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A B S T R A C T   

The Rubiaceae plant family, comprising 3 subfamilies and over 13,000 species, is known for producing signif
icant bioactive compounds such as caffeine and monoterpene indole alkaloids. Despite an increase in available 
genomes from the Rubiaceae family over the past decade, a systematic analysis of the metabolic gene clusters 
(MGCs) encoded by these genomes has been lacking. In this study, we aim to identify and analyze metabolic gene 
clusters within complete Rubiaceae genomes through a comparative analysis of eight species. Applying two 
bioinformatics pipelines, we identified 2372 candidate MGCs, organized into 549 gene cluster families (GCFs). 
To enhance the reliability of these findings, we developed coexpression networks and conducted orthology 
analyses. Using genomic data from Solanum lycopersicum (Solanaceae) for comparative purposes, we provided a 
detailed view of predicted metabolic enzymes, pathways, and coexpression networks. We bring some examples of 
MGCs and GCFs involved in biological pathways of terpenes, saccharides and alkaloids. Such insights lay the 
groundwork for discovering new compounds and associated MGCs within the Rubiaceae family, with potential 
implications in developing more robust crop species and expanding the understanding of plant metabolism. This 
large-scale exploration also provides a new perspective on the evolution and structure-function relationship of 
these clusters, offering opportunities for the highly efficient utilization of these unique metabolites. The outcome 
of this study contributes to a broader comprehension of the biosynthetic pathways, elucidating multiple aspects 
of specialized metabolism and offering innovative avenues for biotechnological applications.   

1. Introduction 

Plant natural compounds are the main source of bioactives for me
dicinal, pharmaceutical, agricultural and industrial applications [59]. 
The antimalarial artemisinin, anti-cancer paclitaxel, the codeine anal
gesic and anti-diabetic metformin are some of the many examples of 
plant-derived pharmaceuticals [54,59]. In ecosystems, plant bioactive 
compounds have many ecological functions, such as adaptation to the 
abiotic and biotic environment, defense against pests and pathogens, 
competition for nutrients and signaling for seed dispersal pollinators 
[32,41,47]. It is estimated that more than 200,000 known metabolites 
are products of plant metabolism [26]. In biosynthetic pathways, which 
are a series of biochemical steps that will result in a metabolite, genes 
involved can either be dispersed across multiple chromosomes or be 
organised in a physically proximate manner. Although there are many 

compounds, only a few have well-established metabolic pathways sup
ported by genomic information. Over the past decade, the discovery of 
biosynthetic compounds has been aided by the development of genome 
mining and omics approaches, as reviewed by Singh et al. [51] and Zhao 
& Rhee [68]. Genes that compose a biosynthetic pathway can be orga
nized as pairs, tandem arrays and biosynthetic or metabolic gene clus
ters [53]. A metabolic gene cluster is formed when a set of at least three 
genes that are of distinct evolutionary origin and are co-localized in the 
genome contribute to a specific metabolic pathway, ideally acting 
sequentially [36,53]. The structure of an MGC often encodes enzymes 
responsible for creating the core metabolite and tailoring enzymes that 
modify this structure along with regulatory transcription factors and 
transporters that carry metabolites and necessary precursors. There are 
several examples of MGCs discovered using omics approaches in plants, 
as reviewed in [62] and [67]. For example, there is a gene cluster 
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involved in the production of terpenoids in Tomato. The MGC consists of 
one alcohol oxidase, 5 terpene synthases, 2 cis-prenyl transferases and 
one functional cytochrome P450 that work together to produce mono 
and diterpenes in the petiole part of the leaf [34,35]. Tohge and Fernie 
[58] well illustrate in their review cases where the genomic clustering of 
specialized metabolite genes result in the synthesis of a given com
pound. More recently, with the large-scale analysis of MGCs across 
several genomes it was possible to group putative homologous MGCs 
into gene cluster families (GCFs) [25]. Gene cluster families are groups 
of MGCs that are functionally closely related and encode the production 
of the same or very similar molecules [25]. This concept has been 
employed in genome mining for bacteria [37] and fungi [48]. Most of 
the studies that identify plant MGCs focus on one species, as the case of 
MGCs identification in tobacco [11] or selected species from distinct 
families [49], and more recently, MGCs discovery is starting to be 
incorporated more frequently in studies reporting the assembly and 
annotation of new plant genomes [29,31,64,66]. 

The Rubiaceae is a plant family in the Magnoliopsida class, con
taining 3 subfamilies [6], more than 600 genera and 13,000 species 
[33]. The first genome of a Rubiaceae family plant, Coffea canephora, 
was published in 2014 [13]. Since then, several other genomes have 
been documented in the literature (Fig. 1; [7,8,9,19,22,28,45,46,61,65, 
69]. Plants from this family produce not only well-known alkaloids like 
caffeine, but other metabolites with great pharmacological potential, 
including several terpenoids [2,28]. For example, camptothecin is a 
monoterpene indole alkaloid produced by Ophiorrhiza pumila that pos
sesses antitumor activities [52]. 

