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ABSTRACT

Magnetic resonance imaging (MRI) plays a significant role in the routine imaging workflow, providing both anatomical
and functional information. 19F MRI is an evolving imaging modality where instead of 1H, 19F nuclei are excited. As the
signal from endogenous 19F in the body is negligible, exogenous 19F signals obtained by 19F radiofrequency coils are
exceptionally specific. Highly fluorinated agents targeting particular biological processes (i.e., the presence of immune
cells) have been visualised using 19F MR, highlighting its potential for non-invasive and longitudinal molecular imaging.
This article aims to provide both a broad overview of the various applications of 19F MRI, with cancer imaging as a

focus, as well as a practical guide to 19F imaging. We will discuss the essential elements of a 19F system and address
common pitfalls during acquisition. Last but not least, we will highlight future perspectives that will enhance the role of
this modality. While not an exhaustive exploration of all 19F literature, we endeavour to encapsulate the broad themes
of the field and introduce the world of 19F molecular imaging to newcomers. 19F MRI bridges several domains, imaging,
physics, chemistry, and biology, necessitating multidisciplinary teams to be able to harness this technology effectively.
As further technical developments allow for greater sensitivity, we envision that 19F MRI can help unlock insight into
biological processes non-invasively and longitudinally.

REVIEW OUTLINE

19F MRI is a versatile tool in biomedicine with the ability to
probe biological processes non-invasively using fluorinated
agents. This review intended to outline the various aspects
of 19F MR imaging with a beginner imaging researcher
(non-MR physicist) in mind. While we do not engage in
an exhaustive review of all 19F literature, we aim to show-
case work that might be relevant to imaging/research teams
starting out and will refer readers regularly to dedicated
reviews/articles that would delve deeper into given topics.

This article can be generally divided into three sections.
Section I provides background on 19F MRI in medical
imaging and highlights different applications. Examples
are provided in different disease models, with a focus on
cancer imaging. Section II aims to point the reader towards
practical considerations for 19F MRI studies. It discusses

the main components of 19F MRI together with common
pitfalls a beginner may encounter. Section III summarises
these developments within this rapidly evolving research
field and highlights their potential impact on future
research.

SECTION I: BACKGROUND AND
APPLICATIONS OF 19F MRI

Background

Technological advancements in molecular imaging have
greatly shaped how clinicians approach patient care and
research. Biological targets and metabolic processes can
be quantitatively and non-invasively visualised, offering a
biological context to the anatomical and functional imaging
already available to radiologists. Molecular imaging carries
great promise for the emerging field of precision medicine,
which tailors treatment to the patients unique biology.
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For instance, molecular imaging in atherosclerosis, Alzheimer’s
disease, and cancer may be leveraged to identify early-stage
pathological changes, improving detection and aiding in treat-
ment response evaluation.' Early detection is not only key in
reducing both morbidity and mortality in patients, it could also
enable the enrolment of pre-symptomatic patients in clinical

trials improving drug discovery efforts.*”

Traditionally, single photon emission computerised tomog-
raphy (SPECT) and positron emission tomography (PET) have
been the modalities of choice for molecular imaging due to their
exceptional sensitivity, which allows the detection of radiotracers
at concentrations in the nanomolar (107°) to the picomolar
range (107'%). 18F-FDG is used routinely in the clinic to visualise
altered metabolism in cancer and neurodegenerative demen-
tias.>” However, SPECT and PET come with their own set of
drawbacks. Clinical SPECT suffers from poor spatial resolution
and has a lower sensitivity than PET (two orders of magnitude).
Moreover, PET is more expensive and less accessible as tracers
require a sophisticated radiopharmaceutical facility to conju-
gate the radioisotope to the targeting molecule/antibody.*” PET
tracers also exhibit fast radioactive decay, limiting the window of
opportunity to scan and potentially exposing the targeted cells to
damaging radiation.

Another modality in molecular imaging is magnetic resonance
imaging (MRI), characterised by unlimited tissue penetration,
excellent soft-tissue contrast, and high spatial resolution without
exposing the patient to ionising radiation. Conventional 1H MRI
is widely used in clinical settings to generate both anatomical and
functional images. Different 1H MRI techniques have been asso-
ciated with biological processes.'””'” Relevant targets of molec-
ular 1H MRI include deoxyhaemoglobin, metabolites, proteins,
and lipids. For example, blood-oxygen-level-dependent (BOLD)
MRI reveals oxygen availability in different regions, which can
provide insights into tumour hypoxia, chronic kidney disease,
and myocardial ischaemia."” "> Another technique, multivoxel
magnetic resonance spectroscopy, spatially resolves metabolic
data important for clinical decision-making in stroke, neurode-
generative diseases and brain cancer.'>'®

Although 1H MRI can probe biomolecular processes, it lacks
specificity as hydrogen nuclei are ubiquitously present in the
body, irrespective of physiology. The use of contrast agents also
introduces a unique set of challenges. To visualise the impact of
the contrast agent, radiologists require ‘before and after’ images
of which agent concentration is difficult to quantify.'” Concerns
have also risen regarding contrast toxicity, which remains to be
fully elucidated.'®"” For example, superparamagnetic iron oxides
(SPIOs) create hypointense signals on T,-weighted images,
which may be hard to distinguish from blood. Moreover, SPIOs
administered for sentinel lymph node detection in breast cancer
may impair MRI examinations due to void artefacts remaining in
the tissue for many years.”

