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Abstract

Context EMF metamodels lie at the heart of model-based approaches for a variety of tasks,
notably for defining the abstract syntax of modeling languages. The language design of EMF
metamodels itself is part of a design process, where the needs of its specific range of users
should be satisfied. Studying how people actually use the language in the wild would enable
empirical feedback for improving the design of the EMF metamodeling language.
Objective Our goal is to study the language usage of EMF metamodels in public engineered
projects on GitHub. We aim to reveal information about the usage of specific language
constructs, whether they match the language design. Based on our findings, we plan to
suggest improvements in the EMF metamodelling language.

Method We adopt a sample study research strategy and collect data from the EMF metamod-
els on GitHub. After a series of preprocessing steps including filtering out non-engineered
projects and deduplication, we employ an analytics workflow on top of a graph database to
formulate generalizing statements about the artifacts under study. Based on the results, we
also give actionable suggestions for the EMF metamodeling language design.

Results We have conducted various analyses on metaclass, attribute, feature/relationship
usage as well as specific parts of the language: annotations and generics. Our findings reveal
that the most used metaclasses are not the main building blocks of the language, but rather
auxiliary ones. Some of the metaclasses, metaclass features and relations are almost never
used. There are a few attributes which are almost exclusively used with a single value or
illegal values. Some of the language features such as special forms of generics are very
rarely used. Based on our findings, we provide suggestions to improve the EMF language,
e.g. removing a language element, restricting its values or refining the metaclass hierarchy.
Conclusions In this paper, we present an extensive empirical study into the language usage
of EMF metamodels on GitHub. We believe this study fills a gap in the literature of model
analytics and will hopefully help future improvement of the EMF metamodeling language.
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1 Introduction

Modeling and model-* (e.g. model-driven, model-based) techniques are widely used
approaches to tackle the increasing size and complexity of software-intensive systems (Bram-
billa et al. 2017; Tekinerdogan et al. 2019), e.g., in cyber-physical and automotive systems,
models are central components of the corresponding software (Mohamed et al. 2020; Broy
et al. 2012). Tool support (e.g. the Eclipse Modeling Project') and emerging language work-
benches (Erdweg et al. 2013) further pave the way to the success of those approaches. Various
communities have put forward different modeling languages (MLs), ranging from more gen-
eral ones, such as Unified Modeling Language, to domain-specific languages (DSLs). MLs in
general, but DSLs to even a greater degree, address a relatively narrow category of users, since
these languages are domain-specific, represent (possibly in-house) technology niches (Her-
rmannsdoerfer et al. 2010) or dedicated groups (Hebig et al. 2016) (e.g. proponents of the
model-* paradigm). This is in contrast with other types of languages, e.g. general-purpose
programming languages (GPLs) and further with typical natural languages (NLs), which
appeal to a much wider variety and number of users. A large user base for GPLs, along with
the developments in digitalization and open source software, has led to an abundance of data
(i.e. instances of the language, programs) and hence made it possible for researchers to apply
techniques from software linguistics (Favre et al. 2010), source code analytics and mining
software repositories targeting GPL source code (as the most often analyzed artifact type in
repository mining research (de F. Farias et al. 2016)). Favre et al. emphasized the necessity
for performing empirical studies on software languages in general, as “Software Languages
are Language Too!" (Favre et al. 2010). Empirical studies on model-* artifacts, as a particular
subset of software languages, have received relatively less attention in research (Tekinerdo-
gan et al. 2019) until very recently. One of the highlights for this line of research would
involve mining UML models from GitHub (Hebig et al. 2016), and studying the practices
and perceptions of their usage (Ho-Quang et al. 2017).

Metamodels, as one of the main types of model-* artifacts (Combemale et al. 2016), are
at the heart of those approaches and software language engineering, as they describe (and
restrict) the common elements and their relations in MLs and DSLs. Metamodels are models
themselves; they are actually the instances of a language one meta-level higher (described by
a meta-metamodel) and together they comprise the meta-language of language definitions.
Studying the language usage of metamodels en masse is a key line of research for software
language engineering (Herrmannsdoerfer et al. 2010). This is mainly related to the fact that the
engineering of a language is itself actually a design process (and in fact a difficult one (Clark
etal. 2015)), with two major problem-solving cycles: design and evaluation (Wieringa 2014).
Language engineers attempt to capture a focused domain of application with certain expec-
tations (i.e. design cycle), targeting the needs of a very specific category of users (Paige et al.
2000). According to Paige et al., the extent to which those expectations correspond to the user
needs, and eventually the needs get fulfilled, is a major factor in the success of the language
usability, adoption and longevity (Paige et al. 2000). A proper assessment of the language
usage (i.e. empirical cycle) for MLs —both general purpose and domain-specific— is usually
overlooked in the literature, e.g., as observed by Gabriel et al. for DSLs (Gabriel et al. 2010).
The results of such evaluation provide feedback to the language designer for evolving the
language (Tairas and Cabot 2015), e.g. by adding missing constructs and removing unneces-
sary ones; or for taming the language usage by imposing additional constraints (Favre et al.
2010). This feedback can be expected to be very valuable to the language designer (in a

1 https://www.eclipse.org/modeling/
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simple manner or iteratively as a part of a participatory design framework (Muller and Kuhn
1993)), who otherwise is limited to the traditional means for feedback such as bug reports
and questions on forums.

The Eclipse Modeling Project? is one of the most popular (Izquierdo et al. 2017) language
workbenches and model-* ecosystems, which is based on Eclipse and supports a wide range
of modeling standards, languages, technologies and tools (editors, code generators and many
more). At its core stands the Eclipse Modeling Framework (EMF) (Steinberg et al. 2008),
with a well-established meta-metamodel, called Ecore, for describing the abstract syntax
of metamodels. One of the key factors in the adoption of EMF/Ecore for a wide range of
model-* approaches (as reported in Steinberg et al. (2008)) is its being the de facto reference
implementation of the Meta-Object Facility (MOF?). MOF in turn is an international industry
standard for metamodeling maintained by the Object Management Group.*

While EMF metamodels are reported to be widely used (Babur et al. 2017; Kolovos et al.
2015), there has been limited effort from the community to study their actual usage in the wild
with a particular language-level focus. With the exception of the study by Herrmannsdoerfer
etal. (2010), the few existing studies take a holistic approach to consider the whole technology
model of EMF (Heinz et al. 2020) including other types of artifacts in model transformation
and code generation (Di Rocco et al. 2020) — see Section 10 for a more detailed discussion
on related work. Studying the usage of the EMF metamodeling language could result in
useful input for the next design iteration of the EMF languages and ecosystem, as well as the
MOF standard itself.

In this paper, we perform an extensive usage analysis for EMF (Ecore) metamodels on
GitHub. Our overarching research question is “How are EMF metamodels used in the wild?".
More specifically, our goal is to analyze EMF metamodels for the purpose of investigating
their usage with respect to the language features, from the point of view of ML/DSL designers
in the context of open source software in the wild. Note that we limit our scope to open source.
However, EMF is also used in industry (Steinberg et al. 2008; Hutchinson et al. 2011) and a
study of EMF metamodels in industry would possibly reveal a different picture — see Section
10 for further discussion of related work on EMF in industry. Following this, we formulate
fine-grained research questions on each particular aspect of language usage in Section 8, also
shortly outlined in Table 1. We aim to study the language usage in engineered (as opposed to
student or toy) projects on GitHub, therefore we discuss the collection of engineered project
data as well as the generic architecture of our approach to be used in future model analytics
studies.

The contributions we make in this paper are as follows:

1. A generic workflow for performing empirical analyses on model-* artifacts using our
state-of-the-art model analytics framework SAMOS (introduced in Section 2.3),

2. A curated dataset of EMF metamodelsavailable as GitHub URLs from engineered
projects as a basis for empirical analyses,

3. An extensive study on language usage for EMF metamodels on GitHub, with a particular
focus on syntax. Our primary findings are as follows:

— The most used metaclasses are not the main building blocks of the language such
as EClass, but rather auxiliary ones such as EStringToStringMapEntry. Some of the

2 https://www.eclipse.org/modeling/
3 https://www.omg.org/mof/
4 https://www.omg.org/
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Table 1 Outline of research questions, sub-research questions and their corresponding sections

Research Question Sub-research Question

1 - Metaclass Usage (Section 8.1) 1.1 - What metaclasses are the most used?
1.2 - What metaclasses are rarely used or not used at all?

2 - Feature/Relationship Usage 2.1 - What features/relationships are not used, or rarely
(Section 8.2) used?

2.2 - What features/relationships are not used to their full
multiplicity?
3 - Attribute Value Usage (Section 3.1 - What attribute values are not used, rarely used or used
8.3) outside their theoretical range?

3.2 - Which attributes (already having default values) do not
have the most used value as default value?

3.3 - Which attributes have most often used values?

4 - Annotation Usage (Section 8.4.1) 4.1 - What are the often used types of EAnnotations, as
indicated by their source attribute?

4.2 - What EStringToStringMapEntry keys are frequently
used with each other and the corresponding EAnnotation
types?

4.3 - For those frequently co-occurring sets of keys, are
there also frequently used values?

5 - Generics Usage (Section 8.4.2) 5.1 - What percentages of EClassifier and EOperation
instances contain type parameters?

5.2 - Which specific types of generics are used overall?

5.3 - How often do EClass instances use generic supertypes
and EOperation instances generic exceptions?

metaclasses, namely EFactory and EObject, are not at all used in the EMF metamod-
els.

— Several metaclass features and relations, e.g. eKeys, are almost never used.

— There are a few attributes which are almost exclusively used with a single value
(e.g. EEnum.serializable almost always true) or illegal values (e.g. multiplicities set
to large negative numbers).

— Some of the language features such as special forms of generics are very rarely used.

— Based on our findings, we provide suggestions to improve the EMF language,
e.g. removing a language element, restricting its values or refining the metaclass
hierarchy.

The remainder of the paper is organized as follows. In Section 2 we review background
on software and model analytics, model-* approaches, DSLs, metamodeling and finally
SAMOS model analytics framework (Babur et al. 2022) as the tool supporting the analyses
in this paper. We give an overview of our approach and the generic workflow. The data col-
lection and filtering phases are elaborated in Sections 4 and 5. In Section 6 we describe how
we extract, represent and query information from the metamodels as well as the repository
metadata. Following Section 7 on some key statistics on our final dataset, we provide detailed
empirical analyses on various aspects of language usage (Section 8): metaclass usage, fea-
ture/relationship usage, attribute value usage, and particular usage of specific parts of the
language (i.e. annotations and generics). We then discuss the threats to validity (Section 9),
related work (Section 10) and conclude with several pointers to future work (Section 11).
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2 Background

In this section, we review background concepts related to our study.

2.1 Corpus and Software Linguistics, Model Analytics

Corpus linguistics is a branch of linguistics, the study of language, with distinguishing char-
acteristics such as (a) empirical nature, (b) focus on actual patterns of use in natural texts and
(c) utilizing large collection of natural texts via computational analysis (Biber et al. 1998).
It aims to uncover how the language users actually exploit the resources of their language,
rather than e.g. performing theoretical analyses on the language. While natural languages are
the original and commonplace domain for corpus linguistics, in recent years there has been
considerable progress in that direction for software languages, typically for general-purpose
programming languages (Favre et al. 2010), but also domain-specific languages (Ldmmel
and Pek 2013). For Java, examples would include general language usage studies (Qiu et al.
2017; Grechanik et al. 2010) as well as more specific ones, e.g. focusing on cycles among
classes (Melton and Tempero 2007).

MLs —both general purpose ML such as Unified Modeling Language (UML) or domain-
specific ones—, on the other hand, are a subset of software languages typically targeting a
smaller set of users compared to the GPLs. This implies arelatively low volume of data to build
corpora and perform corpus analyses. Nevertheless, we still need such analyses (Tekinerdogan
et al. 2019; Babur 2019) for MLs, as they need to match the very specific expectations of the
target users and possess qualities such as simplicity and brevity for successful adoption (Paige
et al. 2000). There is a recent interest in building corpora of model-* artifacts (typically
from GitHub) and performing various empirical analyses on them, including language usage
analysis. We discuss such studies further as related work in Section 10.

2.2 Model-* Approaches, Domain Specific Languages and Metamodeling

Modeling and model-* approaches, such as model-driven software engineering and model-
based systems engineering, are among the major paradigms introduced for tackling with the
ever-increasing complexity of developing and managing software-intensive systems (Andova
et al. 2012). Those approaches rely on a few building blocks (Combemale et al. 2016):
modeling as an activity for capturing domain knowledge in an abstract and convenient manner,
analysis and/or verification tasks to reason about the systems and assure certain qualities, and
finally generative techniques such as model transformation and code generation to realize
the systems. The modeling activity is driven by a modeling language which characterizes the
set of possible models (Combemale et al. 2016). There are numerous modeling languages,
ranging from general-purpose ones such as UML to domain-specific ones, custom-tailored
for different purposes.

Metamodels, in the model-* technical space, are the main artifacts for specifying the
abstract syntax of a modeling language, i.e. the essential building blocks without concerns
about the concrete representation. Following the introduction of UML, Object Management
Group pushed forward the metamodeling standard MOF (Information technology 2005).
Essential Meta-Object Facility (EMOF) is in turn a lightweight core subset of MOF, intended
to match object-oriented language structures as well as serialization capabilities. Simply put,
EMOF suggests a four layered linguistic architecture: M3 where the MOF meta-metamodel
resides, M2 with metamodels for describing (domain-specific or general purpose) modeling
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languages, M1 for the individual models and MO for the model instantiations (e.g. in the
form of objects).

MOF being a standard itself, the de facto industry implementation of MOF is Ecore in
Eclipse Modeling Framework (EMF) (Steinberg et al. 2008). While in recent years several
new language workbenches have been introduced, the EMF ecosystem remains to be one of
the most popular platforms for model-* approaches and domain-specific languages (Izquierdo
etal. 2017). As getting a grasp of Ecore is essential for understanding the studies in this paper,
below we give an overview of its major components. For full details, readers are referred
to the EMF reference book (Steinberg et al. 2008). Figure 1 depicts the core part of Ecore.
Note that Ecore deliberately prefixes all elements with “E” to avoid confusion with their
counterparts in MOF/UML or Java.

We start by elaborating the metaclasses, i.e. the set of classes, in Ecore. Ecore allows col-
lecting domain concepts in EPackages. Such EPackages can contain EClasses representing
domain concepts, with EAttributes as properties and EReferences as (one end of) associations
with other concepts, as well as EOperations as service signatures (i.e. not implementations)
with possible EParameters and EException declarations. Certain elements can have types;
e.g. FAttributes can be typed by a built-in primitive type such as Elnteger, acustom EDataType
or EEnum. There is also support for inheritance among EClasses. Besides the main con-
cepts and relationships, metaclasses contain further attributes denoting whether an EClass is
abstract, an EReference implies containment (to distinguish composition and aggregation in
UML terms), multiplicities for elements/associations, and so on. EAnnotations are a flexible
part of Ecore, serving different purposes ranging from documentation to model transforma-
tion metadata and language extension. EAnnotation contains an important feature, named
details, which enables the use of map-typed features of the class EStringToStringMapEntry.
This class represent key-value pairs and are supported through a special behaviour (e.g. by
the code generator), allowing the use of maps.

Another metaclass to mention is EFactory, which allows creating instances of model
elements. It is used, for instance, in the Ecore API for programmatically building models
and in code generation. EObject is the implicit common superclass of all Ecore classes. It
can be used, again through the programmatic API, for dynamically creating objects; however
this is achieved through its subclasses such as DynamicEObjectimpl and not by directly
instantiating EObject. EFactory and EObject are associated with the runtime operation of
EMF rather than the metamodeling itself.

In Ecore, a distinction is made with respect to the features and relationships. Following
Fig. 1, there are two types of features/relationships: non-derived (shown with black arrows)
and derived ones (shown with blue arrows).> As an example, the non-derived feature eStruc-
turalFeatures contains all the structural elements in an EClass (which can contain both
EReference and EAttribute). The derived relationships of EReferences and EAttributes, are
merely derived from eStructuralFeatures and are subsets of it containing correspondingly
EReference and EAttribute instances only.

