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A B S T R A C T   

Setting nitrogen (N) emission targets for agricultural systems is crucial to prevent to air and groundwater 
pollution, yet such targets are rarely defined at the county level. In this study, we employed a forecasting-and- 
back casting approach to establish human health-based nitrogen targets for air and groundwater quality in 
Quzhou county, located in the North China Plain. By adopting the World Health Organization (WHO) phase I 
standard for PM2.5 concentration (35 μg m− 3) and a standard of 11.3 mg NO3

− -N L− 1 for nitrate in drinking water, 
we found that ammonia (NH3) emissions from the entire county must be reduced by at least 3.2 kilotons year− 1 

in 2050 to meet the WHO’s PM2.5 phase I standard. Additionally, controlling other pollutants such as sulfur 
dioxide (SO2) and nitrogen oxides (NOx) is necessary, with required reductions ranging from 16% to 64% during 
2017–2050. Furthermore, to meet the groundwater quality standard, nitrate nitrogen (NO3

− -N) leaching to 
groundwater should not exceed 0.8 kilotons year-1 by 2050. Achieving this target would require a 50% reduction 
in NH3 emissions and a 21% reduction in NO3

− -N leaching from agriculture in Quzhou in 2050 compared to their 
respective levels in 2017 (5.0 and 2.1 kilotons, respectively). Our developed method and the resulting N emission 
targets can support the development of environmentally-friendly agriculture by facilitating the design of control 
strategies to minimize agricultural N losses.   

1. Introduction 

While nitrogen (N) is a key element in ensuring food security, it also 
has detrimental effects on environmental quality (Penuelas and Sardans, 
2022; Misselbrook et al., 2022). In 2018, more than half of the total N 
input to the global food system was released into the environment, 
leading to air and water pollution (Gu et al., 2023; Guo et al., 2023; 
Crippa et al., 2022). This release of N compounds, such as ammonia 
(NH3) and nitrate nitrogen (NO3

− -N), contributes to pollution, including 

the contamination of PM2.5 and the accumulation of nitrates in 
groundwater, posing significant risks to sustainable food production and 
human health (Min et al., 2022; Erisman et al., 2013; An et al., 2019; Xu 
et al., 2022; Gu et al., 2021). In 2020, the estimated number of pre
mature deaths associated with PM2.5 exceeded 1 million (Cheng et al., 
2023). Therefore, it is crucial to establish N emission targets to ensure 
the air and water quality and protect human health. 

The Chinese government has implemented air pollution control 
policies and climate action measures aimed at reducing fossil fuel 
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consumption, leading to significant improvements in air quality. It has 
been reported that reducing NH3 emissions is a more cost-effective 
approach compared to controlling NOx emissions for mitigating PM2.5 
pollution (Gu et al., 2021). While several strategies for reducing NH3 
emissions in crop and livestock production have been developed, 
including optimizing nitrogen rates, implementing deep fertilizer 
placement, and using urease inhibitors (Zhang et al., 2021; Kang et al., 
2023). However, there is still uncertainty about how to effectively 
reduce NH3 emissions and other pollutants (such as SO2 an NOx) at a 
regional scale to meet PM2.5 standards. Moreover, agriculture can 
significantly impact groundwater quality through N leaching (Wang 
et al., 2019), but clear targets for controlling NO3

− -N leaching from 
agricultural activities in China are currently lacking. Although a method 
to identify nitrate-vulnerable zones was proposed by Bai et al. (2018), it 
did not provide precise values for defining these zones. Other studies 
have attempted to estimate NO3

− -N leaching targets by multiplying the 
critical concentration in groundwater (e.g., the WHO limit of 11.3 mg 
NO3

− -N L− 1) with the water flux leaching from agricultural soil at a 0.5 
by 0.5-degree grid resolution (Schulte-Uebbing et al., 2022). However, 
this approach does not specifically address future leaching scenarios. 
Therefore, it is imperative to establish clear NO3

− -N leaching targets that 
align with groundwater quality standards in agricultural production 
regions. This will aid in effectively managing and mitigating ground
water pollution caused by agricultural activities in the region. 

