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Abstract
Antipredator responses could affect nutrient intake, which could lead to nutritional deficits. However, little is known about 
the antipredator response of small herbivores because most are nocturnal or crepuscular and therefore very difficult to study 
in the field. Therefore, we experimentally assessed the effect of a reactive response to predation risk on the nutrient (i.e., 
phosphorous) intake of the European hare (Lepus europaeus) using three different playback sounds. Additionally, we studied 
the time spent being costly vigilant, the time spent foraging, and the vegetation height in which the hares were present using 
accelerometers and GPS. Our results showed that elevated predation risk from our playback experiment did not affect the 
(1) phosphorus intake, (2) time spent being costly vigilant, and (3) time spent in tall vegetation. However, elevated predation 
risk did increase the time spent foraging. Possibly hares spent more time foraging with an increased predation risk because 
hares cannot seek refuge from predators. Additionally, the effect on phosphorus intake could be weak because phosphorous 
intake does not benefit a flight escape, while the reactive response acts late in the predation sequence limiting the effect on 
hare ecology. Prey anti-predator responses seem strongly related to the escape tactics of prey species that can differ between 
different habitats and the time of the day. More detailed field studies are necessary to get a better insight into species’ anti-
predator-food tactics.
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Introduction

For predators to successfully feed on prey, they need to com-
plete different sequential stages in the predation process, 
namely: search, detect (or encounter), chase, capture, handle 

and consume prey (Bateman et al. 2014). At each stage of 
the predation process, prey in their turn can use antipredator 
responses to reduce predation risk (Uetz and Hieber 1994; 
Creel and Creel 2002; Creel 2018). In particular, prey invests 
most antipredator effort in avoiding detection or becom-
ing chased (Fuiman and Magurran 1994; but see Bateman 
et al. 2014), as the chance to avoid being killed presumably 
decreases further in the predation sequence (Endler 1991).

To reduce the probability of becoming detected by a pred-
ator, prey may avoid habitats with predators (Lima and Dill 
1990), hide in dens (Olsson et al. 2008), spend more time 
in habitats that provide cover (e.g., tall vegetation) (Caro 
2005; Hopewell et al. 2005), reduce movement (Eccard and 
Liesenjohann 2014; Weterings et al. 2016), or use camou-
flage (Stevens and Ruxton 2019). For example, elk moved 
to more dense vegetation to decrease their predation risk, 
after wolves arrived in Yellowstone National Park (Gude 
and Garrott 2003; Creel and Winnie 2005; Gude et al. 2006). 
Similarly, European hare spent more time in tall vegetation 
when red foxes were more active (Weterings et al. 2018).
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To reduce the probability of becoming chased, prey may 
spend more time vigilant to improve detection of approach-
ing predators (Creel et al. 2017). Besides, prey can escape 
before the chase (Cooper and Frederick 2007) or select habi-
tats that allow escaping at a later time (Heithaus et al. 2009), 
or show a predator that it has been seen (Holley 1993) to 
avoid becoming chased. For example, zebras increased their 
time spent vigilant when lions were present (Périquet et al. 
2012). Furthermore, when predation risk increased, guinea 
pigs increased their time spent vigilant when the distance 
to cover increased (Cassini 1991). Similarly, during high 
predation risk, gerbils forage close to bush microhabitat, to 
allow escape into cover (Kotler et al. 1991).

Presumably, predation risk imposes constraints on prey 
by increasing the need to make alternative choices (Hawlena 
and Perez-Mellado 2009). The use of antipredator behavior 
depends on the context (Périquet et al. 2017) and comes 
with a cost, such as physiological costs (Zanette et  al. 
2014), movement costs (Weterings et al. 2016), foraging 
costs (Creel et al. 2017), nutritional costs (Christianson and 
Creel 2010) or energetic costs (MacLeod et al. 2014). Insight 
into the costs of antipredator behavior on nutrient intake 
is important, because prolonged nutritional deficits could 
eventually lead to a reduced birth- and survival rate (Creel 
and Christianson 2008; Cresswell 2010).

