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The growing interest in plant protein sources, such as pulses, is driven by the

necessity for sustainable food production and climate change mitigation

strategies. Faba bean (Vicia faba L.) is a promising protein crop for temperate

climates, owing to its remarkable yield potential (up to 8 tonnes ha−1 in

favourable growing conditions) and high protein content (~29% dry matter

basis). Nevertheless, the adoption of faba bean protein in plant-based products

that aim to resemble animal-derived counterparts is hindered by its distinctive

taste and aroma, regarded as “off-flavors”. In this review, we propose to

introduce off-flavor as a trait in breeding programs by identifying molecules

involved in sensory perception and defining key breeding targets. We discuss the

role of lipid oxidation in producing volatile and non-volatile compounds

responsible for the beany aroma and bitter taste, respectively. We further

investigate the contribution of saponin, tannin, and other polyphenols to

bitterness and astringency. To develop faba bean varieties with diminished off-

flavors, we suggest targeting genes to reduce lipid oxidation, such as

lipoxygenases (lox) and fatty acid desaturases (fad), and genes involved in

phenylpropanoid and saponin biosynthesis, such as zero-tannin (zt), chalcone

isomerase (chi), chalcone synthase (chs), b-amyrin (bas1). Additionally, we

address potential challenges, including the need for high-throughput

phenotyping and possible limitations that could arise during the genetic

improvement process. The breeding approach can facilitate the use of faba

bean protein in plant-based food such as meat and dairy analogues more

extensively, fostering a transition toward more sustainable and climate-

resilient diets.
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1 Introduction

Natural resources depletion and climate change exacerbate the

challenge to meet the future food demand in view of anticipated

population growth by 2050 (Calicioglu et al., 2019). In the past

decades, rising incomes and urbanization have driven the increased

consumption of animal proteins. Animal-based products contribute

significantly to environmental pressures, including land and water

use, greenhouse gas (GHG) emissions, acidification and

eutrophication potential. In the depicted scenario, the transition

from meat-intensive diets towards plant protein-based diets

(“protein transition”) is crucial to meet the climate change

mitigation targets and ensure food security (D’Odorico et al., 2018).

The European food market has already witnessed a burgeoning

trajectory of plant-based food retail sales, especially meat and dairy

analogues (Aschemann-Witzel et al., 2021). Also known as

replacers or alternatives, analogues are plant-based processed

foods designed to resemble animal products in appearance,

texture and taste (Fresán et al., 2019; Kyriakopoulou et al., 2019).

At present, soybean, wheat, and pea-based products dominate the

market for meat analogues, while soybean and almond-based

products do for dairy analogues (Nawaz et al., 2022). A more

recent area of development involves the use of soy and wheat

protein in fish analogues (Nowacka et al., 2023). Environmental

concerns around soy production in South America (e.g.,

deforestation, land-use change, transport-associated emissions)

and increased nitrogen emissions have led to consumer and

policy-maker interest in alternative pulse-based proteins (Tsolakis

et al., 2019). Pulses are the dried seeds of certain legumes (e.g., pea,

chickpea, lentil, lupin, faba bean, and diverse other dry beans), thus

excluding those that are used as vegetables (e.g., fresh peas, or green

beans) or for oil extraction (e.g., soybean and peanut) (Iriti and

Varoni, 2017). Among pulses, the use of protein-rich ingredients

from faba bean (Vicia faba L.) (i.e., flours, concentrates, isolates) is

still minor (Multari et al., 2015).

Faba bean is in the spotlight for its high yield potential. The

yield of superior cultivars adapted to specific environments and

grown with appropriate husbandry can reach up to 8 to 9 tonnes ha

−1 in favourable European climates (Metayer, 2004). However, less

than half of the production potential is usually achieved due to

biotic and abiotic stress, as well as inadequate agronomic

management (Metayer, 2004). In Europe, the difference in actual

yield between countries is remarkable. Yield ranges from an average

of 3.9 t ha−1 in Germany and UK to 1.4 t ha−1 in the

Mediterranean-type environments, such as Spain (Mıńguez and

Rubiales, 2021). Faba bean ranks behind other pulses such as lentil,

cowpea, field pea, chickpea, and common bean in global harvested

area and production, being superior only to lupin (FAOSTAT,

2021) (Figure 1). However, the high yield and protein content

makes faba bean superior to most other pulses in terms of protein

yield per unit of land area (protein ha−1).

Vicia faba represents one of the cheapest sources of proteins

and carbohydrates. Carbohydrate content accounts for 50 to 68%

(Punia et al., 2019), while protein content ranges from 20 to 40%

(Dhull et al., 2022) of its seed composition, with an average of 29%.

Contrarily, the oil content is low and ranges from 0.5 to 2%. Besides
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for high protein content, this crop is prized in the food industry

because is locally grown and processed in Europe. Contrarily to

imported soybean, faba bean supports “clean label” product (Asioli

et al., 2017). Moreover, its seeds already have a long history of use in

food worldwide (Zong et al., 2019), facilitating consumer

acceptance of new products. This pulse is a healthy food source,

containing potassium, calcium, magnesium, iron, and zinc, dietary

fibres, phenolic compounds, 3,4-dihydroxyphenylalanine (L-

DOPA), and g-aminobutyric acid (GABA) (L’Hocine et al., 2020).

Faba bean offers several agronomic and ecological advantages to

growers, such as adaptability to a wide range of climates and soils,

and a particularly high nitrogen-fixing ability via Rhizobium

bacteria symbiosis (60-250 kg ha−1 per year) (Torres et al., 2011;

Maalouf et al., 2018). Therefore, faba bean is an attractive option for

both farmers and the food industry. To support the foreseen

increase of its market share in the next years (Multari et al.,

2015), it is necessary to develop and commercialise varieties with

enhanced quality features that could facilitate the use of its protein

fraction in meat or dairy analogues. Optimising the quality of the

seeds for such food applications requires a synergistic approach

between plant breeding and food technology research. In this way

legume breeders will be guided by food technologists to the quality

requirements of highly processed food including protein

functionality (i.e., solubility, gelling, emulsifying or foaming

property, etc.) and flavor. At the moment, the typical faba-bean-

like flavor hampers consumer acceptance and is negatively

perceived as “off-flavor” in meat and dairy analogues.

In this comprehensive review, we address the challenges

associated with improving flavor features in faba bean,

emphasising the need for specialised breeding programs tailored

to ameliorate traits relevant to the modern food industry. The

review will first provide a brief introduction on the cultivation, food

uses, and breeding history of this crop. It will subsequently explore

the molecules likely involved in flavor perception, elucidate the
FIGURE 1

World production and yield of major pulses. Production in million
tonnes of bean, chickpea, faba bean, lentil, lupin and pea for the
year 2021. The trendline highlights the average yield of these crops
as tonnes ha−1. The yield value reported was calculated by dividing
world production by the total harvested area using data of 2021.
Source: FAOSTAT, 2021.
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primary biosynthetic pathways controlling the production of these

compounds, and identify the respective key regulators that can be

targeted with breeding. Additionally, we will provide a perspective

on breeding strategies aimed at mitigating off-flavors, discussing

challenges such as high-throughput phenotyping and potential

drawbacks in the process.
1.1 Traditional food uses and new trends
of consumption

Faba bean is one of the earliest domesticated crops, but

knowledge about its origin and pre-domestication distribution has

been scarce and debatable (Duc et al., 2010). Cubero (1974)

reported the Near East as the centre of origin. From this area,

Vicia faba cultivation spread following human migrations to the

Mediterranean basin, the Nile Valley, and Central and East Asia, all

becoming regions of historical cultivation of this crop (Cubero,

1973). In area where the consumption of faba bean is a customary

practice there are well known typical dishes based on faba bean such

as ‘Ful Medames’ (Egypt), ‘Shahan ful’ (Ethiopia), ‘Ful bi’l-

kammun’ (Tunisia), Bissara (Morocco), Bakla (Turkey), ‘Macco’,

and ‘Puré di fave e cicorie’(Italy) (Pasqualone et al., 2020). In many

Western nations (e.g., central-northern Europe and USA), faba

bean is mainly used in animal feed. Overall, only about 15% of the

total crop production targets human consumption, contributing to

the perception that faba bean is an underutilised protein source.

Despite being a healthy food, faba bean contains antinutritional

factors, such us tannins, lectins, trypsin inhibitors that can reduce

protein digestibility and negatively impact the bioavailability of

minerals and polysaccharides (Kim et al., 2015; Rahate et al., 2021).

Additionally, vicine and convicine cause favism, in individuals who

have a hereditary loss of the enzyme glucose-6-phosphate

dehydrogenase (Luzzatto and Arese, 2018).

The interest of the food industry in utilising faba bean protein

fractions as food ingredients has been growing. This is witnessed by

increased literature on the incorporation of faba bean flour and

protein-rich fractions in formulations for bread, pasta, snack, infant

formulas, plant-based meat analogues, etc. By replacing 30% of

wheat flour with faba bean flour, bread formulations have shown an

increase in protein content from 11.6% to 16.5% of dry matter

(Coda et al., 2017). The partial substitution of wheat with faba bean

ingredients in pasta has also been suggested to enhance nutritional

properties for better health outcomes (Coda et al., 2017; Chan et al.,

2019). Moreover, dry fractionation-derived faba bean protein

concentrate has been demonstrated to be suitable for meat-like

products (do Carmo et al., 2021). Fibrous textured meat analogues

were successfully produced using high moisture extrusion of

commercial faba bean concentrate (56% protein) or isolates

prepared by aqueous fractionation (88% protein) (Ferawati

et al., 2019).

The increased number of studies on incorporating faba bean

protein fractions into various food products suggests that this

ancient pulse is nowadays consumed in new and alternative ways.

To promote the use of faba bean as reliable food ingredient, it is

crucial to produce high-quality seed-derived ingredients. Plant
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breeding can significantly contribute to developing optimal faba

bean varieties tailored for modern food applications.
1.2 Faba bean ideotypes for modern
food applications are lacking in the
variety portfolio

In the period 1960-1990, Europe witnessed a severe decline in

the faba bean cultivation area. The primary reasons include small

economic margins for farmers, economic competition with

soybean, as well as low and unstable yields caused by biotic and

abiotic stress (Flores et al., 2013; Karkanis et al., 2018; Mıńguez and

Rubiales, 2021). The lack of interest in European faba bean

cultivation in the period 1960-1990 resulted in a relatively brief

breeding history with limited investments, starting only in the 1980s

in Europe. Seed production has been traditionally relegated to small

farms, where landraces have been selected based on their agronomic

performance at a local scale (Duc et al., 2010), representing the

main genetic material cultivated. Consequently, there is a restricted

number of varieties registered in the European catalogue in

comparison to field pea and soybean (European Commission,

2023). The main varieties available in the market belong to the

botanical groups Vicia faba var.majorHarz. (broad bean) and Vicia

faba var.minor Beck. (field bean). Broad bean and field bean mainly

exhibit differences in the morphology of the seeds (i.e., seed size),

with broad bean possessing larger seeds than field bean (Muratova,

1931). In Europe, broad beans are primarily utilised for food

purposes, while field beans serve as animal feed or green manure

(Pasqualone et al., 2020).

