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Abstract. Understanding the distribution of cetaceans in Indonesian waters is imperative for 

their conservation management, however such information is lacking for the country. Our study 

predicted the species distributions of two cetacean species (common bottlenose dolphin and 

sperm whale) beyond the surveyed regions in Indonesian Exclusive Economic Zone (EEZ). This 

was done by using a combination of presence-only data, randomly generated pseudo-absences 

and environmental predictors variables within the Biomod2 framework in R. Ten potential 

predictor variables were identified, of which five were selected after correlation tests. Local 

Random Forest models were built to the extent of four small study regions, and later projected 

to the whole Indonesian EEZ. The common bottlenose dolphin local models showed preference 

for areas close to the coast and shallower waters. Sperm whale local predictions were located 

further into the open waters and at deeper waters. The extrapolated predictions into the 

Indonesian EEZ, however, showed some unexpected results. The high occurrences for common 

bottlenose dolphins were not only located close to the islands, but also more into open waters. 

In contrast, sperm whale distributions have high occurrences near coastal areas and in the vicinity 

of islands than in the open oceans. This information suggested that the transferability of species 

distribution models may not always be preferable, because provide low accuracy. Sighting data, 

choices of variables and model settings influenced the outcome of the extrapolated models. 

Despite the unpreferable of the extrapolations, the results are still beneficial for cetacean 

conservation purposes, since the study was able to identify potential habitats in unsurveyed 

regions. 

1.  Introduction 

It is globally recognized that conservation is needed to preserve marine biodiversity, since the health of 

worldwide marine ecosystems is deteriorating and causes the biodiversity loss [1,2]. One group of 

marine animals of great conservation concern are the cetaceans: whales, dolphins and porpoises [3]. The 

International Union for Conservation of Nature has listed 27 (30%) out of the currently 89 recognized 

cetacean species as being threatened by extinction on their Red List of threatened animals [4-6]. 
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Indonesian waters are important for cetacean conservation as they harbor 36 cetacean species [7], 

entail 40% of all existing cetaceans [5]. All marine mammal species living in the Indonesian waters are 

protected species according to the country’s regulations [7]. On the international level, the United 

Nations Convention on the Law of the Sea (UNCLOS) provides a legal framework to protect marine 

ecosystems all over the world. This convention demands all coastal countries to protect the marine 

environment in their own Exclusive Economic Zones (EEZs) [8], such as through the establishment of 

Marine Protected Areas (MPAs). The Convention on Biological Diversity (CBD) also calls on parties 

to establish a system of protected areas to conserve biological diversity [7]. 

To improve the effectiveness of cetacean conservation, detailed information on their distribution and 

abundance is required [9,10]. Cetaceans are top predators and because of this position in the food web, 

they are of ecological importance for the conservation of marine biodiversity [11-13]. However, data on 

the occurrence of cetaceans is sparse [6,11]. This lack of information is due to many factors such as the 

low density and elusive trait of the taxa [14], its mobile capability that are hard to detect [6,14,15], and 

time and financial constraints to perform dedicated cetacean surveys [16]. 

To overcome this problem, species distribution models (SDMs) are used by many ecologists and 

biogeographers [17-19]. SDMs predict species distributions by relating sighting data to environmental 

predictors [10,11,20]. The sighting data provides better understanding of species environmental favors 

[21]. These SDMs give the opportunity to extrapolate the observed distributions into unsurveyed 

locations and interpret the data-gaps [11]. Most explorative studies however have focused on species 

distribution modelling simply filling gaps within the surveyed areas, as these generate reliable results 

more easily [22,23]. Using SDMs to extrapolate distributions to unsurveyed areas is a subject that has 

been studied less, but is emerging because of the call for models that go beyond the studied regions to 

solve large-scale conservation issues, such as cetacean distributions in unsurveyed Indonesian waters. 

Heikkinen et al. [23] studied ten different modelling methods to assess the transferability (extrapolative 

accuracy) of the SDM methods. Some models did predict better than others for unsurveyed area, 

however, Heikkinen et al. [23] could not provide a general rule to specify SDMs that provides consistent 

and improved transferability. Mannocci et al. [11] successfully extrapolated the distributions of three 

cetacean guilds into unsurveyed areas in the circumtropical belt. Despite these promising results, 

Redfern et al. [22] found that their model predictions of blue whale habitats, were not transferable into 

unsurveyed areas. However, they were able to identify potential habitats in regions without sighting data 

using data from multiple ecosystems [22]. The extrapolation of cetacean distributions is beneficial and 

could be applied in other areas and for other cetacean species. We predicted cetacean habitats beyond 

surveyed regions in Indonesian waters to assess the model transferability for two cetacean species. 

2.  Materials and Methods 

2.1.  Study Area 

Four regions in Indonesia adjusted from the seascapes and ecoregions [24] were selected due to data 

availability for building local models i.e., Bird’s Head, Lesser Sunda, North East Borneo and South East 

Sulawesi (Figure 1). The Exclusive Economic Zones (EEZs) of Indonesia (Figure 1) were used as the 

extent of the local model extrapolations to understand the distributions of cetaceans in unsurveyed 

regions. 

