
 

  INF-82000 

João Otávio Araujo da Silva 

Information Technology 

September 2023 

Multi-robot approach for a visual 
sensing task in greenhouse 

horticulture 



1 

 

  



2 

 

 

 

 

“Multi-robot approach for a visual sensing task in greenhouse 

horticulture” 

 

 

João Otávio Araujo da Silva 

Registration number: 951220017020 

 

 

 

Supervisor 

dr. JR (João) Pereira Valente 

 

 

 

A thesis submitted in partial fulfilment of the degree of Master of Science at Wageningen 

University and Research Centre, The Netherlands. 

 

 

 

 

September 2023 

Wageningen, The Netherlands 

 

Thesis code number: INF-82000 

Study program: MSc Biosystems Engineering 

Educational institute: Wageningen University and Research Centre 

Chair group: Information Technology Group   



3 

 

  



4 

 

Disclaimer 

This report is written by a student of Wageningen University as part of a masters programme 

and is executed under supervision of the Information Technology Group. This report is not an 

official publication of Wageningen University or Wageningen UR. The content of this report 

is not the opinion of Wageningen University or Wageningen UR. 

Use of information from this report is for own risk and it is advised to check this independently 

before the information is used. 

Wageningen University is never liable for the consequences that result from use of information 

from this report. 

It is not allowed to publish or reproduce the information from this report without explicit 

written consent of: 

Information Technology Group 

Wageningen University, De Leeuwenborch, building 201, 6th floor 

Hollandseweg 1, 6706 KN Wageningen, The Netherlands 

T: +31 (0) 317 489876 / +31 (0) 317 481403  



5 

 

 

  



6 

 

Abstract 

Unmanned Aerial Vehicles (UAVs) have been progressively more used in agricultural 

tasks. The technology of these drones, although evolving, still faces issues, such as battery 

autonomy, that halter their applicability in more situations. A recent field of study investigates 

the potential of drone swarms to compensate for these limitations of UAVs through task sharing 

and efficient allocation of resources. However, because it is a new line of research, many 

applications are still lacking investigation for design choices. This study aims at exploring the 

opportunities and challenges of using drone swarms for counting fruits in a tomato greenhouse, 

comparing design choices and swarm size. Three exploration approaches, namely Lawnmower 

Strategy (LMS), Completely Random Walk (CRW) and Reinforced Random Walk (RRW), will 

be compared along three levels of swarm size with 1, 2 and 3 agents each. The experiment was 

carried out in a virtual simulation environment created with Unity3D. Comparisons were done 

based on the metrics of Root Mean Squared Error (RMSE), simulation time and the progression 

of the discovery ratio (DR) of tomatoes. Results indicated that a LMS with 3 agents was the 

most efficient strategy for fruit counting, based on the time needed to complete the task: 63 

seconds. In conclusion, although promising at reducing mission time, further research is needed 

to better explore the potential of drone swarms to count tomatoes in a complex and confined 

space of greenhouses. 

Keywords: Unmanned Aerial Vehicle (UAV), drone swarm, reinforced random walk, fruit 

counting.  
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1 Introduction 
 

Yield estimation is an important component in the planning and management of crop 

cycles. It can contribute to the long-term economic planning by predicting the gross income on 

the moment of selling, as well as it can improve the daily management of inputs (e.g., water, 

nutrients) by estimating more precisely what is needed by the crops. Prediction of yield may 

also improve logistics by preparing the grower for the harvest (Nuske et al., 2014). 

Although relevant, yield estimation can be labour-intensive, expensive, and unprecise if not 

done correctly. Most traditional methods consist of combining historical information, such as 

weather data, with manual sampling to calculate a crop’s yield. The sampling methods are 

usually destructive and biased, since a small portion of the crop must be collected and 

calculations are then extrapolated to the whole area. Visual yield estimates are capable of 

increasing the sampling area and decrease the time needed, while being a non-destructive 

method (Nuske et al., 2014). 

In order to achieve higher accuracy, visual yield estimation needs large amount of data. For 

that matter, automated data collection in moveable platforms has gained popularity in the 

agricultural sector. Modern Unmanned Aerial Vehicles (UAV’s) are highly mobile and 

relatively cheap when compared to other means of remote data gathering, such as airplanes or 

satellites (Goudarzi et al., 2019; Karion et al., 2013). 

The combination of UAV’s and visual sensing has been extensively researched to perform 

plant phenotyping tasks, such as yield estimation. Some of the challenges of this technique 

include achieving high communication and perception levels in complex environments to avoid 

obstacles and ensure effective navigation (Arafat et al., 2023). Hence, research has focused on 

developing autonomous navigation systems. Regarding data management, the large amount of 

information captured over various perspectives and time may pose a challenge for data 

processing. The choice of analysis technique and interpretation impacts the accuracy and 

usefulness of UAV data acquisition (Liang et al., 2023). 

Other constraint, in particular, of smaller, low-altitude UAV’s, is their low battery and 

computing capacity (Arafat et al., 2023). Commercial drones, which have a flight autonomy of 

around 20 – 30 min, cause limitations to the volume of information acquired over a single flight 

(Biczyski et al., 2020). More recently, strategies that consist in using multiple drones 

simultaneously have been receiving attention from the scientific community because of their 

potential to enable longer flight missions by subdividing a large target measuring space over 

different agents. 

These multi-drone approaches, otherwise called swarm drone robotics, are guided by 

swarm intelligence principles which target the design of systems that are fault tolerant, scalable, 

and flexible (Dorigo et al., 2014). Moreover, multi-robot approaches aim to tackle the need for 

sophisticated drones of single-robot missions by substituting them for multiple simpler robots 

(Nemitz et al., 2018). This is especially relevant in confined spaces where large-scale UAV’s 

with higher battery capacity are not fit for the task. 

Automated methods of data collection using UAV’s, which can navigate in every direction, 

mostly depend on the construction of a 3D model of the environment. The exploration strategy 
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determines the efficiency with which this 3D map can be reconstructed (Palazzolo & Stachniss, 

2018). Next-best-view planning algorithms focus on creating an exploration path in real-time 

by generating velocity commands to position the sensor on the next best viewpoint by 

considering the already explored space of all agents (UAV’s) and their current field of view, 

minimizing the uncertainty of the succeeding measurements (Palazzolo & Stachniss, 2018). In 

a vertically grown crop, such as tomato, where the observation of a point of interest (e.g., the 

fruits) might be partially occluded by part of the plant (e.g., stem or leaves), information-gain 

might benefit the path making by taking measurements of the object of interest from different 

angles or sides of the crop row. In addition, such exploration strategies need to account for 

other hard constraints, such as avoiding collisions, or soft constraints, such as time or battery 

saving, to optimize the pathing. 
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2 Objective and research questions 
 

2.1 Problem statement 

The combination of drone swarms and visual sensing for environment exploration has been 

attempted from a nadir (top-down) point of view in open agricultural fields (Albani et al., 2018; 

Albani, IJsselmuiden, et al., 2017; Albani, Nardi, et al., 2017; Carbone et al., 2018, 2022; 

Trianni & López-Ibáñez, 2015). A common approach for navigation in such tasks is to use 

coverage path planning (CPP) algorithms, which are mostly combined with UAV’s. Although 

CPP has been applied to ground robots, applications in agricultural context are still limited 

(Monica et al., 2019; Naazare et al., 2022; Yang et al., 2023). Implementing a similar technique 

for vertically grown crops in commercial greenhouses involves new challenges such as dealing 

with spatial constraints, close range observations, high incidence of obstructions and a 

horizontal point of view of the target area. 

 

2.2 Objective 

The present work aims at addressing a fruit counting task to a drone swarm in a tomato 

greenhouse environment. The objective is to investigate the performance that different swarm 

sizes and exploration approaches have in tackling this task.  

 

2.3 Research questions 

Main question: What are the opportunities and challenges of using drone swarms and 

computer vision techniques for a tomato detection task? 

Sub-questions: 

A. How can a base map for vertically grown crops be defined to be representative of the 

crop and easily navigable by the UAV’s? 

B. What adjustments are needed for the state-of-the-art exploration algorithms to be 

applicable for vertically grown crops? 

C. Is there a performance improvement of swarm robotics over single-robot approaches 

for tomato counting based on visual sensing? 

D. Is there a performance improvement of an exploration algorithm over coverage path 

planning strategies? 

 

2.4 Research outline 

To fulfil the objective of this project, an experimental set-up must be designed by 

combining drone swarm, visual sensing, and exploration algorithm. The first step will be to 

define the map where agents will navigate. It should be representative of the tomato row, 

capable of holding information, coordinating drone movement, and simple implementation. 

For that, a literature research will be done over the maps being used in similar studies. 

After a map is defined, literature research will continue to identify what exploration 

algorithms are suitable for drone swarms. An exploration strategy that allows implementation 

in the chosen map must be selected and adapted with features found in literature research. 
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When sub-questions A and B are answered, an experiment can be designed and 

implemented in a virtual environment to generate results that will answer sub-questions C and 

D. The methodology of those experiments is thoroughly explained in chapter 4. 

With all sub-questions answered, a discussion will be elaborated comparing the results 

obtained in the work with those of others. Explanations about the outcomes of the present work 

will be done based on literature research. 

 

 

                           
                              
                        

             

                               
                             
                           

             

                     
                           
                            
        

             

                     
                           
                      
                     

             

                             
                           
                     

            

Figure 1: Flow of the research outline. 
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3 Literature review: state-of-the-art 

3.1 Computer vision in fruit counting 

Machine vision or computer vision refers to the use of algorithms and image processing 

techniques to automatically interpret and extract information from digital images. In the context 

of agriculture, computer vision can be employed on tasks such as disease recognition, plant 

phenotyping and fruit detection (Mavridou et al., 2019). 