X-nuclei MRI complements 1H MRI as it examines other non-
proton nuclei with a magnetic moment to visualise biological
processes. A specifically tuned radiofrequency (RF) coil allows
target nuclei to be excited and visualised in an image. Nuclei
of interest may be endogenous (e.g., 23Na, 35Cl and 39K) or
exogenous (e.g., 19F) to the human body. Endogenous nuclei
reveal metabolic and physiological information in health and
disease.”"”” In addition, exogenous nuclei can be incorporated
into contrast agents or other molecules allowing the labelling of
drugs and cells or the visualisation of metabolic processes. The
clinical use of X-nuclei lags behind 1H MRI, mainly due to sensi-
tivity limitations. It is further limited by its high cost, requiring
trained staff and specialised equipment, and lack of diagnostic
value. As MRI magnetic field strength and hardware setups have
improved, so has the SNR of X-nuclei, paving the way for explor-
ative studies.””*

The 19F nucleus is a promising target for imaging (Table 1). 19F
MRI exhibits high specificity in vivo since the body contains trace
amounts of fluorine, predominantly immobilised in the bone
matrix and tooth enamel, rendering it undetectable. As such, 19F
MRI can be performed in a background-free setting with a high
contrast-to-noise ratio (CNR). In terms of quantitative MRI, this
is a major advantage over 1H MRI contrast agents such as SPIOs
because the MR signal intensity directly reflects the concentra-
tion of 19F nuclei. In addition, 19F is more sensitive than 1H to
changes in the local chemical environment and displays a wide

Table 1. A general overview of the advantages and disadvantages of 19F MRI

Advantages Disadvantages

Absence of ionising radiation

Low SNR due to intrinsically low sensitivity of MRI (19F concentration in
the millimolar range)

Non-invasive, longitudinal imaging possible

Long scan times, caused by low 19F concentration in tissues and long T1 of
some 19F agents

High MR sensitivity: 83% of 1H

Requires hardware modifications and specialised coils

Quantitative in nature

High uptake of 19F probes by the reticuloendothelial system

Absolute specificity: background-free imaging

Some probes have a long biological half-life

Multispectral imaging possible

19F MRI agents are responsive to their environment: possibility to probe
biological processes
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chemical shift range. This characteristic allows for the design of
theranostic MRI probes and probes reactive to changes in the
local environment (i.e., stimuli—responsive).25

The challenge of sensitivity

The sensitivity of MRI is lower than other molecular imaging
techniques and to successfully acquire a 19F MR image, the 19F
concentration must be in the millimolar range (107%).2%%7 With
1H MR, this is less of an issue due to the high water content in
the body, which is approximately 50-60% for the average adult
(~55.6-66.7 M of hydrogen). The low sensitivity poses a chal-
lenge to experiments where the goal is to visualise targets in vivo
which are present at low concentrations (e.g., enzymes) or specific
cell populations. Different strategies have been implemented to
improve the sensitivity of 19F MRI, such as increasing the main
magnetic field strength, the 19F probe payload (e.g., perfluo-
rocarbons), altering the relaxation properties of 19F through
intramolecular interactions with lanthanides, and adjusting both
acquisition and data processing procedures.

Applications of 19F MRI

In 1977, Holland et al. generated the first 19F MR images shortly
after the first anatomical 1H MR images.*® Since then, 1H MRI
has developed into an integral medical imaging tool. Although
the clinical translation of 19F MRI did not share the same trajec-
tory, various applications have been explored pre-clinically,
including imaging of (immune) cells, angiogenesis, tumour
acidosis, and hypoxia.””** Figure 1 highlights the applications
of 19F MRI which will be discussed in the following subsections,
with the exception of multispectral 19F MRI (SectionlII).

Cell tracking

Cell-based therapies are a burgeoning approach to fighting
disease and restoring organ function. Stem cells may be deployed
for the regenerative treatment of cartilage, the heart and the
pancreas and to combat inflammation.”® Cellular therapies
are also promising options for cancer treatment, with possible
durable responses in patients with advanced and treatment-
refractory tumours.”* Several factors contribute to the success
of cellular therapies, including correct homing to the target
lesion or lymphoid organ, cell survival, and proliferation.”**
Non-invasive tracking of these cells via imaging would therefore
be beneficial for translating and applying cellular therapies.

19F nanoprobes have been studied extensively in the context
of cell labelling and tracking.****~** Cell tracking is achieved
through the ex vivo or in vivo labelling of cells with perfluoro-
carbon (PFC) nanosystems, allowing for the collection of spatio-
temporal and quantitative information.**® Since 19F MRI only
visualises exogenous 19F atoms, highly specific “heatmaps” can
be generated.

Ex vivo cell labelling with PFC nanoemulsions has been
performed in dendritic cells,””*"*"*® T cells,"** NK cells,” B
cells,”" and stem cells.”>>* Incubation of the cells with different
PFC nanoemulsions did not affect cell viability, making it a viable
approach to assess the effective delivery of therapeutic cells to
their target.”” >’ As labelled cells are introduced in a subject, they
can be tracked and quantified via MRI and MRS.

With in situ cell labelling, PFC nanoemulsions are injected
directly into the subject. This approach takes advantage of the
phagocytic properties of monocytes and macrophages, where the
nanoparticles are small enough to be taken up by these cells. Sites
with PFC aggregation, for example, inflammatory sites recruiting
labelled macrophages/monocytes, subsequently become visible
for 19F MRI, given the sufficient local accumulation of 19F
nuclei. Flogel et al. first visualised inflammatory processes in
vivo using models of cerebral and cardiac ischaemia.”” Macro-
phage tracking has also been performed in numerous disease
models.”®* As key players in inflammation, the recruitment
of macrophages can serve as a good indication of therapeutic
response, whether eventually positive or negative, especially
in the context of immunotherapy.®* As a disadvantage, nano-
probes can also be taken up/sequestered by other components of
the reticuloendothelial system, such as the spleen and the liver,
hampering inflammation imaging in these organs.

Imaging of hypoxia

Hypoxia as a microenvironmental target has been primarily
studied in the context of cancer. However, oximetry of the
kidneys, placenta, and brain using 19F MRI has also been
demonstrated.”*® In this subsection, we will focus on onco-
logical applications because the majority of 19F pO2 mapping
research focuses on that domain.

