwaves have become more frequent
and severe across China since the 1990s (Xie et al., 2020; Ding and Ke,
2015), which is much later than the breakpoint of the 1970s detected in
this study. The major reason for the difference is the type of breakpoint.
Breakpoints may exist in the mean, variance or trend in a time series. In
the aforementioned studies, the breakpoints in the 1990s were detected
based on the distributions and mean values. In our study, the PLFIM is
applied to detect breakpoints in trends. The detected breakpoint in
trends would occur earlier than the breakpoint of the mean value
because the change of trend would not affect the mean value much until
there is a substantial accumulation of trend changes.
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Fig. 4. Variations of the average frequency (F), duration (D), Severity (S) (of droughts and heatwaves)/magnitude (M) (of CDHEs), and Coverage (A) of (a) droughts,
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3.4. Spatial distribution of changes in droughts, heatwaves, and CDHEs

To examine the spatial patterns of CDHE changes, the PLFIM and MK
tests were performed in each region. Fig. 5 illustrates the MK trend at
each grid and region during the time period from 1961 to 2020. Note
that, as the four characteristics (i.e., F, D, S and M) showed consistency
in their temporal variations (see Fig. 4), only the frequency (F) for
droughts and heatwaves and magnitude (M) for CDHEs were presented
to save space.

Regionally, drought frequency in NW and TP decreased significantly
in the whole period (Kendall’s T equals —0.22 and — 0.33, with p-val-
ues<0.05). In SE, CN and NE, droughts decreased slightly (t less than
—0.10, p-value>0.05). There was a discernible belt extending from the
western part of NE to SW (especially in Yunnan Province), which pre-
sented an increasing trend in droughts. Most parts in SW and small parts
of southern TP experienced significant increases in frequency. The
spatial distribution of trends during the whole period presented in Fig. 5
(b) exhibited a nationwide increase in heatwave frequency. The
increasing trends were strong except for the western and northern Xin-
jiang, eastern NE, small areas in Sichuan province and southern CN. As
for CDHEs, overall significant increases in CDHE magnitude were
observed in NE and SW, with SW exhibiting the most severe increases (t
= 0.33). Only 17% of areas of the nation exhibited significant decreases
in CDHE magnitude, including northern Xinjiang and lower reaches of
the Yangtze River basin.

3.5. Characteristics and typical processes of two types of CDHEs

To investigate potential triggering factors of CDHEs, we compared
the sequence of drought and heatwave occurrences within each event
and calculated Ad according to eq. (6). The density histogram of Ad for
CDHE:s across all grids from 1961 to 2020 is presented in Fig. 6a. The
larger the positive Ad is, the longer it indicates the lead time of drought
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before the heatwave. In 5.0% of the CDHEs, Ad falls within the range of
100 to 391 days, representing exceptional cases linked to long-lasting
droughts. To highlight the details of regular situations, values of
Ad exceeding 100 days are not displayed in the histogram. Among all
CDHEs, 85.0% of cases have Ad > 0, with an average leading time of 32
days. In 10.4% of events, heatwave precedes drought (Ad < 0), with an
average leading time of 4.2 days. Additionally, 4.6% of cases have
Ad equal to 0, suggesting the simultaneous onset of drought and heat-
waves on the same day. Furthermore, events with Ad within the range of
+5 days account for 25.5% of the total. Based on the Ad, CDHEs were
categorized into two types: drought-preceded CDHEs (CDHEq4, Ad > 0)
and heatwave-preceded CDHEs (CDHE}, Ad < 0). The proportion of
CDHE, i.e., the CDHE4 frequency (Fcpugq) divided by the frequency of
total CDHEs (Fota)) at each grid is illustrated in Fig. 6b. It is evident that
the CDHE4 prevailed all across China, with an average proportion of
85.2%. Only in scattered areas of TP, NW, and NE, the heatwave occurs
before drought within a CDHE more frequently.