In tomato farming, fruit counting is essential for yield estimation. Manual counting is a 

laborious and costly task that can be inaccurate in a tomato greenhouse, a complex environment 

where leaf obstructions and double counting often occur (Egi et al., 2022). Automating this 

task with computer vision can improve its efficiency while decreasing the labour demand (Egi 

et al., 2022). 

Since the advance of computer vision research, many algorithms were design with the 

purpose of tackling different challenges. Mask R-CNN, for instance, can detect objects as well 

as the pixels that compose them, enabling more precise estimation of their shape and 

dimensions. This model has been used for detecting and estimating the size of low-density 

crops, such as potatoes and lettuce (Machefer et al., 2020). For tomatoes, Mask R-CNN has 

been used for counting and classifying fruits based on their growth stage (Fawzia Rahim & 

Mineno, 2022). Studies showed that the algorithm is also capable of exclusively counting 

tomatoes placed in the foreground of a tomato row, by implicitly learning object depth (Afonso 

et al., 2020). 

YOLO is another object detection model commonly used for tomato counting. It was 

designed to be used for real-time detection, which makes it appropriate for video footage. Its 

most outstanding characteristic is the speed of detection (Du, 2018). Liu et al. (2020) used a 

modified version of YOLO, denominated YOLO-Tomato, where the traditional rectangular 

bounding boxes were substituted for circular bounding boxes to better adapt to the tomatoes 

shape. Ge et al. (2022) used a YOLO based network to detect and track tomatoes and tomato 

flowers. Lawal (2021) also used YOLO-Tomato to detect tomatoes in a complex environment, 

where obstructions and illumination variation were common. 

 

Figure 2: Set-up of an experiment using YOLO for tomato detection. In this work, the agent path was a straight line 

between two tomato rows, allowing image capturing of both rows simultaneously (Egi et al., 2022). 
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Other popular choice of object detection algorithm for agricultural related tasks is Faster 

R-CNN, which combines a Region Proposal Network (RPN), responsible for proposing 

bounding boxes to be examined, and a deep convolutional network from its predecessor Fast 

R-CNN. This allows the network to detect and classify objects quickly and precisely (Ren et 

al., 2015). The network was used to count and classify tomatoes according to their maturity 

stage (Widiyanto et al., 2021). In other agricultural research, Gao et al. (2020) and Fu et al. 

(2020) made use of this network for detecting and classifying apples in an orchard, an 

environment that occasionally presented obstruction of fruits. Carbone et al. (2022) combined 

Faster R-CNN with drone swarms for a weed detecting task. 

 

3.2 Swarm robotics 

UAVs allow fast and cost-efficient monitoring of large areas, making them useful tools 

for the agriculture industry, which is one of their biggest adoption leaders (Skobelev et al., 

2018; Valente et al., 2020). While most solutions involving the use of UAVs for agricultural 

tasks are designed for single drones, multi-drone approaches enable efficient use of resources 

(e.g., time, battery) that result in reduced mission time by reallocating and sharing tasks 

between the agents (Skobelev et al., 2018). These multi-agent approaches are frequently 

referred to as swarms, fleets or flocks. 

Ankit et al. (2021) utilized a UAV swarm controlled by Robot Operating System (ROS) 

to estimate yield and detect drought stress in a 3D simulated farm. Their approach consisted of 

using visual measurements of the farm to solve a routing problem for allocating the agents. 

Albani, IJsselmuiden, et al. (2017) simulated weed detection with a drone swarm and 

concluded that their approach was viable for mapping and monitoring. By performing multiple 

visits from different agents, they were able to obtain robust measurements. 

Carbone et al. (2022) also used swarm robotics to detect weeds in a simulated environment. 

Similarly to Albani, IJsselmuiden, et al. (2017), the agents navigated through the simulation 

using a map divided in squared cells, while keeping the same height during the entire mission. 

The navigation of agents was determined by selecting the next-best-viewpoint based on the 

highest uncertainty reduction that a cell would get from having more measurements being 

performed in it. 

In another study about drone swarm in weed detection, the path planning consisted of a 

reinforced random walk where agents would be directed to points of interest based on the 

placement of beacons that attract agents (Albani, Nardi, et al., 2017). This concept, similar to 

many concepts used in swarm robotics, is inspired by collective behaviours in nature, such as 

bees and birds (Carbone et al., 2018). 

Saffre Fabrice and Hildmann (2022) simulated swarm robotics over a map with hexagonal 

cells. In this work, the authors recommended that, in future works, the path planning should 

account for priority locations to be set based on data acquired during the mission. The paths 

were planned deterministically according to information in the surroundings from where 

measurements were taken, but a stochastic approach, which accounts for probabilities of 

different events, should be considered in the future. 

 



17 

 

 

Dutta et al. (2021) investigated the state-of-the-art of current multi-robot approaches for 

precision agriculture and highlighted the three main challenges being path planning, security 

and integrity of information, and energy efficiency. The authors also state that the use of 

swarms for information gathering is still at a prototype stage. 

 

3.3 Path Planning 

The planning required to cover an unknown area is called coverage path planning (CPP). 

CPP can be expressed as a mathematical function where coverage must be maximized, while 

the travelled length or time to achieve it are minimized. The two main methods to solve such 

problem are frontier-based methods and sampling-based methods (X. Zhou et al., 2020). 

Yamauchi (1997) introduced frontier-based method as an approach for exploring space 

based on selecting boundaries of unexplored space as targets for the next step in the trajectory. 

This facilitates the mapping of large spaces with separate areas, at the expense of longer times 

for full exploration (Selin et al., 2019). 

 

Figure 3: Squared cell map (left) and hexagonal cell map (right) used in drone swarm 

missions (Albani, IJsselmuiden, et al., 2017; Saffre Fabrice and Hildmann, 2022). 

Figure 4: Exemplification of frontier-based exploration approach (Lu et al., 2020). 
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Sampling-based methods calculate the information gain from performing multiple feasible 

trajectories, selecting the one which will maximize the gain, while lowering the costs of a cost-

utility function (Kingston et al., 2018; Y. Wang et al., 2023). Next-Best-View (NBV) is one of 

the most popular sample-based exploration methods (Y. Wang et al., 2023; X. Zhou et al., 

2020). Initially developed for 3D reconstruction, NBV creates a scene from the viewpoints 

captured, then proceeds to select the next viewpoints form the current scene model in an 

iterative process (Lauri et al., 2020). This method may, however, find problems with local 

minima and get stuck when mapping large areas (X. Zhou et al., 2020). 

In swarm-robotic approaches, path planning methods can be improved by leveraging the 

ability of parallel-monitoring from multiple agents (Carbone et al., 2022). The authors 

proposed a decentralized strategy, flexible to the number of UAVs, based on reinforced random 

walks (RRW), which prioritizes regions with relevant information. In this study, RRW was 

combined with Information Gain (IG) to measure the uncertainty reduction gained from 

exploring all possible target regions. IG was calculated based on an uncertainty model from 

detection errors of a Convolutional Neural Network (CNN). This approach was used in 

previous works (Albani et al., 2019; Albani, Nardi, et al., 2017) for weed mapping where the 

input data were NADIR images. However, approaches that use decentralized path planning 

methods, such as RRW, based on image detection from horizontally acquired images still lack 

research. 
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4 Methodology 
To enable answering the research questions, a workflow was designed for agents (UAVs) 

to perform a visual counting task of a target (tomatoes) based on a coverage path planning. To 

enable that, the architecture consisted of three main blocks: (i) exploration approach, (ii) object 

detection algorithm and (iii) simulation environment. 

The simulation environment is where all the visual part of the experiment would be 

handled. The tomato plants, the environment and the agents must be rendered in this 

environment. It should allow movement of the agents, randomization of the environment and 

extraction of information through capture of images to be used as input for object detection. 

Unity3D, a game development software which is also suitable for modelling virtual reality (S. 

Wang et al., 2010), was selected to render this environment. 

The object detection algorithm would perform the task of extracting information from the 

environment in the form of predicted bounding boxes of virtual tomato models. This 

information was input for the coverage path planning and for the Root Mean Squared Error 

(RMSE) metric. Faster R-CNN was used as the baseline model for object detection. 

Finally, the exploration approach would dictate how the agents should move. It involved 

designing the map with the boundaries to where agents could navigate, the logic behind the 

movements and the coverage path planning that would decide to where agents should move 

every step. For that, Reinforced Random Walk (RRW) was selected  to be compared with other 

baseline coverage path planning approaches such as the Lawnmower and a Complete Random 

Walk strategies. 

4.1 Exploration approach 

4.1.1 Map and UAV navigation 

A map was used to guide the navigation of the UAV agents and store information of what 

was explored. To allow simple 2D movement of the agents, the map was designed as a 2D 

plane divided in cells, which is a popular choice for visual detection tasks with drone swarms 

in agricultural environments (Albani et al., 2018; Albani, Nardi, et al., 2017; Carbone et al., 

2022; De Rango et al., 2017). It is comprised of Nc x Nr cells of dimensions Cs x Cs and was 

positioned on the xy plane alongside the tomato row. 

 

Figure 5: Representation of the map used to navigate agents across 

the simulated tomato row. 



