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Abstract 14 

Regulation of gene expression plays a crucial role in developmental processes and adaptation to 15 

changing environments. eQTL mapping is a technique used to study the genetic regulation of 16 

gene expression using the transcriptomes of recombinant inbred lines. Typically, the age of the 17 

inbred lines at the time of RNA sampling is carefully controlled. This is necessary because the 18 

developmental process causes changes in gene expression, complicating the interpretation of 19 

eQTL mapping experiments. However, due to genetics and variation in ambient micro-20 

environments, organisms can differ in their “developmental age”, even if they are of the same 21 

chronological age. As a result, eQTL patterns are affected by developmental variation in gene 22 

expression. The model organism C. elegans is particularly suited for studying the effect of 23 

developmental variation on eQTL mapping patterns. In a span of days, C. elegans transitions 24 

from embryo through four larval stages to adult while undergoing massive changes to its 25 

transcriptome. Here we use C. elegans to investigate the effect of developmental age variation on 26 

eQTL patterns and present a normalization procedure. We used dynamical eQTL mapping, 27 

which includes the developmental age as a co-factor, to separate the variation in development 28 

from genotypic variation and explain variation in gene expression levels. We compare classical 29 

single marker eQTL mapping and dynamical eQTL mapping using RNA-seq data of ~200 multi-30 

parental recombinant inbred lines of C. elegans. The results show i) that many eQTLs are caused 31 
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by developmental variation, ii) most trans-bands are developmental QTLs and iii) dynamical 1 

eQTL mapping detects additional eQTLs not found with classical eQTL mapping.  We 2 

recommend that correction for variation in developmental age should be strongly considered in 3 

eQTL mapping studies given the large impact of processes like development on the 4 

transcriptome.  5 

Introduction 6 

Regulation of gene expression is a key mechanism underlying the huge diversity of phenotypes, 7 

adaptations, and developmental stages within and across species. Understanding gene expression 8 

regulation provides insights into how organisms develop and adapt to changing environments(L. B. Snoek 9 

et al. 2014; Francesconi and Lehner 2014; Jovic et al. 2017; Spencer et al. 2011; Araya et al. 2014; Boeck 10 

et al. 2016; Reinke et al. 2000). The genetic regulation of gene expression can be investigated through 11 

expression quantitative trait locus (eQTL) mapping, also called genetical genomics(Jansen and Nap 12 

2001). In this statistical procedure, polymorphic regions (eQTLs) are associated with variation in gene 13 

expression, pinpointing potential regulatory regions. The nematode Caenorhabditis elegans is often used 14 

in eQTL studies and has a small, well annotated genome in addition to well documented genetic 15 

variation(L. B. Snoek et al. 2013; B. L. Snoek et al. 2020; Evans et al. 2021; Andersen and Rockman 16 

2022; Sterken et al. 2015). Its tolerance of cryo-preservation, large brood size and self -fertilizing ability 17 

allow for the construction of perpetual recombinant inbred lines (RILs) derived from genetically diverse 18 

C. elegans isolates(Gaertner and Phillips 2010; Sterken et al. 2015; Evans et al. 2021). RILs are 19 

homozygous for almost all loci and constitute a genetic mosaic of the parental genotypes, thereby 20 

increasing the resolution and power of methods for eQTL detection(Andersen and Rockman 2022). The 21 

above qualities make C. elegans an exceptional model system for genetical genomics. 22 

The developmental process in C. elegans is associated with massive and rapid changes in gene 23 

expression(L. B. Snoek et al. 2014; Hashimshony et al. 2015; Levin et al. 2016). Many genes are 24 

expressed in a developmental stage-specific manner(McCarroll et al. 2004; Reinke et al. 2000; Boeck et 25 

al. 2016; Viñuela et al. 2010; 2012). Others are up- and down-regulated cyclically as C. elegans 26 

transitions through the four larval stages(Hendriks et al. 2014; Meeuse et al. 2020; Kim, Grün, and van 27 

Oudenaarden 2013). The speed of development, as well as the process of aging, varies between individual 28 

C. elegans strains due to stochastic and micro-environmental factors, maternal age and variation in 29 

genetic background(Viñuela et al. 2010; 2012; Francesconi and Lehner 2014; L. B. Snoek et al. 2014; 30 

Bulteau and Francesconi 2022; B. L. Snoek et al. 2019; Volkers et al. 2013; Perez et al. 2017). Due to the 31 

impact of the developmental process on gene expression combined with the interaction with the genetic 32 
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background, eQTL patterns can be affected by uncontrolled developmental variation(Viñuela et al. 2010; 1 

Francesconi and Lehner 2014; L. B. Snoek et al. 2014). To conceptualize developmental variation, it is 2 

useful to distinguish between the chronological age and the developmental age. The chronological age is 3 

simply the measured age of the organism, whereas the developmental age represents how far the organism 4 

has progressed along the developmental process. Because variation in developmental speed and thus 5 

developmental age depends partly on genetic factors, it is intrinsic to populations used for genetic 6 

mapping. Careful synchronization of worms at a particular developmental checkpoint can help to reduce 7 

but does not eliminate developmental age variation(Ben-David et al. 2021). As a result, the eQTL 8 

mapping procedure could attribute expression variation resulting from variation in developmental age to a 9 

genetic polymorphism. Conversely, developmental age variation could obscure the effects of the genetic 10 

background on gene expression.  11 

One way to deal with the confounding effect of the developmental process in eQTL mapping is to apply a 12 

normalization procedure(Viñuela et al. 2012; Jovic et al. 2019). Another approach is to make the effects 13 

of developmental variation on gene expression explicit by including the developmental age as a co-factor 14 

in the statistical model for eQTL mapping (dynamical eQTL mapping)(Francesconi and Lehner 2014). 15 