The tumour microenvironment (TME) is characterised by
hypoxia, lower pH levels, altered expression of enzymes, and
redox potential, promoting a mutagenic shift leading to malig-
nancy.””7* These alterations at the TME contribute to wors-
ening clinical outcomes by reducing the efficacy of radiotherapy,
chemotherapy, and immunotherapy.”” Probing TME physiology
and its changes is imperative in optimising treatment efficacy
and improving patient care. Since tumour oxygen levels are
known to be heterogeneous,” imaging-derived oxygen maps
could indicate which tumour regions are hypoxic, requiring an
adjusted immuno/radiotherapy dose. Due to the linear rela-
tionship between the spin-lattice relaxation rate of PFC species
and the dissolved oxygen concentration, 19F MRI can generate
such maps.”® McNab et al. demonstrated the usefulness of 19F
hypoxia imaging with their serial scans of on-treatment tumour-
bearing mice.”” The pO2 values derived from these scans showed
that tumour oxygenation differed during the growth, regres-
sion, and relapse phases of treatment. In a murine glioblas-
toma model, increases in pO2, quantified on 19F imaging, were
observed at day three post-treatment with CAR-T cells indic-
ative of CAR-T cell homing and tumouricidal activity.”* Novel
fluorinated contrast agents are emerging that are responsive to
hypoxia, potentially providing insight into the dynamic state of
oxygenation or serving as theranostics through targeted delivery
of cytotoxins.”” #*

pPH imaging

Under physiological conditions, the extracellular pH = 7.35-
7.45 is tightly regulated. An altered pH balance may be caused
by infections, cancer, pulmonary disease, ischemia, and renal
diseases.*”¥ Expanding non-invasive, multiparametric and/
or multimodal imaging to probe pathophysiology may support
researchers or improve clinical management of these conditions.
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Figure 1. Highlights of 19F MRI for biomedical applications. Cell tracking and quantification play a prominent role in 19F MRI
research due to the quantitative nature and specificity of 19F MRI. PFC formulations have been used to label cells ex vivo and in
situ in order to probe the fate of transplanted cells or to image inflammation. Molecular 19F MRI non-invasively probes physiolog-
ical parameters such as hypoxia, pH, and redox state. Stimuli-responsive OFF/ON nanoprobes attenuate the MR signal of neigh-
bouring 19F atoms through their influence on the local environment. Silencing of 19F reporters occurs via T2 shortening, which can
be achieved by immobilising 19F spins or via PRE. Conformational changes or probe disassembly is induced in the presence of the
desired stimuli, thereby restoring T2 along with the 19F MR signal. The fate of 19F agents can be further influenced by functional
groups and the structure of a nanocarrier system (e.g., multicore PLGA NP). In addition, multimodality and multispectral MRI add
another dimension of information to 19F MRI studies. Fluorescent moieties incorporated in 19F formulations allow subsequent
model characterisation via ex vivo cytometric analyses such as flow cytometry and fluorescence microscopy. Radioisotopes
combined with fluorinated polymers enable sensitive PET imaging alongside 19F MRI. Different cell populations or targets can
be imaged within a single subject with multispectral MRI using 19F agents with discriminating NMR signals. c.s: chemical shift,
CT: computed tomography; DC: Dendritic cell; LC: lymphocyte; NK cell: natural killer cell; OFI: optical fluorescence imaging; PET:
positron emission tomography; PFC: perfluorocarbon; PLGA NP: poly(lactic-co-glycolic acid) nanoparticles; pO2: partial oxygen
tension; PRE: paramagnetic relaxation enhancement; SC: stem cell; TC: tumour cell; USG: ultrasound sonography
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For example, functional loss often precedes anatomical changes
in renal diseases, and early intervention can prevent or attenuate
complications.®” Electrode-based direct measurement of pH is
not only invasive, it also fails to account for heterogeneous pH
regions in organs or tumours, which 19F MRI may address.

Studies on pH imaging using 19F MRI are currently limited to
in vitro conditions, with in vivo studies focusing on 19F MR
spectroscopy.*®® Nevertheless, research on 19F MRI probes has
yielded promising results over the past years. pH-sensitive 19F
probes fall within the stimuli-responsive probes category, where

changes to the 19F MRI signal become apparent upon encoun-
tering the activating condition (OFF/ON). Similar to the design
of other environment-responsive probes, alterations to the 19F
MR signal may occur via several mechanisms.”"*~*

A different approach to 19F MRI pH imaging is with ratiometric
pH-sensitive probes, where instead of a OFF/ON signal, the
19F signal scales to the target analyte, allowing pH quantifica-
tion.”*”* Ratiometric probes emit multiple signals in response
to analytes such as ion concentration. In the case of NMR, the
signal consists of at least two spectral peaks at different chemical
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shifts which correlate to the analyte concentration. Therefore,
the ratio between spectral peaks can be compared to calculate
analyte concentrations. Direct pH measurement with ratiometric
agents is possible because the 19F MR signal scales proportion-
ally (from one chemical shift to another) within a specific pH
range. Janasik et al. proposed a molecular switch system for this
purpose. The ratio between the 19F MR peaks of their agent
changed over a pH range of 34, allowing for sensitive measure-
ments within that range.” Ideally, a pH probe for cancer imaging
would be designed to keep its sensitivity within the biological pH
range. Janasik et al. recently achieved this through modifications
to their molecular switches (pH range 5.5-7), demonstrating the
potential of these agents in quantitative 19F MRL”

Multimodality imaging

Multimodality imaging combines the power of different imaging
techniques to image the same subject. The advantage of such an
approach is that one method could compensate for the shortcom-
ings of the other. In the case of 19F MRI, multimodal imaging
has been explored with optical fluorescence imaging (OFI),
ultrasound sonography, CT, and PET. One of the most promi-
nent examples is the addition of fluorescent dyes to 19F tracers.”
Fluorescent probes make it possible to validate the origin of the
in vivo 19F MRI signal via other methods, such as FACS and OFI.
Readers are referred to a recent review by Janasik and Krawczyk
for in-depth coverage of multimodality imaging and 19F MRL.”®

SECTION II: PRACTICAL CONSIDERATIONS FOR
19F MRI

In this section, we present practical aspects of 19F imaging
for beginners and highlight common pitfalls that may occur
(with mitigation strategies). The sample protocol, screenshots
of common errors, and employed solutions are based on the
preclinical MR system at the corresponding author’s centre
(Bruker Biospec 7T 70/20). This system is widely used in 19F
literature,”***°”?® ‘and the core information provided can be
generalised to other setups.

Core elements for a 19F MRI study

19F MRI protocols

A standardised protocol helps teams generate images of suitable
quality and reproducible characteristics. While 19F MRI resem-
bles conventional methods, some unique aspects apply. Supple-
mentary S1 contains a general 19F imaging procedural protocol
that could serve as a starting point for 19F imaging experiments
(hosted on protocols.io). Srinivas et al., Waiczies et al., and Hu
et al. also provide a step-by-step protocol for quantitative cell
tracking in vivo, and 19F MRI oximetry.” !