20 

 

 

The distance assumed between agents and the plant row (drow) was 0.7 m, because it would 

be within the boundaries of the row spacing of 1.2 m from commercial greenhouse tomatoes 

(Amundson et al., 2012), while being distant enough from the row to allow a clear visualization 

of the fruits. It was also assumed that the field-of-view angle (FOVangle) of the agents’ camera 

would be 82.6° across the diagonal, same as a DJI Tello UAV. Based on drow and FOVangle, the 

point-of-view (POV) that the agents would have of the plant row is a squared region with side 

length (POVside) approximately equals to 0.869 m, based on the following equation: 

𝑃𝑂𝑉𝑠𝑖𝑑𝑒 =  sin 45° ∗ 2 (𝑑𝑟𝑜𝑤 ∗ tan (
𝐹𝑂𝑉𝑎𝑛𝑔𝑙𝑒

2
))  (1) 

Because agents move from cell to cell and the size of the field-of-view is low due to the 

close-range, a 3 x 3 grid of cells would allow longer displacement at each simulation step, 

while also having a central cell from which the agent could perform an orthogonal 

measurement. It was, therefore, determined that the area observed by the UAV camera would 

be a grid of 3 x 3 cells with side (Cs) equals to a third of POVside, which is approximately 0.290 

m.  

The number of columns (Nc) and rows (Nr) were enough to allow visualization of all the 

plants in the row, without extrapolation. For 15 plants with approximately 2 m height and 0.5 

m spacing between plants (Amundson et al., 2012), Nc = 26 and Nr = 11, resulting in 286 total 

cells. 

Each cell was capable of holding essential information for navigation and counting, such 

as its coordinates, whether it was already visited by any agent and the measurements performed 

in the cell. For organization, a class called Measurement was created to store the number of 

tomatoes counted and the confidence score of the detection. 

Table 1: Variables stored by cells. 

Name Type Information 

WasMeasured bool True if it was visualized and measured by any 

agent 

WasVisited bool True if it was visited by any agent 

IsTargeted bool True if targeted by any agent to be visited next 

PotentialTomatoe

s 

bool True if cell potentially presents tomatoes 

CoordID int, int Integer coordinates of the cell in relation to their 

position in the x-axis [0, Nc] and the y-axis [0, 

Nr] 

CoordLength float, float Simulation world coordinates, in meters, of the 

centre of the cell 

ActiveFlag bool True if a flag was placed in the cell 

MeasurementList List<Measurement

> 

List with all the measurements made in the cell 

BestMeasurement Measurement Measurement with the best score 

 

Agents’ movements are based on cells, moving from the center of a cell to the center of 

another. They are, however, always at a distance drow from the entire map, thus from the cells. 
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Which means that they are positioned orthogonally to the center of the cells, 0.7 m distant from 

it. 

Agents may move vertically, horizontally and diagonally towards cells that are adjacent 

to the cell where they are currently positioned. These directly adjacent cells are in a region 

called vicinity 1 (V1). If none of the cells on V1 are accessible, agents will move to a cell in V2 

and if none of the cells on V2 are accessible, agents will move to a cell in V3, continuing the 

loop until an available cell is found. 

The agents’ point-of-view (POV) is always a 3 x 3 cell grid, because the distance between 

agents and tomato row never changes. This means that the POV comprehends the cell where 

the agent is positioned (visiting) plus the neighboring cells (Figure 6).  

 

 

When agents take a snapshot to perform counting, all cells within their POV are marked 

as measured (M), including the cell where the agent is currently positioned, which is marked 

as visited (V). 

To perform a measurement, agents first take a snapshot of all 9 cells within their POV 

(i.e., the cell where it is positioned plus the 8 cells surrounding that). The snapshot image is 

used as input for the object detection model, which outputs a list of bounding boxes for each 

tomato in the POV. Using the coordinates of the bounding boxes, the number of tomatoes 

located in each cell is estimated, because the coordinates of each cell are known. The count of 

tomatoes in each cell is saved in the map. 

It is important to highlight the difference between the status measured and visited for cells. 

Visited cells are those which had been visited by an agent, meaning that an agent was 

positioned orthogonally to its central point. Measured cells are those which had been caught in 

the agents POV, thus being attributed a measurement according to the output of the object 

detection algorithm. 

Visited cells cannot be visited again, for any exploration approach. However, any cell 

might be measured up to 9 times, from all the possible viewpoints where it is visible in the 

Figure 6: Cells on the first vicinity (V1) of the agent, to where the agent will attempt to move primarily, and 

on the second vicinity (V2), to where the agent will attempt to move if V1 cells are unavailable (left). The 

agent’s POV (right). 
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drone’s POV (Figure 8). This design choice was taken based on the assumption that when a 

drone visits a cell and takes a snapshot, any other snapshot taken from the same position would 

be redundant, as it would be the same from any other one taken from that position, thus 

incentivizing the agents to visit other cells. 

 

 

If a measurement is done multiple times in a cell and the number of tomatoes counted 

differs, a flag will be placed in that cell. Flags attract agents to make more measurements of 

the same cell from different viewpoints. This attraction increases the bias of an agent to move 

towards the attraction points, by adding more weight to the vector that will dictate the agent’s 

next movement. The assumption is that different tomato counting results of a certain cell from 

measurements performed from different viewpoints indicate that there might be tomatoes 

hidden by other tomatoes or plant structures. 

Figure 7: Schematic representation of how an UAV can measure the same target (red) cell from 9 different viewpoints due to 

its 3 x 3 cell POV (blue). The UAV is only visiting the target cell when it is standing in the position [1, 1]. 
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4.1.2 Baseline algorithms 

Three strategies were tested to control the movement of agents across the map, which are 

Lawnmower Strategy (LMS), Completely Random Walk (CRW) and Reinforced Random Walk 

(RRW). For this work, RRW is the target of research, while LMS and CRW are the baseline 

algorithms that will be used for comparison. 

Two requirements were settled for every navigation strategy, being: (i) every cell must be 

measured at least once; (ii) none of the cells are allowed to be visited twice. The second 

requirement ensures that there would be no unnecessary measurements. As the snapshots are 

made in a simulation without noise affecting the image quality, multiple snapshots from the 

same position yield the same input image. 

LMS consists of placing agents on fixed start positions and having them move sideways, 

visiting one cell at a time, until reaching the border of the map, then switching to the adjacent 

row. Because of that, every different run of LMS results in the same path, exploration time and 

number of steps. Lawnmower navigation is a popular choice for agricultural environment 

exploration using UAVs, even in multiple-robot approaches (Aydoğan, 2018; Duan et al., 

2017; P. Hu et al., 2018; Sousselier et al., 2015). 

In CRW, agents start in the same position, but the next target location for every agent is 

completely randomized, until all cells are measured at least once. 

 

 

 

 

 

 

Figure 8: An example of an agent that performs a measurement, moves to cell [3, 3] and 

finally performs another measurement. Cells [2, 3], [2, 2], [3, 3] and [3, 2] were measured 

twice. 
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4.1.3 Reinforced Random Walk algorithm (RRW) 

In RRW, whenever an agent moves, the next target location is selected based on a weighted 

random selection. A bias vector dictates which cells had higher weight and thus what cells have 

higher chance of being selected. 

There are attraction factors that direct the bias vector towards them, and repulsion factors 

that direct the bias vector against them. This strategy was based on the work of Albani et al., 

(2017), which used the concepts of marking points of interest on the map that would function 

as pheromones to attract other agents, while repulsing agents from each other for better map 

coverage. The same approach was used by other authors from the field of drone swarms 

(Carbone et al., 2022; Cimino et al., 2016). 

 

 

In the experimental simulations, every run (i.e., repetition) followed a routine which 

consisted of a first phase that would be executed once and a second phase, specific for each 

navigation strategy, with steps that would be repeated until either all cells were measured, or 

all planned steps were done for LMS. 

Figure 9: Schematic representation of Lawnmower Strategy (left) and Completely Random Walk 

(right) for UAV navigation. 

Figure 10: Schematic representation of Reinforced Random Walk strategy for UAV navigation. The red exclamation mark 

icons represent points of attraction that influence the bias of the direction to where UAVs will move. 
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4.1.3.1 Bias vector 

In RRW, the next movement of agents is dependent on a bias vector (v), which is a resultant 

of three components: (i) momentum mh, which points to the direction where the agent is 

currently moving with a magnitude based on the 80 g mass of a DJI Tello and 0.4 m s-1 cruise 

speed (Carbone et al., 2022); (ii) attraction vector ah, that points towards cells that were marked 

with an attraction beacon b ∈ B for potentially having tomatoes needing extra measurements; 

(iii) repulsion vector rh, that points in the opposite direction of other agents. 

Second phase 

 

First phase 

                

                   
                        

             

                 
                     

                         
                

            
                     

               

                     
                  

              

                    
           

  

                   
                     

   

                  
                       

                    
     

               
       

                      
          

                 
                    

     

   

                    

Figure 11: Flowchart of the steps taken by each simulation run, for all strategies. 
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Both attraction and repulsion vectors are calculated according to the Euclidean distance v 

between the position of attraction beacons xb and the agent position xh or between the position 

of other agents xu and xh: 

𝑟ℎ = ∑ 𝑆(𝑥ℎ − 𝑥𝑢, 𝜎𝑎)𝑢≠ℎ , 𝑎ℎ = ∑ 𝑆(𝑥𝑏 − 𝑥ℎ, 𝜎𝑏)𝑏∈𝐵 , 𝑆(𝑣, 𝜎) = 2𝑒𝑖∠𝑣𝑒
−

|𝑣|

2𝜎2     

(2) 

which results in a vector with a Gaussian length with spread σ and direction v. The magnitude 

of the resulting vector is directly related to the distance between the agent and the source of 

attraction or repulsion (Albani, Nardi, et al., 2017; Carbone et al., 2022). 