The latter approach is more informative because it explicitly models how eQTLs affect the dynamics of 16 

gene expression, rather than just the mean over the developmental ages of the inbred lines. A seminal 17 

paper by Francesconi and Lehner(Francesconi and Lehner 2014) showed that dynamical eQTL mapping 18 

using the quantified developmental age can be leveraged to detect additional eQTLs. By relating the 19 

magnitude of gene expression to the developmental age the authors showed that eQTLs can affect the 20 

expression dynamics over the course of the developmental process.  21 

In this study we aimed to quantify the difference between the classical eQTL mapping approach, which 22 

does not explicitly consider developmental variation, and dynamical eQTL mapping. To this end, we used 23 

RNA-seq data of ~200 C. elegans multi-parental recombinant inbred lines (mpRIL)(B. L. Snoek et al. 24 

2019; 2021). RNA-seq samples were obtained 48 hours after synchronization by egg bleaching, ensuring 25 

there is no variation in chronological age within the population. At the time of RNA sampling the 26 

mpRILs were in the L4 larval stage. We started by quantifying the developmental age directly from the 27 

gene expression data with a straightforward approach involving principal component analysis (PCA). 28 

Next, we performed eQTL mapping using linear models, both with and without the developmental age 29 

included as a co-factor. We compared these models qualitatively, by the distribution of eQTLs over the 30 

genome, and quantitatively, by the number of eQTLs detected and the variance in gene expression 31 

attributed to the eQTLs. We show that most, but not all, trans-bands (regulatory hotspots) result from a 32 

shared association with the developmental age between the SNP marker and transcript levels of genes 33 
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involved in developmental processes. Moreover, we present evidence that such hotspot loci affect gene 1 

expression through their effect on the developmental speed. We also show how comparing the results 2 

from models with and without the developmental age can help to distinguish between loci linked to the 3 

developmental age and other regulators of gene expression. 4 

 5 

Methods 6 

All analyses were performed using R version 4.1.3(R Core Team (2022) 2022). Plots were generated 7 

using the ggplot2 package(Martin, Schbath, and Hennequet-Antier 2022). Pearson correlations were 8 

calculated using the cor() function from base R.  9 

Data and pre-processing 10 

We used data of 199 multi-parental recombinant inbred lines (mpRILs)(B. L. Snoek et al. 2019; 2021; 11 

Volkers et al. 2013). The mpRILs were derived from an advanced cross between four parental lines which 12 

were collected from the French regions of Orsay (2 lines) and Santeuil (2 lines). The mpRILs were grown 13 

for 48 hours after bleaching at 24 degrees. We verified that our population was still in L4 by calculating 14 

the correlation of the transcriptome of the mpRILs with two L4 reference genomes and two young adult 15 

reference genomes from the N2 strain (L4, L4b, YA and N2Yad-1 from (Boeck et al. 2016)) (Figure 16 

S14). The parental lines were excluded from the eQTL mapping procedure and all subsequent analysis 17 

unless explicitly mentioned. The data consists of fpkm values for 38322 transcripts obtained using RNA-18 

seq and a genetic map of 8933 bi-allelic SNPs. Due to the SNPs being bi-allelic the genotype at each 19 

marker was coded as 0 or 1 for homozygous individuals and 0.5 for heterozygous individuals. Before 20 

analysis we filtered the gene expression data to retain the 12029 transcripts with more than 20 non -zero 21 

fpkm values and a log2(mean fpkm) value higher than -5. Out of the 12029 filtered transcripts 2341 are 22 

polycistronic, for a total of 15224 genes in the filtered dataset. In all analysis we use the center log ratio of 23 

gene expression (CLR), which for gene j and mpRIL i is calculated according to the following equation:  24 

𝐶𝐿𝑅𝑖,𝑗 = log2(
(𝑓𝑝𝑘𝑚𝑖,𝑗 +1)

(
1
𝑛
(∑ 𝑓𝑝𝑘𝑚𝑖,𝑗)

𝑛
𝑖   + 1)

) 25 

Developmental age 26 

We quantified the developmental age by performing PCA on the filtered and normalized gene expression 27 

matrix (with the mpRILs as columns and the transcripts as rows, such that mpRILs have loadings on PC1 28 

and transcripts have scores) using the prcomp() function from the stats package. The loadings of the 29 
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mpRILs on PC1 were taken as a proxy for the developmental age in subsequent analysis. For figure 1, S2, 1 

S3, S4 and S12 we calculated the Z-score of the center log ratio of the fpkm values by mean centering on 2 

0 and scaling such that the expression of each gene has a standard deviation of 1 using the scale() function 3 

from base R.  4 

We calculated developmental age estimates using the ae() function from the RAPToR package in R. We 5 

tried both the Cel_larval and Cel_larv_ya reference sets, obtaining a more even spread in distribution 6 

using the former. The ae() function allows for the possibility of specifying a prior but this did not provide 7 

a narrower distribution of the estimated ages, even when using a low standard deviation (1 hour). We 8 

therefore estimated the ages of the mpRILs with the Cel_larval reference and no prior.  9 

eQTL mapping with linear models 10 

We ran linear models using the FastLm() function from the RcppAramadillo package. We applied a single 11 

marker model (SMM, gene expression ~ marker genotype), additive age model (AAM, gene expression ~ 12 

marker genotype + PC1) and interaction model (IM, gene expression ~ marker genotype (IMM term) + 13 