A particularly interesting feature of Ecore is the support for generics, as shown in Fig. 2.
Generics were introduced into Ecore in version 2.3 to better support the corresponding con-
structs in Java. The main concept is EGenericType, along with a handful of relationships. With
a combination of those relationships, Ecore can represent non-generic types (see paragraph

5 Taken from https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-
summary.html, accessed on 05.12.2020.

6 Taken from https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-
summary.html, accessed on 05.12.2020.
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Fig. 1 Ecore core components along with their attributes and relationships

below), simple generic types specified by eTypeParameters (e.g. A) coming from an EClas-
sifier, upper- or lower-bounded types (e.g. A extends Bor A super B), parametrized
types (e.g. A<B>) and wildcard types (?).

Non-generic types are also internally represented via EGenericTypes, though with an
appropriate composition (e.g. no bounds and no type arguments) so that the element effec-
tively has a non-generic type. While it is not visible and of immediate significance to the
language user, this information will have implications and be taken into consideration in this
study, and will be discussed later in Section 8.

2.3 SAMOS Model Analytics Framework

SAMOS (Statistical Analysis of MOdelS) is a state-of-the-art framework for large-scale
analysis of models (Babur 2019; Babur et al. 2022). The main approach is to treat models as
data (similar to documents in the Information Retrieval technical space) and apply document
clustering to models.

Figure 3 illustrates the workflow of SAMOS, with key steps of the workflow and several
application areas. The workflow starts with a feature extraction based on the metamodel.
Features can be, for instance, simple names of model elements (conceptually similar to the
vocabulary in documents) or larger fragments of the underlying graph structure such as n-
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Fig.2 Part of Ecore associated with generic types

grams or subtrees. To exemplify, see the graph in Fig. 4 for a simplified representation of
an EMF metamodel with types and names of model elements, as well as the relationships.
SAMOS can extract, for instance, unigrams from this metamodel as follows (see Babur et al.
(2019) for the full example):

— vo = {name : BIBTEX, type : EPackage},
— v1 = {name : LocatedElement, type : EClass, abstract : true},
— v2 = {name : location, type : EAttribute, eType : EString, lowerBound : 1},

as well as the following bigrams:

— by = (vo, contains, vy),
— by = (v1, contains, vy),

A major step in the SAMOS’ workflow is computing a term-frequency based Vector
Space Model (VSM)(Manning et al. 2008), using various schemes. These schemes range
from matching schemes (e.g. whether to match metaclasses or not), weighting schemes
(EClass features having higher weight than EArtribute) to NLP techniques such as stemming
and synonym checking. Applying various distance measures on top of the computed VSM,
suitable to the problem at hand, SAMOS applies different clustering algorithms and can output
automatically derived cluster labels or diagrams for visualization and manual inspection and
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Fig.4 A simplified graph representation for (part of) an EMF metamodel (Babur et al. 2019)

@ Springer



23 Page 10 of 54 Empirical Software Engineering (2024) 29:23

Cluster Dendrogram

o _
e
@« _|
o
o 2
° 3
~
o
< [o]
o m
=
o J -
(0]
T

0.0
|
BIBTEXML.ecore
BibTeX1.1.ecore

2 22 5 4 0 0 O o o
g 9 g = £ ¢ £ & 0 0 & 2 0 O o o
QS 9 o Q9 9 6 9 9 g g 8 9 g o S 9
QO 0 0 Q O 0 9 9 o o & 9 o o o O
S22 222%23 22209 o 9
8 8 3 2 T T 2 2T =T 2 z =T = X
$5S8%333:833:335383: 53
E 33 6= =3 86533 % 8 & ' =
QOcjoUmmgoUggw ,-9><
O ¢ o0 = | @ v & @ x s O o B
O 5 £ 5§ ¢ 9 © & 0 20Q 5o =
£ 5 8 © & = 9 5 3 o
S © = o o m
() o g

Fig.5 Plot of the dendrogram as output of domain clustering (Babur et al. 2022)

exploration. An example dendrogram from an illustrative use case (Babur et al. 2022) is
depicted in Fig. 5, where SAMOS distinguishes two clusters of metamodels corresponding
to the domains of conference management and bibliography management.

SAMOS has so far been validated for a variety of model types including EMF metamodels,
feature models, business process models, statecharts and industrial domain-specific models;
and for different applications such as domain clustering, architectural analysis and clone
detection. More details on SAMOS can be found in our previous work (Babur 2019; Babur
et al. 2022), while readers can refer to Basciani et al. (2016) for a comparable tool for
metamodel clustering.

3 A Generic Workflow for Modeling Language Usage Analysis

In this section we present an overview of our generic workflow and the steps performed
in our study. We adopt a sample study research strategy (Stol and Fitzgerald 2018) in this
study. We collect data from open source repositories in an unintrusive way, and by analyzing
the repository data, we aim for formulating generalizing statements about the artifacts under
study. Our workflow consists of four major components: (1) data collection, (2) data filtering,
(3) feature extraction and representation in a graph database, and finally (4) querying, analysis
and visualization using graph database queries and a statistical computing language. The
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generic nature of the workflow follows from the fact that it can be instantiated for multiple
modeling languages; therefore we consider this workflow and the corresponding toolchain
as a major contribution in this paper. We study EMF metamodels in this paper based on the
motivations elaborated in Section 1, but this study can be replicated for other types of models
supported by SAMOS (e.g. UML or feature models). Certain parts of the workflow (notably
the query and analysis scripts) should be adapted correspondingly to the modeling language
and the analysis goals.

The overall workflow is depicted in Fig. 6. The data collection part involves gathering
data from various sources (GitHub, SWHeritage, Eclipse) using various methods (e.g. GitHub
code search API vs. GHTorrent and GitHub REST API), in order to have a dataset as complete
as possible. The result is a set of repositories with metamodels, along with metadata such
as owner and creation date of each repository. A data filtering phase is intended to remove
non-engineered repositories (Munaiah et al. 2017) (e.g. student projects), duplicated reposi-
tories and unparseable/unprocessable (by SAMOS) metamodels. We obtain a final dataset of
metamodels and their metadata to perform our analysis on, which is then passed to the data
extraction (notably bigrams out of the metamodels) phase in SAMOS. The information is
then imported into Neo4j. Finally, a combination of Neo4j queries and R scripts are used to
analyze the data and report/visualize the results. In the next sections we elaborate each com-
ponent of our workflow (particularly for EMF metamodels given the subject of this study) in
detail.

4 Data Collection

In this section, we describe the data sources and mining methods we have used for obtaining
EMF metamodels to perform our analysis. We formulate our sampling strategy along the
guidelines by Baltes and Ralph (2020). The theoretical target population of our study is the
set of all EMF metamodels in public engineered projects on GitHub. However, the only access
we have to the whole population is through querying. Due to the limitations of the querying
mechanisms offered by various sources at the time of conducting this study (GitHub itself or
GHTorrent) as well as the high resource demand (computation time, query limit per hour),
we have adopted additional inclusion criteria: considering only the main/default branches
of non-forked projects, and only in their most recent version (i.e. no version history). The
decision to study only engineered projects further imposes the exclusion of non-engineered
ones (Munaiah et al. 2017). Also, duplicated projects are excluded to avoid overestimation
of metamodel prevalence (Lopes et al. 2017) (to be elaborated in Section 5).

4.1 Data Sources

Various data sources can be used as the starting point for our search, as multiple platforms host
open source software in general, as well as domain-specific repositories. We have investigated
the data sources in the context and scope of this work, with the goal of answering the
following questions: (a) on which platforms do EMF metamodels typically reside and (b)
given the recent popularity of GitHub in recent Mining Software Repositories (MSR) studies,
what is its adequacy/representativeness for the EMF metamodels in open source (cf. many
studies claiming that it is representative (Cosentino et al. 2016))? Based on the related work
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(see Section 10), we have identified the following candidate sources for searching for EMF
metamodels:

1. GitHub, as popularly used by many MSR researchers (Kalliamvakou et al. 2016),

2. Other popular platforms indexed by the Software Heritage (SWH) dataset (Pietri et al.
2019), which includes, besides GitHub, the following: GitLab, Google Code, PyPi,
Debian, Gitorious,

3. Repositories of Eclipse projects, since EMF is part of the Eclipse ecosystem (as used by
other researchers (Kogel and Tichy 2018)),

4. Other domain-specific repositories e.g. ATL Metamodel Zoo’.

In our study we have initially included the first three items, and ignored the last group
of repositories as they are typically small, static and volume-wise insignificant compared to
other widely used repositories. As an explicit example, ATL Ecore Zoo was populated with
~300 metamodels in 2010 and has not changed since. GitHub, as opposed to this, consists
of millions of projects, hosting thousands of EMF metamodels (see Babur et al. (2017) for a
preliminary study). We report the following preliminary observations:

— Our search in the SWH dataset yielded a total of 19,773 repositories (see Section 4.2 for
details on the method), with the following decomposition: 18,610 from GitHub, 73 from
GitLab, 2 from PyPi, 49 from Gitorious, 1000 from Google Code® and 39 from Debian.
We conclude that a vast majority of the relevant repositories reside on GitHub.

— We additionally mined the Eclipse repositories to find out if we can find additional
repositories hosting EMF metamodels. Eclipse maintains a number of repositories on
its own git servers (1.135 listed in the Eclipse website?), while also hosting reposito-
ries on GitHub (669 repositories under the owner name Eclipse'®). While most of the
GitHub repositories are mirrors of or empty references to the non-GitHub repositories,
there are additional repositories as well. Processing the Eclipse repositories not mirrored
on GitHub reveals additionally 1,482 (URL-wise unique, where URL is in the form of
owner/repo/pathToEcoreFile) metamodels from 89 exclusive Eclipse reposi-
tories.

Following the above observations, we opted for limiting our study to EMF metamodels
on GitHub. From the data sources we have investigated, GitHub hosts an overwhelming
majority of the repositories of EMF metamodels we could find in open source. Nevertheless,
we leave a more rigorous investigation (e.g. on the diversity (Nagappan et al. 2013) and
representativeness (Baltes and Ralph 2020; de Mello et al. 2015) for each platform), for
future work, and carefully formulate our target population as EMF metamodels on GitHub
throughout the paper.

4.2 Mining Methods

Even if we limit our data source to GitHub only, there exist various means for searching on
GitHub. In this section we discuss, compare and eventually merge the results from different
mining methodologies (since each have certain shortcomings). Our goal is to answer the

7 https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Zoos

8 Google Code repositories have been discontinued, with some portion transferred to GitHub.
9 https://git.eclipse.org/c/, accessed 15 June 2020

10 https://github.com/eclipse, accessed 15 June 2020
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following question: How can we achieve the highest coverage when searching for EMF
metamodels on GitHub?. A high coverage would imply that we get closer to obtaining the
whole frame as imposed in our sampling strategy, which would lead to a richer dataset to
begin with, as well as more sound and generalizable empirical studies. Before moving to the
mining methods, it is important to note that we follow a common practice in related work
(e.g. adopted by Hebig et al. (2016)) and target only main/default branches of non-forked
repositories, with the most recent commit. This simplification fits this particular study well,
as we are not interested e.g. in the evolution of the metamodels.

We have identified several methods employed in the literature for mining GitHub, sum-
marized as follows.

4.2.1 Using GitHub Advanced Search (Method A)

A common way of finding metamodels is by using GitHub advanced search!! (Babur et al.
2019; Noten et al. 2017; Kolovos et al. 2015; Hirtel et al. 2018). The advantages are relatively
fast querying and up-to-date data. However, only files smaller than 384 KB and repositories
with fewer than 500k files are searchable.!? The file size limit might potentially pose a threat
for empirical analyses. Furthermore, since the indexing is done internally by GitHub, it is
hard to argue about sampling strategies e.g. in terms of completeness (when using whole
frame) and representativeness.

Execution In December 2019, we performed the following query on GitHub advanced
search and crawled the results: https://github.com/search?q=NOT+foofoofoo+extension:
ecore&type=Code). The choice of a negated string foofoofoo is deliberate (Noten et al.
2017), since no EMF metamodel includes that string in its content according to our prelim-
inary checking. Furthermore, we use the strategy of time-slicing to be able to fetch all the
results beyond the limitation of GitHub of retrieving 1000 search results at a time.

4.2.2 Using GHTorrent and GitHub REST API (Method B)

Rather than directly querying GitHub one might first use GHTorrent (Gousios and Spinellis
2012) (an offline mirror of GitHub data, for researchers to query and use efficiently) to retrieve
a list of projects, for a subset either clone the repository or retrieve the up-to-date file tree
from GitHub REST API and search for the files of interest, i.e., metamodels. This approach,
i.e. involving GHTorrent and GitHub REST API, has been used not only for models (Hebig
et al. 2016; Heinze et al. 2020b) but for repository analysis in general (Lopes et al. 2017;
Gharehyazie et al. 2019). The advantage of this approach is the control of target population
and sampling strategies. The disadvantages being a very high time cost (of using the GitHub
REST API with API limits), and the fact that GHTorrent dataset (even if used just for the
repository list) might be outdated, incomplete and partially erroneous (Lopes et al. 2017).

Execution We first retrieved a list of non-deleted, non-forked repositories using an instance
of GHTorrent 2019-06-01 MySql dump. Throughout July-August 2019, we scanned the file
tree for all those repositories, which we accessed through GitHub REST API, looking for
metamodel files. For the REST API, we used 20 access tokens donated by colleagues to speed
up the process.

11 https://github.com/search/advanced
12 https://help.github.com/en/github/searching-for-information-on- github/searching-code
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4.2.3 Using the Software Heritage Dataset (Method C)

The second dataset considered above is the Software Heritage dataset (Pietri et al. 2019) for
the metamodel files. One of the advantages of querying SWH is the availability of highly
efficient and fast querying on big data infrastructure AWS Athena.'> However, we note that
not all GitHub repositories are indexed in this dataset; the coverage is reported by the creators
of SWH to increase in further releases of the dataset. Since the GitHub part of SWH has been
scraped in the past by bots in a way similar to GHTorrent, it suffers from similar data freshness
issues as GHTorrent.

Execution Using the AWS Athena facility on the SWH dataset version 2019-01-28, we
queried first the metamodel files, and their repositories (represented as origin URLs in SHW).
We filtered out non-GitHub and forked repositories and for the final list, and similarly to
Method (B) above, we used GitHub REST API for searching the most recent file tree for the
main/default branches per repository. We adopted this process in order to maintain consistency
among the methodologies B-D, as well as to ensure data freshness.

4.2.4 Using Google BigQuery GitHub Dataset (Method D)

We use Google BigQuery GitHub dataset!# to pinpoint the metamodel files. The advantage of
this method is the highly efficient and fast querying on the big data infrastructure. However,
we note that not all GitHub repositories are indexed in this dataset; e.g. reportedly only
noteworthy repositories with a clear public license are included. We are still interested in
engineered projects that might be excluded by other methods.

Execution. Using the web interface' of Google BigQuery, we ran a query on February 2020
to find the metamodel files and their repositories. For the non-forked repositories, we went
on with the searching for the most recent file tree for the master/default branch.

4.2.5 Results and Discussion

In Table 2 we present the results from different methods. The rows correspond to the four
methods discussed above, while the columns correspond to the total number of (1) files
found, (2) unique owners, (3) unique repositories and (4) unique paths (i.e. eventually rep-
resenting a file per path) found by the method. By uniqueness, we mean the uniqueness of
the paths, i.e. /owner, /owner/repo and /owner/repo/fullPathToMetamodel,
with respect to all the other methods.

Based on these numbers, and our experience while mining GitHub, we make the following
observations.

— No single method as proposed above offers the maximum possible coverage, i.e. each
method is able to find unique items. Rather, mixed data collection methods should be
used.