The North China Plain (NCP) is responsible for producing 81% of 
Chinese wheat and 31% of maize, resulting in substantial fertilizer- 
related NH3 losses that account for 43% of the annual Chinese NH3 
emissions (Ju and Zhang, 2017; Wang et al., 2018a). Additionally, in this 
region, soil nitrate N accumulation in the 0–4 m soil layer was 453, 749, 
1200, and 2155 kg N ha− 1 for wheat, maize, vegetables, and fruit trees, 
respectively (Zhou et al., 2016). Groundwater pollution is also a 
concern, as over 34% of monitoring sites in the NCP exceed the drinking 
water quality standard for nitrate concentrations set by the World 
Health Organization (WHO) at 11.3 mg NO3

− -N L− 1 (Ma et al., 2018). 
Quzhou, located in the NCP, is a representative agricultural county 
dominated by wheat and maize double-cropping systems, coupled with 
intensive pig and laying hen production (Zhang et al., 2016; Zhao et al., 
2017; Wang et al., 2020). Despite being selected as a demonstration site 
for Agriculture Green Development, aiming to achieve high resource use 

efficiencies and minimal negative environmental impacts in agricultural 
production (Meng et al., 2022a), Quzhou still faces significant chal
lenges regarding NH3 emissions and NO3

− -N leaching from agricultural 
practices, leading to environmental pollution (Feng et al., 2022; Meng 
et al., 2022a). Agricultural NH3 emissions can worsen PM2.5 pollution 
through chemical reactions with acidifying compounds (SO2 and NO2) 
(Xu et al., 2019). From 2019 to 2021, the annual average PM2.5 con
centration in Quzhou was about 56 μg m− 3, which is close to that of the 
Beijing-Tianjin-Hebei region (50 μg m− 3) (MEE, 2019, 2020, 2021; 
Wang et al., 2023). Therefore, Quzhou can serve as a valuable case study 
to determine the necessary N emission targets for effectively controlling 
air and groundwater pollution in the NCP. 

The objective of this study is to establish human health-based N 
targets for NH3 emissions to air and NO3

− -N leaching to groundwater 
from agriculture in Quzhou by 2050. To determine the target for NH3 
emissions, we utilized a forecasting approach based on the human health 
standard of PM2.5 (35 μg m− 3). Meanwhile, the target for NO3

− -N 
leaching was set to meet the safe drinking groundwater nitrate con
centration standard (11.3 mg NO3

− -N L− 1) set by WHO, using a back- 
casting approach. The current N losses from agriculture in Quzhou 
were also evaluated against these human health targets. 

2. Materials and methods 

2.1. Study area 

Quzhou county, located in the central region of NCP (Fig. 1), is 
renowned for its intensive agriculture production. It covers an area of 
667 km2 and has a population of 433,000 people. The agricultural sector 
in Quzhou is primarily consists of a winter wheat and summer maize 
double cropping system (Zhang et al., 2016). Additionally, the county is 
characterized by significant laying hen and pig production, aligning 
with the agricultural structure observed in the larger NCP region (He 
et al., 2022; Wang et al., 2020). Consequently, Quzhou is facing sub
stantial NH3 emission, resulting in serious annual mean NH3 concen
trations of approximately 40 μg m− 3 in the air (Feng et al., 2022; Meng 
et al., 2022b). Moreover, the NO3

− -N leaching from wheat and maize 
production was 209 kg N ha− 1 in Quzhou, exacerbating the risk of 
groundwater contamination (Niu et al., 2021). Therefore, establishing 

Fig. 1. The study area showing Quzhou, a county located in the North China Plain. (D01 and D02 are two nested air quality modeling domains, which represent the 
geographical locations of China and North China Plain, respectively). 
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targets for NH3 emissions to air and NO3
− -N leaching to groundwater is 

crucial for the development of sustainable N management strategies in 
Quzhou. 

2.2. A forecasting-and back-casting approach for nitrogen targets 

This study developed human health-based targets for NH3 emission 
to air and NO3

− -N leaching to groundwater in Quzhou (refer to Fig. 2). A 
forecasting approach was used for the atmospheric part. The NH3 
emission target was derived based on the PM2.5 standard set by the 
Chinese government (35 μg m− 3), which aligns with WHO phase I 
standards. To achieve this, the WRF-CMAQ model was employed to 
assess the further PM2.5 concentration under different emissions sce
narios (see Section 2.2.1). For the groundwater aspect, a back-casting 
approach was selected. The NO3

− -N leaching target was established for 
groundwater quality based on the drinking water quality standard rec
ommended by WHO (11.3 mg NO3

− -N L− 1) (see Section 2.2.2). 