PC1 + marker genotype * PC1 (IMI term)) to perform pairwise tests between the filtered transcripts and 14 

all markers. P-values were calculated for model terms using t-tests. For the interaction model, both a 15 

significant IMM term and a significant IMI term were considered an eQTL. Per gene, we called a 16 

maximum of one eQTL per chromosome. We called a cis-eQTL if the distance between the middle of the 17 

gene and the marker was < 2Mb, and a trans-eQTL otherwise. For all models, we also generated p-values 18 

by randomly distributing the gene expression values over the mpRILs for each gene. We used the p -19 

values obtained by permutation to constrain the type I error and obtain significance thresholds. For 20 

thresholding the marker and interaction terms we used the lowest p-value per gene per chromosome. For 21 

the developmental age variable, we used the p-values of the models with the lowest marker p-value per 22 

transcript per chromosome. All results are obtained using an FDR of 0.05 unless explicitly mentioned in 23 

the text. P-value thresholds are in Table S1. 24 

Transcripts affected by development 25 

Transcripts were considered significantly affected by the developmental process if they had a significant 26 

p-value for the development variable using the AAM, in all the six models (one per chromosome) that 27 

resulted in the lowest marker p-value.  28 

Calculating partial eta squared 29 

We performed an anova on the model with the lowest marker p-value using the aov() function from the 30 

stats package and extracted from the effects vector the residual sum of squares (RSS) and the sum of 31 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkad273/7453300 by W

ageningen U
niversity and R

esearch – Library user on 13 D
ecem

ber 2023



6 

squares explained by the marker (SSM). Note that the marker with the lowest p-value can differ between 1 

the SMM and the AAM. We then calculated the partial eta squared according to the following equation:  2 

𝑆𝑆𝑀

𝑆𝑆𝑀+𝑅𝑆𝑆
 3 

GO enrichment 4 

We performed GO-term enrichment on genes that map to specific hotspots. We tested for enrichment of 5 

GO terms from the subcategories biological process, molecular function and cellular component using a 6 

hypergeometric test. As the total gene set we used the genes on the 12029 transcripts used in the eQTL 7 

mapping. We called significant enrichment if p-value < 0.001 and at least three genes were associated 8 

with this GO-term.  9 

Results 10 

Developmental age estimation by principal component analysis 11 

We quantified the developmental age of the multi-parental recombinant inbred lines (mpRIL) by 12 

performing a principal component analysis (PCA) on the normalized gene expression counts.  Estimating 13 

relative differences in developmental age using a PCA was shown to be effective in a previous 14 

study(Jovic et al. 2019). Principal component (PC) 1 explained ~48% of the gene expression variation 15 

and PC2 explained ~5% (Figure 1A). Under the assumption that the developmental age would be the 16 

largest contributor to the variation in gene expression, we investigated whether PC1 is a good proxy for 17 

the developmental age of the mpRILs. First, we looked at the expression of the yolk protein vit-2 gene, 18 

since it is part of a cluster of 53 genes (developmental indicator genes) that show a robust linear increase 19 

in expression during the L4 stage (cluster 1 in Snoek et al., 2014, see figure S4 for gene names). The 20 

expression of vit-2 increases as the projection of the mpRILs on PC1 increases (Pearson correlation ~ 21 

0.91) (Figure 1A). Second, we investigated whether the other developmental indicator genes also show a 22 

positive correlation with PC1. We found a strong positive correlation between the projection on PC1 and 23 

the mean expression of developmental indicator genes (Pearson correlation ~ 0.97) (Figure 1B). The 24 

association between the developmental indicator genes and PC1 is further verified by high projections of 25 

these genes on PC1 (Figure S1). We validated the developmental indicator gene approach by taking a 26 

larger set of 2050 genes shown to be monotonically rising in a different study (Hendriks et al., 2014). The 27 

mpRILs ordered by their projection on PC1 sort the expression of these genes well (Figure S2). Third, we 28 

verified the estimated developmental ages of the mpRILs by using the RAPToR package(Bulteau and 29 

Francesconi 2022). The RAPToR package estimates the age of an organism based on its expression 30 
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profile, by using an appropriate transcriptomic time series as a reference. The high correlation between 1 

the RAPToR ages and PC1 (Pearson correlation ~0.91) confirms that PC1 can be used as a proxy for the 2 

developmental age. However, the mpRILs ordered by the RAPToR age estimates provided a sorting that 3 

was less consistent with the known monotonically increasing expression of the developmental indicator 4 

genes (Figure S3) compared to PC1 (Figure S4). Hence, we used the projections of the mpRILs on PC1 5 

as our developmental age estimates in the subsequent analysis. Note that PC1 appears to be associated 6 

with the genetic background, given the nearly identical loadings of the parental duplicates on PC1 7 