Increased vigilance can come at a cost to nutrient intake 
(i.e., costly vigilance) when an animal stops processing food 
(i.e., chewing, lubricating and swallowing), while scanning 
the environment (Hik 1994; Abramsky et al. 2002; Fortin 
et al. 2004; Creel 2018). For example, dark-eyed juncos for-
aged more on whole seeds when predation risk increased, to 
allow visual scanning of the surrounding, even though whole 
seeds were less profitable than seeds without a shell (Lima 
1988). In contrast to prey in short vegetation, animals in tall 
vegetation stop processing food to improve auditory detec-
tion of approaching predators (Benhaiem et al. 2008), as 
visual detection of approaching predators in tall vegetation 
is difficult (Hopewell et al. 2005; Riginos and Grace 2008). 
As a consequence, spending time in tall vegetation can come 
at a cost to nutrient intake when the food in tall vegetation 
is nutrient-poor (i.e., in nitrogen and phosphorus) (Ship-
ley 2007; but see Hodges and Sinclair 2003) or contains a 
high percentage of fibers that increases the handling time 
of food (Barboza et al. 2009). Nevertheless, prey can often 
compensate for the costs of antipredator behavior (Luttbeg 
et al. 2003). To compensate for the low-quality food or the 
increase in handling time, herbivores in tall vegetation could 
spend more time foraging (i.e., searching and cropping) to 
ingest sufficient nutrients (Heuermann et al. 2011). Addi-
tionally, as a result of stress, prey can adjust the composi-
tion of their diet, thereby changing the types of nutrients or 
energy ingested (Hawlena and Schmitz 2010b). However, 
animals may only show compensatory behavior in a specific 

context. For example, European hares in tall vegetation only 
spend more time foraging when the vegetation contains low 
edible biomass (Weterings et al. 2018).

Prey that better match their defense towards predators 
more often focus on escape tactics (i.e., reactive response), 
while species that poorly match their defense towards the 
predator more often focus on avoidance tactics (i.e., proac-
tive response; Dellinger et al. 2019). Prey that is effective in 
avoiding predator detection is often less effective in escaping 
predators (Creel et al. 2014). Creel (2018) suggested that 
predation risk that is unpredictable and of short duration 
(i.e., an encounter) does not affect the nutrient intake of prey. 
However, this has not been tested yet for cryptic herbivores 
(Creel 2018), because nutrient intake for nocturnal or cre-
puscular herbivores is very difficult to observe or measure in 
the field, especially when in cover (Ashby 1972).

Therefore, we experimentally tested the short-term effect 
of a predator–prey encounter on the nutrient intake of a small 
herbivore. To understand this effect, we additionally studied 
the time spent costly vigilant, the vegetation height in which 
the animals were present, and the time spent foraging.

As a case study, we focused on the European hare (Lepus 
europaeus) as a cryptic herbivore, which is a widespread 
species in North-western Europe (NDFF 2020). The Euro-
pean hare is a solitary non-central place forager that is com-
mon in open grassland areas (Barnes and Tapper 1986) but 
can use tall vegetation as cover or resting places (Neumann 
et al. 2011). Predation risk strongly affects hare behavior 
and space use (Weterings et al. 2016, 2019). European hares 
spend approximately half of their active time being vigilant 
(Lush et al. 2015) and use crypsis or a flight response to 
escape predators (Focardi and Rizzotto 1999).

We hypothesize that after a predator–prey encounter in 
short vegetation, hares (1) spend more time in tall vegeta-
tion that provides more cover (Neumann et al. 2011; Weter-
ings et al. 2018) (Table 1). As a consequence, in contrast to 
short vegetation, hares (2) spend more time costly vigilant 
in tall vegetation (Monclús and Rödel 2008; Trefry and Hik 
2009) to improve auditory detection of approaching preda-
tors (Benhaiem et al. 2008). Following, in contrast to short 
vegetation, hares (3) will spend more time foraging in tall 
vegetation (Shipley 2007) to compensate for any losses in 
nutrient intake (Heuermann et al. 2011). Therefore, overall, 
we expect that a predator–prey encounter does not affect the 
nutrient intake of the European hare.

Materials and methods

Study site

All data used in this study were collected by Weterings et al. 
(2018) in 2014–2015 in a coastal dune landscape (52°33′N, 
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4°38′E) in the Netherlands. In this dune landscape, we 
focused on two study sites (275 and 50 ha) with a popula-
tion of European hares (±15 hares/km2). The areas consisted 
of patches of grass, thicket, brushwood, and forest.

