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Propositions 

1. The use of single metrics will not progress our 
research on resilience. (this thesis) 

2. Scenarios for decision support should be based 
on plausibility, not probability. (this thesis) 

3. Discoveries should not be named after their 
discoverer(s). 

4. The most significant questions in artificial 
intelligence research can only be answered by 
philosophers. 

5. The widespread availability of Large Language 
Models such as ChatGPT will increase the rate 
of societal in-person interactions. 

6. Uncertainties and simplifications should be 
emphasized more when communicating 
scientific advances to the general public. 
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Summary

Human society is dependent on a wide variety of complex systems, such as drink-
ing water supply, communications infrastructure, and food logistics networks.
These systems have become increasingly interconnected and -dependent with
each other and society itself. Due to ongoing processes such as anthropogenic
climate change, land use change, and digitization, they also face unprecedented
levels of stress and disruption. Resilience - the ability of a system to withstand
or recover from a disturbance - has been proposed as a framework for prepar-
ing systems for future disturbances. However, it is unclear how resilience can be
quantified under conditions of so-called deep uncertainty - if the analyst does not
know, or the stakeholders cannot agree on, the appropriate metric(s) to use for
quantification. In this thesis, I examine how resilience can be quantified under
deep uncertainty along two lines of research.

The first line of research, covered in Chapters 2, 3, and 4, investigates how re-
silience could be quantified if the uncertainty is present because there are many
available metrics. In Chapter 2, we conduct a systematic scoping review of the
peer-reviewed academic literature on resilience metrics for socio-technical and
-ecological systems. We identify a number of resilience metrics, and classify
a subset of them into ten distinct categories based on their underlying concep-
tual approaches. We also document what types of disturbances were considered,
identifying four distinct types, including one not described in previously pub-
lished disturbance frameworks. Finally, we study whether socio-ecological sys-
tems were investigated using a so-called “ecological resilience” approach, and
socio-technical systems with a so-called “engineering resilience” approach, and
vice versa. We find that the engineering resilience approach, which is concep-
tually and technically simpler, was more commonly used than the ecological re-
silience approach, even when studying socio-ecological systems.

In Chapter 3, we apply a variety of different resilience metrics and distur-
bances to a set of stable patterns in the Game of Life, a simple cellular automa-
ton. We identify several predictive features of resilience, such as population size,
the number of connected components, and pattern density. However, we also ob-
serve that the different resilience metrics rarely agree with one another, and that
no pattern is highly resilient across multiple different disturbances.

In Chapter 4, we investigate whether using an ensemble of resilience metrics,
rather than just a single metric, can improve the ability of a complex system to
respond to disturbances. As in the previous chapter, we investigate this by apply-
ing a variety of metrics and disturbances to a nonlinear resource-consumer sys-
tem. We find that conceptually distinct metrics sometimes behave quite similarly
to one another, giving comparable resilience scores across different disturbances.
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However, it is not possible to identify these similarities ex ante. We also find that
it is not only possible to optimize a system to satisfy multiple resilience metrics
for a given disturbance simultaneously, but that a system optimized in such a
way is also more resilient to other disturbances, compared to a system optimized
with just a single resilience metric.

The second line of research, covered in Chapters 5 and 6, investigates how
resilience might be quantified if the uncertainty is present because there are no
resilience metrics available at all. In the absence of quantitative metrics, we fo-
cus on qualitative scenario-based methods for exploring a system’s behavior and
vulnerabilities, with the intent of using these scenarios to identify analyst and
stakeholder objectives, as well as decision-relevant dynamics and vulnerabilities,
which may inform the future selection of resilience metrics. In Chapter 5, we in-
troduce a novel method for identifying dynamic scenarios in a simulationmodel’s
time series outputs using time series clustering, and linking the identified clus-
ters to underlying drivers using multi-class scenario discovery.

In Chapter 6, we present a secondmethod for generating scenarios with a sim-
ulation model. Going beyond the mere analysis of outputs used in the previous
chapter, we explore the targeted search for scenario sets using many-objective op-
timization. We compare our developed method against three other approaches,
including conventional scenario axes techniques, and a static version of the clus-
tering approach from Chapter 5. We find that our targeted search approach per-
forms better than or equally to the other methods across three different criteria,
and performs best overall, producing scenario sets that are maximally diverse,
plausible, and comprehensive.

This thesis adds important knowledge in the fields of resilience and decision
making under deep uncertainty. Advances at the intersection of these fields may
result in more resilient socio-technical and -ecological systems, and ultimately a
planet better prepared for an uncertain and volatile future.
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Chapter 1

General Introduction

1.1 A Society of Systems

Modern society is dependent on a wide range of complex systems to ensure its
continued functioning. From sending a text message to charging a phone, from
commuting to grabbing a bottle of milk off a supermarket shelf - behind all these
moments of daily life sits an array of systems working hard to create and de-
liver what we often take for granted. Many of these systems are closely intercon-
nected, allowing them to be more efficient and effective. As the world population
and global living standards have increased, tighter interconnections between the
various social, technical, and ecological systems have become necessary to sup-
ply the resources for consumption, growth, and development (Helbing, 2013).
These systems are now often referred to as socio-technical and socio-ecological
systems, respectively, to highlight their integrated nature, and the fact that they
have co-evolved - as society has shaped the built and living environment, those
environments have shaped society. We are bound to these systems, as they are
bound to us, for continued existence.

However, many of our planet’s systems are experiencing unprecedented levels
of stress and disruption. Over the past decades, anthropogenic climate change
has increased the frequency and intensity of weather events such as droughts
and extreme precipitation (Intergovernmental Panel On Climate Change, 2023).
Global development and land use change have increased our exposure to non-
climate hazards such as earthquakes and tornadoes (Smith & Katz, 2013; Wein-
kle et al., 2018). The increasingly blurry boundary between physical and digital
worlds has introduced new modes of failure and disruption into our lives (Renn
et al., 2022). All these factors pose grave challenges to the systems keeping us
alive, fed, and happy.

Understanding how socio-technical and -ecological systems, from local water
supply networks to global financial schemes, respond to disturbances is therefore
a matter of paramount scientific and societal importance. How vulnerable are we
to floods, ransomware, or pandemics? How will we respond to a solar storm, riot,
or economic depression? What should we do to improve our capacity to handle
mass migration, hybrid warfare, or earthquakes? These are urgent questions of
local and global policy alike.
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1. General Introduction

1.2 Resilience and Uncertainty

Resilience has been proposed as a framework for preparing our socio-technical
and -ecological systems for current and future hazards. While the term has
evolved through multiple generations of conceptual interpretation (Folke, 2006;
Holling, 1973, 1996) across a variety of fields of science and practice, it is com-
monly understood to represent the ability of a system to withstand or recover
from a disturbance (Walker et al., 2004). Exact definitions of the term abound,
and it is questionable whether a single unifying definition could or even should
be identified, as the term is also often used as a bridging or boundary object to
facilitate understanding between different disciplines (Brand & Jax, 2007). Nev-
ertheless, there is broad agreement that resilience is at least a desirable, if not
necessary, component of global adaptation and development. Many international
organizations which concern themselves with policy and investment see increas-
ing resilience as a key feature of their approaches, including the World Bank, the
United Nations Development Programme, and the North Atlantic Treaty Organi-
zation.

