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Abstract

We have calculated an entropy or information measure of previously reported exper-

imentally determined temporal dominance of sensations (TDS) data of texture attri-

butes for two sets of emulsion filled gels throughout the mastication cycle. The

samples were emulsion filled gels and two-layered emulsion filled gels. We find that

the entropy measure follows an average curve, which is different for each set. The

specifics of the entropy curve may serve as a fingerprint for the perception of a spe-

cific food sample.
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1 | INTRODUCTION

The perception of texture while we consume food results, in part, by

the ability of our brain to combine electrical signals that arrive from

our five sense organs via the nerves (Rolls, 2005; Rolls et al., 2003;

Verhagen & Engelen, 2006). The combination of signals is exemplified

by the existence of texture-taste interactions (Burns & Noble, 1985)

and texture-aroma interactions (Bult et al., 2007; Saint-Eve

et al., 2004). On the other hand, this perception is influenced by previ-

ous experiences (Mojet & Köster, 2005), mood (Gibson, 2006), eating

behavior (Devezeaux de Lavergne, Derks, et al., 2015), social setting

(Cardello et al., 2000; King et al., 2004), and location (Edwards

et al., 2003; Stroebele & De Castro, 2004). The complexity that is

involved in the integration of all of these aspects makes understand-

ing texture perception resulting from food consumption a

challenging task.

During food consumption, an important datum is the time of

swallowing. Two material properties that have been pointed out as

worthwhile to monitor after this juncture, are the degree of structure

and the lubrication of the food material (Hutchings & Lillford, 1988).

Because various food materials exhibit a various degrees of structure

and lubrication upon swallowing (Hutchings & Lillford, 1988), it has

not yet been possible to develop one quantitative mechanistic model

during mastication until the moment of swallowing.

Besides the specific time of swallowing, it is important to quantify

texture perception over the entire mastication time. During the past

decades several new developments have come to the fore. One con-

sisted of introducing a division between visual assessment, first bite,

early and late mastication, swallowing and residual properties (Brandt

et al., 1963). In this method (texture profile), each panel member

needs to integrate the perception of each texture attribute over time

to a single intensity value. A further development consisted of
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quantifying the temporal response of one specific texture related

attribute (Larson-Powers & Pangborn, 1978). This is referred to as

time intensity measurements. If one is interested in more than one

attribute, the usual approach has been to repeat measuring time

intensity profiles for each attribute (Guinard et al., 2002). Lately, tem-

poral dominance of sensations (TDS) has been applied, a method in

which, at each moment in time, the most dominant attribute is chosen

(Pineau et al., 2009).

The latter method yields the frequencies of the most dominant

attributes selected by the panel as a function of time. The time is usu-

ally normalized by the time duration between food intake to swallow-

ing. For one type of food, depicting a variety of attributes, TDS yields

a spectrum of attribute frequencies as a function of time (Di Monaco

et al., 2014; Pineau et al., 2009).

There are two levels regarding the attribute selection of the most

dominant attribute: one pertains to the individual panelists and the

other to the panel. There is uncertainty in what an individual panelist

selects as his or her most dominant attribute from a number of prede-

fined attributes. This uncertainty also determines the distribution of

the selected attributes at the level of the panel at a specific point in

time. If there is agreement among panelists regarding the dominant

attribute, the uncertainty is low or absent. With increasing disagree-

ment, uncertainty regarding the selected dominant attribute also

increases. An established measure for uncertainty is information

(Rothstein, 1951; Shannon, 1948; Szilard, 1929). In the current con-

text, uncertainty is a panel property that purportedly correlates with

concepts like diversity of opinion, lack of consensus or disagreement.

The terms uncertainty and entropy can be related to one another as

follows. According to Rothstein (1951), in physics one is interested in

information obtained from a system by a measurement on the system.