2.2.  Cetacean occurrence data and pseudo-absence data 

The two cetacean species selected for this study were the common bottlenose dolphin (Tursiops 

truncatus) and the sperm whale (Physeter macrocephalus). These two cetacean species were not only 

chosen because of the adequate amount of sighting data, but also because they have quite distinct habitat 

preferences. Common bottlenose dolphin lives in shallow and coastal waters during the entire day, while 

sperm whales almost always inhabit the deeper open waters rather than shallow coastal areas [5]. These 

habitat preference differences may thus give variations during the SDM process. The occurrence data 
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used in this study was gathered from Sahri et al. [25] of which was collected between 2000 and 2018. 

All data only consisted of presence data.  

 

Figure 1. The four study regions within Indonesia as expressed in bright blue and 

the Exclusive Economic Zones (EEZs) of Indonesia as depicted in light blue. 

For the common bottlenose dolphin, 289 sighting points were available and for the sperm whale, 94 

points (Table 1). No sighting points were available in Bird’s Head for the sperm whale, while only 10 

sighting points of sperm whales were available in North-East Borneo. Jimenez-Valverde [26] suggested 

the minimum amount of sighting points for SDMs is 20 sighting points. It was thus decided that the 

amount of 10 points for sperm whales in North-East Borneo was not enough to compute a meaningful 

model. Although the two cetacean species may migrate differently over the particular seasons, this 

temporal dimension was not taken into account in our study due to the small number of samples. The 

data showed too low sightings per season and did not distinguish individuals or pods. For these reasons, 

meaningful seasonal distribution differences could not be generated. 

Table 1. Sighting data of two cetacean species used in SDMs obtained from Sahri et al. [25]. 

 Bird’s Head Lesser Sunda NE Borneo SE Sulawesi Total 

Common bottlenose dolphin      

Initial sighting points 127 69 66 27 289 

Sighting points left after rarefying 33 26 26 19  

Pseudo-absences 3300 2600 2600 1900  

SAC points removed 94 43 40 8  

Sperm whale      

Initial sighting points  64 (10) 20 94 

Sighting points left after rarefying  34  15  

Pseudo-absences  3400  1500  

SAC points removed  30  5  

 

Before using the initial sighting data in the SDMs, the spatial auto correlation (SAC) of the sightings 

was examined. Decreasing SAC can prevent the creation of incorrect models resulting in wrong 

assumptions about the effects of environmental conditions on the species distribution [27]. This 

examination was done by rarefying the sighting data [28] using “Spatially rarefy occurrence data tool” 

in SDMtoolbox version 2.4 in ArcGIS [29]. 
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Since absence records were not available but were needed for SDMs, ’pseudo-absence’ records were 

created by randomly sampling points in the study regions, but excluding the locations where presence 

records were known [30-32]. Pseudo-absence records were created for each species in all four study 

regions. Both Barbet-Massin et al. [33] and Lobo & Tognelli [34] suggested to use a large amount of 

pseudo-absences in SDMs. However, as only a limited amount of presence points was available for this 

study, it was decided to use an amount of pseudo-absence points 100 times of the amount of presences 

as selected for SDMs (Table 1), following Lobo & Tognelli [34], to avoid a modeling outbalance 

[33,34]. The presences and pseudo-absences weighted in a balanced manner has resulted very good 

models as reported in previous cetacean studies [35-37]. These pseudo-absences were created using the 

“create random point” tool in ArcGIS. 

2.3.  Environmental predictor variables 

Environmental datasets were also required to run SDMs. The dataset included topographic and climatic 

variables of importance in predicting the distribution of a species due to locations a species prefers [38]. 

The best environmental variable would be the spatial distribution of the prey of the cetacean species of 

interest. However, such information was lacking and thus environmental predictor variables were used 

that serve as an indicator of prey presence as done in previous studies [11,38]. Finally, based on a 

literature study, ten potential variables were selected: bathymetry, slope, distance to isobaths (200, 1000 

and 2500 m), distance to the coast, distance to shelf, sea surface temperature, chlorophyll-a and sea 

surface salinity (Table 2). Table 2 provides the reasons and sources of the variables. 

Table 2. Environmental predictor variables as used in this study. 

Environmental variable  Source  Reason of including variable 

Bathymetry (m) a Shallow waters are preferred by common bottlenose 

dolphins, while sperm whales prefer deeper waters [5]  

Slope (%) b Steep slopes are associated with higher primary production 

and availability of prey [11,45]  

Distance to isobaths (km): 

200 m 

1000 m 

2500 m 

b Common bottlenose dolphins prefer waters that are not very 

deep, while sperm whales prefer deeper waters [5,46,47]  

Distance to (km): 

Coast 

Shelf 

c 

 

d 

Low distances to the coast are preferred by bottlenose 

dolphins, while sperm whales prefer greater distances [5]  

Upwelling around the shelf breaks can be associated with 

higher availability of prey [48]  

Sea surface temperature annual 

(SST) (◦C) 

e Surface temperature affects the availability of cetacean’s 

prey [11]  

Chlorophyll-a annual (Chl-a)  

(mg.m-3) 

e High concentrations of chlorophyll-a indicate a high 

concentration of phytoplankton [11]  

Sea surface salinity annual (SSS) 

(PSU) 

f Surface salinity affects the prey aggregation of cetaceans 

[22]  
a GEBCO (https://www.gebco.net/).  
b GEBCO (https://www.gebco.net/) and ArcGIS derived.  
c Indonesian Geospatial Information Agency and ArcGIS derived.  
d Seafloor Geomorphic Features Map [39] and ArcGIS derived.  
e Aqua MODIS (https://oceancolor.gsfc.nasa.gov).  
f SODA 3.3.1 (http://apdrc.soest.hawaii.edu).  