13 https://aws.amazon.com/athena/
14 https://cloud.google.com/bigquery/public-data
15 https://bigquery.cloud.google.com
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Table 2 Resulting numbers from different mining methodologies

method total unique total unique total unique
owners owners** repos repos** paths paths**

code search [A] 4,431 1,391 6,726 2,238 85,267 48,164

repo scan [B] 3,042 4 4,493 5 38,999 791

swh scan [C] 3,097 134 4,653 307 39,861 5,545

big query [D] 536 2 718 11 4,547 69

two or more methods 3,090 4,590 38,778

total/merged* 4,621 7,151 93,347

Two types of measures are reported per method: total, just plain totals found by the method, and unique,
meaning the unique items found by each method (and not the others). The total/merged row is marked with
an asterisk, to underline the fact that it is not merely a sum of the columns per method. It represents the
unique count for each item, e.g. the total number of unique owners found by merging all four methods’ results.
For the unique count columns marked with double asterisk, the totalmerged row also takes into account the
intersection among the methods (i.e. any items found by two or more methods, given in the row above), thus
is larger than the sum of the individual column values per method

— Code search (A) nevertheless yields the largest portion of results. Repo scan (B) and big
query (D) do not bring too many unique data points (i.e. owners and repositories) when
compared to the other methods.

— While there is some time gap between our execution of the methodologies, by man-
ual inspection of a sample result set we observed the difference is mostly due to the
inherent limitations of the individual methodologies: limitations of GitHub code search,
incomplete representations by GHTorrent, Software Heritage and Google BigQuery.

— Data freshness is definitely an issue; in the sample we analyzed, we observed quite a
few repositories either deleted, made private or renamed. Renaming and redirecting is
particularly an issue we tackle in the next section when detecting duplication in our
data.

— By ignoring forks and non-main branches, we miss some metamodels. For the forks, it
is especially evident when the original repository is archived, and the development is
continued in the fork.

— By only taking the most recent file tree, we also miss some metamodels which once
existed but disappeared along the project development.

Finally, we combine the data obtained by using different methods and merge it into a
single dataset (i.e. the total row in Table 2) for the next step of data filtering.

5 Data Filtering

So far, our dataset contains quite a few data points which can be a threat to validity of
conclusions for our empirical study. First, GitHub is a public platform where everybody
can push their projects. Researchers have reported that there are a lot of perils due to the
quality and characteristics of those projects, which could introduce bias in empirical analy-
ses (Kalliamvakou et al. 2016). Kalliamvakou et al. (2014), for instance, manually sampled
434 repositories from GitHub and found that only 63.4% of them were for software devel-
opment; the remaining were used for experimental, storage, or academic purposes, or were
empty or no longer accessible. Munaiah et al. (2017) further emphasize the existence of
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non-engineered repositories (e.g. toy or student projects) and the potential bias they might
introduce in MSR studies. Furthermore, there can be a lot of duplication (Gharehyazie et al.
2019) in terms of whole repositories (e.g. due to implicit forking) as well as individual meta-
models (e.g. due to repetition from textbook examples), which could further bias the analysis
results. We address these two issues of non-engineered repositories and duplication, and
the corresponding filtering, in this section. Furthermore, we do a final filtering pass on the
metamodel level to eliminate unparseable or unprocessable metamodels.

5.1 Filtering Out Non-engineered Projects

It has been long observed in the literature that public repositories such as GitHub host millions
of projects, and provide a very convenient platform for researchers who wish to study software
engineering practices in the wild (Kalliamvakou et al. 2016). However, this comes with a
very important problem of distinguishing engineered projects from e.g. toy projects or student
assignments (Munaiah et al. 2017), since our study in this paper targets the language use of
EMF metamodels in engineered projects.

An established tool for classifying GitHub projects as engineered and non-engineered
is Reaper (Munaiah et al. 2017). We have observed several disadvantages of Reaper: its
dependence on the GHTorrent data (notably the data freshness issues as discussed in Section
4), and relatively slow performance (Pickerill et al. 2020). For these reasons, we opted for
PHANTOM-COYOTE!® (to be referred to as PHANTOM in the rest of the paper), a recent
open source tool suite for identifying engineered projects using a number of classifiers directly
on the git files and logs (Pickerill et al. 2020). Pickerill et al. report that PHANTOM has
a comparable accuracy with Reaper, and does not possess the shortcomings of Reaper as
mentioned above.

5.1.1 Classification with PHANTOM

We applied PHANTOM to the metamodel repositories, and for the repositories PHANTOM
can find and process (excluding repositories that were deleted or became private), we obtained
the verdicts (engineered vs non-engineered) in terms of five different classifiers (merges,
commits, committers, integrations, integrators) against two project categories (organization
and utility). These two categories of engineered projects are defined by Munaiah et al. (2017)
as being similar to the projects contained within repositories owned by popular software
engineering organizations such as Amazon, Apache, Microsoft and Mozilla (organization
category) and being similar to the projects that have a general-purpose utility to users other
(utility category). We then apply the following aggregation: if a repository is labelled as
engineered in either project category with respect to majority vote by all the classifiers (as
done in other fields for choosing classifiers (Ruta and Gabrys 2005)), we label it for inclusion.
We leave it to future work to study the classifiers (e.g. their correlation) and determine an
optimal strategy for classifier selection.

5.1.2 Results and Discussion

Table 3 depicts the results per method, as well as the combined dataset.
Based on our results, we make the following observations:

16 PHANTOM https://github.com/lonman64/PHANTOM/ and COYOTE https://github.com/joshuaju/
COYOTE/
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Table 3 Resulting engineered vs non-engineered projects

method repos processed engineered percentage
code search (A) - total 6,637 4,489 68%
code search (A) - unique 2,163 1,290 60%
repo scan (B) - total 4,477 3,198 71%
repo scan (B) - unique 5 4 80%
swh scan (C) - total 4,641 3,342 72%
swh scan (C) - unique 305 252 83%
big query (D) - total 713 571 80%
big query (D) - unique 11 10 91%
total combined 7,064 4,843 69%

We report total as well as unique counts with respect to all the other methods, as we did in Table 2. Note the
slight difference in repository counts with Table 2 due to time difference in mining GitHub (see Section 9 for
a discussion)

— Percentage-wise, there is no huge difference among methodologies at first glance. How-
ever, running the chi-squared test yields a p-value < 0.00001; therefore, there is a
statistically significant difference among different methods. Method A contains a larger
ratio of non-engineered projects, while D contains the least, possibly thanks to its more
strict inclusion criteria (with a clear public license or noteworthy —e.g. excluding empty
projects or unchanged forks— are indexed, as reported for Method D'7).

— The overall percentages of engineered-repositories are on the high end of the range
reported by Pickerill et al. (2020). They validated their tool on a large dataset of (1.85
million) GitHub repositories and report mainly the range of 35-40 % for the majority of
their classifiers, and ultimately the range 19-96% when all are considered.

We note that the investigation of engineered repositories by Pickerill et al. was applied to
(a sample of) the general population of GitHub repositories with typically GPL content. It
would be interesting to use Reaper and PHANTOM specifically for metamodel or model-*
repositories, and validate its accuracy. We leave this as future work.

We proceed with the combined set of 4,843 repositories containing 72,384 metamodels
to the next phase of filtering, i.e. repository deduplication.

5.2 Deduplicating Repositories

Substantial amount of duplication on GitHub, especially across repositories, has been recently
observed as a potential threat to studies performed by researchers (Lopes et al. 2017; Allama-
nis 2019; Spinellis et al. 2020). For the MSR community in general (typically with a source
code analysis angle) this has been pointed out e.g. by Lopes et al. (2017), who reported that
70% of the code on GitHub consists of clones. This goes beyond the standard practice of
treating forks as near-duplicates thus filtering them out (Munaiah et al. 2017), as duplica-
tion exists across repositories without explicit forks (Gharehyazie et al. 2019; Spinellis et al.
2020). In the related work on mining models, however, there are mixed practices on whether
to perform deduplication and how to implement it. Hebig et al. (2016) have not performed
any deduplication pre-analysis for the UML models, while Heinze et al. (2020b) have done a

17 https://cloud.google.com/bigquery/public-data
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complete file-level deduplication with the goal of building a benchmarking corpus of BPMN
models. We have observed high file-level duplication (66% of the dataset being duplicates)
in the metamodels on GitHub in our previous clone detection study (Babur et al. 2019). Note
that a fine-grained empirical study on clones as done in our previous study on metamodel
clones (Babur et al. 2019), or in other related work on programming languages (Lopes et al.
2017) or domain-specific languages (Ldmmel and Pek 2013) is out of scope for this paper,
and is left for future work.

As in this study we wish to study the language usage of EMF metamodels on engineered
projects, it is essential for us to come up with a rigorous approach for identifying those
engineered-projects projects and building a deduplicated high quality dataset not to bias the
analysis results (Gharehyazie et al. 2019). We have quantified (a) inter-repository metamodel
duplication (on the file level) and (b) repository-level duplication as percentages to guide our
filtering.

5.2.1 Inter-Repository Metamodel Duplication

We followed the same approach proposed in our previous work (Babur et al. 2019) for
detecting metamodel duplicates. We compared the file hashes of the metamodels in our
dataset (MD5 hash as used by SAMOS), and computed a metamodel duplication percentage,
in terms of the percentage of metamodels duplicated elsewhere. Following our observation of
whitespace differences in metamodels in certain cases (Babur et al. 2019), we calculated the
MDS5 hash after normalizing the whitespaces in the metamodel files serialized in XML/XMI
format. We found 2864 repositories containing (one or more) duplicated metamodels. We
used the list of those repositories for the second stage in our duplicate detection process,
where we performed repository-level duplicate detection.

5.2.2 Repository Duplication

Lopes et al. (2017) discuss the non-trivial levels of duplication in the source of GitHub
projects, and present a method for detecting file-level duplication across GitHub projects.
We could not directly use their method in our work due to the heterogeneous nature of the
repository languages we had (outside the specific set of languages handled there), however our
method as well as the threshold values are mainly inspired by their work. We first collected the
hashes (Secure Hash Standard sha as computed and readily available by GitHub) for all the
files (i.e. not only the metamodels) in the repositories, and computed the pairwise comparison
of repositories using the Jaccard distance. For manual analysis of the individual cases where
high similarity occurs, we collected samples (n=50 per range) from the subsets of similar
repository pairs with similarities: 100%, 98-99.9%, 90-97.9%, 80-89.9% and 50-79.9%:

— 100% duplicated: mostly renamed repositories or ones redirecting to other repositories
and ones cloned from Google Code and Eclipse.

— 98-99.9% duplicated: same projects with very few diffs (1-15 commits) cloned from
Google Code, SourceForge or others from GitHub.

— 90-97.9% duplicated: same projects with some diffs (1-500 commits) cloned from Google
Code, SourceForge, Eclipse; explicitly labelled as new versions, patches, or new features
added.

— 80-89.9% duplicated: same projects but with significant change/customization.

— 50-79.9% duplicated: still same projects but with major changes.
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5.2.3 Decision for Deduplication

Based on metamodel and repository duplication percentages, we follow the protocol below:

1. Given a repository pair, if metamodel duplication is 100% and repository duplication is
>50%, we label the pair as duplicated. We cluster duplicated repositories using hierar-
chical clustering (see Babur et al. (2016) for an application of hierarchical clustering to
metamodels) with a cutoff at 55% distance (threshold determined based on our prelimi-
nary exploration of 40 samples in the dataset). Per cluster, we keep a single representative
repository and discard the rest. Based on our observations on the samples, we apply a
simple technique to identify the original repository among the cluster (the earliest cre-
ation date of the repository) and include only that one. See Section 5.2.4 for a discussion
on this strategy.

2. Given a repository pair, if metamodel duplication is <100% and repository duplication
is > 50%, we consider the metamodels to be reused or repurposed in different contexts,
which is interesting for our language usage study. While they may also be implicit ver-
sioned copies of the original repository (i.e. not explicit ones within the same repository or
forks, both of which were excluded in the first place), we consider the delta large enough
to include such repositories as additional data points. We include both repositories in our
analysis.

3. If for any repository, metamodel duplication is > 90% and there is a large number
of duplicated metamodels, this might signal a special case for metamodel collections
(e.g. mined from other repositories on GitHub) and potentially not real development
projects. We manually inspect the ones containing more than >50 metamodels (to keep
the manual work feasible), and remove them from our dataset if they are indeed meta-
model collections rather than engineered projects.

5.2.4 Results and Discussion

For item 1 in the protocol, we automatically detected 1,173 repositories involved in both
significant metamodel and repository duplication. This is basically the union of the indi-
vidual items in clone clusters found by hierarchical clustering with the 55%. Furthermore,
by manually checking repositories with high number of metamodel duplication, yet with-
out significant repository-level duplication (i.e. with respect to protocol item 3, signalling
potential metamodel collections rather than engineered projects), we were able to detect 19
additional repositories to remove. This additional step we took proved to be useful, as there
were significant cases: a single repository with a collection of 21k+ duplicate metamodels,
other zoos and datasets with several hundreds of duplicate metamodels, unofficial forks and
so on. As a result of removing those repositories and their metamodels, we eliminated a total
of 38.351 metamodels from our dataset, 34,023 files remaining to be processed.

A note on deduplication we have performed is that it is a best-effort approach involving
considerable amount of manual work. A more fine-grained approach would reveal cases,
for instance, where our inclusion of representative repositories from duplicate clusters with
respect to the earliest creation date is inaccurate. Manually inspecting random samples from
our dataset, we could arrive at the following qualitative observations. Many cases in our
dataset involved a major organization hosting a repository (e.g. Eclipse) and individuals
unofficially forking and modifying the original repository (hence having a newer creation
date). However, we have also observed duplicate repositories which contain newer versions,
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and therefore it makes more sense to include the most recent version, discarding the older
ones.

We have adopted the general notion of repository-level duplication following the previous
MSR literature (Lopes et al. 2017). We assume that when a metamodel is duplicated while the
rest of the project is significantly different, the metamodel is reused in a new context (models,
code and other artifacts). Therefore, we consider such reused metamodels as independent
data points and did not deduplicate them. However, this distinction is a difficult one to be done
precisely. For the repositories falling under category 1 (metamodel duplication 100% and
repository duplication >50%) we performed an exploration of a sample of the repositories
falling under category 1. We observed that those repositories were mostly versions or slight
variants of each other rather than projects reusing the metamodel in a new context. A precise
account of such cases is only possible after a separate and detailed cloning analysis, preferably
not only covering the metamodels but also the models and other related artifacts. Note that
when a metamodel is being used in other projects (even as-is), it is highly likely that the rest
of the artifacts will vary, so the repository duplication will not be high. So such cases fall
under category 2 in our protocol and we include them in our study.

Another point to make is that there is still significant file-level duplication, across the
repositories as well as to some extent within the repositories. From our previous study, we
also observed higher types of clones (e.g. near-miss clones, where a few modifications exist
between clone pairs while they remain to be highly similar) among the metamodels (Babur
et al. 2019). Given the scope of this study, we do not investigate the cloning phenomenon
further.

Finally, we report that after the deduplication step, our dataset contains 19.6k unique
metamodel files in total (out of 34k metamodels over different repositories; see Section 5.2
on why we keep duplication in our dataset). Given the 72.3k metamodels that remained after
filtering out the non-engineered repositories, this means we have a 73% duplication overall
19.6k unique models correspond to 27% of the the whole dataset of 72.3k. This percentage
of duplicate EMF metamodels on GitHub seems to be much higher than what is reported by
Hebig et al. for UML models as 12% (Hebig et al. 2016). Some part of this can be attributed
to the existence of large collections of metamodels mined from GitHub, yet stored again
on GitHub projects (see discussion above), as well as the fact that Ecore and UML reside
in different meta-levels (cf. MOF hierarchy in Section 2.2). We leave it as future work to
investigate this phenomenon in detail.

5.3 Filtering Out Unprocessable Files

As the final step of filtering, we eliminated the metamodels which we could not process due
to one of the following reasons: (1) unparseable by the EMF parser (e.g. not well-formed,
or dependent on and using metaclasses from other metamodels), (2) unprocessable by the
SAMOS extractor. We believe the part of (1) on dependence on other metamodels needs
further clarification. Metamodels can import other metamodels beyond basic Ecore, in the
sense that they can reuse the metaclasses of the imported metamodels as building blocks
in the language specification of the importing one. Given the large GitHub ecosystems, we
performed a manual investigation on a sample set of metamodels. In that sample, we could
not track all the imported metamodels in on GitHub and successfully resolve them. And even
when we could find them, doing this for all our dataset would complicate the processing
and analysis. Therefore, we opted to include only the metamodels built only based on Ecore
as opposed to importing other metamodels. We however included cases where there are
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proxy references to other metamodels (see Steinberg et al. (2008) for the details on proxy
references), which can remain unresolved without affecting our studies.