Hardware

Due to the similarity of 1H and 19F in MR properties, minimal
hardware modifications are required for conventional preclinical
imaging systems to perform 19F MRL'" The most significant
alteration required is that RF components need to be tuned to the
Larmor frequency of the fluorine nucleus. RF coils are essential
for creating and detecting an MR signal. They can function as
transmitters, receivers, or both (i.e., a transceiver). Hernandez
et al. provide a more in-depth review of MR coils.'” In addition,

readers can consult Table 2, which summarises methods of 19F
MRI studies across different applications.

The two most common coil geometry designs are volume and
surface coils. Volume coils are used for whole sample imaging
as the transmitted B; magnetic field is more homogenous and
extends over a larger area. This characteristic is advantageous
in 19F applications that require a uniform signal strength, for
example, quantifying in vivo 19F signal with an external refer-
ence. Surface coils, on the other hand, offer more sensitivity
than volume coils. However, their B, field decays further away
from the coil and is not uniformly distributed, resulting in a
small sensitivity volume and imaging penetration depth. Despite
these disadvantages, surface coils offer benefits in 19F MRI when
acquiring images of structures close to the coil’s surface.""”

When considering the RF coil design, how a coil is tuned to the
correct nucleus is also essential. Single- and dual-tuned coils have
been used in 19F MRI studies, with 19F quadrature coils having
a superior sensitivity than linear coils. However, a linear 1H/19F
dual-frequency volume coil provides more convenience. Since
the 1H/19F coil does not have to be switched after performing
system adjustments and acquiring 1H MR images, the general
workflow and co-localisation of the 1H and 19F MR signal are
improved. Proton-based B, mapping can be used to correct for
static magnetic field inhomogeneities via shim currents, and
inaccurate co-registration of the 1H and 19F images is prevented.
Furthermore, optimal RF power settings and B; profiles can
be derived from the 1H signal. They can be used to determine
parameters for the fluorine nucleus, while surface coils may
require a 19F reference.''® Dual-frequency coils can also be
designed to allow for simultaneous 1H/19F MRI improving
co-registration''*"'*! but would then require additional hard-
ware modifications.

Coil construction materials influence coil system choice as they
may impact image quality. For example, proton-bearing mate-
rials used in MRI hardware equipment, such as polycarbonate,
contribute to the background signal in 1H MRL'** Fluorinated
materials such as polytetrafluorethylene (Teflon) and fluorinated
oils are commonly used in commercial and custom-built MRI
equipment.'?’ While these are beneficial in proton imaging, they
form a possible source of background in 19F MR studies.'”

Sequences

Pulse sequence choice for a given 19F MRI study requires careful
consideration to improve the sensitivity. The complexity of an
agents MR spectra, chemical shift, and relaxation properties
influences optimal signal detection. As these vary from agent to
agent, there is no universal pulse sequence with optimal perfor-
mance. The high degree of freedom and complexity in crafting
a 19F sequence is reflected in the multiple works on optimising
19F imaging strategies to improve sensitivity,”®!0%!0%1247126
Table 3 lists sequences used for various applications of 19F MRI.
In addition, the specific absorption rate (SAR), a metric of the
amount of RF energy deposited in tissues generated by any given
sequence, should be kept in mind during experimental design.
Due to the inherent low sensitivity of 19F MRI, studies benefit
from fast imaging sequences, which apply multiple RF pulses
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Table 3. Overview of commonly used pulse sequences in 19F MRI

Sequence Probes Advantages Disadvantages
Less susceptible to By inhomogeneities When using a high echo train length, watch the specific
absorption rate
Increase echo train length to shorten acquisition
RARE Compatible with probes time
with long T2 Best for imaging larger regions with PFCs and a
large number of slices
3D RARE 3D RARE has excellent SNR efficiency Longer absolute acquisition time (3D)
FLASH - Possibility to use low flip angles Low SNR efficiency
bSSEP Performs best wth strong Most SNR efficiency Oft-resonant effects at high 30 cause signal loss and worsening
T2/T1 ratio of banding artefacts
FISP - High SNR efficiency when imaging small areas Susceptible to flow and motion
High SNR due to capturmg the signal before line High specific absorption rate
dephasing.
UTE 19F agents ‘A,?;h ultrashort Artefacts may arise due to non-cartesian k-space sampling
Both 2D and 3D imaging are possible. The gradient trajectory of the read gradient must be acquired a
priori, which is difficult if agents have a low 19F content
19F agents v;};h ultrashort Silent MRI No slice selection, only possible as 3D sequence
ZTE High ific ab. i
Agents with lower 19F More convenient than UTE: no gradient trajectory igh specific absorption rate
content measurement required Shading artefacts
Limited applicability as 3D radial sampling and FID readout
decrease SNR efficiency in agents with a single resonance peak
UTE-bSSFP Multlresogz;:g;igents (eg, Sa\mii: mil::]“l:(l)e &eal;:r?si;g?tntioviﬁzsi Zo:]];:l\ex Due to bandwidth restrictions only resonance peaks can be
spectra, Improving vy sents detected within proximity of 1-2kHz to each other
Banding artefacts
FREDOM: Pulse burst
saturation recovery pO2 sensitive probes (e.g., Quantitative oximetr FREDOM is limited to easily accessible tumours as it requires
(PBSR) echo planar HFB) u v Y intratumoural injection of the 19F probe
imaging (EPI)

FID, free induction decay; FISP, fast imaging with steady-state free precession; FLASH, fast low angle shot; FREDOM, fluorocarbon relaxometry using echo
planar imaging for dynamic oxygen mapping; HFB, hexafluorobenzene; PFC, perfluorocarbon; PFOB, perfluorooctyl bromide; RARE, rapid acquisition with
relaxation enhancement; UTE, ultrashort echo time; ZTE, zero echo time; bSSFP, balanced steady-state free precession.

in rapid succession (e.g., SSFP, UTE, and ZTE). The application
of such sequences poses a challenge in preclinical and clinical
applications where SAR is limited due to safety.