2.2.1. Forecasting approach for ammonia emission targets 
In this paper, a forecasting approach was employed to develop an 

NH3 emission target that meets the PM2.5 standard (35 μm− 3) in Quzhou 
by 2050 (which is the target year of the study). The forecasting approach 
is a future scenario approach that considers factors such as technological 
development, climate change, and policy orientations. It provides 
valuable insights into the emission levels needed to achieve environ
mental targets in the future (An et al., 2019; Liang et al., 2020; Yue et al., 
2020). The WRF-CMAQ model was utilized to assess PM2.5 concentra
tion, with controlling scenarios for future pollutant emissions serving as 
input. The meteorological conditions were calculated using WRF version 
3.8, and the resulting data was fed to CMAQ version 5.2 to assess the 
PM2.5 concentrations. The WRF-CMAQ model and its simulation and 
evaluation were further described in Supplementary Method 1 and 
Table S1. The development of the NH3 emission target, derived based on 
the PM2.5 standards, involved following three steps. 

Firstly, we evaluated PM2.5 concentrations simulated by WRF-CMAQ 
using observed PM2.5 collected in the NCP. The current (2017) emissions 
of air pollutants were used as input for WRF-CMAQ in this evaluation. 

The current status_2017 emissions, denoted as C0, represent anthropo
genic emissions for 2017 and were obtained from the Multi-resolution 
Emission Inventory (http://meicmodel.org). These emissions were 
then prepared for input into the WRF-CMAQ model (see Table 1 and 
Supplementary Method 2). 

Secondly, we assessed future PM2.5 concentrations using the WRF- 
CMAQ model, with future emissions scenarios as input. The B0 and S0 
represent emissions scenarios for the year 2050 under high economic 
growth and ambitious carbon neutral goals, respectively. The B0 sce
nario reflects anthropogenic emissions under SSP5-RCP8.5 scenario, 
which assumes high economic growth and an intensification of envi
ronmental degradation, with China gradually catching up to developed 
countries in terms of end-of-pipe control technologies (Tong et al., 
2020). On the other hand, the S0 scenario reflects anthropogenic 
emissions under an ambitious carbon neutral goal scenario with reduced 
NH3 emission. This scenario assumes that China has implemented 
ambitious climate policies to achieve net-zero CO2 emissions and has 
fully deployed the best available end-of-pipe control technologies across 

Fig. 2. The forecasting-and back-casting approach to quantify targets for ammonia (NH3) emission to air and nitrate nitrogen (NO3
− -N) leaching to groundwater. 

WRF-CMAQ stands for the Weather Research and Forecasting model and Community Multiscale Air Quality model, while GSGM refers to the Global-scale Surface 
Water-Groundwater Model. Detailed descriptions of the approach can be found in Sections 2.2.1 and 2.2.2. 

Table 1 
Scenarios for future emissions as used to identify the ammonia emission targets 
to meet the PM2.5 standard in Quzhou.   

Scenario Objective Descriptions 

C0 Current Status_2017 Evaluation of WRF- 
CMAQ 

Base simulation under the 
2017 emission condition 

B0 High economic 
growth_2050 

To identify the NH3 

emission targets 
under future emission 
scenarios 

2050 emissions under the 
SSP5-RCP8.5 pathway 
(high economic growth) 
while assuming that end- 
of-pipe control 
technologies are fully 
applied. 

S0 Carbon Neutral 
Goals + NH3 

mitigation_2050  

2050 emissions in a 
scenario based on 
ambitious carbon neutral 
goals, and 50% NH3 

emission reduction 
between 2017 and 2050  

F. Meng et al.                                                                                                                                                                                                                                    
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all sectors to improve air quality (Cheng et al., 2021). In our study, we 
further improved the carbon neutral goals scenario by incorporating a 
50% reduction in NH3 emissions from 2017 to 2050. This reduction is 
based on the largest current technical reduction potential reported in the 
literature (Meng et al., 2022b; Zhang et al., 2020; Liu et al., 2019). The 
emission inventories for the B0 and S0 scenarios were obtained from the 
outputs of the Dynamic Projection model for emissions in China (DPEC) 
(http://meicmodel.org), and were prepared for input into the 
WRF-CMAQ (see Table 1 and S2 and Supplementary Method 2). 

Thirdly, we determined the NH3 emission target based on simulated 
PM2.5 concentrations from the WRF-CMAQ model, with a focus on 
meeting the PM2.5 standard of 35 μg m− 3. Initially, we analyzed 
whether the simulations under scenarios B0 and S0 meet the standard. If 
the simulated PM2.5 concentration still exceeds 35 μg m− 3, we further 
analyze the potential for intensified emission reduction based on the 
contribution of emissions to PM2.5, as indicated by the simulation re
sults. Once the simulated PM2.5 concentration falls below the PM2.5 
standard for the first time during this assessment loop (Fig. 2), the 
corresponding NH3 emission level is identified as the NH3 emission 
reduction target. 