 

The bathymetric dataset was derived from the General Bathymetric Chart of the Ocean (GEBCO). 

This same dataset was used to compute the second and third environmental layers: the slope and the 

distances to the isobaths. The distance to the coast was derived from the Indonesian Geospatial 

Information Agency. The shelf data was derived from the Global Seafloor Geomorphic Features Map 

[39]. Sea surface temperature (SST) and chlorophyll-a (Chl-a) data was gathered from MODIS-aqua 
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(2000-2018). Sea surface salinity (SSS) data was derived from the SODA 3.3.1 model (2000-2018). All 

datasets were quadratically tessellated by a 1 x 1 km resolution. 

It is important to check whether the environmental predictor variables did not contain any high inter-

correlations (multicollinearity), as this will affect the modelling outcome [18,38,40,41]. The 

multicollinearity was checked by calculating the Pearson’s correlations among the environmental 

predictor variables in all four study regions and were shown in heatmaps (Figure A1 in Appendices). 

Correlations with a Pearson coefficient of 0.75 or higher are known as high to very high correlations 

[42]. All layer combinations that had a correlation coefficient higher than 0.75 were thus reduced to only 

one environmental dataset [25]. It resulted in the use of only five out of ten potential predictor variables 

in SDMs, i.e., bathymetry, slope, distance to coast, chlorophyll-a and sea surface salinity. It was in line 

with the many suggestions to use a limited amount of predictor variables when extrapolating into 

unsurveyed areas, to avoid too complex models [43] and to achieve a higher model transferability 

[43,44]. 

2.4.  Species Distribution Model: Random Forest (RF) 

Random Forest (RF) was chosen as a suitable modelling technique as the measurement scale fits the 

data used in this study (our preliminary study, not shown) and decreased over-fitting problems and was 

therefore known as an accurate modelling technique. RF is known to perform well with handling non-

linear data, which is needed when modelling species distributions [49,50]. RF is a type of correlative 

and predictive modeling class. A correlative model estimates the environment that a species favors by 

relating the species occurrence to environmental predictors that can be expected to influence the species 

appearance [21]. A predictive model finds a relationship between the species presence and variables, 

then use this relation to predict the distribution of a species [10,17,19]. 

Our RF models were created using the Biomod2 package in R. In the Biomod2 framework, some 

choices of settings were made before running the models. For the RF algorithm, the first choice to be 

made was between regression and classification. With RF regression, predictions were made to a 

continuous output variable, while with RF classification the output was a discrete variable [51]. For our 

study, a discrete output variable was generated, which results in the choice of selecting RF classification. 

Another decision to be made was the number of trees to grow. It is important to not set this number too 

low, as this would disable each input row to get predicted several times [51]. The default number of 

trees within Biomod2 is 500 trees, and was good for our study as the number was high enough to let 

each input row got predicted multiple times and to serve the randomness to prevent overfitting [52]. A 

number of 500 trees thus was grown in each model. The best number of variables (mtry) that were 

randomly sampled as option for each split differ for RF regression and RF classification. Breiman [51] 

recommended a value of (sqrt(p) for (mtry) for classification models, with p being the number of 

variables. Lastly, a node size of 1 was chosen, which was the recommended value for classification 

models. The node size is the minimum size of terminal nodes, in the case of increasing this number the 

trees that are grown get smaller [51,52].  

For each species and study regions, 10 evaluation runs were performed. The data was split into two 

subsets, one to calculate the model (70% of the data) and one to evaluate these models (30% of the data). 

The 70/30 division is a default as used in many SDMs studies. This data split in combination with the 

evaluation runs and the 500 trees that were built each run granted for randomness and thus a robust test 

of the models [52]. Thuiller et al. [52] especially recommended this strategy when no independent 

dataset for evaluation is available. Ideally, an independent dataset with presence and absence points to 

evaluate the outcome of the models will give a better performance, but for our study no independent 

dataset was available. We also decided not to use the occurrence points that were deleted after the 

rarefying process as dataset for evaluation. In some study regions, a small amount of occurrence points 

was removed (e.g., 5 for sperm whales in SE Sulawesi, Table 2), and thus was not suitable for model 

evaluation.  
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2.5.  Extrapolation to unsurveyed regions 

The prediction of species distributions in the whole Indonesian EEZ was done by extrapolating the local 

models for each species into the extent of the Indonesian EEZ. In ecology, extrapolations are usually 

done over space, as in this study, and into a different time frame e.g., the future or past [10,53]. The 

latter was not the scope of this study. To project the model output over space, we reused the same 

environmental variables with the extent of the Indonesian EEZ. Within this process, sighting data was 

used to predict distributions into an environment that was not surveyed. The extrapolation of cetacean 

distributions to Indonesian EEZ was done using the “Biomod2 projection” tool in R. The projection tool 

unfortunately only accepts the Random Forest output of one study region at the same time. Thus, the 

extrapolations were done per individual study region and then were averaged to create one map per 

species. For example, the extrapolated projection of common bottlenose dolphin was based on the 

Random Forest results of the four study regions and only on two regions for the sperm whale. 