Research design and data collection

In October 2014 nine hares were caught with Speedset static 
hare nets (height 45 cm, with 13 cm full mesh; JB’s Nets, 
Alexandria, UK), blindfolded (Paci et al. 2012), and kept in 
darkened boxes temporarily to reduce stress. Five hares were 
caught from the Koningsbos area and four hares from the 
Vennewater area. Hares were equipped with a lightweight 
GPS-ACC collar (69 g, 1.8% ± 0.2 SD of a hare’s body 
weight) that included a radio link for wireless communica-
tion (Type A, E-obs GmBH, Gruenwald, Germany) to mini-
mize disturbance of the hares. Sex and life stage were deter-
mined by Stroh's method (juvenile < 1 year/adult > 1 year). 
Healthy hares (weight 2981–4400 g) were tagged without 
sedation (Gerritsmann et al. 2012). All handling of the 
hares was approved by the Wageningen University Animal 
Experiment Committee (no. 2014034.b) and followed the 
EU Directive 2010/63 on the protection of animals used for 
scientific purposes.

To investigate the costs of a predator–prey encounter on 
European hare nutrient intake, we conducted a playback 
experiment between 16th of December 2014 and 21st of 
January 2015. Even though different cues can be used to 
trigger a response to increased predation risk (Prugh et al. 
2019), playbacks are often used in field studies to investigate 
immediate responses to predator–prey encounters (Clinchy 
et al. 2012). Moreover, for species that rely more on sound 
than sight and smell, such as hares (Łopucki et al. 2017), 
playbacks are generally more meaningful in assessing prey 
response to encounters (Jarvis 2004). Furthermore, play-
backs may often be more alarming than visual cues (Cohen 
et al. 2009). Hares that participated in the playback experi-
ment were selected based on their spatial distribution to 

maximize the distance between individual hares treated. 
Based on the GPS locations of individual hares, hares within 
300 m of each other were assigned the same treatment. We 
used playbacks of conspecific alarm calls of hares instead of 
playbacks of predators, because prey often responds more 
strongly to conspecific alarm calls than to playbacks of pred-
ators (Schmidt et al. 2008; Magrath et al. 2014). Conspecific 
alarm calls may warn conspecifics of predators (Smith 1965; 
Sherman 1977; Zuberbühler et al. 1999; Blumstein 2007), 
but may also communicate directly to predators that have 
been detected (Digweed and Rendall 2009a, b; Hasson 1991; 
Sherman 1985; Woodland et al. 1980).

The playback experiment consisted of three different 
treatments (1) playbacks of conspecific alarm calls of hares, 
(2) playbacks of sheep (control playback), and (3) no sound. 
The playback experiment consisted of three blocks of four 
days. In every treatment block, hares were either exposed to 
the treatments from audio boxes (Foxpro Fury2, FOXPRO 
inc. Lewistown) or to no sound at all (Supplementary mate-
rials 1, Table S1). Different treatments occurred within the 
same block; however, hare and sheep playbacks were never 
used both within the same block. The three treatment blocks 
were chosen to control for changes in daylight and weather 
conditions. Weather data were collected from the weather 
station in IJmuiden (approximately 10 km from Castricum) 
(Koninklijk Nederlands Meteorologisch Instituut 2020). 
After each treatment block there were at least five days with-
out playbacks to avoid carry-over effects (e.g., Petrovan et al. 
2012). Ten different combinations of three playback frag-
ments of each 40 s were placed in random order. To avoid 
habituation, fragments were never used more than two times 
(McGregor et al. 1992). Playbacks were played for 40 s at 
20:00 h (CET), because hare activity and foraging behavior 
peaked during that time (Hansen 1996), thereby increasing 
the chance of triggering anti-predator responses during for-
aging. Audio boxes were placed 50 m south from the core 
location of GPS activity of a given hare at 20:00 h on previ-
ous days (mean distance between boxes = 1117 ± 1882 m), 

Table 1   Overview of hypotheses tested

No Hypothesis Justification References

1 After a predator–prey encounter in short 
vegetation, hares spend more time in tall 
vegetation that provides more cover

To hide and escape from predators, hares will 
go to taller vegetation that provides more 
cover

Neumann et al. (2011), Weterings et al. 
(2018)

2 Hares spend more time costly vigilant in tall 
vegetation

Tall vegetation blocks visual detection of 
predators. To improve auditory detection 
of approaching predators prey species stop 
chewing and swallowing food

Benhaiem et al. (2008), Monclús and Rödel 
(2008), Trefry and Hik (2009)

3 In contrast to short vegetation, hares will 
spend more time foraging in tall vegetation 
to compensate for any losses in nutrient 
intake

Tall vegetation often contains a poor nutrient 
concentration that increases handling time 
during foraging, therefore to increase total 
nutrient intake hares will increase their 
time spend foraging

Shipley (2007), Weterings et al. (2018)
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with the largest speaker directed towards the north to stand-
ardize distribution of playbacks in different directions.