19F MRI agents

Several 19F MRI agents exist, with PFCs being the most
commonly used (Table 4). Agent design and formulation of
PFCs and other agents are still under development, intending to
improve sensitivity, delivery, function and clearance (Table 5).
Nanocarriers improve the solubility and delivery of PFCs and
influence the clearance rate.'”” Nanoparticles and nanogels
have the added benefit of being stable as opposed to lipid-based
nanoemulsions, which have a relatively short shelf-life due to
Ostwald ripening. A nanocarrier’s structure can be modified to
confer new characteristics (i.e., functionalisation), enabling cell
targeting, reactivity to stimuli, and multimodal imaging. One of
the earliest methods of 19F probe functionalisation was incor-
porating fluorescent dyes in PFC nanoemulsions.”” The added
fluorescent moiety allowed for the ex vivo validation of labelled
cells with microscopy and flow cytometry. Other nanocarriers

have been developed to expand the functionality of 19F MRI
agents, 135149150152

Clearance of PFC nanoemulsions occurs via emulsion break-
down, the release of PFCs into the bloodstream, and subsequent
exhalation.”’ The biological half-life of PFCs can range from 3
to 8 days (e.g., perfluorooctyl bromide) to well over 100 days
(e.g, PFCE) in mice."”> While shorter biological half-lives are
preferred for clinical translation, PFCs such as PFCE remain
attractive agents in research due to highly advantageous 19F MRI
properties (i.e., simple NMR spectrum and high 19F payload per
molecule).®”">* Specific modifications to the architecture of a
nanocarrier have been shown to enhance the clearance signifi-
cantly (up to 15x faster), bringing this technology one step closer
to the clinic.”’

19F MRI agents are not yet widely available commercially, and
their manufacturing process requires specialised equipment and
expertise to guarantee particle uniformity and stability.”>*° For
medical imaging, multimodal polymeric PFC nanoparticles have
been an emerging focus of development.”®'>> The polymer in
these particles, poly(lactic-co-glycolic acid) or PLGA, is widely
used in drug delivery and can be functionalised to expand its
applications.'*® To bring PLGA-PFC nanoparticles closer to the
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clinic, methods for the scale-up of GMP-grade production have
been developed.'*!>*

Reference

Common pitfalls in 19f MRI

The primary purpose of this section is to prevent common
beginner mistakes we encountered during our first 19F MRI
studies. Something as simple as changing the coil operation to
the correct nucleus may be overlooked during a lengthy phantom
acquisition at the expense of time and effort. 19F MRI is not
only hampered by low sensitivity. Similar to 1H MRI, artefacts
can be present in 19F images, such as chemical shift displace-
ment, distortions, and banding. Proper mitigation strategies can
address many of the artefacts encountered.

Zhu et al. (2022)'*?

Remarks

Sub-optimal transmitter gain adjustment

In order to excite a spin system, an RF pulse is required. The
required power for such a pulse depends on several factors,
including sample load. In conventional MRI, system software
automatically calibrates pulse amplitude before image acquisi-
tion to determine the required power for a 90degree RF pulse.
This automated approach is not possible in 19F MRI because the
19F MR signal is too low, requiring the reference power to be set
manually. In the case of a dual-frequency 1H/19F coil, reference
power values can be derived from the 1H channel using even
non-fluorinated subjects. However, single-frequency 19F coils
require an external, concentrated 19F reference with sufficient
signal to calibrate the reference power. Under optimal acqui-
sition conditions, the 19F image generated demonstrates the
maximum possible SNR (given the sample, Figure 2a [i]). When
the reference power is below the required value, the SNR is nega-
tively impacted, yielding a significantly noisier image (Figure 2a,
[ii]). To prevent or overcome this issue, the transmitter gain, and
other system adjustments, can be manually determined using
a concentrated 19F reference standard to guarantee optimal
adjustments.””

Fluorinated ionic liquids are composed of molten
salts, which are entrapped in mesoporous silica
nanoparticles with stimuli-responsive properties.

Chemical shift with respect
to [reference]
—150 ppm
—125 ppm
—78.8 ppm

simple
simple
simple

g
=1
=
-
9
(7]
o
@

Chemical shift artefacts

Every 19F contrast agent displays a unique spectral profile,
where the intensity of the fluorine signal is greatest at a partic-
ular chemical shift (expressed in ppm). At the start of the image
acquisition process, users need to define an operating frequency
instructing the scanner to excite a specific ppm range. Under
normal circumstances, when the peak is correctly identified
for the given fluorinated compound, the 19F image and under-
lying anatomical image should have near-perfect co-localisation
(Figure 2b, [iii]). When the peak is incorrectly defined due to
a human mistake or an underlying change in the nature of the
compound (e.g., degradation), a chemical shift artefact occurs
where the 19F signal detected by the coil is mapped out to incor-
rect coordinates in space. This error leads to a 19F signal being
recorded elsewhere in the image, which can be in the frequency
encoding or slice selection direction (Figure 2).

Molecular weight
(g/mol)
86.81
95.02
149.07

Molecular
BF,
C,HF,0,
C;058

tetrafluoroborate
difluoroacetate
trifluoromethanesulfonate

Imaging with multiple 19F agents or agents with a complex
spectral profile may also be a source of chemical shift artefacts
due to magnetically non-equivalent 19F spins. A way to circum-
vent this is via chemical presaturation RF pulses (e.g., fat-sat in
1H MRI)."’ These pulses excite spins within a selected chem-
ical shift responsible for the artefacts. Chemical saturation is

Fluorinated
ionic liquids

19FIT, 19F imaging tracer; Mn, number average molecular weight; Mw, weight average molecular weight; OEGA, oligo(ethylene glycol) methyl ether acrylate; PAMAM, poly(amidoamine); PDMAEMA, poly((N,N-dimethylamino)ethyl!

methacrylate); PEG, polyethylene glycol; PEGMA, polyethyleneglycol monomethylether methacrylate; PERFECTA, super fluorinated contrast agent; PIMA, poly(isobutylene-alt-maleic anhydride); PMANa, sodium polymethacrylate;

PTFPMA, poly(2,2,3,3-tetrafluoropropyl methacrylate); TFA, trifluoroacetic acid; TFE, trifluoroethanol; TFT, o,a,0-trifluorotoluene; ppm, parts per million; tFEA, trifluoroethylacrylate.