Following 1990, faba bean yield started to increase because of

genetic selection. Breeding has been conducted to increase tolerance

to winter climate conditions (frost hardiness), vernalization

requirement and photoperiodic induction (Arbaoui et al., 2008).

As a result, spring and winter types are available. Winter-type

varieties are typically sown in autumn in cold-temperate regions,

including the Mediterranean basin or some mild climates of

Australia and China (Flores et al., 2012; Mıńguez and Rubiales,

2021). Farmers are particularly attracted by the possibility of

cultivating the winter faba bean in a wider area in Europe, even

in colder climates (Neugschwandtner et al., 2019). Certain cultivars

with particularly enhanced hardening responses are currently

cultivated in the UK and other high-latitude regions. Spring-type

varieties, on the other hand, do not require vernalization or

hardening response, thus are currently the most preferred in cold

climates (Flores et al., 2012; Mıńguez and Rubiales, 2021).

Improving seed quality has not been a major target for breeding,

mostly because there was no impulse from the food industry. The

breeding efforts in seed quality have been mostly directed to

contents of tannins and the alkaloids vicine and convicine (V-C)

(Gutierrez and Torres, 2019; Bjornsdotter et al., 2021; Tacke et al.,

2022). At the moment, the European catalogue of registered

varieties includes four types with improved quality based on the

reduced tannin content in the seed testa (outer protective layer of

the bean) and the lower levels of V-C in the cotyledons (the part of

the seed embryo that will become the first leaves of the plant upon
frontiersin.org
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germination). These four types refer to high or low levels of tannins,

and high or low levels of V-C. The word “fevita” usually refers to the

simultaneous combination of low tannins and V-C, after the first

variety of this type was registered in the French catalogue under the

name of FEVITA® in 2004 (Crépon et al., 2010; Zong et al., 2019).

Despite the release of varieties with low antinutritional compounds

on the market, varieties with high levels of tannins and V-C are still

the most cultivated.

Faba bean is gaining popularity in several countries as an

ingredient for plant-based products. However, faba bean

ideotypes for modern food applications (i.e., plant-based meat

analogues) are lacking in the market. The development of

improved varieties with good techno-functional properties (i.e.

solubility, emulsifying, foaming ability, etc.), together with

nutritional improvement, is pivotal to expanding the use of faba

bean ingredients in the food industry. Interestingly, new varieties

could be bred for protein components and amino acid composition,

which are intrinsic components impacting the techno-functionality

of the products during processing (Rahate et al., 2021; Augustin and

Cole, 2022).
2 Defining reduced off-flavor as a
quality trait in faba bean breeding

One of the major obstacles to adopting a diet with reduced meat

consumption is the lack of familiarity with meat-alternative

products and their limited aroma, taste and texture attractiveness

(Wang et al., 2022).

Flavour is a multisensory perception defined by taste and

aroma, which are influenced by the food matrix and its complex

physico-chemical affinity with flavor-active chemical compounds

(Tournier et al., 2007; Roland et al., 2017). Aroma refers to the

perception of volatile odour-active compounds via receptors in the

nose (Czerny et al., 2008). The main aroma features of pulses are

beany, grassy, and earthy (Wang et al., 2021). Taste is perceived via

receptors on the tongue and in the oral cavity and results from non-

volatile compounds present in the grains. The taste of pulses is often

reported as bitter and astringent (Roland et al., 2017; Sharan et al.,

2021). A specific flavor can be perceived as pleasant or unpleasant

(“off-flavor”) by consumers, depending on the intended final

product. For example, the typical faba-bean-like flavor is

unpleasant in meat or dairy alternative analogues, as consumers

expect tastes like meat, milk, and cheese rather than beans.

Consequently, off-flavors hinder consumer preference and

acceptance of faba bean in modern plant-based products (Wang

et al., 2022). Ideal faba bean ingredients should be as bland as

possible in terms of flavor.

Prior to starting breeding programs and setting breeding

objectives, plant breeders need understanding about off-flavor

molecules and which of them highly impact on off-flavor in the

final ingredients. In this way, marker compounds for screening for

unpleasant flavors can be defined. It is important to understand that

not all compounds detected in a food or food ingredient contribute

to its flavor, and determining the real impact of the diverse aroma

and taste compounds on perception typically involves laborious
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solely based on their concentration, but it also relies on their specific

sensory thresholds. Some compounds are detectable by some

consumers at ultra-trace levels (Ridgway, 2015). The importance

of volatile compounds on flavor is usually ranked by calculating the

so-called odour activity values (OAVs), which simultaneously

account for their concentration and sensory threshold. Volatile

compounds with high OAVs are often essential to the aroma, unless

they are suppressed in the respective matrix (Grosch, 2001).

However, it is worth mentioning that the sensory thresholds of

compounds vary across different mediums or the matrix in which

these compounds are incorporated. For example, the taste threshold

of kaempferol is 20 mg/kg in 5% aqueous ethanol, but it is almost 50

mg/kg in beer (Van Gemert, 2003). Another approach to rank the

importance of flavor compounds in a food matrix involves taste

dilution or aroma dilution experiments. In aroma dilution

experiments, gas chromatography-olfactometry (GC-O), which

combines the chromatographic separation of compounds with

human sensory detection, is used. The result of this analysis is

expressed as a ‘flavor dilution factor’ (FD-factor) (Grosch, 2001). In

taste dilution experiments, a sensory panel is involved, and the

result is expressed as ‘taste dilution factor’ (TD factor) (Frank et al.,

2001). Higher dilution factors imply a greater impact of the

respective compound on the flavor of the food.

It is worth noting that the identification of key off-flavor

compounds depends on several factors. For instance, different

varieties of faba exhibit a different level of off-flavors compounds

(Akkad et al., 2021), but the difference in off-flavor can also be

caused by the specific processing applied to the seeds (Tuccillo et al.,

2022). Currently, faba bean seeds are processed to produce flour or

protein concentrates and isolates. Protein concentrate and protein

isolate are two types of protein-enriched fractions (Augustin and

Cole, 2022). Protein concentrates typically contain about 60-80%

protein, while protein isolate, due to additional processing to

remove nearly all non-protein components, results in a purer

protein content of around 90-95% (Ma et al., 2022). Tuccillo et al.

(2022) recently demonstrated that flour, protein concentrate and

protein isolate can have different off-flavors and off-flavor

intensities. This is likely linked to the different protein content of

different ingredients, as protein play as a carrier of flavor

compounds, but is also influenced by the distinct handling

processes of the seeds (e.g., removal off the seed coats,

temperatures etc.) and by the oxidative reactions occurring in

the meantime.

The dominant flavor of faba bean has been traditionally

described as dried pea flavor, bitter aftertaste and unpleasantly

fruity (Seidel, 1976; Schultz et al., 1988). Specific research on the off-

flavor properties of faba bean is scarce compared to soybean and

pea, partially because the use of faba bean as a plant-based food

ingredient is more recent. For the investigated pea matrices, key off-

flavor compounds have been pointed out. Taste dilution

experiments have been conducted for bitter compounds in pea

protein isolates (Glaser et al., 2020). Moreover, the use of GC-O and

OAV calculations using literature thresholds in water have been

reported for pea milk (Zhang et al., 2020). For faba bean, Akkad

et al. (2021) conducted chemical analyses of volatile compounds in
frontiersin.org
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flour and determined key volatile flavor compounds by calculating

relative OAVs using literature thresholds in air. In another study,

Tuccillo et al. (2022) combined sensory analysis with chemical

analyses of volatile and non-volatile compounds, employing

statistical methods to identify compounds in faba bean

ingredients and extrudates that are correlated with off-flavor. The

most recent study, by Karolkowski et al. (2023a), performed gas

chromatography mass spectrometry (GC-MS) and GC-O following

solvent assisted flavor extraction (SAFE) of various faba bean

fractions, including flour, starch, and protein. However, to the

best of our knowledge, no flavor dilution or taste dilution

experiments have been reported yet for faba beans, and

knowledge gaps regarding key off-flavor compounds (mainly non-

volatile) are still relatively large. Therefore, educated guesses need to

be taken to determine which compounds potentially have an impact

on faba bean off-flavor, based on their presence and abundance,

their sensory characteristics, and their impact known for crops like

pea and soy.

In the following subparagraphs, we discuss a summary of

molecules potentially involved in off-flavor development in faba

bean and their origins. Table 1 presents a shortlist of molecules that

we consider suitable as marker compounds for screening faba bean

ingredients for potential off-flavors. Our observations are supported

by literature, such as key compounds determined by relative OAV

(Akkad et al., 2021) and by GC-O (Karolkowski et al., 2023b) in

faba bean, supplemented by observations in our own laboratories. A

marker compound is not necessarily the one with the most

significant impact on the flavor. It can also be a compound

produced in large amounts and capable of indicating the

occurrence of off-flavors-related chemical reactions. For this

reason, the amounts of oxidation compounds formed when

C18:1, C18:2, and C18:3 are oxidized (Belitz et al., 2009) were

also included in the final choice of the makers for volatile

compounds. It is important that the marker compounds for off-

flavors are easy to detect, acting as proxy of other chemicals that

might have a more substantial impact on flavor but are less

d e t e c t a b l e o r who s e d e t e c t a b i l i t y i s a ff e c t e d b y

extraction techniques.
2.1 Unpleasant aroma is associated with
lipids oxidation, amino acids degradation,
and other chemical pathways

The unpleasant aroma of faba bean protein fractions is

associated with the release of certain volatile compounds

originating from non-volatile precursors like lipids, amino acids,

and carbohydrates. The chemical reactions leading to the

development of aroma compounds mainly occur during

harvesting, postharvest processing, and storage (Roland et al.,

2017). Even though faba bean is not an oil crop and has a low-fat

content (0.5-2% dry matter), it is still prone to developing off-

flavors as a result of lipid oxidation (Wang et al., 2014). In fact,

some lipid-derived compounds can be detected by the human nose

at extremely low concentrations (Akkad et al. , 2021).