Costly vigilance and foraging time

To investigate time spent costly vigilant and time spent for-
aging, we recorded accelerometer (ACC) data of collared 
hares in three axes, every two minutes for 24 h a day with 
a frequency of 10.54 Hz per axis. To interpret the acceler-
ometer data, a hand-held video camera was used to record 
behavior of collared hares in the field. We video-recorded 
the behavior of eight hares to account for individual varia-
tion between hares (see Brivio et al. 2021); six hares from 
this study site and two hares from another coastal dune habi-
tat on Schiermonnikoog island. Behavioral observations of 
the latter two hares in a comparable habitat were only added 
to improve the classification of the accelerometer data of this 
study, not to explain our hypothesis, because the GPS collars 
used and the sampling design was exactly the same. The six 
hares in our two study sites were observed when hares were 
expected to be the most visible and active (7:00–10:00 and 
13:00–16:00). We recorded a total of 9225 s of behavior 
(mean 1153 s ± 1509 SD per observation).

Vegetation height

To investigate the vegetation height, we measured the 
vegetation height at five orthogonal locations in six ran-
dom 2 × 2 m quadrants in each of the 20 vegetation types 
(n = 120) (Agriculture; flower-rich grasslands; bulb fields; 
dune grasslands; Burnet rose, creeping willow-, blackberry 
thicket; bare sand; calcareous dune grassland; calcareous 
dune valleys; deciduous forest; coniferous forest; former 
agriculture; other; other forests; reed swamp; reed swamp 
communities; herbaceous, fault, and mantle communities; 
thickets; nutrient-rich grasslands; nutrient-rich pioneer com-
munities, flood meadows, and pace vegetation; near-shore 
communities). Next, we recorded GPS locations of indi-
vidual hares every 12 min for 24 h a day, and used ArcGIS 
(version 10.7) to link the GPS location of the hares with the 
average height of the vegetation type at that location.

Nutrient intake

To test the effect of predation risk on nutrient intake, 
the available food quantity (i.e., edible biomass) and the 
nutrient concentration of each vegetation type was meas-
ured. We collected samples of edible biomass for seven of 
the most important plant species in the diet of hares (i.e., 
Festuca rubra, Agrostis capillaris, Poa pratensis, Hol-
cus lanatus, Poa trivialis, Taraxacum officinale, Rubus 

caesisus; Kuijper et al. 2008; Weterings et al. 2018) and 
a commercial flower bulb species using the hand-pluck 
method (de Vries and Schippers 1994). Edible biomass 
(i.e., the green plant parts that have a high nutritional 
value and are selected by hares; Homolka 1987) were col-
lected by the hand-pluck method in six randomly placed 
circular plots (10 m radius) up to 50 cm in height in each 
vegetation type (n = 120). Plant parts were air-dried, 
stored, and chemically analyzed for the concentration 
of phosphorus (P). We chose phosphorus to investigate 
nutrient intake, because phosphorus plays an important 
role in the body of animals, involving the skeletal forma-
tion, energy storage, metabolism, nerve impulse transmis-
sion and muscle contraction (Barboza et al. 2009) that 
could facilitate flight from predators. Furthermore, phos-
phorus is considered one of the most important nutrients 
for hares (Miller 1968).

Data preparation

Costly vigilance and foraging time

The video recordings of hare behavior were used to label 
one-second segments of ACC data that only consisted of the 
same behavior. Hare behavior was classified into six postures 
(i.e., sitting, sitting alert, standing, standing on hind legs, 
movement, and jumping), and six activities (i.e., chewing, 
cropping, grooming, scratching, shaking, and stretching) 
using the software Avidemux (2.6.6). Labeled segments of 
ACC data (training data) were used to classify unlabeled 
segments ACC data into behaviors using Decision Tree 
(accuracy 80.96% ± 0.75 SD) in the AcceleRater software 
(Resheff et al. 2014). We used the time sitting alert as a 
proxy for the time spent costly vigilance, and cropping time 
as a proxy for foraging time. We chose cropping time instead 
of chewing time to determine the foraging time, because 
cropping time was classified with higher precision and recall 
than chewing time.

Even though there is a trade-off between foraging time 
and chewing time (Spalinger and Hobbs 1992), nutrient 
intake increases when chewing time as well as foraging time 
increases (Gross et al. 1993).