Table 4. (Continued)
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Table 5. Selected examples of nanocarrier formulations for 19F MRI

Formulations Description Examples Characteristics REEE
Nano emulsions Oil-in-water NE which are stabilised fluorescent blended Covalently-conjugated fluorescent dye to the PEC Janjic et al. (2008)>
(NE) with a surfactant to improve PFC PFPE amide and prevents separation of dye from PFC core after NE
solubility. Surfactants such as PFPE NE uptake
phospholipids and pluronics are 5
required to stabilise NE. Click-Ready PFC Functiqnalization of the NE surface is done post- Perez et al. (2022)™™
NE emulsification allowing for the incorporation of more
fragile ligands (e.g. proteins)
Nanoparticles (NP) Biocompatible particles containing FLAME Amorphous silica shell with improved stability and Matsushita et al. (2014)"*
a fluorous core encapsulated by a solubility
silica shell. Silica nanoparticles have
modifiable internal and external Use of paramagnetic Gd3+ to create stimuli- Nakamura et al. (2015),
surfaces to which functional groups can responsive OFF/ON NPs Konishi et al. (2021)!13114
be attached. Controlled biodistribution via surface modifications Akazawa et al. (2018)'*°
shown in multispectral MRI study
mFLAME Mesoporous silica shell with controllable pore size Nakamura et al. (2015)"%¢
for theranostics: Drug delivery, surface modifiability
and dual modal imaging
PLGA - Polymer-based nanoparticle PFCE PLGA NP Multi-core structure for fast clearance Hoogendijk et al.
system based on poly(lactic-co-glycolic i (2020)"*
acid). May be loaded with PFC multi- GMP-grade scale up possible
cores. PERFECTA PLGA Faster imaging possible due to shortened T1 Chirizzi et al. (2022)'4
NP relaxation
Nanogels Nanoscale hydrogels consisting of a Polymer nanogel Increased T2 relaxation through post-assembly Munkhbat et al. (2019)**
fluorinated polymer-based network P3H modifications for improved signal detection
pH-sensitive OFF/ON switchable probe for pH detection based on Oishi et al. (2007)"!
PEGylated nanogels volume-phase transition

GMP, Good Manufacturing Practices; PEG, polyethylene glycol; PERFECTA, super fluorinated contrast agent; PFC, perfluorocarbon; PFCE, perfluoro-15-
crown-5 ether; PFPE, perfluoropolyether; PLGA, poly(lactic-co-glycolic acid); (m)FLAME, (mesoporous) fluorine accumulated silica nanoparticles for MRI

contrast enhancement.

performed before the image acquisition, thereby suppressing the
MR signal during subsequent MRI. Another way to circumvent
chemical shift artefacts is through selective excitation of a (subset
of) spectral line(s) at the cost of SNR.'*® The sparse nature of
the 19F signal in vivo would benefit from specialised imaging
approaches that record the MR signal from all spins without
the artefacts. Goette et al. described an acquisition strategy that
acquires the 19F signal of perfluorooctyl bromide (PFOB) before
de-phasing spins using balanced UTE-SSFP and free induction
decay readout."”” Additionally, van Heeswijk et al. proposed a
method to image 19F agents with complex spectra, where a series
of multiecho acquisitions and image reconstructions via a model
remove the artefacts.'’

Isoflurane artefacts

Isoflurane is a commonly used volatile anaesthetic in rodents. At
therapeutic concentrations and over long timespans, isoflurane is
detectable in MRI, which may lead to artefacts. This compound
accumulates in the skeletal muscle and fat of the thorax.'®" As
such, the accumulated fluorine signal is picked up by the radiof-
requency coil. Fluorine signal from the anaesthetic mixes with
the signal from the target compound, yielding false-positive “hot
spots” and making quantification more challenging. Staal et al.
devised several strategies to address isoflurane artefacts: suppres-
sion pulse, out-of-plane shift, and for 3D imaging, narrow exci-
tation bandwidth.'®* Alternatively, non-fluorinated injection
anaesthetics may be considered, such as ketamine with xylazine.
Still, this combination may be less suitable for shorter proce-
dures, as the recovery time is significantly longer.'®’

Distortions in the main magnetic field

The main magnetic field By is prone to distortions, which are
aggravated at higher field strengths. As such, By inhomogeneities
must be corrected prior to image acquisition to improve image
quality. Magnetic field corrections are carried out via magnetic
shimming, which superimposes a correction field in order to
homogenise the By field distribution. Suboptimal shimming
may lead to peak-broadening, image distortions and artefacts,
such as banding artefacts in bSSFP sequences (Figure 2c). The
MRI system can perform iterative shimming automatically for
low-order gradients, which show the greatest variation.'®* In
addition, other sequences and suppression strategies require
high-order B corrections that must be preceded by quantifying
B, field distribution (B, mapping).'®

Cell number quantification

One of the core selling points of 19F MRI is the direct quan-
titative nature of fluorinated agents imaged in a background-
free setting. Quantitative 19F MRI of ex vivo or in situ labelled
cells requires additional considerations, addressed in detail in
Srinivas et al.'”*’