(Figure S5). We conclude that PC1 is strongly associated with the developmental process and can be 8 

used to approximate the developmental age of the mpRILs. 9 

The effect of developmental age variation on eQTL mapping 10 

To study the effect of variation in developmental age on eQTL mapping we compared a linear single 11 

marker model (SMM) with two models that include the developmental age as a co-factor: i) the linear 12 

additive age model (AAM) and ii) the linear interaction model (IM). For the IM, we distinguished eQTLs 13 

due to a significant marker effect from eQTLs due to a significant interaction between the marker and the 14 

developmental age. While the IM, marker (IMM) term detects additive differences in gene expression, a 15 

significant IM, interaction (IMI) term indicates an eQTL that influences the slope of gene expression over 16 

the developmental age. While the eQTLs detected by the models partially overlap, each model also 17 

detects a subset of unique eQTLs (Figure S6). We focus our initial investigation mostly on the SMM and 18 

AAM. We refer to SMM-only eQTLs, AAM-only eQTLs or SMM+AAM eQTLs to distinguish between 19 

eQTLs found by only the SMM, AAM or both respectively. We first show the difference between the 20 

models in terms of the distribution of eQTLs over the genome. Next, we show the quantitative effect of 21 

dynamical eQTL mapping by comparing the SMM with the AAM in terms of the number of eQTLs, p -22 

values, strength of the marker effects and the heritability of transcript levels. Finally, we discuss the 23 

application of the IM for dynamical eQTL mapping.  24 

Developmental age variation affects the manifestation of eQTL hotspots. 25 

We investigated whether the AAM shows an altered distribution of eQTLs over the genome compared to 26 

the SMM. The SMM yielded several hotspots enriched in trans-eQTLs, whereas cis-eQTLs are 27 

distributed evenly over the genome (Figure 2A, Figure S7A). The AAM yielded fewer eQTLs, with a 28 

particularly strong decrease in the number of large hotspots (Figure 2B, Figure S7B) and trans-eQTLs in 29 

general (Table 1). On the other hand, the number of (unique) markers with an eQTL increased (Table 30 

S2). The largest hotspot found by the SMM, located at position 3.4 Mb on chromosome X, significantly 31 

affects the expression of 1196 transcripts. In contrast, the AAM yielded only a single eQTL at this 32 
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location. Replacing PC1 with the mean developmental indicator gene expression as co-factor in the AAM 1 

gave a very similar eQTL distribution (Figure S8), with the same disappearing hotspots. These results 2 

indicate that most hotspots are caused by developmental variation.  3 

We hypothesized that the SMM-only hotspots are developmental QTLs. Under this hypothesis we would 4 

expect (1) that transcripts involved in developmental processes are enriched at the hotspots that disappear 5 

when using the developmental age as a co-factor, (2) that the genotype at the hotspot position is linked to 6 

the developmental age and (3) that SMM-only eQTLs primarily map to such hotspots.  7 

First, we investigated whether genes mapping to the largest hotspot were enriched for developmental GO-8 

terms. The genes having an eQTL at the hotspot position were enriched for developmental processes such 9 

as oocyte maturation, polar body extrusion after meiotic division , P granule, eggshell formation, 10 

pseudopodium, amoeboid sperm motility, male meiosis chromosome segregation, mitotic spindle pole and 11 

structural constituent of cuticle. This supports the involvement of this hotspot locus in development. 12 

Other hotspots were similarly enriched for genes associated with developmental processes (File S1). 13 

Apart from functional categories hotspots also share many of the same genes. As an example, more than 14 

80% (896 out of 1115) of the transcripts that map to the hotspot at position 12.8 Mb of chromosome II 15 

also map to the hotspot at position 3.4 Mb of chromosome X. This paints a picture of genes involved in 16 

developmental processes indiscriminately mapping to hotspots due to a shared association with the 17 

developmental age. 18 

Second, we investigated whether the markers at the hotspots that are only found with the SMM are linked 19 

to the developmental age by comparing the distributions of the developmental age between the alleles of 20 

three major hotspot loci (indicated by red arrows in Figure 2) (Figure 3). As expected, the distribution of 21 

developmental ages was clearly different between the genotypes at these hotspots. These loci could be 22 

linked to the developmental age because they regulate or affect the developmental speed. In this view, 23 

SMM-only hotspots affect gene expression through their effect on the developmental process itself. To 24 

investigate this, we ran single marker models with the developmental age as trait. In line with our 25 

hypothesis the marker of the largest hotspot was also the most predictive of the developmental age of the 26 

mpRILs (Figure S9).  27 

Third, we investigated the distribution of SMM-only eQTLs (Figure S10). In line with our hypothesis, 28 

this subset of eQTLs maps primarily to the disappearing hotspots. Together these three results suggest 29 

that most hotspots can be attributed to genes whose expression changes based on the developmental age 30 

mapping to loci that influence the developmental speed (Figure 4). 31 

Developmental age as cofactor strongly affects the quantitative eQTL landscape 32 
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Having observed large differences between the models in the distribution of eQTLs over the genome, we 1 

further investigated the quantitative effect of adding the developmental age as a co-factor on the number 2 

of eQTLs and the p-values and allelic effects of individual eQTLs. First, we examined the impact of the 3 

developmental process on the transcriptome using the developmental age term of the AAM. We find 9473 4 

transcripts (out of 12029 polycistronic transcripts) with expression levels significantly affected by the 5 

developmental age (-log(p) > 1.79 (FDR = 0.05) (Table 1). This number is in line with previous reports 6 

on the N2 reference strain(L. B. Snoek et al. 2014) and emphasizes the substantial changes in overall gene 7 