The amount of information obtained from a measurement equals the dif-

ference between the final information, If , and initial information, Ii , on

the system. If the information (about the system) increases, the uncer-

tainty (on the system) decreases. So, information on a system equals

minus the entropy of that system. Or, as Rothstein put it: “… informa-

tion obtained from a measurement equals the difference between ini-

tial and final entropies of that system.” In short: If � Ii ¼� Sf �Sið Þ with

Sf and Si the final and initial entropy. As for having another perspec-

tive on entropy we can refer to (Brillouin, 1956) “… The entropy is

usually described as measuring the amount of disorder in a physical

system. A more precise statement is that entropy measures the lack

of organization about the actual structure of the system.”
In sensory science, the concept of information has been used, for

example, in experiments on absolute judgment (Garner & Hake, 1951;

Miller, 1953, 1956), and on reaction times (Hick, 1952). It was also

used for quantifying the maximum capacity of a person to perceive

something and to process the information (Attneave, 1954;

Miller, 1956; Munsinger & Kessen, 1964). A very recent example of

the use of the concept of information can be found in the field of con-

sciousness and awareness (Guevara Erra et al., 2016), who identified

“features of brain organization that are optimal for sensory percep-

tion.” They suggested that “consciousness could be the result of an

optimization of information processing.”

Given the possible importance of the concept of information to

sensory science, and its relation to uncertainty, we set out to quantify

the latter, for a specific set of previously reported TDS data

(Devezeaux de Lavergne et al., 2016; Devezeaux de Lavergne, van

Delft, et al., 2015) by using established information theory.

2 | MATERIALS AND METHODS

2.1 | TDS data and preprocessing

In our analysis we use previously published data of TDS studies on

various samples with texture attributes only. They have been

described elsewhere in more detail, with regard to the experimental

method and panel size, (Devezeaux de Lavergne et al., 2016; Deve-

zeaux de Lavergne, van Delft, et al., 2015). Two sets of samples were

studied. The first were eight emulsion-filled gels with different

mechanical properties (Devezeaux de Lavergne, van Delft,

et al., 2015). The gels varied with regard to the fracture stress (low

and high), the fracture strain (low and high) and the emulsifier used

(WPI or Tween 20) making emulsion oil droplet bound and unbound

to the gel matrix. The second set were 10 emulsion-filled gels bearing

mechanical contrast (Devezeaux de Lavergne et al., 2016). They con-

sisted of two layers with different mechanical properties (low or high

gelatin, LG or HG, respectively, or low or high agar concentration, LA

or HA, respectively).

Panels determined the sensory perception for a variety of attri-

butes. Participants were selected based on their “discriminatory abili-

ties” for the different textures. They had extensive experience with

sensory experiments with semi-solid model foods and Qualitative

Descriptive Analysis (QDA) (Devezeaux de Lavergne et al., 2016,

Devezeaux de Lavergne, van Delft, et al., 2015).

During the TDS experiment a number of panelists, np, were asked

to select the most dominant attribute during mastication of a sample

from a list of pre-defined number of attributes, Na. The predominant

of an attribute was defined as “the attribute that attracts the most

attention at a given point in time.” The experiment was set up in such

a way that only one dominant attribute can be selected by a panelist

at any given time during mastication. The selected attribute was con-

sidered dominant until the next attribute was selected. The attribute

sequence obtained is then registered as a binary response: data are

coded as “0” if the attribute, ai, is not dominant at a certain time and

“1” if it is dominant. For each measurement and each panelist, the

time starts when they place the sample in their mouth (defined as

t¼0) and stops when they swallow the sample (defined as t¼100).

Each panelist repeats their selection of the predominant attribute for

each type of sample as a function of time, with a number of repeti-

tions, nr . For each measurement, a panelist may need a different mas-

tication time. We normalize the time during mastication by the total

mastication time of each panelist in order to obtain normalized time

from 0 to 100. The samples were presented to the panel in a random-

ized design. We define the probability of attribute selection, ai , by the

panel at time t, by, p aijtð Þ. Setting the total number of times that an
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attribute is chosen by the panel at a normalized time t as na, we have

p aijtð Þ¼ na= nrnpð Þ. Analyses were conducted in R 3.2.5 (R Core Team,

2018). The statistical analyses have been displayed in the Supplemen-

tary Material, from Figures S1 to S29. The TDS curves for all samples

can be found Figures S1 and S15 in the Supplementary Materials.