2.6.  Evaluation of SDMs 

Before drawing conclusions about the output that SDMs generate, it is important to assess the robustness 

of the model. Pearce & Ferrier [54] argued that there are two aspects that need to be measured when 

evaluating the performance of SDMs: discrimination ability and reliability. To examine the feasibility 

of the Random Forest models of this study, the models were evaluated by using the area under the 

receiver operating characteristic curve (AUC) and the true skill statistic (TSS). The AUC is one of the 

most widely used accuracy indices, and considered the standard index for SDMs [55]. The AUC of an 

SDM is the likelihood that the SDM will rate a randomly selected presence location higher than a 

randomly selected absence location [54,56]. The TSS is an index that compares the number of accurate 

predictions minus those due to random guessing to an assumed set of excellent predictions [57]. Both 

measures were chosen because they widely use in evaluating species distribution models [58,59]. 

Models with AUC values of >0.7 and TSS >0.4 can be considered as meaningful models [60]. 

The Random Forest models were not only evaluated using these two-evaluation metrics as they 

cannot fully be relied on due to the scarcity of data and the characteristic of pseudo-absences. 

Additionally, the models’ sensitivity was examined by evaluating the importance of each of the 

environmental variables and by creating response curves using the “response.plot2” function in 

Biomod2 [52,61]. These curves gave insight into the extent in which each variable contributed to the 

outcome of the models, presenting the sensitive level of the models regarding each individual variable. 

3.  Results 

3.1.  Performance of Random Forest Model  

The Random Forest models of the common bottlenose dolphin in Lesser Sunda scored best with an AUC 

value of 0.858 and a TSS value of 0.676. The common bottlenose dolphin model in Bird’s Head also 

met the thresholds of AUC and TSS although with lower values (0.778 and 0.543, respectively) than 

those of in Lesser Sunda. Both common bottlenose dolphin models in NE Borneo and SE Sulawesi were 

not considered as meaningful models according to their AUC and TSS values. The sperm whale models 

in Lesser Sunda had an AUC of 0.834 and TSS of 0.580 indicating meaningful models. The sperm whale 

models in SE Sulawesi, as in common bottlenose dolphin, all scored below the AUC and TSS thresholds. 

Table 3. Averaged AUC and TSS values (AUC >0.7 and TSS >0.4 in bold letters). 

 Bird’s Head Lesser Sunda NE Borneo SE Sulawesi 

Common bottlenose dolphin     

AUC 0.778 0.858 0.665 0.643 

TSS 0.543 0.676 0.359 0.325 

Sperm whale     

AUC  0.834  0.598 

TSS  0.580  0.316 
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3.2.  Variable Importance  

‘Distance to coast’ was the most important in predicting the common bottlenose dolphin distributions 

in three out of four study regions ranging from 30.3% (Bird’s Head) to 39% (SE Sulawesi). Only in NE 

Borneo, chlorophyll-a was the most important variable for the common bottlenose dolphin, with a value 

of 27.6%. The second most important variable differed over the study regions, being sea surface salinity 

(SSS) in Bird’s Head (19.3%), bathymetry in both Lesser Sunda (24.5%) and SE Sulawesi (24.6%), and 

distance to coast in NE Borneo (23.2%). The third most important variable for Bird’s Head and NE 

Borneo was bathymetry (16.8% and 23.1%). Chlorophyll-a was the third variable for both Lesser Sunda 

and SE Sulawesi with 21.1% and 17.1%, respectively. Slope was the variable of least importance for all 

regions, ranging from 9.4% (SE Sulawesi) to 16.9% (Bird’s Head). 

 

Figure 2. Relative importance of the variables (normalized to sum 100%) per region for common 

bottlenose dolphin (a-d) and sperm whale (e-f). 

 

The most important variable in predicting sperm whale distributions in both Lesser Sunda and SE 

Sulawesi was chlorophyll-a with slightly similar values of 35.7% and 35.9%. The second most important 

variable differed per region, being bathymetry in Lesser Sunda (20.1%) and distance to coast in SE 

Sulawesi (23.5%). Slope was the third most important variable for sperm whale models in Lesser Sunda. 

Contrasting with the common bottlenose dolphin models, slope in sperm whale model was found to be 

one of most important variables. Bathymetry scored as the third most important variable in SE Sulawesi 

with value of 18.9%. Sea surface salinity (SSS) was the variable of least importance for two regions 

with values no more than 8.5 %. 

3.3.  Response Curves 

The array of response curves (Figure 3) shows the results of the ten model runs for each variable and 

each study region. The curves show how the probability of occurrence changes by varying one variable 

and how sensitive the model was to that variable. Interactions between variables were not included here 

[52]. Overall, many variabilities exist between species and study regions.  