Performing this step, we identified 1,191 metamodels as unprocessable and excluded
them from our final dataset: 1,142 metamodels involving parser error and 49 unprocessable
by SAMOS. A brief inspection of a sample of those unprocessable files reveals serialization
issues and possibly cyclic dependencies causing the parser to time out. This concludes the
filtering phase, and we move on to extraction with 32,832 metamodels left.

6 Extracting and Querying Information

We use and extend SAMOS to extract the necessary information for analysis, in a format to be
imported into Neo4;j. As outlined in Section 2.3, SAMOS is already capable of traversing the
underlying graph of EMF metamodels and generating chunks of node and edge information
in the form of bigrams (i.e. n-grams with two nodes and a connecting edge) (Babur and
Cleophas 2017). To acquire the metadata about the metamodels (e.g. creation date) and the
repositories (e.g. total # commits) we added to SAMOS scripts making use of the GitHub
REST APIL

In order to serialize the bigrams and other information in csv format, we implemented
an export functionality in SAMOS. The resulting series of csv files are then imported into
Neo4j using the Cypher shell'®, a command-line tool for data import/export and querying
for Neo4j using the Cypher query language. Eventually, all the information relevant for our
analysis is stored in Neo4j as graph data, as demonstrated in Fig. 7.

6.1 Using Cypher Queries and R Scripts in Combination for Analysis and
Visualization

We formulated our research questions as Cypher queries where possible for a clean and
reproducible analysis process, while utilizing R scripts for implementing additional logic.
We executed the queries via R using the Neo4j bridge, and eventually obtained (and post-
processed where needed) the results as well as the visualizations in R. We performed the
analyses on a MacBook Pro with 2,4 GHz Intel Core i9 CPU and 32 GB 2400 MHz DDR4
RAM. The importing took ~6 hours of time, while the analyses were completed in a total of
3.5 hours.

6.2 Data Availability

We provide a list of metamodel files included in the analyses, as well as the R notebook
documents (containing the Cypher scripts) as supplementary material'®. The Neo4j database
dump is available upon request to enable further research on our dataset. It is not possible to
share the metamodel files and content publicly due to licensing issues and GitHub terms of

service20,

18 https://neo4j.com/docs/operations-manual/current/tools/cypher-shell/
19" https://www.win.tue.nl/~obabur/publications/EMSE22
20 https://docs.github.com/en/github/site-policy/github- terms-of-service
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Fig.7 An example chunk of metamodel content and metadata visualized as a graph in Neo4j

7 Data Description / Raw Statistics

In this section, we provide descriptive statistics of the final dataset used in the subsequent

analyses in Section 8.
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Table 4 Statistics on relations

min median mean max
among the number of owners,
repositories and metamodels tepo per owner 1 1 1.48 75
metamodel per repo 1 2 8.02 7,483
metamodel per owner 1 2 11.87 7,483

7.1 Repository Statistics

Our dataset consists of 4,091 repositories belonging to 2,767 owners, and containing a total
of 32,832 metamodels. In an overwhelming majority of the cases, there are very few (1-2)
repositories per owner as well as very few metamodels per owner and repository, with further
extreme outliers. Table 4 summarizes the key statistics. Owners hosting the largest number
of repositories include eclipse (the Eclipse Foundation?!) and atlanmod (NaoMod
Research Group from IMT Atlantique, France®?). The extreme outlier in terms of the number
of metamodels per repo as well as metamodels per owner (both 7,483) is damenac /puzzle
hosting the puzzle toolset.

Subscriber, watcher and fork counts are among widely used for assessing the popularity
of a GitHub repository (Cosentino et al. 2017). We present these in Table 5. It seems most
repositories have very low popularity, with a few standing out: e.g. puppetlabs/puppet
-specifications in terms of subscribers, geotools/geotools of subscribers and
watchers, opensourceBIM/BIMserver for all three measures. The distribution of these
measures roughly follow the power law, as reported in the literature, to hold for GitHub
projects in general (Cosentino et al. 2017).

While the programming language reported by GitHub can be inaccurate at times
(attributed to the underlying software Linguist>>), we find it noteworthy to report that
a large majority of the repositories (2,790 out of 4,091) have Java as the main lan-
guage. This is more than twenty times more than the second most popular programming
language, HTML (106); and the third one, Xtend, being a model transformation lan-
guage (96). The dataset includes a total of 58 distinct languages reported as the main
language.

7.2 Repository and Metamodel Trends

We report the trends with respect to the number of created repositories per year and the
repository age (i.e. the number of years since the last update) as well as the same metrics for
the individual metamodels. Besides merely reporting raw statistics, we compare the trends
observed with our earlier findings, where we observed a clear trend in increasing number of
metamodels on GitHub (Babur et al. 2017; Babur 2019). The number of created repositories
and metamodels per year are outlined in Fig. 8. Thanks to the extensive filtering and dedu-
plication we have done in this paper, we cannot confirm a clear upwards trend for neither of
these numbers. The trend reported previously can be partly explained by either cloning of

21 https://www.eclipse.org/
L2 https://www.atlanmod.org/
23 hitps://github.com/github/linguist
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Table 5 Statistics on popularity

measures for the repositories mn median mean max
subscribers 0 3.83 186
watchers 0 0 4.03 959
forks 0 0 2.48 868

repositories/metamodels or the increasing population of non-engineered metamodel reposi-
tories on GitHub. However, there can be other factors affecting this phenomenon, the study
of which is out of scope for this paper. There is an exceptional spike in the number of created
metamodels in 2015, which can mostly be attributed to the repository damenac/puzzle,
which has 7,483 metamodels as discussed in Section 7.

Finally, we report the age of the repositories and metamodels in Fig. 9. The numbers
indicate a varied distribution of ages, and not too many old entities, meaning they have been
inactive for a long time. The spike in the number of metamodels with age 5 was previously
explained, i.e. for the spike of the metamodel count in 2015 mostly owing to the repository
damenac/puzzle.

7.3 Metamodel Statistics

Next, we discuss the general statistics in terms of the metamodels, as depicted (with log
transformation) in Fig. 10. The 32,832 metamodels in our dataset have their corresponding file
serialization with a wide range of size: from 103 bytes to ~10 megabytes. This is interesting
not only for purely descriptive purposes, but also exposes limitations in using various search

Repositories created per year Metamodels created per year
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Fig. 8 Statistics on repository and metamodel creation over the years
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Fig.9 Statistics on repository and metamodel age as of 2021

methods. The distribution is roughly log-normal, and the large numbers in the upper part of
the distribution have implications for adopting a mining method: there are indeed large files
which would be impossible to retrieve by the GitHub code search API (see Section 4.2). The
dataset in total contains more than 12 million model elements and 9 million relationships.
We also checked the distributions for the file sizes, as well as metaclasses and relationships
per metamodel. Our hypothesis was that they might follow a log-normal distribution, as
similar results have been reported for other software engineering artifacts, e.g. source code
file sizes (Concas et al. 2007). We executed an Anderson-Darling test for normality on the log-
transformation of these three metrics, and observed a very low p-value (< 2.2 x 10710). We
therefore conclude they are not log-normally distributed. Manually inspecting the Cullen and
Frey graph revealed gamma or beta distributions as most likely estimations. We leave a more
rigorous estimation of the distributions as future work. The largest metamodel for Model-
Driven Health Tools?* contains 50k+ metaclasses (i.e. counting all types of metaclasses —see
Section 2.2 — ranging from EClasses and EPackages to EOperations and EParameters)
and 124k+ relationships, which is considerably large but not to the extent as reported in
the literature for very large models with millions of model elements (Pagédn et al. 2011).
Among the largest models are the Fast Healthcare Interoperability Resources>> metamodel,
test and benchmark metamodels for the model transformation language Acceleo®®, and the
EastADL? architectural description language.

24 hitps://github.com/mdht/mdht-models
% https://www.hl7.org/fhir/overview.html
26 https://www.eclipse.org/acceleo/

27 https://www.east-adl.info/
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Fig. 10 Statistics on metamodel sizes, metaclasses and relations

7.4 Metamodel Domains

We were not able to perform a repository-level domain analysis as suggested in the litera-
ture (Ray etal. 2014). A large portion of the repositories we scanned had either no readme files,
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or very limited and non-descriptive content in them. Instead, we performed a metamodel-level
domain analysis using SAMOS (Babur et al. 2016). We extracted the identifier names from
the metamodels and preprocessed the names using natural language processing (including
tokenization, lemmatization). We then built a document term matrix (term frequency, inverse
document frequency approach where we consider a metamodel as a document, see Babur
et al. (2016)). Note that we discarded common English language stop words, as well as very
short or meaningless tokens (such as A or n/). On top of the matrix, we obtained pairwise
cosine distances and computed the clusters via hierarchical clustering with cut-off distance
of 20%. We manually checked the large clusters (size>50) to see whether we could identify
major domains or patterns. We have not performed an additional step of validating the results
in this study due to the fact that SAMOS with its clustering functionality has already been
validated on previous publications (Babur et al. 2016, 2019, 2022).

Table 6 depicts the results. On the one hand, we can see clusters of major modeling
languages such as Ecore(#139), UML(#157), BPMN(#150); and similar languages such as
library management DSLs(#250), the manual inspection of which reveals that they are used
mostly for experimentation/demonstration/education purposes. Note that the latter cluster
implies these might be non-engineered metamodels in engineered repositories, as well as
non-engineered repositories which were not correctly classified by PHANTOM. We also see
Java metamodels(#162), possibly to be used for forward engineering as well as model-driven
reverse engineering and analysis. On the other hand, we see groups of small models with
dummy or test content(e.g. #143, #146 and #182), the clustering of which is less meaningful
due to their limited content. Interestingly, there are further metamodels from a single reposi-

Table 6 Large metamodel clusters in terms of domains, the total number of metamodels in each cluster and
the manual description of the cluster

cluster ID # metamodels description

135 73 state machine DSLs

139 210 Ecore meta-metamodels

143 89 small ’test” metamodels

146 76 small ’class’/abstract syntax tree metamodels

150 92 Business Process Modeling & Notation (BPMN)

157 115 UML metamodels

162 127 Java metamodels

182 96 dummy DSLs e.g. with simple classes "Hello’, *Greeting’
250 74 library management DSLs

401 237 small metamodels for testing transformations, keyword ’root’
757 104 Atlas Transformation Language metamodels

765 66 XML metamodels

1,009 55 type language DSLs

5,441 168 test DSLs from a single repo, model2doc transformation
5,486 110 dummy metamodels, common keyword ’package’

6,045 139 topology control analysis metamodels group 1

6,046 111 topology control analysis metamodels group 2

7,482 69 Yakindu statechart language variants
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tory, where analysis cases are specified as input metamodels for model transformation in the
case of evaluating topology control algorithms?® (#6,045 and #6,046). Overall we observe a
heterogeneous dataset with metamodels being used for a variety of purposes. A more rigorous
characterization of the metamodel domains is left as future work.

8 Empirical Analyses on Language Usage

In this section, we report the various —quantitative as well as qualitative— empirical analyses
we have performed on the language usage. The overarching research question, following
our goal for doing this study, is as follows: how is the EMF metamodeling language used
by public engineered projects on GitHub? We adopted the research questions posed by
Herrmannsdoerfer et al. (2010), while tackling additional relevant in the scope of our study.
Each subsection tackles a different aspect of language usage, therefore is formulated with its
own motivation, (sub-)research questions and discussion.

8.1 Metaclass Usage

The metaclasses represent major building blocks of the language represented by the meta-
model. Itis alogical first step in our language usage analysis to study the number of metaclass
instances and their distributions over the metamodels. Such a study might reveal over- and
underuse (with respect to a baseline, to be discussed in each subsection) of certain meta-
classes, and lead to suggestions for the language design —e.g. removing a highly underused
metaclass, or extending an overused one—. Such suggestions contribute to a simple, refined
and focused language design as reported in the literature among good practices (Paige et al.
2000). We extensively compare our results with Herrmannsdoerfer et al. (2010), who per-
formed a similar analysis on a different dataset. A major point when comparing the two
datasets is the magnitude: our dataset contains 32k metamodels with 12 million model ele-
ments, while Herrmansdoerfer et al.’s contains 2k metamodels with less than a million model
elements.

We identify the following research questions to be investigated in this subsection. Our
motivation for these two research questions is to detect the over- and underuse of metaclasses.

— RQ1.1 What metaclasses are the most used (in total as well as distribution over the
metamodels)?

— RQ1.2 What metaclasses are rarely used or not used at all (in total as well as distribution
over the metamodels)?

We present our quantitative results distributed over separate subsections and tables. In
Table 7, we show the total number of metaclasses and their percentages cumulatively in the
whole dataset, with our results on the left-hand side, and Herrmannsdoerfer et al.’s on the
right-hand side. We depict a binary categorization of presence or absence of a metaclass
in metamodels in Table 8 as it might paint a different picture than total count percentages
(which it does, as we will see as follows). Finally we discuss a subset of distributions for
some metaclasses.

28 These seem to be related to Cobolt - A model-based tool for evaluating topology control algorithms by
eMoflon: https://github.com/eMoflon/cobolt.
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Table 7 Metaclass usage counts and overall shares

Our dataset

Dataset of Herrmannsdoerfer et al. (2010)

# metaclass count share # metaclass count share

1 EGenericType 3,388,307 27.69% 1 EString..Entry 328,920  44.51%
2 EString. .Entry 2,995,124 24.48% 2 EGenericType 141,043 19.09%
3 EAnnotation 1,840,180 15.04% 3 EAnnotation 102,863 13.92%
4 EReference 1,078,387 8.81% 4 EReference 53,177 7.20%
5 EAttribute 1,007,981 8.24% 5 EClass 41,506 5.62%
6 EClass 850,237 6.95% 6 EAttribute 36,357 4.92%
7 EEnumLiteral 389,374 3.18% 7 EEnumLiteral 10,643 1.44%
8 EParameter 262,178 2.14% 8 EOperation 7,158 0.97%
9 EOperation 236,957 1.94% 9 EParameter 7,060 0.96%
10 EPackage 64,282 0.53% 10 EPackage 4,530 0.61%
11 EEnum 61,867 0.51% 11 EDataType 2,747 0.37%
12 EDataType 54,408 0.44% 12 EEnum 2,513 0.34%
13 ETypeParam. 5,665 0.05% 13 ETypeParam. 226 0.03%
14 EObject 52 ~0% 14 EObject 0 0%

15 EFactory 0 0% 15 EFactory 0 0%

Note that EStringToStringMapEntry is shortened as EString..Entry, ETypeParameter as ETypeParam

8.1.1 Most Used Metaclasses Overall

Results The most used metaclasses overall can be found in the top rows in the Table 7, which
orders the metaclasses with respect to their total counts and shares. Our results are shown
on the left, while Herrmannsdoerfer et al. ’s are on the right side of the table. EGenericType,

Table 8 Metaclass presence, in
terms of total number and shares
over the metamodels

@ Springer

metaclass present absent share
1 EPackage 32,765 67 ~1.00
2 EClass 31,697 1,135 0.97
3 EGenericType 30,894 1,938 0.94
4 EAttribute 28,369 4,463 0.86
5 EReference 28,098 4,734 0.86
6 EDataType 27,509 5,323 0.84
7 EAnnotation 11,492 21,340 0.35
8 EStringToStringEntryMap 10,875 21,957 0.33
9 EEnum 10665 22,167 0.32
10 EEnumLiteral 10,570 22,262 0.32
11 EOperation 5,759 27,073 0.18
12 EParameter 4,326 28,506 0.13
13 ETypeParameter 1,010 31,822 0.03
14 EObject 30 32,802 ~0
15 EFactory 0 33,471 0
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EStringToStringMapEntry and EAnnotation are the three most used metaclasses overall, also
confirming the findings of Herrmannsdoerfer et al. even if with different shares and ranking.
In our results, EStringToStringMapEntry has a lower rank (i.e. second place rather than first)
and a much lower share (27,69% rather than 44,51%). For EGenericType and EAnnotation,
the differences in the shares is less significant: correspondingly 27,69% vs 19,09% and
15,04% vs 13,92%.