Measurement is a key challenge in the application of resilience. To date, there
is no universally agreed-upon approach for translating the conceptual idea of
resilience, the ability of a system to recover from a disturbance, into some quan-
tifiable property of real-world systems. Dozens of metrics, indicators, and quan-
tifications of resilience have been proposed across many different fields of science
and practice (see e.g. Hosseini et al. (2016), Quinlan et al. (2016), and Sun et al.
(2020)). The plethora of available resilience metrics may be a direct result of the
multidisciplinary heritage and evolution of the term itself. However, this wealth
of metrics has not made quantifying resilience any easier, on the contrary, it has
introduced a significant uncertainty into the analytical process: which metric
should be chosen for a given analysis?

The uncertainty of metric choice stems from two distinct sources. Firstly, re-
silience is not an inherent property of natural or man-made systems, it is a label
we apply to a certain kind of macro-scale behavior of complex, multidimensional
systems (Park et al., 2013) which is beneficial or positive in some broader sense.
Thus, there is no single underlying attribute of those systems we can uniquely
identify as being “the resilience” thereof (Carpenter et al., 2001; Cutter, 2016;
Meerow & Newell, 2019), no matter how much research we do. Secondly, and
more importantly, many of the socio-technical and -ecological systems we rely on
are not controlled by a single actor, but exist in a web of shared and contested
governance between different stakeholders with various perspectives, goals, and
needs (Gotts et al., 2019). It is therefore likely that a single measurement ap-
proach will never have the required legitimacy among all stakeholders, or align
with their diverse objectives. In this sense, the measurement of resilience in
socio-technical and -ecological systems fulfills multiple criteria of being a wicked
problem (Rittel & Webber, 1973), primarily the lack of a definitive problem for-
mulation, the sensitivity to framing, and the necessity of correctness.
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1.3. Research Question and Approach

1.3 Research Question and Approach

In this thesis, I investigate approaches to dealing with the uncertainty surround-
ing the choice of metric when assessing the resilience of socio-technical and -
ecological systems. The following question has guided my research: How can we
quantify resilience if we are uncertain about which metric to use?

The conceptual framework underpinning my research is that of Decision
Making under Deep Uncertainty, or DMDU. Deep uncertainty exists “when ana-
lysts do not know, or the parties to a decision cannot agree on, (1) the appropriate
models to describe the interactions among a system’s variables, (2) the probabil-
ity distributions to represent uncertainty about key variables and parameters in
the models, and/or (3) how to value the desirability of alternative outcomes.”
(Lempert et al., 2003). These three elements are sometimes referred to as struc-
tural, parameter, and metric uncertainty, respectively. The existence of these
uncertainties is not necessarily novel, drawing upon literature at least as far back
as Knight’s (1921) work. However, the advent of high-performance computing,
and the increasing acceptance of computational methods in science (Winsberg,
2010), have opened the door to a new and improved treatment of these uncer-
tainties. Because uncertainty-based methods are especially suitable for dealing
with wicked, multi-stakeholder problems (Funtowicz & Ravetz, 1994), they are a
natural fit for quantifying resilience.

In conventional approaches to modelling complex systems, uncertainties are
often dealt with through simplification and aggregation. For example, when
modelling the spread of an infectious disease, a population-level contact rate
might be used to describe how often individuals meet each other, rather than
dealing with the uncertainty of how often every unique individual encounters
someone. In effect, this homogenizes all individuals into a single population.
But what if this aggregation is obscuring important behavior differences between
people of different age, or with different family structures? Establishing the rel-
evance of such questions, and the resulting trustworthiness of such aggregated
models for decision support, is difficult (Walker et al., 2003). The conceptual
keystone of Decision Making under Deep Uncertainty therefore is that analyti-
cal decisions such as simplification and aggregation should take place once the
model has been completed, and the implications of the interacting uncertain-
ties have been computationally evaluated, rather than during model creation. In
practice, this requires that ensembles of alternative hypotheses and structures
capturing the uncertainties are integrated into the model during construction.
While this does require a different approach to making such models, the bene-
fits, such as improved system understanding, more robust policy insights, and
more reproducible research, may be worth the effort (Auping, 2018). This com-
putational ensemble approach to uncertainties is commonly referred to as Ex-
ploratory Modelling & Analysis, or EMA (Bankes, 1993). In this thesis, I apply
exploratory modelling to a variety of complex system models and resilience met-
rics to understand how the models behave under a variety of conditions, how the
metrics interact with the models, and how different metrics compare.
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1. General Introduction

1.4 Thesis Outline

DMDU researchers and practitioners commonly distinguish different levels of
(un)certainty ranging from (near) certainty to total ignorance. Adapted from
Walker et al. (2013) and Marchau et al. (2019), the levels are described in Table
1.1 in a generic sense.

Level Name Description
1 Clarity The truth is known.
2 Probability Likely knowledge of the truth.
3 Ranking Multiple alternatives, some preferable, could be true.
4a Multiplicity Multiple, unrankable alternatives could be true.
4b Ignorance The truth is totally unknown.

Table 1.1: Levels of uncertainty

In this thesis, I focus exclusively on uncertainty levels 4a and 4b, which con-
stitute deep uncertainty (Walker et al., 2013). While the different levels can be
applied to a variety of system elements such as parameters, structure, outcomes,
or weights (Marchau et al., 2019), in this thesis, I apply them to resilience met-
rics. In this context, the levels may be interpreted as conditions of many plausible
metrics for quantifying a system’s resilience being available, and nometrics being
available, respectively. Accordingly, a two-pronged approach is necessary - one
line of research investigating how a multiplicity of resilience metrics may affect
decision making, and another line examining what to do if no resilience metrics
are known (or agreed upon) at all.

The first three content chapters of this thesis deal with level 4a uncertainty,
or a multiplicity of plausible resilience metrics. Chapter 2, Resilience Metrics
for Socio-Ecological and Socio-Technical Systems: A Scoping Review, is a systematic
scoping review of the peer-reviewed literature on quantifying the resilience of
socio-technical and -ecological systems. We use a reproducible methodology to
identify a wide range of resilience metrics, and attempt to classify them. We also
investigate what kinds of systems they were applied to, and which kinds of dis-
turbances these systems experienced. This chapter sets the foundation for the
following chapters, in which different resilience metrics are compared and eval-
uated. In Chapter 3, Resilient Life: An Exploration of Perturbed Autopoietic Patterns
in Conway’s Game of Life, we apply a variety of disturbances to a catalogue of cel-
lular automata, and quantify the responses using multiple metrics. This chapter
demonstrates that even for simple systems, quantifying resilience is sensitive to
the experienced disturbance and metric, although some general patterns can be
identified. In Chapter 4, Robust Resilience: Optimization with Ensembles of Met-
rics May Improve Resilience to Novel Shocks, we study the responses of a simple
resource-consumer model to a variety of disturbances, and show that using an
ensemble of resilience metrics in the optimization process may improve the sys-
tem’s resilience to disturbance it was never optimized for.