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3. Response Curves of Random Forest models per region for common bottlenose dolphin (a-

d) and sperm whale (e-f). The y-axis shows the probability, the x-axis the value range of the variable, 

subsequently units in m, mg.m-3, km, %, and PSU. The value range may vary per region.   

 

(f) (e) (d) (c) (b) (a) 
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The bathymetry response curves of the common bottlenose dolphin did not show much variation and 

seem to be quite constant across regions with high probability of occurrence increased in waters < 800 

m depth. The bathymetry curves for the sperm whale models differ a lot over the two study regions. In 

Lesser Sunda, the probability of occurrence increases around a depth of 3000 m, while the response 

curves of SE Sulawesi show a slight increase between 0 and 1500 m. 

The chlorophyll-a response curves are very different between regions and species. In Bird’s Head 

models for common bottlenose dolphins show no detectible changes. In Lesser Sunda, an increase of 

probability was seen between 1 and 1.5 mg.m-3 for common bottlenose dolphin, while a negligible 

increase was visible around the value of 1 mg.m-3 for sperm whale. The NE Borneo curves of the 

common bottlenose dolphin did not show any preference of chlorophyll-a level. The curves of SE 

Sulawesi for the common bottlenose dolphin showed small increases of probability around 0.7 and 1.5 

mg.m-3, while the sperm whale probability did not change much.  

When looking at the distance to coast response curves, common bottlenose dolphins tend to prefer 

near-shore areas (within 8 km). As expected, the response curves for sperm whale showed a preference 

of areas that are on greater distance from the coast (25 km) than the dolphin. However, in Lesser Sunda 

the preference for distance to coast was not clearly visible, while in SE Sulawesi the preference was 

visible. 

The response curves of the slope for common bottlenose dolphin show that this species preferred 

areas with gentle slope in all regions. The response curves for NE Borneo did not really show any 

increases of occurrence probability. The response curves of sperm whales showed opposite patterns for 

two regions. While in Lesser Sunda an increase in probability of occurrence started around a slope of 

20%, the increase in probability of occurrence in SE Sulawesi started around areas without any slope 

and decreased around a slope of 20%. 

The sea surface salinity (SSS) response curves for common bottlenose dolphin were a bit more 

variable across the regions with small increases at salinity level around 33.8 PSU in Bird’s Head, 33.4 

PSU in Lesser Sunda, 33.5 in NE Borneo, and 33.96 PSU in SE Sulawesi. The SSS curves of sperm 

whales in Lesser Sunda show a small increase at a salinity level of 34.1 PSU, while being completely 

constant over the rest of the range. The curves in SE Sulawesi show a bit more fluctuation but also show 

higher probability of occurrence around salinity levels of 33.96-34.1 PSU. 

3.4.  Cetacean Distributions in Local Models  

Random Forest local models resulted different predicted distributions for two cetacean species in 

different regions. The differences in distribution were analyzed by visualizing averaged occurrence 

probability maps and its variability and comparing these results over the two cetacean species. The 

variability of the modelling results can be seen from the standard deviations of the averaged models for 

each species (Figure A2 in Appendices). It is clear that the standard deviations are similar to their 

respective averaged probabilities (Figure 4 and Figure A2 in Appendices) i.e., areas with higher 

probabilities have a higher variability as well and vice versa. The lower the variability the more certain 

the predicted models. 

In the Bird’s Head, the common bottlenose dolphins were distributed around the islands and shores, 

and were unlikely to be sighted away from the coast. In Lesser Sunda, the two cetacean species show 

different distributions based on their probability maps. High probabilities of common bottlenose 

dolphins were located close to the coast, up to 8 km away from the coast. This species was also found 

between islands. The high probabilities of sperm whale were not predicted to occur between islands. 

Instead, the distribution was predicted farther away from coastal areas and more into the open waters, 

up to 40 km away from the coast. 

In NE Borneo, probabilities of common bottlenose dolphin were especially high around the small 

islands, although some high probabilities were also visible further away from the land into the water. 

The high probabilities were not predicted further than 30 km from the coast. High probabilities were 
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also visible in between islands, suggesting that the dolphin was predicted to also forage between the 

islands. In SE Sulawesi, common bottlenose dolphin preferred coastal areas rather than the open waters 

with high probabilities were more clustered closely to the islands. In contrast, high probabilities of sperm 

whale occurrence were predicted to be further away from the coast and islands (up to 55 km) into more 

open waters. This information indicates that the Random Forest models have succeeded in predicting 

differences in the species distributions of the two cetacean species of interest. 

 

 

 

Figure 4. Local Random Forest models per region for common bottlenose dolphin (a-d) and sperm 

whale (e-f). Cells with a light red colour represent low occurrence probabilities, while cells with a darker 

red colour show high probability of occurrence. The close-up view in each window is presented. 

