


 

 

Propositions  
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2. More research emphasis on small datasets is essential for deep learning methods 

to become commonplace in landscape quality assessments. 
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4. Having an uncommonly occurring last name is an unfair advantage in scientific 
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5. Society has not retained any of the lessons learned from the Covid-19 pandemic. 

 

6. Relying on navigation systems rather than on maps and landmarks causes one to 
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Chapter 1

Introduction

1.1 Context

Landscapes are an ever-present aspect of life, and the way in which humans experience these

landscapes can shape their lives in various ways. Therefore, they are increasingly being

recognised as an important resource for many facets of life. Landscapes are an important

regulator for our emotional and physical well-being. For instance, high-quality natural

landscapes correlate with positive emotions such as warmth and cheerfulness (Daniel

and Vining, 1983), comfortableness, tranquillity, and safety (Galindo and Rodriguez,

2000), and happiness (Daniel and Vining, 1983; Seresinhe et al., 2019). The importance

of landscapes transcends personal health, as scenic landscapes are a driver for tourism

(Krippendorf, 1984), as well as cultural ecosystem services (Daniel et al., 2012; Havinga

et al., 2021). Similar patterns are observed for urban residential spaces. Living in destitute

neighbourhoods is associated with higher mortality rates (Haan et al., 1987), worse dietary

and physical activity patterns (Thompson and Kent, 2014), and an increase in morbidity

(Barber et al., 2016). Living in lower-quality housing is also detrimental for mental

well-being (Evans, 2003). In aggregate, landscape perception and appreciation are crucial

for land management activities (Solecka, 2019). Evidently, understanding the qualities of

our landscapes is important for our overall well-being, and it may help guide decisions on

how to manage landscapes.

The definition of a landscape can vary greatly depending on the research intent. For the

purposes of assessing the qualities of landscapes based on perception alone, the definition

is adjusted to leave out non-visible landscape elements that cannot be comprehended

from single images, such as cultural or historical values or species distributions (Amir

and Gidalizon, 1990). When considering visual factors, landscapes can be defined as ”a

portion of a territory that the eye can comprehend in a single view” (Daniel, 2001), or

alternatively, ”the outdoor environment, natural or built, which can be directly perceived

by a person visiting and using that environment” (Hull and Revell, 1989). This definition
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can be extended to describe landscape qualities (LQs). There is much debate over the

nature of LQs, specifically about the degree of consensus between people and the degree

to which they can be measured and compared. (Shuttleworth, 1979; Jacques, 1980). In

practice, a mixture of methods inspired by both mindsets can be found in existing research.

For instance, descriptive models can be defined by experts to be comprised of a set of

visible aspects that are known to correlate with a particular LQ. Such methods excel at

performing analyses at large spatial scales, as they can use commonly available digital

methods, such as geographic information systems (Bubalo et al., 2019; Huang and Liu,

2022). However, a typical downside of such methods is a lack of input from the public,

which would reflect the inherent subjectivity of LQs. Instead, public preference research

approaches derive LQ opinions from the public through methods such as surveys, interview

panels, or research site visits (Arthur, 1977; Schroeder and Daniel, 1981; Nahuelhual et al.,

2018). More recently, the internet has enabled crowdsourcing efforts at unprecedented

scales, allowing for the collection of many first-hand accounts at once (Wherrett, 1998; Naik

et al., 2014; Seresinhe et al., 2015; Bubalo et al., 2019). Such methods have reduced the

costs and the amount of manual processing needed. However, as a result of crowdsourcing

being performed anonymously, there is little insight into the study participants, while

the veracity of first-hand accounts depends on factors such as the socio-economic status

of respondents and the duration of the observation (Jacques, 1980; Amir and Gidalizon,

1990). As a result, studies performed through crowdsourcing are less informative, as

respondents cannot be studied in conjunction with their responses.

Of particular interest are so-called psychophysical approaches, which attempt to link

subjective crowd consensus studies to physical, biological, or social features of the environ-

ment (Arthur, 1977; Wherrett, 1998). Such studies may use predictive models to derive

respondent preferences for a demarcated set of objective landscape elements or variables,

typically through regression models (Arthur, 1977; Buhyoff and Riesenman, 1979). As a

hybrid approach, these methods therefore represent a middle ground between objective

and subjective studies by linking subjective opinions to objective landscape elements.

Therefore, they require extensive in-depth knowledge about photographic representations

of landforms as well as a manual process of defining and extracting features from images

(Wherrett, 1998). Because of these characteristics, psychophysical analyses can be per-

formed within the framework of Machine Learning (ML) methods, which leverage data

to construct models in order to generate predictions across a set of tasks (Jordan and

Mitchell, 2015). The main purpose of psychophysical modelling using ML methods is to

learn from labelled examples, which in the context of this thesis are images with matching

LQ reference scores. Trained models can then be used to provide predictions on new data

as well as for knowledge extraction. This thesis follows this line of reasoning.
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1.2 LQ assessment using machine learning

1.2.1 Learning to predict LQs

In order to train ML models for visual LQ assessments, it is necessary to fine-tune them

over the provided image examples. The most common approach is to train models through

a process referred to as supervised learning, which consists of five steps:

1. Extract features from images. An image feature is any pattern found in that image

that describes a landscape quality. Extracted features can be of variable complexity.

For instance, in the context of landscape beauty, a meaningful but simple pattern

could be the amount of greenness in an image, which is a low-level feature. A

more complex feature could be the interaction between a verdant lake and a snowy

mountain, since it requires both geometric information (e.g., the shape of a mountain),

colour information, and their position relative to one another. In a classical ML

workflow, the modeller needs to decide which patterns are useful to extract prior to

the fine-tuning process.

2. Using the extracted features, fit a prediction algorithm to relate the extracted

features to the dependent variable, such as LQ ratings. The model can be anything

from simple linear least-squares regression to complex neural networks. The form of

the dependent variable can vary greatly as well. Examples include binary classifiers

(LQ is present or absent), regression (a continuous scale ranging over the expected

prevalence of a LQ), or even relative examples (the preference of people for either

image A or B). The best possible fit of the model is calculated according to the

chosen learning objective. For instance, in a regression setting, if a given image has

a reference value of 6 out of 10 and the fitted model predicts a value of 5, then it

can be fitted to minimise the absolute difference. After fitting, the model is said to

have been trained, with an optimal fit based on the features that were provided.

3. Use the model on a hold-out set to determine how well it predicts the LQs of unseen

samples. A fitted model is used on a set of new images with reference values to

calculate its expected performance on new examples. This process is known as

validation. A poor validation performance is an indicator that the chosen features do

not work well beyond the training set. The modeller can then repeat steps 1 through

3 to train a model with more suitable features.

4. Once the modeller is satisfied with the performance of the model on the validation

dataset of step 4, it can then be used to predict new images. During this stage, the

model can be used to perform inference, where the values of new images are predicted

without access to reference scores. By extension, it can be tested on another hold-out

set of examples. The performance on this set is reported as the performance of the

model.
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3. Validation2. Model
optimization

1. Feature
extraction

Image
dataset

Improve features

Iterative model fitting

4b. Testing

Image ratings
Learning objective

4a. Inference

Apply to unseen data

Figure 1.1: Supervised learning loop for training and ML models. The process requires a
dataset of images, which are labelled by volunteers. During the model fitting process, the
modeller iteratively extracts features (step 1), optimises a model on training examples according
to a chosen learning objective (step 2), and assesses validation performance (step 3). When
the modeller is satisfied with the model, it can be used on new examples (step 4a). The model
can then also be tested for generalisation performance (step 4b) by comparing its predictions
against new examples with labels.

A visual illustration of the supervised training process is given in Figure 1.1.

Deep Learning (DL) models are a particularly prominent class of ML models, which are

also referred to as deep neural networks. Such models iteratively learn which features are

most useful for the prediction objective (Goodfellow et al., 2016), which obviates the need

for handcrafted features described in step 1. They can operate over many different types

of modalities, such as natural images (Alzubaidi et al., 2021) and satellite images (Zhu

et al., 2017), but also non-visual modalities such as textual information (Khurana et al.,

2023). A Convolutional Neural Network (CNN) is a feed-forward, hierarchical DL model

architecture that is adapted to handle image data. The main feature-learning layer in

these models are convolutional layers, which consider features over a local neighbourhood

of pixels, structured as a matrix. They learn the weights of such convolutions, or filters.

Early layers extract simplistic patterns such as colour transitions or edge detectors. By

applying non-linearities and further recombinations of features, deeper layers gradually

refine these features to learn increasingly complex features, such as the interaction between

trees and their surrounding landscapes. Many of the essential theories for DL models

were proposed decades ago, such as the fundamental linear layer (Rosenblatt, 1958), the

automated updating of model layers through backpropagation (Linnainmaa, 1976), and

the convolutional layer for images (Lecun et al., 1998). However, due to the computational

cost of CNNs, they were not frequently used. Once CNN operations were implemented

on graphics processing units and a sufficient amount of reference data became available

(Krizhevsky et al., 2012), they became a popular choice of model for learning from image
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Natural image Remote sensing
Figure 1.2: Comparison of image modalities used in this thesis. Natural images (left, courtesy
of Philip Halling (Halling, 2011)) capture fine detail about the subject (the O2 Arena in
London), while the Sentinel-2 satellite image (Copernicus Project, 2023) (right) gives a broad
overview of the surroundings (the Thames area of London).

modalities. Recent DL models are successfully applied to a wide variety of topics, such

as wildlife conservation (Tuia et al., 2022), urban streetscape analysis (Biljecki and Ito,

2021), and earth systems (Reichstein et al., 2019).

1.2.2 Data modalities for LQ assessments

ML and DL models have also been used for a variety of LQs and with a variety of image

types, or modalities. There are two main types of modalities considered in ML-based

LQ assessments. The first type of modality is natural images, which are photographs

typically taken with a ground-level perspective and with colour bands (red-green-blue,

or monochrome) that appear natural to humans. As such photos naturally convey what

humans can see, it is possible to use volunteers to provide impressions for them.

This approach has been used to measure the perceived safety of streets (Naik et al., 2014),

the perceived quality of facades (Law et al., 2018), and the scenicness of landscapes

(Seresinhe et al., 2015). The second type of modality that is commonly used is remote

sensing (RS) imagery. Remote sensing images are taken from an overhead perspective

and may use spectral bands beyond the spectrum of colours visible to the human eye,

such as those in the infrared spectrum. The main benefit of remote sensing imagery is the

amount of spatial coverage it provides, meaning that it can be used to assess large areas

at once. The drawback of using RS is that certain landscape elements cannot be seen

from above, such as the façades of buildings or the interplay between landscapes, such as

the picturesque lake pictured in front of a mountain. LQ assessments using this modality

make use of aggregate spatial scores, such as the vitality of neighbourhoods at the block

level (Scepanovic et al., 2021) or urban deprivation using a spatial grid (Arribas-Bel et al.,

2017). A visual comparison of both modalities is given in Figure 1.2.
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1.2.3 Natural and urban LQ assessments

In order to train ML and DL models to reproduce LQs, a dataset of labelled examples

is needed. LQ assessments often concern the study of the scenicness of natural vistas

(Arthur, 1977; Wherrett, 1998; Nahuelhual et al., 2018). This is a well-studied task with

datasets that are available to the public. The ScenicOrNot dataset (SON) is a dataset

of rated landscape images across the entirety of the United Kingdom gathered through

crowdsourcing efforts (Seresinhe et al., 2015). It contains enough images to train DL

models on (Seresinhe et al., 2017), and it has been extensively tested in existing research

(Marcos et al., 2019; Arendsen et al., 2020; Marcos et al., 2021). As such, this particular

dataset is well-suited for studying the role of DL modelling experiments in a typical applied

setting for natural environments.

Urban environments are complex and concern many different facets of life. As a result,

there are many different LQs that can be measured, such as safety (Naik et al., 2014;

Dubey et al., 2016), deprivation (Suel et al., 2021; Singleton et al., 2022), walkability

(Christman et al., 2020), and aesthetic quality (Dubey et al., 2016; Biljecki and Ito, 2021).

A LQ that encompasses many qualities is liveability, which is ”the degree to which its

provisions and requirements fit with the needs and capacities of its members” (Veenhoven

et al., 1993). Understanding if liveability can be assessed from images can therefore help

to ensure that cities are able to match the needs of their inhabitants. While no labelled

image datasets exist, it is possible to combine liveability reference data with images to

create labelled image datasets. In doing so, it is possible to study how well liveability can

be assessed using images.

1.2.4 Combining modalities

Previous sections have considered natural and remote sensing images separately from one

another. In reality, they are complementary, as they describe different perspectives of the

same landscape, and both modalities contain LQ information that is not visible to the

other modality (Gómez-Chova et al., 2015). For instance, façades contain information

about the state of maintenance of a building (Law et al., 2018), which is not visible in

overhead aerial images. Likewise, a clear view of rooftops is often not available from

ground-level images. Furthermore, ground-level images taken in urban areas are often

hindered by a limited viewshed. As a result, LQ assessments benefit from having multiple

viewpoints involved. It is possible to learn from multiple modalities at the same time with

a multimodal approach. Such approaches leverage the availability of multiple data sources

to understand how they complement one another. Examples of multimodal challenges

include learning shared features between modalities, fusing features for improved predictive

performance, and co-learning, which allows for the transfer of information about the

dependent variable from one modality to the other (Baltrusaitis et al., 2019). Recently,

multimodal learning approaches have proven successful in the geospatial domain (Tuia
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et al., 2021) and have shown significant advances in image-text retrieval (Radford et al.,

2021; Bommasani et al., 2022), visual-question answering (Lobry et al., 2021; Chappuis

et al., 2022), urban function recognition (Srivastava et al., 2019; Sapena et al., 2021; Fan

et al., 2022; Workman et al., 2022), and urban deprivation (Suel et al., 2021).

1.2.5 Interpretability

Being able to predict and monitor LQs can help provide timely information about the

state of our landscapes. However, DL models are notoriously opaque in their workings,

as they may base their decisions on abstract patterns that humans may not be able to

understand. This lack of transparency and a lack of explanations given for predictions

can undermine trust in models (Miller, 2019). Furthermore, the black box nature of ML

models makes it difficult to discover new relationships from them, potentially limiting the

creation of new knowledge from studies (Gevaert, 2022). To overcome these shortcomings,

studies have attempted to improve the interpretability of deep learning models. There is

no strict definition of the term explainability, but it is generally understood to be “the

degree to which an observer can understand the cause of a decision” (Biran and Cotton,

2017; Miller, 2019; Gevaert, 2022). This can be achieved in many ways and with many

different intentions. For instance, methods such as class activation maps (Zhou et al.,

2016) and integrated gradients (Sundararajan et al., 2017) estimate the importance of

image regions or individual pixels. Other models seek to determine which concepts are

important for the task that is being predicted (Kim et al., 2018). For the case of RS

imagery, there is an increased emphasis on the importance of domain knowledge, where the

aim is to integrate existing knowledge into ML approaches (Roscher et al., 2020; Gevaert,

2022). For instance, prediction output ranges may be constrained to established physical

models, where they may be used to find model-observation mismatches or to constrain

models (Reichstein et al., 2019). Despite a growing selection of interpretability methods,

the consensus remains that current interpretability methods are inadequate at explaining

predictions in a way that is sufficient for scientific knowledge extraction (Miller, 2019;

Roscher et al., 2020), as well as existing and upcoming regulatory frameworks, such as the

European AI Act (Gevaert, 2022).

In the context of LQs, a mix of methods has previously been used in order to understand

the prediction patterns of models. Two prominent approaches emerge in the current

literature. Firstly, post-hoc interpretation methods are prominently used for both natural

images and RS imagery. On natural images, post-hoc methods are commonly used to

relate LQ predictions to objects seen in the image. For instance, urban perception factors

can be related to the presence of objects in urban spaces (Zhang et al., 2018; Zhang

et al., 2019; Qiu et al., 2022). Research using RS imagery often relates predictions to

spatial datasets, such as demographics. For instance, local climate zones have been

post-hoc compared to quality-of-life factors (Sapena et al., 2021), and urban vitality

has been related to neighbourhood characteristics (Scepanovic et al., 2021). A second
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prominent direction of interpretability methods concerns intrinsically interpretable models

(Marcos et al., 2019; Koh et al., 2020; Gevaert, 2022). The intent is to design model

architectures that give explanations as part of their design, rather than to implement

interpretability approaches only once a model has already been trained. One such class of

models is semantic bottlenecks (Marcos et al., 2019; Nguyen et al., 2022), also referred

to as Concept Bottlenecks (Koh et al., 2020). These models use a set of predictive tasks

related to the detection of the presence of concepts understandable by humans and then

use them as a starting point to constrain the prediction of a final dependent variable.

For instance, a landscape is made of distinct objects (trees, rocks, and a lake), materials,

and textures. Deep learning models have been trained to learn the relation between

objects, concepts, and scenicness (Marcos et al., 2019), groupings of objects, concepts,

and scenicness (Marcos et al., 2021), and to discover relevant concepts (Arendsen et al.,

2020). However, models with intrinsic interpretability have not been attempted yet for RS

imagery for LQ assessments.

1.3 Research gaps

Landscapes are an important resource for human activities and ecosystems alike. Studying

the qualities they exhibit can aid in understanding how they are used. While current

research has established that LQs can be predicted from both natural and remote sensing

images using ML methods, there are several issues limiting the impact and practical

applicability of such approaches.

There is a notable lack of interpretability methods tailored for DL methods, in

particular for RS imagery (Tuia et al., 2021; Gevaert, 2022). The lack of existing methods

makes it difficult to discover new knowledge from studies that use DL methods. This lack of

interpretability limits the amount of new insights that can be acquired, which makes them

less attractive for end-users. While existing research has considered the interpretability

of LQ assessments from natural images, more research is needed to determine which

interpretability methods are suitable for assessments involving RS images.

Recent research has proven that multimodal approaches can result in significant

performance improvements and new insights, whether fusing image modalities

(Gómez-Chova et al., 2015), or combining image modalities with other modalities, such

as text (Lobry et al., 2021). Natural images with location information are abundant in

the form of Google Street View imagery, as well as through social media platforms, which

may be combined with RS imagery to cover the weaknesses of each modality (Munoz

et al., 2021; Zhu et al., 2022). However, few LQ assessment studies have attempted to use

multimodal approaches, and as such, it is not yet clear which modalities should be used

and which benefits they may bring.
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Lastly, LQ prediction using DL models, using either natural images or RS

imagery, depends on the availability of datasets with thousands of examples.

As a result, any study attempting to measure new LQs will require a substantial data

collection effort and may have latent biases due to a lack of oversight into the many images

and labelers used to create the datasets (Gebru et al., 2021), which gets exacerbated by

processes such as crowdsourced data collection (Deng et al., 2009). This is especially

the case for recent models trained on captioned images scraped from the internet, which

are often comprised of hundreds of millions of examples (Radford et al., 2021). The

dependence of DL models on large datasets also makes it more difficult to undertake

small-scale studies with fewer participants, which are typical for applied LQ research

(Jacques, 1980; Wherrett, 1998). As a result, there is a considerable mismatch between

DL methods and applied LQ research regarding dataset requirements. To bridge this

gap, studies are needed into data-efficient training regimes for the DL-based prediction of

LQs.

1.4 Objectives

While previous research has proven that assessing LQs through DL methods is feasible,

several issues are limiting their practical usefulness. Large datasets are needed in order

to train models, and their prediction patterns are difficult to understand. As such, the

objective of this thesis is to study and address these shortcomings through the following

four research questions:

RQ 1: Which patterns can be modelled and reproduced through DL-based LQ assess-

ments?

RQ 2: How can LQ assessment workflows using DL be made more interpretable so

that it is easier to acquire new knowledge?

RQ 3: What are the benefits and challenges of multimodal DL approaches for LQ

assessments?

RQ 4: Which approaches are effective at reducing the dependence on large datasets

for LQ assessments using DL models?
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Figure 1.3: Conceptual framework of the thesis. The thesis first presents two chapters on
interpretability (RQ. 2), and the remaining two are about multimodal research (RQ. 3). RQ.1
is studied in all research questions, while Chapter 4 is dedicated to RQ. 4.

1.5 Contributions

The research questions posed in the previous section are answered through four research

papers, which are presented as chapters in this thesis. Figure 1.3 provides a graphical

overview of how each chapter interacts in a conceptual framework. The first two chapters

of the thesis aim to better understand the task of LQ assessment using RS images. The

latter two chapters explore multimodal approaches to explore their performance potential,

as well as multimodal co-learning in order to use smaller datasets.

Chapter 2 introduces the task of liveability prediction from aerial images for the entirety

of the Netherlands. Firstly, it assesses the feasibility of liveability prediction using DL

methods from RS imagery (RQ. 1). This chapter also considers the interpretability of

models trained on RS data. For this purpose, an interpretable-by-design linear semantic

bottleneck model is designed that uses concept classes that contribute to liveability.
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Experiments are also performed for the post-hoc interpretation of the model (RQ. 2).

This chapter uses contents from the following publication:

Levering, A., Marcos, D., van Vliet, J., Tuia, D., 2023. Predicting the liveability of

Dutch cities with aerial images and semantic intermediate concepts. Remote Sensing of

Environment 287, 113454. https://doi.org/10.1016/j.rse.2023.113454

Chapter 3 studies how well scenicness can be predicted from an overhead perspective

(RQ. 1), and it addresses the lack of interpretation methods tailored for LQ assessments

from RS images (RQ. 2). It extends the use of semantic bottlenecks for RS data to the

prediction of scenicness from satellite imagery, and improvements are made to their ability

to model complex patterns. The architecture uses land cover as an intermediate concept,

which makes it possible to study how land cover classes relate to scenicness. This chapter

was published as follows:

Levering, A., Marcos, D., Tuia, D., 2021. On the relation between landscape

beauty and land cover: A case study in the U.K. at Sentinel-2 resolution with in-

terpretable AI. ISPRS Journal of Photogrammetry and Remote Sensing 177, 194–203.

https://doi.org/10.1016/j.isprsjprs.2021.04.020

In Chapter 4, a multimodal learning approach for housing quality is attempted. Features

extracted from natural images are fused with aerial overhead images in order to test how

well housing quality at the grid level can be predicted for the city of Amsterdam (RQ. 1).