expression during development.  8 

Next, we compared the p-values of the marker effects between the SMM and AAM (Figure 5A). For a 9 

subset of eQTLs (151), the p-value was more than 10 orders of magnitude lower in the AAM compared to 10 

the SMM (Strong developmental effect eQTLs, above top black line in (Figure 5A)). The transcripts with 11 

such eQTLs all displayed a gene expression pattern over the developmental age that has a clear linearly 12 

increasing trend and little within allele variation compared to between allele variation (Figure 6). Most 13 

strong developmental effect eQTLs are detected by both the SMM and AAM. Examining the changes in 14 

p-value around the thresholds (Figure 5B, Table S1) revealed that many eQTLs were only detected by 15 

one of the models. eQTLs that are differentially detected between the models are of special interest as in 16 

these cases the qualitative result of the eQTL mapping procedure is impacted, potentially obfuscating or 17 

revealing relevant biology. 18 

 The total number of eQTLs decreased by ~53% between the SMM (18605) and the AAM (8666) (Table 19 

1). The AAM detected 1221 AAM-only eQTLs that would not be detected by the SMM (Figure 5B cyan 20 

color, Table S2). On the other hand, 11160 SMM-only eQTLs were no longer significantly associated 21 

with gene expression when the AAM is applied (Figure 5B, orange color). In conclusion, adding the 22 

developmental age as a co-factor to the model changed the detection outcome for more than 12000 23 

potential eQTLs.  24 

Dynamical eQTL mapping can reveal additional regulatory effects by correcting 25 

for developmental age 26 

To understand why some eQTLs are differentially detected between the SMM and AAM we looked at 27 

individual eQTLs. For the SMM-only eQTLs the observed significant difference in gene expression 28 

between the alleles (Figure 7A, boxplot) can be explained primarily by the difference in developmental 29 

age (Figure 7A; line plot, Figure 3A). The blue genotype is on average developmentally younger than 30 

the red genotype, causing gene expression differences. For this subset of eQTLs, accounting for 31 

developmental variation in the model shows that the locus is not significantly associated with gene 32 
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expression when stratified for developmental age (Figure 7A; line plot). For the AAM-only eQTLs there 1 

is no significant mean difference in gene expression between the alleles (Figure 7B; boxplot). However, 2 

the AAM reveals a significant association, over the entire range of developmental ages of the mpRILs, 3 

between this locus and gene expression (Figure 7B, line plot). In both cases of differentially detected 4 

eQTLs the SMM is being confounded by an association between the marker and the developmental age. 5 

These examples show how dynamical eQTL mapping can control for developmental variation in the 6 

mapping population (Figure 7A) and uncover regulatory regions obscured by this developmental 7 

variation (Figure 7B) on a gene-by-gene basis.  8 

  9 

Developmental age variation impacts the allelic effect of eQTLs  10 

The estimated allelic effects are expected to differ between the SMM and AAM given the large number of 11 

transcripts affected by development. In the previous section we showed that for SMM-only eQTLs, 12 

variation in mean gene expression between alleles does not always imply gene expression differences at a 13 

specific point in development (Figure 7A). In such cases we expect the allelic effect on gene expression 14 

estimated by the SMM, which considers only mean differences between alleles, to be higher than the 15 

allelic effect estimated by the AAM, which accounts for the developmental age. Conversely, for AAM-16 

only eQTLs the allelic effect can be obscured unless viewed over a developmental axis (Figure 7B, 17 

Figure S11). In this scenario we expect the allelic effect estimated by the AAM to be higher than the 18 

SMM estimation. To quantify the strength of the allelic effect, we calculated the (partial) eta squared of 19 

the marker variable for SMM-only and AAM-only eQTLs. Indeed, the SMM tends to infer a stronger 20 

allelic effect for SMM-only eQTLs (Figure 8A), whereas the AAM tends to infer a stronger allelic effect 21 

for AAM-only eQTLs (Figure 8B). We also investigated the effect of adding developmental age as a 22 

cofactor in models of the narrow sense heritability (h2). We find that with developmental age as cofactor 23 

the h2 of gene expression changes by more than 0.05 for ~47% of genes, and that the direction of change 24 

depends on the type of eQTL(s) (SMM-eQTL and/or AAM-eQTL) mapping to that gene (Text S1). These 25 

findings indicate that the allelic effect of eQTLs and the h2 of gene expression can be either obscured or 26 

exaggerated by hidden developmental variation.  27 

 28 

 29 

 30 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkad273/7453300 by W

ageningen U
niversity and R

esearch – Library user on 13 D
ecem

ber 2023



11 

Interactions between the genomic background and developmental age affect 1 

the dynamics of gene expression  2 

Genetic loci can affect, apart from the magnitude and timing of gene expression, also the shape of the 3 

dynamical pattern(Francesconi and Lehner 2014). To investigate the frequency of interactions between 4 

marker effects and the developmental age we applied a linear interaction model for eQTL mapping. A 5 

significant interaction term in this model indicates different dynamics between the marker alleles (Figure 6 

9). Using the interaction model results in a ~20% decrease in the number of marker effects detected 7 

(6886) compared to the AAM. On top of the marker effects the interaction model detects a significant 8 

interaction between the marker and developmental age for 1161 transcripts (FDR = 0.05 Table 1; Figure 9 