There is a small number of studies analysing the genomic basis of 
plant bioactive compounds synthesis in the Rubiaceae family. Some 
examples are the study of the crocin metabolic pathway in Gardenia 
jasminoides [65], caffeine in Coffea canephora [13,40], monoterpene 
indole alkaloids (MIAs) in Ophorrhiza pumila [46], cadambine in Neo
lamarckia cadamba [69], and ursolic acid in Oldenlandia corymbosa [22]. 

For some Rubiaceae species, i.e. Ophiorrhiza pumilla and Neo
lamarckia cadamba, genome analysis included the prediction of MGCs. In 
O. pumilla, it was found specific clusters with highly coexpressed genes, 
indicating their possible role in MIA biosynthesis [46]; however, a 
comparative family-wide analysis is still lacking. 

The study advances the field of computational plant genomics by 
conducting a pioneering detailed comparative analysis of metabolic 
gene clusters (MGCs) and cluster families in a plant family, using the 
Rubiaceae family as a case study. By incorporating methods such as 
orthology assessment, gene family expansions, coexpression analysis, 
and a comparative analysis of metabolic gene clusters (MGCs), this 
investigation will facilitate the priorization of previously unknown 
pathways to understand the synthesis of bioactive compounds in plants. 
This pioneering comparative genomics research within the Rubiaceae 
family seeks to lay a foundational framework for the identification of 
new compounds and their corresponding MGCs. The potential benefits 
of uncovering these MGCs are manifold, including the improvement of 
crop resilience and the exploration of novel bioactive substances, which 
could have profound implications for applications in both agricultural 

and medicinal contexts. 

2. Materials and methods 

2.1. Genomic and annotation data 

For our analysis, we considered Rubiaceae genomes with high- 
quality assemblies (chromosome-level sequencing and a BUSCO score 
of over 97%) with publicly available deduced proteomes and GFF- 
formatted genome coordinate files (Table 1; Supplementary File 1). By 
December 1st, 2022, eight species from three subfamilies met these 
criteria: Coffea arabica, Coffea canephora, Coffea eugenioides, Coffea 
humblotiana, Gardenia jasminoides, Leptodermis oblonga, Ophiorrhiza 
pumila and Neolamarckia cadamba. Table 1 summarizes these sources. 
We adopted Solanum lycopersicum, a Solanaceae, as an outgroup for our 
comparative genomics analysis, as it is phylogenetically closer to 
Rubiaceae than Arabidopsis thaliana (Brassicaceae), providing a more 
relevant comparison, with previous predictions of MGCs [17,35,70]. 
The genome sequence and annotation files from Solanum lycopersicum 
release SL4.0 [21] were downloaded from https://solgenomics. 
net/organism/Solanum_lycopersicum/genome/. 

2.2. Identification of metabolic gene clusters (MGCs) through genome 
mining 

Our goal was to identify metabolic gene clusters using two genome 
mining tool approaches (PlantClusterFinder and PlantiSMASH), 
compare the results, and apply criteria to select high confidence MGCs 
(Fig. 2). To acquire a set of high-confidence MGCs, we consider results 
only from genomes with defined chromosomes. 

We used E2P2 v4.0 [20] and annotated protein sequences to identify 
enzymes associated with plant metabolic pathways and then used 
Pathway Tools v. 26 [23] and the PathoLogic software with default 
settings to generate metabolic pathway databases. These predicted 
pathways were manually filtered to only include those present in plants. 
To predict metabolic gene clusters, we modified a method based on 
previous studies by Schläpfer et al. [49] and Chen et al. [11] (see Fig. 2). 
The output file from E2P2 was used with Pathway Tools to create 
species-specific metabolic pathway databases. These databases were 
then exported and inputted into PlantClusterFinder (PCF) version 1.3 
(https://github.com/carnegie/PlantClusterFinder, [49], which iden
tifies groups of metabolic genes located contiguously on the same scaf
fold using sliding window searching. Default parameters were used for 
PlantClusterFinder. Finally, we used PfamScan v. 1.6 (https://github. 
com/gpertea/gsrc/blob/master/scripts/pfam_scan.pl; [15] to deter
mine protein domains for all genes identified by PlantClusterFinder. 

We also used PlantiSMASH v. 1.0, a computational pipeline that 
predicts plant MGCs using specific HMM profiles [24], to identify MGCs. 
We input the genome sequences and annotation files in GFF3 format and 
applied the dynamic cutoff parameter for analysis. 