It considers the performance benefits that multimodal approaches to natural and remote

sensing images may bring (RQ. 3). This work has been published as follows:

Levering, A., Marcos, D., Havinga, I., Tuia, D., 2021. Cross-Modal Learning of

Housing Quality in Amsterdam, in: Proceedings of the 4th ACM SIGSPATIAL Inter-

national Workshop on AI for Geographic Knowledge Discovery, GeoAI 2021, pp. 1–4.

https://doi.org/10.1145/3486635.3491067

In Chapter 5, several strategies for data-efficient workflows are tested for the task

of scenicness prediction from natural images. Firstly, methods are tested for learning

and predicting using small labelled image datasets (RQ. 4). Secondly, a small dataset

consisting of text descriptions of scenicness is gathered from volunteers and used to predict

scenicness as an alternative to image ratings, which tests the use of multimodal approaches

for the creation of new datasets (RQ. 3), as well as the use of text as a modality for

scenicness prediction (RQ. 1). This chapter has been submitted as follows:

Levering, A., Marcos, D., Tuia, D., Jacobs, N., 2023. Prompt-guided and multimodal

landscape scenicness assessments with vision-language models, PLOS One.





Chapter 2

Predicting the liveability of dutch

cities with aerial images and semantic

intermediate concepts

This chapter is based on:

Levering, A., Marcos, D., van Vliet, J., Tuia, D., 2023. Predicting the liveability

of Dutch cities with aerial images and semantic intermediate concepts. Remote Sensing of

Environment 287, 113454. https://doi.org/10.1016/j.rse.2023.113454
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Abstract

In order to provide urban residents with suitable living conditions, it is essential to keep

track of the liveability of neighbourhoods. This is traditionally done through surveys and

by predictive modelling. However, surveying on a large scale is expensive and hard to

repeat. Recent research has shown that deep learning models trained on remote sensing

images may be used to predict liveability. In this paper we study how well a model can

predict liveability from aerial images by first predicting a set of intermediate domain scores.

Our results suggest that our semantic bottleneck model performs equally well as a model

that is trained only to predict liveability. Secondly, our model extrapolates well to unseen

regions (R2 between 0.45 and 0.75, Kendall’s τ between 0.39 and 0.57), even to regions

with an urban developmental context that is different from areas seen during training.

Our results also suggest that domains which are directly visible within the aerial image

patches (physical environment, buildings) are easier to generalize than domains which

can only be predicted through proxies (population, safety, amenities). We also test our

model’s perception of different neighbourhood typologies, from which we conclude that our

model is able to predict the liveability of neighbourhood typologies though with a varying

accuracy. Overall, our results suggest that remote sensing can be used to extrapolate

liveability surveys and their related domains to new and unseen regions within the same

cultural and policy context.
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2.1 Introduction

The living standards of a neighbourhood may have a significant effect on the health of

its residents. Residents of destitute neighbourhoods are prone to several health risks,

such as increased morbidity rates (Barber et al., 2016), mortality rates (Haan et al.,

1987), and worse dietary and physical activity patterns (Thompson and Kent, 2014).

Similar patterns are observed for housing, where lower-quality housing also results in worse

mental well-being (Evans, 2003). As such, it is important to monitor the wellbeing of

a neighbourhood for the benefit of urban residents. For this purpose, researchers have

studied how factors relate human wellbeing to their living environments using the liveability

framework. The liveability of a society can be understood as ”the degree to which its

provisions and requirements fit with the needs and capacities of its members” (Veenhoven

et al., 1993). In the context of living environments, examples of the needs and capacities

required may be housing that is of adequate size and quality for its residents, provision

for adequate travel to work, and sufficient green space in the neighbourhood. Research

has since advanced the theoretical underpinnings of liveability research. Kamp et al.

(2003) argue that a conceptual framework of liveability would ”allow for a more theory-

based choice of indicators, and for the development of tools to evaluate multidimensional

aspects of urban environmental quality”. The leefbaarometer project (referred to as LBM

hereafter) initiated by the Dutch government (Leidelmeijer et al., 2014) follows up on

that suggestion. The LBM project was set up to survey the liveability of neighbourhoods

across the Netherlands, and to subsequently model the liveability using variables that can

be applied nation-wide, such as housing quality and greenspace proximity. In doing so, the

authors assess which variables are relevant for liveability on a nation-wide scale. Linking

such survey data to empirical and statistical data may improve our understanding of what

makes cities liveable. However, a notable drawback to using manually collected data, such

as surveys, is the difficulty of upscaling and repeating results.

Remote sensing methods have long been used to extract intermediate variables for liveability

prediction, such as the prediction of urban greenery (Jensen et al., 2004; Li and Weng,

2007; Rahman et al., 2011), rather than the prediction of liveability directly from imagery.

Studies attempting to recognise the qualities of cities have considered various intermediate

variables, such as urban morphology (Taubenböck et al., 2012; Rodriguez Lopez et al.,

2017; Tian et al., 2022), local climactic conditions (Bechtel et al., 2015; Qiu et al., 2019;

Liu and Shi, 2020), and urban land use (Srivastava et al., 2019; Rosier et al., 2022). Recent

advances in machine and deep learning have enabled research that predicts liveability

variables directly from overhead imagery. Remote sensing models have the benefit of high

scalability and better monitoring in regions with poor data availability (Kuffer et al., 2020,

p. 18). In regions with greater data availability, much research has gone into hedonic

housing pricing as a means of predicting the attractiveness of neighbourhoods. Hedonic

housing pricing attempts to capture the value of a property based on its intrinsic value
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as well as external factors affecting it. The main value of remote sensing for hedonic

pricing is the inclusion of contextual information about the immediate and larger area of

surroundings (Bency et al., 2017, p.5). Yao et al. (2018), for example, fuse remote sensing

imagery with social media data to predict housing prices in Shenzhen, China, with highly

accurate results.

Recent studies have attempted to directly predict variables relating to liveability in

countries with high data availability. Arribas-Bel and colleagues trained machine learning

models to recognise living environment deprivation from high-resolution aerial images over

the city of Liverpool in the United Kingdom (Arribas-Bel et al., 2017). Singleton et al.

(2022) use an autoencoder model to extract features describing Sentinel-2 satellite image

tiles of neighbourhoods across the UK. These features were clustered to form neighbourhood

typologies and subsequently related to urban deprivation data. However, the clustered

neighbourhood representations proved insufficient to explain urban deprivation. Suel and

colleagues study income, overcrowding, and environmental deprivation using a multimodal

approach, using both Google Street View and 3m resolution Planet satellite images over the

Greater London region (Suel et al., 2021). Their findings confirm that high-resolution aerial

images on their own can approximate the trend of urban deprivation at the neighbourhood

level. Scepanovic et al. (2021) use Sentinel-2 image tiles to predict the vitality (presence of

people throughout the day) of Italian cities at the district level through several experiments.

The authors predict six physical descriptors of urban form relating to land use and block

size from Sentinel-2 image patches across Italian districts and infer their usefulness for

predicting vitality. This first experiment showed limited accuracy, most likely due to the

resolution of the Sentinel-2 image tiles. In their second experiment, the authors predict

urban vitality (as measured by mobile internet usage) directly from Sentinel-2 image

features and the capacity of models to generalise between cities. Their results indicate that

generalisation of urban vitality is possible, but generalizing their model to Rome resulted

in a notable decrease in accuracy, as it is historically, culturally, and naturally distinct from

the other cities within their dataset. Huang and Liu (2022) use a deterministic approach to

model the liveability of 101’630 communities in China in 42 major cities, guided by expert

decisions. A total of 27 liveability factors are extracted using high-resolution satellite

imagery and subsequently weighted according to expert opinions. Their work presents the

first large-scale assessment of the liveability of urban communities in China.

Previous work has attempted to study remotely sensed liveability by observing a limited

number of components relating to liveability at a time and without taking into account

surveyed resident opinions. In doing so, they have confirmed that individual liveability

factors such as income, environmental deprivation, and block size can be suitably predicted

through optical remote sensing. Yet, it is unclear to what extent different domains relating

to liveability can be predicted from remote sensing imagery. Therefore, in this paper,

we study how well different domains of liveability may be predicted from high-resolution

aerial imagery on a neighbourhood scale. We set out to determine the suitability of remote
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sensing for interpolating and extrapolating large-scale inventories of liveability. Moreover,

we explore how a model with a semantic intermediate layer compares to a model that

only predicts liveability. Specifically, we compare how the liveability prediction as a linear

combination of domain scores compares against a direct prediction of liveability. Lastly,

we evaluate how well liveability domains can adapt to unseen geographical contexts as

well as building typologies. We formulate and address two research questions for our

research:

1. How well can we predict different domains of liveability?

2. How well does a bottleneck model predict compared to an unconstrained model?

The remainder of the paper is as follows: In section 2 we present the dataset used in our

study and our model architecture. In section 3 we present the metrics and maps for our

experiments. Lastly, in section 4 we reflect on our results and their relevance for liveability

monitoring.

2.2 Material and methods

We are interested in training a deep learning model to predict liveability on a neigh-

bourhood scale by first predicting domain-specific liveability contribution scores as a set

of interpretable semantic intermediate concepts. For this purpose, we use a semantic

bottleneck model (Marcos et al., 2021; Koh et al., 2020), which uses an intermediate

linear layer with semantic concepts, which are then used to predict a final objective. For

this purpose, we need a dataset of overhead aerial images, neighbourhood-scale labels of

liveability, and a deep learning model architecture that can first predict individual domain

scores and then regress the overall liveability score through the domain-specific scores. We

discuss these requirements in order.

2.2.1 Dataset design

To train our model, we require a labelled dataset of liveability scores and overhead aerial

imagery (Figure 2.1). Additionally, we make use of a series of domain scores, which

decompose the liveability score into a series of explainable aspects. To build this dataset,

we use nationally available data sources in the Netherlands. Specifically, we consider 13

built-up areas of varying sizes, ranging from village (Beesel) to metropolis (Amsterdam).

Selected built-up areas are listed in Table 2.1.

Liveability reference data

The reference data for liveability used in our research is made available by the leefbaarometer

(LBM ) project (Leidelmeijer et al., 2014), an ongoing liveability monitoring project initiated

by the Dutch government. For this purpose, the authors collected a dataset with over 100
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Figure 2.1: Workflow for generating our reference data. From the LBM dataset, we extract
the domain scores and the final liveability score. The domain scores are a decomposition of the
liveability score, which reflects how each domain contributes to the overall liveability of a grid
cell. For our image patches, we use the grid cell as the centre for a 500 by 500-pixels patch at
1 metre resolution. The 400 by 400-metre overlap with other grid cells ensures that the patch
size is equal to the spatial sum operation that was performed for the original variables of the
LBM dataset.

variables for use in regression models to predict liveability. These variables are available

for all neighbourhoods in the Netherlands at the scale of an individual street. Where

applicable, variables are summed over a radius of 200m around each neighbourhood to

reduce the occurrence of outlying neighbourhoods with few respondents in the dataset. The

input variables can be assigned to five domains. The following broad groups of variables

are considered for each domain:

� Population: Welfare factors, age groups, residuals for family composition, and

ethnic composition after controlling for income

� Physical Environment: Green/grey area descriptors, proximity to water/green

areas, proximity to nuisances (e.g., trains/roads)

� Safety: Number of occurrences for several broad crime categories

� Amenities: Amenities within 1-20km distance, e.g., cafes, hospitals, schools

� Buildings: Building age groups per 10 years after 1900, ownership status, simple

typology descriptors e.g., pre/post-war

For a complete description of all 100 variables used by the LBM project we refer the reader

to Table 7.1 of the documentation (Leidelmeijer et al., 2014, p.91). In the discussion, we
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elaborate on the use of stigmatising variables for the population domain score and the

problems arising from it.

These 100 variables belonging to five domains are then used as the input for two linear

regression models. The first model regresses the surveyed resident liveability opinions.

Respondents were asked three questions about their satisfaction with their living situation

and asked to answer on a scale of 1–5 for each question, where 5 is ”most satisfied”. The

average of these three questions is used as the response variable for the first regressor,

after correcting for the age of residents. The second model uses a hedonic pricing approach

to estimate housing prices for a neighbourhood derived from nationally available property

value estimates. From these two linear regression models, each neighbourhood is assigned

the averaged z-score of these models as the single overall liveability score, shown on the

right side of Figure 2.1. Hereafter, we will refer to this averaged z-score simply as the

liveability score. By grouping the 100 variables into five domains and averaging their

coefficients, the contribution of each domain to the overall change in z-score can also

be computed for each domain. We refer to these grouped scores as domain scores. The

five domain scores are fundamentally different in nature. Some domain scores can be

observed directly from aerial images. This group consists of the buildings and the physical

environment domain scores. We refer to these scores as direct scores. The other three

domain scores cannot be observed from aerial images but should instead be predicted by

proxy correlations. For instance, for the Population domain score, the model could learn

that large single-family houses generally have a more affluent population, thereby learning

a correlation as a proxy for the prediction of the domain score. We refer to these domain

scores (Population, Safety, and Amenities) as indirect scores.

The veracity of the outcomes of the LBM project was verified through interactions with

policymakers. For all of the 13 built-up areas considered in this research, the results

truthfully reflected the general liveability trends (Leidelmeijer et al., 2014, p.100). The

liveability score and the domain scores are re-predicted bi-yearly from 2014 onwards. For

privacy reasons, the dataset could not be made available at street level. Instead, all

variables and scores are made available at a resolution of 100 metres through a gridded

dataset. We use the grid cells made available in this research as the basis for our dataset,

for both their spatial extent and as reference data.

Neighbourhood liveability patches

We use the gridded dataset provided by the LBM project as the starting point for our

dataset of neighbourhood liveability patches. We use the liveability scores made available

for the year 2016. We do so first because it is the closest year to which there is a nationally

available aerial image (2016). In total, we use 51’781 grid cells from the dataset over the

13 built-up areas within our dataset. The samples used from each built-up area are shown
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Table 2.1: Samples per split and municipal population census numbers for each built-up area.
Population data is derived from the Dutch statistics agency (CBS, 2016)

Built-up area Training Validation Testing Population (2016)
Almere 1’856 1’206 - 198’145
Amsterdam 7’116 2’609 - 833’624
Arnhem 3’713 722 - 153’818
Beesel - - 388 13’388
Dordrecht - - 3’548 118’801
Eemsdelta 607 238 - 47’080
Eindhoven - - 6’490 224’755
Groningen 2155 718 - 200.952
Hengelo - - 3’034 81’075
Nijmegen 3’071 1’068 - 172’064
Rotterdam 8’439 1’823 - 629’606
Venlo 1’074 664 - 100’371
Weert 1’008 234 - 49’100
Total 29’039 9’282 13’460 -

in Table 2.1. We use the five domain scores and the overall liveability scores (middle and

right columns of Figure 2.1 respectively) as the liveability labels of our patches.

For the overhead aerial imagery, we use images from the national composite aerial image

from 2017, made available by the Dutch government (PDOK, 2017). The original composite

image is available at 0.1m resolution with four bands (red, green, blue, and near-infrared

(NIR)) and is entirely cloud-free. We do not perform additional pre-processing steps

such as geometric correction, as this has already been done by the data provider. We

downsample the pixel size to 1m.

Beyond determining how well liveability can be predicted, we are interested in monitoring

it over multiple timesteps. However, high-resolution imagery available for past years does

not have NIR information. To ensure the compatibility of our analyses with historical

aerial image data in the Netherlands, we exclude the NIR band from our main analyses. In

future work, we will explore the feasibility of time series mapping for liveability. However,

we study the effect of adding the NIR band to our liveability prediction model in the

results and discussion section, where we report the numerical results for a model trained

on all four bands.

As some LBM variables are summed over a radius of 200m around the grid cells, the square

patch size should cover at least 500 by 500 metres such that it approximates the extent

of the LBM grid cell centres. As such, we extract patches of 500 by 500 pixels centred

on each grid cell. As a result of the image patch being larger than the 100 by 100-metre

LBM grid cells, there is an overlap with the 24 neighbouring aerial image patches.
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Figure 2.2: Left: Liveability scores over Amsterdam ranging from -1.10 (lowest, red) to 1.06
(highest, blue). Right: Example of data splits. Grid cells marked with dark grey are used
during training. Blue grid cells are used for validation. In the top right, we show built-up
areas that are considered. Areas marked with white points are used for training and validation,
while areas marked with orange points are used only during inference.

Data splitting

We use data from nine built-up areas for training and validation. Within each area, we

create square blocks of patches for validation, and we assign the rest to the training set.

Through the overlap with neighbouring patches, some of the validation set is seen during

training. However, this was not found to result in issues with generalisation during testing.

We use the remaining four built-up areas as an independent test set. The four cities were

chosen for their geographic diversity and size. Dordrecht is proximate to Rotterdam, and

it is part of the Randstad area, which is the largest conurbation of the Netherlands. As

Amsterdam and Rotterdam are part of the training dataset, Dordrecht is therefore the

most similar city in the test set. Eindhoven and Hengelo are both cities that follow a

different development pattern compared to those in our training split. Both cities began

to develop significantly as a result of industrialization, which makes them developmentally

distinct from the cities in our training split. This difference in developmental context

allows us to study how well our model adapts to unseen developmental layouts. Lastly,

Beesel is a small village along the German border, which tests the model’s ability to

transfer to smaller settlements (as Beesel is the only village in the training dataset), and

to remote regions. We show an example of our training and validation set stratification

for the municipality of Amsterdam in Figure 2.2. We show the number of samples per

split in Table 2.1.

2.2.2 Bottleneck CNN for liveability prediction

In this section, we present the interpretable bottleneck model used to predict liveability

from overhead aerial images. We use a two-step approach to predicting the overall liveability

score of an area. To obtain a transparent and interpretable prediction of liveability that

is concordant with the design of the LBM scores, we use a semantic bottleneck design
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Figure 2.3: Architecture of our model. Using a CNN, we first extract a vector of features r.
We then construct the rows of the feature matrix C, where each row is a feature vector Ci that
is specific to one domain score. Each feature vector is then used to compute a domain score di.
Finally, the domain score vector d is used to compute the overall patch liveability score l̂.

(Marcos et al., 2021; Levering et al., 2020). A semantic bottleneck forces the prediction of

a final layer to be interpretable by first predicting a set of semantic concepts, which are

then linearly re-combined to predict the target variable. We chose this type of architecture

because the LBM is, by design, a combination of the five domain scores. We can therefore

use the semantic bottleneck to enforce the prediction of the liveability to be a linear

combination of the domain scores, and this mimics the logic of the original LBM model.

As such, our model is tasked with predicting concepts as a vector of domain-specific

sub-scores, which we denote with d. These domain scores are then used in a linear layer

with a bias term to regress the predicted patch liveability score l. Our architecture is

shown in Figure 2.3.

Our model is first tasked with extracting relevant features for the prediction of liveability.

The feature extractor takes the aerial image patch as input and produces a global feature

vector r. We use a standard convolutional neural network feature extractor for this purpose.

Using this global feature vector r, we then predict a liveability domain score for each of

the i ∈ {1 . . . D} ∈ N domains being considered. These liveability domain scores describe

the contribution of different domains to the overall liveability of a place in explainable

aspects, such as amenities and safety. The domain scores correspond to the domain scores

presented in the middle columns of Figure 2.1. To predict the domain scores, we use

a two-layer Multi-Layer Perceptron (MLP) to create each row of the feature matrix C.

The first linear layer recombines the extracted features into a 250-dimensional vector,

which is activated by a ReLU non-linearity. Notice that this feature vector Ci represents

a summary of the features as they are relevant for each domain, which we leverage when

interpreting the model’s propositions in Section 2.3.2. The second layer of each MLP

uses the feature vector Ci to regress the domain-specific liveability sub-score, which are

the scores in the middle column of Figure 2.1. We then concatenate all of the liveability

domain scores to form the domain score vector d. From the liveability domain score vector

d (plus a bias term), we then directly regress the overall liveability score l̂. In doing so, we

enforce that the overall scenicness is only predicted by the linear combination of domain

scores rather than spurious correlations that the model may pick up from the aerial images.
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As the domain scores are predicted as an intermediate task in our model, we can assess

their accuracy to determine how well liveability domain scores can be predicted (research

question 1).

Our model is trained using a combination loss of the domain score losses and the liveability

score loss. The domain score loss is given as the sum of the mean squared errors over all

of the domain scores w.r.t. their reference score d̂i:

Ldomain =
D∑
i=1

(di − d̂i)
2 (2.1)

The loss of the liveability score is the mean squared error w.r.t. the reference score l̂:

Lfinal = (l − l̂)2 (2.2)

Finally, we combine both scores to create the overall loss to propagate:

λLdomain + Lfinal (2.3)

where λ is a weighting term set empirically to regulate the importance of the domain

scores compared to the liveability score prediction.

2.2.3 Set-up

Our feature extraction model is a ResNet-50 (He et al., 2016) pre-trained on ImageNet

(Deng et al., 2009) from which we remove the final fully-connected layer. Our model is

trained on a single NVIDIA TitanX GPU with a batch size of 20. We optimise our models

using the AdamW optimiser (Loshchilov and Hutter, 2019) with an initial learning rate of

5e−5 and weight decay rate of 1e−4. We train our model for 15 epochs. To prevent that

the model learns a set of features unrelated to the domain scores in feature matrix C,

we set the weighting term λ of Eq. (3.8) to 100 such that the model favours the correct

prediction of the intermediate task over the predictions of the final linear layer.

We assess the quality of our results with three metrics for each of the five domain scores of

the LBM dataset, as well as for the overall liveability score. Firstly, we calculate the root

mean squared error as a measure of error for all scores. Secondly, we calculate the coefficient

of determination (R2) to determine the quality of the fit for each score. Lastly, we compute

Kendall’s τ (Kendall, 1938), which measures the ranking of neighbourhood patches. This

is possible because the liveability scores in our dataset may also be interpreted as ordinal

variables, in the sense that the quality of each neighbourhood can be compared to every
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other neighbourhood, which represents a ranking. Kendall’s τ ranges from a perfectly

inverse correlation given as -1 to a perfect correlation given as 1.

In order to assess how well a bottleneck model performs compared to an unconstrained

model (research question 2), we also train an unmodified ResNet-50 model. This unmodified

model is tasked with predicting the overall liveability score without the semantic bottleneck

and serves as a baseline against which the bottleneck model is compared.