 The next location towards where an agent will move is decided based on its bias vector 

vh = mh + ah + rh and a weighted random selection from the cells in V1, if there are any 

available. Each cell c ∈ V1 has a utility uc computed from the angular difference between vh 

and the centre of c. The probability of selecting c as the next target is 𝑃𝑐 = 𝑢𝑐/ ∑ 𝑢𝑖𝑖∈𝑉1 , 

with increasing probabilities for lower angular differences (Albani, Nardi, et al., 2017; 

Carbone et al., 2022). Utility is calculated as follows: 

𝑢𝑐(𝜃𝑐 , 𝑝) =
1

2𝜋

1−𝑝2

1+𝑝2−2𝑝 cos 𝜃𝑐
                                                          (3) 

where θc corresponds to the angular difference between xc and = vh and p is the persistence 

parameter of the wrapped Cauchy density function uc(θc,p). Persistence is computed according 

to the following equation: 

𝑝 = 1 − 𝑒
|𝑣ℎ|

2                                                                 (4) 

where a higher magnitude of vh results in a higher persistence, thus increasing the bias for the 

agent to move towards cells in the same direction of the bias vector. 

 

  

  

  

  

 =                  

Figure 12: Schematic representation of how the bias vector is calculated. It is a resultant vector which points towards 

attraction points, such as cells that potentially have tomatoes, and against other UAVs. 
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After every uc is computed, agents will first attempt to move towards cells with centre 

point located within an angular distance of 90° from the bias vector. If there are no available 

cells that fulfil this requirement, the others become eligible. 

 

 

4.1.3.2 Attraction factors 

There are two types of factors that attract agents: (i) potential tomato cells, which indicate 

cells that may present tomatoes based on the surrounding cells; (ii) flags, which indicate cells 

that were measured more than once, but have unmatching number of tomatoes from the 

different measurements. 

Every time an agent encounters tomatoes in any cell, the surrounding unmeasured cells 

will be marked as potentially presenting tomatoes. If any of these marked cells is measured, 

the mark is removed, regardless of the measurement result. Because tomatoes are spawned as 

groups in the plant branches and the field-of-view of the agents is usually not wide enough to 

visualize entire groups, the detection of tomatoes in a cell indicates high probability of other 

existing tomatoes in the adjacent cells. 

Figure 13: Representative utility values for all cels in V1 of the agent. Cells with center at a lower angular difference from 

the bias vector (in green) will have higher utility values. 
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Flags are placed in every occurrence of unmatching measurements performed of a single 

cell. After marked, a cell will remain flagged until at least 50% of the surrounding cells are 

visited, resulting in more measurements of the same cell from different viewpoints. 

 

 

 

Figure 14: Schematic representation of how cells that potentially contain tomatoes (PT) are marked, according to the newly 

measured cell with tomato (T). 

Figure 15: Schematic representation of a cell with a flag 

(F) and the surrounding cells (in yellow). At least four of 

the surrounding cells must be visited for the flag to be 

removed. Black arrows indicate the different angles from 

which the agents can observe cell F. 
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4.1.3.3 Exploration mode 

To optimize agent navigation, by reducing the number of steps necessary to finish the 

simulation and find all unmeasured cells faster, an exploration mode was designed. Whenever 

an agent performed a measurement and detected no tomatoes, it was assumed that this agent 

was positioned in a part of the map where only plant stems and leaves were visible. In RRW, 

when the beforementioned situation occurred, the agent would enter exploration mode. 

When in exploration mode, agents used cells in V2 for their next target location, instead of 

the default V1. If no cells in V2 were available, agents used V3 cells and so forth. If the agent 

evaluated the availability of all vicinity cells until the limits of the map were reached and none 

were eligible, it meant that the only available cells were in V1, thus resetting the next target 

location to V1. Another characteristic of this mode is to prioritize unmeasured cells during the 

weighted election phase. 

 

4.2 Object detection: Faster R-CNN 

The task of counting the tomatoes from images was performed by the object detection 

model Faster R-CNN. This fully convolutional neural network was developed by a group of 

Microsoft researchers to quickly and accurately predict the location bounds and confidence 

scores of objects (Wu et al., 2019). 

Faster R-CNN is one of the most popular models for fruit detection in field conditions 

(Gao et al., 2020) and has been used for a variety of plant-organ detection tasks (Velumani et 

al., 2021; P. Wang et al., 2022; Z. Zhang et al., 2016). For tomatoes, it is most used for 

phytopathology research (Alruwaili et al., 2022; Q. Wang & Qi, 2019; Y. Zhang et al., 2020), 

compared with its usage for tomato fruit counting (C. Hu et al., 2019). 

This neural network was created by merging the Fast Region-based Convolutional 

Network (Fast R-CNN) with a Region Proposal Network (RPN). The RPN is responsible for 

generating bounding box proposals for where the object detector Fast R-CNN should focus. 

Because both RPN and Fast R-CNN utilize convolutional layers, the computations are shared 

across these components, resulting in a faster model (Ren et al., 2015). 
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First, the input image is fed to a backbone Convolutional Neural Network (CNN), resulting 

in feature maps that are used by the RPN to generate bounding box proposals. These bounding 

boxes are used to pool features from the feature maps, which is done by a Region of Interest 

(RoI) layer. The RoI layer takes each proposal, divides it in sub-windows and performs max-

pooling over those. Finally, the result is passed through two sibling branches, one for bounding 

box regression (i.e., refining its boundaries) and another for classification (Ren et al., 2015). 

For this work, one “tomato” class was used. 

 

4.2.1 Dataset generation 

Image generation for the training and validation dataset was performed in Unity3D. For 

each image in the dataset, a new virtual scenario was generated and a snapshot was taken from 

a random viewpoint. Snapshots were automatically saved and labeled together with its 

annotations with ground truth bounding boxes of the tomato fruits. 

Automation of the dataset generation was done in Unity3D through C# coding. Every 

image was acquired from a repeating routine that performed the following steps: 

1. Place 15 equally spaced tomato plant spawners. 

2. For each spawner, place a tomato plant without fruits at a random rotation (0° to 

360°), with a random increment in size (-10% to +10%) in relation to the baseline 

scale. 

3. For each tomato plant, place a random number of fruit bearing branches (0 to 3) at 

each of the fruit branch spawn locations. 

4. For each tomato branch spawned, place a random number of tomatoes (0 to 5) with 

a random increment in size in relation to the baseline scale (-10% to +10%) and 

with a random color (red or reddish orange). 

5. Randomize light angle and intensity. 

Figure 16: Summarized representation of the Faster-RCNN model (Ren et al., 2015). 
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6. Place a UAV agent facing the tomato row at a fixed orthogonal distance and at a 

random vertical and horizontal position within the boundaries of the generated row. 

7. Take a snapshot and save it as a 1024 x 1024 PNG image with a unique label. 

8. Create bounding boxes for all tomatoes observed in the snapshot according to their 

coordinates in the virtual world. 

9. Create and save annotation files in JSON with the image label and every tomato’s 

bounding box. 

Steps 1 to 4 were also used at the start of every experimental run and will henceforth be 

referred to as spawn tomato row. 

 

 

4.3 Simulation environment: Unity3D 

 

Experiments were set up in a virtual environment consisted of the following components: 

(i) Unity3D, which rendered the graphics of the simulation environment and controlled actions 

inside of it through C# scripts; (ii) image folder where snapshots taken by the simulated UAV 

agents are saved; (iii) a server coded in Python that reads specifically requested images and use 

them as input for the object detection algorithm, returning the bounding boxes of the predicted 

tomato locations. 

Navigator was the script that controlled the actions of the agents, spawned new plants 

through the Plant Spawner script, tracked the detection of tomatoes and saved the results of 

each run. 

Figure 17: Tomato plant prefab model without fruits (left) and the same model 

with tomato branches spawned in the pre-determined spawn locations, marked 

with white circles (right). 
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The nature of this work requires visual sensing of target objects (i.e., tomatoes) that are 

positioned in a 3-dimensional structure (i.e., tomato row). In real-life situations, the targets 

could be frequently obstructed by plant stems, leaves and even other tomatoes. Having these 

obstructions in an experiment that makes use of multiple UAVs would be crucial to test the 

swarm capability of observing the same location from multiple angles. The assumption is that 

some of these angles would allow the detection of targets that are otherwise obstructed when 

observed from a different angle. 

To optimize productivity, crops are kept relatively close to each other in a greenhouse. For 

tomatoes, the distance can be from 75 to 120 cm between rows (Ali et al., 2017; Bechar et al., 

2007). A UAV performing sideways maneuvering along a crop row would need to be confined 

to its boundaries, which means that the agents would be positioned at a short distance of the 

plants while acquiring images. At that distance, image texture and details become important to 

ensure that the object detection algorithm is robust and applicable to a real-life scenario. Thus, 

another requirement for this work is that of realistic scenarios. 

Because of the beforementioned reasons, Unity3D, a videogame development software 

that allows the creation of realistic 3D virtual environments, was chosen to develop the 

simulation environment. Unity3D is a popular tool for generating virtual environments for 

agricultural research that require detailed visual aspects, including for tomato research (H. Li 

et al., 2017) and with multi-robot approach (Roldán et al., 2016). 

Unity3D is coded in C# and possesses an Asset Store where users can purchase and sell 

packages of 3D scenarios and objects, including agricultural related structures such as plants 

and structures. 