Polyunsaturated fatty acids (PUFA) like oleic acid (C18:1),
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linoleic (C18:2) and linolenic (C18:3) are readily oxidised to

hydroperoxides, which are subsequently degraded in volatile

secondary oxidation products (i.e., aldehydes, ketones, alcohols,

aromatic hydrocarbons, furans, etc.), some of which being

exceptionally odorous compounds (Decker et al., 2012). The

formation of beany flavor is primarily attributed to aldehydes and

dienals produced through PUFA degradation catalysed by LOX.

Akkad et al. (2021) reported (in order of decreasing Relative OAVs)

nonanal, octanal, hexanal, 3-methylbutyric acid, decanal, 3-

methylbutanal, 1-octen-3-ol, and others as key volatile

compounds in faba bean flours of 4 faba bean cultivars, based on

the calculation of relative odour activity values. The type of volatile

compounds produced from the oxidation of PUFA mainly depend

on the nature of the fatty acids involved in the reaction. The

oxidation of oleic acid oxidation leads to the formation of 8-, 9-,

10-, and 11-hydroperoxides, and subsequentially to many

secondary compounds such as pentanal, octanal, hexanal, and

heptanal, among others (Shahidi and Hossain, 2022). The

oxidation of linoleic acid results in two distinct stereoisomers of

both 9- and 13-hydroperoxides. As an example, the volatile 2,4-

decadienal primarily originates from 9-hydroperoxide, whereas

hexanal is primarily produced from 13-hydroperoxides. Linolenic

acid, on the other hand, oxidises to generate 9-, 12-, 13-, and 16-

hydroperoxides (Karolkowski et al., 2021). Linoleic and linolenic-

derived compounds have more impact on off-flavor compared to

those derived from oleic acid.

Lipid peroxidation occurs via autoxidation or enzymatic

oxidation which requires the presence of lipoxygenase. The

susceptibility of fatty acids to lipid peroxidation augments

proportionally with the degree of unsaturation (Belitz et al.,

2009). Oleic acid results more stable than linoleic and linolenic

acid. Linoleic acid is about ten times more susceptible to

autooxidation and linolenic acid twenty times more (Decker

et al., 2012). Moreover, lipoxygenase selectively oxidizes linoleic

and linolenic acids, while oleic acid remains unaffected by this

enzymatic process.

Lipid oxidation is not the only source of unpleasant aroma

development in faba bean. Akkad et al. (2019) suggested that the

high protein content of faba bean varieties may impact their aroma

profile. Amino acid degradation can generate a myriad of volatile

compounds, such as branched-chain compounds, benzene

aldehydes, alcohols, acids, esters, nitrogen, and sulfur compounds

(Karolkowski et al., 2021). Amino acid-derived volatiles, including

3-methylbutanal and 3-methylbutanoic acid (leucine-derived), 2-

methylbutanal (isoleucine-derived), and benzacetaldehyde

(phenylalanine-derived) were detected in faba bean flour (Akkad

et al., 2019). In addition to the degradation pathway, amino acids

generate odor-active compounds through reactions with sugars and

carbonyls induced by the effect of temperature (Maillard reaction)

(MacLeod and Ames, 1988).

Other compounds, such as terpenes, can also influence the

aroma profile of faba bean. For example, Akkad et al. (2019)

detected limonene, which typically has a citrus-like odour at high

concentrations. Additionally, the presence of linalool, alpha-pinene,

delta-3-carene was also reported (Akkad et al., 2019; Tuccillo et al.,

2022). Naturally occurring methoxypyrazines were hypothesised to
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TABLE 1 Shortlist of marker compounds for potential off-flavor in faba bean ingredients.

Flavor type Pathway Compound a Flavor characteristics Perception
threshold

Aroma
(volatile

compounds)

Polyunsaturated fatty acid
(PUFA) oxidation

hexanal apple, cut grass, fresh, fruit, grass, green, oil 0.043 mg/L b

nonanal citrus, cucumber, fat, floral, green, metal, paint, pungent,
rubber, soap, sweet

0.022 mg/L b

(E)-2-heptenal almond, fat, fruit, metal, soap 0.018 mg/L b

(E)-2-nonenal beany, cucumber, cut grass, fat, green, hay, oil, paper, sour,
stale, tallow, watermelon

0.0001 mg/L b

(E,Z)-2,4-heptadienal fat, fried, nut 0.0035 mg/L b

(E,E)-2,4-nonadienal deep fried, fat, geranium, green, hay, metal, nut, seaweed 0.00006 mg/L b

(E,Z)-2,6-nonadienal cucumber, green, lettuce, melon, wax 0.000036 mg/L b

1-octen-3-ol earth, fat, floral, green, herb, mould, mushroom, yeast 0.097 mg/L b

2-pentylfuran butter, floral, fruit, green, green bean, metal, rubber, sweet 0.0048 mg/L b

Amino acid degradation 3-methylbutanal acrid, almond, chocolate, cocoa, corn flakes, fermented, malt,
pungent, sweat, sweet

0.06505 mg/L b

Benzaldehyde e almond, berry, bitter, bitter almond, burnt sugar, cherry,
fruit, malt, roasted pepper, spice, sweet

0.58 mg/L b

2-methoxy-3-isopropyl-(5 or
6)-methylpyrazine

Earthy, spicy, plastic, hay c 0.00005 mg/Ld

Others linalool bergamot, coriander, floral, flower, grape, lavender, lemon,
rose

0.0051 mg/L b

dimethyldisulphide cabbage, garlic, meat, onion, putrid, sour, sulfur 0.051 mg/L b

Taste and
mouthfeel

(non-volatile
compounds)

Saponin biosynthesis saponin bg Bitter <2 mg/L f

saponin Bb Bitter 8 mg/L f

Tannin biosynthesis epicatechin Astringent
Bitter

270 mg/L g

270 mg/L g

procyanidin B2 Astringent
Bitter

110 mg/L g

280 mg/L g

procyanidin C1 Astringent
Bitter

260 mg/L g

347 mg/L g

Hydroxycinnamic acids
biosynthesis

p-coumaric acid Astringent 23 mg/L g

ferulic acid Astringent 13 mg/L g

Flavonols biosynthesis quercetin Bitter, astringent 10 mg/L h

kaempferol Bitter, astringent 20 mg/L h

Polyunsaturated fatty acid
(PUFA) oxidation

11,12,13-trihydroxyoctadec-
9-enoic acid

bitter 42.96 mgl/L i

1-linoleoyl glycerol bitter 24.81 mg/L i

linoleic acid bitter 260.81 mg/L i

a-linolenic acid bitter 77.9 mg/L i
F
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athe provided list of chemical compounds is a representative selection of many more molecules that are usually produced.
bThe reported perception thresholds are the average values of the flavor in water thresholds reported in the VCF online database.
cThe flavor characteristics refers to Zhang et al., 2020 (due to lack of sensory description in the VCF online database).
dThe reported threshold is odour in water threshold (due to the lack of provided flavor in water thresholds).
eBenzaldehyde can be produced by the degradation of both free fatty acids and amino acids (Akkad et al., 2019); Oomah et al., 2014).
fThe reported threshold refers to Heng et al. (2006) and it is in water.
gThe reported threshold refers to Hufnagel and Hofmann (2008a) and it is in water.
hThe reported threshold refers to Dadic and Belleau (1973) and it is in 5% ethanol.
iThe reported threshold refers to Glaser et al. (2020) and it is in water. The original values were in mmol/L and here are converted in mg/L.
The table shows the flavor type (aroma or bitter taste/astringent mouthfeel), the originating pathway for each compound, chemical breeding traits (referred as compound), typical perception
attributes (referred as flavor characteristics), and the perception threshold, which indicates the minimum concentration required for the compound’s detection.
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potentially play a role in off-flavor development in V. faba due to

their key role in the aroma of green peas and their extremely low

odour thresholds (Sharan et al., 2021). However, due to their

extremely low concentrations at which they are odour-active, they

are rather detected by the nose, than by GC-MS. Therefore, while

GC-MS measurements of faba bean fractions failed to detect any

methoxypyrazines, the GC-O measurements-which involve

smelling the separated volatiles-revealed the presence of 3-

isopropyl-2-methoxypyrazine and 3-isobutyl-2-methoxypyrazine

(Karolkowski et al., 2023b).
2.2 Unpleasant taste is associated
with polyphenols, saponins and
lipid-derived compounds

The bitter and astringent unpleasant taste of legumes is associated

with non-volatile compounds present in seeds. The information on

the role of non-volatile compounds in the taste of faba bean is scarce,

but it is widely accepted that polyphenols (such as phenolic acids,

flavones, flavanones, flavonols, flavan-3-ols, and proanthocyanidins),

saponins, amino acids and peptides are bitter and/or astringent

compounds (Drewnowski and Gomez-Carneros, 2000; de Camargo

and Schwember, 2019; Iwaniak et al., 2019), and also many non-

volatile lipid oxidation compounds and oxidised phospholipids taste

bitter (Sessa and Rackis, 1977; Glaser et al., 2020).

Phenolic compounds are usually either measured as total

phenolic compounds with the use of the Folin-Ciocalteu assay,

reporting gallic acid equivalents (GAE) measured in a spectrometric

way (e.g., in Tuccillo et al., 2022), or they are measured individually

by chromatographic methods (e.g., in Abu-Reidah et al., 2017).

Various phenolic compounds from the classes of phenolic acids,

flavanols, procyanidins, prodelphinidins, flavanones, flavonols,

flavones, and others, have been detected in Vicia faba (Turco

et al., 2016; Abu-Reidah et al., 2017). Many of these flavonoids

activate bitter taste receptors (Roland et al., 2013), so it can be

expected that they impact off-taste in this crop. For example, the

flavonols quercetin and kaempferol are present in faba bean

(Troszyńska et al., 2006) and are bitter (Drewnowski and Gomez-

Carneros, 2000; Roland et al., 2013). The phenolic acids vanillic,

caffeic, p-coumaric, and ferulic acid have been perceived as

astringent (Hufnagel and Hofmann, 2008a) and have been

detected in faba bean (Troszyńska et al., 2006). However, which

of these phenolic compounds impacts the perception of bitterness

and astringency in faba bean depends on their concentrations and

the presence of other compounds in the matrix (Roland et al., 2017).

In fact, free phenolics have been recently associated to the strong

taste, bitterness, and mouth-drying sensation of faba bean protein

contrate (Tuccillo et al., 2022), but the understanding of which

specific individual compounds links to this off-taste is lacking.