Lastly, we train a model on the aerial image patches with the NIR band included to assess

how this affects liveability prediction. We use the same hyperparameter selection, and we

initialise the network using pre-trained ImageNet weights (Deng et al., 2009). We use the

weights from the red band for the NIR input channel.

2.2.4 Feature vector analyses

In order to understand our model’s perceptions of the five domain scores and the liveability

score, we designed a series of feature vector analysis experiments that help explain

how the model observes the different domains of liveability. We use t-SNE embeddings

and neighbourhood typology data to further understand how our model observes urban

spaces.

t-SNE embeddings

We assess the model’s visual perception of the different neighbourhood typologies. To do

so, we perform t-SNE dimensionality reduction (Maaten and Hinton, 2008) to visualise

the latent space of the feature vectors of our model. t-SNE iteratively projects the high-

dimensional space into a lower number of dimensions while preserving their neighbourhood

structure in the original high-dimensional space. By doing so, we can reduce the feature

vectors to just two dimensions while respecting the non-linear relationships learned by the

model in the original high-dimensional space. This allows us to visualise which patches are

considered visually similar by the model. We perform t-SNE dimensionality reduction on

the buildings row of the domain feature matrix, which is Cbuilding, and the global feature

vector r. We use a perplexity (balance between global and local patterns) of 100, a learning

rate of 500, an early exaggeration (tendency for clusters to become compact) of 150, and

we run our model for 1’000 iterations. We consider all patches in the dataset, rather

than just the test set patches, in order to analyse data structures across the 13 built-up

areas. We can then overlay the neighbourhood typologies of each patch for each point

in the reprojected 2-dimensional space, allowing us to infer the visual homogeneity of

neighbourhood typologies for that particular score.
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Table 2.2: Neighbourhood typologies considered for our feature vector analyses, as defined by
Kleerekoper (2016)

Typology Period Characteristics
Historical inner city < 1900 3-5 layers, much concrete

Pre-war block 1900-1940 3-4 layers, moderate amount of greenery
Working-class district 1910-1940 2-3 layers, single-family houses, little to

no greenery
Post-war district 1945-1990 2-3 layers, gardens, diversity in housing

styles
Cauliflower district 1970-1990 Single-family housing with gardens,

winding streets, lots of green

Sub-urban expansion (Vinex) 1990-present Large diversity in housing styles
Renovated low-rise 1990-present Neighbourhoods which have undergone

renovation
Villas All Spacious, single houses

2.2.5 Neighbourhood typologies

The Netherlands has a long history of spatial planning and zoning, which has been exten-

sively described and documented in official policy and literature (Ministry of Infrastructure

and the Environment, 2012). Over the years, there have been many different planning

philosophies intended to address the housing needs at the time. The LBM project did not

explicitly take into account the neighbourhood planning styles but rather used decade-

spanning building age groups. As such, the neighbourhood typologies can be considered a

more complete description of the neighbourhood style compared to the age brackets of the

LBM. We perform two experiments using the neighbourhood typologies. Firstly, we assess

how well our model is able to perceive the liveability of neighbourhood typologies through

scatterplots, which compare the predicted liveability to its reference value for each patch

with a significant amount of a given typology. Secondly, as part of our feature vector

analyses, we can assess how our model perceives the homogeneity of different typology

styles as well as the links between certain planning styles as defined by Dutch planners. It

is expected that patches with the same neighbourhood topologies would group together,

as they share similar visual characteristics.

Our typology reference dataset is formally defined by Kleerekoper (2016). Here, we use a

subset of 8 neighbourhood typologies, T (see Table 2.2). In our selection, we consider a

variety of different design styles, the number of building layers, and construction periods.

The typologies are digitised by the climate atlas of the Netherlands initiative (Kleerekoper

et al., 2018). This dataset consists of district-level polygons, listing the relative presence

(%) of each typology in each district. Since they cover districts, the polygons are only

available at a coarser resolution than the grid cells of the LBM. To match the typological
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Table 2.3: Performance difference on the test set between a model trained with only RGB
information, and a model with the NIR band included.

RGB-only RGB+NIR
Score RMSE R2 τ RMSE R2 τ

Population 0.045 0.61 0.46 0.051 0.55 0.41
Phys. env 0.049 0.61 0.41 0.05 0.69 0.51
Safety 0.089 0.61 0.50 0.078 0.68 0.47

Amenities 0.043 0.55 0.37 0.041 0.62 0.42
Buildings 0.064 0.70 0.51 0.058 0.73 0.54
Liveability 0.155 0.70 0.52 0.145 0.74 0.54

Table 2.4: RMSE scores achieved by the model within each built-up area of the test set.
(Pop.=population, P.env=physical environment, Amen.=Amenities)

Region Pop. P.env Safety Amen. Buildings Liveability
Dordrecht 0.052 0.048 0.082 0.037 0.067 0.150
Eindhoven 0.044 0.051 0.098 0.038 0.063 0.166
Beesel 0.031 0.046 0.072 0.080 0.047 0.100
Hengelo 0.042 0.048 0.077 0.050 0.063 0.141

presence of the district level to the grid level, we use the proportion of overlap between

the grid cell and each district polygon. For a given typology t ∈ T , a grid cell g ∈ G, and

a set of polygons overlapping the grid cell defined as P , we calculate the proportion of

each topology present as follows:

gt =
P∑

p=1

(
parea
garea

)pt. (2.4)

2.3 Results

2.3.1 Liveability prediction

In table 2.3, we show the R2 and Kendall’s τ metrics of both the RGB-only model and

the RGB+NIR model on the test set. We show both the five domain scores and the final

liveability score, which is regressed directly from the domain scores. The RGB+NIR model

is shown to outperform the model with just the RGB bands on most scores, with the

notable exception of the population score, where a decrease in accuracy occurs. The results

show that the addition of NIR information is useful when it is available, as it may result

in a better-performing model. However, historical aerial images in the Netherlands do not

have NIR information. The rest of the results and discussion sections are therefore based

on the RGB-only model to maintain compatibility of our analyses with future work.
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Table 2.5: R2 scores achieved by the model for each built-up area of the test set.
(Pop.=population, P.env=physical environment, Amen.=amenities)

Region Pop. P.env Safety Amen. Buildings Liveability
Dordrecht 0.65 0.47 0.65 0.71 0.76 0.70
Eindhoven 0.66 0.62 0.66 0.57 0.76 0.75
Beesel 0.24 0.31 0.54 0.03 0.60 0.45
Hengelo 0.42 0.56 0.62 0.47 0.65 0.63

Table 2.6: Kendall’s τ scores achieved by the model within each built-up area of the test set.
(Pop.=population, P.env=physical environment, Amen.=Amenities)

Region Pop. P.env Safety Amen. Buildings Liveability
Dordrecht 0.45 0.40 0.41 0.40 0.56 0.51
Eindhoven 0.49 0.50 0.48 0.38 0.55 0.57
Beesel 0.28 0.32 0.37 -0.02 0.39 0.39
Hengelo 0.39 0.46 0.43 0.36 0.48 0.47

In Tables 2.4, 2.5, and 2.6, respectively, we show the RMSE, R2, and Kendall’s τ metrics

obtained by the RGB-only model for each built-up area in our test dataset. Across all

regions, our model is able to infer the general trend of all scores, with some noticeable

exceptions. Firstly, the achieved metrics can vary strongly per region and domain score.

For instance, the model generalises far less well to Beesel, which is far smaller than the

other test sites. However, the decrease in performance is dependent on the domain scores,

with some scores being more affected than others.

In Table 2.7, we show the metrics for the validation validation set. We also show the

difference with the test set to show the capacity of each domain score to generalise to

unseen regions. Based on the decrease in metrics between the validation and the test set,

our results suggest that direct domain scores (physical environment and buildings) are

easier to generalise than indirect domain scores. This is mostly the case for buildings

(a minor decrease in R2 and even an increase in τ), and to a lesser extent for physical

environment.

We show a direct comparison between our model with a semantic bottleneck and a model

that is directly trained to predict liveability in Table 2.8. Our results show that the use of a

bottleneck model mostly improves performance on this task. While an unconstrained model

has a marginally better R2 score, the bottleneck model outperforms an unconstrained

model when considering Kendall’s τ .

Lastly, we show the spatial prediction patterns for both the overall liveability score for each

test set region as well as the buildings domain score. In Figure 2.4, we show the predictions

for the buildings domain score for all regions in our test set compared to the LBM labels.

The patterns for the four test regions show that our model provides smooth and consistent

predictions, and it is able to accurately capture the majority of the fine-grained trends. It
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Table 2.7: Metrics achieved by the model on the validation set and their relative difference to
metrics computed over the entire test set.

Score R2 % Change Kendall’s τ % Change
Population 0.84 −26.5% 0.66 −27.4%
Phys. env 0.87 −29.8% 0.64 −21.3%
Safety 0.84 −26.6% 0.65 −36.8%

Amenities 0.95 −41.9% 0.71 −48.9%
Buildings 0.85 −16.4% 0.68 −24.4%
Liveability 0.86 −18.3% 0.67 −22.2%

Table 2.8: Comparison of our model’s overall metrics for the liveability score to an unmodified
model tasked with directly predicting liveability from aerial images. The bottleneck model
matches an unmodified model in terms of R2 and surpasses it in Kendall’s τ .

Configuration Val R2 Test R2 Val τ Test τ
Bottleneck 0.861 0.670 0.670 0.521
Baseline 0.801 0.674 0.606 0.484

is, however, frequently unable to predict very positive or very negative building quality

scores. In Figure 2.5, we show the predicted liveability scores for each patch in the test

regions. Again, the model predicts the general trend correctly but struggles to predict

values towards either end of the distribution.
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Figure 2.4: Predictions for the buildings domain score for all regions in the test set. Deeper
shades of red represent a low building quality score, while deeper shades of blue denote high
building quality. The letters on the left-hand side are the first letters of each of our test regions.
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Figure 2.5: Predictions for the final liveability score for all regions in the test set. Deeper
shades of red represent a lower liveability score, while deeper shades of blue denote a higher
patch liveability score.

2.3.2 Feature vector analyses

Neighbourhood typologies

In Figure 2.6, we show the predicted distribution of scores for each of the neighbourhood

types. For each of the selected typologies, we show the building quality prediction
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distributions over the test set. Patches are included when there is 20% or more of the

given typology present within the neighbourhood. From these graphs, we show that our

model approximates the trend well for most typologies in our unseen test regions and with

similar accuracy.

In Figure 2.7, we show the same plot for the overall liveability score. Trends emerge

when comparing the scatterplots for the building quality score to the plots of the overall

liveability score. A notable difference is that the model is able to better predict the overall

liveability trend of the working-class districts, while it struggles to predict the housing

quality of these neighbourhoods in the unseen test regions.

Figure 2.6: Scatterplots of the buildings domain score for all patches in the test set for each of
the neighbourhood typologies considered in this research. Patches are included in a scatterplot
when there is 20% or more of the given typology present. We show the reference value of each
point on the x-axis and the predicted value on the y-axis.
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Figure 2.7: Scatterplots of the overall liveability score for all patches in the test set for each of
the neighbourhood typologies considered in this research. Patches are included in a scatterplot
when there is 20% or more of the given typology present. We show the reference value of each
point on the x-axis and the predicted value on the y-axis.

t-SNE embeddings

In Figure 2.8, we show a t-SNE plot of the 8 neighbourhood typologies for the global

feature vector r of Figure 2.3, which is the feature vector from which the domain feature

matrix C is then derived. The global feature vector r therefore represents an aggregate

summary of all 5 scores at once. As such, this plot represents which neighbourhood

typologies are similar across all domain scores. From the graphs, we can conclude that

most typologies contribute to domain scores in differing ways, resulting in a heterogeneous

spread across the plots, from which it can be deduced that only a neighbourhood typology

as a descriptive variable can not explain the variety of all domain scores. However, it

becomes more interesting when we consider the buildings domain score using Cbuildings.
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In Figure 2.9, we show a t-SNE plot of the 8 neighbourhood typologies for the buildings

domain score. This feature vector reflects only how the model perceives the building

quality of patches. The plots for the buildings domain score reveal that the selected

typologies have varying degrees of visual homogeneity, i.e., they occupy different regions

of the t-SNE space with different degrees of spread. Sub-urban expansion neighbourhoods,

renovated neighbourhoods, and historical inner city neighbourhoods are considered the

most visually homogeneous as perceived by our model.

In particular, the sub-urban expansion and renovated district neighbourhoods form a

single cluster of modern building styles (near example 3 of Figure 2.10), as both of these

typologies only appear after the 1990s. This period saw a paradigm shift towards sub-

urban construction, though this cluster does not fully encapsulate sub-urban trends, as, for

instance, villas are still predominantly present outside of it. The top-most cluster in the

t-SNE diagram (near example 1 of Figure 2.10) shows the dense inner city patterns that

are present predominantly in Amsterdam and Rotterdam, both historically and pre-war

districts. The visual dissimilarity of these areas from any other building style is particularly

striking, as they form a small but visually distinct cluster while much of the feature space

tends to clump together. It shows that these areas have exceptional properties when it

comes to building quality. And indeed, when compared to the other cities in the dataset,

Amsterdam and Rotterdam are the two most metropolitan areas within the dataset with

certain unique features, such as the canal houses in Amsterdam.

2.4 Discussion

2.4.1 Predicting the liveability of dutch cities with aerial images and semantic

intermediate concepts

The capability of the model to predict various domains varies strongly, as evidenced

by Table 2.7. Between the metrics that have been evaluated, the model is best able

to generalise the direct domain scores. The buildings domain score especially retains

good performance for both metrics in the unseen regions. It is followed by the physical

environment domain score, which sees a greater reduction in the R2 metric but retains a

high Kendall’s τ score. Of the indirect domain scores, only the population domain score

generalises well to unseen regions. While the safety domain score only sees a more drastic

reduction in Kendall’s τ , the amenities domain score sees a dramatic reduction in both R2

and Kendall’s τ on the test set. It has the best performance on the validation set, but the

strong decrease in performance suggests that amenities are not suitable to predict from

aerial images. It should be noted that there are better methods to determine access to

amenities compared to prediction from overhead imagery, such as using openly available

geodata registries (Sapena et al., 2021). However, in this research, we wanted to study the

consequences of predicting proxy variables without the use of auxiliary information in order
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Reference Predicted

Historical inner city Pre-war block Working-class
district

Post-war district

Cauliflower
district

Sub-urban
expansion

Renovated
district

Villas

Figure 2.8: t-SNE representation of the features from which the domain-specific feature
vectors are derived (vector r in Figure 2.3), overlaid with the percentage of each typology
that is present within a patch. Brighter colours represent a higher percentage of the typology
present.

to study the ensemble of domain scores and their link to liveability in a comprehensive

way. Compared to previous literature, our results lead to several observations. Firstly,

we corroborate the findings of Arribas-Bel et al. (2017) and Suel et al. (2019) that high-

resolution imagery can be used to predict indirect domain information. Secondly, building

on Scepanovic et al. (2021), our results also further prove that directly visible domains may

be predicted from remote sensing images. Thirdly, we demonstrate that an end-to-end

learned regression pipeline from components to liveability (e.g., the two-step regression

experiment of Scepanovic et al. (2021) for urban vitality) does not have to come at the

cost of performance on the final task. Lastly, our experiments for the first time raise the

proposition that domains relating to liveability that are directly predictable from aerial

images are easier to generalise to unseen regions than indirect domain scores.

Our results show that the use of an end-to-end trained bottleneck model generally improves

model performance for the final task of predicting liveability. Our bottleneck model matches
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Reference Predicted

Historical inner city Pre-war block Working-class
district

Post-war district

Cauliflower
district

Sub-urban
expansion

Renovated
district

Villas

Figure 2.9: t-SNE representation of the features used to predict the buildings domain score,
overlaid with the percentage of each typology that is present within a patch. Brighter colours
represent a higher percentage of the typology present.

the R2 metric of the unconstrained baseline model and slightly surpasses it on Kendall’s

τ . This shows that a linear mapping from the domain scores (which are a decomposition

of the overall liveability score) is sufficient for reconstructing the overall liveability score.

The reported metrics corroborate earlier findings that the intermediate prediction of a

semantic layer can increase the model’s performance on the final task (Levering et al.,

2020).

As evidenced by the results, models trained on aerial imagery can transfer fairly well to

unseen regions, even across developmental contexts. The cities in our training dataset

have a longer history than two of the cities in our test set, namely Hengelo and Eindhoven.

Both of these cities started growing as a result of industrialization. As such, their urban

form is partially different from the cities with a longer history. Despite this contrast, our

model does not have a decrease in performance compared to Dordrecht, which is a city

close to the Rotterdam metropolitan area with a longer history of growth. These results

suggest that the learned features are robust across developmental contexts. As a result,
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3

1

1. Amsterdam

85.2% Historical
inner city 
14.8% Other 

4

2. Arnhem

58.2% Pre-war block 
10.3% Villas 
7.3% Suburban
expansion 

6. Nijmegen

54.7% Post-war
block 
19.2% Villas 
26.1% Other 

5. Hengelo

53.1% Working
class district 
9% Cauliflower 
29% Other 

5

6

2

4. Eindhoven

82.9% Cauliflower  
9.7% Villas 
3.3% Renovated 

3. Almere

31.8% Suburban
expansion 
25.5% Villas 
18.4% Renovated 

Figure 2.10: Example aerial image patches with their corresponding neighbourhood-level
typology labels plotted over the buildings domain score embedding. Note that the neighbour-
hood typology information is often only available at a coarser spatial scale and therefore they
may not fully represent the individual patch content.

our findings suggest that extrapolation of liveability factors to unseen regions is a plausible

objective, even when generalising across developmental contexts. For amenities, the proxy

correlations from overhead images are especially tenuous. In the LBM project, the score is

originally predicted from distance variables that exceed the size of our 500-metre resolution

patches, for instance, the number of bars within a 2-kilometre radius of the neighbourhood.

As such, in a city environment, the model can accurately guess that most amenities are

close to a neighbourhood. The inclusion of amenities as a dimension score therefore allows

us to study proxy variables with an extreme example. The amenities predictions for Beesel
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Figure 2.11: Predictions for the Amenities domain score over the region of Beesel. The maps
highlight that the model fails to predict the trends present in the villages, leading to negative
performance metrics for this test region.

in Figure 2.11 showcase how transferability becomes a problem with proxy variables that

rely on urban context, as the model predictions are not at all correlated with the reference

labels. For the other three testing sites, this domain score generalises better, as they

are medium- to large-sized cities. However, as Beesel is a small village, the model loses

geographical context, as the proximity to important amenities such as hospitals is far less

certain.

In Section 2.2.1, we presented the variables used for the domain scores of the LBM project.

For the Population domain score, the variables included in this domain score can be

particularly stigmatising. The use of ethnicity data has especially drawn criticism from

researchers, as the inclusion of ethnicity without accounting for confounding variables may

lead to false stereotypes. While not accounting for confounding variables, the first version

of LBM was already used to justify policy decisions. The main concern for the research was

to maximise the R2 coefficient, and as a result, the researchers did not take into account

the importance of mitigating stigmatism (Uitermark et al., 2017). The second version of

the LBM has attempted to mitigate the stigmatising effects of including ethnicity variables

by only using the residuals after accounting for income. However, it was still widely

criticised (Baggerman, 2020; Teeffelen, 2021). In version 3.0 of the LBM, stigmatising

variables such as the ones used by population score have been phased out in favour

of a more generalised domain, namely social cohesion (Leidelmeijer and Mandemakers,

2020). However, during our analysis, this improved version was not yet available. In our

research, we have decided to use the population score as it represents a generalised score,

which allows us to determine how well socio-economic and socio-demographic data can be

predicted and how well this domain will generalise to unseen regions. However, we refrain

from analysing prediction patterns for this domain score so as to not perpetuate or justify

the use of these stigmatising variables.
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2.4.2 Perspectives for Liveability Monitoring with EO

In this section, we discuss how our research can help provide deeper perspectives for

liveability monitoring from remotely sensed imagery. There are several possible approaches

for modelling liveability using remote sensing. When liveability reference data is not

available, deterministic intermediate variables may be used as a proxy, where it is assumed

that each variable is an indicator for liveability. For instance, the United Kingdom uses

an index of multiple deprivation, which measures the relative deprivation of Lower Layer

Super Output areas with a mean population of 1’500 residents. The index is measured at

a fine-grained neighbourhood scale and considers seven domains (income, employment,

education, health, crime, barriers to housing and services, and living nvironment) (Penney,

2019). It combines these dimensions into a final deprivation index using different weights for

each dimension using guidance from liveability theory. Some of the individual deprivation

factors of this index of multiple deprivations have been predicted through remote sensing

(Arribas-Bel et al., 2017; Suel et al., 2021). In such a setup, the role of remote sensing would

be to interpolate and extrapolate intermediate variables in support of liveability modelling.

Liveability can also be modelled through remote sensing in an end-to-end manner by first

predicting intermediate factors and then recombined into a liveability score by using expert

opinions (Huang and Liu, 2022). Such a method allows for the acquisition of large-scale

inventories of liveability measurements without needing any reference data. The downside

to this deterministic measuring process is that the importance of intermediate variables

to liveability is not calibrated empirically through resident opinions. As such, the expert

opinions on which intermediate variables matter most may be different from the liveability

experienced by residents.

As a compromise between deterministic and empirical liveability modelling, hedonic pricing

assumes that housing prices are in part indicative of the liveability of a neighbourhood, as

people are willing to pay more for houses in liveable areas. This is a simple and scalable

assumption, which makes it attractive for large-scale modelling, as the definition of the

reference data is constant no matter the location. Therefore, if house sales information is

available, it may serve as a proxy for the liveability of an area (Bency et al., 2017; Yao

et al., 2018). However, the downside of hedonic pricing is that the assumed contribution

of liveability is not tested against resident opinions either, meaning that it may still be

off from the liveability experienced by residents. Moreover, a model may need more

information to infer how much signal can be attributed to the desireability of a location.

For instance, an area may have a poor quality built environment but very attractive

surroundings. As a result, it may trend towards the average.