3.5.  Extrapolated Distribution Probabilities to Unsurveyed Regions 

When comparing the results, it was evident that the extrapolation predictions of both cetacean species 

were not comparable to the local model results. The extrapolated distribution of the common bottlenose 

(c) 

(b) 

(d) 

(f) 

(a) 

(e) 
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dolphin to the extent of the Indonesian EEZ showed that a concentration of occurrence probabilities of 

≥ 40 % was visible in the North-West and South-East of Indonesia (Figure 5a). The cells with a 

probability of ≥ 60 % are not only located close to the islands, but also a bit further from the coastal 

areas in the open water. This is surprising as the local model results showed a predicted preference for 

locations that close to the coast. The variability maps of the extrapolated models for the common 

bottlenose dolphin were similar to the local models with high occurrence probabilities show high 

variabilities as well (Figure A3 in Appendices). Higher variability is thus especially visible in the North-

West and South-East of Indonesia, but barely exceeding standard deviations of 20 (Figure A3 in 

Appendices).  

 

 

Figure 5. Projected models by extrapolating local models to Indonesian EEZ: common bottlenose 

dolphin (a) and sperm whale (b). 

 

For sperm whales, the extrapolated distribution clearly indicates that higher probabilities are 

concentrated around coastal areas (Figure 5b). Occurrence probabilities of ≥ 40 % are visible in areas 

that are near to the islands, but not limited to very short distances to the islands. Occurrence probabilities 

(a) 

(b) 
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that are higher than ≥ 40 % are located further away from the coast. However, the occurrences are still 

within the vicinity of islands as opposed to the open oceans. This finding is contradictory to the species 

local models which showed occurrence farther away from the coast, into the open waters. High 

probabilities of ≥ 60 % barely exist in the maps for sperm whale, with several of these probabilities 

spotted in East Sumatera, South and West Kalimantan, South Bali and South Papua (Figure 5b). The 

variability of the probabilities increases as the probability increases (Figure A3 in Appendices). 

4.  Discussion 

This study successfully predicted the species distributions of two cetacean species, common bottlenose 

dolphin and sperm whale, in different smaller regions by local models based on predictive Random 

Forest modelling (local RF). These local RF models have been extrapolated into unsurveyed Indonesian 

EEZ. Overall, many variabilities exist in the predicted distributions between species and among study 

regions. Since the two species have different habitat preferences, an obvious difference in predicted 

distributions was expected. The local RF models were indeed able to predict differences between the 

distributions of the two species. For instance, the common bottlenose dolphin was predicted mainly in 

near coastal areas and in the waters between small islands, while the sperm whale was predicted to be 

found in open waters far away from the coast and barely found between small islands (Figure 4). These 

findings correspond to the habitat preferences of the species that can be found in the literature [5,46,47].  

The extrapolated distributions of the two cetacean species from local models into unsurveyed 

Indonesian EEZ, however, did show some unexpected results (Figure 5). High probabilities of common 

bottlenose dolphin were located at some distance from coastal areas, and differed from local RF models 

that showed high probabilities around coastal areas. A surprising result also occurred for the sperm 

whale, as the extrapolated predictions were mainly located around the islands close to the coast and not 

in the open waters. It should be noted that these contradicting results may be caused by the sperm whale 

sighting data that mainly contains presences that are located close to the coast. Guisan & Thuiller [18] 

suggested that species occurrence data needs to be accurate when modelling species distribution as any 

location errors or poor representativeness of the survey data (as in our study) may impact model 

performance. Our results indicated that model transferability from local models to unsurveyed regions 

was not always preferable (i.e., result in low accuracy) as also found in previous studies. For instance, 

Redfern et al. [22] reported that their models predicting blue whale habitats were not transferable into 

unsurveyed areas. 

The choices made in our study, including setting and complexity of the model, have influenced the 

output of the models. We first examined the relationship between sighting data and environmental 

predictors by creating local RF models to the extent of smaller study regions. These found relationships 

were then used to project the distributions over space to the extent of the Indonesian EEZ waters. This 

was done as no sighting data was available beyond the local study regions. Mannocci et al. [11] applied 

the same method and created GAM models for three local study regions before extrapolating 

distributions beyond these regions and creating worldwide predictions. The found relationships, were 

influenced by the size of local study regions (Figure 1) and extrapolation results differed when altering 

the size of these local study regions. This means that the results of our study are very sensitive to the 

four selected local study regions, and therefore caution should be taken when interpreting extrapolated 

species distributions. 

It would be interesting to examine how sensitive the extrapolation results are to the chosen local 

study regions and whether skipping the extra step of first examining the relationships at local study 

regions and directly extrapolating into the entire area of interest generates better results. This direct 

extrapolation approach has been applied in other studies (e.g., Redfern et al. [22]), but had its own 

drawbacks. Model results of this approach were based on sighting data that was clustered to specific 

areas and large parts had not any presence data at all. It was possible that the species of subject reacted 

differently to its environment in different locations [18,53], and the applied extrapolation approach did 

not eliminate this drawback. However, it gave the opportunity to first examine the relationships at a 



Geomatics International Conference 2023
IOP Conf. Series: Earth and Environmental Science 1276 (2023) 012054

IOP Publishing
doi:10.1088/1755-1315/1276/1/012054

13

 

 

 

 

 

 

local level and assessed whether they are similar or not, before extrapolating these relationships beyond 

surveyed regions. In our study, the RF algorithm was chosen for predicting species distributions. 