The second line of research, dealing with level 4b uncertainty, investigates
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1.4. Thesis Outline

what to do if there is no knowledge or agreement about applicable resilience
metrics. In the absence of any quantitative metrics, only qualitative methods for
exploring resilience remain. One such approach is using scenario-based meth-
ods to identify decision-relevant dynamics and vulnerabilities, which may in-
form the future selection of resilience metrics. In the fourth and fifth chapters, I
present two methods for generating sets of scenarios. Chapter 5, Behavior-based
Scenario Discovery Using Time Series Clustering, describes a novel method for ex-
ploring and summarizing the possible future behavior over time of a complex
system, using data from an integrated energy-security simulation model. This
chapter shows that, while a model’s dynamics may be highly diverse, regularities
can be identified and linked to underlying drivers and uncertainties. Chapter
6, Scenario Search: Finding Diverse, Plausible and Comprehensive Scenario Sets for
Complex Systems, presents a novel method for finding small scenario sets which
optimally describe a simulation model’s plausible behavior range, and compares
it against three previously described methods.

Finally, in the General Discussion, I tie together common themes from the five
content chapters, and discuss resulting insights. Based on these insights, I make
recommendations for practitioners, and highlight potential future research di-
rections for quantifying resilience under deep uncertainty.
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Chapter 2

Resilience Metrics for
Socio-Ecological and

Socio-Technical Systems: A
Scoping Review

Submitted as: Steinmann, P., Tobi, H., and van Voorn, G.A.K. Resilience Metrics
for Socio-Ecological and Socio-Technical Systems: A Scoping Review.
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2. Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A
Scoping Review

2.1 Abstract

An increased interest in the resilience of complex socio-ecological and -technical
systems has led to a variety of metrics, quantifications and indicators being pro-
posed. An overview of these metrics and their underlying concepts would sup-
port identifying useful metrics for applications in science and engineering. This
study undertakes a scoping review of resilience metrics for systems straddling
the societal, ecological, and technical domains to determine how resilience has
been measured, the conceptual differences between the proposed approaches,
and how they align with the domains of their case studies. We find that a
wide variety of resilience metrics has been proposed in the literature. Con-
ceptually, 10 different quantification approaches were identified. Four different
disturbance types were observed, including sudden, continuous, multiple, and
abruptly ending disturbances. Surprisingly, there is no strong pattern regarding
socio-ecological systems being studied using the “ecological resilience” concept,
and socio-technical systems being studied using the “engineering resilience” con-
cept. As a result, we recommend that researchers use multiple resilience metrics
in the same study, ideally following different conceptual approaches, and com-
pare the resulting insights. Furthermore, the used metrics should be mathemat-
ically defined, the included variables explained, and the chosen functional form
justified.
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2.2. Introduction

2.2 Introduction

2.2.1 Background

Humanity is dependent on a variety of socio-ecological and socio-technical sys-
tems (SES and STS, respectively) to supply critical resources. Examples include
agricultural food production systems, energy conversion and distribution infras-
tructure, and transportation networks. These systems are becoming more inter-
connected and -dependent (Helbing, 2013), rendering them more susceptible to
disruptions as failures in systems can affect nominally separate systems (Filatova
et al., 2016), or cascade across organizational levels to affect much smaller or
larger parts (Iwanaga et al., 2022).

To ensure the continued functioning of SES and STS in the face of distur-
bances such as droughts, pandemics, or climate change, resilience has been iden-
tified as a desirable property (Arrow et al., 1995; Folke et al., 2004; Rapport,
1989; Walker et al., 2004). While the term has been interpreted in a variety of
ways across time and disciplines (Brand & Jax, 2007; Nilsson & Grelsson, 1995),
the shared underlying concept is that a system, after experiencing a disturbance,
should be able to recover to some acceptable performance level or configuration
within a useful time frame. The recovery may be achieved through a variety of
mechanisms, including redundancy, buffers, evolution, or learning (Biggs et al.,
2012; Desjardins et al., 2015).

The nature of the system’s recovery is dependent on its specific dynamics.
Broadly speaking, there are two possible options: either the system reaches the
performance level it was functioning at prior to the disturbance, or it reaches
some other acceptable performance level. Mathematically, we can describe these
two options as the system having either a single or multiple basins of attrac-
tion. These basins may also be referred to as attractors or steady states. Holling
(1996) describes the two alternatives as “engineering resilience” and “ecological
resilience”, respectively, and these terms are widely used in the resilience litera-
ture to describe the two possible dynamics. Figure 2.1, originally by Liao (2012),
illustrates the engineering and ecological resilience concepts.

A key issue in the study of systems resilience is the translation of the concept
of resilience into a measurable system property (Egli et al., 2019). For example,
Holling (1996) proposed measuring return speed to equilibrium for “engineering
resilience”, and absorption capacity before shifting performance levels for “eco-
logical resilience”. A wide variety of other resilience metrics have been proposed
in the literature, such as flow magnitudes (Ulanowicz et al., 2009) or differences
between pre- and post-disturbance spatial patterns (Cika et al., 2020). The di-
versity of approaches has challenged our ability to effectively measure resilience
(Klein et al., 2003). For existing overviews of various resilience measurement and
assessment approaches, we refer to Quinlan et al. (2016), Hosseini et al. (2016)
and Sun et al. (2020).

However, there has been little work on classifying resilience metrics to
gain a more systematic understanding of different conceptual measurement ap-
proaches. Addressing this first knowledge gap would be useful for the gover-
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2. Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A
Scoping Review

Figure 2.1: Engineering and ecological resilience concepts illustrated as cup-and-ball systems. Orig-
inal figure by Liao (2012).

nance of modern SES and STS, as both scientists and policymakers are increas-
ingly recognizing that these systems serve a variety of parties with diverse and
potentially opposing needs (Gotts et al., 2019; Lempert et al., 2003). In such
situations, having a clear understanding of what different parties might see as
the “right” way to quantify their desired objective may facilitate successful gov-
ernance by revealing aligned and opposing perspectives, asymmetries, and com-
promise potential (Gold et al., 2019). One important aspect that parties may dis-
agree on is the need for resilience of the system towards different disturbances.
Disturbances may differ in origin, timing and frequency, length, and more. For
instance, Collins et al. (2011) summarize the possible disturbances into two cat-
egories: long-term sustained disturbances, and short-term pulse disturbances.
The resilience against these different disturbances need not be the same, as re-
silience mechanisms differ. Increasing resilience against flooding likely entails
building (higher) dikes, while this is not helpful against an increasing frequency
of droughts. Depending on the resilience objective, actors may have different
ideas about what to focus on, and hence what to measure.