Discussion The results might seem unintuitive in the beginning, as one would expect concep-
tually more central building blocks of the language (e.g. EClasses and EAttributes, mapping
to the main domain concepts and their properties) to be the most prominent. However, we
can explain this situation considering the fundamental language design. EGenericTypes form
the basis of all type definitions (generic AND non-generic), therefore are associated to all
the typed metaclasses in the language. At least one EGenericType instance is associated to
every single typed element instance. For example, for each of the two EAttributes having an
EString type (i.e. a standard built-in type in Ecore), a separate EGenericType (referring to
the actual EString type) is created and associated to each EAttribute instance. For particular
(e.g. parametrized) generic type definitions, on the other hand, the number of EGenericType
instances are further inflated due to their nested representation containing multiple EGener-
icTypes. It is worthwhile to note that EMF employs two techniques to hide the underlying
complexity of the EGenericType hierarchy. For the non-generic types (and the sake of back-
wards compatibility pre-EMF 2.2), users are allowed to specify regular types without using
EGenericTypes in the concrete XMI representation and graphical editor. Those are neverthe-
less internally transformed into EGenericType instances in the abstract syntax. Additionally,
the complex generic type hierarchy is hidden in the Ecore Editor user interface. The type,
instead, is simply displayed with a shorthand text notation. While this might involve the
internal representation of the language and look superficial, we believe it is an important
note for our study which focuses on the language syntax.

EAnnotations can be attached to any model element and used for a variety of purposes:
documentation, language extension constraints, mappings, code generation directives and so
on. EStringToStringMapEntry metaclasses, in turn, represent key-value pairs within EAn-
notations, which are modelled as first-class entities. Thus a simple map-type with several
key-value pairs is syntactically represented as a tree with a separate instance of EString-
ToStringMapEntry for every single key-value pair. This explains the overrepresentation of
EStringToStringMapEntry in the dataset overall.

As a final note, the different order in the top three most used metaclasses compared to the
results by Hermannsdoerfer et al. can possibly be attributed to our dataset having more of a
“out-of-the-wild’ nature, containing more ad hoc metamodels with no proper documentation
or code generation attached. Nevertheless, we believe it is interesting to see our results being
very similar to Hermannsdoerfer et al., while we followed a state-of-the-art MSR study with
a rigorous protocol (notably in data collection and filtering) and covered a much bigger
population.

Suggestions Given the underlying language design in this current state, EGenericTypes nat-
urally exist as a highly frequent metaclass. The generics mechanism in Ecore is already
designed with the goal of simplicity (cf. one of the goals in designing modelling lan-
guages (Paige et al. 2000)), e.g. compared to that of UML, which is more verbose® . Another

29 https://www.eclipse.org/modeling/mdt/uml2/docs/articles/Defining_Generics_with_UML_Templates/
article.html
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hypothesis we make is that this bloated structure of nested EGenericType instances might
cause performance issues when dealing with very large models, e.g. consisting of millions
of model elements (Kolovos et al. 2013). A possible modification to the language would
be having two separate and explicit type metaclasses, one for regular and one for generic
types. This would separate the two types more clearly for the sake of understandability and
maintainability of the language. This way the metamodel is also better matched to how the
language is presented to the user via the editors, which hide the generics features by default
for non-generic types.

As for EStringToStringMapEntry, rather than being first-class citizens as metaclasses,
they can be modeled as Dictionary data types (as e.g. commonly used in some programming
languages including Python). Though, this means that this new data type should be added to
the Ecore meta-metamodel. The creators explicitly state in the EMF reference book: “the use
of map-typed features. Although there is no map type explicitly modeled in Ecore, support
for such features is enabled through a special behavior of the code generator”(Steinberg et al.
2008). We believe having a map type already in the language level conceptually suits better to
the represented data and avoids workarounds in the tooling or code generators, while keeping
the same level of expressivity in the language.

EAnnotations are used both in free format (for arbitrary form of documentation), and in
very specific patterns (for code generation). The EMF editor recognizes some of the patterns
and provides some level of guidance for the user, e.g. in the form of a code generation
icon. A possible language extension would be specializing EAnnotations to capture the most
frequent patterns, therefore providing language-level structure and validation to the use of
those patterns. We discuss this in more detail in Section 8.4.1.

8.1.2 Most Present Metaclasses per Metamodel

Results The metaclass presence statistics are given in Table 8. The most present metaclasses
can be found in the top rows. Note that this table gives a different picture than the metaclass
share overall in Table 7. EPackage and EClass are present in an overwhelming majority
(> 97%) of the metamodels. EGenericType is also highly frequent (94%), followed by
EAttribute, EReference and EDataType with > 84% frequency.

Discussion The conceptually more central building blocks for a metamodel are the most
frequent metaclasses in terms of presence: EPackage for structuring, EClass for domain
concepts, EAttribute and EReference for parametrizing those concepts, EDataType for domain
data types, and finally EGenericType representing type information.

Suggestions We revisit our suggestions above on EAnnotation and EStringToStringEn-
tryMap. While we confirm the same suggestions, it should be underlined that those
metaclasses are mostly gathered within a certain group of metamodels (i.e. only some —
< 35%— metamodels have them, but they have a lot of them), that are e.g. well-documented,
or targeted for code generation.

8.1.3 Not or Least Used Metaclasses Overall

Results The not or least used metaclasses overall can be found in the bottom rows in the
Table 7. As the table depicts, we have not found any EFactory metaclass in our final dataset,
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except a few which we manually identified in the filtered out metamodels (due to being
unparseable or having external dependencies). EObjects, while being non-zero in contrast
to Hermannsdoerfer et al., are also virtually absent in our results. The next set of the least
used metaclasses are ETypeParameter, EDataType, EEnum and EPackage with < 1%; and
EOperation, EParameter and EEnumlLiteral with < 4%.

Discussion EFactory is an auxiliary metaclass for creating instances of metamodel elements,
therefore it typically does not appear in metamodels as part of the language abstract syntax;
itis rather created and used in run time (e.g. programmatically creating models or generating
code). EFactory is not even exposed to the user through the Ecore graphical editor. The few
EObject instances, which we manually inspected, turned out to be potentially erroneously
created ones within EAnnotation objects (completely absent in the serialized metamodels,
however they appear in run time when EMF loads the metamodel). The low share of EType-
Parameter, on the other hand, indicates the lack of use of the generics feature of Ecore.
For EDataType, EEnum and EEnumlLiteral, the few instances overall are expected to a great
extent. While these metaclasses are essential parts of the language design, there are few of
them; being specified once and used in many places in the language. A similar argument
holds for EPackage: following the design of the underlying domain concept for EPackage
(i.e. merely a container for collecting domain concepts, see Section 2), only a few instances
per metamodel likely suffice. Finally, the relative lack of EOperation and EParameter in the
metamodels in our dataset indicate a more structural or ontological nature of the metamodels
(representing domain concepts and their relations), rather than operational details.

Suggestions Herrmanssdoerfer et al. suggests changes on two of the items: “A class should
be abstract if it is not intended to be instantiated, and is used only to define common features
inherited by its subclasses. For instance, in Ecore, EObject—the implicit common superclass
of all classes—should be made abstract, disallowing its instantiation. A class should be tran-
sient if its instances are not expected to be made persistent—such a class does not represent
a language construct. For instance, in Ecore, EFactory—a helper class to create instances
of the specified metamodel-should be transient.” In the Ecore meta-metamodel, EFactory
and EObject are both defined as concrete classes, so the suggestions on the metamodel-level
might hold at first glance. However, EObject might not be made abstract in practice due to
its important role for instantiation in dynamic EMF, and EFactory cannot be made transient
as it is allowed for attributes rather than classes in EMF. Note that, in addition, in the Java
implementation of EMF, EFactory and EObject are both designed as interfaces. Therefore, in
the Java implementation the situation can be different, and can have implications affecting,
e.g. , the further operation of dynamic EMF. We leave it as future work to investigate this part
in tandem with language architects. As another rarely used metaclass, we see in our results
ETypeParameter has a very low share (0.05%). Nevertheless, ETypeParameter as a part of
the generics package, represent a major feature of the language, and we cannot suggest their
removal altogether. The rest of the rare features, as will be elaborated in the next section, are
present in a significant share of metamodels (> 10%), therefore should not be removed or
made transient.

8.1.4 Not or Least Present Metaclasses per Metamodel

Results Similar to the overall shares reported in Table 7, EFactory and EObject metaclasses
have zero/near-zero shares, while ETypeParameter is also quite rare (0.03%). The rest of the
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overall rare features (EDataType, etc.) are present in a significant share of the metamodels
(13 — 32%).

Discussion These results give a complementary picture with the overall share. The least used
features are also the least present per metamodel (EFactory, EObject, ETypeParameter). The
metaclasses representing the core building blocks, however, are as expected present in a
significant share of metamodels.

Suggestions We confirm the suggestions proposed above when discussing the overall share
of the metaclasses.

8.2 Metaclass Feature and Relationship Usage

Features are the core elements in Ecore, along with EClass, for defining the concepts and their
relation in the language. Structural features allow parametrizing the concepts (EAttribute)
and relating them to each other (EReference), while behavioral features allow specifying
the operational aspects and their parametrization (EOperation with EParameter). Features,
however, are in the end just a particular type of relationship. The Ecore language consists of
a wide range of other relationships to shape up the language abstract syntax: containment,
inheritance and various association relationships. It is worthwhile to investigate the usage of
features and relationships, as their lack of use or underuse (in terms of multiplicity) could
indicate room for possible language improvements for Ecore, e.g. in the form of removal
or changing the lower/upper bounds (Herrmannsdoerfer et al. 2010) (e.g. changing a one-
to-many relationship into one-to-n or even one-to-one). We identify the following research
questions to be investigated in this subsection. Our motivation for these research questions
is to detect the lack of use or underuse of features and relationships.

— RQ2.1 What features/relationships are not used, or rarely used?
— RQ2.2 What features/relationships are not used to their full multiplicity?

We present our quantitative results in Tables 9 and 10, as feature/relationship usage per
metaclass.

8.2.1 Least Used Features and Relationships

Results Considering the statistics in Table 9, we see most of the features/ relationships
have low medians (ranging between 0 and 5). The presence table, however, gives a better
picture on the usage. We can see from the Table 10 that the following relationships are
rarely (< 5%) used: eTypeArguments, eLowerBound and eUpperBound for EGenericType,
contents for EAnnotation, eKeys for EReference, eGenericExceptions for EOperation, and
eTypeParameter for EClassifier. The subpackaging relationship (eSubPackages) as well as
the behavioral structural type (eOperations) and references for EAnnotations are also only
occasionally (< 10%) used.

Discussion As previously observed, generics are rarely used in our dataset, hence explaining
most of the corresponding relationships in this section being rare. As an example, eTypeAr-
guments indicates a complex (parametrized) generic type, and may not be generally preferred
by an average modeler.

Secondly, the relationships eKeys and contents represent very specific aspects of the lan-
guage: explicitly defining the key elements to be used in the serialization of an EClass, and
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Table 9 Statistics for features and relationships in the metamodels

feature/relationship min median mean max
1 EClass eStructuralFeatures * 0 1 245 581
2 EClass eOperations EOperation 0 0 0.27 496
3 EOperation eParameters EParameter 0 1 1.11 13
4 Model topContents * 0 1 1.09 95
5 EPackage eClassifiers * 0 5 15.02 2,015
6 EPackage eSubpackages EPackage 0 0 0.45 1,624
7 EOperation eGenericExceptions * 0 0 0.02 6
8 EClass eGenericSuperTypes * 0 1 0.82 33
9 EEnum eLiterals EEnumLiteral 0 4 6.29 8,393
10 EReference eOpposite * 0 0 0.20 1
11 EReference eKeys * 0 0 ~0.00 4
12 EGenericType eClassifier * 0 1 0.96 1
13 EGenericType eTypeArguments EGenericType 0 0 0.06 10
14 EGenericType eLowerBound EGenericType 0 0 0.00 1
15 EGenericType eUpperBound EGenericType 0 0 ~0.00 1
16 ETypeParameter eBounds EGenericType 0 0 0.27 3
17 EAnnotation contents * 0 0 0.01 74
18 EAnnotation references * 0 0 0.05 9
19 * eAnnotations eAnnotation 0 0 0.24 92
20 EClassifier eTypeParameters ETypeParameter 0 0 0.01 10
21 ETypedElement eGenericType * 0 1 0.97 1
22 EAnnotation details EStringToStringMapEntry 0 1 1.63 142

The asterisk in some of the rows means there are multiple metaclasses which could be in the relationship. For
instance, in row 6, EPackage can have a set of EClass, EDataType and EEnum instances as its eClassifiers

embedding model elements in an EAnnotation. A conjecture about the underuse of the former
is that modeling exceptions explicitly might be a too low-level activity for the users, who are
not so often modeling the behavioral features in the form of EOperations in the first place.
As for the latter, it seems to be the case that EAnnotations are occasionally used (19%) but
presumably for simple purposes such as documentation, without embedding model elements.
Note that in slightly more cases (5%), users seem to be using references to model elements
(via references) rather than containing the elements directly.

Suggestions We suggest the deprecation and eventually removal of the eKeys relationship,
as well as the restriction of using contents for EAnnotation. Removing the generics package
completely would limit the language to the few cases where they are needed and used. So
even if it would lead to a significant simplification in the language, we do not suggest its
removal.

8.2.2 Multiplicity Usage for Features and Relationships

Results From Table 9, we see that for a few of the features, which have [0..1] multiplicity (see
the metamodels in Figs. 1 and 2), we have the proper minimum usage as 0 and maximum as 1;
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Table 10 Presence for features and relationships

relationship present absent percentage
1 EClass eStructuralFeatures * 606,607 243,630 0.71
2 EClass eOperations EOperation 57,128 793,109 0.07
3 EOperation eParameters EParameter 148,305 88,652 0.63
4 Model topContents * 32,809 23 ~1.00
5 EPackage eClassifiers * 59,976 4,306 0.93
6 EPackage eSubpackages EPackage 4,888 59,394 0.08
7 EOperation eGenericExceptions * 3,749 23,3208 0.02
8 EClass eGenericSupertypes * 608,099 242,138 0.72
9 EEnum eLiterals EEnumLiteral 61,248 619 0.99
10 EReference eOpposite * 21,8805 859,582 0.20
11 EReference eKeys * 1,815 1,076,572 ~0.00
12 EGenericType eClassifier * 3,258,615 129,692 0.96
13 EGenericType eTypeArguments EGenericType 97,245 3,291,062 0.03
14 EGenericType eLowerBound EGenericType 34 3,388,273 ~0.00
15 EGenericType eUpperBound EGenericType 283 3,388,024 ~0.00
16 ETypeParameter eBounds EGenericType 1,479 4,186 0.26
17 EAnnotation contents * 12,156 1,828,024 0.01
18 EAnnotation references * 89,820 1,750,360 0.05
19 * e Annotations EAnnotation 1,840,023 7,836,861 0.19
20 EClassifier eTypeParameters ETypeParameter 5,665 1,199,090 0.01
21 ETypedElement eGenericType * 2,500,130 85,373 0.97
22 EAnnotation details EStringToStringMapEntry 1,680,525 159,655 0.91

see for instance eOpposite, eClassifier and eLowerBound. For the majority of the remaining
features, which have [0..x] multiplicity, we have a minimum usage of 0 and a maximum
usage of n> 1 and going to the order of a few thousands.

Discussion The feature usage is consistent with the specified multiplicities in the metamodel,
pointing to an accurate design from the language end in line with its usage and correct
implementation in the tooling. Therefore, we do not suggest any changes in the language
based on our study.