2.2.2. Back-casting approach for NO3
− -N leaching targets 

In this study, a back-casting approach was developed to identify a 
human health-based target for NO3

− -N leaching. The back-casting 
approach proposes an environmental target for emission reduction in 
the future based on the turning point of environmental pollution 
changes (Li et al., 2019). The target was estimated by multiplying the 
drinking water quality standard of nitrate concentration (11.3 mg 
NO3

− -N L− 1 from WHO) by the water value for groundwater recharge in 
Quzhou in 2050. Groundwater recharge is the process by which the 
volume or flow of water reaches down to the water table, forming an 
addition to the groundwater reservoir (de Vries and Simmers, 2002). 
The estimation of NO3

− -N leaching targets based on the back-casting 
approach involved three steps. 

The first step involved deriving the groundwater recharge in Quzhou 
in 2050 (Fig. S1). The groundwater recharge was derived using outputs 
of the Global-scale surface water-groundwater model (GSGM) devel
oped by de Graaf et al. (2019). The GSGM simulated groundwater 
recharge as the flux between groundwater and soil moisture, consid
ering recharge and capillary rise. The simulations were conducted under 
the Representative Concentration Pathway 8.5 from the Coupled Model 
Intercomparison Project (CMIP5). Detailed information about the model 
description and its simulation of the GSGM can be found in de Graaf 
et al. (2019). In our study, we averaged simulated groundwater recharge 
over a 30-year period (2035–2065) to represent groundwater recharge 
in Quzhou in 2050. The period 2035–2065 was chosen by considering 
2050 as the midpoint and expanding the timeframe by 15 years on either 
side. In addition, to convert the groundwater recharge from the raster 
scale to the county scale, we first extracted the groundwater recharge 
grid data based on the administrative area of Quzhou county, and then 
multiplied it by the area corresponding to the grid based on the 
administrative area. 

In the second step, the environmental target for NO3
− -N leaching to 

shallow groundwater at a depth of 15 m was calculated (Chen, 2019; 
MWR, 2017). The target for NO3

− -N leaching to groundwater was 
derived by multiplying environmental standard for groundwater (11.3 
mg NO3

− -N L− 1) by the groundwater recharge in Quzhou from the first 
step, using equation (1). 

Lg =QC × LP × 10− 6 (1)  

where Lg represents the target for nitrate leaching to groundwater (ton 
year− 1); QC represents the groundwater recharge in Quzhou (m3 

year− 1); LP is the standard for nitrate concentration for groundwater 
(11.3 mg NO3

− -N L− 1 recommended by the WHO) in Quzhou (mg N L− 1). 
10− 6 is the unit conversion for ton year− 1. 

In the third step, our study estimated the human health-based target 
for NO3

− -N leaching to the root zone, which has a soil thickness of 
approximately 1 m. This estimation considered the N losses from NO3

− -N 
transport processes via denitrification in the vadose zone, which has a 
soil thickness of about 14 m. The amount of NO3

− -N leaching to the root 
zone is therefore estimated based on the proportions of NO3

− -N leaching 
to groundwater, using equation (2). 

Lr = Lg ÷ (1 − Nd) (2)  

where, Lr represents the target for nitrate leaching to the root zone (ton 
year− 1); Lg represents the target for nitrate leaching to groundwater (ton 
year− 1); Nd represents the ratio of N losses through denitrification in the 
vadose zone, which is assumed to be 50%. This estimation is based on 
field measurements conducted in regions near our study site in the NCP 
(Niu et al., 2021; Wang et al., 2019). 

2.3. Gaps between current agricultural emissions and their future targets 

In this section, we compared Quzhou’s current N losses from agri
culture with the identified future human health-based targets. The NH3 
emissions to air and NO3

− -N leaching to groundwater from agriculture in 
Quhzou in 2017 were obtained from Meng et al. (2022a), using the 
NUtrient flows in Food chains, Environment and Resources use (NUFER) 
model (Meng et al., 2022a). The human health-based target for NH3 
emissions to air was derived from Section 2.2.1, while the target for 
NO3

− -N leaching to the root zone is based on Section 2.2.2. The gap 
between the current values and the targets for NH3 emissions and NO3