A second gap in the literature is the correspondence between socio-ecological
systems and “ecological resilience”, and vice versa, socio-technical systems and
“engineering resilience”. As described earlier, the former are types of systems,
the latter behavior patterns of such systems. While a close correspondence is
suggested by their naming, it is unclear whether the pairings are observable in
the published literature – that is, whether the resilience of socio-ecological sys-
tems is studied in the “ecological” sense of multiple basins of attraction, and the
resilience of socio-technical systems in the “engineering” sense of a single basin
of attraction.

10



2.3. Methods

In this article, we conduct a systematic scoping review of resilience metrics
described in the peer-reviewed literature on socio-ecological and -technical sys-
tems, in order to address the two knowledge gaps identified above. In this first
section, we introduce the topic and rationale, and outline our goals. In the second
section, we protocol our search process, inclusion and exclusion criteria, data ex-
traction, and synthesis methods. In the third section, we describe and synthesize
our results. In the final section, we discuss our findings and their implications
for future practice and research.

2.2.2 Objectives

The presented research is a systematic scoping review aimed at answering the
following research questions:

1. Which metrics have been proposed to quantify the resilience of socio-
ecological and -technical systems?

2. How do these metrics differ conceptually?

3. What types of disturbances have been used to study the resilience of socio-
ecological and -technical systems?

4. How strictly are the concepts of engineering and ecological resilience ap-
plied to socio-ecological and socio-technical systems, respectively?

In answering the stated research questions, we make the following contribu-
tions to the methodological resilience literature:

• We conduct a systematic and reproducible scoping review of resilience met-
rics for socio-ecological and socio-technical systems.

• We summarize a number of conceptual approaches to quantifying re-
silience, and highlight which approaches were not represented, indicating
potential research gaps.

• We describe two classes of system disturbances that are documented in case
studies, but do not readily fit into known classifications of disturbances.

• We show how commonly socio-ecological systems are studied from an eco-
logical resilience perspective, and correspondingly, how commonly socio-
technical systems are studied from an engineering resilience perspective.

2.3 Methods

2.3.1 Protocol and Registration

The protocol for this scoping review follows the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR) scheme (Peters et al., 2020; Tricco et al., 2018), which is based on the
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2. Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A
Scoping Review

PRISMA scheme (Liberati et al., 2009) for systematic reviews. The protocol was
not registered. Details are available from the corresponding author.

2.3.2 Eligibility Criteria

To be included in the study, papers needed to study the resilience of a system
from the socio-ecological or -technical domains, and include some method for
quantifying this resilience. Papers were included if they were peer-reviewed,
published in English, and mentioned resilience and either socio-ecological or
socio-technical systems in their title, abstract, or keywords. Papers were ex-
cluded if they discussed individual-level resilience in a psychological, clinical,
or psychiatric context, or if they related to physical resilience in materials sci-
ence, electrical engineering, or computer science. We also excluded non-primary
sources such as reviews.

2.3.3 Information Sources

We identified potentially relevant sources through a search on Web of Science,
performed on 2020-07-21, across four major databases (Science Citation Index,
Social Science Citation Index, Arts & Humanities Citation Index, and Emerging
Sources Citation Index).

2.3.4 Search

The final search query for Web of Science is presented in Table 2.1 as correspond-
ing elements of the primary research question and query.

2.3.5 Selection of Sources of Evidence

To develop and refine the inclusion and exclusion criteria in the screening phase,
random subsets (first round: N=15, second round: N=15, third round: N=30)
from the cleaned query results were independently screened by all three au-
thors. We discussed disagreements on selection and exclusion, and iteratively
revised and clarified the criteria where necessary. For the third and final round,
we reached consensus on 28 out of 30 (93%) abstracts regarding in-/exclusion.

2.3.6 Data Extraction

We jointly developed a data extraction form, iteratively refining it by indepen-
dently applying it to selected articles and comparing the results. The final data
extraction was performed by the lead author. Where data items were unclear,
conclusions were drawn based on the metric used, as we considered this the focal
point of our review.

12



2.3. Methods

Table 2.1: Web of Science search query elements.

Element of research
question

Element of query

resilience TS=(resilien*)
metric AND TS=(metric* OR quantif* OR indicator* OR

measure*)
socio-ecological or
socio-technical

AND WC=(Agricultural Economics & Policy OR
Agricultural Engineering OR Agriculture, Mul-
tidisciplinary OR Agronomy OR Engineering,
Civil OR Management OR Engineering, Envi-
ronmental OR Engineering, Industrial OR Area
Studies OR Engineering, Multidisciplinary OR
Materials Science, Textiles OR Mathematical &
Computational Biology OR Environmental Sci-
ences OR Environmental Studies OR Mathemat-
ics, Applied OR Mathematics, Interdisciplinary
Applications OR Biodiversity Conservation OR
Public Administration OR Public, Environmental
& Occupational Health OR Fisheries OR Regional
& Urban Planning OR Forestry OR Multidis-
ciplinary Sciences OR Geosciences, Multidisci-
plinary OR Social Sciences, Mathematical Meth-
ods OR Green & Sustainable Science & Technol-
ogy OR Health Policy & Services OR Statistics
& Probability OR Computer Science, Interdisci-
plinary Applications OR History & Philosophy
of Science OR Computer Science, Software Engi-
neering OR Computer Science, Theory & Meth-
ods OR Operations Research & Management Sci-
ence OR Transportation OR Transportation Sci-
ence & Technology OR Demography OR Urban
Studies OR Development Studies OR Ecology OR
Water Resources OR Economics OR Limnology

system AND TS=(“system” OR ecosystem OR systems)

13



2. Resilience Metrics for Socio-Ecological and Socio-Technical Systems: A
Scoping Review

2.3.7 Data Items

For each article in our review, we extracted the following data items:

• System type: is the system socio-ecological or socio-technical?

• Disturbance: what disturbance does the system experience?

• Basins of attraction: does the system have one or multiple basins of attrac-
tion?

• Resilience metric: what metric for resilience is used?

2.3.8 Synthesis of Results

For our first and second research questions, we identified the underlying concep-
tual system properties the different metrics considered, and used these to clas-
sify the metrics. For our third research question, we identified and classified the
disturbance(s) considered in each paper. For our fourth research question, we
established for each paper whether it was more ecologically or technically in-
clined, and compared this with the number of basins of attraction the studied
system could reach. The last two questions required some interpretation of both
the metric and case study. Where necessary, this interpretation was discussed
and agreed upon by all authors.