 

Figure 18: Schematic representation of how the simulation environment interacts with the 

code to spawn the scenery, coordinate UAV navigation and run the object detection 

algorithm. 
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4.3.1 3D models 

The baseline 3D models used for the virtual environment, including tomato plants, tomato 

fruits and the greenhouse were obtained through the Asset Store, from the package 

“Greenhouse - Gardening Tools”, by the author “PropDrop”. Other assets that constituted the 

virtual environment were the UAV models and a floor texture that imitated an agricultural field, 

both obtained from Carbone et al. (2022). 

Tomato branches from the baseline models were edited to resemble realistic tomato 

clusters. Plants, which here are defined as the combination of stem and leaves, were set to a 

height of 2 m (Fatnassi et al., 2009) and the dimensions of the tomato clusters, defined as the 

combination of fruit bearing branches and fruits, were obtained from real-life measurements of 

a supermarket bought tomato vine (trostomaten, in Dutch language). The UAV model 

dimensions were based on the dimensions of a DJI Tello (i.e., 98 x 92.5 x 41 mm). 

 

 

The virtual simulation environment consisted of a greenhouse structure positioned on top 

of a generic agricultural soil. Inside the greenhouse, a row of 15 tomato plants was placed. The 

agents were 3D objects that resembled the AR Parrot. 

 

 

Figure 19: Example of the original prefab 3D model from tomato branches 

loaded with fruits (left) and the improved prefab model used in the 

simulations (right). 

Figure 20: Example of a randomly generated simulation environment, where the UAV model is highlighted. 
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4.4 Experimental design 

To answer research question C, three levels of number of agents were used. Initially, the 

maximum number of agents was four, however due to computational limitations it was changed 

to three. To evaluate the performance of the exploration algorithm RRW, two other navigation 

strategies were used for comparison. Two parameters of the RRW were also analysed at two 

levels: low = 2, which was the lowest value experimented by Albani, Nardi, et al. (2017) and 

high = 8, which was the value that resulted in the lowest mapping time by the same authors. 

Each of the 16 treatments had ten repetitions, resulting in 160 simulation runs. 

Table 2: Experimental design displaying the parameters of each treatment. 

Exploration approach Number of agents σa σr Repetitions 

LS 

1 - - 10 

2 - - 10 

3 - - 10 

CRW 

1 - - 10 

2 - - 10 

3 - - 10 

RRW 

1 
2 - 10 

8 - 10 

2 

2 2 10 

2 8 10 

8 2 10 

8 8 10 

3 

2 2 10 

2 8 10 

8 2 10 

8 8 10 

 

4.5 Metrics 

To evaluate the performance of the simulations, three metrics were used: Root Mean 

Squared Error (RMSE), Simulation Time (ts) and Discovery Ratio (DR). 

RMSE is a common metric for evaluating the robustness of object detection algorithms 

in fruit counting tasks (Bhattarai & Karkee, 2022; Rahnemoonfar & Sheppard, 2017; 

Underwood et al., 2016; Z. Wang et al., 2019). It is a measurement of accuracy that computes 

the quadratic mean of the difference between the ground-truth value (i.e., real number of 
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tomatoes) and the predicted value from the CNN output. This metric was calculated for each 

cell, then summed and averaged out by the total number of cells in the map, as described by 

the following equation: 

𝑅𝑀𝑆𝐸 = ∑
√(�̂�𝑖,𝑗−𝑦𝑖,𝑗)

𝑟𝑐

𝑟,𝑐
𝑖,𝑗=0      (5) 

where r and c are the row and column number, respectively, used to reference each cell, �̂� is 

the number of predicted tomatoes from the object detection model output and y is the real 

number of tomatoes inside cell i,j. 

In order to speed up the experimental process, simulations were not run in real-life time. 

Meaning that simulation time had to be calculated and stored for each simulation step. 

Whenever an agent needed to move from point A to point B, the time required for such 

movement was calculated based on the agent’s speed and the distance that it must cover, 

according to the following equation: 

𝑡𝑠,𝑠𝑖𝑚_𝑠𝑡𝑒𝑝 =
𝑐𝑠𝑖𝑚_𝑠𝑡𝑒𝑝−𝑐𝑠𝑖𝑚_𝑠𝑡𝑒𝑝−1

0.4
     (6) 

where the simulation time ts at simulation step sim_step is the distance between the centre of 

the cell where the agent was positioned in previously and the cell where it is currently standing, 

divided by the agent speed of 0.4 m s-1. When two or more agents had to move simultaneously, 

the simulation time for that simulation step was considered to be the highest time between all 

agents. 

Discovery ratio is a measurement of the percentage of tomato cells discovered (i.e., 

measured) by agents from the total number of cells with tomatoes. At the start of each run, 

every cell that contained tomatoes was mapped and their coordinates were stored, this number 

is referred as Total Tomato Cells (TotalTomCell). In every simulation step, the new cells 

measured by drones that contained tomatoes were accounted and updated the number of 

Discovered Tomato Cell (DiscTomCell). For every simulation step (sim_step), the discovery 

ratio was calculated as: 

𝐷𝑅𝑠𝑖𝑚_𝑠𝑡𝑒𝑝 =  
𝐷𝑖𝑠𝑐𝑇𝑜𝑚𝐶𝑒𝑙𝑙𝑠𝑖𝑚_𝑠𝑡𝑒𝑝

𝑇𝑜𝑡𝑎𝑙𝑇𝑜𝑚𝐶𝑒𝑙𝑙
    (7) 
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5 Results 

5.1 Object Detection: Training and Validation 

A dataset of 350 images generated artificially was used for the training of the neural 

network and 150 images were used for validation, which was done with Detectron2. It is an 

open-source platform developed by a group of Facebook researchers and implemented in 

PyTorch. It includes implementations of several object detection algorithms, including Faster 

R-CNN, which was developed by the same company (Pham et al., 2020). 

To initialize training, the model faster_rcnn_R_101_FPN_3x from the detectron2 model 

zoo, pre-trained on the COCO dataset was selected. This model is both high scored for object 

detection and uses less memory than similar models (Wu et al., 2019). Training took 24 minutes 

and 10 seconds, resulting in a total loss of 0.521. 

For validation, a score testing threshold of 0.7 was used, which means that only objects 

detected with a confidence score of at least 70% were accounted. The Average Precision (AP) 

of validation was 52.8, which is not high, but still superior to the 36.2 AP of the same model 

on the COCO dataset (Lin et al., 2017). 

 

 

Another validation was performed with a dataset of 123 real-life images of greenhouse 

tomatoes. This dataset and annotations were provided by (Afonso et al., 2020). The purpose of 

this second validation was to observe if a model trained with virtually generated images would 

be able to perform in a dataset of real-life images. 

Figure 21: Result from the object detection model in one of the 

virtually generated images. 
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Although the trained model seemed to correctly detect real-life tomatoes, the results show 

an overestimation of the total real amount. The explanation is that the annotations of the real-

life dataset accounted only for tomatoes directly in front of the plant row, while for the current 

work, the model was trained to also detect tomatoes behind the row. 

 

 

After training, the model was saved as a PyTorch model file. Because Unity3D runs on C# 

and the model runs on Python, a socket communication was used to enable interaction between 

the code that controls actions inside Unity3D and the Python code that ran the object detection 

model. 

Figure 22: Number of tomatoes predicted by the object detection model versus the ground truth number while using the virtual 

dataset (left) and the real-life dataset (right). Blue line indicates where predicted number of tomatoes is equal to the ground 

truth number. 

Figure 23: Results from the object detection model using real-life tomato pictures (left) and the ground-truth bounding box 

and masks from the annotations (right) (Afonso et al., 2020). 
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5.2 Root Mean Squared Error (RMSE) 

By the end of each simulation run, the RMSE was computed. There were 10 repetitions 

for each treatment, which means that there are 10 RMSEs calculated for every treatment used, 

which were averaged and displayed in the boxplot below (Figure 26). 

 

The lowest average RMSE obtained was 1.308 for exploration strategy RS with 1 agent, 

while the highest was 1.469 also for exploration strategy RS, but with 2 agents. 

Performing Levene’s Test to check for homoscedasticity, it was obtained a p-value of 

0.643, thus rejecting the null hypothesis. This means that there is no sufficient evidence that 

the variance of MSE from all treatments differs significantly. A histogram of the normalized 

RMSE also showed that the distribution of the data was normal. Both of these indications are 

assumptions for an ANOVA test. 

Figure 24: RMSE of all treatments used in the simulations. 
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Statistically, the RMSE showed no significant difference for different number of agents or 

exploration strategies, with a p-values equal to 0.320 and 0.348 respectively, from a two-way 

ANOVA with significance of 1%. It also resulted in no significant difference for varying levels 

of attraction and repulsion parameters withing the RRW strategy, with a p-value of 0.905, 0.542 

and 0.788 for the factors of attraction parameter, repulsion parameter and number of agents, 

respectively. 

Overall, the RMSE of all treatments are comparable to research with similar approach, 

such as (Rahnemoonfar & Sheppard, 2017), which achieved a RMSE of 1.16 for a task of 

tomato fruit counting and even lower then (Oliveira et al., 2022), which achieved a RMSE of 

1.54 for the task of counting orange fruits in an orchard. 

5.2.1 Two-sided RRW 

To further investigate the possibility to achieve a significant reduction in RMSE, a new 

approach was tested. It consisted of using RRW with 2 agents but placing each of the agents in 

opposite sides of the tomato row. The hypothesis is that tomatoes that were being occluded 

from the agent’s POV from one side of the row might be visible to the other agent’s POV from 

the opposite side of the row, as represented in the scheme in Figure 28. 