The most informative type of reference data is based on surveyed resident opinions. Such

a data source does not assume that there is a relationship between proxy factors and

experienced liveability but provides the evidence to directly test such a hypothesis in

practice. However, fine-grained liveability reference data based on residents’ opinions is
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only scarcely available. Surveying efforts are expensive, hard to perform on a large scale,

and sensitive to a variety of biases, such as response bias (the tendency for respondents to

give inaccurate answers) and participation bias (the inability or unwillingness of certain

groups of residents to respond). A well-performed study at scale is therefore a labour-

intensive process. The privacy of respondents also needs to be respected, which further

complicates the spatial scale at which information is typically reported. This makes the

LBM a remarkable project, as it is on a fine spatial scale and is partially modelled on

the subjective opinions of residents. To our knowledge, it provides the first large-scale

yet fine-grained dataset of liveability that incorporates resident opinions, thus opening

possibilities for understanding liveability in the Dutch context, but with limitations that

we discuss in the next section.

2.4.3 Limitations

In our research, we use 1m resolution aerial image patches from the nationally available

aerial image, which is open data, while the liveability reference data is of fine spatial

resolution and nation-wide available as well. The unique availability of both data sources

allows us to observe liveability with unprecedented geographical scale, resolution, and

fidelity. While this work does allow us to pursue the limits of what may be measured at

scale from remote sensing imagery, it restrains the methodology to regions with similar

data availability. Despite this restriction, our results may be replicated in other countries

with liveability labels through commercial satellite services. In that sense, our results are

scalable to any region, but they are most strongly applicable to regions with high data

availability. Our results indicate that domains that can be observed directly through aerial

imagery are easier to generalise than domains that need proxies in order to be predicted.

This has practical implications for using remote sensing to fill gaps in data availability for

the purposes of predicting liveability. For instance, where possible, amenity data should be

derived from sources other than remote sensing imagery, as open geodata registries provide

coverage of the most important amenities for most countries. However, if building types

are largely homogeneous between two areas but building quality data is only available in

one area, then it may be worthwhile to gap-fill this data through remote sensing.

While liveability monitoring from Earth observation has been proven to work for several

different research cases and for each of the different types of reference datasets that are

available, the subjectivity of the topic continues to hamper comparisons across studies.

First, there is no standard definition for liveability, which plays a role in determining

a common ground for liveability studies (Paul and Sen, 2020). Second, the way it is

measured varies for each study, as do the variables and methods used to measure liveability.

We therefore consider liveability prediction to only be valid within the cultural context

in which it is measured, with very limited generalisation beyond this context. In other

words, the values that make a place liveable are culture- and location-specific. As such,

we do not believe that liveability prediction models could be applied out of the box in a
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completely different cultural context. While our models retain sufficient performance in

unseen cities for the extrapolation of liveability surveys, the entirety of our dataset falls

within the same cultural context, which is the Netherlands as a country. As such, our

dataset has a largely homogeneous cultural and policy context. Attempting to extrapolate

outside of the Netherlands, e.g., attempting to predict liveability in Belgium or Germany

with our model, will most likely be less successful due to a difference in cultural and policy

context.

The LBM project is an ongoing project that is still being updated. While the input

variables and the domains are updated between versions, the reference data upon which

the liveability scores are calculated remains unchanged. Meanwhile, the aerial image data

will be updated annually for the foreseeable future. As such, the data used in our study

can theoretically be used to test whether the relationship between the spatial configuration

of settlements and their liveability is persistent over time. As the temporal extent of the

datasets increases throughout the years, this option will become more salient as significant

changes to the liveability of a neighbourhood, such as gentrification and impoverishment,

will take years to manifest.

2.5 Conclusions

In this paper, we study the prediction of liveability from aerial images at the neighbourhood

level for 13 built-up areas in the Netherlands. To do so, we test the applicability of

remote sensing to predict five domain scores relating to liveability. We assess how well

domains that can be learned directly from the image content itself (physical environment

and buildings) can be predicted, as well as domains that require proxy correlations

(population, safety, and amenities). Our results indicate that liveability domain scores

generalise fairly well to unseen regions, even in regions with a different developmental

context. Furthermore, our results indicate that domains that can be directly predicted

from the image pixels generalise better than domains that rely on proxy correlations, as

the reduction in performance between the validation and the test set is lower for these

predicted domain scores. We also study how our model perceives the liveability of different

neighbourhood typologies. Our results indicate that our model is proficient at recognising

the liveability of different urban typologies, though with varying accuracy. Secondly,

through t-SNE dimensionality reduction, we inferred how our model observes homogeneity

within neighbourhood typologies. Our results show that our model considers certain

neighbourhood typologies to be visually distinct for the purposes of recognising building

quality, but less so for overall liveability. Our research suggests that remote sensing can be

used to extrapolate liveability surveys to new and unseen regions within the same cultural

and policy context. Finally, our study may enable longitudinal studies across time series

of aerial images in order to monitor liveability. The code for our project is available at

https://github.com/ahlevering/liveability-rs.
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Abstract

The environment where we live and recreate can have a significant effect on our well-being.

More beautiful landscapes have considerable benefits for both health and quality of life.

When we choose where to live or our next holiday destination, we do so according to

our perception of the environment around us. In a way, we value nature and assign an

ecosystem service to it. Landscape aesthetics, or scenicness, is one such service, which we

consider in this paper as a collectively perceived quality. We present a deep learning model

called ScenicNet for the large-scale inventorization of landscape scenicness from satellite

imagery. We model scenicness with an interpretable deep learning model and learn a

landscape beauty estimator based on crowdsourced scores derived from more than two

hundred thousand landscape images in the United Kingdom. Our ScenicNet model learns

the relationship between land cover types and scenicness by using land cover prediction as

an interpretable intermediate task to scenicness regression. It predicts landscape scenicness

and land cover from the Corine Land Cover product concurrently without compromising

the accuracy of either task. In addition, our proposed model is interpretable in the sense

that it learns to express preferences for certain types of land covers in a manner that is

easily understandable by an end-user. Our semantic bottleneck also allows us to further

our understanding of crowd preferences for landscape aesthetics.

3.1 Introduction

In a time where increasing urbanisation is a constant factor across the world, we sometimes

need a break from the busy and tiring reality of the modern city to enjoy greener and more

relaxing landscapes. Landscape beauty, also referred to as scenicness, is indeed a driver

for tourism (Krippendorf, 1984), while it is also a driver for the creation of cultural value

(Daniel et al., 2012; Havinga et al., 2020). Beyond providing tourists and artists with a

place to seek out, landscape scenicness has also been found to improve people’s quality of

life. Velarde et al. (2007) reviewed literature covering the relationship between health and

landscape beauty and found that observing scenic landscapes is associated with a reduction

in stress, improved attention capacity, better recovery from illnesses, a feeling of general

well-being, and positive improvements to one’s mood. Grinde and Patil (2009) conducted

a literature study on the relationship between plants and quality of life and found that

the absence of plants is associated with a lower quality of life and health. Seresinhe et al.

(2015) quantified the relationship between scenicness and self-reported health and found

that scenic environments are associated with an increase in self-reported health. In a later

study, they also considered the relationship between self-reported happiness and landscape

beauty and found that people are happier in scenic environments (Seresinhe et al., 2019).

As such, there is a significant incentive to know where scenic landscapes are located, as

well as to understand the factors that contribute to landscape scenicness.
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Much research has been devoted to determining landscape scenicness. Theoretical research

on the topic stems back to the 1960s through the 1980s, when major theories about human-

landscape interactions were formed, as summarised by Schroeder and Daniel (Schroeder and

Daniel, 1981). A popular measure for landscape beauty at the time was the Scenic Beauty

Estimate, which depended on crowdsourced ratings based on images of the landscape

(Daniel, 1976). As scenicness is a subjective quality (since ’beauty is in the eye of the

beholder ’), accessing such information directly from the observer was (and still is) the only

possible way, in the hope that the individual subjective views would then converge to a set

of collective rules of perceived beauty. The practice of estimating landscape beauty then

adopted digital means by the time that computers and geo-information systems became

widely available, such as relating crowdsourced scenic beauty estimates to land cover

types through geo-information systems (Palmer, 2004). Recent efforts in data collection

(Seresinhe et al., 2017) led to the distillation of the first large-scale crowd-sourced dataset

of landscape preferences, called ScenicOrNot1, consisting of 217,000 ground-level images

with scenicness scores from three or more annotators. This dataset is of sufficient size and

diversity to allow for the emergence of machine learning research aimed at the automatic

estimation of landscape scenicness, which was mostly tackled by means of convolutional

neural networks (Marcos et al., 2019; Seresinhe et al., 2017; Workman et al., 2017).

However, it may be difficult to acquire ground-based images of remote regions, such as

those from the Geograph project2, on which the ScenicOrNot dataset is based. For such

regions, it could be beneficial to use remote sensing imagery, which is available globally

and is frequently updated, to provide the scenicness assessment. Furthermore, remote

sensing imagery is not affected by ground-based image biases such as weather patterns

such as cloudy versus blue skies or the presence of rainbows, or photographers’ biases on

which scenes or objects to photograph. In this respect, remote sensing imagery could be

considered more objective than ground-based images. The question remains: is it possible

to predict scenicness directly from remote sensing images? In other words, we formulate

the hypothesis that the characteristics visible in satellite images (e.g., land cover) allow us

to estimate the beauty of the landscape. To verify this hypothesis, we resort to a deep

learning approach.

In recent years, Convolutional Neural Networks (CNNs) have become a popular tool for

image analysis in the remote sensing domain (Zhu et al., 2017). CNNs are commonly

applied to typical remote sensing tasks such as land classification (Sumbul et al., 2019;

Demir et al., 2018), or precise object delineation at very high resolution (Campos-Taberner

et al., 2016; Maggiori et al., 2017; Volpi and Tuia, 2017). While they are traditionally

applied to RGB and multispectral data, there nowadays exists a wide corpus of literature

about the use of deep learning for other modalities, such as hyperspectral remote sensing

(Audebert et al., 2019). As a result, deep learning is becoming increasingly popular

1http://scenicornot.datasciencelab.co.uk/
2https://m.geograph.org.uk
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in the geosciences community, where the technology is used to tackle a wide range of

problems, such as weather prediction, snow pack modelling, or climate change monitoring

(Camps-Valls et al., 2021).

However, their superior performance on a variety of tasks comes at the price of inter-

pretability, since CNNs offer less transparency in their predictions compared to other

machine learning models. Researchers in machine learning are therefore increasingly

stressing the importance of interpretability in deep learning systems (Samek and Müller,

2019; Miller, 2019) in order to be able to challenge the assumptions of deep neural networks

and to assess whether a model is trustworthy. Additionally, interpretability can be used

to discover meaningful patterns to further our understanding of which learned patterns

matter most (Lapuschkin et al., 2019).

While interpretability as a means of improving trust in deep learning models has picked

up considerably in computer vision, it is still in its infancy for remote sensing tasks, and

traditional machine learning methods have proven to be easier to interpret (Huysmans

et al., 2011). In particular, understanding how variables contribute to predictions has

been heavily studied with tree-based and kernel methods. Tree-based methods allow

for interpretability by ranking input variables according to their influence on the final

prediction, such as mode impurity and mean decrease in accuracy for Random Forest

models (Biau and Scornet, 2016). Gaussian Processes allow for model inversion and

parameter retrieval through their confidence intervals (Svendsen et al., 2020). Linear

combinations of multiple kernels can be used to obtain variable importance estimates

for kernel methods (Tuia et al., 2010). But when it comes to deep learning methods,

the ranking of input importance is less straightforward, and one of the inner features

needs extra engineering steps. Instead, post-hoc input attribution methods such as Class

Attention Mapping (Zhou et al., 2016) are frequently considered as a solution to the

interpretation problem for deep neural networks trained on remote sensing imagery. These

methods are used to highlight which regions of the image contribute the most to the output

of the model. They are commonly used in various object retrieval tasks, such as locating

solar panels (Imamoglu et al., 2017), structures of interest (Vasu et al., 2018), or aeroplanes

(Fu et al., 2019). Attribution methods such as Class Activation Maps (Zhou et al., 2016)

work well when there is a clear right or wrong answer visible in the image. For instance,

an aeroplane can be clearly identified by a human in a very high-resolution satellite image,

making the correctness of a pixel attribution method easy to verify. However, attribution

methods are less effective when a task is subjective or when it depends on the coalescence

of multiple patterns, which cannot easily be highlighted in the image. Scenicness is

one such task, as landscape beauty can be the result of the interplay between visible

elements of the landscape, and such interplays cannot easily be highlighted in the input

images. We therefore have to consider alternative interpretation methods to explain our

predictions.
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To help us understand the drivers of landscape scenicness using deep learning, we adopt

semantic bottlenecks (Marcos et al., 2021; Marcos et al., 2019), which use the prediction

results of an intermediate task, ideally objective and made of human-understandable

concepts, to predict the target task while still allowing models to be trained in an end-

to-end fashion. Such models have previously been applied for scenicness estimation from

ground-based images. As proposed in Marcos et al. (2019), the prediction of image

scenicness may depend on its content, such as the presence of snow, clouds, or roads. The

presence of each object or concept may then be used to create a scoring vector for the

prediction of scenicness. In that case, the semantic bottleneck was therefore made of a

series of scene-class objects, and to each object, a positive (this object impacts scenicness

positively) or negative (this object impacts scenicness negatively) weight was assigned.

The final score was made up of a bias (average scenicness) plus the combination of the

single detected object scores. We build on this concept for ground-based images and adapt

it to the task of scenicness prediction from remote sensing imagery while using land cover

as an interpretable intermediate task. In doing so, we improve on our preliminary study

(Levering et al., 2020) by adapting our model to accommodate differing scenicness scores

within the same land cover class, since depending on the context, one land cover type can

impact positively, negatively, or not at all the beauty score. In addition to estimating

the scenicness of landscapes, our model therefore also allows us to study the relationship

between landscape scenicness and land cover types.

In this paper, we conceptualise an interpretable deep learning model for remote sensing

imagery that uses land cover prediction as an intermediate task for landscape scenicness

regression (Section 3.2). We train our model to reproduce the average ScenicOrNot beauty

score at the level of single patches extracted from Sentinel-2 images over the United

Kingdom. We implement a semantic bottleneck, forcing predictions to be explicit in the

land cover classes that the model is observing and explicitly using to predict the scenicness.

To do so, we use the Copernicus CORINE land cover inventory (EU Copernicus Program,

2018) and predict intermediate land cover multilabel maps. Our results (Section 3.4)

show that we can extend existing scenicness prediction models with an interpretable

bottleneck without experiencing any loss of accuracy, neither in the scenicness nor land

cover prediction task. In return, our model provides explanations about what it is observing

and what leads it to make a certain beauty prediction. As such, it becomes simple to

challenge the decisions of the model and analyse errors.

3.2 Methods

We propose an interpretable model for landscape scenicness estimation that uses a semantic

bottleneck (Marcos et al., 2019). We design the semantic bottleneck such that it uses the

outputs of a land cover prediction task to estimate the scenicness of a given satellite image.

We refer to our model as ScenicNet.
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Figure 3.1: Architecture overview of our semantic bottleneck. The model first extracts a
matrix of Z features from a satellite image. Over these Z features, it then multiplies a classwise
softmax with a sigmoid non-linearity (Eq. (3.2)) to extract mode presence scores R. Land
cover presence is predicted from these features by summing the resulting matrix (Eq.(3.3)).
We multiply this presence matrix with one learned weight per mode to derive their scenicness
contribution for a given sample (Eq.(3.5)). The sum of all modes is added together with a bias
term to create the final scenicness prediction (Eq.(3.6)).

Our model is summarised in Fig. 3.1. It uses a standard CNN backbone tasked with feature

extraction, a multi-label land cover classifier intermediate head, and a scenicness regressor,

which depends linearly on the output of the land cover classifier. Since it comprises two

separate prediction heads considering different tasks learned from different datasets (see

Section 3.3), it can be seen as a multitask model, such as in Marmanis et al. (2018) and

Volpi and Tuia (2018).

Our main contribution is a method to disambiguate intra-class scenicness differences by

allowing the model to discover sub-classes with different scenicness values associated with

them. We call these sub-classes modes. Each mode corresponds to a neuron within a group

of neurons associated with the same land cover class. Each mode is also connected to the

scenicness head (via the weights w described below). Each mode therefore contributes

to both the detection of land cover and the estimation of beauty. The number of modes

per class is defined by a hyperparameter, M , manually set. Summing up, for each land

cover class c ∈ C, the model has M outputs, each with an associated learned scenicness

weight. This means that a land cover class can influence scenicness positively when in a

given association of classes and then negatively when associated with others. Depending

on the specific association, one or another mode of the class will be activated.

3.2.1 Land cover head

Our model first has to predict C land cover classes from the feature extractor. The

feature extractor produces C ×M scores Z ∈ RC×M for each mode input m ∈ {1, . . . ,M}
belonging to a given class c ∈ {1, . . . , C}, where zc,m corresponds to the features of mode m
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in class c. These scores are then normalised (Eq. 3.2) and summed for each class (Eq. 3.3),

to obtain the C land-cover class scores as a vector ŷ ∈ RC . As depicted in Fig. 3.1, the

land cover prediction problem is cast as multi-label, i.e., every class is considered separately

and can be detected simultaneously with others. We use a binary cross entropy loss for

every land cover class c ∈ {1 . . . C} and compare predictions ŷ with the ground truth

y ∈ {0, 1}C .

For the purposes of scenicness prediction, we want to force the model to choose which

mode to use for a given sample to reduce ambiguity on which modes contributed to each

prediction. In order to keep the scenicness prediction layer interpretable, we also want

the model to only keep the modes that have a meaningful contribution to the prediction

process active. To do so, we first calculate a Softmax non-linearity for each mode input

m ∈ {1, . . . ,M} belonging to a given class c ∈ {1, . . . , C}:

softmax(zc,m) =
ezc,m∑M
j=1 e

zc,j
(3.1)

For each element zc,m we then multiply their respective softmax scores with a sigmoid over

the mode input to compute the mode presence probability for a given mode rc,m of matrix

R:

rc,m = sigmoid(zc,m) · softmax(zc,m) (3.2)

The softmax ensures that only one mode is dominantly active, as all class-specific contri-

butions add up to one. Through direct multiplication with the sigmoid non-linearity, we

allow the model to indicate which modes are active, if any. We can then use this mode

presence matrix R to obtain class presence scores by summing all mode presence scores

rc,m belonging to a given class c:

ŷc =
M∑

m=1

rc,m (3.3)

We can use these class-wise land cover presence scores in the following sum over c binary

cross-entropy functions (one per land use class) (Fig. 3.2a):

LCLC(y, ŷ) = −
∑
c

ŷc log(yc) + (1− yc) log(1− ŷc) (3.4)

Where y is the ground truth for a single sample from the land cover dataset.

The gradients learned from the land cover prediction (in pink to purple colors in Fig. 3.1)

are then backpropagated into the main body of the CNN through the class-specific multi-
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mode land cover bottleneck. The updated mode presence scores R will therefore impact

the scenicness prediction described in the next section.

3.2.2 Scenicness prediction head

The second head of our model is responsible for predicting landscape scenicness as a

regression problem. In order to regress a scenicness value, our model multiplies a learnable

weighted matrix W ∈ RC×M elementwise with the mode presence scores matrix R to

create a matrix V with mode-specific scenicness contributions, where vc,m represents the

contributions of a single mode:

vc,m = rc,m · wc,m (3.5)

The sum of all mode contributions is then added together with a bias term b ∈ R in order

to compute the predicted scenicness value:

ŝ =

(
C∑
c=1

M∑
m=1

vc,m

)
+ b (3.6)

We then use this predicted scenicness score to compute the following squared error loss

function:

LSoN(s, ŝ) = (s− ŝ)2 (3.7)

Where s is the crowdsourced scenicness score for a single sample. During training, we

backpropagate the mean squared error of each batch.

With a choice of M > 1, our model can learn more than one representation for each

c ∈ {1 . . . C} classes. However, we want to encourage the model to use the minimum

number of modes needed for the prediction task to stop the model from forming complex

non-linear interactions between multiple modes. We encourage this through the softmax in

Eq. (3.2), through which we limit the activation budget of the model. The softmax rescales

the contributions of each mode relative to all mode activations within a class. Therefore,

the model cannot activate all modes equally, forcing it to make deliberate choices on which

modes to use for each training example.

3.2.3 Combined loss function

Each one of the two processing heads of the model backpropagates gradients related to a

loss specific either to the land cover task (LCLC , Eq. (3.4)) or to the scenicness estimation

task (LSoN , Eq. (3.7)). The final loss of our explainable model is obtained by a weighted

combination of the two terms:
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Figure 3.2: Ground truth creation; (a) CORINE values are aggregated to their 1st digit, then
assigned a binary present/not-present label. (b) SoN image scores within the patch boundary
are averaged, which gives us the patch scenicness score.

L = LSoN + λLCLC (3.8)

where λ is a weighting term set empirically.

3.3 Data and setup

3.3.1 Data

Our model is concurrently trained on two tasks, namely land cover prediction and scenicness

regression. In order to generate the training data for both tasks, we lay out a regular grid

of 1.60km by 1.60km across the entirety of Great Britain as a common prediction grid.

For each grid cell, we then collect three data sources (Fig. 3.2): 1) A land cover inventory,

2) a landscape scenicness dataset with location information, and 3) satellite imagery with

a maximum of 1% cloud coverage across Great Britain.

- Land cover. For the land cover prediction, we make use of the CORINE land cover

inventory of 2018 EU Copernicus Program, 2018. The CORINE Land Cover (CLC)

is a pan-European dataset created from a combination of Sentinel-2 imagery and

national land cover products. It consists of a hierarchy of three levels. CLC Level 1

consists of five land cover classes: 1) Urban, 2) Agriculture, 3) Forests and natural

areas, 4) Wetlands, and 5) Water. CLC level 3 contains fine-grained land cover

classes, such as 111) Continuous Urban Fabric, and 421) Salt Marshes. For our

experiments, we use CLC Level 1 as training labels, and we use the L3 labels for

a qualitative assessment of the modes of our model in the discussion section. We

opt for a more simplistic land cover classification task to ensure that the model is

able to learn an accurate representation of land cover classes. For each grid cell, we

create a binary vector where 0 and 1 denote absence and presence for each class. We

show this process as well as the land cover classes of the first-level hierarchy of CLC

in figure 3.2a.
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(a) (b)

Figure 3.3: Ground truth creation; (a) Map of the ground truth scores of every patch in our
dataset. (b) Histogram of all patch scores.