Although the RF algorithm was a suitable technique, many SDM studies used multiple algorithms to 

enable reviewing which algorithm leads to the best results [10]. This was not the scope of this study, but 

it may be of interest to compare different modelling techniques and examine which one performs best 

at predicting distributions beyond surveyed areas [23]. By doing this, it is also possible to examine how 

sensitive the data is to the modelling technique chosen and whether they lead to very distinct outcomes. 

The RF model was, due to the Biomod2 framework, unable to use simultaneously the different region 

based SDM outcomes to project the species distribution on the full Indonesian EEZ extent. Biomod2 

only enables the use of the SDM outcome of one single study region at the same time to project the 

species distribution. Consequently, the found relationships at the different study regions were not used 

at the same time to project into space, and averaging did not lead to the best results. Extrapolating the 

projections simultaneously ensures that new predictions are made based on the relationships found 

nearby and these relationships have often a higher reliability [61]. It would be much better if the 

outcomes of all study regions could have been used simultaneously to project the distributions to the 

full extent of the Indonesian EEZ. Mannocci et al. [11] have used their local results simultaneously 

during the extrapolation part of their study. For future work, such Biomod2 option is crucial. 

The sighting data used in this study was sampled in a non-systematic way, which may have resulted 

in sighting data that did not represent the actual cetacean distributions accurately. Sighting data collected 

in a systematic way would have been used for modelling, for example, Mannocci et al. [11] used sighting 

data that was systematically collected. The sighting data also collected over 18 years that, intrinsically, 

such time series may resemble increasing human impact and climatic modifications. However, a long 

time-span is usual when studying species that are rare and hard to observe. For example, Redfern et al. 

[22] and Sahri et al. [25] used sighting data for modelling cetacean distributions that was collected more 

than 15 years with relatively satisfied results. 

The models used in this study could also be enhanced if absence data would be available. With 

absence data available, areas can be assigned as 100% true absences and give more insights in areas that 

are not suitable for the species of interest [21,53,61]. Since no absence data was available, pseudo-

absences were generated randomly with an amount of 100 times of the presences. The effect of using a 

different amount of pseudo-absences in extrapolated models to unsurveyed regions has not been studied, 

but might be interesting to examine in future studies. Our study has not taken into account the temporal 

dimension of the presences and absences. To further increase the knowledge on the distributions of the 

two cetacean species, a temporal verification should be done taking into account the temporal behavior 

of the two species [5]. Most sighting data has information on the date of the sightings and this can be 

used to explore temporal or seasonal differences in species distributions in future research. 

Cetaceans are species that are hard to study because they are highly mobile animals and mostly being 

underwater [62,63]. Most information on cetacean occurrences elsewhere, including in Indonesia come 

from the animals being at the water surface or from deceased bodies that have washed ashore. This study 

contributes to gaining a better understanding of cetacean distributions and habitat preferences from 

species distribution modelling. The models revealed their occurrence probabilities and the importance 

of environmental variables. The environmental predictors in this study were selected to represent the 

habitat preferences of the cetacean species. The choice of the specific variables has a large impact on 

the results of this study. It may be possible that environmental predictors that are not incorporated in 

this study are better at representing the habitat preferences of the cetacean species. Mannocci et al. [11] 

for example chose 14 different environmental variables, with some of the variables they used have not 

been used in this study, such as wind speed, silicate-nitrate ratio and net primary production. Dransfield 

et al. [40] even chose 20 environmental variables as candidates for modelling. To choose the best 

environmental predictors a complete understanding of the underlying mechanisms of the distribution of 

the cetaceans is needed. The literature review of this study on the habitat preferences of cetaceans 
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represented what is known about the preferences of the cetacean species at this moment of time, but this 

information still knows uncertainties [5]. One type of environmental predictor that would improve the 

model is a dataset representing the distribution of the cetaceans’ prey [38].  

Predicting cetacean habitats beyond the sampled areas was unpreferable in this study. This result was 

influenced by the lack of empirical support from the data that was used and lead to modelling results 

that do not fit biological reality [53]. Deceptive extrapolation results can be caused by inaccurate 

sampling methods or the usage of unsuitable modelling methods or variables. It is important to 

understand the underlying mechanisms of a species’ distribution in order to include useful 

environmental variables in the model. Sometimes ecological understanding of the species may be 

available, but the required environmental data is lacking [53,64]. Inaccurate sampling schemes can result 

in the failure to correctly capture the relevant environmental variables and can result into unpreferable 

extrapolation outputs. Besides, the assumption often exists that species are at equilibrium with their 

environment, which means that the species inhabit all suitable locations available and that the sighting 

data perfectly represents the species’ actual habitat [18,53]. The most suitable habitats may however 

stay unoccupied, due to disturbances, migratory behavior, or other factors. Bouchet et al. [53] mentioned 

an example that West Australian bottlenose dolphins stay in areas that contain less prey, but are safer 

during times of high shark abundances. It may thus be possible, when extrapolating distributions into 

unsurveyed areas that favorable areas are identified but none of the species actually inhabit these areas. 