 

              

 
 
  

  
  
  

 
  

  
  

 
 
  

  

Figure 25: Histogram of normalized RMSE indicating normal 

distribution. 

Figure 26: Schematic representation of the type of situation where observing the plant row from both sides could prevent 

errors due to obstruction. Here, Agent A can observe a tomato that Agent B cannot. 
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Some adaptations had to be done for the two-sided RRW. Starting with the rule on visiting 

cells, agents were now allowed to visit the same cell, because the image taken from the same 

cell would be done from opposite sides of the plant row. Secondly, the bounding boxes yielded 

from object detection had to be adjusted to be coherent when added to the map, because the 

map was created based on XY-coordinates that used only one side of the plant row as reference. 

Two-sided RRW did not manage to reduce the RMSE considerably when compared to the 

other RRW treatments with Number of Agents equals to 2, as shown by an ANOVA test with 

significance of 5%, and p-value equals to 0.921. 

 

 

The already low magnitude of the RMSE might influence the difficulty to lower it even 

more. There are some hypotheses regarding the reasons for these low RMSE results: (i) they 

demonstrate the robustness of the object detection algorithm, (ii) there lacked enough noise to 

the visual sensing component (e.g., adding more obstructions, adding distortion or quality loss 

to the image acquisition in order to better simulated real-life scenarios). 

 

5.3 Simulation time (ts) 

Simulation time required to finish the task was also computed for 10 repetitions of each 

treatment and shown in the boxplot below (Figure 30). The results for the Lawnmower Strategy 

appears as a single stripe because all the resulting simulation times are equal, due to the 

exploration approach having the same pre-determined steps for every repetition. 

 

Figure 27: RMSE of TSR compared with the other treatments used with two agents. 
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There was a significant difference between the means of simulation time across the 

different number of agents as well as exploration strategies, as demonstrated by the two-way 

ANOVA with significance of 1% and p-value lower than 0.001. 

The lowest time taken to finish the task were, as expected, achieved by the higher number 

of agents. Within each number of agents level, the lowest ts was obtained from the lawnmower 

strategy, which contradicted the expectations. Initially, it was expected that LMS would result 

in a higher ts than RRW due to the premise that, in LMS, agents must visit, every single cell in 

the map for the run to end, whereas in RRW, every cell must only me measured at least once. 

Since an agent is able to measure 9 cells at every step, it was believed that, in RRW, the agents 

would take less steps to finish measuring every cell in the map, compared to LMS. 

5.3.1 Number of simulation steps 

The assumption of using RRW with the addition of an exploration mode was to reduce 

the number of steps necessary to finish the simulation. This assumption is based on the 

constraint to end the simulation in LMS versus in RRW. In LMS, all cells in the map must be 

Figure 28: Simulation time in seconds of all treatments used in the simulations. 
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visited, whereas, in RRW, all cells must be only at least measured. RRW in combination with 

exploration mode would allow agents to move to cells in V2 when there would be no tomatoes 

visible from their current POV, covering a wider area in a single step and needing fewer total 

steps to map the entire area. 

The number of steps needed by simulations with RRW should also be lower than those 

needed by simulations with CRW. The assumption is that in RRW, agents would be directed 

towards cells that potentially contain tomatoes, while CRW had no specific priority. This would 

cause agents in RRW to enter exploration mode soon after measuring all cells with tomato and 

cover the rest of the map in fewer steps than CRW. 

In order to assess these assumptions, it was observed the total number of steps in each 

simulation, which are demonstrated in the following table. 

Table 3: Mean and minimum number of steps taken to complete the task, for all treatments used. 

Nr of Agents Treatment Nr of steps (mean) Nr of steps (min) 

1 

LMS 285 285 

CRW 276 263 

RRW A=2 280 266 

RRW A=8 277 270 

2 

LMS 142 142 

CRW 140 138 

RRW A=2 R=8 141 139 

RRW A=8 R=2 140 137 

RRW A=2 R=2 140 135 

RRW A=8 R=8 138 129 

3 

LMS 94 94 

CRW 93 86 

RRW A=2 R=8 92 86 

RRW A=8 R=2 94 91 

RRW A=2 R=2 94 90 

RRW A=8 R=8 93 89 

 

The average total number of steps needed to complete the simulations using RRW are 

slightly lower than the amount needed by LMS. Still, the total simulation time with RRW is 

higher than LMS. To investigate this, the average simulation time was plotted against each step 

(Figures 28, 29 and 30). 
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Figure 29: Simulation time against step for simulations 

with 1 agent. 

Figure 30: Simulation time against step for simulations with 2 

agents. 

Figure 31: Simulation time against step for simulations with 3 

agents. 
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The duration of each step in LMS, naturally, stays constant, because every step is done 

to an adjacent cell. An average higher duration for each step was already expected for RRW, 

because when in exploration mode, agents are programmed to move with a stride of 2 cells 

(cells in V2), causing them to cover more distance with the same speed in a single step. 

However, the time taken for each step in RRW increases more than expected as simulation 

time proceeds. It is suspected that the reason can be local minima. When the agents are 

surrounded by cells marked as visited they are programmed to enter a loop to seek the next 

available, finding them distant from their surrounding vicinity (V1). This must happen with 

higher frequency by the end of the simulations with RRW. 

5.4 Discovery Ratio (DR) 

Discovery Ratio of cells with tomatoes is demonstrated in the line plots below (Figures 

31, 32 and 33), where each line represents the average from the 10 repetitions for each 

treatment. 

 

As seen from Figure 34, with 1 agent, RRW demonstrates the highest Discovery Ratio for 

the first half of cells with tomatoes discovered, which means that it is faster than other strategies 

to find cells with tomatoes at first, but decreasing in speed as simulation time increases. 

Figure 32: Discovery ratio of cells with tomatoes when simulating with 1 agent. 
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With 2 agents, RRW still enables a faster discovery of cells with tomatoes than LMS. 

Although, this time CRW performs even better than RRW, when compared with 1 agent. Similar 

to the results with 1 agent, the performance of RRW decreases and LMS is able to detect all 

tomato cells faster. There are also no clear differences in the Discovery Ratio between the 

different attraction and repulsion parameters tested with RRW. 

 

Figure 33:Discovery ratio of cells with tomatoes when simulating with 2 agents. 

Figure 34: Discovery ratio of cells with tomatoes when simulating with 3 agents. 
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Differently than in previous results, with 3 agents LMS demonstrated the lowest time for 

the agents to measure all cells that contained tomatoes, while RRW needed more time for the 

same task. 
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6 Discussion 

6.1 Alternative strategy (ALT) 

Due to the unexpected low performance of the RRW in comparison with LMS and CRW, 

which were baseline strategies, an alternative strategy was designed to try to tackle flaws from 

the original RRW. The new design, denotated ALT, would consist of a RRW strategy for the 

selection of the agents’ next target location, but with the following modifications: 

1. Removal of exploration mode, as it increased the time to perform each step without 

bringing any benefits in the reduction of total simulation time. 

2. A new requirement to end the simulation which would be based on a total number of 

steps equals to 120 instead of it being based on map coverage.  

3. Flags, which indicated cells that should have more measurements due to uncertain 

fruit counting, were removed based on the assumption that RMSE was already low 

and that flags were contributing to the incidence of local minima. 

4. The method to mark cells as potentially containing tomatoes changed from marking 

all unmeasured cells around a newly measured cell with tomatoes, to only marking 

unmeasured cells that bordered the bounding box of a detected tomato, as 

demonstrated in the schematic example in Figure 37. 

 

In the example above, the drone positioned in cell [1, 1] performs measurement in all 

cells that directly surround it, marked in blue. Tomatoes were detected in cells [1, 2], [2, 1] and 

[2, 2]. In the standard strategy, for each detected tomato cell, all unmeasured cells that directly 

surround it will be marked as PT, while for the alternative strategy, only cells that are directly 

in contact with the bounding box of detected tomatoes will be marked as PT. This is meant to 

reduce the number of unnecessary attraction points and direct the drone towards cells with 

higher probability of containing other tomatoes. 

This alternative strategy was only simulated for 2 agents, to avoid technical issues 

frequently encountered when running simulations with 3 agents, such as software and system 

Figure 35: Schematic representation of the standard strategy to mark cells that potentially contain tomatoes (PT), versus the 

alternative strategy). 
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crashes. The values for the attraction and repulsion parameters selected for this simulation were 

8 and 2, respectively, due to the slightly better performance of this combination on Discovery 

Ratio, when compared with the other combinations for RRW with 2 agents. 

The results for Discovery Ratio (Figure 38) showed that there was a visible enhancement 

in the performance of the alternative strategy (ALT) versus the original approach (RRW). The 

time needed to achieve a Discovery Ratio of 90% was on average 83.6 seconds with the ALT 

strategy and 104.3 seconds for RRW. Also, ALT achieved a Discovery Ratio of 40% in 18.0 

seconds, while CRW needed 24.8 seconds to achieve the same result. This shows that the newly 

designed strategy ALT was able to inherit from RRW the speed to discover the first 40% of the 

tomatoes, while discovering the last tomatoes earlier, just as CRW. 

 

 

6.2 Sub-question C: Number of agents 

There was a clear improvement in the required time to complete the fruit counting task 

when using a higher number of UAVs. Comparing with simulations with 1 agent, simulations 

with 2 agents had their total simulation time lowered by 50, 60 and 65 % for the LMS, CRW 

and RRW respectively. The higher reduction for CRW and RRW is due to the higher total time 

to complete the mission for those strategies. Adding a third agent, reduced the simulation time 

by 67, 92 and 108 %, relative to 1 agent simulations for the LMS, CRW and RRW respectively 

(Table 4). 