- Landscape scenicness. We derive our landscape aesthetics score from ground-based

image evaluations from the ScenicOrNot dataset. ScenicOrNot (SoN) is a crowd-

sourced dataset consisting of 215,000 ground-level images across Great Britain

obtained from the Geograph UK project. Each image is rated with a score between

1 (not scenic) and 10 (most scenic) for its landscape aesthetic beauty by one or more

volunteers on an openly accessible online platform. Moreover, each image is stored

with its geolocation, and as such, they can be analysed spatially. For each grid cell

in our regular grid, we assign the average scenicness score of the geotagged images

within its bounds. We display this process in figure 3.2b. Figure 3.3 illustrates the

final ground truth as well as the histogram of its distribution across the U.K.

- Remote sensing data. As input to our model, we use Sentinel-2 satellite imagery.

We download atmospherically corrected (L2A) satellite tiles with at most 1% cloud

coverage across Great Britain, which have been taken between 2018 and 2019. We

retain the 10- and 20-metre resolution bands of each satellite tile. We upsample

the 20m-resolution bands to 10m using nearest neighbour interpolation. We remove

any image patches that have all-zero values in the red, green, or blue colour bands.

In total, we collect 121,067 patches of size 160 × 160 pixels, corresponding to an

extent of 1.60× 1.60 kilometres each. Land cover information is available for all of

these patches, while scenicness scores are available for 83,374 patches. We randomly

sample splits of 75/15/10% for training, validation, and testing. We sample without

geographical stratification to maximise the opportunities for the model to learn

meaningful scenicness differences for each class.
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The scripts for creating our ground truth dataset can be found in the following Zenodo

repositry: https://sandbox.zenodo.org/record/747445. This repository also contains a

PyTorch implementation of our architecture.

3.3.2 Set-up

As a feature extractor, we use a ResNet-50 (He et al., 2016), which has not been pre-trained

as we use multi-spectral imagery. We set the number of class-specific modes M to 3, and we

initialise the weights in W for the class-specific modes to 0.5, 0.01, and -0.5, respectively, so

that the model is encouraged to develop non-symmetrical scenicness contributions for each

mode. The scenicness prediction of our model is dependent on the land cover prediction

task, but during training, both tasks compete for signal. To avoid that the model learns a

bottleneck optimised for scenicness and that is not aligned with the CLC semantics, we

set a larger weight λ for the land cover loss in Eq. (3.8), to a factor 10.

We explore the benefit of having multiple modes by running a baseline experiment with M ,

the number of sub-class nodes per class, set to 1, which makes it functionally equivalent

to a linear regression dependent on the class prediction score. We train both models for

15 epochs with the ADAM optimizer (Kingma and Ba, 2014). We set the initial learning

rate to 0.0005, and we add a weight decay factor of 0.0001. We use 16 samples per batch.

During training, we weight each loss by the inverse square root of its frequency so that we

can train on a balanced number of samples.

For every training iteration, we sample one batch to compute Eq.(3.4) and Eq.(3.7). If

both labels (CLC and SoN) are available for a given patch, then we compute both losses

for the sample. When processing a sample only having land cover information (and no

ScenicOrNot label), we set the loss of Eq.(3.7) to 0. We combine and backpropagate the

losses according to Eq.(3.8). We repeat this procedure until the smallest dataset (SoN) is

exhausted, at which point the epoch ends.

We compare our models against unconstrained ResNet-50 models trained on each task

separately. For the land cover prediction task, we set the number of outputs of the final

fully connected layer to 5 to equal the number of CORINE classes in the level-1 hierarchy.

For the task of scenicness regression, we set the number of outputs of the fully connected

layer to 1 such that the model regresses one single scenicness, as in (Workman et al.,

2017; Levering et al., 2020). We also test the performance of our model with M = [2, 5]

using the same training settings, but with a random initialization of W . We evaluate the

land cover prediction performance of our model using the average F1-score (Rijsbergen,

1979) for each class. The F1-score gives the harmonic mean between the precision and

the recall of a given class. A value of 1 indicates perfect precision and recall. To assess

the scenicness prediction performance of our model, we use the root mean squared error

(RMSE) across all examples. We also calculate Kendall’s Tau (Kendall, 1938) over the

predicted scenicness scores, which is a ranking correlation coefficient that tests whether two
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arrays have similarly ranked values. For Kendall’s Tau, 1 indicates a perfect relationship

between the predicted scores and the ground truth, and -1 indicates the inverse.

Finally, we compare the results of our scenicness regression to models that directly regress

the scenicness score from the CORINE ground truth labels. We train a linear model using

the level-1 hierarchy of CORINE to compare it to our 1-mode linear bottleneck. We then

train a random forest regressor (Breiman, 2001) with 50 trees, a maximum depth of 25,

and a minimum of 5 samples per split on the L1 and L3 CORINE ground truth labels to

test the performance of our multi-mode models against.

3.4 Results and discussion

3.4.1 Numerical scores

In Table 3.1, we display the numerical performances of the four considered models. Each of

our ScenicNet models outperforms an unconstrained network on the land cover prediction

task. Our 3-mode and 5-mode ScenicNet models also match the scenicness regression

baseline on Kendall’s τ . Our results show that our ScenicNet model is able to leverage its

modes to learn complex land cover class representations that relate to scenicness in varying

ways, rather than the single learnable pattern for the 1-mode model. The numerical

improvements of our multi-mode ScenicNet models on the land cover F1-score also indicate

that the land cover prediction task seems to benefit from the scenicness prediction task,

which is an underlying assumption of multi-task learning (Caruana, 1997).

Table 3.1: F1-score, RMSE, and Kendall’s τ of each model on the test set.

land cover
F1-score

Scenicness
RMSE

Scenicness
τ

Only CORINE 0.846 - -
Only SON - 1.027 0.452
ScenicNet (1 mode) 0.859 1.080 0.435
ScenicNet (2 modes) 0.867 1.053 0.441
ScenicNet (3 modes) 0.872 1.038 0.456
ScenicNet (5 modes) 0.872 1.036 0.457

For the baseline and the 3-mode ScenicNet model, we also present the precision, recall, and

F1-score for each land cover class, which can be found in Table 3.2. Our 3-mode ScenicNet

model improves on the baseline for land cover prediction on all land cover classes. In

the cases of urban and wetlands, our model particularly improves the number of recalled

samples.

To test the relationship between land cover and scenicness, we compare our models against a

linear regressor and a random forest regressor, which use the land cover ground truth labels
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Table 3.2: Class-wise performance metrics of the CORINE baseline and ScenicNet with 3
modes. In each column we display the performance of the baseline on the left, and our model
on the right.

Precision Recall F1
Base-
line Ours

Base-
line Ours

Base-
line Ours

Urban 0.859 0.865 0.701 0.740 0.772 0.798

Agriculture 0.971 0.974 0.936 0.946 0.954 0.960

Forests and Natural 0.848 0.974 0.821 0.946 0.835 0.960

Wetlands 0.805 0.781 0.617 0.775 0.699 0.778

Water 0.973 0.965 0.968 0.979 0.970 0.972

Table 3.3: RMSE, and Kendall’s τ of models trained to regress scenicness from the land cover
ground truth labels.

Scenicness
RMSE

Scenicness
τ

Linear (L1) 1.150 0.417
Random Forest (L1) 1.081 0.425
Random Forest (L3) 1.061 0.444

to directly regress the scenicness score. We show our results in Table 3.3. Remarkably, our

linear 1-mode model outperforms the score-to-score regression models. We hypothesise

that our model is able to provide better performance in predicting scenicness from LC

classes by allowing for subtle modifications to the LC probability maps that help with

scenicness regression. Our results also show that these subtle modifications not only do

not degrade the LC prediction performance but actually provide a substantial boost due to

the synergy between the two tasks. By contrast, both a linear model and a random forest

regressor use only the binary label present in the ground truth, without the possibility of

tweaking it to improve the scenicness prediction performance.

3.4.2 Mode activity

While our model is initialised with M modes, the Softmax function of Eq.(3.2) lets the

model spend an activation budget across its modes. Through this activation budget,

the model develops the tendency to allocate the vast majority of the signal to a single

mode. By doing so, we encourage the model to learn a specific mode only if it needs to

account for classes with contrasting scenicness values, such as forests near a city compared

to forests in a scenic highland. As a result, it can occur that modes for some classes

become inactive (i.e., the sigmoid+softmax combination never activates above 0.5), as

there are too few intra-class contradictions to account for. In the case of M = 3, we found

that the model eventually converges to use 2 modes per class at most, while the inactive

modes can be pruned without affecting the performance of the model. Setting M to 2



54 On the relation between landscape beauty and land cover

Figure 3.4: Left: Geotagged scenicness scores from the ScenicOrNot project. Right: Scenicness
values predicted by 3-mode ScenicNet model. Scenicness is clipped between 1.5 and 7.5 to
show more variation in the 3-mode model.

resulted in a solution that is slightly worse than M = 3, while M = 5 resulted in a model

with similar performance. As M = 3 gives a model with similar performance but less

complexity, we chose this model for our experiments and discussion. We list the active

modes of our 3-mode model for each class in Table 3.4. The choice of M should therefore

be determined through experimentation, as it should capture the latent dynamics between

the two tasks.

3.4.3 Visual evaluations

In this section, we evaluate the performance of our 3-mode model, as well as its activation

patterns and the behaviour of its mode. Figure 3.4 illustrates the scenicness predictions of

our 3-mode ScenicNet model alongside the ground truth. As can be seen, the model picks

up on the major patterns of the ground truth scenicness labels. It is clear that major

cities such as London and Manchester are considered unsightly, while Scotland and Wales

are considerably more scenic than England. Our model also captures the relationship

between elevated areas and scenicness, where higher areas typically correlate with greater

scenicness. However, it is also apparent that the model is unable to approximate extreme

values, such as those found in downtown London and the Scottish highlands, which we

suspect to be caused by an under-representation of these values in the ground truth, as

suggested by the histogram in Figure 3.4.
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We explore the latent space of our 3-mode ScenicNet model to understand which patches

our model considers visually similar. Our main interest with this experiment is to discover

whether visually related areas and concepts are similar in the high-dimensional latent

space of the CNN model. We reduce the 2’048 outputs of the feature extractor to 100

principal components using a Principal Component Analysis (Pearson, 1901), which are

then reduced to 2 dimensions using t-SNE dimensionality reduction (Maaten and Hinton,

2008). t-SNE is a non-linear visualisation technique that performs dimensionality reduction

by learning an embedding that preserves neighbourhood structures, i.e., samples that are

neighbours in the high-dimensional space must remain neighbours after projection. For

the t-SNE hyperparameters, we use a perplexity of 300, a learning rate of 200, and we set

the number of iterations to 1’000. We show the resulting plots for the predicted scenicness

and class labels in Figure 3.5. We find that the latent space of our model is organised by

the predictions made through the class-specific modes. Predictions routed through each

mode relate to strongly differing land cover archetypes, which are grouped by their relative

scenicness. This organises the latent space into an arrangement where both similarity in

land cover visuals (e.g., ”bare rocks” and ”sparsely vegetated”) as well as their relative

scenicness are important. An example of this behaviour can be seen in the overlap between

modes 3+ and 4+: activations of both of these modes are neighbours in the latent space,

while they both have a considerably high learned scenicness score. From Table 3.4, we can

infer that these modes are activated by a similar set of fine-grained land cover concepts,

namely highland and plains environments. These findings are encouraging as they indicate

that the model is consistent in the concepts it considers to be scenic between different

but related land cover classes. The plots of the modes also reveal a gradual transition in

visual similarity from man-made land cover classes to natural areas. The large cluster in

the centre is dominated by un-scenic agriculture and urban land covers, which correspond

to England’s countryside. To the right, it is connected with and slowly transitions into a

cluster dominated by mixed agriculture and woodland environments typically found in

Wales, the north of England, and Scotland. From this transition, we infer that the model

considers natural areas to be more scenic. This pattern is reflected in the gradient of the

top-left cluster. It sees urban areas on the far left of the cluster transition into very scenic

natural areas and wetlands at the other edge of the cluster, which suggests that there is a

similar transition of scenicness from man-made to natural areas for coastal environments.

Effect of multiple modes to the final prediction The learned bias of our model is

4.65, which corresponds to an average value of scenicness for the whole region. Deviations

from this value are related to the land cover-related weights. We further assess these

deviations by analysing the most-recalled level-3 CORINE classes per mode in Table 3.4,

as well as their weights. We find that each class has at most two active modes, with a large

difference in scenicness scores between both modes. Each mode tends to recall different

thematic clusters, such as mode 4-(the minus sign represents here the negative influence



56 On the relation between landscape beauty and land cover
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Figure 3.5: Low-dimensional representation of the prediction outputs of our 3-mode ScenicNet
model, visualised using t-SNE. We display the predicted scenicness scores for each datapoint
as well as the predictions of the active modes of each class. The red colours of each mode refer
to modes with the most negative weight within each class, while green is used for the mode
with the most positive weight within each class.

this mode has on scenicness) recalling flat coastal wetland environments, while mode 4+

tends to recall elevated boglands, Scottish highlands, and loch environments, which impact

landscape beauty positively. This spatial binning effect of the positive and negative modes

can be seen in figure 5.3 for all classes, except for the Urban and Agriculture classes. The

Urban class defaults to one single un-scenic mode, while the Agriculture class experiences

strong mixing between its two modes, as both semantic clusters tend to be widespread

throughout the country. The presence of human influences on the landscape can be seen in

the water and wetland classes. While the coastline of England is predicted to be very scenic

(mode 5+), its rivers and estuaries are only mildly positively associated with scenicness

(mode 4-). This pattern is visible in all of the major estuaries in England. However, the

inlets and open waters connected to the ocean in Scotland are considered strongly positive.

While inland waters are only mildly positively associated with scenicness, as in England,

their presence strongly correlates with natural areas (mode 3+) and wetlands (mode 4+).

The weights of these modes indicate that our model considers these land cover classes to

be very scenic in the Scottish Highlands. This indicates that people value inland water

environments, but mostly for their nature and wetland environments. The validation of

such observations, for example, via interviews, could be the topic of further studies.
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Table 3.4: Modes for each class with their learned scenicness score and their most-recalled
level-3 CORINE labels. We renamed modes according to their scenicness score and removed
inactive modes from the table. While our model is trained with the coarse 5-class first-level
hierarchy ground truth of CORINE, the two modes of each class (except urban) are associated
with differing fine-grained land cover concepts.

Mode Weight Top L3 class by recall Most activating

Bias 4.65

- -

1 -0.938 111 cont. urban fabric (0.966)
141 green urban areas (0.948)
121 industrial/commercial (0.688)

2 - -1.080 244 agro-forestry (1.0)
222 fruit trees (0.611)
211 non-irrigated (0.561)

2 + 0.068 313 mixed forests (0.621)
243 agriculture with nature (0.594)
311 broad-leaved forests (0.562)

3 - -0.172 312 coniferous forests (0.586)
324 woodland-scrub transition (0.576)
313 mixed forests (0.523)

3 + 1.391 332 bare rock (0.757)
333 sparsely vegetated (0.756)
334 burnt areas (0.667)

4 - -0.678 421 inland marshes (0.512)
423 intertidal flats (0.405)
522 estuaries (0.404)

4 + 1.178 412 peat bogs (0.620)
333 sparsely vegetated (0.496)
332 bare rock (0.314)

5 - 0.105 331 beaches, dunes, sands (0.614)
522 estuaries (0.590)
123 ports (0.55)

5 + 1.193 523 sea/ocean (0.818)
521 coastal lagoons (0.5)
331 beaches, dunes, sands (0.181)

The learned weights of our modes can be related to three previously quantified observations.

Firstly, our model supports the notion that the presence of human influences and structures

in a landscape reduces its beauty (Vries et al., 2012; Lindemann-Matthies et al., 2010;

Palmer, 2004; Hodgson and Thayer, 1980), as visible by the scenicness weights of modes 1,

2- and 5-. However, not all classes with human influences are considered un-scenic, such

as estuaries and beaches in mode 5-. Secondly, landscape beauty is greater in natural

areas where there is an open canopy (Schirpke et al., 2013; Hill and Daniel, 2007), which

can be inferred from the differences in scenicness values of modes 2+, 3-, 3+, and 5+.

These results are corroborated by the spatial patterns of modes 3+ and 4+, which can be
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Figure 3.6: Plots of predictions for each patch made by our 3-mode ScenicNet model. Areas
coloured red are predicted by the negative mode of a given class, while green areas represent
the positive mode. Areas with blended colours have activations in both modes, resulting in a
scenicness score that is in between both weights.

seen in the forest map in figure 5.3. These modes are considered very scenic, while their

recalled geo-located patches often correspond with hilly and mountainous regions. Lastly,

our learned weights for the agriculture class do not directly support survey data, which

indicates that the British public enjoys the British countryside for its landscape beauty

(Hall et al., 2004). It should be noted that these quantified patterns are difficult to relate

to our research as they cover different countries or regions and use different measurement

techniques. Further research may attempt to learn patterns on a local scale to see whether

local patterns in the United Kingdom extend across regions.
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3.5 Conclusions

In this paper, we present and test a novel method for large-scale inventorization of landscape

scenicness that uses land cover prediction as an interpretable intermediate task. Our

model is able to learn scenic and un-scenic representations of the same land cover type by

being able to choose which of several land cover-specific weights to use for the scenicness

regression task. Our model outperforms an unconstrained model on the task of land cover

prediction while matching an unconstrained model on scenicness regression. Furthermore,

our model is able to express preferences for fine-grained land cover types while being

trained on just five coarse land cover concepts, which allows us to study the relationship

between landscape beauty and land cover types. Our work also opens up possibilities

for knowledge and sub-class discovery. We note that our findings are still subject to the

fact that all data come from the U.K., only apply to landscape preferences in the U.K.,

and are most probably provided by British citizens. Expanding these findings to global

measures of landscape aesthetics would require a larger corpus of crowdsourced data as

well as images coming from all over the world. Creating such a dataset would open the

possibility for cultural and global studies about human preferences and appreciations of

nature.
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This chapter is based on:
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Housing Quality in Amsterdam, in: Proceedings of the 4th ACM SIGSPATIAL Inter-

national Workshop on AI for Geographic Knowledge Discovery, GeoAI 2021, pp. 1–4.
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Abstract

In our research we test data and models for the recognition of housing quality in the city

of Amsterdam from ground-level and aerial imagery. For ground-level images we compare

Google StreetView (GSV) to Flickr images. Our results show that GSV predicts the

most accurate building quality scores, approximately 30% better than using only aerial

images. However, we find that through careful filtering and by using the right pre-trained

model, Flickr image features combined with aerial image features are able to halve the

performance gap to GSV features from 30% to 15%. Our results indicate that there are

viable alternatives to GSV for liveability factor prediction, which is encouraging as GSV

images are more difficult to acquire and not always available.

Modern-day urbanisation has led to large increases in the number of people living in cities.

It is expected that more than half of the global population will live in cities by 2050

(United Nations, Department of Economic and Social Affairs, Population Division, 2019).

While cities are increasingly important for finding work, it is frequently the case that

cities show very disparate access to service and quality of infrastructure, and therefore

a mixed quality of life in urban dwellings. Not taking into account people’s social and

physical housing needs can have detrimental effects on their well-being. For instance, the

physical quality of housing is an indicator of one’s mental well-being (Evans, 2003). In

a broader sense, the quality of a neighbourhood may affect the residents’ dietary and

physical activity patterns (Thompson and Kent, 2014), as well as their morbidity (Barber

et al., 2016). Evidently, monitoring that neighbourhoods are liveable and of adequate

quality could support policymakers and urban planners in designing more liveable cities.

Liveability is typically measured using surveys. However, surveyed data is expensive to

acquire and infrequently available, and their results may be hard to scale beyond the

original survey area. Ideally, quality of life data gathered through such surveys would be

available at large scales, on a frequent basis, and at a low cost to monitor the liveability of

urban areas and identify areas for improvement.

Image data such as ground-level photography can offer a solution to this problem, as it is

easier to acquire and scale. Prior research has shown that ground-level images can reliably

pick up attributes relating to urban sentiments (Dubey et al., 2016; Naik et al., 2014). A

potential drawback is that large-scale collection of this data is often not trivial, and images

may be affected by biases such as lighting and weather effects. Aerial images are another

source of image data that can be considered. Their main advantage over ground-level

images and surveys is that they can be used to survey large areas in a single data collection

effort. For aerial images, it has also been proven that they can be used to survey factors

relating to quality of life (Scepanovic et al., 2021; Levering et al., 2021a).

In this research, we focus on building quality scores surveyed in Amsterdam on a hectometer

scale. We are interested in determining if a combination of ground-level images and aerial
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images can improve the prediction of liveability factors. For the aerial image modality,

we train models using high-resolution aerial image data. For the ground-level model,

we compare two pre-trained feature extractors to determine if models tuned towards

liveability make a noticeable difference in performance on our dataset of housing quality.

Furthermore, we also train models to combine both modalities to test whether or not they

can improve the overall prediction accuracy of housing quality.

4.1 Data

We use three data sources in our study: housing quality scores of the city of Amsterdam,

Aerial imagery, and ground-level imagery.

Housing quality scores

For our liveability ground truth labels, we use housing quality scores over the city of

Amsterdam. This score quantifies how housing contributes to liveability. This data is

available as a grid with cells covering 100m2 each. It is derived from various statistics

such as building age, ownership situation, and consumption of utilities such as electricity.

The statistics used to create the building score are averaged from buildings within 200m2

from the patch center. The grid with scores is published by the Leefbaarometer project 1.

Aerial imagery

For the aerial images, we use aerial image patches of 500x500 pixels with a spatial

resolution of 1 metre derived from the 2017 national aerial image dataset (PDOK, 2017).

For each patch, we consider the housing quality score attributable to the 100-metre patch

center. We do this to ensure that the model has the context needed to recreate the housing

score, as the scores were created by using data from a 200m2 square-metre radius from the

cell center. As such, there is a 200m2 overlap for each patch with its neighbouring patches.

Ground-level images

We test two data types for our ground-level images. Firstly, we use Google Street View

(GSV) panorama images, which are widely used for urban attribute prediction (Naik et al.,

2014; Dubey et al., 2016). We use the dataset of GSV panorama images in Amsterdam

from (Srivastava et al., 2019). The dataset is designed for building function classification,

and as such, each panorama image in this dataset is oriented to directly face a building

in the city by using the location and orientation data of the panorama images. After

filtering images to the extents of the aerial image patches, we retained 90′256 images.