2.3. Clustering and evolutionary analysis of metabolic gene clusters in 
Rubiaceae 

After identifying MGCs in Rubiaceae plants, we aimed to determine if 
they showed evolutionary conservation. To achieve this, first we 
compared the genomes of the study using Orthofinder v. 2.3.8 [16] with 
default parameters to infer orthology and Orthovenn3 [56] with default 
parameters to infer gene families expansions and contractions and 
synteny analysis. We then grouped the MGCs into gene cluster families, 
identified protein domains of predicted metabolic enzymes, and checked 
for orthology relationships. To classify the high-confidence MGCs into 
families, we utilized the Biosynthetic Gene Similarity Clustering and 
Prospecting Engine (BiG-SCAPE) v. 1.1.0 [38]. We applied the "mix" and 
"no-classify" parameters and set a cutoff value of 1.0 as a raw distance. 
Chae et al. [10] proposed a system to classify MGCs into 13 primary 

Fig. 1. Phylogenetic representation of the eight plant species of Rubiaceae 
analyzed in this study and tomato (Solanum lycopersicum) as an outgroup. 
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functional classes. Later, Schläpfer et al. [49] applied this system to 
classify MGCs detected with the PlantClusterFinder tool. In our study, 
we used the same strategy to classify the MGCs that we identified using 
the PCF tool (refer to Fig. 3A for more details). 

2.4. RNA-Seq data and coexpression analysis 

To determine if the predicted MGC genes were coexpressed, we 
constructed coexpression networks using transcriptome data for six 

Rubiaceae species: Coffea arabica, Coffea canephora, Coffea eugenioides, 
Gardenia jasminoides, Neolamarckia cadamba and Ophiorrhiza pumila. For 
this, we used 65 libraries from 4 RNA-Seq experiments available in the 
European Nucleotide Archives (ENA) and the National Genomics Data 
Center (NGDC). In Table 2, we detail conditions of these experiments: 

For Coffea arabica, Coffea canephora, and Coffea eugenioides, we 
performed coexpression analysis using RNA-Seq of seeds at three 
developmental stages [55]. The study generated 27 RNA-Seq libraries (3 
species, 3 replicates, 3 seed stages). Seed stages corresponded to the 

Table 1 
Species used in the present study.  

Species Subfamily Assembly Authors Source 

Coffea arabica Ixoroidea Cara_1.0 Johns Hopkins University https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_003713225.1 
Coffea canephora Ixoroidea AUK_PRJEB4211_v1 [13] https://www.ncbi.nlm.nih.gov/data-hub/genome/GCA_900059795.1/ 
Coffea eugenioides Ixoroidea Ceug_1.0 Johns Hopkins University https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_003713205.1/ 
Coffea humblotiana Ixoroidea release 1.0 [45] https://solgenomics.net/organism/Coffea_humblotiana/genome 
Gardenia jasminoides Ixoroidea release 1.0 [65] https://genomevolution.org/coge/api/v1/genomes/62692/sequence 
Leptodermis oblonga Rubioideae release 1.0 [19] https://www.ncbi.nlm.nih.gov/data-hub/genome/GCA_016801395.1/ 
Ophiorrhiza pumila Rubioideae release 1.0 [46] https://pumila.kazusa.or.jp/ 
Neolamarckia cadamba Cinchonoideae release 1.0 [69] https://figshare.com/s/ed20e0e82a4e7474396b  

Fig. 2. Overview of the pipeline to predict metabolic gene clusters.  
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following phenological phases: ST5 (seeds from green fruits, peak of 
reserve deposition and start of endosperm hardening), ST6 (seeds during 
fruit veraison), and ST7 (seeds from mature cherry fruits with red 
pericarp). The RNA-Seq experiments in the Gardenia jasminoides dataset 
[39] used peel and sarcocarp samples from both green and red fruits, 
collected in triplicates. The study resulted in 12 RNA-Seq libraries, 
which were grouped into four tissues for coexpression analysis: GFS 
(Sarcocarps of green fruits), GFP (Peels of green fruits), FS (Sarcocarps of 
red fruits) and FP (Peels of red fruits). In the Ophiorrhiza pumila dataset 
[60], the expression of two ERF transcription factors was suppressed in 
hairy roots through RNA interference. The study generated 6 RNA-Seq 
libraries (3 conditions, 2 replicates each), which were divided into the 
following codes for coexpression analysis: Gusi (Hairy roots transformed 
with GUS); ERF1i (Hairy roots with suppressed OpERF1); ERF2i (Hairy 
roots with suppressed OpERF2). In the Neolamarckia cadambia RNA-Seq 
experiment [12], roots were treated with 400 μM +Al for 1, 3, and 7 
days, while controls were grown without Al3 + . The experiment made 
in 20 RNA-Seq libraries, each defined by one of four time sets and two 
conditions: untreated roots at 0, 1, 3, and 7 days old (AL0, AL1, AL3, 
AL7) and treated roots at 1, 3, and 7 days old (AL1t, AL3t, AL7t). We 
analyzed the RNA-Seq raw data using FastQC v0.11.8 tool [63] and 
removed low quality reads and adapters with the AdapterRemoval 
v2.3.0 software [50]. Then, we mapped the data against the respective 
genome using HISAT2 v2.2.0 [27] with default parameters. Finally, we 
used the featureCounts v2.0.0 tool [30] to count and normalize the 
transcripts. 