Figure 36: Discovery ratio average over simulation time. Simulations were performed with maximum 120 steps, 

repeated 10 times for each strategy. 
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Table 4: Average total simulation time and relative time reduction for the three main strategies compared. 

Exploration approach Nr of Agents Simulation time [s] Relative reduced time [%] 

LMS 

1 192 - 

2 96 50 

3 63 67 

CRS 

1 254 - 

2 152 60 

3 118 92 

RRW 

1 352 - 

2 230 65 

3 191 108 

 

As beforementioned in Sections 1 and 3.2 battery autonomy is one of the main constraints 

of using low-altitude UAVs due to the reduced time available for their flights (Arafat et al., 

2023). Using drone swarms could be an answer to such problems by reducing the necessary 

time through task sharing between agents (Skobelev et al., 2018). To understand how the 

number of agents would impact in the efficiency of the tomato counting task, a real-life scenario 

was proposed. The following characteristics were assumed to be representative of a standard 

tomato greenhouse: 

1. Plant row height of 2 m (Amundson et al., 2012) 

2. Plant spacing (plantspace) of 0.5 m (Amundson et al., 2012) 

3. Row spacing (rowspace) of 0.8 m (Testa et al., 2014) 

4. Greenhouse dimensions of 9.14 (ghwidth) x 29.26 (ghlength) m (Athearn et al., 2018) 

5. Walking space (walkspace) of 1 m along each wall of the greenhouse 

With the assumed greenhouse characteristics and the equations presented below, it was 

estimated that such greenhouse would present 9 rows of tomato plants (nrows) with 55 plants in 

each row (rowplants), resulting in 495 total plants. 

𝑛𝑟𝑜𝑤𝑠 =
𝑔ℎ𝑤𝑖𝑑𝑡ℎ − 2𝑤𝑎𝑙𝑘𝑠𝑝𝑎𝑐𝑒

𝑟𝑜𝑤𝑠𝑝𝑎𝑐𝑒
      (8) 

 𝑟𝑜𝑤𝑝𝑙𝑎𝑛𝑡𝑠 =
𝑔ℎ𝑙𝑒𝑛𝑔𝑡ℎ − 2𝑤𝑎𝑙𝑘𝑠𝑝𝑎𝑐𝑒

𝑝𝑙𝑎𝑛𝑡𝑠𝑝𝑎𝑐𝑒
    (9) 

 To calculate what the appropriate sample size is for estimating a population parameter, 

such as fruit number per plant, the following equation was used (Walsh et al., 2022): 

𝑛 =
𝜎2(𝑡𝛼/2,𝑛−1)

2

𝑒2
      (10) 

where n is the required sample size, σ is the standard deviation of the population parameter (i.e. 

number of tomatoes per plant), tα/2,n-1 is the t-score and e is the margin of error, which was set 

to 1. This resulted in n = 128, which means that the minimum sample size to confidently 

estimate the average number of tomatoes per plant in a population of 495 plants is 128 sample 

plants. The standard deviation σ was obtained from simulating 495 plants in the same virtual 

environment where the simulations were performed (Figure 39). 
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Considering the LMS algorithm, since it was the fastest, the time taken to complete the 

fruit counting task on 15 plants was 192 and 63 seconds, for 1 and 3 agents respectively, 

meaning that LMSNrAgents=1 (i.e., LMS strategy with 1 agent) needed 12.8 seconds per plant, 

while LMSNrAgents=3 needed 4.2 seconds per plant. Assuming a battery autonomy of 13 minutes, 

according to the DJI Tello User Manual, LMSNrAgents=1 would need 2.1 cycles of the battery to 

complete the task, whereas LMSNrAgents=3 would need only 0.69. In conclusion, starting with a 

fully charged battery, using 1 agent would require the battery to be recharged 2 times, in 

contrast with 3 agents that would allow the task to be completed without pause. The battery 

cycles required for all the strategies can be found in Table 5. 

RMSE did not differ significantly when using a larger number of agents within the same 

strategy, as presented in Section 5.2, however increasing the number of agents significantly 

lowered the time to conclude the task. 

Table 5: Battery cycles needed to fully perform a fruit counting task on the real-life assumption example. 

Exploration approach Nr of agents Battery cycles to complete task [-] 

LMS 

1 2.10 

2 1.05 

3 0.69 

CRS 

1 2.78 

2 1.66 

3 1.29 

RRW 

1 3.85 

2 2.52 

3 2.09 

 

Figure 37: Simulation of 9 rows of tomatoes, with 55 plants per row, performed to obtain the standard deviation of tomato 

counts per plant. 
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6.3 Sub-question D: Exploration algorithms 

As mentioned in Section 5.2, the RMSE did not differ significantly between explorations 

algorithms, meaning that none of the strategies contributed to an increase in the precision of 

the tomato counting. 

The initial hypothesis would be that LMS algorithm would result in the lowest RMSE, 

since an image is captured for every single cell before the simulation ends, meaning that there 

are images captured from all possible viewpoints. CRW should result in the highest RMSE, 

since the simulation would end when all cells were measured, but not necessarily from all 

possible viewpoints. RRW should result in a lower RMSE than CRW because of the attraction 

factors (Section 4.1.3.2) that were designed to direct the agents towards regions with higher 

uncertainty of measurements. 

It was not observed a trade-off between simulated time and RMSE, as longer flights did 

not result in significantly lower RMSE. Consequently, the metric used to determine the most 

efficient strategy was simulation time, which was lowest in LMS. 

Simulation times were higher in CRS and RRW due to the agents being trapped in local 

minima. This is shown by the mean and maximum time steps (Table 6). In LMS, because every 

movement is pre-determined, agents will move exactly one cell horizontally or vertically. With 

CRW and RRW, when agents are surrounded by cells that are inaccessible (Section 4.1.1), they 

will move to the next nearest available cell, which will be located at a distance of two or more 

cells from the agent’s position, increasing the duration of the step. 

Table 6: Number of steps, mean and maximum time to perform a step in LMS, CRS and RRW. 

Exploration approach Nr of Agents Nr of Steps Mean step time Maximum step time [s] 

LMS 

1 285 0,67 0,67 

2 142 0,67 0,67 

3 94 0,67 0,67 

CRS 

1 276 0,92 6,17 

2 140 1,08 6,74 

3 93 1,25 8,16 

RRW 

1 281 1,20 11,68 

2 142 1,51 11,85 

3 95 1,79 13,87 

 

The reason for local minima to occur especially in RRW is due to a design flaw of the 

combination between the attraction factors and the fact that agents are not allowed to revisit 

cells. The two attraction factors (i) potential tomato cells and (ii) flags were designed to 

increase the speed at which tomatoes are discovered and increase the measurement accuracy, 

respectively. These attraction factors would achieve their goal by (i) directing agents towards 

cells that are adjacent to where other tomatoes were found and (ii) by directing drones to 

perform more measurements around cells which had dubious tomato count results. The 

placement of these attraction factors caused the agents to move in circles or semi-circles 

(Figure 16 and Figure 17). However, because agents were not allowed to visit any cell twice, 

after visiting cells marked with attraction factors, agents would isolate themselves from the rest 

of the map. 
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This problematic is represented in Figure 40, where an agent spawned in cell [0, 0] at 

step = 0 moves to cell [1, 1] in step = 1 and measures tomatoes in cells [1, 2], [2, 2] and [2, 1], 

resulting in the unmeasured cells on the vicinity of the tomato cells (T) to be marked as 

potentially containing tomatoes (PT). Each PT cell will attract the agent until they are 

measured, causing the agent to move towards them. After visiting each one of them in step = 

9, if the agent happens to move to cell [2, 0] instead of cell [4, 0], it will be trapped in a local 

minimum, where it will visit every unvisited cell before moving out of this zone (i.e., even cells 

where tomatoes were detected, but were not visited by the agent, are subjected to be visited). 

Also, after visiting all cells inside this local minimum, the next cell visited by the agent (e.g., 

step = 14) will be a cell with coordinates [4, y] or [x, 4], which are at a distance larger than one 

cell from any cell inside this region, causing the step time to increase. 

One option to solve the problem of agents being trapped inside local minima would be 

to allow the agents to revisit cells, thus breaking the barrier formed by visited cells. Other 

alternatives include using virtual waypoints, instead of marking multiple cells with attraction 

factors. Virtual waypoints were used in other studies with drone path planning which were 

facing issues with local minima (Hao et al., 2023; W. Yang et al., 2021). Instead of having to 

deal with multiple targets at the same time, which could cause local minima, the agents would 

be presented with one virtual target at a time to guarantee that they would move towards the 

direction of interest. Other studies, suggest adding a time-based coefficient to the exploration 

approach (Huang et al., 2020). In this case, there could be a repulsion factor that repels agents 

from a certain region if they are surveying the area for a long period without acquiring new 

information, or there could be a time-based coefficient that increases the bias towards attraction 

factors which were not surveyed for a long period of time. 

Discovery ratio (DR) was the only metric where LMS was outperformed by the other 

exploration approaches when the number of agents was equal to 1 and 2. With these levels of 

number of agents, LMS had a later start at discovering tomatoes in the simulation environment. 

This is attributed to the fact that with these number of agents in LMS, the starting point of 

agents were at the extremities of the map, regions where the simulated tomato plants usually 

Figure 38: Schematic representation of the local minima problem. V = Visited cells, T = cells where tomatoes were detected, 

PT = cells that potentially contain tomatoes. 
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do not bear fruits (Figure 19). With 3 agents in LMS, one of the agents was set to initiate the 

mission in the middle of the map to allow for an equal division of it into three parts (Figure 

41), which provided an initial advantage on DR. 