Our second dataset consists of Flickr images. Flickr is freely available and consists of

crowdsourced images, making it more flexible and easier to acquire than GSV panorama

1https://www.leefbaarometer.nl/
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Figure 4.1: Data splits of our experiments over the city of Amsterdam. Testing squares are
padded by validation cells to ensure that no test data is seen during training. Cyan squares are
for training, red for validation, and blue for testing. Black points represent geotagged photos
of the Flickr buildings subset.

images. It is a source of data that is increasingly used to study the environmental factors

contributing to individuals’ well-being from a first-person perspective (Havinga et al.,

2020). We gathered Flickr images taken between 2004 and 2020 with a geotag located in

the city of Amsterdam, which resulted in 54’250 images.

Data splits

We split our dataset into training, validation, and test sets by selecting square regions

within the dataset. The edges of these squares partly overlap with the training set as a

result of the patch size. We therefore assign the edges to the validation set. The region

centres are assigned to the test set to avoid correlation between the sets due to spatial

co-location. Our splits are shown in Figure 4.1. For both sources of ground-level images,

if no images intersect with an aerial image patch, then we leave the patch out of the

subset.

4.2 Methods

Our model is tasked with predicting a housing quality score ŝ from data within a patch.

It consists of an aerial feature branch and a ground-level feature branch, as shown in

Figure 4.2. The ResNet-50 (He et al., 2016) feature extractor of the aerial feature branch

is initialized with weights for housing quality prediction over The Netherlands from our

preliminary study (Levering et al., 2021a). For ground-level features, we use a ResNet-50

pre-trained ImageNet model, as well as a pre-trained ResNet-50 Place Pulse 2 (PP2)

(Dubey et al., 2016) model. Place Pulse 2 is a dataset for urban sentiment analysis

consisting of GSV images. The aerial feature branch extracts a 2048-dimensional vector a

from an input aerial image. The ground-level feature branch produces one 2048-dimensional

feature vector for each of the N geotagged ground-level images within the patch. We
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Figure 4.2: Multimodal model predicting housing quality scores. Only the aerial branch and
the merging layer shown in blue are trained. Features extracted from the ground-level images
are fixed. Depending on the subset, the ground-level image branch uses features extracted
from either Google Street View, or Flickr images.

average-pool these vectors to form the ground-level feature vector vector g, following the

same design as (Srivastava et al., 2020). To merge the feature vectors a and g into the

feature vector m, we perform pairwise addition:

m = a+
1

N

N∑
n=1

gn (4.1)

The vector m is then passed to a two-layer perceptron to extract joint features over the

merged vector. We first apply batch normalisation to the features, which are then passed

to the first fully connected layer, which produces a 100-dimensional vector. These features

are subsequently passed to the final fully connected layer to regress the building score ŝ.

We train our model using a Mean Squared Error loss calculated over the predicted patch

housing score ŝ w.r.t. the ground truth patch housing score s:

Lscore = (s− ŝ)2 (4.2)

During the first three epochs, only the fully connected layers are trained. Starting at epoch

four, the aerial feature extractor is also optimised to fine-tune it to Amsterdam. The

ground-level feature extractor is not modified at any stage since it has been pre-trained

with images of a similar nature.

4.3 Experimental setup

Beyond reporting the results on the full method using either GSV or one of the Flickr

subsets for the ground-level branch, we also perform ablation studies to test the performance

of each branch individually. To test the aerial branch, we set the ground-level features

g to be a vector containing zeroes. We do the same to the aerial features a to test the

ground-level features.
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Figure 4.3: Plots of predictions of building quality score for the best model of each data
subset on the two most spatially diverse tiles. Their locations are displayed in Figure 4.1.
Colours range from red (low-quality) to blue (high-quality).

We train all models with the Adam optimizer for 25 epochs, which we initialise with a

learning rate of 0.001 and a weight decay of 0.001. We report the root mean squared

error (RMSE) of the housing quality score as well as Kendall’s τ (Kendall, 1938), which

is a ranking coefficient between -1 and 1, which indicates whether or not samples are

correctly placed in the right order in terms of increasing housing quality score. A value of -1

indicates a perfectly inverse ranking, while a value of 1 represents a perfect ranking.

Filtering Flickr images

As Flickr consists of social media photos that are less organised than GSV images, filtering

is necessary to retain only images that are beneficial for building score regression. We

apply a pre-trained Places365 (Zhou et al., 2018) model for scene classification to test two

filtering methods. As a weak filtering method, we retain only images where 9 out of the 10

most activated classes are marked as outdoors in the dataset. We refer to this subset as

Flickr Outdoors. In total, the Flickr Outdoors subset contains 34’222 images. Secondly,

we select images that have at least one scene strongly related to buildings above a given

threshold, for which we consider 24 building-related classes. This threshold was empirically

tested and set to an activation of 0.05. This will filter the dataset more aggressively to

focus on buildings in favour of the housing quality score. We refer to this subset as Flickr

Buildings. The Flickr Buildings subset contains 11’774 images. Filtering out images also

resulted in some patches having no ground-based images, which had to be excluded. We

show our patch distribution per subset in Table 4.1.
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Table 4.1: Patches per split for each subset

Subset Train Validation Test Coverage

Aerial 4’300 570 491 100%
GSV 4’294 570 491 99.88%
Flickr Outdoors 4’255 570 491 98.97%
Flickr Buildings 4’027 538 458 93.69%

4.4 Results and discussion

Using GSV images as ground modality

We show our results when using GSV images for the ground branch in Table 4.2. Overall,

we find that using only features extracted using a PP2 model provides the best results,

slightly edging out ImageNet features in terms of Kendall’s τ , which reaches a value of 0.778.

When using GSV for ground-level features, merging with overhead aerial imagery does

not provide performance improvements, regardless of the feature extractor. In addition,

pre-training the feature extractor on ImageNet or PP2 results in similar performances.

Compared to a Kendall’s τ of 0.5810 obtained from using only aerial images, there is a

30% performance gap.

Using Flickr images as ground modality

Table 4.3 shows the results obtained from the Flickr ground images. Our results show

substantial differences between the three modalities. The least competitive result in

terms of Kendall’s τ occurs when merging the aerial image features with Outdoor Flickr

images using ImageNet features, 0.576. The best unimodal setting with Flickr images

consists of using PP2 features from the Flickr Buildings subset, reaching a Kendall’s τ of

0.649. For unimodal prediction, it is important to simultaneously use the Flickr Buildings

images along with PP2 pre-training, since using either the Flickr Outdoors subset or

only ImageNet pre-training results in a loss of performance, down to 0.596 and 0.602,

respectively. Adding the aerial branch to the PP2 pre-trained Flickr Buildings model

results in another increase in performance, up to 0.686. By using a combination of Flickr

Buildings PP2 features and aerial features, the performance gap compared to the best

GSV model is halved.

By comparing the metrics of the three subsets, we can assess the suitability of alternatives

to be used instead of GSV. While GSV image features prove to be most suitable for

building quality at the city scale, it is encouraging that Flickr and aerial images are

able to close the performance gap. Furthermore, while GSV images are more suitable

for urban analyses, the data is often difficult to acquire for larger areas or even entirely

unavailable. In contrast, Flickr images are easy to acquire and widely available. The

success of using Flickr shows that general-purpose social media data sources can also be
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Table 4.2: Metrics when using GSV as the ground image source

Modality Ground Features Kendall’s τ

Aerial n.a. 0.5818
GSV ImageNet 0.7651
GSV PP2 0.7780
Aerial & GSV ImageNet 0.7699
Aerial & GSV PP2 0.7656

Table 4.3: Metrics when using Flickr as the ground image source

Modality Ground Features RMSE Kendall’s τ

Aerial n.a 0.1314 0.5810
Outdoor ImageNet 0.1100 0.5755
Outdoors PP2 0.1155 0.5962
Buildings ImageNet 0.1179 0.6024
Buildings PP2 0.1031 0.6487
Aerial & Outdoors ImageNet 0.1427 0.5729
Aerial & Outdoors PP2 0.1306 0.6215
Aerial & Buildings ImageNet 0.1142 0.6243
Aerial & Buildings PP2 0.1104 0.6862

used, as they are easier to scale over larger areas, for instance, through crowdsourcing efforts.

Spatial predictions

In Figure 5.3, we show the spatial predictions for the best model of each subset for the

two most spatially diverse testing tiles. The maps show that the PP2-only GSV model is

able to approximate the ground truth most accurately in both tiles. Both Flickr models

struggle with predicting the extent of the low-quality housing in tile A. This may be caused

by a lack of images in the north of Amsterdam, which can be seen in the black points of

Figure 4.1, which represent images of the Buildings subset. This area is less popular with

tourists, which may explain the lack of Flickr photos. The GSV dataset has much better

coverage in this area, which is reflected by the better prediction quality for this tile.
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4.5 Conclusions

In this paper, we use a combination of features extracted from ground-level and aerial

images to predict the quality of houses in Amsterdam. For the ground-level images, we

tested two pre-trained feature extractors, one on ImageNet and one on Place Pulse 2, a

dataset for subjective perception of urban ground-level images. We collected and refined

three ground-level image datasets: Google Streetview (GSV), Flickr Outdoors, and Flickr

Buildings. The latter two were obtained by filtering geotagged Flickr images. Using

only GSV images resulted in the best overall performance, providing a 30% increase in

Kendall’s τ with respect to using only aerial imagery. This suggests that the nature of

GSV imagery is well-suited, as it captures 360◦ panoramas of most of the city’s streets at

regular intervals. However, this type of imagery is costly to obtain and not always available.

Our results show that using less curated but more easily available social media images

such as Flickr can still provide a 15% increase in performance w.r.t. the aerial imagery if

both the images and the feature extractor are carefully selected for the task.
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modal landscape scenicness assessments with vision-language models, PLOS One.
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Abstract

Recent advances in deep learning and Vision-Language Models (VLM) have enabled

efficient transfer to downstream tasks even when limited labelled training data is available,

as well as for text to be directly compared to image content. These properties of VLMs

enable new opportunities for the annotation and analysis of images. We test the potential

of VLMs for landscape scenicness prediction, i.e., the aesthetic quality of a landscape,

using zero- and few-shot methods. We experiment with few-shot learning by fine-tuning a

single linear layer on a pre-trained VLM representation. We find that a model fitted to just

a few hundred samples performs favourably compared to a model trained on hundreds of

thousands of examples in a fully supervised way. We also explore the zero-shot prediction

potential of contrastive prompting using positive and negative landscape aesthetic concepts.

Our results show that this method outperforms a linear probe with few-shot learning

when using a small number of samples to tune the prompt configuration. We introduce

Landscape Prompt Ensembling (LPE), which is an annotation method for acquiring

landscape scenicness ratings through rated text descriptions without needing an image

dataset during annotation. We demonstrate that LPE can provide landscape scenicness

assessments that are concordant with a dataset of image ratings. The success of zero- and

few-shot methods combined with their ability to use text-based annotations highlights

the potential for VLMs to provide efficient landscape scenicness assessments with greater

flexibility.

5.1 Introduction

In these times where urban expansion is prevalent, maintaining the quality of our landscapes

is increasingly important, as it plays a significant role in our overall well-being. Beyond

their visual appeal, scenic landscapes offer a multitude of benefits, both tangible and

intangible. They provide us with a sense of tranquility, an escape from the stress of our

daily lives, and a connection to the natural world. Moreover, research has shown that

exposure to scenic environments is associated with many positive effects. Exposure to

natural environments is shown to be beneficial to our attention span Velarde et al., 2007;

Berman et al., 2008, our stress management (Velarde et al., 2007; Roe et al., 2013), and

our overall happiness (Seresinhe et al., 2019). Scenic landscapes also instill a sense of

comfort, tranquility, and safety (Galindo and Rodriguez, 2000). Beyond personal health

benefits, scenic landscapes are a driver for tourism (Krippendorf, 1984), as well as cultural

ecosystem services (Daniel et al., 2012; Havinga et al., 2021).

One way to protect natural environments is to document their presence and evaluate

their aesthetic appreciation by humans, or scenicness. Improvements in computer vision

methods in the past decade have made it possible to predict scenicness directly from images.

Meanwhile, increased internet connectivity across the globe has enabled crowdsourcing at
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unprecedented scales. These developments combined have resulted in the exploration of

landscape aesthetic preferences directly from images in a data-driven setting (Seresinhe

et al., 2015; Dubey et al., 2016; Biljecki and Ito, 2021). However, such research efforts

in turn suffer from the large amounts of annotated images needed to train deep-learning

models. As a result, only a few studies have attempted to study aesthetic preferences on a

local scale using deep learning and data-driven methods.

Recent research developments have seen the convergence of natural language processing and

computer vision into Vision-Language Models (VLM), such as the CLIP model (Radford

et al., 2021). Trained on images gathered from the internet with their corresponding text

captions, these models are able to relate the content of images to textual descriptions to

determine their relatedness. CLIP and similar models have since closed the gap between

data-efficient learning strategies such as few-shot learning and fully supervised training

on large datasets. Rather than needing tens of thousands of annotated examples, VLMs

are able to use a fraction of data and still perform competitively on many tasks (Radford

et al., 2021; Zhou et al., 2022b; Song et al., 2022). Therefore, VLMs hold the potential to

enable accurate data-driven analyses of many tasks using small-scale datasets.

In this study, we evaluate the effectiveness of VLMs for quantifying and mapping landscape

scenicness at scale, using both rated image datasets and a new text-based annotation

approach. Firstly, we explore the potential of VLMs for landscape scenicness assessments

using data-efficient learning regimes using a dataset of rated images. We explore a few-shot

prediction setting with linear probes and a zero-shot setting using prompts of opposing

landscape scenicness concepts. Secondly, we introduce a new annotation method that

leverages the ability of VLMs to associate text with images, which we refer to as Landscape

Prompt Ensembling (LPE). We demonstrate that ensembles of rated text descriptions

provided by volunteers can provide landscape scenicness assessments without the need for

an image dataset while annotating.

5.2 Related works

5.2.1 Scenicness prediction with machine learning

The prediction of landscape aesthetic qualities from images became possible with the rapid

improvements of machine- and deep learning models in the last decade.

Dubey et al. (Dubey et al., 2016) introduced the Place Pulse 2.0 dataset, where labelers

were shown two images of urban streetscapes and asked to vote on their preferred image

with respect to six different qualities. Among the adjectives that volunteers were asked to

rate was beautiful. Subsequent research has explored a variety of topics, such as relating

adjective predictions to objects in urban environments to determine their influence (Zhang

et al., 2018), determining their spatial patterns through land use classes (Wei et al., 2022),
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and using them to synthesise ideal neighbourhoods (Wijnands et al., 2019). In further

research concerning the aesthetic quality of urban spaces, Verma et al. (Verma et al., 2018)

crowdsourced scenicness ratings on a local scale and used these ratings to measure the

effects of changing conditions on scenicness. Christman et al. (Christman et al., 2020)

relate objects that are implicitly assumed to be scenic or unsightly (e.g., flowers or trash

bags) to the walkability of neighborhoods. Chen and Biljecki (Chen and Biljecki, 2023)

predict the design and aesthetic quality of urban areas in Singapore and compare their

importance to features of the landscape.

Directly related to our research is the research performed on the estimation of scenicness

as a quantitative score. The dataset used for this purpose is the ScenicOrNot (SON)

dataset (Seresinhe et al., 2015), a crowdsourcing effort to rate the scenicness of images

across the entirety of Great Britain and the Isle of Man. Early works trained convolutional

neural networks to regress the scenicness score directly (Seresinhe et al., 2017). Subsequent

research has largely focused on understanding how scenicness relates to its environment.

Havinga et al. (Havinga et al., 2021) first extracted landscape features such as their scene

class, then related them to scenicness through a Random Forest approach. Further research

has attempted to use CNNs for explicit relations between intermediate concepts such as

scenes or land cover to relate them to scenicness in an interpretable manner (Marcos et al.,

2019; Marcos et al., 2021; Levering et al., 2021a). Finally, Arendsen et al. (Arendsen

et al., 2020) attempted to discover how concepts that have not been trained on relate to

scenicness. SON has also been used to study scenicness from new perspectives, such as

a hybrid ground-and-overhead imagery perspective (Workman et al., 2017), as well as

through satellite imagery (Levering et al., 2021b).

5.2.2 Vision-language models

While much attention has been devoted to classification tasks using VLMs and data-

efficient learning methods (Radford et al., 2021; Zhou et al., 2022a; Gabeff et al., 2023),

comparatively little has been done to develop methods compatible with regression tasks.

Li et al. introduced OrdinalCLIP, which uses an ordinal output space in order to utilise

the classification-based few-shot methods (Li et al., 2022). Hentschel et al. (Hentschel

et al., 2022) trained a linear probe on CLIP image features on the regression task of image

photographic aesthetics understanding in a few-shot setting, with competitive results

compared to a fully-trained baseline. Ke et al. (Ke et al., 2023) introduced VILA, a VLM

fine-tuning and zero-shot prediction pipeline for image aesthetics. The authors fine-tuned a

pre-trained VLM on image-text captions, where the text captions provide feedback on the

given image about its aesthetic properties or qualities. The authors then test the zero-shot

regression performance of their model by using the contrast between two prompts (e.g.,

”good photo” versus ”bad photo”), where the model’s confidence in the positive prompt

is assumed to be correlated with photographic aesthetic beauty. Their method delivered
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competitive results compared to fully-trained baselines. The authors also experiment with

other tasks, such as photo-aesthetic captioning.

5.3 Data

5.3.1 ScenicOrNot

For the prediction of landscape scenicness, we require a reference dataset with image

ratings. For this purpose, we use the ScenicOrNot (SON) dataset (Seresinhe et al., 2015)

as our reference dataset. SON consists of a collection of approximately 217 000 images

with ratings provided by anonymous volunteers on a scale between 1 (most unsightly) and

10 (most beautiful). The images used by SON are obtained by the Geograph UK project1.

The images are stored with geolocation information and can therefore be used for mapping.

To acquire scenicness ratings for the images, the authors then used a crowdsourcing

website2, which loads a random image and asks the visitor to rate it. Images were only

included in the dataset if they had at least 3 ratings. The SON website provides a file that

contains the ratings of each image, along with the image path on the Geograph website.

After removing images that had been taken offline from the ratings file, we are able to

use a total of 212 104 images. We show the spatial distribution of the rated images and

corresponding scores in Figure 5.1.

5.3.2 Landscape prompt annotations

For the SON dataset, volunteers were asked to provide ratings of images directly, which

creates a dataset with image ratings. Such an approach provides accurate labels for

individual images, but implicitly, such ratings are not informative about individual voter

aesthetic preferences for certain landscape types. Instead, we propose to annotate a dataset

that captures the explicit landscape preferences of each volunteer by leveraging the ability

of VLMs to relate text descriptions to image content. We refer to our annotation method as

Landscape Prompt Ensembling (LPE). To create a prototype dataset, we involved a group

of non-expert volunteers and asked them to provide prompt-rating pairs that describe

the landscapes of the United Kingdom through an anonymous survey. In this survey, we

showed four example images of scenes with descriptions and ratings that voters could

imagine. We then asked them to imagine and write out their own landscape impressions

of the United Kingdom. As such, in our annotation process, we do not need an extensive

image dataset during annotation, instead relying on the volunteers’ imagination. We

also surveyed the confidence that voters have in their ratings and whether or not they

have visited the United Kingdom before. In total, we received 45 responses. We removed

empty responses and responses that did not provide prompts in the requested format. Of

1https://www.geograph.org.uk/
2https://scenicornot.datasciencelab.co.uk/
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Figure 5.1: ScenicOrNot image ratings plotted at their georeferenced coordinates for the
entirety of Great Britain and the Isle of Man. Values range from 1 to 10, where 10 is the most
scenic, with an average scenicness rating of 4.43.

these 27 remaining responses, the median number of prompts provided was 4. In total,

voters provided 136 prompts. 18 voters provided more than 1 prompt at once. Of the 19

respondents for which confidence information is available, the average voter confidence was

3.36 out of 5, and 57% of the labelers had visited the United Kingdom before. We give an

overview of our annotation process in Figure 5.2. We show how our LPE annotations can

be used to generate image ratings, such as in the SON dataset, through early ensembling

(Section 5.4.4) and late ensembling (Section 5.4.4).

5.4 Methods

In our research we explore how well CLIP (Section 5.4.1) can be used in efficient data

regimes for the task of scenicness prediction. For this purpose, we use recent advances in

model pre-training and we test the utility of the text encoder of our VLM. After testing the

robustness of CLIP features in a few-shot setting (Section 5.4.2), we propose a method for
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Figure 5.2: Rated landscape prompt annotation workflow. Voters are asked to imagine
landscapes that they like or dislike. They are then asked to write a description of these
landscapes and to give it a rating between 1 and 10. The resulting dataset is a collection of
landscape descriptions and their associated ratings from every voter.

zero-shot prediction based on contrastive prompting in section 5.4.3). We then demonstrate

the power of VLMs in assessing landscape scenicness through text descriptions by using

LPE (Section 5.4.4), where we generate image ratings from our LPE annotations.

5.4.1 CLIP

The feature extractor we use in our experiments is a CLIP-pre-trained VLM vision

transformer (Radford et al., 2021). This model consists of an image feature extractor

and a text feature extractor, which have been jointly optimised during pre-training so

that they share the same embedding space. The image encoder encodes each image to a

vector x, and the text encoder encodes each textual prompt to a vector t. The vision/text

embedding space learned by CLIP is multimodal and aligned, in the sense that a prompt

and a corresponding image would be mapped in the same location of the embedding space.

We use the image and text encoders as provided in the checkpoints of OpenAI (details in

Section 5.5).

5.4.2 Few-shot learning of CLIP features

In this setting, we study how well VLM models can predict scenicness using only the image

encoder through few-shot learning. In other words, we only consider the image feature

vector x extracted by the image feature extractor of CLIP without using any text features.

We optimise a single linear layer, which maps each image feature vector to a scenicness
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Figure 5.3: Overview of the CLIP model. CLIP uses two separate encoders, which map
images and text to the same latent space.

score prediction ŝ:

ŝ = x⊺w + b, (5.1)

where w is a vector of weights and b is a bias term. The linear layer is then optimized

using a squared error loss:

Lscenic = (s− ŝ)2, (5.2)

where s is the SON rating matching the input image.