2.4 Results

2.4.1 Sources of Evidence

In total, 6743 abstracts were retrieved from Web of Science. Of these, 88 were
excluded for missing metadata. From the remaining 6385 articles, a subset of
551 was selected for abstract-based screening. We generated this subset by first
stratifying the query results in 5-year intervals, and then selecting 107 random
papers from each stratum. For strata with less than 107 papers total (1990-1994,
1995-1999), we included all papers. For the 2020-2024 stratum, we selected 21
papers (20% of 107) to account for the one year of the stratumwhich was ongoing
at the time the final search was performed.

Of the screened abstracts, 471 were excluded for either being about resilience
in a different context (healthcare, materials science, or electrical engineering),
due to being a non-primary source (e.g. a review), for not being about some
form of socio-ecological or -technical system (e.g. a purely ecological study of
fish populations in alpine lakes), or for not focusing on resilience (e.g. a paper
motivating why persistence is distinct from resilience).

Of the remaining 80 articles, one was not accessible to the authors. The re-
maining 79 were read in full. Of those, 32 were excluded for not explicitly stating
a resilience metric, and 6 were excluded for not focusing on resilience. The re-
maining 41 articles were included in the presented analysis. This entire workflow
is visualized in Figure 2.2.
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Figure 2.2: PRISMA-ScR workflow.
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2.4.2 Characteristics of Sources of Evidence

In Table 2.2, we give a demographic overview of the sources considered in our
scoping review. Please note that many papers are interdisciplinary and therefore
fit multiple research areas (based on Web of Science’s categorization).

Table 2.2: Demographics of screened, read, and included papers.

Screened
(N=551)

Read
(N=80)

In synthesis
(N=41)

Publication year 1990-1994 31 5 3
1995-1999 71 15 7
2000-2004 107 19 11
2005-2009 107 13 7
2010-2014 107 13 4
2015-2019 107 9 4
Jan 2020-July 2020 21 6 5

Research area Arts & Humanities 0 0 0
Life Sci & Biomed 593 67 22
Physical Sciences 154 34 19
Social Sciences 95 13 4
Technology 242 43 31

2.4.3 Results of Individual Sources of Evidence

A list of the included individual sources of evidence may be found in Appendix
A, and the results of the data extraction in Appendix B.

2.4.4 Synthesis of Results

Resilience Metrics

We identified 46 resilience metrics in the 41 reviewed papers. Of these, 34 were
defined as mathematical functions, and 12 described verbally. Among the math-
ematically defined metrics, we observed a number of functional forms, including
fractions, limits, sums, piecewise definitions, and probabilities. Additionally, in
one verbally described metric, a trigonometric function is mentioned. Various
degrees of mathematical complexity are apparent, from fractions with two vari-
ables to piecewise definitions with a dozen variables. A variety of “corrective”
elements, used to coerce the output of a function to some desired range or direc-
tion, can be observed. Examples include subtraction (e.g. metric #20A), inver-
sion (e.g. metric #4), and piecewise definition (e.g. metric #16). Despite these
coercions, we observe both minimization and maximization criteria among the
metrics, i.e. some metrics represent “higher resilience” as values closer to 0 (e.g.
metric #17), and some as values as large as possible, potentially with an upper
bound (e.g. metric #6). The reasoning behind the specific functional forms is
rarely explained.
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A number of letters and symbols, such as R, P, and γ, appear in multiple met-
rics, but with different meanings. For example, the letter R is used, in upper-
or lowercase, to describe the time elapsed from the beginning to the end of a
disturbance (metric #9), the incurred loss of performance (metric #18), a per-
formance standard (ibid), the time index during a simulation run (metric #22),
the resilience of an entire system (e.g. metric #25), the resilience of an individ-
ual node in a system (metric #26B), and as a coefficient of determination (metric
#31A). There is no commonality in the notation. In other words, for every met-
ric, care must be taken to identify every variable’s exact meaning in the context
of that given paper.

Conceptual Approaches to Quantifying Resilience

When moving beyond the mathematical implementations towards the concep-
tual approaches used to capture the system’s resilience, we observe that some
concepts appear in multiple metrics. Examples include the return time of the
system to a previous performance level after a disturbance (e.g. metrics #2, #3,
and #5), the total performance loss incurred due to the disturbance(s) over time
(e.g. metrics #13, #25, and #29), and the largest momentary performance loss
due to the disturbance(s) (e.g. metrics #9, #18, and #15). This implies that there
are some common ideas about which attributes of a system and its behavior de-
scribe its resilience. In this section, we attempt to summarize these conceptual
approaches.

Out of a total of 46 metrics, we identified 37 metrics with a single basin of
attraction, and 9 metrics which considered multiple basins of attraction. Fur-
thermore, we identified 27 metrics which we consider generic in that they could
easily be applied to other systems and disturbances (much like Holling’s return
speed and absorption capacity described earlier). As a counter-example, con-
sider metric #10, which uses the fecundity and mortality probabilities of differ-
ent species in a trophic network to quantify the long-run resilience of the entire
network - applying such a metric to an urban water supply network would be dif-
ficult to justify. Generic metrics are especially interesting because they facilitate
cross-comparison, making resilience analyses more informative (Quinlan et al.,
2016). We therefore limit the following analysis to generally applicable metrics
for systems with a single basin of attraction, although we do distinguish between
single- and multi-disturbance metrics, as we feel they represent distinct schools
of thought on quantifying resilience.

Among the generic single-disturbance single-basin metrics, we identified six
conceptual approaches that could easily be generalized, visualized in Figure 2.3.
These are:

1. Return time to previous performance level (three metrics: #2, #3, #30A)

2. Total performance loss (six metrics: #13, #25, #29, #36, #38, #39)

3. Combination of maximum performance loss and recovery time (two met-
rics: #18, #30B)
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4. Combination of relative performance loss and return time (one metric: #9)

5. Combination of return time to previous performance level with oscillations,
and amplitude of performance (one metric: #15)

6. Return time to previous performance level with oscillations (one metric:
#17)

Figure 2.3: Conceptual approaches to quantifying resilience for single basin of attraction, single
disturbance systems.

Among the multi-disturbance single-basin metrics, we identified four con-
ceptual approaches, visualized in Figure 2.4. These are:

7. Total time of insufficient performance (8 metrics: #5, #7, #11, #16, #22,
#23A, #28, #35)

8. Total performance loss (one metric: #34)

9. Longest period of insufficient performance (three metrics: #1, #19, #23B)
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10. Total time spent outside performance range (one metric: #6)

Figure 2.4: Conceptual approaches to quantifying resilience for single basin of attraction, multiple
disturbance systems.
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System Disturbances

In the 41 papers, we identified four distinct types of disturbances. These in-
clude 15 cases (17 metrics) of a sudden disturbance, such as an earthquake, 7
cases (8 metrics) of a continuous disturbance, such as drought, 15 cases (17 met-
rics) where multiple disturbances were observed, such as a multi-year period
of repeated flooding, two cases (two metrics) where a continuous disturbance
abruptly ends, such as a ban on fishing after a period of intense fishery activity,
and two cases (two metrics) where the disturbance was not specified. Please note
that in all papers that included multiple metrics, both metrics were applied to
the same case study and disturbance.