2.2 | Information theory

As we have outlined in the Section 1, information equals minus

entropy in a formal sense. Applying the expression for the total

entropy H tð Þ to our case in the panels selection of an attribute ai at a

given time t, which is defined terms of the attribute selection proba-

bility p aijtð Þ, we have:

H tð Þ¼�K
X

p aijtð Þ log2p aijtð Þ, ð1Þ

Here, the normalization factor ¼1= log2Na, with log2 denoting

the logarithm with base 2, and where Σ denotes the summation over

all attributes ai in the set. The total information is I(t).

Equation (1) states that when the probability that an attribute is

selected at a certain time is equal to 1, the uncertainty (entropy)

is zero. In this case, there is only one attribute perceived as predomi-

nant for the whole panel, the panelists fully agree with each other and

there is no uncertainty about the attribute; in other words, no (new)

information is gained from the selection of the attribute. However,

when the probability for the selection of all attributes is 1=Na, the

uncertainty with respect to the selection of an attribute becomes

equal to unity. Then, all attributes have an equal probability to be

selected by the panel. Then the uncertainty, that is, the level of dis-

agreement is at a maximum. Information is to be gained from the

selection of an attribute.

It takes a certain time—lag time—for a panelist to select a domi-

nant attribute (see Figures S2 and S16; Supplementary Materials).

The lag time is different among panelists. As they continue to masti-

cate, panelists start to perceive the attributes and select their first

predominant one. Because of the lag time, we have to introduce a

so-called estimator. Our choice, the Chao-Shen estimator, accounts

for the fewer selected attributes in the beginning of mastication and

purportedly ensures that the uncertainty is not over- or under-

estimated (Chao & Shen, 2003; Hausser & Strimmer, 2008). It is

defined by

dH tð Þ¼�K
X dp aijtð Þ log2

dp aijtð Þ
1� 1� dp aijtð Þ

� �na� � ð2Þ

where dp aijtð Þ¼ 1� m
na

� �
p aijtð Þ, withm the number of attributes that is

selected only once out of nrnp measurements, andna is the total num-

ber of selected attributes at time t. When none of the panelists haven

selected an attribute, the entropy is set to zero. The entropy is also

zero when all panelists, have selected the same attribute as the pre-

dominant one. Both cases occur in the beginning of mastication, when

not all panelists have started recording their predominant attribute.

We treat points in time for which dH tð Þ¼0 as missing values (see also

Figures S3 and S17; Supplementary Materials).

2.3 | Model

It turned out that the dependence of the entropy as function of nor-

malized time could not be fitted to a low order polynomial. Instead,

we used Generalized Additive Mixed Models (GAMM) to fit statistical

models to the data. The GAMM models were implemented using the

mgcv R package by Simon Wood (Wood, 2017) that also allows one

the time series to deal with the auto-correlation.

The following methodology was adopted: in order to capture the

GAMM curves in a qualitative way, all curves were compared to a ref-

erence curve, which is here defined as the average entropy of all sam-

ples versus time. The data were fitted with an upper limit of k = 25

knots. Cross-validation selected the optimum number of knots to pre-

vent over-fitting (Supplementary Materials; Figures S4–S13,

S18–S27). The predicted values of the reference curve were then sub-

tracted from the entropy data, and the model without auto-

correlation was reevaluated based on the transformed, new, data set.

The residual curvature, relative to the selected reference curve, was

then tested for residual nonlinearity and was visualized

(Supplementary Materials; Figures S14 and S29).

3 | RESULTS AND DISCUSSION

3.1 | Information and TDS data

Figure 1 (Right) shows the entropy as a function of normalized masti-

cation time for one sample (TDS frequency curve of the same sample

in Figure 1 (Left), Supplementary Materials; Figure S1 for TDS data of

other samples and Figure S3 for entropy over time for other samples

displays). In the beginning, the entropy (uncertainty) is low: the panel

is just starting to perceive the sample and they are selecting their first

predominant attribute. During the first few designated points in time

the entropy actually equals zero (indicated in red in Figure 1b). This is

because none of the panelists have selected an attribute, or the few

panelists that have selected an attribute have selected the exact same

one. No proper selection can be drawn from this so these points are

treated as missing values during the fitting of the model. As mastica-

tion continues, the sample is broken down and mixed with saliva. This

alters the structure of the sample and thus the perceived texture.