An important class of polyphenols in faba bean is represented by

the tannins. Tannins are mainly classified into two categories based

on their reactions with hydrolytic agents: condensed tannins and

hydrolysable tannins. Hydrolysable tannins have a central

carbohydrate core esterified to phenolic carboxylic acids such as

gallic acid and ellagic acid and are usually referred to as ellagitannins
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and gallotannins. Condensed tannins are mainly polymerised

products of flavan-3-ols. The most occurring classes are

procyanidins, formed by (epi)catechins, and prodelphinidins,

formed by (epi)gallocatechins (Appeldoorn, 2009). Tannins are

often determined as total tannins, using e.g. a vanillin assay and

determining the Catechin Activity Equivalents (CAE) in a

spectrometric way. Despite naming “tannins” in many articles, the

literature about which tannins exactly are present in faba beans is

scarce and few articles were published. Merghem et al. (2004)

identified different types of procyanidins in faba bean, namely 2

types of procyanidin A-dimers (without being able to specify which

exact A-dimers), the procyanidin dimers B1, B2, and B3, the trimer

C1. A subsequent study (Abu-Reidah et al., 2014), performed

metabolic profiling of faba bean seeds and tentatively identified the

procyanidin dimers B1, B2, B3, and B4, and diverse prodelphinidin

dimers. Tannins are bitter and/or astringent depending on their

degree of polymerization. Lower-weight tannins generally have a

more pronounced bitter taste, while those with a higher degree of

polymerization tend to be more astringent (Peleg et al., 1999; Soares

et al., 2020). According to Peleg et al., 1999, flavanol monomers (for

example catechin and epicatechin) are more bitter than astringent,

and the dimers and trimers (for example procyanidins) are more

astringent than bitter (Peleg et al., 1999). However, a partially

contradictory effects were observed by Hufnagel and Hofmann

(2008a, b). In taste receptor assays, lower bitterness of the

monomer epicatechin compared to the procyanidin trimer C2 was

shown (Soares et al., 2013). Tannins have historically attracted the

attention of faba bean breeders, as they are considered major

antinutritional factors (Guevara Oquendo et al., 2022). However,

condensed tannins have been shown to evoke positive effects on

human cardiovascular health as well (Appeldoorn, 2009).

Saponins are known to contribute to the bitter, astringent, and

metallic taste of pea and soybean (Price and Roger Fenwick, 1984;

Heng et al., 2006). They are natural compounds found in many

plants, especially legumes. Saponins are triterpenoid glycosides, in

which an apolar sapogenol backbone is substituted with one sugar

chain (at sapogenol B and sapogenol E) or two sugar chains (at

sapogenol A) (Decroos et al., 2005). The length and composition of

the sugar chain determines the exact type of saponin. B-type

saponins are the most common in legumes. A-type saponins are

reported in soy (Sundaramoorthy et al., 2019a), but not in pea and

faba bean. In the intact plant tissue, B-type saponins occur as

conjugates of DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-

pyran-4-one). They are easily degraded to non-DDMP conjugated

saponins upon processing. Soyasaponin ag, ba, bg, ga, and gg-
belong to DDMP-saponins, while soyasaponins Bb (in another

nomenclature called saponin I), Bc (II), Bb’(III), Bc’(IV), Ba (V)

etc. belong to non-DDMP conjugated saponins (Barakat et al.,

2015) (Singh et al., 2017). It has been shown in sensory experiments

with saponins extracted from pea that these saponins are bitter and

that DDMP-saponin bg is more bitter than saponin Bb (Heng et al.,

2006), but no information related to the impact of saponins on the

bitter taste of faba bean is present in literature.

Alkaloid content affects bitterness in food products such as lupins,

which are classified into “bitter” or “sweet” varieties based on this

attribute. Faba bean contains two pyrimidine glucoside alkaloids,
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vicine and convicine (V-C), yet their flavor characteristics have

remained unexplored (Karolkowski et al., 2023a). V-C compounds

may have been overlooked in recent flavor studies due to their absence

in other major legumes, especially soybean. Moreover, their potential

toxicity to some consumers might hamper sensory tests. When

compounds are toxic and sensory tests are unfeasible, there is an

alternative to test for bitterness, namely by in vitro taste receptor

assays. However, although many toxic compounds (e.g., the alkaloid

strychnine) have been tested on receptor level (Meyerhof et al., 2010),

vicine or convicine have not been reported to be tested yet. Tuccillo

et al. (2022) reported a correlation between V-C presence, bitterness,

and mouth dryness, but this correlation also accounted for free

phenolics and specific amino acids (Tuccillo et al., 2022). Given that

V-C are expected to be bitter, the ongoing genetic efforts aiming to

entirely remove their content for nutritional reasons (Bjornsdotter

et al., 2021) will also be beneficial to the taste of the seeds.

Off-taste cannot only be evoked by compounds inherently

present in the seeds like described above, but it can also be evoked

by non-volatile lipid oxidation compounds. In pea protein isolates, it

has been shown that bitterness was mainly caused by four trihydroxy-

octadecenoic acid isomers (e.g. 9,10,11-trihydroxy-octadec-12-enoic),

four hydroxy-octadecadienoic acid isomers (e.g. (10E,12E)-9-

hydroxyoctadeca-10,12-dienoic acid), one oxo-octadecadienoic acid,

one octacosatetraen, 1-linoleoyl glycerol, 2-hydroxyoleic acid, 2-

hydroxypalmitic acid, a-linolenic acid, and linoleic acid (Glaser

et al., 2020). Some of these compounds showed very low sensory

threshold values (e.g., 0.08 mmol/L for 9,10,13-trihydroxyoctadec-12-

enoic acid). The impact of non-volatile lipid oxidation compounds on

bitterness has been confirmed in other crops. In wheat, two

trihydroxy octadecenoic acids (pinellic acid, 8R*,9R*,10S*-

trihydroxy-octadec-6Z-enoic acid), one trihydroxy-octadecadienoic

acid (9S,12S,13S-trihydroxy-octadeca-10E,15Z-dienoic acid) and 1-

(octadeca-9Z,12Z-dienoyl)-sn-glycero-3-phosphocholine have been

identified as bitter, and associated with a dislike for the whole

wheat breads (Cong et al., 2021). Analysis of wheat mutant lines,

with the lipoxygenase gene disrupted, showed a significant reduction

(88–93%) in bitter compound production when compared to the

unaltered, or wild type, control. This establishes that the activity of

the lipoxygenase enzyme plays a crucial role in creating the bitter

taste from trihydroxy fatty acids in wheat (Cong et al., 2021). For faba

bean or its ingredients, such bitter non-volatile lipid oxidation

compounds have not been reported in literature yet. Given the

presence of PUFAs and lipoxygenases in this crop, it can be

expected that these compounds can be formed in faba bean as well.

However, it remains to be established for faba bean ingredients which

of all the potentially bitter and astringent compounds really

contribute to the bitter and astringent sensation.
3 Plant breeding as a strategy to
establish Vicia faba as plant-based
food ingredient

Various thermal, chemical, or enzymatic strategies have been

investigated to bridge the flavor gap in plant-based proteins by
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eliminating, modifying, or masking the development of undesirable

taste and aroma (Tangyu et al., 2019; Xu et al., 2020; Mittermeier-

Klessinger et al., 2021; Sontag-Strohm et al., 2021). However, post-

harvest processing is often costly and energy-intensive, and

sometimes the off-flavor is persistent despite the measures taken.

An alternative approach is the breeding of faba bean varieties that

exhibit low levels of off-flavor precursors, off-flavors, or enzymes

that contribute to off-flavor development (Roland et al., 2017).

Despite the identification of molecules having an impact on the

aroma and possibly on the taste and astringent mouthfeel of faba

bean ingredients in previous studies (Oomah et al., 2014; Akkad

et al., 2019; Karolkowski et al., 2023a), a knowledge gap persists

regarding specific marker compounds that could serve as proxies

for off-flavor development in breeding programs. Determining and

characterising these compounds further, along with the pathways

responsible for their production, is essential for devising effective

plant breeding strategies aimed at preventing or minimising off-

flavors in faba bean.

It is important to specify that preventing the formation of off-

flavors is a breeding target for the use of faba bean as ingredient in

plant-based dairy or meat analogues, but not for other applications

where seeds are cooked or consumed freshly. Breeding efforts to

improve seed quality in faba bean must consider the significant

variation in consumer preferences influenced by cultural and

personal factors (Szenderak et al., 2022). Some consumers might

still prefer the traditional usage of the seeds, where the distinctive

and unique flavor is actually a positive and desired feature. Breeding

for quality in this context focuses on enhancing the nutritional

properties of the seeds rather than removing the typical taste and

aroma. Important breeding targets include the removal of

antinutritional compounds such as tannins, vicine and convicine,

phytic acid, lectins, trypsin inhibitors, and oligosaccharides (e.g.,

raffinose, stachyose), and enhance the protein content. Additionally,

cooking time is increasingly recognised as an essential trait since

traditional home cooking of faba bean involves extended time to

achieve satisfactory softness and palatability (Dhull et al., 2022).

Therefore, faba bean breeding should aim to develop varieties that

cater to different product end-uses, including those for sustainable

and nutritious alternatives to animal protein sources.

The following paragraphs illustrate the candidate pathways that

are critical to major off-flavors development and how they can be

targeted with breeding aimed at improving the quality of faba bean

for plant-based meat and dairy analogues.
3.1 Targeting lipid-oxidation pathways
to reduce beany flavor and
lipid-derived bitterness

3.1.1 Disrupting LOX genes leads to reduced
oxidation rate of fatty acids

The LOX genes are known to regulate the enzymatic oxidation

rate of polyunsaturated fatty acids, such as linoleic acid (C18:2) and

linolenic acid (C18:3), through the expression of the lipoxygenase

enzyme (Shahidi and Oh, 2020). Consequently, disrupting LOX

genes would likely result in a decrease in the oxidation rate,
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reducing the amount of derived volatile and non-volatile

compounds causing unpleasant aroma and taste, respectively.