9; FDR = 0.1 shown in Figure S12). Investigating the distribution of interaction eQTLs over the genome 10 

shows that these also cluster in hotspots. The hotspot with the most eQTLs (20.440891 Mb, chr V) affects 11 

the expression of almost 200 transcripts. Despite the correction for the developmental age inherent to the 12 

model, the transcripts mapping to this hotspot are significantly enriched in GO-terms associated with the 13 

cell cycle, meiosis, mitosis and other developmental processes (File S2). This locus could therefore be an 14 

important determinant in the developmental speed during the range of developmental ages spanned by the 15 

mpRILs by affecting the rate of up- or down regulation of many transcripts involved in developmental 16 

processes (Figure S13 A-C). The genotypes corresponding to this marker also differ substantially in their 17 

distribution over the developmental age (Figure S13D), suggesting that its effect on the developmental 18 

speed was also present at younger developmental ages. This shows that the interaction model can detect 19 

loci that have large effects on the transcriptome by influencing the rate at which transcript levels change 20 

for many transcripts. 21 

Discussion 22 

We have shown that eQTL hotspots that disappear after controlling for the developmental age can 23 

correspond to markers influencing the developmental speed. For such hotspots, there is likely no direct 24 

regulatory relationship between the hotspot and the genes with an eQTL mapping to it. After all, at any 25 

specific developmental age there is no significant difference in expression between the alleles. Rather, 26 

one of the genotypes is on average further developed than the other, causing gene expression differences. 27 

Because the genes mapping to such hotspots are enriched for developmental functions, they are likely to 28 

have non-constant expression over the developmental age range of the mapping population. A non-zero 29 

slope of gene expression over the developmental age can cause differences in the overall magnitude of 30 

gene expression between marker alleles, even in the absence of gene expression differences between 31 
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12 

alleles at any specific developmental age, if developmental ages are not distributed equally between the 1 

alleles.  2 

The mechanism through which a polymorphic SNP influences the developmental speed can be difficult to 3 

entangle because gene expression both drives and is the result of the developmental speed. Therefore, an 4 

eQTL might influence the developmental speed by affecting the expression of some genes, as a result 5 

changing the expression of many more genes. For some SNPs in hotspots the association with the 6 

developmental age can be understood from the genomic context. For example, the large hotspot at the 7 

beginning of chromosome X maps close to the vit-5 gene encoding for the Vitogellin-5 protein which is a 8 

major yolk component. Inhibition of vit-5 by means of RNAi has been shown to result in slower rates of 9 

post-embryonic growth(Kamath et al. 2003). Interestingly, the maternal expression of vitellogenin genes 10 

appears to be a major determinant of the developmental speed(Perez et al. 2017). As a second example, 11 

the hotspot at 10.1 MB on chromosome III is located in the kel-10 gene. The human ortholog (KLHL10) 12 

of this gene is involved in spermatogenesis, and kel-10 is affected by the daf-2 gene, a well-known 13 

regulator of lifespan in C. elegans(Kenyon et al. 1993).  14 

Hotspots are often assumed to be global regulators of gene expression, although it is well known that 15 

hotspots can also result from genes with correlated expression because of uncontrolled latent 16 

factors(Breitling et al. 2008; Michaelson, Loguercio, and Beyer 2009). We show that developmental 17 

variation can be a major cause of such correlations, to the extent that most prominent hotspots are no 18 

longer present after correcting for the developmental age. Therefore, we posit that the default 19 

interpretation for hotspots should be an association between the hotspot locus and the developmental age.  20 

Loci that influence the developmental speed need not be seen as merely a confounder in eQTL mapping. 21 

Instead, they are crucial determinants of the expression state of an organism. Investigating the eQTLs 22 

detected by a non-dynamical but not a dynamical model is a convenient approach to search for loci that 23 

are causative for developmental age variation. This would allow a distinction between loci that cause gene 24 

expression differences even if organisms are at the same developmental age (eQTLs detected by AAM), 25 

and loci that affect gene expression by causing developmental age differences (SMM-only eQTLs). This 26 

approach is not limited to the developmental process but can be applied to any process which leaves a 27 

sufficiently strong signal in transcriptomics data. More generally, including latent factors in eQTL 28 

mapping can allow one to distinguish between loci that influence gene expression through their effect on 29 

generic processes and other effects of the genetic background on gene expression.  30 

Because eQTLs can also cause allele dependent non-linear expression patterns over the developmental 31 

age(Francesconi and Lehner 2014), we performed the eQTL mapping using a natural spline of the 32 
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developmental age (Text S2). Using the interaction term of this model, we hoped to identify eQTLs 1 

responsible for complex dynamical patterns. However, constraining the FDR of the natural spline model 2 

using the same permutation strategy we used for the linear models was not possible, as the p -values 3 

obtained on the actual dataset were barely distinguishable from the p-values obtained on the randomized 4 

dataset. We suspect this is in part due to a lack of statistical power, resulting from a combination of the 5 

size of the population (199 lines) and the dense genetic map (8933 SNPs) used for the mapping. An 6 

additional factor could be that our population has a narrow distribution of developmental ages. A study by 7 

Francesconi and Lehner detected many non-linear patterns using natural splines(Francesconi and Lehner 8 

2014). The population used in their study contained worms in the L3, L4 and young adult developmental 9 

stages. The mpRILs used in this study were all in the L4 larval stage (Figure S14). Possibly, non-linear 10 

dynamics only occur over a wider range of developmental ages than is covered by the mpRILs in our 11 

study or when multiple distinct stages are present. To investigate we clustered 2346 transcripts whose 12 

expression oscillates with a period of approximately eight hours(Hendriks et al. 2014) using k-means. The 13 

clustering revealed mostly monotonic or constant gene expression patterns for the clusters (Figure S15). 14 