Alignment between SES and Ecological Resilience, and STS and Engineering
Resilience

Among the 46 metrics included in this review, we identified 37 as having a sin-
gle basin of attraction, thus subscribing to the “engineering resilience” concept
described by Holling (1996). A further eight metrics accommodated multiple
basins of attraction, in line with what Holling called “ecological resilience”. The
case studies these metrics belonged to comprised 15 studies of socio-ecological
systems, such as fisheries or managed forests, and 31 studies of socio-technical
systems, such as water reservoirs or logistics networks.

When cross-tabulating the number of basins of attraction of each metric with
the nature of the case study the metric was applied to (see Table 2.3), we note
that there is no obvious pairing of socio-ecological systems with “ecological re-
silience”, and socio-technical systems with “engineering resilience”. In fact, both
socio-ecological and -technical systems are studied using single and multiple
basins of attraction. Socio-ecological systems do have a higher likelihood of being
modelled with multiple basins of attraction (5/15 (33%) vs. 4/31 (13%)). Con-
sidering that there are many more socio-technical case studies, the metrics with
multiple basins of attraction are quite evenly split between socio-ecological and
-technical systems (5/9 (55%) vs 4/9 (45%)).

Table 2.3: Comparison of case study and metric types.

Single basins
of attraction

Multiple basins
of attraction Total

Socio-technical case study 27 4 31
Socio-ecological case study 10 5 15
Total 37 9 46
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2.5 Discussion

2.5.1 Summary of Evidence

Through this scoping review, we found 41 articles containing 46 resilience met-
rics for socio-ecological or -technical systems. These sources, identified through
an iteratively refined and rigorous search process, span three decades of research,
and a wide variety of research areas.

While all metrics purport to quantify the same conceptual idea – the response
of a system to disturbance – they do this in a variety of ways. While most papers
include a mathematical definition of the employed metric(s), some papers rely
exclusively on a verbal definition. Among the mathematically defined metrics, a
diverse range of elements, including piecewise definitions, trigonometry, inver-
sions, and limits can be observed. Some of these are used to coerce the metric
to a particular numerical range or direction. However, these coercions are often
nonlinear, potentially biasing the resulting analysis without stakeholders real-
izing it (Jain, 2009). Furthermore, we notice that the metrics are used as both
maximization and minimization criteria. Authors rarely discuss why a particular
functional form was chosen, and whether alternatives were explored, although
a small number of papers do include multiple resilience metrics applied to the
same case study. Finally, notation is inconsistent, with common letters such as P
or R being used to represent a variety of different elements.

When looking past the mathematical implementation at the underlying con-
ceptual ideas, we observe 10 distinct concepts, including six concepts for systems
with a single basin of attraction experiencing a single disturbance, and four con-
cepts for systems with a single basin of attraction experiencing multiple distur-
bances. We did not study the underlying concepts behind metrics for systems
with multiple basins of attraction, as the metrics were too few, and too diverse,
to categorize. This is surprising because the existence of multiple basins of at-
traction is a well-known and typical characteristic of socio-ecological systems
(Gunderson, 2010; Ludwig et al., 1978).

The 41 papers included in this review use four distinct types of disturbances
in their case studies. These include sudden disturbances, continuous distur-
bances, repeated or multiple disturbances, and suddenly ending disturbances.
For two papers, the disturbance type could not be identified. We observe that
two of these types, the repeated/multiple disturbances and the suddenly end-
ing disturbances, do not fit into the categorizations published by Lake (2000),
who distinguishes short-term pulses, long-term constant presses, and long-term
increasing ramps, or Collins et al. (2011), who distinguish sustained press and
short-term pulse disturbances.

2.5.2 Limitations

There is a tremendous body of literature on resilience. It is therefore almost cer-
tain that we have missed some approaches to quantifying resilience. We limited
ourselves to peer-reviewed literature, excluding a wide array of grey literature.
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While this increases the credibility of our source material, it also increases the
likelihood that we missed some unique approach to quantifying resilience. We
also only included literature that explicitly uses the word “resilience”, although
Grimm and Wissel (1997) highlight that a diverse range of terminology is used
in studies of ecological stability. Furthermore, we conducted our search using a
single scientific database, which is, like every other database, known to be in-
complete.

Finally, this scoping review was an enormous undertaking, and our results
are thus only up to date as of July 2020. We nevertheless believe our results are
informative.

2.5.3 Recommendations

Based on the analysis and discussion presented above, we make the following
two recommendations for researchers working with resilience metrics.

Firstly, as there is such a conceptual and mathematical diversity of methods
for quantifying resilience, we recommend that researchers use multiple concep-
tually distinct metrics to quantify resilience, and compare the resulting insights.
This will improve the robustness of the analysis by reducing the risk of blind
spots introduced by a metric with a narrow focus. For example, a metric us-
ing only the return time to a previous performance standard will be oblivious to
how the system recovers its performance, while a metric measuring just the total
performance loss will not capture how long it took to regain the original perfor-
mance level. Using these metrics in concert could thus lead to a more holistic
understanding of the system’s resilience. Additionally, using multiple metrics in
an analysis also offers an exciting opportunity to engage with stakeholders about
their perception(s) of resilience, and which metric(s) are best able to capture their
desired outcomes. This transparency will help move resilience assessments away
from using metrics that are available/known, and towards metrics that are useful
and fit for purpose (Ivory & Stevenson, 2019).

Secondly, we recommend that researchers be explicit about which resilience
metric(s) they use, both conceptually andmathematically. The mathematical def-
inition of the metric should be given as a formula, the composition of which
should be justified. In addition, the variables should be explained, including
units, and ranges should be given. This will greatly increase the reproducibility
and reusability of the conducted research, both being serious concerns in modern
scientific research (Baker, 2016).

2.5.4 Future Research

Based on our scoping review, we identify three promising directions of future re-
search. Firstly, it may be useful to expand the search query, taking into account
the most recent published literature, and potential (near) synonyms of resilience
such as fragility (Nilsson & Grelsson, 1995) or danger (Bergström et al., 2015).
This may identify further conceptual approaches to quantifying resilience be-
yond what we have presented here. A substantial gap in this regard is the lack of
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resilience metrics for systems with multiple basins of attraction.
Alternatively, it may be worthwhile to directly create resilience metrics filling

in the gaps between the concepts identified here. For example, for systems with a
single basin of attraction and multiple disturbances, we observed metrics which
measured the total time at an insufficient performance level (concept #7), the
longest time at an insufficient performance level (concept #9), and the total loss
of performance (concept #8). It stands to reason that the largest single loss of per-
formance could therefore also be a potentially insightful approach to quantifying
resilience. In this vein, novel resilience metrics could be created and evaluated
against existing ones. Over time, this might lead to a compositional taxonomy
of resilience metrics, comparable to work done for robustness metrics (McPhail
et al., 2018).