Vegetation height

To calculate the fraction of time hares spent in a certain veg-
etation height in an hour, the GPS location of the hares was 
linked to a high-resolution GIS map (1:5000) of the different 
vegetation types (Everts et al. 2008, 2009). However, when-
ever hares were present in multiple vegetation types within 
an hour, we calculated the weighted vegetation height.
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Nutrient intake

We calculated the relative nutrient intake of hares by multi-
plying the time spent foraging by the phosphorus concentra-
tion in the edible biomass (Fig. 1).

The average edible biomass (g/m2) was calculated for 
each vegetation type by summing the amount of edible bio-
mass (g) of all plant species in one square meter of a vegeta-
tion type up to 50 cm in height. The average content of phos-
phorus in every vegetation type was calculated by averaging 
the percentage of phosphorus in the edible biomass present 
in the vegetation type, weighted by their volume per square 
meter up to 50 cm in height (see Weterings et al. 2018).

Data analysis

We explored the data using the protocol of Zuur et al. (2010) 
to identify potential statistical problems. Because all males 
were juveniles, we could not investigate the effect of life 
stage in our analysis. We used Generalized Additive Mixed 
Models (GAMMs) in R (R Core Team 2021; R package 
‘mgcv’ version 1.9-0 (Wood 2017)) to test the effect of the 
treatment on the fraction of time spent costly vigilant by 
hares (n = 1390) (i.e., beta distribution), the average vegeta-
tion height (n = 1227) in which the hares were present (i.e., 
Gaussian distribution), the fraction of time spent foraging 
(n = 1342) (i.e., beta distribution) and on the phosphorous 
intake by hares (n = 1342) (i.e., Gaussian distribution). 
GAMMs describe highly nonlinear relationships between 
response and explanatory variables using smoothing func-
tions (Guisan et al. 2002). In total we investigated 168 h 
(7 days times 24 h) of response by the hares. All four global 
models included the treatment, the control variables sex, 
body weight, temperature, wind speed, rainfall, prior treat-
ment, time of day and the interaction treatment*time of 
day. Because hares shift between short and tall vegetation 
during a day at dusk and dawn (Schai-Braun et al. 2012), 
we included time of day and the interaction treatment*time 
of day in the analysis. The variable ‘prior treatment’ was 

added to control for any carryover effects by the treatment 
the day before. The prior treatment on the first day of a treat-
ment block was categorized as no treatment. Additionally, 
we transformed (1) the amount of rainfall into presence-
absence data, because the data mainly showed zeros, and 
(2) phosphorous intake (log(x + 1)) because the data were 
right-skewed. We included vegetation height as an explana-
tory variable in the models that investigated time spent 
costly vigilant (Hopewell et al. 2005; Riginos and Grace 
2008), foraging time (Heuermann et al. 2011) and phospho-
rous intake (Shipley 2007). However, vegetation height was 
excluded from the foraging time model and the phosphorous 
intake model due to multicollinearity. We found no multi-
collinearity between the other control variables. All con-
tinuous covariates were standardized to compare the effect 
size within and between models. Hare ID and treatment 
day block within hare ID were considered random factors. 
We excluded one hare from the analysis, because we did 
not identify its sex. A GAMM with cyclic smoother was 
used to model the effects during the time of day, to avoid 
discontinuity between subsequent days. Temporal autocor-
relation among subsequent hours within a time block was 
addressed by including an autocorrelation structure, mod-
eling a decreasing degree of autocorrelation with increasing 
temporal distance between data points. We chose an autore-
gressive (AR(1)) covariance type for individual time blocks 
at each site as this resulted in the best fit. The Akaike Infor-
mation Criterion (AIC) was used to select the final model 
using the ‘base’ R-package (version 3.6.1). We validated the 
final model using the ‘MuMIn’ R-package (version 1.43.17) 
(Bartoń and Bartoń 2020) to plot the residuals against the 
predicted value and all the covariates.

Results

Compared to a playback of sheep and no playback, hares 
only spent more time foraging after an alarm call of a con-
specific hare (Table 2).

Fig. 1   The four-step process of 
food intake with the formula 
that shows the proxies used 
for foraging time and nutrient 
intake
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Costly vigilance

We found that the playback of conspecific alarm calls did not 
affect the amount of time the hares spent costly vigilant (Wald 

X2 [2] = 0.343, p = 0.710). However, between 6 AM and 4 PM 
hares spent more time costly vigilant (Wald X2 [8] = 8.303, 
p < 0.001; Fig. 2), more specifically when present in tall veg-
etation (Wald X2 [1] = 22.605, p < 0.001).