We carried out a coexpression analysis with the Clust v1.12.0 tool [1] 

using the raw count data from the RNA-Seq experiments (as listed in 
Table 2). The parameters used were k-means clustering method, tight
ness weight of 1.0, and Q3s outliers threshold of 2.0. For a cluster to be 
considered among those with coexpressed genes, at least three biosyn
thetic genes should be in the same coexpression module. 

3. Results and discussion 

3.1. Genome-wide prediction of metabolic gene clusters in the Rubiaceae 
family 

The surge in large-scale transcriptomic and genomic datasets has 
opened new dimensions in plant comparative genomics. This work 
demonstrates the application of omics techniques and bioinformatics 
tools for discovering metabolic gene clusters. Our analysis of MGCs 
across eight Rubiaceae species plus Solanum lycopersicum allowed us to 
predict a total of 2372 metabolic gene clusters using two pipelines. In 
Fig. 2, we show the distribution of these genes among clusters and 
species. 

Using the PlantClusterFinder pipeline, we identified a total of 1931 
metabolic gene clusters containing 31,392 genes, with detailed results in  
Table 3 and supplementary Table S1. We identified an average of 214 
MGCs per species, with the lowest number occurring in L. oblonga (118 
MGCs) and the highest number occurring in N. cadamba (295 MGCs). 
The predicted MGCs ranged from 5 to 2551 kb with an average size of 
178 kb. The average number of genes per MGC was 17. A total of 22,556 
genes had an attributed E.C. number and 22,713 had at least one 
attributed reaction number. In our analysis, we identified 1069 genes 

Fig. 3. Number of all predicted metabolic gene clusters of different sizes (number of clustered metabolic genes) across 8 plants from the Rubiaceae family and one 
Solanaceae species. 

Table 2 
Information of the RNA-Seq experiments used in this study.  

Project ID Source Experiment description Author 

PRJEB32533 ENA Transcriptome of seeds in three 
developmental stages from Coffea arabica, 
Coffea canephora and Coffea eugenioides 

[55] 

PRJNA352919 ENA Transcriptome of Ophiorrhiza pumila hairy 
roots 

[60] 

PRJCA003540 NGDC Transcriptome of Neolamarckia cadamba 
roots under aluminum stress 

[12] 

PRJNA688705 ENA Transcriptome of Gardenia jasminoides fruits 
in two developmental stages. 

[39]  

Table 3 
Overview of results from the PlantClusterFinder pipeline.  

Species MGCs Average nº of genes 

Solanum lycopersicum  255  17 
Neolamarckia cadamba  295  14 
Ophiorrhiza pumila  162  23 
Leptodermis oblonga  118  26 
Gardenia jasminoides  238  17 
Coffea humblotiana  223  19 
Coffea canephora  149  21 
Coffea eugenioides  200  8 
Coffea arabica  291  8  
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within metabolic gene clusters that were also predicted in the O. pumila 
genome assembly [46] using PlantClusterFinder. 

Using the PlantiSMASH pipeline we predicted 441 MGCs, which 
contained 5776 genes (Table 4; supplementary Table S2). On average, 
49 MGCs were predicted per species, with the lowest number occurring 
in C. eugenioides (38 MGCs) and the highest occurring in C. arabica (63 
MGCs). The predicted MGCs ranged from 18 to 960 kb, with an average 
size of 175 kb. The average number of genes per MGC was 13. The au
thors from the genome assembly of N. cadamba study (Zhao et al., 2021) 
also predicted MGCs using PlantiSMASH and 622 genes identified in 
MGCs by their study were identified in our analysis. 

These pipelines are based on different methodologies and algo
rithms, leading to substantial discrepancies in the MGCs they predicted. 
PlantClusterFinder identified 41.7% of the MGCs that were predicted by 
PlantiSMASH, but only 7.7% of MGCs detected by PlantClusterFinder 
were detected again by PlantiSMASH. These differences were previously 
reported [11,49] and underscore the importance of considering multiple 
methods in MGC discovery and the inherent complexities in these types 
of analyses. 