Finally, the differences between alternative metrics could be studied by ap-
plying multiple metrics to a single case study, as was already done in a small
number of papers included in this review. By testing conceptually different met-
rics on one system, we might be able to identify under which conditions certain
metrics are preferable, or at least more conservative/optimistic. Furthermore,
an exploratory approach to quantifying resilience – applying many metrics and
making a holistic assessment across all the resulting data – could be a useful
approach for overcoming the challenge of selecting a single metric for complex
concepts such as resilience.

2.6 Conclusion

We conducted a systematic scoping review on how the resilience of socio-
ecological and socio-technical systems is quantified in the relevant literature. We
identify four main conclusions from this work. Firstly, a variety of resilience
metrics is used. These metrics often draw on similar system properties, such as
return time to equilibrium or magnitude of disturbance, but weigh these proper-
ties against each other using different functional forms, which are rarely justified.
Secondly, there are some common conceptual ideas behind the different metrics,
especially for systems with a single basin of attraction. Thirdly, a small number
of different types of disturbances can be identified across the various case studies.
However, two of these types do not fit into previously published categorizations
of disturbances. Finally, we observed that the concepts of “ecological resilience”
(multiple basins of attraction) and “engineering resilience” (single basin of at-
traction) do not seem to affect how resilience metrics are chosen for specific case
studies, despite being deeply entrenched in the resilience literature. Many re-
silience studies of socio-ecological systems use single basin of attraction metrics,
while some socio-technical systems were assessed using multiple basin of attrac-
tion metrics.

Our conclusions suggest the following two main consequences. Firstly,
we recommend that researchers studying the resilience of socio-technical or -
ecological systems use multiple resilience metrics, and compare the resulting in-
sights. The different conceptual categories presented in our work provides an
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starting point for choosing these metrics. While this may seem to create addi-
tional work for researchers, it will also make the results more analytically ro-
bust, and provides an opportunity to engage in a dialogue with problem owners
about their perception(s) of resilience. Secondly, we recommend that researchers,
having compared multiple resilience metrics, explicitly justify why they chose a
specific (type of) metric, and what the consequences of this choice are. By docu-
menting this choice and the details of the used metric, both the reproducibility
and reusability of the research may be improved.
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Chapter 3

Resilient Life: An
Exploration of Perturbed
Autopoietic Patterns in
Conway’s Game of Life

Published as: Cika, A., Cohen, E., Kruszewski, G., Seet, L., Steinmann, P., and
Yin, W. (2020). Resilient Life: An Exploration of Perturbed Autopoietic Patterns
in Conway’s Game of Life. Artificial Life Conference Proceedings 32, 656-664.
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3.1 Abstract

Complex systems can exhibit autopoiesis–a remarkable capability to reproduce
or restore themselves to maintain existence and functionality. We explore
the resilience of autopoietic patterns–their ability to recover from shocks or
perturbations–in a simplified form in Conway’s Game of Life. We subject a large
number of autopoietic patterns in the Game of Life to various perturbations, and
record their responses using multiple resilience metrics. Our results show that
while resilience is rare, we are able to identify structural features improving pat-
terns’ resilience. We also draw several parallels between the resilience of patterns
in the Game of Life to real-world complex systems. Our work may be useful both
for improved searching for resilient patterns in the Game of Life, and for explor-
ing resilience in complex systems.
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Figure 3.1: Effect of additive perturbations to still life Inflected Clips (apgcode
xs32 4a9b8b96z259d1d96), live cells in black. Adding a live cell at green locations yields the
original pattern, making the still life resilient to these perturbations. It is not resilient to perturba-
tions at the yellow locations, where adding a live cell does not yield the original pattern.

3.2 Introduction

Living systems have been characterized as self-constructing networks of pro-
cesses that maintain their own boundaries, a concept known as autopoiesis (Mat-
urana & Varela, 1980; Varela et al., 1974). This capacity allows a system, such as
the living cell, to persist throughout time, even if all of its individual components
have been replaced. Nonetheless, an autopoietic system exposed to external per-
turbations would not survive for long without resilience, the ability to recover
from or adapt to shocks or disruptions (Folke et al., 2004).

Here, following the characterization by Beer (2015) of emergent entities in
Conway’s Game of Life (Gardner, 1970) as autopoietic systems, we present an
exploration of their resilience to perturbations. Conway’s Game of Life (GoL) is
a cellular automaton which exhibits complex emergent structures, serving as a
computational environment to study the behaviour of simple systems when sub-
jected to shocks. In particular, we focus on still lifes, which Beer (2015) identifies
as autopoietic structures, together with oscillators and gliders. To study their re-
silience, we propose a variety of metrics and perturbations to assess whether they
are able to maintain their form in response to the shocks, and identify underlying
trends in their resilience.

Conway’s Game of Life is, in appearance, quite brittle. Minor perturbations
can cause huge collapses. Understanding whether resilience to specific types of
perturbations can emerge even in these difficult conditions could shed light on
whether resilience is a universal property of computational systems.
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3.3 Literature Review

3.3.1 Conway’s Game of Life

Conway’s Game of Life (Gardner, 1970) is an example of a cellular automaton.
These are computational models composed of a grid of cells that can each occupy
a finite or infinite number of states. In each generation, cells change or maintain
their states depending upon (i) the states of their neighbors and (ii) a set of rules.
Among cellular automata, Conway’s Game of Life has attracted special attention
for various reasons. First, despite being based on a mere handful of states and
rules, intricate structures and behaviors emerge. These structures appear capable
of endless variation and evolution. In this regard, the simulation is remarkably
lifelike, and has attracted substantial attention from those working at the inter-
section of theoretical computer science and complex systems (Adamatzky, 1998;
Gotts, 2003; Lindgren & Nordahl, 1990; Margolus, 1984; Morita et al., 2002).

Conway’s Game of Life is Turing-complete, meaning that it can be used to per-
form any computation - another possible hallmark of life (Cook, 2004; Mitchell,
2005; Wolfram, 2002). This may explain why it exhibits a wide range of interest-
ing patterns, potentially including some that “detect” external perturbations and
“repair” themselves (Goucher, 2015).

3.3.1.1 Rules of the Game of Life

Cellular automata are defined by the sets of possible states for cells to occupy, the
rules which govern evolution of cell states, and the cells’ initial states. The Game
of Life has a two-dimensional cell arrangement, with only two cell states–“dead”
and “alive”–and four rules:

1. If a dead cell has three live neighbors, then it switches states from dead to
live.

2. If a live cell has fewer than two neighbors, then it switches states from live
to dead.

3. If a live cell has more than three live neighbors, then it switches states from
live to dead.

4. If a live cell has two or three live neighbors, then it remains alive.

The GoL uses the Moore cell neighborhood definition (Packard & Wolfram,
1985), in which each cell has eight neighbors. Surprisingly, the four simple rules
described above enable Conway’s GoL to compute any computable function, as
shown by Conway, Berlekamp, and Guy (Austin et al., 1982). An alternative two-
rule set also fully defines the GoL (Gotts, 2003), but is not commonly used.