Table 2   Results of the Generalized Additive Mixed Models (final models) on the effect of type of treatment on the costly vigilance, vegetation 
height in which the hares were present, foraging time, and phosphorous intake (log(x + 1)) of European hare (Lepus europaeus)

The results are based on 55 treatment day blocks, twelve days and nine hares in two study sites. The sample size is in hours.
a Reference category: treatment no sound
b Reference category: female
c Standardized covariates
d Reference category: absence of rain
e Smoothing function
f Regression coefficients
g sm = presented by a smoother

Costly vigilance
(n = 1390)

Vegetation height
(n = 1227)

Foraging time
(n = 1342)

Phosphorous intake
(n = 1342)

ßf ± SE p ß ± SE p ß ± SE p ß ± SE p

Treatment Harea 0.09 ± 0.12 0.45 −0.64 ± 1.02 0.53 0.45 ± 0.15  < 0.01 −0.01 ± 0.08 0.91
Treatment Sheepa 0.07 ± 0.13 0.59 −0.11 ± 1.16 0.92 −0.11 ± 0.20 0.60 −0.04 ± 0.09 0.67
Prior Treatment Controla 0.05 ± 0.08 0.55
Prior Treatment Harea −0.10 ± 0.13 0.45
Prior Treatment Sheepa 0.27 ± 0.09  < 0.01
Sex Maleb −0.91 ± 1.90 0.63
Bodyweightc −0.47 ± 0.17 0.007
Raind −0.27 ± 0.10 0.01 −0.20 ± 0.05  < 0.01
Wind speedc −0.09 ± 0.06 0.12
Vegetation Heightc 0.16 ± 0.03  < 0.01
Time of dayc,e smg  < 0.01 sm  < 0.01 sm  < 0.01
Random effects variances σ2

Treatment day block = 0.049
σ2

Hare = 0.452
σ2

Treatment day block < 0.001
σ2

Hare = 5.356
σ2

Treatment day block = 0.990
σ2

Hare = 0.270
σ2

Treatment day block = 0.009
σ2

Hare = 0.062

Fig. 2   Estimated marginal mean 
time spent costly vigilant (frac-
tion per day) (grey band: 95% 
CI) plotted against time of day, 
based on 1390 h of observa-
tions of 9 hares in 2 sites. Start 
treatment was at 20:00 h (black 
arrows). Results based on Gen-
eralized Additive Mixed Model 
(GAMM)
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Vegetation height

We found that the playback of conspecific alarm calls did not 
affect the average vegetation height in which hares were pre-
sent (Wald X2 [2] = 0.201, p = 0.818). However, between 6 
AM and 4 PM (Wald X2 [8] = 37.01, p < 0.001), hares spent 
significantly more time in taller vegetation (Fig. 3), which 
corresponds to the time when the hares spent more time 
costly vigilant.

Foraging time

Hares spent more time foraging after a playback of a con-
specific alarm call compared to a playback of sheep, and 

no sound (Wald X2 [2] = 10.42, p = 0.005); Fig. 4). Hares 
with a lower bodyweight spent more time foraging (Wald X2 
[1] = 7.16, p = 0.007). Furthermore, hares spent more time 
foraging in absence of rain compared to the presence of rain 
(Wald X2 [1] = 6.49, p = 0.011). Finally, time of day was 
not significantly related to the time spent foraging (Wald X2 
[1] = 0.204, p = 0.651). Hares thus spent a similar amount 
of time per hour foraging throughout the day and the night.

Phosphorous intake

We found that the playback of conspecific alarm calls did not 
affect the phosphorus intake of hares (Wald X2 [2] = 0.088, 
p = 0.915). However, the phosphorus intake of hares was 

Fig. 3   Estimated marginal mean 
vegetation height per hour in 
which hares were found (grey 
band: 95% CI) plotted against 
time of the day, based on 1227 h 
of observations of 9 hares in 2 
sites. Reference category: Treat-
ment = control, Sex = females. 
Start treatment was at 20:00 h 
(black arrows). Results based 
on Generalized Additive Mixed 
Model (GAMM)

Fig. 4   Estimated marginal mean 
time spent foraging (fraction 
per day) (error bars: 95% CI) 
plotted against treatment, based 
on 1342 h of observations of 9 
hares in 2 sites. Reference cat-
egory: Bodyweight = 4253.15 g, 
Wind speed = 10.54 m/h, 
Rain = absence. Means with 
similar letters do not differ 
significantly. Results based on 
Generalized Additive Mixed 
Model (GAMM)
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significantly affected by time of day (Wald X2 [7] = 4.81, 
p < 0.001; Fig. 5), with a gradual increase in intake between 
4AM and 4PM (i.e., during daytime in tall vegetation), after 
which the phosphorus intake decreased again (i.e., during 
night time in short vegetation). Moreover, hares had a sig-
nificantly higher phosphorus intake in the absence of rain 
compared to the presence of rain (Wald X2 [1] = 13.64, 
p < 0.001).