− -N 
leaching was calculated using equation (3)-(6)： 

NH3gap =NH3current − NH3 target agr (3)  

NH3current =
17
14

×NH3NUFER (4)  

NH3 targer agr =Ratioagr × NH3 target county (5)  

where NH3gap represents the gap between the current NH3 emission and 
future NH3 emission target from agriculture (kilotons year− 1); NH3current 
is the current NH3 emission from agriculture in Quzhou in 2017 (kilo
tons year− 1); 17

14 is the conversion coefficient for NH3–N emissions to NH3 
emissions; NH3NUFER represents current NH3 emission from agriculture 
calculated by the NUFER model in Quzhou in 2017 (kioltons year− 1); 
NH3target agr is the future NH3 emission target from agriculture in Quzhou 
in 2050 (kilotons year− 1); Ratioagr is the proportion of agricultural NH3 
emissions to total NH3 emissions in Quzhou. The agricultural NH3 
emission accounted for 96.3% of the total NH3 emission (refer to 
Fig. S2); NH3traget county is future NH3 emission target from the entire 
Quzhou county (kilotons year− 1); 

NO−
3 N leachinggap =NO−

3 N leachingcurrent − NO−
3 N leachingtarget (6)  

where NO−
3 N leachinggap is the gap between current NO3

− -N leaching and 
future NO3

− -N leaching target from agriculture (kilotons year− 1); 
NO−

3 N leachingcurrent is the current NO3
− -N leaching from agriculture 

in Quzhou in 2017, which was calculated by the NUFER model (kilotons 
year− 1); NO−

3 N leachingtarget is the future NO3
− -N leaching target from 

agriculture in Quzhou in 2050 (kilotons year− 1). 

3. Results and discussion 

3.1. Reducing ammonia emissions to air to meet PM2.5 standard 

Two future emission scenarios were developed to determine the NH3 
emission target in Quzhou and assess the required reduction in NH3 
emissions while controlling other emissions such as SO2 and NOx 
(Fig. 3). Under the high economic growth scenario (B0), PM2.5 
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concentrations can meet the PM2.5 standard (35 μg m− 3) when the total 
NH3 emissions in Quzhou are reduced by at least 3.2 kilotons year− 1 in 
2050. This reduction relies on synergistic control of NH3 emissions along 
with other pollutants, such as SO2 and NOx. Our study reveals varying 
emission reduction rates (16–64%) for different pollutants in Quzhou 
(Fig. 3b). With widespread implementation of end-of-pipe exhaust 
treatment technologies, reductions of 64%, 47%, 54%, and 16% are 
projected for BC, OC, NOx and SO2 respectively, from 2017 to 2050. This 
offers the potential to achieve the PM2.5 standard. However, the emis
sions of certain pollutants, such as PM10, primary PM2.5 and CO, are 
expected to increase by 223%, 63%, and 5% respectively during the 
same period. This is mainly due to the continued dominance of fossil 
fuels, particularly in the transportation and power sectors, under the 
SSP5-RCP8.5 scenario. Consequently, there is significant potential to 
further reduce PM2.5 concentrations through synergistic control of NH3 
and other pollutant emissions. 

In the ambitious carbon neutral goals scenarios (S0), it is projected 
that PM2.5 concentration can reach 13.7 μg m− 3 when NH3 emissions are 
limited to less than 2.8 kilotons year− 1 and other pollutants such as SO2 
and NOx are reduced by 6–93% during the period of 2017–2050. Spe
cifically, under scenario S0, SO2 and NOx emissions are projected to 
decrease by 86% and 93% respectively during this period. This signifi
cant reduction can be attributed to the improved new energy structure, 
primarily driven by the carbon-neutral policy implementation (Cheng 
et al., 2021). These results suggest that it is possible for the annual mean 
PM2.5 concentration to meet the WHO phase III guidance (15 μg m− 3) in 
Quzhou by 2050. However, the PM2.5 concentration still falls short of 
the WHO health standard (5 μg m− 3). Our findings indicate that 
achieving the WHO health standard would be a highly ambitious goal, 

requiring stringent limits on emissions of SO2, NOx, NH3, VOC, and 
primary PM2.5 in Quzhou. Additionally, it would necessitate significant 
efforts to address transboundary air pollution from the NCP, other re
gions in China, and countries outside of China (Jiang et al., 2023). 