8.3 Metaclass Attribute Value Usage

The possible values of an attribute instance are dictated by the type associated with that
attribute. It is interesting to compare the theoretical/mathematical value range with the actual
range and distribution of values used in metamodels. We aim to investigate the non-derived
(see description in Section 2.2) attributes only, as derived attributes are secondary sources of
information, as the name implies. First, we expect to see valid values in the allowed theoretical
range. Secondly, we expect a balanced distribution of values in usage fitting in and spanning
across the theoretical range. An unbalanced distribution would signal (a) a potentially wrong
choice of the attribute type or (b) an unnecessary or unused attribute in the first place. An
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example for (a) would involve using a handful of distinct values for the virtually infinite range
of the Integer type, which could signal e.g. specializing the metaclass or using an enumeration
type instead. As for case (b), using one of the boolean values extremely frequently (i.e. close
to 100%) might signal that the attribute is not used in practice and might be removed. For
the remaining cases, we are interested in the most frequently used values, as they can have
implications for the default values built into the language and API/tool support. We underline
the distinction between having default values on the language level versus through API or
tool support. An attribute can have a default value directly on the language level (e.g. see
ETypedElement.ordered set to true in Fig. 1). Attributes can also have default values in the
EMF editor, e.g. when creating a new EClass its abstract attribute is set to false by the
tool, or even in the Java API level, e.g. when loading a serialized Ecore metamodel into
memory, a non-existing abstract attribute for an EClass instance is set to false. In the end,
having attributes with appropriate types and default values might potentially help modelers
to correctly and efficiently build their metamodels. Using more restricted types and avoiding
redundant attributes further benefit the language designer, e.g. in terms of reduced testing
and validation effort.
We identify the following research questions to be investigated in this subsection.

— RQ3.1 What attribute values are not used, rarely used or used outside their theoretical
range?

— RQ3.2 Which attributes (already having default values) do not have the most used value
as default value?

— RQ3.3 Which attributes have most often used values?

We decompose our results with respect to the attribute domain: boolean, integer and string,
depicted correspondingly in Tables 11, 12 and 13.

Table 11 Statistics and information on an illustrative set of boolean attribute values

attribute true false mode default default
(metamodel) (API/tool)
1 EReference.containment 54% 46% true NA false
2 EAttribute.required 36% 64% false NA NA
3 EReference.required 26% 74% false NA NA
4 EAttribute.transient 10% 90% false NA false
5 EAttribute.unique 90% 10% true true true
6 EDataType.serializable 93% 7% true true true
7 EAttribute.iD 1% 99% false NA false
8 EReference.unique 99% 1% true true true
9 EEnum.serializable 99.92% 0.08% true true true
10 EOperation.unique 99.42% 0.58% true true true
11 EParameter.unique 99.73% 0.27% true true true

The last two columns indicate the default values (if any) expressed directly in the metamodel, and applied in
practice by the Java API or tool support
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8.3.1 Least Used or Misused Attribute Values

Results For all the boolean attributes, both values are used, i.e. there is no case where a
true or false value is completely ignored. In some cases, the values are used in a balanced
manner, while in others the percentages are in overwhelming favor for a single value. We
have identified 10 cases where a single value was used > 95% of the time, while in 3 of those
the usage is extremely one-sided: EAttribute.iD, EReference.unique and EEnum.serializable
with close to 0-1 percent of usage for one value (two of which are shown in Table 11).

There are only a few integer values, representing the lower and upper cardinality bounds
for the four concrete subclasses of ETypedElement. Table 12 shows that indeed a wide range of
values are used for the attributes, hence mostly legitimizing the choice of integer domain. Nev-
ertheless, it is worthwhile noting that for an overwhelming majority of the cases (> 99.9%,
omitted in the Table for simplicity) the lowerBound values are 0 or 1, and the upperBound
values 1, -1 or -2. Note that EMF explicitly allows the particular negative values -1 and -2, to
represent unbounded (-1) and unspecified (-2)(Steinberg et al. 2008). There are a few invalid
values which we encountered in a small number of metamodels, which are shown in Table 12.

We have identified a number of string or other valued attributes besides the model
element names (e.g. EAttribute.name), which we could include in our analysis. We skip
the attributes related to EAnnotation, as we handle those separately in the following sec-
tion. Following Table 13, we can see for some cases with a null or non-null mode,
together with a significant list of top frequent items, e.g. for EPackage.nsURI/nsPrefix
and EDataType.instanceClassName/instanceTypeName. For EENum.instanceClassName/
instanceTypeName and EReference.defaultValueLiteral, however, we observed an extremely
high (> 99%) frequency of the null value and no other significantly frequent value. Finally, we
have observed a peculiarity in the use of instanceClassName vs instanceTypeName. instance-
TypeName, while not mentioned in the EMF book (Steinberg et al. 2008), is a part of the Ecore
meta-metamodel. instanceClassName, according to the EMF API, “represents the actual
Java instance class that this meta-object represents” while instanceTypeName “represents the
parameterized Java type that this meta-object represents.” We verify this by checking a simple
random sample of the cases (size 50) in our dataset. In the majority of the cases we checked,
they are the same. For a small number of cases, however, instanceTypeName represents a
more concrete or parametrized version of the type in instanceClassName. Examples would
include instanceTypeName being java.lang.Iterable, while instanceTypeName for
the same EClass set as java.lang.Iterable<EObject> and even Iterable<?
extends ...IFormalParameter> in another case.

Discussion Some boolean attributes, such as unique, are a part of the abstract metaclass
ETypedElement and inherited in e.g. EAttribute and EReference. While for some sub-
metaclasses this inheritance makes sense, for others it may not. Indeed, the EMF reference
book (Steinberg et al. 2008) states: “Two other attributes of ETypedElement are meaning-
ful only in the multiplicity-many case: unique specifies whether a single value is prevented
from occurring more than once, and ordered specifies whether the order of values is signif-
icant. Currently, their use is limited. The behavior of a multi-valued attribute depends on
its uniqueness, but references always behave as if unique is true.” This explains why it is
barely used in EReference (item 8 on Table 11). In our results, we observe that it is even
rarer for EOperation and EParameter (both > 99% true, see items 10 and 11 on Table 11).
A similar argument holds for serializable. For the concrete metaclass EDataType, the usage
of serializable can be justified with the values as 93% true and 7% false. However, for the
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EEnum metaclass as a subclass of EDataType, it is almost never set to false. We conclude
from our results, almost all EEnums are regarded to be serializable by the users. EMF states
that “the difference between these two approaches is seen at development time: if a data type
is serializable, a generated factory will include methods to convert values of that type to and
from strings” (Steinberg et al. 2008). Finally, EAttribute.id is intended to determine whether
the attribute can uniquely identify the instance of the containing class. It seems this is rarely
used in practice.

Next we discuss the integer attributes. In practice, the metamodels have different semantic
domains, which correspond to a wide range of possible values. The choice of integers (in
contrast to, for instance, limited ranges with enumerations) is well justified. Due to the
natural range of integers as (-00,00), however, we observed invalid values not intended by
the language design: Negative values for lowerBound, and negative values beyond -2 for
upperBound.

Among the string attributes, for instanceClassName and instanceTypeName, we observe
a similar pattern as above for the attribute serializable for EDataType and EEnum. For the
EDataType metaclass, the two attributes are used with a variety of values. This makes sense
as these represent the actual external (e.g. Java) correspondents for the EDataTypes. This is
not the case for the sub-metaclass EEnum however: it is rarely associated with an external
instance class or type. A similar pattern holds for the attribute defaultValueLiteral: it is
defined in the abstract metaclass EStructuralFeature. While being used in the EAttribute
sub-metaclass with a range of values, it is almost exclusively null for EReferences, where it
does not make sense to have a default value derived from a string literal. For the situation
with instanceClassName vs. instanceTypeName, it is also worthwhile to note that there seems
to be simple tool support in Eclipse EMF for entering instanceTypeName through the GUI,
while none for instanceClassName.

Suggestions For the boolean attributes, we suggest removing EAttribute.iD and moving
ETypedElement.unique to the sub-metaclass EAttribute, where it is actually used and makes
sense. Another design change could be making EDataType abstract (e.g. EAbstractDataType)
with two concrete instantiations: EDataType and EEnum. Putting the serializable attribute
under the new concrete EDataType would avoid its redundancy in the EEnum metaclass
instances. As already mentioned before, the architects have opted for using the integer type
with occasional negative values to represent unbounded (with upperBound set to -1) or
undefined (with upperBound set to -2) multiplicities for certain elements. While adding
new custom built-in data types could be a way to go, a more lightweight alternative is
limiting the possible values through imposing constraints and relying on the EMF Validation
Framework (see Chapter 18 in the EMF book (Steinberg et al. 2008)). This is already the
case at the moment, therefore we do not have further suggestions on these issues. Finally,
we discuss the string attributes. Similarly to the cases for the integer attributes of unigue
and serializable attribute, we suggest moving EStructuralFeature.defaultValueLiteral to the
sub-metaclass EAttribute, and changing the metaclass hierarchy so that instanceClassName
and instanceTypeName are only part of the concrete EDataType and not EEnum. A further
simplification would be making instanceClassName derived (i.e. the non-parametric version)
from instanceTypeName to avoid redundancy and inconsistency.

8.3.2 Default Values vs. Mode Values

Results We distinguish the actionable cases where the default value (1) exists and differs
from the mode, (2) exists on the tool/API level but not on the metamodel level, or (3) does
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not exist at all while having a significantly frequent mode value. We have identified only
EReference.containment for case (1). For case (3), there are the metaclasses EAttribute,
EReference, EOperation, EParameter having the attribute required (with > 65% false), with
no default on the metamodel, and not even shown on the GUI. We classify the remaining
attributes (i.e. the majority in the metamodel) as case (2).

Discussion Default values have a lot to do with the actual usage of a language, and only be
properly set after conducting a large-scale empirical analysis. At design time, the architects
have their own goals and motivations to set these, which might not correspond 100% with
how users actually use the language.

Suggestions We suggest setting default values to modes on the language level (as opposed
to just the tool or API level) for all the boolean and integer valued attributes across cases (1),
(2) and (3). For the string valued attributes, the mode value is either null or a not-so-frequent
one (e.g. org.eclipse.emf.common.util.E- numerator for EDataType.instanceClassName as
shown in Table 13). For those, we do not suggest setting a default value.

8.3.3 Most Often Used Values

Results We have not found any meaningful case where only a handful of values (<
10 as considered by Herrmannsdoerfer et al. (2010)) are used for e.g. an integer or
string valued attribute. The only case falling into this category is the following: ERefer-
ence.defaultValueLiteral (8 unique values) with an overwhelming percentage of the value
null, hence suggested being removed above.

Discussion The choice of the attribute types seems proper for the language, therefore we do
not suggest any change in the attribute types.

8.4 Specific Parts of the Language

In this section, we study the specific parts of the language, namely annotations and generics, in
closer detail. Our motivation for focusing on these parts will be elaborated in each subsection.

8.4.1 Annotations

Asdiscussed above, EAnnotation metaclass and its contents (notably EStringToStringMapEn-
try) are among the most used model elements in our dataset. Therefore, below we discuss
the usage of EAnnotation in more detail.

Research Questions We identify the following research questions to be investigated in this
subsection.

— RQ4.1 What are the often used types of EAnnotations, as indicated by their source
attribute?

— RQ4.2 What EStringToStringMapEntry keys are frequently used with each other and the
corresponding EAnnotation types?

— RQ4.3 For those frequently co-occurring sets of keys, are there also frequently used
values?
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Table 14 Most frequent (> 1%) values for EAnnotation.source

source count percentage
1 http://www.eclipse.org/emf/2002/genmodel 711,682 0.39
2 http://org/eclipse/emf/ecore/util/extendedmetadata 590,201 0.32
3 of_generation 82,908 0.05
4 subsets 53,605 0.03
5 http://iec.ch/tc57/2009/cim-schema-cim14 39,930 0.02
6 http://www.eclipse.org/uml2/1.1.0/genmodel 26,487 0.01
7 redefines 19,150 0.01
8 hidden 15,398 0.01
9 asstring 15,245 0.01
10 http://www.eclipse.org/emf/2002/ecore 13,938 0.01
11 taggedvalues 12,588 0.01
12 http://langdale.com.au/2005/uml 12,587 0.01
13 http://iec.ch/tc57/2010/cim-schema-cim15 11,594 0.01
14 extendedmetadata 11,399 0.01
15 http://www.eclipse.org/uml2/2.0.0/uml 11,006 0.01
16 metadata 10,407 0.01
17 http://www.polarsys.org/capella/mnoe/capellalike/mapping 9,456 0.01

Often used types of EAnnotations. As seen in Table 14, we have mixed cases of the standard
(as suggested by the language designers (Steinberg et al. 2008)) and custom usage of anno-
tations. Items 1, 2 and 10 are the standard ways of describing consecutively code generation,
non-Ecore details, and general-purpose model information. Items 6 and 15 correspond to
similar elements for Eclipse UML3C. There are a number of for specific modeling languages:
5, 12 and 13 for CIMTool®!, and 17 for Capella®?. The rest are used for custom extensions.
Comparing these with the top 5 values reported by Herrmannsdoerfer et al. (2010), we see
that the two most frequent values are the same. On the other hand, we can see the remain-
ing three values reported by them, i.e. taggedvalues, metadata and subsets in Table 14 with
lower percentages. One item, namely stereotype in their top-6 list does not appear in our list.
We attribute this to more ’in-the-wild’ nature of our dataset, while their dataset comprises
Eclipse repositories as a big majority. Note that, despite a relatively high percentage of usage
overall in our findings, these annotation sources are typically used in small sets of (ranging
from a few to a few hundreds) metamodels for a single tool, originating from a handful of
repositories/users, etc.; they do not represent global conventions. Another observation is that
the remaining standard annotations as suggested by the EMF book (Steinberg et al. 2008)
and literature (e.g. on OCL) are rarely used: XSD2Ecore, EMOF tags and OCL constraints.
This phenomenon can be further investigated in a dedicated follow-up study.

Often co-occurring EStringToStringMapEntry keys We have mined the association rules
(using the R package arules®?) for EAnnotation types and the keys they contain in EString-

30 https://www.eclipse.org/modeling/mdt/?project=uml2
3 https://wiki.cimtool.org/

32 https://www.eclipse.org/capella/

33 https://github.com/mhahsler/arules

@ Springer


http://www.eclipse.org/emf/2002/genmodel
http://www.org/eclipse/emf/ecore/util/extendedmetadata
http://iec.ch/tc57/2009/cim-schema-cim14
http://www.eclipse.org/uml2/1.1.0/genmodel
http://www.eclipse.org/emf/2002/ecore
http://langdale.com.au/2005/uml
http://iec.ch/tc57/2010/cim-schema-cim15
http://www.eclipse.org/uml2/2.0.0/uml
http://www.polarsys.org/capella/mnoe/capellalike/mapping
https://www.eclipse.org/modeling/mdt/?project=uml2
https://wiki.cimtool.org/
https://www.eclipse.org/capella/
https://github.com/mhahsler/arules

23 Page 44 of 54 Empirical Software Engineering (2024) 29:23

Table 15 Frequently co-occurring keys along with source types (last element in each item list) within EAn-
notations

LHS RHS support confidence lift
1 {source:emf-genmodel } {documentation} 0.41 0.98 2.16
2 {source:extendedmetadata } {name} 0.34 0.98 2.77
3 {source:extendedmetadata } {kind} 0.32 0.91 2.83
4 {kind,source:extendedmetadata} {name} 0.32 1.00 2.83
5 {name,source:extendedmetadata} {kind} 0.32 0.93 2.89
6 {namespace,source:extendedmetadata } {kind} 0.18 0.98 3.08
7 {namespace,source:extendedmetadata } {name} 0.18 0.98 2.80
8 {kind,namespace,source:extendedmetadata} {name} 0.18 1.00 2.83
9 {name,namespace,source:extendedmetadata} {kind} 0.18 1.00 3.12
10 {group,source:extendedmetadata } {kind} 0.03 0.97 3.04
11 {group,source:extendedmetadata } {name} 0.03 0.97 2.75
12 {group,.kind,source:extendedmetadata} {name} 0.03 0.99 2.82
13 {group,name,source:extendedmetadata} {kind} 0.03 1.00 3.12
14 {group,source:extendedmetadata} {namespace} 0.03 0.92 4.92
15  {group,namespace,source:extendedmetadata} {kind} 0.03 1.00 3.12
16  {group,kind,source:extendedmetadata} {namespace} 0.03 0.94 5.05
17 {group,namespace,source:extendedmetadata} {name} 0.03 0.99 2.82
18  {group,name,source:extendedmetadata} {namespace} 0.03 0.94 5.04
19 {group.kind,namespace,source:extendedmetadata}  {name} 0.03 0.99 2.82
20  {group,name,namespace,source:extendedmetadata} {kind} 0.03 1.00 3.12
21 {group,kind,name,source:extendedmetadata} {namespace} 0.03 0.94 5.04
22 {source:uml2-genmodel } {body} 0.02 1.00 31.82
23 {basetype,source:extendedmetadata} {name} 0.01 0.83 2.36

Note that long URLS for sources have been shortened to appear as emf-genmodel, uml2-genmodel and extend-
edmetadata

ToStringMapEntry instances. The association rules with support > 0.01 (i.e. found at least
1% of the instances in our dataset) and lift > 1 (i.e. significantly co-occurring beyond con-
ditional independence) are given in Table 15. Following from the previous paragraph on the
different EAnnotation types, we only focus on standard EAnnotations for this part, and have
excluded the non-standard ones from Table 15. We can see that typically (support 0.41) the
documentation key is used with GenModel (emf-genmodel) annotations. Only for the UML?2
variant of GenModel (uml2-genmodel), we occasionally (support 0.02) see a significantly
(lift 31.82) co-occurring body. The rest of the official suggestions (e.g. suppressedGetVisibil-
ity) are not very often used. As for the Extended Metadata (extendedmetadata) annotations,
we observe a frequent (support 0.34, 0.32) use of name, kind, and further occasional co-
occurrence of group, namespace, basetype. We can trace the use of such keys in the EMF
book for extending EMF: for instance, using kind to specify complex types, or basetype to
restrict data types (Steinberg et al. 2008).