To better understand the onset and evolvement of different types of
CDHE:s and facilitate the verification of CDHId, we present the processes
of SPI, STI, CDHId and anomalies in VPD, SM and LH of four typical
CDHE:s in different regions in Fig. 6¢c-f. Fig. 6¢ and e both represent
typical drought-preceded CDHEs (CDHE,). Before the onsets, the mean
VPD anomaly remained positive, indicating higher atmospheric water
demand; the SM was already deficit due to the prior droughts; the actual
evapotranspiration (in another form of LH) in this period was at the
average level in case (c) and notably lower in (e). During the CDHEs,
VPD continued to increase, SM further decreased, and LH remained
consistently low, possibly due to insufficient SM available for evapo-
transpiration. In Fig. 6f, despite having SM in a deficit state, the SM was
not depleted during the preceding drought, which is related to its
location in a relatively humid region (SE); consequently, during the
CDHE, LH continued to rise due to the high temperature; the VPD did not
show significant elevation in the prior drought period, but began to rise
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Fig. 5. MK trends of the frequency of droughts (a), heatwaves (b) and the magnitude of CDHEs (c) over China. The cross sign indicates the trend is significant at the
0.05 significance level. The blank grid indicates that there are insufficient events to conduct the MK test.
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only after the onset of the CDHE. Fig. 6d represents a typical CDHE},
characterized by significantly elevated VPD and LH in the antecedent
heatwave; however, during the CDHE, LH decreased noticeably,
possibly due to the soil moisture depletion.

3.6. Land-atmosphere coupling characteristics during CDHEs

To investigate the L-A coupling characteristics during the onset and
evolution periods of CDHESs, we calculated anomalies in VPD, SM, and
LH for the 10 days preceding and during each CDHE, as well as the L-A
coupling indices (It and Iy for SM-LH and LH-VPD coupling, respec-
tively). In addition, the coupling indices during the counterpart periods
within each year were also computed to serve as a reference of the
normal L-A coupling strength under non-dry-hot conditions. The sta-
tistical characteristics of these indicators for all events are depicted in
the empirical probability distributions in Fig. 7.

In Fig. 7a, it is evident that the VPD already increased 10 days prior
to CDHEs, with a positive VPD anomaly making up 75.9% of the total;
during CDHEs, there was a substantial increase in VPD (with a positive
value accounting for 96.3%). Before the event, the VPD anomaly of

CDHE}, (with an average of 1.3 hPa) was more severe than that of CDHEq4
(with an average of 1.2 hPa); however, during the event, the VPD
anomaly of CDHEq (averaging 3.5 hPa) became more severe than that of
CDHEj, (2.9 hPa). The SM depicted in Fig. 7b did not exhibit significant
variations either over time or between different types of events. In
Fig. 7c, LH anomalies were almost symmetrically centered around
0 prior to the occurrence of CDHE, with an average of —0.1 W/m?
however, they predominantly shifted to positive values during CDHEs,
signifying an increase in LH. During CDHE, the LH anomaly was more
pronounced compared to CDHE}, averaging at 3.8 W/m? and 2.9 W/m?,
respectively.

Figure 7d and e depict the density distributions of terrestrial and
atmospheric coupling index (It and I,) during the pre-CDHE period,
CDHE period, and under non-dry-hot conditions. Both prior to and
during two kinds of CDHEs, the SM-LH coupling was significantly
stronger than under normal conditions. When examining the range >0.3
or less than —0.3 (indicating a relatively strong coupling), the likelihood
of It falling within this range was 23.4% under non-dry-hot conditions.
During the 10-days preceding and during CDHEs, the average proba-
bility of It falling within this range was 66.7%. During CDHEs, the
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coupling strength (It = 0.34) increased compared to the 10 days prior to
its onset (It = 0.23). The LH exhibited more negative coupling with SM
before the onset of CDHE than after its occurrence (32.5% compared to
25.2%), which signifies that there was a transition of SM-LH coupling
from an energy-limited to a water-limited regime. For the LH-VPD
coupling, the average Ip under non-dry-hot conditions was 0.45, indi-
cating a positive relation. The proportions of negative LH-VPD coupling
(i.e., Ip < 0) were higher during the 10-days prior to and the occurrence
of CDHE, which averaged 22.8% and 30.5%, respectively, compared to
the 11.4% under non-dry-hot conditions.

3.7. The dominant driver of long-term temporal variations of CDHEs

We calculated the correlation between annual P and T over China to
examine the long-term relationship between droughts and heatwaves.
As shown in Fig. 8a, the annual maximum T and P averaged over China
exhibit similar trends and have a positive correlation with a coefficient
of 0.51 (at the 0.05 significance level). The grid-based correlation co-
efficients between annual P and T show that there are more parts that
exhibit significant positive relations than those that exhibit negative
relations (Fig. 8b). Positively correlated P ~ T account for 57% of the
country, and can be found mainly in NW, NE, TP and the lower reaches
of the Yangtze River basin. In SW and CN, negative correlations remain
prevailing.