This indicates that the developmental range spanned by the mpRILs is not broad enough to clearly 15 

observe the oscillations to which a large part of the C. elegans transcriptome is subject(Kim, Grün, and 16 

van Oudenaarden 2013; Meeuse et al. 2020; Hendriks et al. 2014). Therefore, the natural spline model 17 

may not be suitable, or at least superfluous, for mapping eQTLs in our experiment.  18 

In this paper we used a relatively simple method (PCA) to quantify the developmental age. Various more 19 

complex methods that extract developmental ages from transcriptomics data have already been 20 

developed. An example is the RAPToR framework, which projects the samples on an interpolated 21 

reference time series(Bulteau and Francesconi 2022). Because we wanted a method that was generally 22 

applicable, we did not want to be completely dependent on a reference (time) series. Our approach 23 

enables detection of other (semi-)linear processes affecting gene expression on a genome-wide scale and 24 

can be applied to other published eQTL studies in C. elegans(Sterken et al. 2020; B. L. Snoek et al. 2017; 25 

Li et al. 2006; 2010; Sterken et al. 2017; van Wijk et al. 2023) and beyond(Ben-David et al. 2021).  26 

Furthermore, our method, despite being simpler, provided an ordering of the expression of developmental 27 

indicator genes that was more consistent with the monotonic linear increase described in previous 28 

literature.  29 

We showed that PC1 accounted for most of the developmental variation in our population. The study by 30 

Francesconi and Lehner showed that the developmental signature was distributed between PC1 and PC2, 31 

which were assigned the interpretation of oogenesis and spermatogenesis respectively(Francesconi and 32 

Lehner 2014). Together PC1 and PC2 explained ~50% of the gene expression variation, which is close to 33 
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our PC1 (~48%). In accordance with two developmental axes, the projected samples formed an almost 1 

circular trajectory on PC1 and PC2. The authors showed that, while the distribution of developmental 2 

ages is centered on the L4 larval stage, the population also includes individuals from late L3 and early 3 

adult. It is possible that transitions between developmental stages cause developmental variation in gene 4 

expression to be distributed over more than one PC axis.  5 

A previous study scored the time to first egg phenotype of the mpRILs(B. L. Snoek et al. 2019). Because 6 

time to first egg is a clear indicator of the developmental speed, we hypothesized that this phenotype 7 

would correlate with PC1. Surprisingly, there was almost no correlation between PC1 and the time to first 8 

egg, or indeed any of the other phenotypes scored in this study (Figure S16). This can likely be partially 9 

attributed to between experiment variation. A second relevant factor could be the reported inverse 10 

relationship between the duration of larval development and the time between the first adult molt and the 11 

development of the first embryo(Perez et al. 2017). Thirdly, the developmental speed could differ 12 

between developmental stages. Development is a complex process with crucial developmental events 13 

likely being regulated by independent timers(Filina et al. 2022). Accordingly, correlations between the 14 

durations of two larval stages in experiments with genetically identical worms are low when temperature 15 

is strictly controlled(Mata-Cabana et al. 2022). On top of this, the genetic background can have stage-16 

specific effects on the developmental speed(Mata-Cabana et al. 2022; Filina et al. 2022). Stage-specific 17 

developmental variation would de-correlate developmental ages over the course of chronological time. 18 

Verifying this third explanation would require an experiment in which samples are obtained within and 19 

between time points. Such an experiment would allow us to measure the degree to which developmental 20 

variation is maintained on various timescales. More importantly, this experiment would allow us to 21 

compare gene expression over developmental age with gene expression over chronological age. In this 22 

way we could definitively show whether gene expression variation over PC1 is due to developmental 23 

variation. Furthermore, it would allow for an investigation into the extent to which eQTL patterns over 24 

developmental time translate to eQTL patterns over chronological time. 25 

In conclusion, we have shown that performing a PCA and including principal components into the model 26 

for eQTL mapping leads to an improved understanding of eQTL patterns by separating the effects of 27 

generic processes, such as development, from other regulatory effects of the genetic background. 28 

Furthermore, the effect of these generic processes on gene expression and their interaction with the 29 

genetic background can be understood by comparing models with and without principal components. 30 

Within an experimental condition, principal components can correspond to the developmental process, 31 

technical noise or other latent variables unrelated to the research question. Including principal 32 

components as representations of such latent variables in the mapping procedure is a convenient way to 33 
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control for or come to understand sources of variance confounding the effect of interest(O’Duibhir et al. 1 

2014). We recommend that this should be standard practice in eQTL mapping studies given the large 2 

effect of processes like development on the transcriptional state of the cell.  3 
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 23 

Table 1: Significant effects detected by the single marker, additive age and interaction models.  An FDR of 24 

0.05 is used unless otherwise specified.  * Applies to additive developmental age term of interaction model.  25 

 Single marker 

model (SMM) 

Additive age 

model (AAM) 

Interaction model, 

marker term 

(IMM) 

Interaction model, 

interaction term 

(IMI) 

eQTLs detected (FDR 

<0.05) 