3.2. Targets for nitrogen leaching to groundwater 

The human health-based target for NO3
− -N leaching to groundwater 

at a depth of 15 m is estimated at 0.8 kilotons year− 1 for 2050 (Fig. 4). 
The target was calculated by multiplying the standard of nitrate con
centrations in groundwater (11.3 mg NO3

− -N L− 1 from WHO) by the 
estimated groundwater recharge from the GSGM model outputs. Our 
analysis indicates that groundwater recharge is projected to be 
approximately 7.5 × 107 m3 in Quzhou in 2050 (Fig. S1). Furthermore, 
we calculated the target for NO3

− -N leaching to the root zone, which 
corresponds to a soil thickness of about 1 m. Our results show that the 
target for NO3

− -N leaching to the root zone in Quzhou in 2050 is 1.7 
kilotons year− 1 (Fig. 4). This target effectively supports agricultural 
policies aimed at controlling NO3

− -N leaching. 

3.3. Comparison of current nitrogen emissions with their future targets 

In 2017, NH3 emissions from agriculture in Quzhou totaled 5.0 ki
lotons, while NO3

− -N leaching amounted to 2.1 kilotons, both exceeding 
the identified N emission target (Fig. S3, Meng et al., 2022a). To meet N 
emission targets for air quality (PM2.5) and groundwater quality, it is 
necessary to reduce NH3 emissions and NO3

− -N leaching from agriculture 
by at least 50% and 21%, respectively, between 2017 and 2050. Ac
cording to Meng et al. (2022a), NH3 emissions from agriculture in 

Fig. 3. The simulated PM2.5 concentrations (a, μg m− 3) and emissions of pollutants to air (b, kilotons year− 1) in Quzhou in 2017 and 2050. In Subpanel 3a, the left 
vertical axis represents the PM2.5 concentration of the column chart, while the right vertical axis represents the PM2.5 concentration displayed on the map. The C0 
scenario reflects the year 2017, representing the baseline conditions. The B0 scenario represents anthropogenic emissions projected for 2050 under the Shared 
Socioeconomic Pathway (SSP) 5 and Representative Concentration Pathway (RCP) 8.5, which represents the high economic growth. The S0 scenario represents 
anthropogenic emissions projected for 2050 under ambitious carbon neutral goals. The emission of pollutants considered in this study includes ammonia (NH3), 
sulfur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), PM10, PM2.5, carbon dioxide (CO2), volatile organic compounds (VOC), element carbon (EC), and 
organic carbon (OC). Further details on the approach can be found in Section 2.2.1. 
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Quzhou were primarily derived from wheat, maize, vegetables, pigs, and 
laying hens. In 2017, wheat, maize, and vegetables accounted for 77% of 
NH3 emissions from crop production, while pigs and laying hens were 
responsible for 63% of NH3 emissions from livestock production. Simi
larly, NO3

− -N emissions from agriculture were primarily associated with 
wheat, maize, and vegetable production. These crops were responsible 
for 81% of the NO3

− -N leaching into groundwater during crop production 
in 2017. This highlights the importance of prioritizing improvements in 
nutrient management for crops and animals that contribute the most to 
N losses. Additionally, it is anticipated that future food production and 
consumption, including fertilizer application, intensive animal produc
tion, animal feed, and human diets, will be influenced by socioeconomic 
development and global changes (Wang et al., 2019; Ren et al., 2023). 
Therefore, it is crucial to establish additional targets for reducing N 
losses in agriculture to better understand potential future scenarios. 

3.4. Model evaluation 

To support our conclusion regarding the NH3 emission target in 
Quzhou, we evaluated and discussed the results from the WRF-CMAQ 
model in three ways. 

Firstly, we conducted a comparison between simulated meteoro
logical data and locally observed data, as well as between observed and 
simulated PM2.5 concentrations (Figs. S4–S8). The results showed that 
the model accurately predicted meteorological parameters, with corre
lation coefficients (r) of 0.8, 0.8, and 0.5 for temperature, relative hu
midity, and wind speed, respectively (Figs. S4–S7). However, there was 
a tendency for the simulated wind speed to be overestimated in Quzhou, 
consistent with previous studies (Lu et al., 2019). This discrepancy may 
be attributed to limitations in the representation of underlying surface 
parameters that influence wind speed in the WRF model configuration. 
Additionally, our study compared observed and simulated daily PM2.5 in 
January and October 2017 (Figs. S8c and d), respectively. The model 
accurately captured the temporal variations of PM2.5 in Quzhou, with a 
normalized mean bias (NMB) value of 40%, normalized mean error 
(NME) of 43.5%, and r value of 0.6 (Figs. S8c and d). Furthermore, we 
compared the distributions of simulated daily mean PM2.5 concentra
tions in January, April, July, and October 2017 in Quzhou and Beijing 
(Zhang et al., 2021) (Figs. S8a and b). The simulated PM2.5 concentra
tions aligned with the observed trend distribution, with r values of 0.76 

and 0.87, respectively. Importantly, all NMB and NME values fell within 
the criteria (NMB≤±60%, NME<75%) set by the U.S. Environmental 
Agency (Wang et al., 2022). 