 

 

This indicates that the starting position also influences the performance of the exploration 

approaches. Setting the starting point of agents in LMS to the central rows of the map would 

even increase the speed of the DR for this exploration strategy. 

6.4 Main question: opportunities and challenges of drone swarms in greenhouse 

horticulture 

The usage of drone swarms for fruit counting in a greenhouse horticulture setting has 

shown to improve the speed of the task when compared to a scenario where one drone is used. 

According to the simulations performed in this study, a swarm composed of three agents would 

be enough to perform counting of a representative sample in a greenhouse with standard 

commercial dimensions, demonstrating the opportunity of this approach in a real-life situation. 

However, there are still challenges on defining a more efficient exploration approach for 

this task. The results of this study indicate that a lawnmower navigation with 3 agents is the 

most efficient strategy, with the lowest required time, fastest discovery ratio progression and 

equal RMSE when compared with any other strategy. 

Other than allocating different shares of area of the exploration environment between the 

different agents, which intuitively reduces the required time, LMS does not make usage of other 

benefits of drone swarms. The exploration approach of RRW was designed as a collaborative 

strategy where agents would identify regions of interest on the map, so that agents that were 

currently exploring regions without targets could shift their attention to the regions where 

reinforce was needed. Even so, this approach did not result in a good performance with the 

settings that were tested in this study. 

Challenges, such as local minima and design choices, impaired the performance of the 

RRW approach, which was supposed to take advantage of drone swarm perks, such as 

allocating tasks and decision making. Nonetheless, with some adjustments, the Alternative 

strategy (ALT) was able to have an improvement in performance compared to RRW. 

There are still opportunities to improve the performance of using drone swarms in a 

greenhouse horticulture context by refining the design choices to make a better use of the 

potential of multiple agents. One of these opportunities would be to implement task assignment 

for the UAVs (Qian et al., 2023), by having part of the agents perform a preliminary count of 

Figure 39: Starting points from agents in LMS. Red cells represent the region where tomatoes were more likely to spawn. The 

blue arrow indicates the initial movement direction for each agent. 
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tomatoes in a lawnmower style navigation, while identifying regions with higher uncertainty 

and assigning other agents to verify the count in these regions. This verification could be 

performed by varying the pitch and yaw angle of the UAVs, allowing snapshots from different 

viewpoint angles, which could reduce the RMSE. In this study, the agents were designed to 

always face the plant row at the same orthogonal angle, leading to no significant difference in 

counting accuracy between the strategies. However, other studies indicate the potential of using 

multiple viewpoint angles from the agents in a drone swarm to reduce the uncertainty of 

information acquisition (Aburasain et al., 2020; Tahir et al., 2019; Zheng et al., 2023; 

Zualkernan et al., 2023). 

6.5 Reality gaps 

In the present study, simulations were performed in a virtual environment due to the 

practicality of repeating multiple runs, while avoiding the logistical constraints of arranging 

real-life equipment and crops. Because of that, the experiments conduced in this study are not 

yet suitable to be repeated in a real-life scenario. There are still factors that need to be 

considered before this transition from a virtual to a real environment, also known as reality-

gaps. 

6.5.1 Positioning and tracking of UAVs 

To navigate across the environment, it is necessary to have information about the real-

time position of each UAV in relation to the map. For outdoor UAVs, the most common method 

to track their positioning is through the global navigation satellite system (GNSS) in 

combination with real-time kinematic (RTK) equipment for correction of their coordinates, 

allowing centimetre-level precision. In three-dimensional complex environments, however, 

signal blockages may pose a challenge to GNSS positioning (J. Zhou et al., 2023). 

For confined spaces, technologies such as Light Detecting And Ranging (LiDAR) 

sensors can be used to estimate the position of drones. LiDAR sensors consist of an equipment 

that emits infrared light towards multiple directions and estimates the three-dimensional 

position of the aircraft based on the time taken by the light to be reflected to the sensor (N. Li 

et al., 2022). It is a precise and robust technology that is capable of functioning in any light 

condition and recent advances have turned this equipment lighter and affordable (Aldao et al., 

2022). 

Other methods used in confined space include the integration of WiFi and inertial 

measurement unit (IMU), which are present in most commercial drones, for UAV positioning. 

This method, although cheaper than LiDAR, showed a mean error of 1.37 m (Z. Li & Zhang, 

2022), which is unsuitable for the type of mission simulated in this study, where the viewpoints 

are distant 0.29 m from each other. 

6.5.2 UAV communication 

Coordinating multiple UAVs in an autonomous way requires a communication system 

capable of assigning actions to each of the agents of the swarm. This system should be able to 

receive the information captured by the agents (i.e., snapshots), process the information (i.e., 

object detection neural network) and return commands (i.e., coordinates for the next move) 

(Campion et al., 2019). 

The most commonly used architecture for drone swarm communication consists of a 

ground control software (GCS) that receives and sends telemetry data in the form of velocity 



55 

 

vectors through a transceiver. This type of communication system, where a central software 

controls each UAV individually is called infrastructure-based swarm architecture and it usually 

utilizes unlicensed radio frequency bands (e.g., 900 MHz). This architecture may be prone to 

failure when UAVs are out of the communication range of the GCS but is unlikely to happen 

in close-range missions such as the object of the present study (Campion et al., 2019). 

6.5.3 Collision avoidance 

Another aspect of real-life multi-agent systems which must be considered in the 

exploration approach is collision avoidance. When UAVs are moving in a three-dimensional 

space, their path must consider the possible collisions with static objects (e.g., crops, structures) 

and dynamic objects (e.g., other UAVs). This is especially relevant in confined spaces with 

many agents (Arul et al., 2019). 

In the present study, it is assumed that all agents are positioned between two plant rows, 

at a safe distance from any vegetable material. However, it is still necessary to prevent 

collisions between UAVs. 

One of the most consolidated collision avoidance algorithms used in drone swarms is 

the optimal reciprocal collision avoidance (ORCA). This algorithm uses the principle of 

velocity space to avoid collisions (James et al., 2020). In practice, if two or more agents are in 

a route of collision, their velocities will be adjusted to prevent it. 

Another method of collision avoidance in UAV swarms is the Force-based Motion 

Planning (FMP). This algorithm is based on the concept of force fields, where each agent has 

a repulsion force towards other agents, similar to the mechanism of repulsion vectors used in 

RRW. The difference between RRW’s repulsion vector and FMP is that in FMP the repulsion 

force has a radius of action and will only influence other agents when these are within the range 

of this radius (Semnani et al., 2020). 

6.5.4 Sensor noise 

Sensor noise is an inherent issue of any real-life sensor (He et al., 2006). In a scenario 

where UAVs are used to capture images in a greenhouse crop production, noise may derive 

from the characteristics of the camera, the motion and vibrations of the UAV, light conditions 

or even from the humidity of the environment. 

Noise impacts on the quality of the images captured and thus in the performance of the 

detection of tomatoes, having a direct effect on the RMSE of the measurement. To enable the 

replication of the exploration designs discussed in the present work in a real-life scenario, it 

would be necessary to simulate artificial noise and evaluate its effect in the performance of the 

designs. One alternative is to use white Gaussian noise to mimic the effect of random natural 

processes on the snapshots taken during the simulations (F. Li et al., 2023). 

6.6 Future research 

Ideally, the next steps of this research will involve the implementation of the reality-gaps 

and the analysis of their implications in the mission performance. The addition of artificial 

sensor noise may cause a decrease in counting accuracy, thus elevating the importance to 

design an exploration approach that minimizes RMSE. There would also be the necessity to 

evaluate the trade-offs between increasing speed for a faster mission completion and the 

impacts that it would cause in RMSE due to increasing noise from the sensor’s motion. The 

addition of collision avoidance algorithm may also impact in the performance of the 
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exploration approaches where agents are susceptible to crossing paths (i.e., CRW and RRW) 

due to the extra time needed to avoid collisions. 

New exploration approaches should also be experimented with to fully explore the 

potential of drone swarms in greenhouse fruit counting, which the present study failed to do. 

Strategies such as information gain algorithms could further help to decrease RMSE 

significantly, since it presented positive results in weed counting (Carbone et al., 2022). 

Furthermore, one of the promising results obtained from this study was the use of 

artificially generated images used to train a fruit detection model capable of detecting fruits 

from real-life images. The possibility to create a large dataset with readily annotated images 

automatically has great potential in the field of machine vision in agricultural research as a fast 

and cheap solution for model training data acquisition. 
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7 Conclusion 
The use of drone swarms for fruit counting in a simulated tomato greenhouse demonstrated 

a performance enhancement over single-drone approaches by reducing the total mission time 

in 67% and 108% for the LMS and RRW exploration approaches, respectively. When 

comparing exploration approaches, the baseline LMS was superior to RRW in all levels of 

swarm size, achieving a total simulation time of 192, 96 and 63 seconds for 1, 2 and 3 agents, 

respectively. The combination of LMS with 3 agents was considered to be the most efficient 

strategy in terms of mission time. 

In terms of RMSE, the other metric used, there were no significant differences between 

any of the strategies due to design flaws that did not explore the full potential of drone swarms, 

such as utilizing different snapshot angles. 

In conclusion, drone swarms present opportunities to be used in greenhouse fruit counting, 

due to its time saving potential, but further investigation should be performed on accuracy 

improvement. The challenges that this technique may face are mostly related to the confined 

space of navigation, which may limit the viewpoint angles and increase the susceptibility of 

collisions. 
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