Lipoxygenases selectively act on these fatty acids containing a 1-

cis,4-cis-pentadiene unit producing the odourless stereospecific

hydroperoxides. The latter are highly unstable and are in turn

decomposed into a variety of compounds, including carbonyl

compounds, alcohols, ketones, furans, epoxy compounds and

hydrocarbons , among others , through the act ion of

hydroperoxide lyase (HPL) and alcohol dehydrogenase (ADH)

(see Figure 2) (Baysal and Demirdoven, 2007; El Hadi et al.,

2013). The stereo-specificity of LOX enzymes has significant

implications on the diversity of short-chain aldehydes, alcohols,

and hydrocarbons produced, and thus on the final aroma

(Karolkowski et al., 2023a). Lipoxygenases found in plants

predominantly demonstrate regiospecificity towards the 9 or 13

carbon positions (Belitz et al., 2009). Additionally, LOX-catalysed

reactions (but also auto-oxidation) contribute to the formation of

lipid-derived non-volatile compounds. The hydroperoxides that are

produced during the oxidation process can be transformed into

various epoxy and hydroxy fatty acids by the action of peroxygenase

(POX). This represents an alternative pathway to their conversion

into volatiles by hydroperoxide lyase (HPL) and alcohol
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dehydrogenase (ADH) (Feussner and Wasternack, 2002). Epoxy

and hydroxy fatty acids were identified in pea and oat and shown to

be bitter in pea (Yang et al., 2019; Glaser et al., 2020; Glaser

et al., 2021).

LOX family genes are conserved among legumes. In fact, lipid-

oxidations products, (i.e, hexanal, 1-hexanol and 2-pentylfuran,

etc.) are considered markers for “beany” flavor in other legumes

such us chickpea, lentil, and yellow pea (Xu et al., 2019).

Additionally, aldehydes derived from lipids are well known to

cause the green, earthy, fatty, leafy aroma of peas and soybean

(Seo and Hummel, 2012; Akkad et al., 2019). Two lipoxygenase

isoenzymes (BBL-1/BBL-2) have been isolated in faba bean, but no

studies to assess whether the presence of null or mutant alleles has a

downstream effect on the flavor profile have been reported

(Clemente et al., 2000).

The expression of these enzymes could vary among different

cultivars, potentially accounting for the differences in odour-active

compounds across them. In pea, for instance, a variation in

lipoxygenase activity (as much as 70%) among three distinct

commercially available pea types has been reported (Haydar and

Hadziyev, 1973; Trindler et al., 2021). In addition, it has been shown

that LOX differential activity depends on genetic variation in
FIGURE 2

Biosynthesis of lipid-derived off-flavors. The figure depicts a simplified representation of the biosynthesis of lipid-derived off-flavors. The process
begins with oleic acid (C18:1) serving as precursor for the synthesis of linoleic acid (C18:2) and linolenic acid (C18:3), mediated by enzymes FAD2
and FAD3 respectively. A portion of the produced polyunsaturated fatty acids is assembled into triacylglycerides (TAGs). Free polyunsaturated fatty
acids, released by lipase action on TAGs, undergo oxidation by lipoxygenase enzymes (LOX) to form hydroperoxides. Hydroperoxides are
decomposed into various compounds, including aldehydes, alcohols, ketones, and hydrocarbons, through the activity of hydroperoxide lyase (HPL)
and alcohol dehydrogenase (ADH). In the figure, as example, n-hexanal and (Z)-3-hexenal represent the class of aldehydes, while n-hexanol and (Z)-
3-hexenol represent the class of alcohols. However, the real molecules formed, and the number of reactions happing are numerous. The figure
highlights (pointing hand) FAD2, FAD3, and LOX as target genes for breeding efforts aimed at reducing the fatty acid oxidation rate. The acronym of
each key enzyme is reported along the pathway: FAD2 and FAD3, fatty acid desaturase 2 and 3; LOX, lipoxygenase; HPL, hydroperoxide lyase; ADH,
alcohol dehydrogenase.
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soybean (Mandal et al., 2014). If such genetic variations exist in faba

bean, it could potentially serve as a basis for breeding initiatives

aimed at creating new cultivars with reduced beany flavor.

Dysfunctional LOX pathways lead to reduced oxidation rate

and are of interest for breeding applications in pulses. Lately, the

newly developed soy genotype NRC132, which features

lipoxygenase2 inactivation, has shown that LOX-free variants can

exhibit diminished off-flavor in soy-milk production (Kumar et al.,

2021). This development presents new possibilities for

incorporating soybean into a broader range of food items. Several

lipoxygenase-free soybean varieties are already available for

cultivation in the USA (i.e., IA1008LF, IA2053LF, IA2076LF,

IA2104LF, IA3027LF, IA3045LF, IA3051LF, etc.) (Yu et al., 2016).

Based on these findings, the development of lipoxygenase-free faba

bean seeds is envisioned in the near future.

Although some LOX enzymes do not require the prior release of

fatty acids from their storage forms, the hydrolysis of acyl lipids to

free fatty acids (FFAs) is generally required for their oxidising

activity in plants (Lampi et al., 2020). Lampi et al. (2020) have

emphasised the need to control endogenous lipase in faba bean

during food processing due to its high lipid hydrolysis activity,

which can also impact exogenous lipids in food products. The

investigation of lipase alleles’ functionality is important for

understanding off-flavor development in view of genetic

improvement of this trait. However, lipases are essential for the

utilization of storage triglycerides by developing seeds (Kanai et al.,

2019), thus their genetic removal may be more critical than other

candidate genes hereby proposed.

3.1.2 Disrupting FAD genes causes lower
unsaturation of fatty acids and increased
oil stability

Ideally, faba bean cultivars to produce protein fractions for meat

and dairy analogues ought to exhibit decreased levels of C18:2 and

C18:3, thereby diminishing the available substrate for lipoxygenase

activity. Oil stability, characterised by resistance to oxidation, is

affected by the ratio between C18:1, C18:2, C18:3 in the total oil

composition. Enhancing the level of C18:1 while reducing C18:2

and C18:3 is an important breeding target to reduce fatty

acid oxidation.

In several species, Fatty Acid Desaturase (FAD) genes are

responsible for adding double bonds to the oleic acid (C18:1) to

form linoleic (C18:2) and linolenic acids (C18:3) (Zhang et al.,

2008). In particular, FAD2 (omega-6 fatty acid desaturase) is the

key enzyme that catalyses the desaturation of C18:1 into C18:2 in

roots and developing seeds of oil crops (Traore and He, 2021), while

FAD3 (omega-3 fatty acid desaturase) subsequentially converts

C18:2 into C18:3 (Figure 2) (Dar et al., 2017). The faba bean

research community has previously not focused on investigating

these genes, as they are typically not considered pertinent in non-oil

crop research. However, breeding efforts should be conducted to

develop high-oleic faba bean varieties less prone to oxidation.

Evidence from soybean research indicates that combining two

mutant isoforms of fad2 (GmFAD2–1A and GmFAD2–1B) into

the same genetic background can effectively raise oleic acid content

up to 80%, by disrupting the desaturase pathway (Tang et al., 2005;
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Pham et al., 2010). Crispr-Cas9 successfully produced double

homozygous mutant plants showing a high oleic acid phenotypes

(83.9%) compared to the wild-type soybean line (20.2%) (Do et al.,

2019). Likewise, mutations in the three FAD3 genes copies (fad3a,

fad3b, and fad3c) have led to the development of ultra-low-linolenic

soybean oil (less than 1%), positively affecting oil shelf life and

reducing off-flavors (Hudson and Hudson, 2021). Additionally,

combining mutations in FAD3A with mutations in FAD2–1A and

FAD2–1B was proposed as a strategy to produce high oleic and low

linolenic soybean oil (Demorest et al., 2016). Studies have

demonstrated that developing soybean high-oleic varieties via

FAD gene manipulation does not impact yield or protein

production (Kim et al., 2015). This is pivotal because farmers still

prioritise high-yielding and protein-rich varieties, which are the

most valuable traits in the legume market.

It should be noted that both linoleic (w6) and linolenic (w3)
acids are essential fatty acids for humans, and deficiencies in these

fatty acids are linked to various health concerns (Choque et al.,

2014). Hence, it could be posited that novel faba bean varieties may

exhibit reduced nutritional value in comparison to conventional

varieties with unmodified oil profiles. However, it is important to

highlight that new varieties with reduced off-flavors should not

entirely supplant traditional cultivars that have higher levels of

linoleic and linolenic acids, as these varieties will only target a

specific segment of the market. In addition, it is also crucial to

acknowledge that faba bean is not an oil crop or a conventional

source of polyunsaturated fatty acids (PUFAs). Therefore,

regardless of the release of new reduced-flavor varieties on the

market, it is imperative to obtain PUFAs from alternative sources to

ensure a well-balanced and nutritious diet.
3.2 Targeting polyphenols and saponins to
reduce bitterness and astringency

3.2.1 Condensed tannins content is regulated
by the zt1 and zt2 loci, but other candidate
genes can be proposed to reduce their
bitter precursors

Plant breeding efforts have led to the development of several

low-tannin or zero-tannin faba bean varieties that are currently sold

on the market. Low tannin genotypes present a reduction in

condensed tannin content from ~8% to up to 0.01% on the dry

matter (Oomah et al., 2011; Subodh Kumar and Amresh, 2018).

Breeding for condensed tannins reduction mainly aimed at

improving the nutritional value of animal feed (Guevara

Oquendo et al., 2022).

There is a pleiotropic effect between tannin content in seeds and

anthocyanic pigmentation on the flowers, which has facilitated

genetic selection (Filippetti and Ricciardi, 1993). Condensed

tannins and anthocyanins are, in fact, both end-products of the

flavonoid pathway and they share metabolic routes. Anthocyanins

are coloured pigments causing distinct colours in faba bean flowers.

The wild-type flower is distinguished by its white petals, which

feature a pronounced black spot on each wing petal and dark striae

on the standard petal. Various color variations have been noted in
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the faba bean flowers, including an entirely white version, yellow

wing spots, solid brown, pink, diffused yellow, red, etc. (Hughes

et al., 2020). The absence of condensed tannins and presence of full

white flowers share a simultaneous monogenetic control of two

complementary and recessive genes, zt1 and zt2 (Jaakola et al., 2002;

Gutierrez and Torres, 2019). Candidate genes for zt1 and zt2, which

lead to a defect in the synthesis of anthocyanins or their precursors,

have been proposed. The Medicago ortholog WD40 transcription

factor TTG1 (Transparent Testa Glabra 1) was identified as the

causal gene for the white flower phenotype (zt-1 locus) (Webb et al.,

2016), while the helix-loop-helix (bHLH) transcription factor

TRANSPARENT TESTA8 (TT8) has been suggested as the

candidate for zt2 locus (Gutierrez et al., 2020). Despite TTG- and

bHLH-conserved domain transcription factors being known to

modulate flavonoid biosynthesis (Broun, 2005), their specific role

in zero-tannin genotypes has not been elucidated. However,

genomic breeding tools are available to differentiate two different

mutant alleles for TTG1, ttg1-a, probably caused by a mutation in

the promoter region, and ttg1-b due to a deletion at the 5′end of

VfTTG1. Additionally, an allele-specific diagnostic marker has been

developed to distinguish zt-1 from both wild and zt-2 genotypes

(Gutierrez and Torres, 2019). These tools allow for marker assisted

selection (MAS) for the zero-tannin trait.