5.4.3 Contrastive prompting

In our second experiment we test the zero-shot capabilities of the text encoder. In

this setting we explore which prompt formulations are suitable for predicting landscape

scenicness. Our method uses a shared prompt context with a pair of antonyms to derive

the model’s preference for the positive concept of the antonym pair. The prompt context

is a general sentence such as ”A photo of a landscape that is [...]”, where the text in

brackets is replaced by either synonyms or antonyms of scenicness. The use of this prompt

is intended to provide good discriminative text features for the task, and its importance

was first demonstrated by Zhou et al. (2022b). For a given set of two prompts comprised

of one scenicness synonym and one scenicness antonym, we first calculate the text feature

activation matrix T of size (dt × 2), where dt is the number of features of the text encoder

of the VLM. For a given image activation vector x of size di = dt, we can then calculate

the logits and use a Softmax activation function to determine the activation of the prompts

for the image under consideration:

a = Softmax((x⊺T) ∗ Z), (5.3)
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where the scaling factor Z has been estimated empirically during the pre-training of CLIP.

Note that the activations of a sum to 1. We can assume that the model’s confidence in

the positive scenicness synonym prompt at index 1 is linearly related to the scenicness of

a given image. We rescale the model’s confidence in the positive prompt at index 1 to

the 1 to 10 range of the scenicness reference data to derive the predicted scenicness score

ŝ:

ŝ = (a1 ∗ 9) + 1 (5.4)

The resulting predictions can then be compared to the reference scenicness scores to

determine the performance of the given prompt construction. As this is a zero-shot

method, no parameter updates are performed. We give a graphic overview of our approach

in Figure 5.4.

Contrastive Prompting

+

Beautiful

Ugly

A photo that is...

Prompt 1prompts

Prompt 2

context

antonyms 6.6
9)+1

a
1

ŝ(a
x

t1
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*

Figure 5.4: Prediction pipeline for the contrastive prompting method. We first define a
positive and a negative prompt with a shared prompt context. Then, we use the model’s
confidence in the positive prompt and rescale it between 1 and 10 as the scenicness prediction
ŝ for a given image.

5.4.4 Landscape prompt ensembles

In this experiment, we test two ways of deriving image scenicness ratings from the rated

text prompt annotations described in Section 5.3.2. In this annotation format, each voter

v ∈ V provides a list of landscape prompts with matching ratings. For each voter v, we

can extract a matrix of text features Tv from the prompts with CLIP. For each voter, we

also have a vector of ratings, rv. We test how well our prompt-based annotations can be

used to generate image ratings through two types of ensembling methods, late ensembling

and early ensembling, which calculate the prompt activations in differing ways.

Early ensembling

With early ensembling, we hypothesise that if many voters provide many prompts, then

there will be a few prompts that most accurately describe each image. For instance,

a photo that depicts a river in a forest benefits from having the river mentioned, as it

provides a more detailed description than just a prompt about forests in general. For this

purpose, we consider all prompts provided by all voters at once. First, we concatenate the
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Figure 5.5: Methods of ensembling for generating image
ratings from landscape prompts. In early ensembling, we use the likelihood that any given
prompt matches an image. The likelihood of each prompt is then multiplied by its voter-
provided scenicness rating to determine the scenicness score of a given image. In late ensembling,
we consider this weighted likelihood for the prompts of each voter individually to calculate a
voter-specific scenicness score. We then average across all voter scenicness scores to calculate
the scenicness score for the image.

encoded text feature matrices of the prompts of all voters into a single text feature matrix

T:

T =
[
T1 T2 . . . TV

]
. (5.5)

We can then calculate the activations of each prompt with Eq. (5.3) to derive the prompt

activation vector a. In this setting, a contains the activations of all prompts provided

by all raters for the given image through a single Softmax. As such, it represents the

probability that each prompt best matches the image. We then concatenate the ratings of

all voters into a single ratings vector r such that it matches the shape of the activation

vector a:

r =
[
r1 r2 . . . rV

]
. (5.6)

By multiplying the probability that each prompt best matches the given image with its

provided scenicness rating, we can then compute the predicted scenicness score of the

image from all contributions:

ŝ = a⊺r. (5.7)

Late ensembling

In the late ensembling case, we hypothesise that having many voters with less detailed

prompts will capture the variance of landscape preferences on a macro-scale, similar to
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the variance observed for the ratings of individual images in SON. For each voter v ∈ V ,

we first extract the activations of their provided prompts:

av = Softmax((x⊺Tv) ∗ Z). (5.8)

To calculate the scenicness score for a given image, we can then multiply the activation

vector of each voter with the ratings of the voter and take the average across the total

number of voters to calculate the image scenicness score:

ŝ =

∑V
v=1 a

⊺
vrv

V
(5.9)

5.5 Experimental set-up

For our VLM, we use the ViT-L/14 variant of the CLIP pre-trained models (Radford

et al., 2021). We freeze the feature extractors and do not optimise them during any of

our experiments. We evaluate our methods using the root mean squared error (RMSE),

the coefficient of determinant R2 and Kendall’s τ , which is a ranking coefficient ranging

from −1 (all values are inversely ranked) to 1 (all values are ranked perfectly in order)

(Kendall, 1938). We release the code for our experiments on GitHub3.

5.5.1 Few-shot learning

We run experiments with a total number of samples of n ∈ (25, 50, 100, 250, 500). We

cluster all landscape photos in SON, run k-Means (k = 25), and pick n/k samples of each

cluster. We optimise the linear layer using stochastic gradient descent. We use 5-fold

cross-validation over the learning rates 5e-3, 2.5e-3, and 1e-3, and we use the model with

the best training R2 during testing, as the R2 is more stable than the RMSE on this

task. We compare the performance of the ViT-L/14 model to an ImageNet-pretrained

ConvNeXt-Large model (Liu et al., 2022) to determine the effect of web-scale pre-training.

We use the same training regime for this model. Lastly, we compare the performance of

both few-shot trained models to a ConvNeXt-Large model trained on the entire dataset.

We train this baseline model with a learning rate of 1e-3 with the Adam optimizer (Kingma

and Ba, 2014). We randomly sample 10% of the dataset for testing. Of the remaining

90% of the dataset, we use 85% for training and 15% for validation.

5.5.2 Contrastive prompting

We test different prompt configurations in our contrastive prompting experiments. We

consider six prompt contexts: ”A photo that is”, ”A photo that is extremely”, ”A photo

of an area that is”, ”A photo of an area that is extremely”, ”A photo of a landscape

3https://github.com/ahlevering/prompt_guided_scenicness
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that is”, ”A photo of a landscape that is extremely”. We test these prompt contexts to

evaluate two aspects, namely 1) the importance of emphasis on landscapes (”area” and

”landscape”), and 2) the effect of adding a superlative (”extremely”). For the positive and

negative concepts, we use the synonyms and antonyms of ”scenic” as listed on a thesaurus

website4. The synonyms that we use are ”breathtaking”, ”grand”, ”spectacular”, ”striking”,

”dramatic”, ”panoramic”, ”impressive”, ”beautiful”, and ”picturesque”. For the antonyms,

we use ”normal”, ”usual”, ””dreary”, ””ugly”, ””ordinary”, ”despicable”, and ”gloomy”.

We test all possible combinations of context, positive, and negative concept choices,

which results in 378 unique prompt configurations. To determine the stability of prompt

configurations we compute the metrics on the full dataset as well as the samples used in

the 25-sample few-shot learning case. In doing so, we test if a single representative sample

from each type of landscape in the SON dataset will result in similar highly-performing

prompt configurations compared to the full dataset.

5.5.3 Landscape prompt ensembles

Both the early and late ensembling methods do not require parameterization and can

be run as-is. We instead analyse the trade-off between the number of voters and the

number of prompts they provide in the case of late ensembling. We test the effect of using

ensembles with a minimum of 2, 5, 8, or 10 prompts. In doing so, we can test if it is better

to have many voters with a small number of prompt suggestions or to have a few voters

who provide more accurate prompt suggestions.

5.6 Results and discussion

5.6.1 Few-shot experiments

Figure 5.6 illustrates the performance of the few-shot linear probes. Our results suggest

that it is possible to accurately predict scenicness with far fewer labelled examples than

has previously been attempted. Compared to the fully-trained baseline model, which was

pre-trained on ImageNet, we find that the linear probe based on the ViT-14/L CLIP pre-

trained transformer is nearly as accurate when using n = 500 labelled samples. However,

despite requiring approximately 342 times fewer training samples than the fully-trained

baseline, this can still be considered a non-trivial labelling effort as all of the images in

SON are rated by at least 3 voters. Reducing n further, we observe that a model that uses

just n = 100 samples has approximately 10% lower accuracy but uses 5 times fewer labels.

Our findings suggest that a few-shot linear probe can provide an adequate estimation of

landscape scenicness even with a limited number of samples.

4https://www.thesaurus.com
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Figure 5.6: Results for the few-shot linear probes. The black line shows the performance of a
ConvNeXt-Large model initialised with ImageNet weights trained on the complete SON dataset.
The blue line represents the same model, where only the linear probe is fine-tuned in a few-shot
setting. The red line shows the performance of the ViT-14/L vision transformer pre-trained
using CLIP. While both the ConvNeXt-Large and ViT-14/L models provide adequate few-shot
performance, the transformer model with web-scale pre-training and more parameters performs
substantially better. When using 25 samples to estimate the best prompt combination, our zero-
shot contrastive prompting method (shown in magenta) shows superior ranking performance
compared to the few-shot models, although predictions are further off from the reference values
as evidenced by the high RMSE.

5.6.2 Contrastive prompting

In Figure 5.7, we show the performance distribution for each choice of prompt context.

From the distributions over the full dataset, we observe that the method is sensitive to the

exact formulation of the prompt and that both the context and the choice of synonyms

and antonyms are of importance. The best-performing prompt context on our dataset (”A

photo of an area that is extremely”) still has outliers, which produce a poor fit. In the

best-case scenario, the contrastive prompting method outperforms the few-shot probe on

the task of ranking samples when only a limited number of samples are available to train

the probe.

In the pure zero-shot setting, it is not possible to know a priori which prompt combination

is optimal. In Figure 5.7, we therefore also show the performance of each prompt context

when applied to the samples of the n = 25 case of the few-shot setting, which we refer

to as the calibration set. The resulting distributions for each prompt context are highly

similar, which suggests that a few labelled samples may be used to tune the prompt

configuration. We show the metric performance of the best prompts on the fine-tuning set

in Table 5.1. We take the best-performing prompt configuration and apply it to the full

dataset. Figure 5.6 highlights that it outperforms a linear probe on the task of ranking

samples, but it also has a very high RMSE and a marginally worse R2. These results

suggest that the optimal prompt configuration for this task is maximally discriminating

between the positive and negative concepts.
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Figure 5.7: Distribution of Kendall’s τ of each of the six prompt contexts of the contrastive
prompting method when evaluated on the entire dataset (left) and when applied to only the
n = 25 samples from the few-shot learning case (right).

Table 5.1: Metric performance of the top-five contrastive prompting configurations evaluated
on the calibration set. The highly-performing prompts in this setting are similar to those
observed for the full dataset.

Context
Positive
concept

Negative
concept

RMSE R2 τ

area that is

extremely
breathtaking usual 1.52 0.841 0.705

area that is panoramic normal 2.31 0.801 0.664
area that is

extremely
panoramic ugly 2.64 0.813 0.658

area that is

extremely
breathtaking normal 3.43 0.744 0.644

area that is

extremely
panoramic usual 3.50 0.729 0.644

5.6.3 Prompt ensembles

In this section, we compare the computed image scenicness ratings of our LPE ensembling

methods to the SON image ratings. In Table 5.2, we show the numerical metrics of

both of our prompt ensembling methods when compared to SON labels. The results

demonstrate that late prompt ensembling is a more effective ensembling method than

early prompt ensembling by a substantial margin. We hypothesise that this is the result

of the implicit variance in the appreciation of landscapes between voters, which is not

accounted for during early ensembling. Even if the VLM model retrieves the most accurate

prompt for a specific image with high confidence, the rating assigned to this image could

be strongly influenced by the voter’s personal preferences. Therefore, late ensembling

appears to be the more reliable method for generating image ratings from the rated prompt

annotations. The numerical comparison with SON also suggests that it is better to have

many voters provide prompts as opposed to a small subset of voters who provide many

prompts. Interestingly, the quality or diversity of each ensemble appears to matter less
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Table 5.2: comparison of our LPE method with SON image scores. Late fusion results in
image scenicness ratings that are closer to the SON image ratings, and including more voters
results in a higher degree of agreement with SON, even if these voters provide fewer prompts
per person.

Method voters
Total
Prompts

RMSE R2 τ

Early 27 137 3.28 0.535 0.377

Late
>= 2 prompts 18 129 2.49 0.684 0.475
>= 5 prompts 10 105 2.29 0.657 0.453
>= 8 prompts 5 74 3.46 0.631 0.456
>= 10 prompts 3 49 3.54 0.620 0.437

than the number of individual ensembles. Therefore, a higher number of respondents is

more important than ensuring that all respondents provide many prompts at once. Using

our small dataset, we even find that late prompt ensembling can be more effective at

acquiring scenicness rankings of images than fine-tuning a linear probe using 25 or fewer

image labels. Our results demonstrate that LPE shows potential for landscape scenicness

assessments without the need for an image dataset during annotation.

5.6.4 Geographical prediction patterns

In Figure 5.3, we show the spatial prediction results for all methods used in our study.

We observe a few notable differences between methods. In the few-shot learning setting,

the main difference between using n = 25 samples (1 examples per cluster centroid) and

n = 500 samples (20 examples per cluster centroid) is an increase in the model’s ability to

predict values at both ends of the distribution, such as the very low scenicness in cities

and the very high scenicness of the Scottish highlands. When considering the zero-shot

contrastive prompting approach, we observe that the most effective prompt combinations

are all highly discriminative between the scenicness synonyms and antonyms. The resulting

predictions do follow the distribution of scenicness of the reference data, but with hardly

any predictions in the middle of the scenicness distribution. This explains the high RMSE

that can be seen in Figure 5.6, despite both its R2 and Kendall’s τ being competitive

compared to the few-show methods. It is therefore likely better to use quantile maps to

display scenicness predictions for contrastive prompting. At the country level, all of the

presented methods show the most important scenicness patterns, such as low scenicness in

cities and high scenicness in elevated areas and shrublands.

We further study the image scenicness ratings obtained by our LPE late ensembling

method by analysing the ranking of land cover classes. We sample the level-2 land cover

class of the 2018 CORINE inventory (EU Copernicus Program, 2018) at the geolocation

of each image within SON. In Figure 5.8, we show a comparison between the SON image
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Figure 5.8: Comparison of ground truth average image ratings as plotted for each class in
SON (left) with the image ratings generated by the LPE method that most closely matched
SON in ranking performance (right). The relative rankings for each land cover class are highly
similar, though the LPE mean rating is far higher than in SON.

ratings (left) and the ratings calculated by LPE (right) for each land cover class. The

plot indicates that there is strong agreement in the ranking of the scenicness of most land

cover classes between SON and LPE. One notable exception is that class 1.2 ”Industrial,

commercial, and transport units” is considered to be more scenic by our LPE method

when compared to the SON image ratings. However, we do not observe an obvious reason

for this increase, such as voters consistently rating industrial elements higher. Further

research will be needed to discover the cause.

5.7 Conclusions

In this paper, we studied the potential for VLMs to reduce the labelling dependency of

data-driven scenicness prediction. Firstly, we studied the potential of the image encoder of

a CLIP pre-trained transformer model to provide good features for scenicness prediction

when fine-tuned with 25 to 500 samples from the ScenicOrNot dataset. Our findings prove

that a linear probe fine-tuned on 500 samples is just 5% less accurate than an ImageNet

pre-trained model trained on 342 times more samples (Kendall’s τ of 0.625 compared to

0.651).

Secondly, we explored the potential of zero-shot contrastive prompting, which uses a shared

prompt context and a synonym and antonym for scenicness (e.g., ”beautiful” and ”ugly”) to

find the model’s preference for the synonym, which provides a continuous scenicness score.

We determined that the choice of prompt context is important for the performance of the

method and that a suitable prompt configuration can be discovered using representative

samples from the final dataset. The best-performing contrastive prompt configuration

tuned to 25 samples outperforms a linear probe when ranking samples. However, it has the

tendency to predict extreme values, and as a result, it has a higher standard error.
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Table 5.3: Maps of all methods tested in our research compared to the SON reference data
(shown in panel a)). The first row (panels b-d-f) showcases methods based on the image ratings
of SON, while the second row (panels c-e-g) showcases methods based on the descriptions
provided by our volunteers. The predicted scenicness ratings of each method vary greatly,
though the main trends between the models are similar, e.g., rugged wilderness being considered
more beautiful than man-made areas such as cities.

a SON reference values

b) ViT-14/L linear
probe
(25 samples)

e) Early ensem-
bling

c) ViT-14/L lin-
ear probe (500 sam-
ples)

f) Late ensembling
(>= 10 prompts)

d) Contrastive
prompting
(25 samples)

g) Late ensembling
(>= 2 prompts)

Lastly, we introduced Landscape Prompt Ensembling (LPE), a new method for the

annotation and prediction of landscape scenicness that uses rated textual descriptions of

landscapes. Through a small-scale survey, we asked volunteers to provide text descriptions

of landscapes they liked or disliked within the United Kingdom, along with a rating for

the description. Our ensembling methods then use the confidence of the VLM that a

prompt matches an image multiplied by its provided user rating to determine the scenicness

contribution of that prompt. We tested if it is better to find the best prompts for a given

image out of all prompts provided by all voters (early ensembling), or to calculate the

scenicness score for each voter individually before averaging the scenicness scores of all

voters (late ensembling). Our results indicate that the latter method provides image

scenicness ratings that are more in agreement with ScenicOrNot ratings (Kendall’s τ of
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0.475). We also demonstrated that the scenicness ranking of land cover classes of our LPE

method is highly similar to the ranking observed for the ScenicOrNot ratings.

Our results show that VLMs have the potential to perform accurate data-driven landscape

scenicness assessments on a smaller scale than previously possible and with greater flexibility.

We also demonstrated that VLMs can open up new possibilities for landscape scenicness

assessments beyond rated image datasets through LPE. We hope that our findings inspire

future research experiments with VLMs on other landscape qualities, especially on regional

and local scales.



Chapter 6

Synthesis

6.1 Main findings

The aim of this thesis is to address current shortcomings in Landscape Quality (LQ)

prediction systems and to build accurate machine learning approaches that can be used

and trusted by domain specialists, practitioners, and policymakers. The chapters of this

thesis have addressed various lacking aspects of current DL models for LQ assessments.

The results will be assessed from the perspective of the research questions formulated in

Section 1.4. Each research question is discussed below, summarising the main findings

and lessons learned.

6.1.1 Which patterns can be modelled and reproduced through DL-based LQ

assessments?

Understanding the types of problems that DL-based LQ assessments may be used for will

help to narrow down their potential application domains. This thesis has analysed several

scenarios and perspectives through which LQ assessments can be performed. Chapter 2

considered the prediction of liveability from aerial overhead images. It also investigated

contributing factors to liveability through its dimension scores. These scores covered

dimensions that are visible in RS images (physical environment, building quality) as well

as non-visible dimensions (population, safety, amenities). Results suggested that visible

dimensions are easier to predict than non-visible ones. This chapter also studied the

link between neighbourhood typologies and liveability and concluded that predictions

were equally accurate across neighbourhood typologies. Regarding natural environments,

Chapter 3 considered the possibility of predicting scenicness at Sentinel-2 resolution,

where the scores of all ground-level natural images that fall within a given Sentinel-2

patch are aggregated. The aggregated landscape scenicness scores could be predicted

with high accuracy, which demonstrated that it is possible to predict perceived LQs from

lower-resolution satellite images. It also investigated the relation between land cover and
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scenicness through a model that explicitly estimated how each land cover class contributes

to the scenicness score prediction. The resulting model was found to be slightly better

than an unconstrained one. These results proved that intermediate determinants of LQs

can be predicted as part of the modelling process using intrinsically interpretable methods

(also see RQ. 2 below).

6.1.2 How can LQ assessment workflows using DL be made more interpretable

so that it is easier to acquire new knowledge?

A prevailing problem that is inherent to DL models is the difficulty in understanding

the reasoning of the model, also known as the black box problem. This thesis considers

several approaches and methods to address this shortcoming. Firstly, in Chapter 2, a

semantic bottleneck was used to predict liveability from aerial images. The intermediate

concepts used were domain scores, which were designed to be linearly related to urban

liveability. Experiments proved that concept bottleneck models are a useful interpretability

method for RS images and that intermediate concepts can be used to explore their relation

to LQs. Chapter 3 extended bottleneck models to relax the 1-on-1 relations between

intermediate concepts and the final score while remaining interpretable by design. It

used land cover classes as intermediate concepts to be predicted from Sentinel-2 images,

but instead of a single weight per concept, it allowed for three different weights. Using

an attention mechanism, the model was regularised to use predominantly a single one

among these weights. The resulting model was able to distinguish between positive-and

negatively-contributing examples of the same land cover class and even hint at which

fine-grained land cover classes are likely contributors to each option. These experiments

proved that bottleneck models are useful not only for modalities beyond natural images

but also for discovering more fine-grained sub-concepts by leveraging the downstream

task.

Post-hoc analysis methods were frequently used in this research to explore the represen-

tations learned by the models, in particular through the use of t-SNE dimensionality

reduction. This method was used to visualise the information of the high-dimensional fea-

ture vectors that precede the LQ calculation function into a 2-dimensional representation.

The analyses of Chapter 2 related liveability to neighbourhood typologies. Through t-SNE

visualisation, it could be determined which neighbourhood types are not homogeneous

in visual appearance and housing quality. In Chapter 3, t-SNE was used to visualise the

transitions of land cover types as perceived by the decision model. By doing so, it was

made visible which land cover types are perceived as similar and how interactions between

land cover classes relate to scenicness. Therefore, experiments have proven that t-SNE is

a useful method for post-hoc knowledge extraction from the latent representation learned

by a DL model.
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6.1.3 What are the benefits and challenges of multimodal DL approaches for

LQ assessments?