Attempts at accurate cell number quantifications might be
hindered due to larger voxel sizes in 19F MRI. For a given image,
a voxel represents the average signal within the predetermined
volume (e.g., voxel dimensions), encoding the 19F signal from
multiple labelled cells within these dimensions. The voxel volume
in 19F MRI is relatively large, meaning the lower spatial resolu-
tion leads to the loss of fine data on cell location and quantity.
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Figure 2. Pitfalls in 19F MRI for beginners. TH and 19F MR images were acquired in PFPE phantoms at 7T. TH/19F images are
depicted in greyscale (1H) and pseudocolour (19F). Image (iii) is the correct example. (@) Influence of transmitter gain calibrations
on image quality, comparing 19F FSE acquisitions of (i) calibrated and (ii) uncalibrated RF pulse power. (b) and (¢) Examples of
chemical shift artefacts along the directions of frequency-encoding (iv) (v) and (ix), and slice selection (v) indicated by the red
and green arrows, respectively. 19F images are superimposed in pseudocolour on top of the TH images to illustrate the mismapping
of the MR signal when selecting an off-resonance working frequency. PFPE has a major and a minor resonance peak in close prox-
imity to each other. NMR signals from the minor peak are not detected at /in vivo tracer concentrations. The chemical shift artefact
recorded at a different slice (iv, green arrow) occurred due to imaging with an undiluted PFPE phantom. (¢) Main magnetic field
(Bo) inhomogeneities influence the Larmor frequency of 19F spins, causing distortions (vi), loss of signal due to line broadening
(vii), and banding artefacts (ix). The 19F MR image in pseudocolour (v) was acquired with a fast spin echo sequence using erro-
neous shim values, while the TH acquisition (greyscale) was acquired with proper shims. The 19F NMR spectrum of PFPE depicted
in the upper graph was acquired in an inhomogeneous B field and displays line broadening and increased noise compared to
the bottom graph, which was acquired in a shimmed system. TH FSE (viii) and bSSFP 19F (ix) MRI of four tubes filled with serially
diluted PFPE in 1% low-melting point agarose. The bSSFP sequence is sensitive to Bg inhomogeneities leading to the appearance
of banding artefacts (blue arrow). Tissue-border interactions (in this case, the four tubes and air) perturb By homogeneity, which
may be challenging to fully correct via shimming. The four tubes with PFPE could instead be embedded within another tube with
agarose to minimise tissue-border interactions. The bottom tubes were below the detection limits and, therefore, not visible in
the 19F image. bSSFP: balanced steady-state free precession; FSE: fast spin echo; PFPE: perfluoropolyether; RF: radiofrequency
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Two voxels with the same signal intensity could be derived from
cell clusters in different spatial patterns (e.g., clustered vs diffuse).
Hence, a positive 19F signal might not give the full spatiotem-
poral context of the region of interest. These challenges might
be mitigated using multimodal agents (mentioned above), where
the 19F signal could be correlated, for instance, with microscopy
for co-localisation.

Cell number quantification can also be hampered due to low
sensitivity through the requirement of a higher cell detection
limit (e.g, a minimal “critical mass” of 19F-labelled cells to be
detected by the RF coil). The cell detection limit is influenced by
19F contrast agent uptake by the labelled cells, the magnetic field
strength, hardware, type of tracer, pulse sequence, and imaging
time.”” Higher cell detection limits require a larger number of
cells to accumulate within the voxel dimensions to generate a
positive 19F signal. Thus, any signal from a cluster of 19F-la-
belled cells below this threshold cannot be distinguished from
noise while possibly being biologically relevant.

Various cell detection limits have been reported in 19F MRI.
Srinivas et al. (2012) compared the detection limit of different
PFC-based cell tracking studies at high and ultra-high field
strengths by harmonising field strength, SNR, and imaging
time.”” Numbers as low as 200 and 1000 cells/voxel have been
reported with in vitro imaged macrophages and neural stem
cells, respectively.””>> However, detection limits in the range of
10° to 10* cells/voxel are more typical in vivo."’ At clinical field
strengths, the detection limit for different cell pellets ranged
between 2.5*10* macrophages/voxel (SNR = 5)* t0 1.0*10° DCs/
voxel (SNR = 2.5)."*? In vivo, the sensitivity was reported at 10°-
10”7 human DCs/voxel (SNR = 2.5).1*> While the cell detection
limits may vary across studies and are difficult to compare, having
a general idea of the limitations of your own system is crucial in
the preparation of 19F MRI studies. This can be achieved using
phantoms of cell suspensions at different concentrations with
known labelling efficiency.'®

Possible causes for mis-quantification include non-uniformity
of the B, field, partial volume effects, and tracer loss (e.g., cell
division or apoptosis).'*>'” The homogeneity of the B, field
depends on different factors, including coil and sample geom-
etry. Detailed explanations on how to carry out B corrections in
19F MRI are discussed by Vernikouskaya et al. and Srinivas et al.,
and in a cryogenically cooled RF coil by Delgado et al..””'¢%1%

SECTION Ill: FUTURE PERSPECTIVES AND
CONCLUSIONS

Future perspectives

Addressing sensitivity challenges

Improved hardware, sequences, and novel 19F probes have given
rise to novel sensitivity-boosting strategies such as compressed
sensing, paramagnetic agents, branched systems, and cryo-
cooling technology.®®!70~17*

In compressed sensing, k-space data are undersampled and
reconstructed, reducing imaging time while denoising the
acquired image.'””"'”” Recently, Chen and colleagues combined

compressed sensing with ZTE, resulting in a pulse sequence
suitable for fluorinated probes with short T1 and T2 such as
PFCs with a metal chelate. Applying a compressed sensing
ZTE sequence together with a metallo-PFC probe significantly
reduces the acquisition time of isotropic 3D images.'”*

The sensitivity of 19F MRI can be further enhanced through
alterations to the MR properties of 19F agents. PFCs typically
display long T1, reducing the possible number of excitations
within a fixed time."® Scan times can be reduced significantly
by exploiting paramagnetic metals.”®'”""¥! The T1 of 19F
agents decreases in the presence of lanthanides(III) or iron(II)
atoms'®” due to paramagnetic relaxation enhancement. This
effect may also alter an agent’s T2, as seen in some OFF/ON
switchable probes discussed previously. Therefore, careful
probe design is required to balance effective T1 reduction while
maintaining an optimal T2.'® Branched systems are another
option to increase the sensitivity of 19F MRI due to high 19F
payload.'”® The advent of novel 19F tracers together with novel
insights on probe clearance will bring 19F MRI closer to the
clinic.®

Transceiver surface RF coils may become more common in MRI
due to advancements in cryogenically cooled RF probe develop-
ment.'® This technology has been deployed in X-nuclei imaging
to reduce thermal noise and improve the detection sensitivity of
the coil. Waiczies et al. were the first to apply this for 19F MRI
using a transceive quadrature surface coil, improving both SNR
and resolution.'”* The SNR gain can also be interchanged for
reduced acquisition time, a most welcome benefit in 19F MRI
studies. This method was further improved through B; inhomo-
geneity corrections and set-up adjustments allowing for quanti-
tative 19F MRI in vivo.'?’