Classifying CDHESs into two types (CDHE; and CDHEy), their annual
variations are depicted in Fig. 8c. There is a similarity in the variation
patterns of these two types, both of which exhibited a significant
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increase since the 1990s. To further quantify the contribution of changes
in heatwaves and droughts to CDHEs, we conducted the path analysis on
their annual frequency over China and in each region, shown in Fig. 8d
and e. The direct path coefficient of heatwave on CDHE over China was
0.64 (significant at the 0.01 level), while it was only 0.17 (not signifi-
cant) for droughts on CDHEs, indicating that changes in CDHE were
more related to heatwaves than to droughts. At the regional level, most
sub-regions witnessed more contributions from heatwaves than
droughts to CDHE changes, with significant and larger direct path co-
efficients of heatwaves. When comparing the spatial distribution of the
trends of heatwave, drought and CDHE in Fig. 5, the northwestern half
of Xinjiang and the lower Yangtze River basin showed different patterns
with other regions, where CDHEs and droughts decreased significantly
while heatwaves increased. Such regional discrepancy was also pre-
sented in Fig. 8e, that is, the gaps between the contributions of heat-
waves and droughts were smaller in the SW and SE. Furthermore, the R
values were generally low in most regions (around 0.3), except for the
SW (0.63), suggesting that factors other than droughts and heatwaves,
such as their interactions, may also contribute to the long-term variation
of CDHEs.

4. Discussion
4.1. Mechanisms triggering the formation of CDHEs

From the perspective of the local land-atmosphere feedback, two
main routes can be identified depicting the formation mechanisms of
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CDHE (see Fig. 9), that is, (a) the orange route, the decrease in precip-
itation (P) brings about the soil moisture (SM) deficits and the decrease
in latent heat flux (LH), hence tending to increase the sensible heat flux
and causing the temperature (T) to rise (Gallego-Elvira et al., 2016;
Stéfanon et al., 2014; P. Wang et al., 2019a); and (b) the blue route from
T to P, which includes two branches, that is: firstly, as the temperature
rises, the air becomes drier (with higher vapor pressure deficit, i.e.,
VPD), which hinders the occurrence of rainfall; and secondly, high
temperatures cause an increase of potential evapotranspiration (Ep) and
LH, subsequently reduce the SM and LH when the SM is depleted, thus
increasing the VPD and leading to precipitation deficits (Vicente-
Serrano et al., 2014).

In Section 3.5, we found that CDHEs in China are more likely to occur
with droughts occurring before heatwaves, in line with the findings in
previous studies (Zhang et al., 2019), and only northern regions of China
experienced more CDHEs with heatwaves occurring first. Why a drought
mostly precedes a heatwave in the formation of a CDHE is first because
the average drought duration in China is more than twice the heatwave
duration (see Table 1), consequently, the CDHE has more than twice the
opportunity of occurring in a drought than in a heatwave. Secondly,
from the perspective of the land-atmosphere feedback, the route from T
to P has some seasonal and regional constraints and thus is harder to be
achieved: precipitation may be dominated mainly by the moisture
availability rather than the moisture storage capacity in cold seasons
(characterized by VPD; Berg et al., 2009), thus P is less sensitive to the
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VPD change and the route T-VPD-P is less effective. In addition, the
route T-LH-VPD-P relies on the precondition that the SM has depleted to
the “critical value” (Zeppetello et al., 2019). However, in humid regions
in southern parts of China, it takes relatively long for the soil to deplete,
which makes it harder for this route to take effect after a heatwave. This
could be the reason why heatwave-preceded CDHEs mainly occurred in
dry northern China (see Fig. 6a). In summary, the local short-term (days
to seasons) negative P ~ T correlations controlled by the land-
atmosphere interactions played an important role in the formation
mechanism of CDHEs, especially in warm seasons when the CDHE is
most likely to occur.