It is also possible, when extrapolating on broader scale, that locations are included where the species 

react differently to the habitat. 

In contrast to using more variables, Mannocci et al. [11] suggested that extrapolation models should 

not be too complex and only use a limited number of covariates. These simple models are especially 

preferred when aiming to increase the ecological realism and to interpret the model more easily. More 

complex extrapolation models that include a great number of covariates often create more extensive 

results, and the risk for overfitting is also large for these models. Bouchet et al. [53] suggested that 

complex overfitting models suit for pinpointing areas for reintroducing rare species, while simple 

models are more suitable for identifying habitat locations of rare species. No species distribution model 

will thus perform perfectly, but choices should be made based on the data availability and quality, as 

well as the purpose of the modelling. 

The best way to evaluate the predictions of a model was to validate the outcomes externally by using 

a separate independent dataset of sightings [11]. A dataset for this external validation, however, was not 

available for this study. An online habitat model, Aquamaps (www.aquamaps.org), provides predictions 

of the distributions of many marine species, including cetaceans. These predictions are based on a 

species distribution model developed by Kaschner et al. [65] with different input of occurrence data and 

environmental predictor variables. These online maps thus can be used for comparisons of our modelling 

results. The AquaMaps results of the common bottlenose dolphin are a bit more similar to the results of 

our study. The areas with a high predicted occurrence probability in our extrapolation maps are also 

predicted to be high probability areas in the AquaMaps predictions. In contrary for the sperm whale, the 

predictions of our study and of AquaMaps do totally differ. The areas that were predicted to have high 

sperm whale occurrence probabilities in our study have a low occurrence probability in AquaMaps. 

AquaMaps also predicts high occurrence probabilities only in areas close to the open waters and not in 

between islands. These AquaMaps results comply more with the known habitat preferences of sperm 

whales as these animals are known to prefer areas that are away from the coastal areas [5,46]. 

Despite the limitation of transferability, it can be inevitable when dealing with (endangered) species 

living in remote and poorly accessible areas. For instance, this study was still able to identify potential 

habitats in regions without sighting data (Figure 5), and the extrapolation of cetacean distributions are 

essential for conservation purposes [22,53]. Most important is that the assumptions of extrapolation are 

understood to correctly interpret results and embed them in conservation work. SDM applications to 

extrapolate species distributions into unsurveyed areas has received less attention, but become apparent 
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due to the call for models that predict beyond the studied regions to address large-scale conservation 

challenges, such as cetacean distributions in unsurveyed Indonesian EEZ waters. 
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Appendices 

 

 

Figure A1. Correlation heatmaps of ten potential environmental predictor variables used for SDM in Bird’s Head 

(a), Lesser Sunda (b), NE Borneo (c), and SE Sulawesi (d). Saturated colors and large dots show a high correlation. 

In Bird’s Head, high correlations occur in: distance_shelf and bathymetry, distance_shelf and distance_coast, SSS 

and distance_200, as well as SSS and distance_2500. It was thus decided to remove distance_2500, as this isobath 

barely occurs in Bird’s Head region. Distance_shelf was also excluded from the modelling process, as bathymetric 

is known to be very important in predicting cetacean distributions [11]. In Lesser Sunda, high correlations were 

found in: distance_1000 and Chl-a, distance_coast and distance_200, distance_shelf and distance_200, 

distance_shelf and distance_coast, SST and distance_1000, as well as SST and distance_200. It was decided to 

exclude distance_shelf as distance_coast is very important for cetacean habitat modelling. Distance_200 was also 

(a) 
(b) 

(c) (d) 
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excluded but as this isobath was close to the coast, this layer was represented by distance_coast. Distance_1000 

was excluded as Chl-a is a predictor variable that has shown to be of great importance in cetacean modelling [11]. 

SST was excluded as two other climatic variables (Chl-a and SSS) already chosen. In NE Borneo, high correlations 

occur in: distance_2500 and distance_1000, distance_shelf and bathymetry, distance_shelf and distance_coast, as 

well as SST and Chl-a. Distance_2500, distance_1000, distance_shelf and SST were excluded for the same reason 

as they were excluded in Bird’s Head and Lesser Sunda. In SE Sulawesi, some correlations appear to be high: 

distance_coast and distance_200, distance_shelf and bathymetry, distance_shelf and distance_200, as well as 

distance_shelf and distance_coast. Distance_200 and distance_shelf were excluded for the same reasons as for 

other regions. With this arrangements, five out of ten variables eventually used for SDMs: bathymetry, 

chlorophyll-a, distance to coast, slope, and sea surface salinity (SSS). 

 

 

 

 

Figure A2. Variability of Random Forest local models per region for common bottlenose dolphin (a-d) and sperm 

whale (e-f). A light-red coloured cell depicts low variability between the 10 runs and the darker the red colour of 

the cell the higher the variability. 

(c) 
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Figure A3. Variability of extrapolated models into unsurveyed Indonesian EEZ for common bottlenose dolphin 

(a) and sperm whale (b). A light-red coloured cell depicts low variability between the 10 runs and the darker-red 

the colour of the cell the higher the variability. 
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