Secondly, we validated the representativeness of the typical seasonal 
months (January, April, July, and October) by comparing the proportion 
of pollutant emissions and the PM2.5 concentrations during these four 
months in Quzhou from 2015 to 2020 (Figs. S9 and S10). Interestingly, 
the emissions of pollutants during these four months accounted for one- 
third of Quzhou’s total annual pollutant emissions in 2017 (Fig. S9). 
This suggests that the emission inventory adequately captures the 
overall annual conditions. Furthermore, we observed seasonal varia
tions in PM2.5 levels, and the average PM2.5 concentration during the 
four-month period was comparable to the annual average (Fig. S10). 

Thirdly, we compared our NH3 emission target with previous studies 
(Liu et al., 2021b). Our study is the first to estimate how to meet PM2.5 
thresholds through NH3 emission reduction. Previous studies focused on 
predicting the effect of NH3 emissions reductions on PM2.5 concentra
tions in specific months, such as January and July (Liu et al., 2021b; Ye 
et al., 2022). They found that the efficiency of PM2.5 reduction is highly 
dependent on the magnitude of NH3 emission reduction. Typically, they 
observed that a significant reduction of 40-60% in NH3 emissions leads 
to a high control efficiency for PM2.5 (Liu et al., 2021b). These findings 
are consistent with our conclusion of meeting environmental targets 
through a 50% reduction in NH3 emissions from agriculture. 

3.5. Uncertainties of our approach to define targets 

This study employed forecasting and back-casting techniques to 
establish N emission targets from agriculture for air and groundwater 
quality, with the aim of protecting human health at the county level. 

The NO3
− -N leaching target approach has been successfully imple

mented in various regions globally (Schulte-Uebbing et al., 2022), 
including European (de Vries et al., 2021) and China (Ying et al., 2020). 
However, estimating the target is subject to uncertainties arising from 
denitrification losses in the vadose zone (Li et al., 2022). Monitoring 
denitrification in the vadose zone is challenging due to limitations in soil 
depth and monitoring methods (Yuan et al., 2019). To address this un
certainty, a range of denitrification losses (20–50%) in the vadose zone 
was considered for the NO3

− -N leaching target in different regions of the 
NCP (Niu et al., 2021; Wang et al., 2018b, 2019; Fig. S11). In this study, 

Fig. 4. Nitrate (NO3
− -N) leaching to groundwater and its environmental target in Quzhou in 2050. GSGM denotes the Global-scale surface water-groundwater model. 

NO3
− -N is nitrate nitrogen. For details on the approach see Section 2.2.2. 
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we improved the approach by incorporating long-time series ground
water recharge data and local monitoring of denitrification losses in the 
vadose zone specific to Quzhou (Niu et al., 2021). This enhances the 
reliability of implementing the NO3

− -N target approach in Quzhou. 
Future research could focus on more frequent monitoring of N denitri
fication losses in the vadose zone, which could contribute to further 
improving the accuracy of environmental target estimates. To support 
our conclusion regarding the NO3

− -N leaching target in Quzhou, we 
compared the simulated groundwater recharge and observed ground
water recharge from a published paper in Quzhou in 2017 (See 
Table S3). According to the GSGM model results, the average annual 
groundwater recharge in Quzhou county in 2017 was estimated to be 
158 mm yr− 1, which is consistent with the current published results. 
Additionally, the GSGM model has been evaluated and accepted in the 
literature (de Graaf et al., 2019). We believe the simulated groundwater 
recharge give trust in our study. 