We compared the identified MGCs found in Rubiaceae species were 
homologous to MGCs from other plants from the curated database 
within the "Minimum Information about Biosynthetic Gene clusters’’ 
(MiBIG) repository [57]. Using this approach, we successfully recovered 
all MGCs from S. lycopersicum, indicating the effectiveness of our 
methodological approach. Although this repository contains 43 verified 
MGCs for Viridiplantae, none belong to the Rubiaceae family. To iden
tify any plant MGCs in the MiBIG repository that could share similarities 
with MGCs in Rubiaceae species, we employed the cblaster tool (version 
1.3.16; [18]. Out of the 43 plant MGCs in MiBIG, 23 had partial matches 
to MGCs from Rubiaceae species (Supplementary File 1), with low 
similarity (identity below 40%). Among the partially identified cases, 13 
involve conserved TPS-CYP gene pairs, which are a common structure in 
clusters related to terpenoid metabolism [4,5,53]. The fact that no MGCs 
from other plant species were conserved in the Rubiaceae underscores 
the unique biosynthetic diversity identified in the genomes of this 
family. 

3.2. Classification of Rubiaceae MGCs 

In our study, we used a strategy based on a system proposed by Chae 
et al. [10] to classify the MGCs that we identified using the PCF tool 
(refer to Fig. 3A for more details). Each predicted enzyme is then 
designated a ’signature’ or ’tailoring’ classification. Out of the total 
MGCs we initially identified, we found that 175 of them (9%) included 
both ’signature’ and ’tailoring’ enzymes. 

The PlantiSMASH pipeline attributes a biochemical class to each 
predicted MGC in saccharides, terpenes, alkaloids, lignans, polyketides, 
putative or mixed. This classification follows a criteria based on the 
number of core and accessory genes identified with specific pHMMs 
within a MGC [24]. In other MGC predictions with PlantiSMASH 
(N. cadamba - Zhao et al., 2021; tobacco - [44], the most identified 
classes were also saccharides and terpenes. In our analysis, the most 
frequently occurring biochemical class was saccharides (Fig. 3), with a 

total of 152 clusters identified, averaging 16.8 per species. The class 
with the lowest number of clusters was polyketides, with a total of 20 
and an average of 2.2 per species. We identified 39 clusters as hybrids 
and the metabolic class was undetermined for 103 clusters (Fig. 3B). 

Given that the selected methods employ different techniques for 
predicting Metabolic Gene Clusters (MGCs), we utilized an integrative 
analysis to consolidate the results. The PlantiSMASH tool predicts MGCs 
using profile Hidden Markov Models (pHMMs), so to harmonize this 
with the PlantClusterFinder predictions, we performed a search for 
protein domains in each gene within an MGC. This was executed using 
PfamScan (please refer to supplementary Table S3 for more details). 

The protein domain family for cytochrome P450 (PF00067) was the 
most frequently detected, followed by the UDP-glucuronosyl and UDP- 
glucosyl transferase (PF00201), as well as the 2OG-Fe(II) oxygenase 
superfamily (PF03171). 

In addition to the protein domain search, we performed a search for 
Metacyc plant pathways for each gene within a Metabolic Gene Cluster 
(MGC) that was predicted by PlantiSMASH. We chose to do this because 
the PlantClusterFinder (PCF) pipeline employs this methodology (see 
supplementary Table S3 for additional information). The most 
frequently identified pathway was the Secologanin and Strictosidine 
biosynthesis pathway (PWY-5290). Following closely were the Ses
aminol Glucoside/lignan biosynthesis pathway (PWY-7139), the Quer
cetin Glucoside/flavonoid biosynthesis (PWY-7129), and the flavonoid 
biosynthesis pathway (PWY1F-FLAVSYN). 

To predict and identify terpene synthases and enzymes involved in 
flavonoid biosynthesis within Metabolic Gene Clusters (MGCs), we 
employed two specialized tools: search_TPS (version 1.0; [14] and KIPEs 
(version 0.35; [43]. After conducting a thorough analysis, we identified 
several MGCs with distinct types of synthases: 50 MGCs contained 
monoterpene synthases, 30 displayed diterpene synthases, and 75 had 
sesquiterpene synthases. Furthermore, we found 199 MGCs that 
included genes related to flavonoid metabolism. Comprehensive details 
of these findings are provided in Supplementary Table S3. 

The MGC predictions unveiled diverse and often complex structures. 
In Fig. 5, we show examples of MGCs conserved among genomes. In 
terms of their functional classification, both pipelines detected a high 
number of saccharide and terpene MGCs, with saccharides being the 
most prevalent biochemical class identified. 

3.3. Conservation and diversification of metabolic gene clusters in 
Rubiaceae 

We performed a comparative genomic analysis with all plants of the 
study to assess conservation and diversification of metabolic gene 
clusters in Rubiaceae. With an orthology analysis we detected a total of 
30,170 orthogroups (supplementary Table S12). A total of 10,925 
orthogroups containing all species and 8152 species-specific 
orthogroups were identified (Fig. 6A). All nine species had species- 
specific orthogroups. 