Although we classify CDHE into two categories by the occurrence
order of drought and heatwave, it does not suggest that the triggering
factor of CDHEy/CDHE}, is only the antecedent dry/hot condition. Large-
scale circulation patterns may also result in both high temperature and
precipitation deficit and trigger the CDHE, which are more likely to be
found in CDHEs with Ad close to 0. Taking the 2019 spring-early sum-
mer CDHE over Yunnan province for example, the dry and hot anomalies
occurred at very close dates (within 5 days), and subsequently evolved
into a typical CDHE, in which the persistent strengthening Western
Pacific Subtropical High (WPSH) has been proven to play a crucial role
(S. Wang et al., 2019b).
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precipitation, soil moisture, latent heat flux, potential evapotranspiration and
vapor pressure deficit, respectively. The red triangles indicate variables that
increase and the green inverted triangles that decrease. The routes in blue
indicate feedback from temperature rising to precipitation deficits, the orange
the reverse. The dashed routes are based on local conditions (water-limited
regime or energy-limited regime). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

4.2. Heatwaves dominate trends in CDHEs

The negative P ~ T relationships were widely observed in many land
regions of the world at the seasonal scale (Berg et al., 2015; Zscheischler
and Seneviratne, 2017). However, the long-term variations of P and T in
multi-decades tell differently (see Fig. 8a). According to the Clausius-
Clapeyron (C—C) equation, every 1 °C temperature increase would
lead to a 7% increase in water holding capacity of air, and in the real-
world 1% to 3% increase in global precipitation according to observa-
tions (Adler et al., 2008). That could be the major physical cause of the
long-term positive P ~ T correlation over China, which was in line with
the findings of Liu and Wu (2022), and reflected by opposite trends of
droughts (decreasing) and heatwaves (increasing) in Fig. 4a and b.
Previous studies also showed the overall decrease in drought over China
in the past half-century (e.g., Wang et al., 2015) while temperature
increased significantly. One important feature that needs to be noticed is
the contradiction between the negative P ~ T relationship at the sea-
sonal short temporal scale (see Fig. 2) and the positive P ~ T relationship
at the long temporal scale (see Fig. 8) in most regions. The former plays
an important role in the onset and formation of CDHE, while the latter is
the direct cause of the opposite trends of droughts and heatwaves.

Global warming and heatwaves show strong increasing trends under
different warming scenarios (Dosio et al., 2018; Russo et al., 2014). In
comparison, precipitation trends are often much weaker and more
ambiguous. Bevacqua et al. (2022) stated that precipitation trends
would determine future occurrences of compound dry-hot events over
land, because local warming would be large enough that future droughts
would always coincide with at least moderately hot extremes. While our
results show that the variation of heatwaves plays a dominant role in the
temporal variation of CDHEs, it should be noted that the warming
process may be interrupted by natural variability or human

12

Atmospheric Research 299 (2024) 107160

intervention, leading to a temperature drop in a short period, e.g., the
period during 1960 to the mid-1980s shown in Fig. 4b-F. During the
period from 1960 to the mid-1980s, there was no significant change in
the frequency of droughts (Fig. 4a-F), but a significant decrease in the
frequency of CDHEs is observed (Fig. 4c-F). Also, the hot thresholds
determined by historical behaviors may be obsolete in the future
because of human and ecological system adaptations (Wang et al.,
2018). Thus, at the long-term scale, we believe that the temporal vari-
ation of CDHEs was dominated by the trend of hot extremes rather than
droughts.

4.3. Strengths and limitations of CDHId

In Section 3.2, we highlighted the tendency of the joint-probability-
based method to excessively identify non-dry or non-hot conditions as
CDHE, and demonstrated the effectiveness of the CDHId in excluding
those situations. To further analyze the impact of solely relying on the
joint probability for CDHE identification, we calculated the proportion
of non-dry-hot conditions within CDHEs as identified by the joint
probability. When the joint probability remains below a specified
threshold for >10 consecutive days, a CDHE is identified. In this section,
three representative thresholds (—0.10, 0.05, and 0.02) are selected to
identify CDHEs respectively, ranging in severity from severe to mild.
Among all identified CDHESs, we calculate the number of days where the
daily SPI > -1 or STI < 1 (indicating non-dry or non-hot conditions) and
days where SPI > -1 and STI < 1 (neither dry nor hot), as shown in
Fig. 10.