Discussion

We investigated the effect of a predator–prey encounter on 
the phosphorous intake of a small cryptic herbivore, the 
European hare. As a response to conspecific alarm calls, (1) 
hares did not increase their time spent costly vigilant in tall 
vegetation, (2) hares did not spend more time in tall vegeta-
tion, but (3) increased their time spent foraging in short and 
tall vegetation. Still, the phosphorus intake of hares was not 
affected. Therefore, the antipredator response of the Euro-
pean hare to our playback treatment did not come with a 
nutritional cost in phosphorus. Hares could possibly adjust 
their diet to compensate for losses in nutrient intake (Engel-
hart and Muller-Schwarze 1995; Epple et al. 1993; Pfister 
et al. 1990; Sullivan and Crump 1984). Alternatively, food 
intake could interact with safety to affect dietary responses 
to predation. For example, L. catesbeianus tadpoles adjust 
their body nutrient stoichiometry in response to predation 
risk (Guariento et al. 2015). Besides, Eurasian siskins that 
did not reduce their food intake rate with increased preda-
tion risk, showed more effective behavior to detect or escape 
from a predator, compared to individuals that did reduce 
their food intake (Pascual and Senar 2014). Additionally, 
hares that forage on an energy-rich diet that reduces gut-
content weight could be more successful in escaping preda-
tors (Schai-Braun et al. 2015). Furthermore, in response to 

an encounter, prey possibly compensate for the loss in carbo-
hydrates, which are spent during a flight response (Hawlena 
and Schmitz 2010a). In contrast, prey probably do not need 
to compensate for a loss in phosphorus or calcium, as these 
nutrients are not spent during an escape, but are required 
for stronger bones (Rinehart and Hawlena 2020). The latter 
could explain the lack of a nutritional cost in phosphorus as 
a result of the hare treatment observed in our study. Never-
theless, because the reactive response acts late in the pre-
dation sequence and occurs less frequent (see also Barnier 
et al. 2014; Christianson and Creel 2010), the effect on prey 
ecology at a population level would be limited (Creel 2018).

The time spent costly vigilant did not increase as a result 
of the ‘risky’ playback of conspecific alarm calls of hares. It 
is unlikely that this behavioral response was shown because 
of the type of playback used, as hares did respond to our cue 
by increasing their time spent foraging. Besides, playbacks 
of conspecific alarm calls are used successfully to trigger 
antipredator behavior in many other studies (e.g., Blumstein 
et al. 2001; Cameron and du Toit 2005; Lung and Childress 
2007; McDonough and Loughry 1995). Our results did show 
that in contrast to short vegetation, hares in tall vegetation 
spent more time being costly vigilant, probably to improve 
auditory detection of approaching predators due to low visi-
bility (Marboutin and Aebischer 1996; Benhaiem et al. 2008; 
Riginos and Grace 2008). Differences in (costly) vigilance 
seemed, therefore, more related to differences in visibility 
due to vegetation cover than a change in predation risk initi-
ated by our playback.

As a response to the treatment simulating a predator–prey 
encounter, we hypothesized that prey would shift habitat 
and move to taller vegetation containing more cover (Neu-
mann et al. 2011). In contrast, hares did not move to tall 
vegetation, but moved to tall vegetation during the transi-
tion from night to day. Hares shift from tall to short vegeta-
tion during dusk and vice versa during dawn (Schai-Braun 

Fig. 5   Estimated marginal 
means of phosphorous intake 
(95% CI) plotted against time 
of the day, based on 1342 h of 
observations of 9 hares in 2 
sites. Reference category: Treat-
ment = control, Rain = no rain, 
Prior treatment = no treatment, 
Bodyweight  (z-score) = 0. Start 
treatment was at 20:00 h (black 
arrows). Results based on Gen-
eralized Additive Mixed Model 
(GAMM)
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et al. 2012). Possibly, hares did not shift habitat to avoid 
predators in open vegetation, because their defense matched 
predator attack ecology in open and short vegetation during 
the night (Dellinger et al. 2019). Short vegetation allows 
hares to detect approaching predators (Hewson 1977) and 
to escape predators by flight (Weterings et al. 2016). How-
ever, hares only use flight as an escape tactic in open habitat 
during the night, and make use of crypsis in closed habitat 
during the day. We, therefore, suggest that hares have an 
advantage escaping predation in short vegetation during the 
night, while they have an advantage avoiding predation in 
tall vegetation during the day (Dellinger et al. 2019).