Recent research in ML and DL has shown that multimodal methods can improve perfor-

mance or even result in new ways to train and utilise models, such as the CLIP VLM

discussed in Section 5.4.1. As such, this thesis has sought to discover the benefits and

challenges of multimodal learning for LQ assessments. Chapter 4 considered the typical

case for multimodal learning, where complementary modalities are used during training for

performance benefits. Experiments were performed to predict housing quality on a regular

geolocated grid by using natural images and overhead aerial images. For natural images,

street photos from Google Streetview (GSV) and photos from Flickr, a photography social

media platform, were used. Data fusion of aerial images with both of these data sources

was attempted, as well as using each modality individually. Results suggested that using

Google Streetview images alone yields the most accurate results. Using only aerial images

was approximately 30% less accurate when considering Kendall’s τ ranking coefficient.

Using only curated natural images from Flickr was approximately 20% less accurate than

using GSV images. However, a data fusion approach using Flickr images and aerial images

reduced the performance deficit to 15%. The results from these experiments suggested

that natural-aerial fusion can be beneficial for performance gains, in particular when

high-quality data such as GSV images are not available. As GSV images are a proprietary

data source, this is often the case. Flickr images, on the other hand, are publicly available,

so they are more reliable.

Experiments performed in Chapter 5 studied the possibilities and challenges of a different

combination of modalities, namely through the interplay between text and images. The

LPE method introduced in Section 5.4.4 considered multimodality in the dataset annotation

process by using text examples for landscape scenicness rather than showing image examples

to annotate. In doing so, LPE allows for the annotation process to be based only on text

descriptions, which are converted into image ratings using the CLIP VLM. The resulting

dataset of image scenicness ratings across the entirety of the UK was found to be strongly

concordant with SON (R2 of 0.68), a well-studied dataset of image scenicness ratings.

These results could be attained despite having different volunteer cohorts. The results from

these experiments proved that multimodal approaches are not limited to just prediction

performance and that multimodal combinations can also be leveraged to develop new

annotation processes for LQ assessments. In particular, this style of multimodal annotation

can offer different perspectives and characteristics that cannot be acquired through image

ratings.
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6.1.4 Which approaches are effective at reducing the dependence on large

datasets for LQ assessments using DL models?

The dependence of DL models on large datasets is limiting their potential to be applied to

new LQs. Addressing this problem can make the dataset requirements for the study of

new LQs less of a burden and make it easier to repurpose existing models for new tasks.

Moreover, smaller datasets mean that it is possible to study the annotators, as only a small

cohort is needed for annotation. Experiments performed in Chapter 5 address this research

question for natural images by leveraging web-scale pre-trained models, which have been

pre-trained on extremely large datasets. Section 5.4.2 firstly considered a few-shot training

setting, with sub-sets of images that are significantly smaller (3–4 orders of magnitude).

The performance of the linear models trained in this setting compared to a baseline model

trained on the full dataset confirmed that accurate scenicness assessments are possible with

as few as 25 samples. Going beyond the requirement of labelled examples, the contrastive

prompting method introduced in Section 5.4.3 uses the difference between synonyms and

antonyms to regress a scenicness score without any further model training. However, this

setting was found to be highly sensitive to the wording of the contrastive text descriptions.

In advance, it is also not possible to know which text formulations will perform well. Yet,

when using 25 labelled calibration samples to find good prompt combinations, this method

could perform as well as the 25-sample few-shot case without needing parameter tuning.

As such, zero-shot learning with this approach could potentially yield good results, though

this needs to be confirmed by further research. In summary, the experiments performed

in Chapter 5 proved that web-scale pre-trained models can be re-purposed by using only

a fraction of the samples that were previously required to attain good performance, as

well as that LQ assessments with small-scale training datasets are a realistic objective. It

should be noted that the models that enabled these breakthroughs have notable drawbacks,

which are discussed in more detail in Section 6.3.

VLMs offer more benefits than just performance, in particular for annotation purposes.

The LPE annotation method proposed in Section 5.3.2 presents an interactive approach to

annotation for small datasets. It uses written landscape descriptions and ratings provided

by volunteers, which can be ensembled through a VLM to provide image ratings based on

how well each description fits a given image. As such, it relies on the quality and diversity

of text descriptions to annotate. Through this approach, it is possible to rate landscapes

without needing prototype image examples, which reflects a recent trend in computer vision

methodologies (Sariyildiz et al., 2023). With these characteristics, LPE is an alternative

annotation method with different properties than traditional image annotation pipelines,

which can be used to test other hypotheses about landscape perceptions than purely the

content of images. The results acquired by LPE are proof that multimodal methods can

be used not just to improve performance but also to enhance other steps of the supervised

learning pipeline.
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6.2 Research outlook

This thesis has demonstrated that DL methods for LQ assessments can be improved

to obtain deeper insights with fewer drawbacks. Through emerging developments such

as VLMs, it will soon be possible to expand the scope of LQ assessments even further.

Three particular research objectives can be identified as salient topics for future research.

Firstly, the role of biases and confounders is infrequently studied in existing LQ

research using DL models but will be increasingly important for future research. Secondly,

recent advances in multimodal models may enable human-machine interaction (HMI)

research, which will yield insights that conventional LQ assessments may not. Lastly, as

DL-driven LQ assessments mature, the spatial, temporal, and cultural generalisation

of LQs will increasingly become a topic of study, such that LQ assessment models can

be operationalised to track the development of landscapes. This section discusses the

potential of these emergent research topics.

6.2.1 Biases and confounders

When working with subjective LQ assessment datasets, there are invariably biases and

confounders that can skew ratings and results. Biases affect all aspects of the annotation

pipeline. When considering the content of images, it can be observed that ephemeral

attributes affect how images are perceived. For instance, seasonal variables such as lushness

affect scenicness in varying ways (Gong et al., 2015; Zhang et al., 2022; Hoeve, 2023), and

factors such as weather variables further affect the perceived scenicness of images (Seresinhe

et al., 2019; Hoeve, 2023). For that reason, seasonality is frequently used as an indicator

variable in study designs (Gong et al., 2015; Zhang et al., 2022). Another potential

source of variations in LQ ratings for images is the quality of the photographs. Expert

photographers are able to leverage photographic techniques to create more interesting or

more beautiful photos, which could result in skewed LQ ratings. Although photographic

qualities have been identified and quantified in existing research (Bianco et al., 2016; Hosu

et al., 2020; Ke et al., 2023), photographic biases are understudied in current literature

(Hoeve, 2023). Examples of biases that affect LQ assessments are given in Figure 6.1.

Seasonal and photographic factors cannot be directly accounted for when using large

LQ assessment image datasets, such as SON (Seresinhe et al., 2015) or Place Pulse 2

(Dubey et al., 2016). Images in such datasets are not curated for photographic qualities,

seasonality, or weather conditions. Instead, they rely on collecting and annotating images

in large quantities in order to create datasets that are large enough for DL models to train

on. Large datasets of fixed and uniform viewpoints, such as webcam footage, can capture

seasonal dynamics, which can be used to smooth out seasonal biases (Jacobs et al., 2007).

However, in the absence of such a source with LQ ratings, ephemeral and photographic

attributes can create skewed and biased assessments, where the model gives confident

responses based on ephemeral factors. Generative models may offer a practical solution
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Figure 6.1: Examples of photographic and temporal biases that may affect LQ assessments.
Image generated using Bing Image Creator (Microsoft, 2023).

to overcome ephemeral and photographic biases. As a possible solution, image-to-image

synthesis models can be used to generate an average representation of a given image. Such

methods have already been introduced for the augmentation of streetscapes (Wijnands

et al., 2019; Dubey et al., 2023), so it is likely possible to synthesise corrected images with

biases mitigated or removed.

6.2.2 Human-machine interaction

Human-machine interaction (HMI) has long been a fascination for computer science re-

searchers. It is broadly defined as ”the interaction and communication between human users

and a machine, a dynamic technical system, via a human-machine interface” (Johannsen,

2009). Such interactive methods allow users to iteratively improve a model by letting users

interact with predictions and outputs (Jiang et al., 2019). DL models are intrinsically not

interactive, and as such, they require adaptations in order to become interactive. However,

with adaptations made to the typical model training pipeline, approaches can be designed

that have humans in the loop throughout the process, such as through interactive dataset

generation for RS data (Hoeser and Kuenzer, 2022). Recent advances in vision-language

models (VLM) and web-scale datasets for pre-training (i.e., datasets with hundreds of

millions of samples gathered from the internet) have inspired many HMI initiatives, which

have resulted in great academic and societal interest. Generative models built on these
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advances, such as the text chat agent ChatGPT 1 and the image generation agent Dall-E

(Ramesh et al., 2021), have demonstrated that DL models can be adapted to become

excellent HMI agents. As a result, many interactive generative HMI models are being

introduced to leverage these advances (Cao et al., 2023). However, the downsides of such

models must not be ignored, such as intrinsic biases resulting from the web-scraped data

sampling strategy. These downsides are discussed in more detail in Section 6.3.

The models typically used in LQ assessments are not designed with interactivity in mind,

as most often they use a typical supervised learning approach. However, the annotation

method presented in Section 5.3.2 has the potential to be extended into an interactive loop.

The current set-up has a one-way information flow, as the user only provides rated text

descriptions which are used to create an ensemble of many such descriptions. However,

the process can be made personal and interactive by only considering the text descriptions

of the user. After scoring all images and rendering the map, the user can then see which

areas they would like to visit, look at photo ratings, and adjust their text descriptions to

better suit their expectations. The practical applications of this approach to personalized

mapping could be used to test people’s perceptions of landscapes or to find areas that a

user may like to visit. These advances, enabled by sophisticated VLM approaches, can help

advance our understanding of LQs in ways that were previously unachievable. Moreover, as

proven in Chapter 5, it is possible to perform this type of research with small sample sizes

and with a set-up that a non-technical user can use as well. These results demonstrate

that HMI experiments for LQs and other aspects of geography are within reach of current

models and that it may be time to test such approaches in applied research domains.

A natural extension of datasets generated by the LPE method is to study how well prompts

imagined by volunteers match the calculated image ratings. By extending it with a HMI

evaluation loop, it becomes possible to study the mind’s eye perceptions and inherent

preferences of annotators. For instance, users can be shown image examples with ratings

computed with LPE. For each prompt defined by the user, they can then be shown rated

images where the prompt was maximally activated. Users can provide feedback on how

fitting the image ratings are for the prompts and then adjust their prompts or include new

ones. In such an iterative process, users gradually explore how well their mind’s eye view

of the target region matches the landscape. This could be paired with post-hoc interviews

or surveys to better understand if LPE helped raters better understand their perceptions

of the target region. In a similar setting, users could also be shown the spatial distribution

of LPE ratings to further explore if their perceptions of certain geographical regions match

with their mind’s eye view. Through such experiments, methods such as LPE may enable

the study of LQ preferences in settings that were previously not feasible due to manual

labour requirements.

1https://chat.openai.com
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6.2.3 Generalisation

This thesis and similar research have shown that LQs can be accurately predicted from a

variety of image modalities using DL models, and as such, they are mature enough for

LQ assessments at scale. However, current research has not considered how well models

generalise across regions, to new timesteps, and between study participant groups. This

aspect of generalisation of a model determines how easily it may be used for out-of-

distribution data (Tuia et al., 2016). For instance, domain shifts may be due to spatial,

temporal, or cultural differences in data and annotator beliefs. For LQ assessments,

generalisation is an important topic to consider, as it studies the limits of models in real-

world settings. As such, generalisation can be considered an end goal of LQ assessment

research, which is considered in more detail in this section.

For LQ assessments, generalisation starts with the dataset collection process. As it

involves a subjective rating, the study participants responsible for annotating the data

will give assessments based on their personal preferences. Inevitably, studies assess a

subset of the population, and the characteristics of the study group will affect how well

the model corresponds with ratings given by other study groups. For instance, the socio-

economic background of respondents is known to affect landscape perceptions (Arthur,

1977; Abelló et al., 1986). It has also been observed that there are perceptual differences

between demographic groups on how emotional places are perceived to be, and that

negative emotions tend to be suppressed for online assessments when compared to in-

person assessments (Huang et al., 2020). Lastly, with regards to respondents, the cultural

background of respondents is a complex contributor to deviations from the human average

(Abelló et al., 1986). Even the meaning of words is determined by cultural contexts

(Thompson et al., 2020). In aggregate, the role of the individual is evidently important to

the process of annotating LQ images. Testing the cultural generalisation of DL datasets for

LQ assessments is currently not an objective that has been attempted. A primary problem

is the lack of reference datasets with annotator information, as the barrier for handling,

retaining, and releasing this type of information is higher since it concerns privacy-sensitive

information that is protected by privacy laws such as the European GDPR (European

Parliament and Council of the European Union, 2016). In order to advance DL-based LQ

assessments towards a rigorous science, future research should strive for legal compliance

to supply participant metadata. Through the release of annotator metadata, it will be

easier to make studies, datasets, and models comparable.

Spatial generalisation concerns the ability for models to perform in unseen regions (Tuia et

al., 2016). For instance, after training a model on images covering England, will it still work

for images of Wales? Models with good spatial transferability therefore enable them to be

used for similar problems in unseen areas. In this thesis, results were exclusively acquired

for the United Kingdom and the Netherlands, with no attempt at spatial generalisation

to other countries. First steps into the transferability of these models to unseen regions
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can be made for the scenicness models. The SONimage dataset is based on Geograph

data, which is also available in Germany. As such, a small-scale study could be performed

similar to the LPE experiment to test if the LPE rating ensemble for the UK has similar

predictions as the prompt ensemble created for Germany. Then, by rating German images

on a large scale using LPE, the transferability of the Sentinel-2-based models of Chapter 3

could be attempted. While respecting the cultural differences discussed in the previous

paragraph, such generalisation studies will yield valuable insights into how well existing

models can be used to predict in countries with similar cultures and geographies.

Current research almost exclusively considers the assessment of LQs for single timesteps

only. While there is much work to be done on the topic of inventorying, LQs are ephemeral

in nature, and there is much that can be learned from their change processes. For instance,

understanding which visual landscape elements correlate with the decay of the liveability

of a neighbourhood can help devise early warning systems. Yet, it is precisely a lack of

understanding about the possible veracity of such patterns that can cause fierce discussions,

such as the hotly debated broken windows theory (Wilson and Kelling, 1982). While

such theories may benefit planning purposes, more observational evidence is needed to

support them. However, a downside is that longitudinal research using image modalities

depends on the continued availability of images. As a result, such studies could not easily

be conducted due to a lack of data. This problem is largely remedied in the current

era through the increased availability of data. For natural images, Google Streetview

images have already enabled the monitoring of urban processes such as gentrification (Ilic

et al., 2019; Huang, 2022) and safety sentiments (Naik et al., 2017). While the use of

natural images for these purposes may yield accurate, repeated assessments, the amount

of data that is needed to cover a single year in a single city is enormous. As a result,

analyses with natural images scale poorly both temporally and spatially. As such, it is

more salient to perform such analyses using RS images. As follow-up research to the

liveability prediction experiments in Chapter 2, the monitoring of liveability was attempted

using time series data. A model was trained on data from 2016 and subsequently used to

predict the liveability of 2012 and 2020. However, the results proved inconclusive, as the

model was not able to pick up significant change patterns (Levering et al., 2023). This

raises the question of over which time periods subtle changes manifest, and as a result, the

timespan over which repeated monitoring using image modalities is a feasible objective.

The model used for monitoring should also be adapted for the task, such as through

domain adaptation methods. Additionally, having more sources of reference data may help

to study the conditions necessary for LQ monitoring. Since the data collection process

involves multiple time steps, it will involve long-term study set-ups and the long-term

availability of images. At present, monitoring studies may be used to collect data during

neighbourhood or landscape renovation processes. Images taken before and after present a

redesigned view of the neighbourhood with immediately-visible changes. Before-and-after
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views can be found on data sources such as Google Streetview, which may be a good

starting point.

6.3 The role of web-scale pre-training for LQ assess-

ments

Models that use web-scale pre-training using datasets gathered at the scale of the inter-

net have been prominently discussed throughout this synthesis. They may be used to

perform LQ assessments with less data (Chapter 5), re-imagine the annotation process

(Section 5.3.2), generate de-biased images (Section 6.2.1), and understand LQs through

HMI (Section 6.2.2). Evidently, web-scale and multimodal models such as CLIP may

enable further breakthroughs for LQ assessments. Of particular interest is their potential

to perform assessments without the need for re-training. The reduced technical know-how

required to operate DL models will in turn enable more researchers to use them, thus

making visual LQ assessments more broadly accessible for researchers and the public

alike.

While web-scale datasets enable the training of powerful models, they are not without their

fair share of criticisms and shortcomings, which have the potential to cause substantial

societal harm. For instance, web scraping is commonly used to create web-scale datasets.

However, the scraping methods and the datasets for seminal papers such as CLIP (Radford

et al., 2021) are not publicly known. Publicly available datasets may use Wikipedia

(Srinivasan et al., 2021) or web crawling repositories, resulting in datasets that are filtered

but lack curation (Schuhmann et al., 2022). As discussed in Section 6.2.1, a lack of

understanding about training datasets will introduce biases. For instance, countries may

be overrepresented or underrepresented in web-scraped datasets by virtue of having a

greater presence on the internet. Moreover, the copyright of data is also frequently not

considered when constructing datasets. For instance, descriptive landscape photographs

may have been used without the permission of photographers, and social media users may

not want their opinions to be used to train models. Such issues call into question whether

or not web-scale pre-trained models can be relied upon for research efforts.

As it stands, web-scale pre-trained models can provide many opportunities to bridge the

gap between DL methods and applied research. However, their evident shortcomings call

their reliability into question. Given both the benefits and the drawbacks of web-scale

datasets, difficult decisions will have to be made. How can the performance and potential

of web-scale datasets continue to contribute to the democratisation of DL models while

mitigating societal harm? The outcome of this discussion will determine the role that

web-scale pre-trained models can play in future LQ assessment research efforts.
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Taubenböck, D. Tuia, A. Levering, N. Jacobs, A. Kruspe, and K. Abdulahhad (2022).

“Geoinformation Harvesting From Social Media Data: A community remote sensing

approach”. IEEE Geoscience and Remote Sensing Magazine 10.4. Conference Name:

IEEE Geoscience and Remote Sensing Magazine, 150–180. doi: 10.1109/MGRS.2022.

3219584.





Summary

Landscapes are an ever-present aspect of life, and whether for daily living or for relaxation,

the qualities of landscapes influence those that use them. they are an important contributor

to the health and well-being of humans. For instance, deprived living spaces can cause

detrimental health effects, and landscapes with a high degree of scenic beauty are known

to positively impact the health and mood of viewers. Evidently, understanding how

landscapes can contribute to human well-being will have significant public health benefits.

For this purpose, opinions about landscapes and their qualities need to be gathered from

people. One way to do this is by showing landscape photos to volunteers, and to collect

ratings from them. By then relating the contents of the landscape photos to their ratings,

it can be better understood what drives the qualities of landscapes.

The process of deriving inferences from landscape photos with reference scores historically

required a lot of manual processing. However, recent advances in machine learning methods

have enabled models to automatically extract relevant information from photos, and to

use this information to perform landscape quality (LQ) ratings on new photos. As such,

the deep learning models that are capable of such assessments hold tremendous potential

for large-scale inventorying of LQ. However, the reasoning of these models is hard to

understand, and they require an enormous amount of training examples before they are

usable. Models also typically only use one source of information such as photos, while often

extra information is available which can be used to train better models. These problems

have thus far limited the practical applicability of deep learning models for LQ assessments.

The methods brought forth in this thesis are meant to address these shortcomings, and to

improve the practical utilisation of deep learning models for LQ assessments.

Chapter 2 considers the prediction of liveability from aerial images for the entirety of the

Netherlands. In particular, it addresses the lack of methods suitable for explaining models

trained on remote sensing (RS) data. Firstly, it introduces a model which explicitly learns

to relate liveability domain information (e.g. housing quality, physical environment) to

liveability ratings. This model performed better than models which learned to only predict

liveability from aerial images, which demonstrates that extra task information helps to

train better models. By relating the model’s learned reasoning to neighbourhood typologies,

it could then be understood how liveability varies for different types of neighbourhood
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layouts. This chapter has demonstrated that models trained on RS images can be used to

extrapolate liveability surveys, and that interpretability can be part of the design process

for models.

Chapter 3 continues with improving the interpretability of DL models trained on RS

images, in particular for landscape beauty (or scenicness) assessments. It extends the

interpretable model of chapter 2 to account for multiple possible linear relations between

the intermediate task and the final scores. This idea was tested by using land cover

prediction as the intermediate task, and to let the model learn 3 possible options per land

cover class. The model could be used to find examples which contribute positively or

negatively to scenicness. This chapter highlights that deep learning models can be used to

find more complex patterns while remaining interpretable.

In chapter 4, the performance benefits of approaches which use multiple sources of

information are tested for the task of housing quality detection. Several combinations of

natural and RS images were used. Using only Google Streetview (GSV) images resulted in

the best performance, approximately 30% better than using only aerial images. However,

when fusing Flickr image features with aerial images, this performance gap can be brought

down to 15%. While GSV images are the best-performing data-source, it is impractical

for large-scale use as it is proprietary. Therefore, these results are encouraging, as the

combination of Flickr and aerial overhead images demonstrates that open-source data

sources are able to perform competitively.

Chapter 5 explores the potential that multimodal models pre-trained on information at

the scale of the world-wide-web can offer for LQ assessments. Firstly, experiments were

conducted with data-efficient learning regimes. Models trained on just a few hundred

samples performed competitively compared to models trained on hundreds of thousands of

examples. The findings demonstrate that it is possible to perform LQ assessments using

magnitudes less reference data than previously considered possible. This chapter also

proposed Landscape Prompt Ensembling, a multimodal rating approach using text and

images that relies on the mind’s eye view of participants. It uses text descriptions with

scenicness ratings gathered from volunteers. It then uses a multimodal model which relates

the given text descriptions to the contents of images in order to provide image ratings. The

resulting dataset of image ratings was found to be concordant with a well-studied dataset

of image scenicness ratings, both numerically (R2 of 0.68) as well as thematically (high

similarity in land cover class preferences). The findings of LPE highlight that multimodal

approaches can be used to perform landscape ratings in entirely new ways in order to

acquire insights beyond just the contents of images.

This thesis demonstrates that LQ assessments can be performed using less data, with

better interpretability, and using approaches which better leverage multiple sources of

information. These findings advance DL models towards LQ assessments at any scale that

can be relied upon.
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