The phenylpropanoid biosynthetic pathway that leads to the

synthesis of condensed tannins (depicted in Figure 3) is particularly

complex and influenced by several genes and environmental factors

(He et al., 2008). Various branches of this pathway yield bitter and/

or astringent compounds (i.e., coumaric, caffeic, ferulic acid,

myricetin, quercetin, etc.), therefore they are an interesting target

for breeding for eliminating multiple compounds simultaneously.

Along the pathways, L-phenylalanine, synthetised via the shikimate

pathway, is converted into p-coumaroyl-Coa through a three-step

reaction involving phenylalanine ammonia lyase (PAL), cinnamate

4-hydroxylase (CH4) and 4-coumaroyl-CoA ligase (4CL)

(Figure 3). p-coumaric acids, an intermediate in subsequent

reactions, can be a precursor of bitter phenolic acids such as

caffeic, ferulic and sinapic acids, besides being converted to p-

coumaroyl-Coa. Naringenin chalcone is synthesised from p-

coumaroyl-CoA and malonyl-CoA via chalcone synthase (CHS),

serving as the principal intermediate in flavonol biosynthesis. This

compound undergoes catalysis by chalcone isomerase (CHI),

transforming it into naringenin. Dihydroflavonols are

subsequentially formed through sequential enzymatic actions

involving flavanone-3-hydroxylase (F3H), flavanone-3 ’-

hydroxylase (F3’H), and flavonoid-3’,5’-hydroxylase (F3’5’H),

yielding dihydrokaempferol (DHK), dihydroquercetin (DHQ),

and dihydromyricetin (DHM), respectively. Dihydroflavonols

serve as the foundation for flavan-3-ols synthesis, which

represents the core monomers in the complex condensed tannin

structure (He et al., 2015; Rosa-Martinez et al., 2023). The enzymes

anthocyanidins synthase (ANS), anthocyanidin reductase (ANR),

and leucoanthocyanidin reductase (LAR) contribute to the

formation of the flavan-3-ols catechin, gallocatechin, epicatechin,

epigallocatechin from intermediates leucocyanidin and

leucodelphinidin (Mora et al., 2022). Flavan-3-ols then undergo

polymerization to create condensed tannins (proanthocyanidins),
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although the exact mechanism and genetic control remain still

unknown. The enzymes codified by zt1 and zt2 are expected to act

in the last steps of the pathway between the synthesis of

dihydroflavonols and flavan-3-ols (Zanotto et al., 2020),

modulating the pathway at the transcriptional level. In line with

this hypothesis, Zanotto et al. (2020) found dihydroflavonols in the

seeds of zt1 and zt2 genetic backgrounds, showing that zero tannins

genotypes still contain the precursor molecules.

Despite breeding for reduced condensed tannin content being a

successful story in faba bean, additional efforts are required to

develop varieties with reduced off-flavor. A more precise

understanding of specific tannin compounds and associated

phenylpropanoid pathway genes is crucial. Potential interventions

at the initial steps in the pathway could disrupt subsequent

reactions that produce several taste-active molecules. Targeting

genes such as CHS and CHI (marked by two pointing hands in

Figure 3) could simultaneously reduce the level of flavonols

kaempferol, quercetin, myricetin, and others, likely reducing

bitterness. In order crops, the involvement of chs-like genes have

been speculated. Novák et al. (2006) showed that a higher and more

prolonged expression of chalcone synthase-like genes was found in

maturing hop cones of cultivars with high bitterness compared to

those in cultivars with a lower bitter profile. However, even in

successful applications, some bitterness and/or astringency is

expected to remain as disrupting CHS and CHI do not affect the

synthesis of phenolic acids.

3.2.2 Blocking the cyclisation of 2,3-
oxydosqualene into saponins precursors as a
strategy to mitigate off-taste and astringency

Amarowicz et al. (1997) isolated two distinct saponins

possessing a chemical structure similar to that of soybean group

B saponin in the seeds of four faba cultivars. The existence of B-type

saponins (soyasaponin I/Bb) in faba bean was later verified, along

with the detection of the DDMP saponin (soyasaponin bg)(Barakat
et al., 2015). More recently, Stone et al. (2021) have detected and

quantified the levels of the DDMP-soysaponins ba, ag and bg in

faba bean seeds. Overall, the total saponin content in raw faba seeds

ranges from approximately 481 to 757 µg/g, which is about half of

the content detected in pea (1367 to 1701 µg/g) (Stone et al., 2021).

The lower concentration of total saponins in Vicia faba compared

to pea may be associated with a lower impact on taste. Recently,

Tuccillo et al. (2022) corroborated the earlier findings of Heng et al.

(2006) for pea, indicating that soyasaponin bg exhibits a greater

degree of bitterness than soyasaponin Bb in faba bean ingredients.

However, it has not been researched yet in detail whether saponins

at their low content in faba bean impact the bitterness or

astringency of faba bean products.

Breeding for zero saponins content has been implemented in

several crops, including legumes. In soybean, for instance, the

biosynthetic pathway of saponins is well-studied (Chung et al.,

2020; Sundaramoorthy et al., 2019b). A simplified version of this

pathway is depicted in Figure 4. The 2,3-oxidosqualene is the key

compound in triterpenoid saponin biosynthesis since the molecule

is the common precursor for the different classes of saponins (Xu

et al., 2004). The biosynthesis steps are known to begin with the
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cyclisation of the 2,3-oxidosqualene by a range of oxidosqualene

cyclases (OSCs) into various triterpene precursors of saponins.

Among them, b-amyrin synthase (bAS) is considered a primary

OSC in plants and has been molecularly characterised in soybean

(Chung et al., 2007; Mugford and Osbourn, 2013). The enzyme

produces the aglycone b-amyrin, which is subsequently modified

through a series of oxidations and sugar chain additions to form the

final saponin compounds (Chung et al., 2007; Mugford and
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Osbourn, 2013). Previous studies in soybean and pea have

demonstrated that reducing the saponin content in seeds is a

feasible strategy. Takagi et al. (2011) successfully used RNA

interference (RNAi) to silence the bAS gene and suppress saponin

biosynthesis in soybean. Mutant lines of peas with the homozygous

mutant PsBAS1 (b-amyrin synthase1) gene accumulate virtually no

saponins, paving the way for the development of peas with reduced

bitterness and astringency (Vernoud et al., 2021). b-amyrin
FIGURE 3

Condensed tannin biosynthesis. The illustration presents a streamlined version of the phenylpropanoid biosynthetic route involved in condensed tannin
synthesis, resulting in various bitter and astringent polyphenols. Key intermediate compounds hereby represented belong to flavanone (naringenin),
flavonol (quercetin, myricetin, kaempferol), leucoanthocyanidin (leucodelphinidin, leucocyanidin), anthocyanidin (delphinidin, cyanidin), flavan-3-ol
(catechin, epicatechin, gallocatechin, epigallocatechin) classes. Compounds in orange are examples of important molecules that share precursors with
condensed tannins. The acronym of each key enzyme is reported along the pathway: PAL, Phenylalanine ammonia lyase; CH4, cinnamate 4-
hydroxylase; 4CL, 4-coumaroyl-CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone-3-hydroxylase; F3’H, flavanone-3’-
hydroxylase; F3’5’H, flavonoid-3’,5’-hydroxylase; ANS, anthocyanidins synthase; ANR, anthocyanidin reductase; LAR, leucoanthocyanidin reductase. The
question mark in the last step of the pathways indicates that molecular mechanisms underlying the polymerization of flavan-3-ols into condensed
tannins have not yet been elucidated. Procyanidin B1 and Procyanidin B2 are example of dimers belonging to the class of condensed tannins. The figure
highlights the genes encoding CHI and CHS enzymes (pointing hand) as potential target genes for breeding applications to disrupt a portion of the
phenylpropanoid biosynthetic pathway. CHI and CHS represent proposed alternative genes to zt1 and zt2. The question mark indicates that the exact
genetic control of the polymerization of flavan-3-ols in condensed tannins is unknown.
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synthase genes are conserved in legumes as they have been cloned

also in model legumes (Iturbe-Ormaetxe et al., 2003), suggesting

that targeting bAS (indicated by the pointing hand in Figure 4)

could be a viable approach for developing faba bean lines with

reduced saponins and improved flavor.

4 Prospects for the development of
faba bean ideotypes with neutral taste
and aroma

Developing a breeding program to reduce off-flavors requires

understanding the genetic basis of these traits and establishing

breeding goals . Pr imary object ives involve reducing

polyunsaturated fatty acid oxidation and polyphenol or saponin

content in seeds, as schematised in Table 2. However, faba bean

breeders must concurrently improve yield and stress resistance to

ensure the crop’s success on the market. Faba bean is already well

known to suffer yield instability, showing a large genotype by

environment interaction (G × E) and lack of resilience to multiple

abiotic and biotic stress conditions (Annicchiarico and Lannucci,

2008). Therefore, the inclusion of multiple traits in breeding
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schemes should be considered when designing breeding strategies.

Selecting multiple traits will require understanding the genetic

correlations between chemical attributes and agronomic

performance (i.e., yield). Consequently, it will play a pivotal role

to determine whether the genetic association between traits is

favourable, unfavourable, or neutral and whether they are

influenced by environmental components (Rana et al., 2019).

Given that the biosynthesis of secondary metabolites is regulated

by biotic and abiotic stress response (Thakur et al., 2019; Jan et al.,

2021), it is expected that their concentration increase or decrease

based on cultivation-specific conditions (Thakur et al., 2019).

Oomah et al. (2014) have shown that the total extractable

volatiles were highly dependent on the growing location of faba

bean. Therefore, it will be crucial to assess the genotype-

environment interaction for off-flavor related traits. Additionally,

it is important to understand the heritability of these traits.