To investigate gene content changes, we examined the rates and 
direction of changes in orthogroup size among each of the species. 
Across the Rubiaceae phylogeny, most species have higher numbers of 
orthogroup contractions than expansions, except for N. cadamba, C. 
arabica and C. eugenioides (Fig. 6B). Orthogroups in the C. arabica 
genome exhibit the highest number of expansions and contractions 
followed by N. cadamba. 

Synteny analysis among the nine species identified the biggest 
collinearity between C. arabica and C. eugenioides with 50932 (72.08%) 
collinear gene pairs. The smallest collinearity was identified between 
C. canephora and N. cadamba with 3075 (3.23%) collinear gene pairs. 

All genes predicted in MGCs were distributed in 3121 orthogroups 
(supplementary Table S4). 

In order to track the conservation within Rubiaceae MGCs, we con
structed a similarity network of MGCs and identified a total of 549 gene 
cluster families (GCFs) (Fig. 5; supplementary Table S5). The average 

Table 4 
Overview of results from the PlantiSMASH pipeline.  

Species Number of Predicted MGC’s Average nº of genes 

S. lycopersicum  45  11 
N. cadamba  52  10 
O. pumila  42  16 
L. oblonga  50  15 
G. jasminoides  54  12 
C. humblotiana  51  13 
C. canephora  46  11 
C. arabica  63  12 
C. eugenioides  38  12  
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number of MGCs per family was 4 and the maximum number of MGCs in 
a family was 16. Fig. 5 summarizes families that were found in at least 
four species, with the most conserved MGCs. 

The results of the orthology analysis were used to validate the gene 
cluster families prediction - since it would be expected that genes in a 
given GCF would be in the same orthogroups. Of the total 549 predicted 
GCFs, 179 were formed by a single MGC per species (or 2 in the case of 
the tetraploid Arabica coffee). 

It is well known that MGCs of the same family can evolve to produce 

different molecules, through neofunctionalization of genes or by gene 
recruitment or loss [42]. Thus in most of the cases of Rubiaceae MGCs, 
the homologous genes are distributed in different genomic positions or 
forming different MGCs across the plants. We observed an example of 
this by comparing our results with the genome assembly of Gardenia 
jasminoides study [65]. Xu et al. describe syntenic regions between 
G. jasminoides and Coffea canephora containing crocin biosynthetic 
genes, in which specific duplications of the genome can explain the 
synthesis of this compound in Gardenia and the absence in Coffea. One 

Fig. 4. - Percentual distribution of metabolic domains in the MGCs predicted by PCF (A). Overview of MGCs predicted with the PlantiSMASH pipeline and classified 
into biochemical classes (B). 
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of these syntenic regions contains a tandem array of genes encoding the 
UDP-glycosyltransferase family (UGT) (PF00201.21) in Gardenia, on 
chromosome 9, which has an orthologous relationship with UGTs 
identified on chromosome 2 of C. canephora [65]. We identified a MGC 
in the chromosome 2 of C. canephora, CMG CC02_cl15_sac, predicted to 
be involved in saccharide biosynthesis, which corresponds to this region 
analyzed by Xu et al. [65]. C. canephora MGC was identified in our 
analysis because, in addition to UGTs, this region of the genome has a 
gene from the cytochrome P450 family (PFAM domain PF00067.25) 
that is not present in the homologous region of chromosome 9 in 
G. jasminoides. This data suggests a genomic diversification that led to a 
metabolic diversification between these two species in this homologous 
region of the genome. 

We highlight two cases of MGCs that conserve core biosynthetic 
genes across more than five species, with shared orthogroups (Fig. 7,  
Fig. 8). As we used Solanum lycopersicum as an outgroup for comparative 
genomics analysis, we observed an example of a putative conserved 
MGC involved in the metabolism of saccharides. In the gene cluster 
family FAM-1539 we observed that both the core and accessory genes of 
MGCs from six Rubiaceae plants demonstrate a degree of conservation 
with S. lycopersicum, indicating their potential importance in the pro
duction process of a compound predicted as saccharide. The example of 
the family FAM-1539, which has retained MGCs in seven species: 
N. cadamba, O. pumila, L. oblonga, C. canephora, C. arabica, C. eugenioides, 
and S. lycopersicum. Each species carries one MGC from this GCF, with 
the exception of C. arabica which has two. These MGCs are linked to 
saccharide metabolism. 