In contrast to the control treatment, playback of conspe-
cific alarm calls increased the time spent foraging by hares 
throughout the day, no matter the length of the vegetation. 
Prey species increase their time spent foraging during high 
levels of predation risk, when this risk is uniformly spread 
over the landscape (i.e., they have no place to hide) and 
missed opportunity costs for foraging are therefore low 
(Eccard et al. 2008; Eccard and Liesenjohann 2014). This 
could apply to the European hare, which as a non-central 
place forager, does not have a refuge or burrow. However, 
snowshoe hares (Lepus americanus) (also a non-central 
place forager) did show a decrease in time spent foraging at 
high predation risk (Liu et al. 2014). Small mammals that 
can hide, decrease their time spend foraging during high 
predation risk (Verdolin 2006). Nevertheless, Mazza et al. 
(2019) showed that prey that could outrun their predator 
seem to accept predation risk rather than avoid predation 
risk and adjust their foraging behavior, compared to prey 
that cannot outrun their predator (see also Dellinger et al. 
2019). Besides, our prey could behaved more boldly during 
winter time, because the available food choices are limited 
during this season (Kervola 2019). Moreover, if the risk of 
starvation is high, prey will forage in unsafe habitats (Sih 
1980, 1982).

In contrast to studies that report hares resting in cover 
during day time (see e.g., Tapper and Barnes 1986), our 
results show that hares foraged in cover during the day. Pos-
sibly hares require a specific nutritional diet that can only 
be satisfied by foraging in two different types of habitats 
(i.e., short and tall vegetation) (see e.g., sparrows; Tinbergen 
1980), as mobile species often use multiple habitats to fulfill 
their biological needs (Firle et al. 1998; Doniol-Valcroze 
et al. 2012). Interestingly, during day time (between 8:00 
a.m. and 18:00 p.m.) when hares were found in tall veg-
etation, hares had a higher phosphorus intake in contrast 
to night time when hares were found in short vegetation. 
Furthermore, our results do show that hares with a lower 
bodyweight spent more time foraging. This could be an 
effect of the life stage of hares, or could corroborate with 
the hypothesis of mass-dependent predation risk (MDPR) 

(see Gosler et al. 1995; Kullberg et al. 1996; MacLeod et al. 
2005). Nevertheless, we think that earlier scientists did not 
observe hares foraging during the day time, because hares 
spent most of their time in cover during day time and are 
thus very difficult to observe (e.g., Marboutin and Aebischer 
1996). Most recent studies did not use accelerometers that 
can continuously record behavior of small mammals during 
their circadian rhythm, even in concealed habitats (see e.g., 
Botts et al. 2020). However, variation between individuals 
(e.g., in sex, age, body size, collar tightness) may affect the 
recorded values of accelerometers and need to be considered 
during data analysis (Brivio et al. 2021).

Overall, we found that playback of conspecific alarm calls 
of hares did not affect the antipredator responses of hares 
including their phosphorus intake. Animals consume food 
resources as a complex mixture of nutrients in varying lev-
els of availability to maximize their response to predation 
(Zaguri et al. 2022), while minimizing the effects of tox-
ics (Kirmani et al. 2010). In contrast to the consumption of 
phosphorus, hares could select an energy-rich diet, enabling 
them to run faster and escape from predators (Schai-Braun 
et al. 2015) (see hypothesis of mass-dependent predation 
risk: MacLeod et al. 2005), while meeting their daily energy 
demands. Additionally, the nutritional costs of an encounter 
can also affect the consumption of carbohydrates by prey, 
as carbohydrates are spent during the flight response. Fur-
thermore, prey anti-predator responses (i.e., vigilance or a 
habitat shift) seem strongly related to the escape tactics of 
prey species that can differ between different habitats, while 
it can also differ during the time of the day. After all, more 
detailed field studies on the effects of predation risk on the 
nutrient intake of prey species are necessary to get a better 
insight into species’ anti-predator-food tactics.
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