In plant breeding, selection strategies are largely based on the

crop’s reproduction system, which typically involves either self-

pollination (where the same plant acts as both the male and female

parent) or cross-pollination (where one plant serves as the male

parent and another as the female parent). It is important to consider

that faba bean demonstrates a mixed-mating system, exhibiting
FIGURE 4

Biosynthesis of saponins. The figure illustrates a concise version of the proposed pathway for the synthesis of saponins in Glycine max. It is
noteworthy to notice that saponin A reported in the pathway is present only in soybean, but not in faba bean. The synthesis of triterpenoid saponins
begins with the cyclization of the precursor molecule 2,3-oxidosqualene into various triterpene scaffolds by the enzyme b-amyrin synthase (bAS),
belonging to the family of oxidosqualene cyclases (OSCs). Among the produced scaffolds, b-amyrin is then subjected to site-specific oxidation
reactions catalysed by cytochrome P450 monooxygenases (P450s), resulting in the formation of soyasapogenol B and soyasapogenol A. Subsequent
glycosylation reactions catalysed by enzymes from the glycosyltransferase 1 superfamily, known as uridine diphosphate (UDP)-dependent
glycosyltransferases (UGTs), produce structurally diverse triterpenoid saponins including, group B soyasaponin, DDMP-saponin and group A saponin.
The highlighted b-amyrin synthase (bAS) gene (pointing hand) is a potential candidate for breeding applications because it plays a key role in the
synthesis of saponins and is also located at a key point in the pathway.
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partial outcrossing (cross-pollination) behaviour with an average

outcrossing rate of about 30%. The co-existence of selfing and

outcrossing in the flowers of the same plant of faba bean requires

modifications of traditional breeding methods for self-pollinated

crops while also considering that strategies for highly outcrossing

species may not be entirely applicable (Gnanasambandam et al.,

2012). Flavour-neutral homozygous lines can be developed through

line or family selection under insect-proof enclosures. These could

be directly commercialised, adhering to the rules of distinctiveness,

uniformity, and stability. However, high degrees of homozygosity in

faba bean may result in a significant loss of heterosis, raising

concerns from a yield perspective (Adhikari et al., 2021). In the

absence of true F1 hybrids with maximised heterosis, synthetic

varieties offer a viable option to partially exploit hybrid vigour

(Brünjes and Link, 2021) and develop faba bean cultivars with

reduced off-flavors.

To be able to identify the genetic components of off-flavors and

to develop breeding tools in faba bean, there is the need to explore

genetic variation. In this view, zero tannin germplasm can serve as a
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valuable starting material in breeding schemes, as it already has

reduced bitterness and astringency. In addition to the zero-tannin

germplasm, further investigation of natural variation in off-flavor-

related traits within the faba bean germplasm is required. It is worth

mentioning that the current genetic diversity of faba bean to exploit

in breeding is restricted to the cultivated gene pool (Adhikari et al.,

2021), as the wild ancestors of faba bean are officially considered

still missing.

To optimise the utilization of the extensively available

germplasm and identify potential lines for crossbreeding, creating

smaller “core collections”may be beneficial, as these would be more

accessible to breeders and easier to increase seed availability from

selected accessions (Malosetti and Abadie, 2001; Khazaei et al.,

2013). Since there is no existing evidence to select neutral-flavor

candidates from genebanks, it is strategic to begin exploring

accessions with diverse genetic backgrounds, breeding history,

and adaptation to various latitudes. These factors are anticipated

to impact metabolic chemical profiles, potentially resulting in a

range of different flavor features (Lin et al., 2014; Kusano et al.,
TABLE 2 Overview of breeding targets and candidate genes for off-flavor reduction in faba bean.

Trait Candidate
gene

Catalysed reaction Expected outcome a

Polyunsaturated
fatty acids
(PUFA)

fatty acid
desaturase 2

(fad2)

Desaturation of oleic (C18:1) to form linoleic
acid (C18:2)

Selecting fad2 and fad3 is expected to enhance oil stability by increasing the
level of oleic acid and reducing the amounts of linoleic and linolenic acids

(PUFA).
Selecting for lox is expected to decrease PUFA oxidation, leading to a reduced

release of volatile and non-volatile compounds.
A diminished beany, grassy, earthy aroma is expected, as well as reduced

bitterness due to lower presence of non-volatile lipid oxidation compounds.

fatty acid
desaturase 3

(fad3)

Desaturation of linoleic acid (C18:2) to form
linolenic acid (C18:3)

lipoxygenase
(lox)

Oxygenation of linoleic acid (C18:2) and
linolenic acid (C18:3) to form hydroperoxides

Condensed
tannin

zero tannin 1
(zt-1)

Unknown exact function Selecting zt1 and zt2 resulted in zero-tannin genotypes. It is anticipated that
selecting chs and chi will lead to both reduced condensed tannin, such as

procyanidins, and decreased precursors levels, respectively.
Reduced bitterness and/or astringency is expected.zero tannin 2

(zt-2)
Unknown exact function

chalcone
synthase (chs)

Synthesis of naringenin chalcone from 4-
coumaroyl-CoA and three units of malonyl-

CoA

chalcone
isomerase (chi)

Isomerization of naringenin chalcone in
naringenin

Flavonoid chalcone
synthase (chs)

chalcone
isomerase (chi)

Synthesis of naringenin chalcone from 4-
coumaroyl-CoA and three units of malonyl-

CoA
Isomerization of naringenin chalcone in

naringenin

Selecting chs and chi is expected to disrupt the phenylpropanoid pathway,
resulting in

reduced levels of condensed tannin precursors, such as quercetin, myricetin,
kaempferol, leucoanthocyanidins, anthocyanidins, and others.

Reduced bitterness and/or astringency is expected.

Saponin b-amyrin
synthase (bAS)

Cyclization of 2,3-oxidosqualene to form b-
amyrin

Selecting bAS is anticipated to disrupt the biosynthesis of saponins,
consequently leading to a decrease in saponin B and DDMP saponin levels. A

reduction in bitterness and/or astringency is expected as a result.

Vicine and
convicineb

Vicine and
convicine 1

(vc1)

Conversion of Guanosine-5’-triphosphate
(GTP) into 2,5-diamino-6-ribosylamino-4(3H)-

pyrimidinone 5′-phosphate (DARPP)b

Selecting vc1 resulted in low vicine and convicine genotypes. It is expected that
the full elimination of these molecules will be possible with the complete

elucidation of the partially known biosynthetic pathway.
aThe term “selecting” a particular gene refers to selecting a mutated version of the gene, which results in null or dysfunctional enzymes. The references supporting the statements in this summary
table can be found in Section 3, where the pathways leading to the production of the molecules involved in off-flavors, specific genes, and potential gene manipulations are discussed.
bVicine and convicine are reported in grey as their impact on taste has not been investigated, but they are expected to be bitter. See Bjornsdotter et al. (2021) for details on the molecular pathways
controlling the vicine and convicine biosynthesis.
The table presents key breeding traits, candidate genes for selection in breeding programs, functions of enzymes encoded by these genes, and anticipated outcomes resulting from the selection of
these genes.
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2015). Therefore, a core collection can be established by sampling

materials based on genetic diversity, assuming that this diversity is

reflected in flavor variation.
4.1 High-throughput screening methods
are needed to identify flavor-neutral
accessions within the large faba
bean germplasm

Exploring over 43,000 accessions of faba bean preserved in

approximately 40 gene banks (Duc et al., 2015) to identify rare

flavor-neutral traits is challenging, time-consuming and costly. To

perform in-house phenotyping, breeding companies must acquire

machinery and techniques appropriate for screening volatile and

non-volatile chemical compounds. The high cost of acquiring such

equipment may deter some investigators, but collaborative research

across various sectors could make these tools more accessible

(Viana and English, 2021).

For volatile flavor compounds, Gas Chromatography (GC) in

combination with mass spectrometry (MS) is a widely used analysis

apparatus to separate a mixture of many volatile compounds to

identify (and, if wanted, to quantify) each of the compounds. Before

this analysis can take place, the volatiles first need to be extracted

from faba bean flour. The extraction technique chosen determines

the type and quantity of compounds extracted, as not all

compounds can be extracted by each extraction method. Vacuum

distillation and solvent extraction are accurate, but very laborious

and time-consuming (Wang et al., 2021). Faster, but still relatively

laborious is StirBar Sorptive Extraction (SBSE). Headspace solid-

phase microextraction (HS-SPME) has emerged as the most

frequently utilised technique for the analysis of volatile

compounds from protein-rich plants (Wang et al., 2022). This

technique requires minimal sample preparation and can be

automated. It has been used to characterise several low- and

high-tannin faba bean varieties (Oomah et al., 2014; Akkad et al.,

2019). Moreover, SPME-GC-MS has also been employed in large

screening in the context of soybean breeding (Ning et al., 2019;

Wang et al., 2020). Despite its advantages of being fast, economical,

and having high extraction efficiency, it has a medium throughput.

A much shorter analysis time is taken using GC- Ion Mobility

Spectrometry (IMS) (a few minutes). Another type of technique is

Proton Transfer Reaction-Mass Spectrometry (PTR-MS), which is a

high-throughput alternative method for detecting and quantifying

volatile organic compounds in real-time (Acierno et al., 2020). Its

non-destructive nature allows for fast analysis (about 1 minute per

sample) and has been successfully used in apple and strawberry

breeding (Zini et al., 2005; Carbone et al., 2006; Acierno et al., 2020).

These techniques produce very large amount of data in a very short

time. A disadvantage of these fast measurements is that the time

needed to analyse the measured data is much higher than the time

needed to perform the measurement itself. When data analysis is

automated, GC-IMS or PTR-MS, could be rapid alternative

phenotyping methods for breeding faba bean for improved flavors.

For non-volatile flavor compounds, high-performance liquid

chromatography (HPLC) or ultra-high-performance liquid
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chromatography (UPLC) coupled with mass spectrometry (MS)

are commonly used. These techniques can detect and quantify

saponins, lipid derivatives, tannins, phenolics, and other

compounds that influence taste perception and astringent

mouthfeel. Extraction steps are crucial for analysing non-volatile

compounds, as solvents used to impact the solubility of compounds

(Wang et al., 2022). As for volatile compounds, also for non-volatile

compounds applies that what and howmuch is detected depends on

the extraction method used. Liquid chromatography–mass

spectrometry was used to characterise phenolic profiles of seed

coat and flower tissue of three faba bean genotypes. In this way,

Zanotto et al. (2020) have determined the contents of flavonols,

tannins, hydroxybenzoic and hydroxycinnamic acids among others,

which are all compounds involved in taste perception. The

composition of tannins in seed coats of faba beans was

investigated by Merghem et al. (2004) using HPLC-MS. In order

to increase throughput, UPLC is an alternative to HPLC. It offers

improved method sensitivity, resolution, and speed (Swetha et al.,

2020), making it a candidate analytical methodology for screening

breeding trials. However, UPLC is still considered a laborious

technology with medium throughput. Similarly laborious in the

extraction, but much faster in the data analysis is the use of

spectrometric determinations of total phenolics and of total

tannins. However, these types of methods do not identify

individual compounds and are not suitable for saponins and

others. Near Infrared Spectroscopy (NIRS) provides a high-

throughput alternative to traditional approaches for breeding

applications. It is a light-based technology that predicts the

chemical composition of seeds after developing a prediction

model. Model development requires reference chemical data and

absorbance values obtained after scanning samples under near-

infrared light (Ozaki and Morisawa, 2021). NIR has already been

adopted in faba bean to quantify the presence of tannins and total

polyphenols and has the potential to be applied to other chemical

compounds involved in off-flavors (Johnson et al., 2020), aiding in

the fast development of improved faba bean varieties. Usually, NIR

can predict chemical compounds as classes, but the quantification

of individual compounds is usually hampered.
4.2 The availability of a reference genome
opens a new scenario facilitating molecular
and quantitative breeding

The field of faba bean genomics has historically trailed behind

that of other legumes, resulting in a slower pace of advancements in

trait improvement and breeding programs (Torres et al., 2011).