Using a threshold of 0.10, the multi-year average duration of CDHEs
was 49.8 days, but within these periods, 80% of the days were non-dry
or non-hot (SPI > -1 or STI < 1), and an average of 3.6 days were neither
dry nor hot (SPI > -1 and STI < 1). When the threshold was raised to
0.05, the multi-year average duration of CDHEs was 22.0 days, with
71.1% of the days being non-dry or non-hot, and 0.09 days being neither
dry nor hot. With a threshold of 0.02, the average CDHE duration was
7.7 days, with the proportion of non-dry or non-hot conditions
decreasing to 64.4%, averaging 4.9 days. Overall, regardless of the
threshold used, identifying CDHE solely based on joint probability re-
sults in a considerable proportion of non-dry or non-hot conditions being
misidentified as dry-hot conditions. This proportion decreases as the
threshold level increases, but even at a joint probability as low as 0.02,
more than half of the identified CDHE duration is non-dry or non-hot.
Therefore, although an index solely based on joint probability can
grade dry-hot conditions, it is important to note that it quantifies the
dry-or-hot conditions, rather than the dry-and-hot conditions. The
CDHId proposed in our study focuses only on the latter, which is
included in the former category but subject to more stringent criteria.

The extreme events were identified at daily resolution in our study,
which is less commonly employed in the literature compared to the
monthly resolution (Hao et al., 2020; Mazdiyasni and AghaKouchak,
2015; Li et al., 2019). In recent years, with the improvement in the
quality and accessibility of daily datasets, along with the more frequent
occurrence of sub-monthly scale droughts and heatwaves, there has
been an increasing usage of daily resolution when identifying droughts
and CDHEs (Li et al., 2021; Wang et al., 2022). Nevertheless, daily
indices also have certain limitations, such as being susceptible to short
interruptions. During continuous dry-hot days, there may be several
days of mild interruption in dry-hot conditions, which might not be
sufficient to recover the affected water availability and ecosystems, and
thus should not be considered as the end of the CDHE. Daily indices
might overlook such discontinuous CDHEs. The method of merging two
adjacent CDHEs when the interval between them is relatively small,
which is also widely used in drought identification, provides an
improvement to this issue. However, determining thresholds for merg-
ing two adjacent CDHEs is relatively subjective and needs further
analysis and refinement.
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Fig. 10. Interannual variations of CDHE durations identified by the joint cumulative probability of SPI and STI using different thresholds (a. 0.10; b. 0.05; c. 0.02),
with a minimal duration of 10 consecutive days. Grey bars represent the CDHE durations; orange bars represent non-dry or non-hot conditions (the daily SPI > -1 or
STI < 1) within the identified CDHESs; red bars represent non-dry-hot conditions (the daily SPI > -1 and STI < 1) within CDHEs. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions 1. Droughts exhibited a slight decrease in frequency, shortening in
duration, and weakening in severity in most parts of mainland China,
A daily index called CDHId was proposed to identify the compound except for most parts of SW and small parts of southern TP where
dry-hot events (CDHEs) in the present study, and the spatiotemporal drought increased significantly. Both heatwaves and CDHEs
variations of droughts, heatwaves, and CDHEs in mainland China from occurred more frequently after the early 1980s. Northeast China,
1961 to 2020 were analyzed using standardized precipitation index Southwest China, and the Tibetan Plateau witnessed the most sig-
(SPI), standardized temperature index (STI), and CDHId. CDHEs were nificant rise in CDHEs.
classified into two types depending on the onset time difference between 2. From the view of onset and evolution at the short-time scale, CDHEs
the drought and heatwave with each CDHE. Land-atmosphere (L-A) in China were more likely to be induced by antecedent dry condi-
interactions prior to and during two types of CDHEs were investigated tions, with 85.2% of CDHEs occurring when the drought preceding
using the L-A coupling indices. The dominant factors driving CDHE heatwave. A stronger L-A coupling than non-dry-hot conditions was
changes were analyzed by conducting the path analysis between CDHEs observed in both the 10-days before and during the occurrence of
and droughts/heatwaves. The results show that: CDHEs. With the occurrence of CDHEs, there is a shift in SM-LH
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coupling from negative to positive, indicating a transition from an
energy-limited regime to a water-limited regime.

3. Although temperature and precipitation present a negative correla-
tion at the seasonal scale, their long-term relationship in multi-
decades was positive over China (with a correlation coefficient of
0.51 at the 0.05 significance level). The direct path coefficient of
annual heatwave frequency on CDHE frequency over China indicated
that the variation of CDHEs in multi-decades was more closely
related to heatwaves than to droughts. Overall, the increase in
heatwaves dominated the long-term increase of CDHEs in China
during 1961-2020.
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