Often co-occurring source and key-value pairs We have investigated the top 50 most fre-

quent sources and key-value pairs for EAnnotation, for the standard types, as mentioned
above. We have not found any rules, which are (a) for standard source types, (b) frequent
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enough (i.e. support > 0.01 and (c) are relevant for lifting as a language construct or prede-
fined suggestions as a part of tool support. We have manually inspected two rules satisfying
(a) and (b), and discarded as irrelevant due to them being documentation text too specifically
related to caching and diagnostics.

Suggestions For the standard types of annotations ExtendedMetaData and GenModel (as
described in the EMF reference book (Steinberg et al. 2008)), there is already tool support,
in the sense that a user can directly create those types of EAnnotations with the source
automatically set accordingly in the Eclipse EMF editor. Creating specialized language con-
structs would be redundant for those cases. Instead, we suggest improving tool support so
that when the user chooses to create the special annotation types through the GUI, the most
frequently used keys are automatically created and attached as EStringToStringMapEntry
items (i.e. through EAnnotation.details). We cannot suggest any particular values for the
keys given the wide range of possible string values in the usage range, as we could not find
any meaningful association rules corresponding to values. They can be left empty, to be
filled by the user. Our verdict from this exercise of performing association rule mining on
the key-value pairs is that, there are no immediately useful patterns or insights in the scope
of our study.

8.4.2 Generics

While we have studied the use of generics in the previous sections and concluded that they are
not used very often, we would like to dig deeper and find out more details on their usage. The
EMEF reference book (Steinberg et al. 2008) specifies several variants of generic types: simple
generic (using simple type arguments), parameterized and wildcard. Generic and non-generic
types manifest themselves as the type of ETypedElements, as well as generic supertypes of
EClass and generic exceptions to EOperation.

Research Questions We identify the following research questions to be investigated in this
subsection.

— RQS5.1 What percentages of EClassifier and EOperation instances contain type param-
eters?

— RQA5.2 Which specific types of generics are used overall?

— RQS5.3 How often do EClass instances use generic supertypes and EOperation instances
generic exceptions?

Results We present the statistics on type parameters in Table 16. We can see that, though rare
overall, type parameters are still used in EClass, EDataType and EOperation instances. They
are almost never used for EEnum, which is not unexpected since type parameters do not make
much sense for enumerations in the metamodeling context. The specific types of generics
used are in turn presented in Table 17. An overwhelming majority (96%) of all concrete
ETypedElement instances (i.e. EAttribute, EReference, EOperation and EParameter) have
non-generic types, which is not surprising given the generics study in the previous sections.
However, the results reveal that the majority of instances are used in the form of parameterized
generic types, followed by some simple generic types and very rarely wildcard types. Finally,
the Tables 18 and 19 show the statistics on the use of generics for supertypes and exceptions.
While there is a somewhat occasional use of generic supertypes, they are virtually no generic
exceptions.

@ Springer



23 Page 46 of 54 Empirical Software Engineering (2024) 29:23
Table 16 Type parameter count and percentages per metaclasses
metaclass # with type parameters #all percentage
1 EClass 2,686 850,237 0.00315
2 EDataType 1,601 54,349 0.02943
3 EEnum 7 61,867 0.00011
4 EOperation 1,371 236,957 0.00579
Table 17 The non-generic and
t t t
generic types used in our dataset, ypes coun percentage
with counts and percentages 1 non-generic 2,405,298 0.96199
2 simple generic 3,859 0.00154
3 parameterized generic 90,971 0.03638
4 wildcard generic 218 0.00009
Table.18 The non—gener'ic and supertypes count percentage
generic supertypes used in our
dataset, with counts and 1 non-generic 688,862 0.99216
percentages N
2 generic 5,441 0.00784
Table 19 The non-generic and .
. . . exceptions count percentage
generic exceptions used in our
dataset, with counts and 1 non-generic 4281 0.99953
percentages .
2 generic 2 0.00047
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Suggestions As previously explained, the generics feature is implemented as an overhaul of
the complete type system; even non-generic types imply the use of EGenericType instances
in a specific way. Therefore, it is not entirely feasible to suggest small changes with little
impact on the consistency of the metamodel. Given the extreme rare usage and for the sake of
simplicity for the language, however, one could think of removing/disallowing the following
(e.g. through validation rules if not possible to change the metamodel): use of generic types
for EEnum, wildcard type generics in general, and generic exceptions for EOperation. Note
that an evolution perspective could potentially reveal more insights into the use of generics,
since this feature was introduced not at the beginning of EMF, but rather along its evolution.
Since evolution is out of scope for this study, we leave it for future work to investigate.

9 Threats to Validity

Our study is subject to several threats to validity with the classification scheme of Wohlin
et al. (2012), which are elaborated in this section.

Conclusion Validity Conclusion validity is concerned with the relation between the analysis
and the outcome, with regards the conclusions being reasonable. For the statistical analyses,
we mitigated this by not assuming any normality or symmetry in our data, therefore reporting
e.g. median values next to the mean values, and reporting confidence and lift values for the
association rules we mined. Beyond these points, the statistical techniques we have performed
are very basic and well-established ones, therefore not likely to pose any threat themselves to
the conclusions we derive about the usage of EMF metamodels. However, the interpretation
of the usage how and why’s, as well as the suggestions on the language improvements are
subjective. This threat to conclusion validity is mitigated in several ways. The first author
is an experienced researcher with a PhD degree and 10+ years of experience with EMF
metamodeling and language design. We rigorously consulted the EMF reference book for
the theory, while manually inspected the data where necessary (e.g. outliers) to get a better
insight before coming to any conclusions. A methodologically sound interview with the
language architect of EMF would contribute greatly to this study; however, it is not possible
due to resource constraints by the potential interviewees. Final remarks include (1) our
study can only argue based on what is present in the metamodels, and cannot reach to any
conclusion about what is missing and should be added to the language, and (2) since we do
not investigate the actual models belonging to the metamodels, we do not paint a precise
picture on metamodel usage within the whole ecosystem.

Internal Validity Internal validity indicates whether the results really do follow from the data
and not any external or uncontrolled factors. Given the nature of our study (i.e. observational),
we do not claim causality in our quantitative analyses. However, in discussing e.g. why a
certain language feature is not used by the practitioners in our dataset, there can be external
factors which we cannot account for. We believe this can best be mitigated by a follow-up
study of a different nature, e.g. a controlled experiment.

Construct Validity Construct validity is concerned with the experiment design and the degree
to which it accurately reflects (e.g. measures) the underlying theoretical construct. We have
utilized a relatively large workflow for this study which realizes a set of theoretical steps
ranging from data collection and filtering to feature extraction and analysis steps. The tools
we have used in the workflow might pose threats to construct validity. PHANTOM, which we
used for filtering out non-engineered projects for instance, is validated on GitHub projects in
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general and works on a project-basis. It might not be suited for detecting engineered meta-
modeling repositories as well as filtering out individual non-engineered metamodels within
engineered repositories. The deduplication protocol also employs some design decisions,
such as including repositories with presumably reused and repurposed in different contexts.
This might in some cases lead to overrepresentation of some metamodels, hence the lan-
guage constructs used in them. Furthermore, we had to exclude 1k+ models due to them
being unprocessable. While these represent a small portion of the whole dataset, they might
lead to several advanced use cases being omitted from our analysis. SAMOS, on the other
hand, is a tool for model analytics in general and relies on certain simplifications and small
errors leading to a not 100% accurate representation of metamodels in the Neo4j database.
We have performed several steps of manual quality assurance (e.g. by comparing a set of
random models with their representations in Neo4j) to minimize this threat. Finally, our
analysis involves multiple steps over the span of several weeks, and GitHub continuously
evolves in the meantime. As aresult, we have observed minor yet unavoidable inconsistencies
(e.g. repositories being deleted) in between the steps, an example of which is the different
number of repositories reported in Tables 2 and 3.

External Validity External validity is concerned with the generalization of the conclusions
beyond the context of our study. We have employed a data collection phase (see Section
4) with multiple sources (GitHub and other repositories) and acquisition methods (GitHub
REST API, GHTorrent etc. ) to achieve a large coverage of the target population, as all the
(engineered) metamodels on GitHub (master/default branches only). On top of the large cov-
erage, we have performed a best-effort filtering and deduplication. While there are a number
of false positives in these steps, these are the state-of-the-practice automated techniques used
in the literature. Therefore, we believe our dataset adequately represents the target population
of EMF metamodels in public engineered repositories on GitHub, and our results general-
ize to the target population. The additional effort we have put to investigate open source
repositories other than GitHub has revealed relatively few other metamodels in open source.
Nevertheless, we do not claim any generalization of our findings to open source in general
or e.g. EMF metamodeling in industry.

10 Related Work

In this section, we briefly discuss the related work. One influential recent work involves
mining of UML models from GitHub (Hebig et al. 2016; Lépez et al. 2021), and studying
the practices and perceptions of their usage (Ho-Quang et al. 2017). The authors perform a
language usage analysis for UML models, along with different analyses around the software
development process and evolution, such as their introduction and modification across the
project lifespan. In another recent study, Heinze et al. mine business process (BPMN) models
from GitHub, yet focus on quality analysis rather than language usage (Heinze et al. 2020b).
Regarding DSLs, Tairas and Cabot conducted a language usage and clone analysis study on
Puppet and Atlas Transformation Language, both of which are textual DSLs (Tairas and Cabot
2015). Another very relevant work by Lammel and Pek studies the usage of P3P, a domain-
specific language for privacy policies. They present an extensive analysis of vocabulary
usage, correctness, syntactic and semantic metrics, cloning and language extensions. Object
Constraint Language (OCL) has also been the focus of a few language usage studies (Cadavid
et al. 2015; Mengerink et al. 2019). While the OCL language works on top of EMF and is
strongly related to EMF metamodels, we do not discuss those studies in detail in this paper
due to our focus on the metamodels themselves.
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More directly related work on EMF metamodels includes an early study by Her-
rmansdoerfer et al. on metamodel usage, including EMF metamodels as well as in other
languages (Herrmannsdoerfer et al. 2010). Since we share common objectives with this
study while having a larger and more recent dataset (the EMF part), we provide an exten-
sive discussion and comparison with their work where applicable in Section 8. However
it is worthwhile to emphasize that the scope of our study is larger than (the EMF part of)
Herrmansdoerfer et al., both in the volume of data and analysis themes. As for the dataset,
we performed a state-of-the-art MSR study with rigorous steps, notably data collection and
deduplication. We claim our dataset is not only a more recent one, but also a methodologically
sound one in terms of representing the EMF metamodels in open source. Still, it is interesting
to see that, in the part where we can compare our results with theirs in detail (i.e. metaclass
usage), the results are very similar.

An additional dataset of EMF metamodels has been collected from public Eclipse repos-
itories by Kogel and Tichy (2018): we discuss this dataset in Section 4. There we concluded
that most Eclipse repositories are mirrored on GitHub, therefore included in our study focus-
ing on GitHub. It is worthwhile to add that Kogel and Tichy’s dataset also includes version
history of the artifacts, and might be very useful when studying the evolution of EMF meta-
models over time. Williams et al. (2013) present preliminary metrics and evolution analysis
for 500+ EMF metamodels collected from various sources including GitHub, Google Code
and internal project repositories. Di Rocco et al. (2014) measure metrics and their correlation
for 450+ metamodels. Both Williams et al. and Di Rocco et al. tackle a much smaller dataset
and perform a smaller set of analyses, while some overlap with our study such as metaclass
counts and use of abstract metaclasses. Finally, there are studies on EMF usage in open
source which focus on the ecosystem, technology model, architecture and process aspects,
rather than language usage for metamodels (Di Rocco et al. 2020; Hairtel et al. 2018; Heinz
et al. 2020; Kolovos et al. 2015). In those articles, the scope of the artifacts under study is
larger than ours; including, for instance, code generation or model transformation linked to
the metamodels. A major advantage of such approaches is that they can include semantics
and pragmatics in their study, while in our case we are limited to syntactic analysis.

Last but not least, there is a line of research focusing on the use of EMF in industry rather
than open source. EMF is indeed reported to be an industry standard (Steinberg et al. 2008),
and there are empirical studies in the literature. Though, most related work focuses on a bigger
picture beyond just EMF (e.g. the use of MDE, its benefits and so on (Hutchinson et al. 2011;
Mohagheghi and Dehlen 2008)). A fine-grained study of the artifacts themselves is relatively
rare to the best of our knowledge, arguably due to limited availability and confidentiality of
data. Notable exceptions include our previous work where we compare the usage of OCL in
industry and open source (Mengerink et al. 2017) and present metrics from EMF technology
stack in industry (Babur et al. 2017; Mengerink et al. 2017).

11 Conclusion and Future Work

In this paper, we have presented an extensive empirical study into the language usage of EMF
metamodels on GitHub. Motivating the need for such a study, e.g. for the sake of language
improvement and taming, we have employed a workflow consisting of the following steps: (1)
data collection from GitHub via various methods, (2) filtering out non-engineered and dupli-
cated projects, (3) extracting model and repository data to be represented in a graph database,
and finally (4) performing queries post-processing for obtaining the analysis results on lan-
guage usage. We have conducted various analysis on metaclass, attribute, feature/relationship
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usage as well as specific parts of the language: annotations and generics. We present the sta-
tistical results accompanied by a set of actionable suggestions for language improvement. To
name a few of the potential language improvements, we suggest modifications to metaclasses
(e.g. making them abstract), relationships (e.g. removing unused ones), attribute types and
default values on the level of the language as well as tool support. By having such a feed-
back loop, the language design can be not only better tailored to meet the expectations of
its user base, but also improved with respect to certain qualities (e.g. simplicity, restriction)
which might help the language architect in the first place (e.g. with testing). We believe this
study fills a gap in the realm of domain-specific languages and model-driven engineering and
will hopefully help future development of DSL/MLs, whether it be EMF directly or other
languages, as an exemplary work from a methodological point of view.

This paper lays the foundation for further research by ourselves and other researchers. First
of all, the meticulously collected and curated dataset itself is valuable for further empirical
studies. One such study is an even more in-depth analysis of the language usage, with closer
look into other details regarding the language (e.g. dependencies and referencing among
metamodels), different sub-populations (e.g. basic and advanced usage of EMF, metamodels
for forward vs. reverse engineering) as well as the whole EMF ecosystem especially with
the models conforming to the metamodels (cf. Hirtel et al. (2018); Heinz et al. (2020)).
A more thorough elaboration of the results and further suggestions can be made in light
of the existing literature (Jicome and De Lara 2018), but also notably working in tandem
with the language designers. Other empirical studies based on the dataset that we plan to
do in future include extensive analysis on metamodel quality and technical debt, such as
fine-grained cloning and modeling errors. While the current dataset is limited to a static view
of the repositories (i.e. no commit history for the metamodels) and very limited metadata
(only owner and repository information with basic timestamps for creation and last update),
we plan to enhance the dataset and do further empirical analyses on evolution, process and
social aspects of metamodeling. This would enable, for instance, a longitudinal analysis of
modeling errors. A further direction for future work would be to comparatively analyze the
design and usage of other languages (e.g. MOF, UML and other metamodels as analyzed by
Herrmannsdoerfer et al. (2010)), see what is missing in the language and suggest actionable
improvements.