18605 8666 6886  1161 

Cis/Local 2136 1954 1814  92 

Trans/Distant 16469 6712 5072 1069 

Cis/Trans ratio 0.13 0.29 0.36  0.08 

Transcripts w/ eQTL 8875 6133 5180 904 

eQTLs detected (FDR 27445 13369 10938 4276 
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<0.1) 

Transcripts affected by 

developmental process  

- 9473 

 

*8806 

 

*8806 

 1 

Figure 1: Developmental age estimation using PCA. A) PCA results. Points are the projections of the mpRILs on 2 

PC1 (x-axis) and PC2 (y-axis). Color indicates the Z-score of the center log ratio of fpkm values of vit-2, a  3 

developmental indicator gene(L. B. Snoek et al. 2014). B) Gene expression of the 53 developmental indicator 4 

genes from Snoek et al., 2014 with expression in this dataset. The x-axis shows the projections of the mpRILs on 5 

PC1. The y-axis shows the Z-score of the center log ratio of fpkm values. Colored trendlines correspond to a 6 

generalized additive model fit to the expression values of each developmental indicator gene.  7 

Figure 2: Distribution of eQTLs over the chromosome according to the different models.  X-axis shows the 8 

position on the genome. Y-axis shows the number of eQTLs that map to this position. A) SMM. Red arrows indicate 9 

the three largest hotspots. B) AAM. C) IM. Cyan and red show eQTLs according to the IMM and IMI respectively. 10 

Counts are in terms of number of transcripts mapping to the location.  11 

Figure 3: Distribution of developmental ages per allele at the three largest hotspots. Hotspots are indicated in 12 

figure 7 by red arrows. P-values are obtained with single marker linear model of PC1 ~ marker genotype (see 13 

Figure S9). 14 

Figure 4: Schematic of how some hotspots cause gene expression variation. Some hotspots influence the 15 

developmental speed, causing the transcriptional program of the genotypes to be at distinct developmental ages at a  16 

given moment in chronological time. This in turn causes expression variation in the large number of transcripts 17 

whose expression level depends on the developmental age. The developmental age is the mediator through which 18 

these loci affect gene expression. 19 

Figure 5: Comparison p-values obtained with the SMM and AAM. A) -log10(P) of SMM versus AAM, i.e. 20 

higher value corresponds to lower p-value. The x-axis shows the lowest marker p-value per chromosome per 21 

transcript obtained with the SMM (72174 total plotted p-values). The y-axis shows the same for the AAM. Since we 22 

call a  maximum of one eQTL per transcript per chromosome, all eQTLs are represented in the plot. The red lines 23 

show the subsection of the plot depicted in B. The lower black line is the identity line, such that eQTLs above the 24 

line have a lower p-value according to the AAM, whereas eQTLs below the line have a lower p -value according to 25 

the SMM. eQTLs above the top black line are strong developmental effect eQTLs (p -value ten orders of magnitude 26 

lower with AAM as compared to SMM). B) Zoomed-in subsection of A. Points are colored by whether the eQTL 27 

was detected with none (brown), both (purple) or one of the models (orange for SMM -only eQTLs and cyan for 28 

AAM-only eQTLs).  29 

Figure 6: Gene expression of three example strong developmental effect eQTLs. Line plots show center log 30 

ratio of fpkm values (y-axis) over the developmental age (x-axis) for three examples of strong developmental effect 31 
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eQTLs. Colors correspond to the genotype at the eQTL position. Boxplots show the magnitude of gene expression 1 

without the context of the developmental age.  2 

Figure 7: Examples of differentially detected eQTLs. Dashed line and dashed boxplot indicate no significant 3 

difference between alleles. A) SMM-only eQTL affecting the nspd-3 gene. The SMM only considers mean gene 4 

expression differences between alleles (solid boxplot). For SMM-only eQTLs such mean differences occur because 5 

one genotype has on average a lower developmental age than the other. In this case the blue genotype is on average 6 

developmentally younger. The alleles shown correspond to the hotspot locus on ~3.4 Mb on chromosome X whose 7 

developmental age distribution is depicted in Figure 3A. For SMM-only eQTLs correcting for the developmental 8 

age reveals there is no significant difference in gene expression at any point along the developmental trajectory of 9 

the mpRILs (dashed lines). B) AAM-only eQTL affecting the sams-5 gene. For the AAM-only eQTLs there is no 10 

significant mean gene expression difference between the alleles (dashed boxplot). However, when considering the 11 

context of developmental age differences, a  clear difference between the genotypes is revealed (solid lines).  12 

Figure 8: Density plot of the partial eta squared of marker effects for subsets of eQTLs according to the SMM 13 

and AAM. For the eQTLs in the subset we selected the marker with the lowest p -value according to each of the 14 

models and calculated the partial eta squared of the marker effect using the respective model. A) SMM-only eQTLs. 15 

B) AAM-only eQTLs. 16 

Figure 9: A selection of representative eQTLs detected with IMI term. Colors correspond to alleles. Lines are 17 

the best fit of the IM model (grey area is 95% CI) to gene expression over developmental age. Boxplots show the 18 

magnitude of gene expression without the context of the developmental age. A) eQTL that, depending on genotype, 19 

causes either increasing gene expression as development progresses or a constant expression level. B) eQTL that 20 

causes the slope of gene expression over developmental age to be higher for one genotype compared to the other. C) 21 

eQTL for which one genotype exhibits negative regulation of gene expression while the other genotype shows 22 

constant gene expression.  23 
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