The forecasting approach utilized in this study aids in the develop
ment of an NH3 emission target that aligns with the PM2.5 standard (35 
μg m− 3) for human health. This approach considers factors such as 
technological development, climate change, and policy orientations, 
thereby providing insights into the emissions levels required to achieve 
environmental targets in the future (An et al., 2019; Liang et al., 2020; 
Yue et al., 2020). It is important to note that our NH3 emissions target is 
not a critical value that directly determines whether the PM2.5 standard 
is met. One limitation is that the NH3 emission target is influenced by the 
extent to which emissions of other pollutants, such as SO2 and NOx, are 
reduced. With technological advancements and the adoption of new 
energy structures, the emission of pollutants could be further reduced. 
To address the uncertainty surrounding pollutant emissions, we con
structed future emission inventories based on scenarios that encompass 
the highest future economic increment and ambitious carbon neutral 
goals (Cheng et al., 2021; Tong et al., 2020). These scenarios incorporate 
the latest technologies and existing knowledge of China’s environmental 
policies, thereby reflecting potential future development pathways. 
However, this study does not consider natural emissions induced by 
climate change or the changes in future meteorological conditions. 
Nevertheless, some studies show that substantial emission reductions 
could greatly improve air quality, surpassing the influence of future 
meteorology changes, particularly in the context of carbon neutrality 
targets (Zhang et al., 2019; Liu et al., 2021a). Additionally, the meteo
rological condition in 2017 were assessed without specific climate 
events (Cheng et al., 2021; Ding et al., 2021). Despite these consider
ations, the forecasting approach remain valuable in establishing the 
target for NH3 emission to air from agricultural activities. 

3.6. Implication and outlook 

This study focuses on Quzhou as a case study to quantify N emission 
targets from agricultural activities and their impacts on air and 
groundwater quality at the county level. The findings of this study are 
valuable in guiding the development of agri-environmental policies and 
regional N management to safeguard human health. 

Firstly, this study supports Quzhou in developing effective environ
mental policies by setting targets for reducing reactive N losses. By 
reducing NH3 emissions and NO3

− -N leaching, improvements can be 
achieved in air and groundwater quality, which are recognized objec
tives in the NCP (Bai et al., 2018; Liu et al., 2021b). Our study provides 
an approach and information to determine the necessary reductions in 
NH3 emissions and NO3

− -N leaching to attain these goals. Future studies 
can further investigate specific reduction targets for different animal and 
crop types, enhancing the specificity and effectiveness of environmental 
measures. 

Secondly, this study provides new insight into regional control of 
pollutant emissions based on PM2.5 standard. While most studies focus 
on analyzing the response of PM2.5 concentration to the reduction of 
specific pollutants (Zhao et al., 2021; Meng et al., 2022b; Xu et al., 

2022), our approach explores the potential to meet regional PM2.5 
standard by reducing NH3 emissions and other pollutants such as SO2 
and NOx. The findings suggest that under high socioeconomic growth 
scenarios (B0), 96% of counties in the NCP can meet the PM2.5 standard 
(35 μg m− 3) by controlling NH3 emissions and other pollutants (Fig. 5). 
Furthermore, under ambitious carbon neutral goals scenarios (S0), 96% 
of counties in the NCP can meet even more stringent PM2.5 standards, 
such as WHO-III standard (15 μg m− 3)). Setting targets for NH3 emis
sions to the air will contribute to improving regional air quality in the 
future. 

4. Conclusions 

We have developed an innovative approach to quantify N emission 
targets based on human health considerations. This approach was 
applied to Quzhou county in the NCP as a representative case study, with 
objective of determining N emission targets for NH3 emission and NO3

− - 
N leaching from agriculture activities in order to meet air (PM2.5) and 
groundwater quality standards. 

Our findings reveal that to meet WHO’s phase I target for PM2.5 in 
Quzhou, a minimum reduction of 3.2 kilotons year− 1 in NH3 emissions 
by 2050 is required, assuming a scenario of high economic growth. 
Achieving the more stringent WHO’s phase III target would necessitate 
the implementation of an ambitious environmental policy, with NH3 
emissions at the county-scale needing to be reduced to less than 2.8 
kilotons year− 1, along with reductions of 6–93% in other pollutants 
during the period of 2017–2050. Additionally, to meet the standard for 
groundwater quality, the target for NO3

− -N leaching into groundwater at 
a depth of 15 m was estimated to be 0.8 kilotons year− 1 by 2050 in 
Quzhou. Therefore, in order to meet the health-related targets in Quz
hou, NH3 emissions and NO3

− -N leaching from agriculture need to be 
reduced by at least 50% and 21% respectively, compared to 2017 levels. 

Our approach not only supports the establishment of health-related 
N emission reduction targets for agriculture but also assists in formu
lating effective strategies to promote agricultural green development. 
Future research could focus on identifying specific reduction targets for 
different animal and crop types as well as feasible options to achieve 
these targets. 
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