Upon further mastication, the food is broken down even further, and

a swallowable bolus is formed. The entropy related to the predomi-

nantly perceived attribute decreases and reaches a maximum in the

middle of the mastication process. The panel is no longer in agree-

ment about the predominant feature at that time. A variety of attri-

butes may get selected. The entropy (uncertainty) approaches its

maximum value. The panel subsequently reaches more agreement

about the predominant attribute as can be seen from the subsequent

decrease of entropy. At the moment of swallowing the entropy is

STURTEWAGEN ET AL. 3
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about 0.5. We note that this implies that, more than one attribute

is perceived as predominant. This in turn implies that there is no single

attribute responsible for triggering the act of swallowing.

Figure 2 displays the GAMM fit to the temporal entropy of one

sample. The optimum number of knots to fit the data was six. The

best fit was obtained for a model that includes a possible autocorrela-

tion with respect to the (normalized) time. The autocorrelation implies

that the entropy at a point in time is influenced by the entropy at a

previous time which seems to be a sensible assumption.

Figure 3 (Left) displays the entropy curves for a variety of samples

with different mechanical properties. The samples varied with respect

to fracture stress (low and high), fracture strain (low and high), and the

emulsifier used (WPI or Tween 20). Even though the mechanical

properties of the samples were disparate, we discern that the (normal-

ized) entropy curves follow the same pattern. At the start of mastica-

tion, the entropy (uncertainty) is low, so there is agreement

concerning the predominant attribute. In the middle of mastication,

the entropy reaches a maximum, there is no agreement about the pre-

dominant attribute and a variety of attributes are being selected by

the panel. Toward the end of mastication, the panel reaches more

agreement concerning which attribute is predominant and the entropy

(uncertainty) decreases again, but not to zero. Again, apparently more

than one attribute is being perceived at the start of the swallowing

process and there is no single attribute responsible for triggering the

swallowing action. Figure 3 (Right) shows the mean entropy as a func-

tion of time for the set of samples. In general, all curves follow a mas-

ter curve, if we take into account the 95% confidence level indicated

in the figure. Samples HσLϵT and LσLϵT end up higher (with 95% con-

fidence), while samples HσLϵW and LσHϵW have a lower entropy

upon swallowing (with 95% confidence). Samples LσLϵW and LσHϵT

have a higher entropy at the beginning of mastication (See also

Figure S14 in Supplementary Material). Both HσLϵT and LσLϵT have a

low fracture strain and their oil droplets were emulsified with Tween

20. This means that they are brittle gels and their oil droplets are not

bound to the matrix. Because of the brittleness, there is a high proba-

bility that they are perceived as grainy rather than creamy. The brittle-

ness apparently leads to a higher uncertainty in the selection of the

attribute.

Figure 4 (Left) shows the entropy curves for emulsion filled gels

that exhibited a mechanical contrast. They consisted of two layers

with different mechanical properties (low or high gelatin or agar con-

centration). The entropy follows the same general curve as that of the

samples in Figure 3. One sample (HA + HA) contains two of the same

layers with a high agar concentration and it shows a significantly

lower entropy than the others. Gels with a high agar concentration

are very brittle which renders the sample firm at first and then grainy

later on. During mastication, there is therefore a high probability that

F IGURE 1 (Left) Temporal dominance of sensations plot of one sample of emulsion filled gels (the sample had high engineered fracture stress
(σ) and low engineered fracture strain (ϵ) and WPI as an emulsifier) (the reader is referred to the supplementary materials; Figure S1 for the plots
for the other samples in set 1). (Right) Temporal entropy for the same sample. Red points have an entropy of 0 and are treated as missing values
for the fit (the reader is referred to the supplementary materials; Figure S3 for the plots for the other samples in set 1). Time is normalized as a %
of total mastication time per measurement (n=10, triplicate). TDS data from Devezeaux de Lavergne, van Delft, et al. (2015).