Multispectral imaging

Multispectral 19F MRI, also known as multicolour MRI, has
gained prominence, which allows the registration of multiple
19F probes within a single subject (Figure 1).""' Due to the broad
chemical shift range of 19F imaging agents, different probes can
be administered simultaneously and detected independently
of each other (Figure 3a).'™* This is also possible with overlap-
ping spectra.'®> Conversely, the number of tracers is limited in
PET and SPECT. Different 19F probes receive their own ‘colour’
after merging all the signals and placing them within anatomical
context (Figure 3b).

The need to track different cell types provided the motivation to
explore multispectral 19F MRI. Partlow et al. used PFCE- and
PFOB-loaded nanoparticles to ex vivo label mononuclear cells
and subsequently visualise them in situ.''" Since then, multiple
multispectral 19F MRI studies have followed. Chirizzi et al. used
multispectral imaging to monitor changes in phagocytic activity
of mononuclear cells induced after immune modulation.'"?
Multicolor MRI has also been used to study the behaviour of
silica- and PLGA-based nanoparticle formulations in vivo.””'*
Through characterisation of the biodistribution and degradation
patterns of different nanocarrier systems, researchers may select
a formulation compatible with a particular application.
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Figure 3. Basic principle of multispectral 19F MRI (a) Schematic representation of NMR spectra of three different fluorinated
nanoprobes: |, Il and Ill, each with distinct chemical shifts. The dashed boxes enclose the spectral peaks selected for 19F MRI. (b)
Schematic representation of multispectral 19F MRI with phantoms. From top to bottom: TH MRI for anatomical context, 19F MRI
with the working frequency set to the respective nanoprobe (I, Il or lll) and a merged image with the 19F signals in pseudo-colour.
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Multispectral 19F MRI has been expanded to other domains of
personalised medicine, and it is an exciting development within
the field. For cancer imaging, the ideal setting would be to iden-
tify cell populations which may negatively impact treatment, such
as myeloid-derived suppressor cells, regulatory T cells, and pro-
cancerous tumour-associated macrophages (TAMs). Through
multispectral 19F MRI, Croci et al. were able to investigate the
spatio-temporal dynamics of TAMs in high-grade gliomas upon
treatment and recurrence.*® They could map the abundance and
location of distinct TAM niches, either originating from tissue-
resident glial cells or monocyte-derived macrophages, as well
as detect phenotypic changes with additional methods. Beyond
population dynamics, multispectral MRI can be used to probe
other factors at the TME. Mesoporous silica nanoparticles loaded
with fluorinated ionic liquids were used for multicolour, stimuli-
responsive imaging in tumours.'*” Another remarkable achieve-
ment has been capturing the development of cardiovascular
disease.'®® Flogel and colleagues functionalised PFC nanoemul-
sions with peptide ligands and single-chain antibodies that could
target proteins and inflammation.'*® Most strikingly, this study
highlights the potential of multispectral MRI to identify imaging
biomarkers of vascular inflammation well before the manifes-
tation of disease.'®® Multiplex approaches described above may
form one of the stepping stones towards implementing molec-
ular MRI in the diagnosis, prognosis, and monitoring of complex
diseases.

19F MRI in humans
Due to the sensitivity challenges in 19F MRI, high-field MRI
setups with specially designed coils are essential. Unfortunately,

19F MRI (1)

19F MRI (I1)

19F MRI (I1l)

such equipment is not readily available in many healthcare
centres, where MR scanners operate at far lower field strengths.
The technical obstacles and limited toxicological characterisa-
tion of novel 19F agents have resulted in 19F molecular imaging
being primarily studied in preclinical settings. However, a small
cohort of innovative studies has found workaround solutions
to some of these challenges, and 19F MR scans in humans have
been successfully performed.

Lung imaging is currently the most frequent use-case of 19F MRI
in the clinic, although uncommon. Functional 1HMRI of the
lung is challenging and can be improved using hyperpolarised
gases. Alternatively, lung function can be assessed via the inhala-
tion of inert-fluorinated gases and 19F MRI, with the advantage
that it can be administered alongside O2 without a detrimental
effect to image quality and does not require a polariser.'®” In
humans, small feasibility studies of 19F MRI in the lung have
been performed at varying field strengths (0.5-3T).'**'%
Developments in guided reconstruction of undersampled 19F
MR images have been reported, reducing the imaging time.'*?
This improves clinical translatability as patients with lung
diseases such as chronic obstructive pulmonary disease experi-
ence discomfort and may not attain the length of a breathhold
required for image acquisition.

As the new generation of stimuli-responsive and targeted
probes are still being explored as proof-of-concepts, cell label-
ling in humans has only been carried out once using a PFPE
nanoemulsion. In 2014, a small clinical trial was performed to
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test DC tracking at 3T in stage IV colorectal cancer patients who
received an intradermal DC injection.'*? The PFPE-labelled DCs
were visualised at multiple time points post-injection using a
surface coil. This was successful at the injection site; however, cell
tracking was unattainable due to cell detection limits. Despite
this limitation, 19F cell labelling remains an attractive strategy to
visualise and track therapeutic cells, potentially in humans.*”**
As 7T MR scanners are being introduced into clinical practice
and more expertise is built in human high-field MR imaging, we
expect that 19F clinical implementation will be a topic that will
be revisited in the literature.

CONCLUSIONS

19F MRI is a promising modality for targeted/molecular
imaging. While the technique has existed for decades, advances
in (ultra-)high field magnetic resonance, contrast agent
synthesis, and pulse sequence development have allowed proof-
of-concept studies for various use cases. Its unique properties of

being non-radioactive, highly specific and sensitive to the local
environment make it a potentially valuable tool for gaining non-
invasive insight into the biology of multiple diseases. Moreover,
unlike existing PET-based techniques, 19F MRI allows for simul-
taneous imaging of multiple different fluorinated targets (e.g,
multispectral imaging). Challenges facing the modality include
reduced spatio-temporal resolution, lower sensitivity compared
to 1H MRI or PET, and the need for specialised equipment/
expertise. Nevertheless, as technology improves, this form of
molecular imaging will become indispensable in the precision
medicine toolkit.
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