Molecular markers and isozyme polymorphisms to assist faba bean

breeding have been documented, but to a lesser extent than in other

major crop species (Alghamdi et al., 2012). Several breeding traits

were mapped using genetic maps constructed from bi-parental or

multi-parental populations as extensively reviewed by Khazaei et al.

(2021). However, except for the zt1 and zt2 loci involved in the

biosynthetic pathways of tannins, there has been no attempt to map

quantitative trait loci (QTL) or genes controlling off-flavors

development in faba bean.
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The lack of a historical focus on off-flavors in faba bean

breeding presents a unique opportunity for modern genomics to

contribute significantly to this field. The recent release of the giant

genome sequence (~13 Gb) of the faba bean cultivar Hedin/2

(Jayakodi et al., 2023) opens a multitude of new possibilities for

researchers and breeders (Jayakodi et al., 2023). Furthermore, a

pan-genome initiative was launched by the University of Helsinki

and Luke (Natural Resources Institute Finland) (Khazaei et al.,

2021). This will further facilitate efficient utilization of genetic

resources, and a more comprehensive understanding of genetic

diversity within faba bean.

Mapping major genes and QTL associated with off-flavor

development can expedite the discovery of novel genes and the

identification of natural variation. The complexity of off-flavor

pathways likely involves a combined effect of multiple alleles,

requiring quantitative approaches in breeding. Several examples

of quantitative approaches have been reported in legume breeding

literature to map QTL regulating molecules with taste and aroma

properties, including saponin, flavonoid, alkaloid, fatty acid

compositions, and hexenal (Phan et al., 2007; Liang et al., 2010;

Li et al., 2016; Li et al., 2017; Teraishi et al., 2017; Wang et al., 2020).

The current low-cost high-density genotyping platforms can

accelerate the selection process for these complex traits and

enhance genome-wide association studies in faba bean (GWAS)

(Pavan et al., 2020). GWAS enables fine mapping, but the

construction of biparental or multi-parent advanced generation

inter-cross (MAGIC) populations also offers a possibility for

markers development within existing breeding programs (Khazaei

et al., 2018). Due to the size of the faba bean genome, whole-genome

resequencing for marker-assisted selection (MAS) is still cost-

prohibitive. However, reduced representation sequencing

approaches such as Genotyping by Sequencing (GBS), Restriction

site-associated DNA sequencing (RADseq), and Double digest

restriction-site-associated sequencing (ddRAD-seq) can be utilised

for high-density scans of off-flavor related traits (Davey and Blaxter,

2010; Elshire et al., 2011; Truong et al., 2012). Additionally, the

newly developed Single Primer Enrichment Technology (SPET)

genotyping platform (commercialised as ALLEGRO) could serve as

a valuable tool for dissecting the genetic architecture of off-flavors in

faba bean (IGATech, 2022). SPET assay targets and types single

nucleotide polymorphism (SNP) in 90,000 genic and intergenic loci

across the faba bean genome, offering more flexibility than previous

SNP arrays (Scaglione et al., 2019; Jayakodi et al., 2023).

Many candidate genes involved in the production of volatile

and non-volatile compounds have been proposed in this review.

Their functional role in the development of off-flavor in faba bean

could be validated by CRISPR/Cas9 gene editing technology, which

is revolutionising the research in plant breeding (Ahmad, 2023).

CRISPR/Cas9-based genome editing employs the Cas9

endonuclease to make precise cuts in DNA. These cuts are guided

by specific RNA sequences, known as gRNA, ensuring targeted

modifications. Typically, CRISPR-CAS9 uses a transformation

system, such as Agrobacterium-mediated transformation, which

involves the introgression of foreign DNA into plant cells or tissues.

Editing the genomes of most legumes presents challenges due to

their transformation recalcitrance. As a consequence, alternative
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methods have been proposed and are currently evaluated (Nivya

and Shah, 2023). Another limitation in applying genome editing to

legumes is their low regeneration capacities (Baloglu et al., 2022).

This refers to the ability of a genetically transformed plant cell or

tissue to regenerate into a full plant that expresses and propagates

the introduced traits. Despite the mentioned difficulties in applying

genome editing to legume crops, example of successful

transformations include soybean (Lu and Tian, 2022), Lotus

japonicus (Wang et al., 2019), Medicago truncatula (Jaudal et al.,

2022), cowpea (Bridgeland et al., 2023), peanut (Yuan et al., 2019),

pea (Li et al., 2023), and chickpea (Gupta et al., 2023). To date, no

CRISPR/Cas9 studies have been reported for faba bean (Bhowmik

et al., 2021). However, the release of the reference genome aids in

designing specific gRNAs to target specific genes. A tailored system

for producing transgenic faba bean through Agrobacterium-

mediated transformation exists (Hanafy et al., 2005), but there is

a continuous need to refine protocols to overcome transformation

and regeneration obstacles, which are also genotype-dependent.

In conclusion, the combination of newly available genomic

resources, the development of mapping populations tailored to

off-flavor traits, and the application of advanced genetic

techniques such as CRISPR/Cas9 (which is currently primarily

used for research purposes) hold great promise for accelerating

progress in faba bean breeding. These advancements will ultimately

contribute to the development of improved faba bean varieties that

are manufactured into food products that are more appealing to

consumers, helping to drive the expansion of meat and

dairy analogues.
4.3 Potential drawbacks and
considerations for breeding
strategies to reduce off-flavors

Breeding to remove off-flavor compounds from faba bean

seeds has the potential to improve the taste and palatability of meat

or dairy analogues. However, this approach also carries some

potential drawbacks. Most of the secondary metabolites likely

involved in off-flavor (e.g., lipid oxidation products, flavonoids,

tannins, saponins) are required by plants for various functions, such

as pigmentation, growth, reproduction, and resistance to pathogens.

As such, they represent adaptive traits that have undergone natural

selection during evolution (Peter Constabel et al., 2014; Ku et al.,

2022). The elimination of these secondary metabolites could cause a

yield decrease.

Plants augment the production of polyphenols in response to

abiotic stressors as a strategy to assist adaptation to drought, heavy

metal exposure, salinity, extreme temperatures, and ultraviolet

radiation (Sharma et al., 2019). Tannins, for example, play a role

in frost protection, acting as supercooling-promoting agents or

anti-ice nucleating agents (Koyama et al., 2014). Zero-tannin faba

bean cultivars resulted in higher susceptibility to cold and frost

damage of seeds. Faba bean is a crop at high risk for late-season

frost injury in certain environments, which results in reduced yield

and marketability (Inci and Toker, 2011; Henriquez et al., 2017).
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Saponin represents a chemical barrier against pathogens

(Zaynab et al., 2021). Positively, the disruption of the molecular

pathway controlling the saponin biosynthesis in pea by mutational

breeding has not shown negative effects on the physiological

(germination capacity) or nutritional quality (protein content) of

the seeds under controlled greenhouse conditions (Vernoud et al.,

2021). However, field-based studies are needed to evaluate the

agronomical performance of these plants under the pressure of

pathogens, pests and, environmental cues.

Furthermore, removing secondary metabolites might negatively

impact the nutritional value of the beans. For instance, some

polyphenols serve as important sources of antioxidants and are

considered health-promoting compounds (Ganesan and Xu, 2017).

In addition, altering the composition of fatty acids results in seeds

with diminished nutritional value. Any disruption of LOX pathways

needs careful evaluation anyway, as these enzymes play a pivotal

role in plant defense mechanisms. LOXmediates the biosynthesis of

jasmonic acid upon wounding (Bell et al., 1995), but also

contributes to the production of oxylipins, enhancing plant

resistance against pathogens (Wilson et al., 2001).

Considering the potential drawbacks reported, it would be

preferable in breeding to specifically target genes that are

expressed within the seeds only. This allows the production of

secondary metabolites in other plant tissues, ensuring the

production of molecules that are involved in defense mechanisms

against biotic or abiotic stresses in some parts of the plant. It is also

important to account that the disruption of secondary metabolism

may lead to unforeseen effects elsewhere in the plant’s metabolic

system, which is complex and highly interconnected. The

elimination of bitter and astringent compounds could change the

availability of certain nutrients, which may lead to the production of

new compounds or changes in the concentration of existing ones.

Therefore, careful monitoring of any changes in the bean’s

composition is crucial to ensure that no harmful or unwanted

compounds are produced.

Establishing strong collaborations between plant breeders and

the food industry, alongside rigorous monitoring and evaluation of

the breeding program outcomes, will be crucial for ensuring that the

development of new faba bean varieties aligns with both consumer

preferences and the long-term sustainability of the crop.
5 Conclusions

The plant-based food industry is increasingly using faba bean as

a key ingredient in meat and dairy alternatives. Although

technological solutions can mitigate the off-flavors present in faba

bean ingredients, they are energy-intensive and costly. We firmly

believe that the most sustainable solution to eliminate off-flavors

involves plant breeding, with a focus on developing varieties that are

tailored for these applications and that ensure minimal to no off-

flavors. Previous breeding research on other crops has identified

genes behind off-flavor synthesis. Moreover, as we deepen our
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understanding of the molecules responsible for off-flavors, and

with the onset of the genomic era in faba bean research, we can

uncover additional genetic pathways. Such insights can significantly

benefit faba bean breeding. The success of breeding initiatives

aiming to improve off-flavor profiles depend on several factors,

including the availability or creation of genetic variations, the

quantitative nature of the trait, its heritability, and the efficiency

of high-throughput screening methods, among others. For

improved faba bean varieties with reduced off-flavors to be both

competitive in the market and attractive to farmers, they must also

exhibit high yield and resistance to both biotic and abiotic stresses.

Complementing these traits in new varieties can promote the

transition toward a more sustainable and climate-resilient diets.
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