F IGURE 2 Temporal entropy GAMM fit for one sample, same

sample as Figure 1 (the sample had high engineered fracture stress (σ)
and low engineered fracture strain (ϵ) and WPI as an emulsifier).
Missing values are removed. Time is normalized as a % of total
mastication time per measurement (n=10, triplicate). TDS data from
Devezeaux de Lavergne, van Delft, et al. (2015).
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it is being perceived as grainy, which reduces the uncertainty about

the perceived texture, which is a likely explanation for why the curve

of HA + HA shifted to a lower value than for the other samples. The

mean of entropy for this sample is indeed an outlier in a boxplot (see

supplementary materials; Figure S28) and thus the sample can be con-

sidered an outlier for the mean entropy curve, with the likely explana-

tion given above.

In this case the panel was more experienced with the TDS tech-

nique. Such panels tend to select their first attribute faster than panels

with little experience (after 2.0 ± 1.3 s on average compared to 3.4

± 2.3 s on average for the less experienced panel). In view of this, the

uncertainty rises more steeply in the beginning and reaches a longer

plateau in the middle, which can be seen in Figure 4. The longer pla-

teau exhibits a fluctuation in entropy in the middle of the mastication

process, which we attribute to the fact that the gels exhibit a mechan-

ical contrast.

Figure 4 (Right) shows the mean entropy versus time for the set

of samples. In general all curves follow a master curve except for sam-

ple HA + HA which is clearly outside the confidence interval and for

which we have given an explanation above.

From the results discussed until now we conclude that the tem-

poral entropy curves follow the same pattern, independently of sam-

ple categories or the panels. The entropy starts at a low level at the

beginning of mastication and rises in the middle of mastication.

Toward the point of swallowing the entropy of selection of the pre-

dominant attribute tends to decrease again except for the case of the

two gels HσLϵT and LσLϵT in the first data set and for the two gels

HG+HA and LG+HA in the second data set. We note that the

F IGURE 3 (Left) Temporal entropy GAMM fit curves of emulsion-filled gels (with low [L] or high [H] engineered fracture stress [σ] and strain
[ϵ] and WPI [W] or Tween 20 [T] as an emulsifier). (Right) Temporal entropy for all samples. Points with an entropy of 0 are treated as missing
values. Blue line indicates the GAMM fit to the mean entropy over time. The shaded area is the 95% confidence interval for the fit. Time was
normalized as a % of total mastication time per measurement (n=10, triplicate). TDS data from Devezeaux de Lavergne, van Delft, et al. (2015).

F IGURE 4 (Left) Temporal entropy GAMM fit curves of emulsion filled layered gels with mechanical contrast (low [L] or high [H] gelatin
[G] or agar [A] concentration). (Right) Temporal entropy for all samples. Points with an entropy of 0 are treated as missing values. Sample HA
+ HA (indicated in red) is considered an outlier and is not taken into account for the mean fit. Blue line indicates the GAMM fit to the mean
entropy over time. The shaded area is the 95% confidence interval for the fit. Time was normalized as a % of total mastication time per
measurement (n = 10, triplicate). TDS data from Devezeaux de Lavergne et al. (2016).
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entropy upon swallowing is still higher than 0.5, in line with the fact

that there is no single predominant attribute that triggers swallowing.

It is likely that a typical panelist unconsciously searches for a pattern

related to a bolus that is safe to swallow and which does not exhibit

an unexpected attribute.

We now discuss the choice of attributes during the TDS experi-

ment. The texture attributes how we selected are generally based on

the results from either a Quantitative Descriptive Analysis (QDA)

experiment (Devezeaux de Lavergne, van Delft, et al., 2015) or from

previous studies (Devezeaux de Lavergne et al., 2016). In the experi-

ments discussed here, we have chosen chew-down attributes. The

attributes to be scored in the TDS experiment are carefully selected

to be applicable to the entire set of samples, and the panelists discuss

the attributes before the TDS experiment. We have to realize that a

panelist can only actively choose from a limited number of attributes,

which, according to Pineau et al. (2012), amounts to about 10. If there

are more attributes in the list, not all attributes are used by the panel.

The number of attributes in the experiments discussed above was

eight (samples in Figure 3) or nine (Figure 4).

Furthermore, the predominance of one attribute should not last

too long. This is because if one attribute were to constantly over-

power the others, the uncertainty would stay around 0.5 and the

uncertainty with regard to the other attributes, although perceived,

would not be accessible (Devezeaux de Lavergne, 2015). This is due

to the set-up of TDS where the panelists keep the set of attributes in

their mind and need to select the predominant attribute while con-

suming and masticating the sample. This may be the case in sample

HA + HA (cf. Figure 4).