Declarations

Conflicts of interest The authors have no conflicts of interest to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allamanis M (2019) The adverse effects of code duplication in machine learning models of code. In Proceedings
of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, p 143-153

@ Springer


http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2024) 29:23 Page510f54 23

Andova S, van den Brand MGJ, Engelen LJP, Verhoeff T (2012) MDE basics with a DSL focus. In International
School on Formal Methods for the Design of Computer, Communication and Software Systems, p 21-57.
Springer

Babur O (2019) Model analytics and management. PhD thesis, Technische Universiteit Eindhoven. Proefschrift

Babur O, Cleophas L (2017) Using n-grams for the automated clustering of structural models. In International
Conference on Current Trends in Theory and Practice of Informatics, p 510-524. Springer

Babur O, Cleophas L, van den Brand M (2016) Hierarchical clustering of metamodels for comparative analysis
and visualization. In European Conference on Modelling Foundations and Applications, p 3—18. Springer

Babur O, Cleophas L, van den Brand M (2019) Metamodel clone detection with SAMOS. Journal of Computer
Languages 51:57-74

Babur O, Cleophas L, van den Brand M (2022) SAMOS - a framework for model analytics and management.
Sci Comput Program 223:102877

Babur O, Cleophas L, van den Brand M, Tekinerdogan B, Aksit M (2017) Models, more models, and then
a lot more. In Federation of International Conferences on Software Technologies: Applications and
Foundations, p 129-135. Springer

Baltes S, Ralph P (2020) Sampling in software engineering research: A critical review and guidelines. arXiv
preprint. arXiv:2002.07764

Basciani F, Rocco JD, Ruscio DD, Iovino L, Pierantonio A (2016) Automated clustering of metamodel repos-
itories. In Advanced Information Systems Engineering: 28th International Conference, CAiSE 2016,
Ljubljana, Slovenia, June 13-17, 2016. Proceedings vol 28. Springer, pp 342-358

Biber D, Douglas B, Conrad S, Reppen R (1998) Corpus linguistics: Investigating language structure and use.
Cambridge University Press

Brambilla M, Cabot J, Wimmer M (2017) Model-driven software engineering in practice, second edition.
Synthesis Lectures on Software Engineering 3(1):1-207

Broy M, Kirstan S, Kremar H, Schitz B (2012) What is the benefit of a model-based design of embedded
software systems in the car industry? In Emerging Technologies for the Evolution and Maintenance of
Software Models, p 343-369. IGI Global

Cadavid JJ, Combemale B, Baudry B (2015) An analysis of metamodeling practices for MOF and OCL.
Comput Lang Syst Struct 41:42-65

Clark T, Van den Brand M, Combemale B, Rumpe B (2015) Conceptual model of the globalization for domain-
specific languages. In Globalizing Domain-Specific Languages, p 7-20. Springer

Combemale B, France R, Jézéquel J-M, Rumpe B, Steel J, Vojtisek D (2016) Engineering modeling languages:
Turning domain knowledge into tools. CRC Press

Concas G, Marchesi M, Pinna S, Serra N (2007) Power-laws in a large object-oriented software system. IEEE
Trans Softw Eng 33(10):687-708

Cosentino V, Izquierdo JLC, Cabot J (2017) A systematic mapping study of software development with GitHub.
IEEE Access 5:7173-7192

Cosentino V, Izquierdo JLC, Cabot J (2016) Findings from GitHub: methods, datasets and limitations. In 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), p 137-141. IEEE

de F. Farias MA, Novais R, Junior MC, da Silva Carvalho LP, Mendonga M, Spinola RO (2016) A systematic
mapping study on mining software repositories. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing, p 1472-1479

de Mello RM, Stolee KT, Travassos GH (2015) Investigating samples representativeness for an online
experiment in java code search. In 2015 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), p 1-10

Di Rocco J, Di Ruscio D, Hirtel J, Iovino L, Lidmmel R, Pierantonio A (2020) Understanding mde projects:
megamodels to the rescue for architecture recovery. Softw Syst Model 19:401-423

Di Rocco J, Di Ruscio D, Iovino L, Pierantonio A (2014) Mining metrics for understanding metamodel
characteristics. In Proceedings of the 6th International Workshop on Modeling in Software Engineering,
p 55-60

Erdweg S, Van Der Storm T, Vélter M, Boersma M, Bosman R, Cook WR, Gerritsen A, Hulshout A, Kelly S,
Loh A et al (2013) The state of the art in language workbenches. In International Conference on Software
Language Engineering, p 197-217. Springer

Favre J-M, Gasevic D, Liammel R, Pek E (2010) Empirical language analysis in software linguistics. In
International Conference on Software Language Engineering, p 316-326. Springer

Gabriel P, GoulA?A£o M, Amaral V (2010) Do software languages engineers evaluate their languages?
In Franch JPCX, Gimenes I (eds) XIII Congreso Iberoamericano en, p 149-162. CIbSE2010, 04

Gharehyazie M, Ray B, Keshani M, Zavosht MS, Heydarnoori A, Filkov V (2019) Cross-project code clones
in GitHub. Empir Softw Eng 24(3):1538-1573

@ Springer


http://arxiv.org/abs/2002.07764

23 Page 52 of 54 Empirical Software Engineering (2024) 29:23

Gousios G, Spinellis D (2012) GHTorrent: GitHub’s data from a firehose. In 2012 9th IEEE Working Confer-
ence on Mining Software Repositories (MSR), p 12-21. IEEE

Grechanik M, McMillan C, DeFerrari L, Comi M, Crespi S, Poshyvanyk D, Fu C, Xie Q, Ghezzi C (2010) An
empirical investigation into a large-scale java open source code repository. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, p 1-10

Hirtel J, Heinz M, Limmel R (2018) Emf patterns of usage on github. In European Conference on Modelling
Foundations and Applications, p 216-234. Springer

Hebig R, Quang TH, Chaudron MRV, Robles G, Fernandez MA (2016) The quest for open source projects that
use UML: mining GitHub. In Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, p 173183

Heinz M, Hirtel J, Limmel R (2020) Reproducible construction of interconnected technology models for emf
code generation. J Object Technol 19(2):8—1

Heinze TS, Stefanko V, Amme W (2020) Mining BPMN processes on GitHub for tool validation and devel-
opment. In: Nurcan S, Reinhartz-Berger I, Soffer P, Zdravkovic J (eds) Enterprise, Business-Process and
Information Systems Modeling. Springer International Publishing, Cham, pp 193-208

Herrmannsdoerfer M, Ratiu D, Koegel M (2010) Metamodel usage analysis for identifying metamodel
improvements. In International Conference on Software Language Engineering, p 62-81. Springer

Ho-Quang T, Hebig R, Robles G, Chaudron MRV, Fernandez MA (2017) Practices and perceptions of UML
use in open source projects. In 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), p 203-212. IEEE

Hutchinson J, Whittle J, Rouncefield M, Kristoffersen S (2011) Empirical assessment of mde in industry. In
Proceedings of the 33rd international conference on software engineering, p 471-480

Information technology - Meta Object Facility (MOF) (2005) Standard, International Organization for Stan-
dardization

Izquierdo JLC, Cosentino V, Cabot J (2017) An empirical study on the maturity of the eclipse modeling
ecosystem. In 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages
and Systems (MODELS), p 292-302. IEEE

Jacome S, De Lara J (2018) Controlling meta-model extensibility in model-driven engineering. IEEE Access
6:19923-19939

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining GitHub. In Proceedings of the 11th working conference on mining software repositories, p
92-101

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2016) An in-depth study of the
promises and perils of mining GitHub. Empir Softw Eng 21(5):2035-2071

Kogel S, Tichy M (2018) A dataset of EMF models from eclipse projects

Kolovos DS, Matragkas ND, Korkontzelos I, Ananiadou S, Paige RF (2015) Assessing the use of eclipse MDE
technologies in open-source software projects. In OSS4MDE@ MoDELS, p 20-29

Kolovos DS, Rose LM, Matragkas N, Paige RF, Guerra E, Cuadrado JS, Lara JD, Rath I, Varré D, Tisi M et al
(2013) A research roadmap towards achieving scalability in model driven engineering. In Proceedings
of the Workshop on Scalability in Model Driven Engineering, p 1-10

Lammel R, Pek E (2013) Understanding privacy policies: A study in empirical analysis of language usage.
Empir Softw Eng 18:310-374

Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek J (2017) Déjavu: a map of code
duplicates on GitHub. Proceedings of the ACM on Programming Languages 1(OOPSLA):1-28

Lépez JAH, Izquierdo JLC, Cuadrado JS (2021) Modelset: a dataset for machine learning in model-driven
engineering. Softw Syst Model, p 1-20

Manning CD, Raghavan P, Schiitze H et al (2008) Introduction to information retrieval 1. Cambridge University
Press

Melton H, Tempero E (2007) An empirical study of cycles among classes in java. Empir Softw Eng 12(4):389—
415

Mengerink J, Noten J, Schiffelers R, van den Brand M, Serebrenik A (2017) A case of industrial vs. open-source
ocl: not so different after all. In ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2017), p 472-474. CEUR-WS. org

Mengerink JGM, Noten J, Serebrenik A (2019) Empowering ocl research: a large-scale corpus of open-source
data from github. Empir Softw Eng 24(3):1574-1609

Mengerink JGM, Serebrenik A, Schiffelers RRH, van den Brand MGJ (2017) Automated analyses of
model-driven artifacts: obtaining insights into industrial application of mde. In Proceedings of the 27th
International Workshop on Software Measurement and 12th International Conference on Software Pro-
cess and Product Measurement, p 116—-121

@ Springer



Empirical Software Engineering (2024) 29:23 Page530f54 23

Mohagheghi P, Dehlen V (2008) Where is the proof?-a review of experiences from applying mde in industry.
In Model Driven Architecture—Foundations and Applications: 4th European Conference, ECMDA-FA
2008, Berlin, Germany, June 9-13, 2008. Proceedings vol 4, pp 432-443. Springer

Mohamed MA, Challenger M, Kardas G (2020) Applications of model-driven engineering in cyber-physical
systems: a systematic mapping study. Journal of Computer Languages 59:100972

Muller MJ, Kuhn S (1993) Participatory design. Commun ACM 36(6):24-28

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating GitHub for engineered software projects. Empir
Softw Eng 22(6):3219-3253

Nagappan M, Zimmermann T, Bird C (2013) Diversity in software engineering research. In: Meyer B, Baresi
L, Mezini M (eds) Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 18-26, 2013. ACM, pp 466-476

Noten J, Mengerink JGM, Serebrenik A (2017) A data set of OCL expressions on GitHub. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR), p 531-534. IEEE

Pagan JE, Cuadrado JS, Molina JG (2011) Morsa: A scalable approach for persisting and accessing large
models. In International Conference on Model Driven Engineering Languages and Systems, p 77-92.
Springer

Paige RF, Ostroft JS, Brooke PJ (2000) Principles for modeling language design. Inf Softw Technol 42(10):665—
675

Pickerill P, Jungen HJ, Ochodek M, Staron M (2020) PHANTOM: Curating GitHub for engineered software
projects using time-series clustering. Empir Software Eng

Pietri A, Spinellis D, Zacchiroli S (2019) The software heritage graph dataset: public software development
under one roof. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), p 138-142. IEEE

Qiu D, Li B, Barr ET, Su Z (2017) Understanding the syntactic rule usage in java. J Syst Softw 123:160-172

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code quality
in GitHub. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, p 155-165

Ruta D, Gabrys B (2005) Classifier selection for majority voting. Information fusion 6(1):63-81

Spinellis D, Kotti Z, Mockus A (2020) A dataset for GitHub repository deduplication. arXiv preprint.
arXiv:2002.02314

Steinberg D, Budinsky F, Paternostro M, Merks E (2008) EMF: Eclipse Modeling Framework Second Edition.
Pearson Education

Stol K-J, Fitzgerald B (2018) The abc of software engineering research. ACM Trans Softw Eng Methodol
(TOSEM) 27(3):1-51

Tairas R, Cabot J (2015) Corpus-based analysis of domain-specific languages. Softw Syst Model 14(2):889—
904

Tekinerdogan B, Babur O, Cleophas L, van den Brand M, Aksit M (2019) Introduction to model management
and analytics. In Model Management and Analytics for Large Scale Systems, p 3—11. Academic Press

Wieringa RJ (2014) Design science methodology for information systems and software engineering. Springer

Williams JR, Zolotas A, Matragkas ND, Rose LM, Kolovos DS, Paige RF, Polack FAC (2013) What do
metamodels really look like? Eessmod @ Models 1078:55-60

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://arxiv.org/abs/2002.02314

23 Page 54 of 54 Empirical Software Engineering (2024) 29:23

Authors and Affiliations

Onder Babur'2® - Eleni Constantinou?3 . Alexander Serebrenik?

Eleni Constantinou
constantinou.a.eleni @ucy.ac.cy

Alexander Serebrenik
a.serebrenik @tue.nl

Information Technology Group, Wageningen University & Research, Wageningen, The Netherlands
Department of Mathematics and Computer Science, Eindhoven University of Technology,

Eindhoven, The Netherlands

Department of Computer Science, University of Cyprus, Nicosia, Cyprus

@ Springer


http://orcid.org/0000-0002-1460-2825

	Language usage analysis for EMF metamodels on GitHub
	Abstract
	1 Introduction
	2 Background
	2.1 Corpus and Software Linguistics, Model Analytics
	2.2 Model-* Approaches, Domain Specific Languages and Metamodeling
	2.3 SAMOS Model Analytics Framework

	3 A Generic Workflow for Modeling Language Usage Analysis
	4 Data Collection
	4.1 Data Sources
	4.2 Mining Methods
	4.2.1 Using GitHub Advanced Search (Method A)
	4.2.2 Using GHTorrent and GitHub REST API (Method B)
	4.2.3 Using the Software Heritage Dataset (Method C)
	4.2.4 Using Google BigQuery GitHub Dataset (Method D)
	4.2.5 Results and Discussion


	5 Data Filtering
	5.1 Filtering Out Non-engineered Projects
	5.1.1 Classification with PHANTOM
	5.1.2 Results and Discussion

	5.2 Deduplicating Repositories
	5.2.1 Inter-Repository Metamodel Duplication
	5.2.2 Repository Duplication
	5.2.3 Decision for Deduplication
	5.2.4 Results and Discussion

	5.3 Filtering Out Unprocessable Files

	6 Extracting and Querying Information
	6.1 Using Cypher Queries and R Scripts in Combination for Analysis and Visualization
	6.2 Data Availability

	7 Data Description / Raw Statistics
	7.1 Repository Statistics
	7.2 Repository and Metamodel Trends
	7.3 Metamodel Statistics
	7.4 Metamodel Domains

	8 Empirical Analyses on Language Usage
	8.1 Metaclass Usage
	8.1.1 Most Used Metaclasses Overall
	8.1.2 Most Present Metaclasses per Metamodel
	8.1.3 Not or Least Used Metaclasses Overall
	8.1.4 Not or Least Present Metaclasses per Metamodel

	8.2 Metaclass Feature and Relationship Usage
	8.2.1 Least Used Features and Relationships
	8.2.2 Multiplicity Usage for Features and Relationships

	8.3 Metaclass Attribute Value Usage
	8.3.1 Least Used or Misused Attribute Values
	8.3.2 Default Values vs. Mode Values
	8.3.3 Most Often Used Values

	8.4 Specific Parts of the Language
	8.4.1 Annotations
	8.4.2 Generics


	9 Threats to Validity
	10 Related Work
	11 Conclusion and Future Work
	References