MGCs from FAM-1539 comprises three core biosynthetic genes (a 
Glycosyltransferase, a Squalene epoxidase, and an Aminotransferase) 
and seven accessory genes, as displayed in Fig. 6. Notably, we observed 
that both the core and accessory genes demonstrate a degree of con
servation, indicating their potential importance in the compound pro
duction process for this specific set of MGCs. In the case of tomato 
(S. lycopersicum), the glycosyltransferase gene is a cellulose synthase 

(Solyc04g077470, domain PF13632.9), an enzyme usually involved in 
the synthesis of matrix polysaccharides such as xyloglucan. The tomato 
aminotransferase is an ACC synthase paralog (Solyc04g077410, domain 
PF00155.24), a key enzyme implicated in the synthesis of ethylene. 

We analyzed the expression of orthologs of two core genes of the 
tomato MGC in this gene cluster family (cellulose synthase and ACC 
synthase) and observed that they are not the most expressed of their 
respective gene families. We also observed that such orthologs are not 
coexpressed, however, this conservation suggests that the synthetic 
processes of polysaccharides and hormones are physically linked in the 
genome of several species of Rubiaceae. Future functional studies 
interrupting or overexpressing these genes would help in the final un
derstanding of the function of this MGC. 

The second highlighted example involves the partial preservation of 
a tomato terpenoid MGC in Rubiaceae plants (FAM-1569). This cluster 
of genes in tomato (Solanum lycopersicum) has been found to be involved 
in the synthesis of mono, sesqui and diterpenes. The tomato MGC 
contain five complete terpene synthase genes (TPS18, TPS19, TPS20, 
TPS21, and TPS41), two complete cis-prenyl transferases (CPTs), a cy
tochrome P450s, an aldehyde oxidase, and three alcohol acyl transferase 
genes [34]. This cluster evolved via gene duplication, divergence, al
terations in substrate specificity, and acquisition of cis-prenyl trans
ferase genes in wild tomato species, such as Solanum habrochaites, 
S. pennellii, and S. pimpinellifolium. FAM-1569 (Fig. 7) includes, besides 
tomato, MGCs from N. cadamba, C. humblotiana, C. canephora, C. arabica, 
and C. eugenioides. 

The clustered tomato diterpene synthase genes TPS18 and TPS21, 
and the monoterpene synthases TPS19 and TPS20, all classified as e/f 
[70] forms an orthogroup with N. cadamba, O. pumila, G. jasminoides, C. 
humblotiana, C. canephora, C. arabica, and C. eugenioides TPSs present in 
this cluster. The class c diterpene synthase gene TPS41 also shares 
orthogroups. Although the tomato cytochrome P450 have orthologs 
only in tomato, the MGCs from family FAM-1569 do contain cytochrome 
P450 genes in orthogroups that were exclusive to plants from the 

Fig. 5. - Example candidate MGCs identified in this study. The examples cover a diverse range of enzymatic classes (arrows) and predicted metabolic path
ways (stars). 
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Fig. 6. - Gene family contraction and expansion analysis of eight species from Rubiaceae family plus Solanum lycopersicum. (A) The UpSet table displays the count of 
orthogroups for each species, along with the count of unique orthogroups and the count of shared orthogroups among different species. (B) A pie chart was utilized to 
visualize gene families with altered gene numbers, representing the expanded gene families (depicted in purple) and contracted gene families (depicted in blue). 

Fig. 7. - Gene cluster families presence in four or more species across Rubiaceae and tomato.  
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Rubiaceae family here analyzed. For FAM-1569, we identified both 
coexpression modules containing TPS and P450 genes from the same 
MGC in C. canephora, C. arabica and N. cadamba. 

In tomato, the TPS18 gene synthesizes an unknown diterpene, TPS19 
and TPS20 genes synthesize monoterpenes and the TPS21 gene syn
thesizes lycosantonolol. Those class e/f TPSs genes forms an orthogroup 
with N. cadamba, O. pumila, G. jasminoides, C. humblotiana, C. canephora, 

C. arabica, and C. eugenioides TPSs. The tomato class c diterpene syn
thase TPS41 gene also shares orthogroups with N. cadamba, O. pumila, C. 
humblotiana, C. canephora, C. arabica, and C. eugenioides TPSs. The to
mato cytochrome P450 gene CYP71BN1 does not share orthogroups 
with plants of our study. Nevertheless, we observed that the cytochrome 
P450 genes from FAM-1569 MGCs share orthogroups with all plants in 
our study. Additionally, the CYP450 genes were identified as members 

Fig. 8. - Gene cluster family FAM-1539 with conserved MGCs in S. lycopersicum, N. cadamba, O. pumila, L. oblonga, C. canephora, C. arabica and C. eugenioides. 
Each arrow represents a gene. The width of the links connecting genes represents the percentity of identity. 