The amount of training of the panel may play a role also in the

form of the curve; in particular their experience with sensory experi-

ments and the TDS experimental set-up are important

(Meyners, 2011). Interestingly, the panel that performed the experi-

ment with the gels with contrasting layers was more experienced and

selected their first dominant attributes earlier than the panelists scor-

ing the gels in Figure 3.

We conclude that for two categories of samples most samples

within each set follow a master curve. The detailed shape of the mas-

ter curve depends on the specific category. The overall shape is one

of a steep rise, a maximum, and a small decline before swallowing.

The time dependence of the entropy may thus serve as a way to fin-

gerprint perception properties of food categories as a quantitative

indicator of the influence of expectation of attributes being present

before consumption.

3.2 | Further remarks

We would like to mention several aspects of information theory in

relation to perception that have not been sorted out in the literature

and that may be relevant to our discussion above. First of all, during

perception, there is a physical interaction between the stimulus and

the perceiver, and they may influence each other (Nizami, 2011). By

contrast, in the communication system that Shannon describes, the

system is in no way altered by the stimulus. Luce (2003) indeed indi-

cates that Shannon himself was skeptical about the use of information

theory outside communication engineering. A second point to keep in

mind is that people do not behave like static electronic devices; they

do not possess a “fixed immutable information processing capacity”
(Baddeley, 1994). Indeed, with practice, the reaction time to a stimu-

lus levels off. Yet another issue is that messages in Shannon's theory

of communication often contain redundancy. This helps with encoding

and recovering the sent message, even in the presence of noise

(Shannon, 1948). But, during perception redundancy does not always

hold (Luce, 2003). A fourth important issue of contention could be

that, in contrast to standard information theory, stimuli in psychologi-

cal experiments have different levels of structural organization and

should therefore not be treated as mutually independent statistical

events (Aksentijevic & Gibson, 2012). Nevertheless, there are propo-

nents of applying information theory to sensory science. For example,

according to Norwich (2003), perception involves the selection of sev-

eral choices, which purportedly renders information theory quite suit-

able to apply to problems of perception. Moreover, Laming (2001)

puts forward that the usual information theory can still “provide a

‘non-parametric’ technique for the investigation of all kinds of sys-

tems without the need to understand the machinery, to model the

brain without modelling the neural responses.”
We note that our measure of entropy is calculated on the basis of

averaging over the responses of all panel members and replications. In

the current experimental set-up, the same experiment on each panel

member has been performed only three or four times to check for

intra person variability. Many more repetitions would not increase the

accuracy of the data per panel member, for it would introduce learn-

ing and anticipation into the experiment.

In regards to the effect of learning/anticipation we note that the

form of the temporal entropy may serve as a quantitative indicator of

the influence of expectation on the attributes to be encountered. This

idea could be tested by performing similar food sensory studies where

information provided before consumption is varied while not all prod-

uct details are known to the consumer. In a broader sense, the same

idea could be tested on persons that are playing a game; the entropy

as derived from the number of different decisions made during the

game, may be inversely related to (some power of) the number of pre-

vious experiences with the game.

Despite the fact that the application of information theory to sen-

sory science has not reached overall agreement, we think that the two

average curves for TDS data for the two different sets of emulsions-

filled gels provides useful information for the field of sensory science.

In particular, it alludes to a way of categorizing foods and to better

analyze TDS data. This may be as simple as the tendency to only swal-

low the bolus at the moment it is safe to swallow (as proposed by

Hutchings and Lillford (1988)), and where the perception of the other

attributes during chewing would then be a side effect. However, the

perception of the other attributes during chewing may still be impor-

tant. In this respect the work by Guevara Erra et al. (2016) on brain

function is interesting; they observed a maximum in entropy during

normal wakeful states. These authors expressed the hope that their

6 STURTEWAGEN ET AL.
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findings could represent a “preliminary attempt at finding organising

principles of brain function.” In the same way, our results may be a

starting point in identifying organizing principles during sensory

perception.
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