Fig. 9. - Gene cluster family FAM-1569 with the tomato lycosantalonol MGC conserved in wild species of tomato. This MGC is partially conserved in five Rubiaceae 
species. This representation was plotted disregarding the scale factor due to the large difference between the sizes of the represented MGCs. 
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of CYP71 and CYP76 clans, known to be involved in specialized diter
pene metabolism [3]. The tomato cis-prenyl transferase gene (CPT1) has 
orthologs in N. cadamba and O. pumila, but such orthologs are distrib
uted in other regions of their respective genomes. Future functional 
studies would help in the final understanding of the function of these 
genes. 

The Rubiaceae genomes sampled in this study comprises three sub
families strongly supported by previous phylogenies: Rubioideae 
(L. oblonga and O. pumila), Ixoroideae (Coffea spp. and G. jasminoides) 
and Cinchonoideae (N. cadamba) [6]. Taking account that members of 
the same subfamily should have more shared GCFs, plants of the Ixor
oideae subfamily (Coffea spp. and G. jasminoides) had the major number 
of shared GCFs, which represent the most conserved metabolic gene 
clusters. Our results also suggest a major conservation among MGCs 
from Ixoroideae and Cinchonoideae subfamilies (here represented by 
N. cadamba), than Ixoroideae and Rubioideae subfamilies (here repre
sented by L. oblonga and O. pumila). A total of 80 GCFs had represen
tatives in all three subfamilies. When comparing with S. lycopersicum, we 
observed a higher number of conserved GCFs between S. lycopersicum 
and the Rubioideae subfamily, followed by S. lycopersicum and the 
Ixoroideae subfamily and finally, S. lycopersicum and the Cinchonoideae 
subfamily. 

3.4. Cross-Species analysis of metabolic gene clusters unveils coexpression 
modules that contribute to set high confidence MGCs 

A total of 1453 genes were found using both MGC discovery ap
proaches. They were distributed in 217 clusters identified with Plan
tiSMASH and 211 clusters identified with PCF (supplementary 
Table S4). Coexpression analysis has been used to identify candidate 
genes associated with metabolic pathways. Genes that participate in the 
same metabolic pathway often display coordinated expression patterns 
when the environment changes [51,68]. Thus, we conducted coex
pression analysis using publicly available RNA-Seq experiments for 
Coffea arabica, Coffea canephora, Coffea eugenioides, Gardenia jasmi
noides, Ophiorrhiza pumila, and Neolamarckia cadamba. 

Our analysis resulted in 19 coexpression modules across the five 
species (Figure s1-s6, Supplementary File 1). We examined whether 
genes within MGCs shared coexpression modules. Consequently, we 
considered MGCs with core genes in the same coexpression module as 
high-confidence MGCs. 

In total, we identified 207 MGCs where at least three core metabolic 
genes were located in the same coexpression module. Of this total, 204 
MGCs were also part of a gene cluster family, indicating conservation 
among other species in the study. 

The coexpression analysis for the C. arabica dataset yielded two 
coexpression modules, with a total of 11 MGCs showing coexpression 
and conservation in other species. These MGCs were considered high- 
confidence (supplementary Table S6). For the C. canephora dataset, 
the coexpression analysis resulted in four coexpression modules, with 74 
MGCs considered high-confidence (supplementary Table S7). The 
C. eugenioides dataset revealed four coexpression modules, with 9 MGCs 
considered high-confidence (supplementary Table S8). In the 
G. jasminoides dataset, the coexpression analysis identified three coex
pression modules, and 11 MGCs were deemed high-confidence (sup
plementary Table S9). The O. pumila dataset yielded three modules in 
the coexpression analysis, with 17 MGCs considered high-confidence 
(supplementary Table S10). Lastly, the coexpression analysis for the 
N. cadamba dataset resulted in three coexpression modules, and a total 
of 82 MGCs were considered high-confidence (supplementary 
Table S11). 

In addition to this, our cross-species analysis demonstrated the 
power of using coexpression modules for MGC identification. Genes 
within a metabolic pathway are often coexpressed, and finding these 
coexpression modules can provide strong evidence for the functional 
relevance of the predicted MGCs. In our study, we identified 207 high- 

confidence MGCs where at least three core metabolic genes were 
located in the same coexpression module. This approach not only en
hances the confidence in MGC predictions but also provides a functional 
context to understand how these genes may work together in metabolic 
processes. 

In conclusion, our analysis has successfully elucidated the complex 
landscape of MGCs across multiple plant species, paving the way for 
more targeted and in-depth studies in the future. The identification of 
coexpression modules also highlights the relevance of such cross-species 
comparative methods in unravelling potential functional associations 
and underlying genetic influences in metabolic pathways. One limita
tion of our study was the small amount of public transcriptome datasets 
suitable for co-expression analyses in the Rubiaceae family. While the 
number of libraries may be modest, this study serves as the initial sys
tematic effort in co-expression analysis within this family laying 
groundwork for future. Our findings underscore the potential in har
nessing this knowledge to enhance plant breeding programs and develop 
strategies for improved plant metabolic engineering. 
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