3.3.1.2 Still Lifes

Within Conway’s GoL, patterns with an evolutionary cycle of period one are
called still lifes. These patterns’ state configurations remain constant across time
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periods when left on their own, such that all dead cells remain dead, and all liv-
ing cells remain alive. For example, the “block” pattern is a still life composed of
4 living cells disposed in a square arrangement. Applying GoL rules to compute
the next generation yields the exact same pattern because all cells have exactly
three neighbours, and thus they remain alive on the next generation, while no
dead cell in its boundaries becomes alive because they all have no more than two
living neighbours. Still lifes can be considered the residual of an experiment.

3.3.2 Autopoiesis

A system’s viability is contingent upon exhibiting autopoietic behavior (Beer,
2015; Maturana & Varela, 1980). First introduced by Chilean biologists Matu-
rana and Varela (1980) to distinguish living from non-living systems, the term
autopoeisis is derived from the Greek words for self (αὐτο- (auto-)) and produc-
tion (ποίησις (poiesis)) (Mingers, 1991). Such autopoietic systems are comprised
of collections of productive units which:

“(i) continuously regenerate and realize the network that produces
them, and (ii) constitute the system as a distinguishable unity in the
domain in which they exist” (Varela (1997, p. 75), as cited in Beer
(2019)).

Previous work on autopoeisis in Conway’s GoL has characterized the set of
processes that regenerate specific still lifes, oscillators, and gliders, in the absence
of perturbations (Beer, 2015). As shown, such systems “realize” their structure
in perpetuity when left autonomous and in isolation. Recently, Beer (2019) ex-
amined the responses of glider patterns to environmental perturbations. Our
analysis, instead, focuses on a large class of patterns, namely, still lifes, charac-
terizing the resilience of each pattern in this class with respect to specific sets of
perturbations.

3.3.3 Resilience

Real-world systems constantly experience shocks, perturbations and disruptions.
The ability of a system to endure such shocks, while maintaining its form and
function, is called resilience (Folke et al., 2004):

Resilience is the capacity of a system to absorb disturbance and reorganize
while undergoing change so as to still retain essentially the same function,
structure, identity, and feedbacks.

One can view resilience as the natural behavior of a system operating in a
state space with attractors (Holling, 1996). The system is initialized somewhere
in the state space, and naturally gravitates towards an attractor, such as a fixed
point or limit cycle (Strogatz et al., 1994). Natural shocks and perturbations
push the system away from the attractor. If the system remains in the original
attractor’s basin of attraction, the system will return there–otherwise it will find
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a new attractor. These two responses are commonly referred to as engineering
and ecological resilience (Holling, 1996).

The resilience of systems is generally understood in relation to specific sys-
tem functions (Albert et al., 2000; Holling, 1973). As such, any definition of
resilience or robustness must specify both the relevant perturbation and the fea-
ture that may persist despite said perturbation (Jen, 2003). Thus, systems do not
necessarily possess a general resilience, but instead may possess many specific
resiliences to different shocks, disruptions, or other perturbations.

3.4 Method

To measure resilience in Conway’s GoL, we focused on a specific class of autopoi-
etic patterns. In particular, we restricted our exploration to still lifes. In the
absence of perturbations, these patterns are structurally invariant across time,
making them the simplest class of such autopoietic patterns. While still lifes
can be construed as fixed points in the dynamics of Conway’s GoL, it is unclear
whether they are stable or unstable. We apply resilience theory on single and
multiple basins of attraction (Holling, 1973) as an analogy to explore the behav-
ior of these still lifes when exposed to perturbations.

3.4.1 Quantifying resilience

Studying the resilience of still lifes required us to make two methodological de-
cisions, as follows.

Perturbations For our study, we first identified two distinct types of perturba-
tions to test. The first perturbation adds at least one “live” cell at a position in
the Moore neighbourhood of the pattern under examination, while the second
perturbation removes (subtracts) at least one “live” cell from the interior of the
pattern. As such, we say a structural pattern exhibits additive resiliencewhen it re-
turns to the previous life pattern after experiencing the first type of perturbation.
If a pattern returns to its previous form after experiencing the second perturba-
tion type, we say it exhibits subtractive resilience. We tested the addition of either
one (add one) or two (add two) consecutive living cells to the pattern perimeter,
and the subtraction of one (sub one) or two (sub two) consecutive living cells
from within the pattern.

Similarity metrics We next outlined how to measure recovery. While ideally a
pattern will always recover its exact original structure after experiencing a shock,
it may also need to adapt its structure to return to a stable state. Thus, rather than
only considering exact equality to measure resilience, we chose to use multiple
similarity measures in order to assess the extent to which the original structure
recovered its form. Furthermore, it can take multiple steps before a pattern con-
verges back to a new form, if ever. However, we empirically found that the num-
ber of steps required for our metrics to converge would always be well below 100
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iterations (more details in the Results Section). Thus, we quantify resilience ρ as
the average of the similarities between the shapes resulting from simulating GoL
for 100 iterations on each perturbed shape and the original one. More formally,
for a given still life s, let P (s) be the set of all shapes resulting from applying a
given type of perturbation P (for example, P = add one), σ be a similarity metric,
and Ek be the result of applying Conway’s GoL rules for k = 100 iterations, then
resilience is quantified as:

ρ =
1
|P (s)|

∑
s′∈P (s)

σ(s,E100(s′))

We further identified three variants of similarity to consider over binary vec-
tors s1 and s2 representing the original and resulting patterns. Pairs of shapes
were converted into same-dimensional binary vectors by taking the bounding
box of the largest shape and interpreting living and dead cells as either 1 or 0,
respectively.

Equality

σ(s1, s2) =

1 if s1 = s2
0 otherwise

Inclusion

σ(s1, s2) =

1 if s1j ≤ s2j∀j
0 otherwise

Cosine
σ(s1, s2) =

s1 · s2
∥s1∥∥s2∥

The equality metric indicates whether the still life pattern remains identical
in structure post-perturbation. The inclusion metric indicates whether the pat-
tern absorbs, or rather includes, the perturbation into the resulting stable pattern.
Lastly, our cosine metric allows us to measure the amount of overlap between the
initial static pattern pre-perturbation and the ensuing pattern post-perturbation.
Note that because all similarity metrics are bounded between 0 and 1, our re-
silience measure also lies within the same bounds.

Technical implementation Still life patterns used for our experiments came
from the publicly available Catagolue census (Goucher, 2015) having population
size between 4 and 42 living cells (for a total of 159 100 patterns). We also used
the lifelib library (Goucher, 2017) to simulate Conway’s GoL. The full set of ex-
periments took about a day on a single-threaded Python implementation1.

1We make the code available at https://gitlab.com/germank/resilient-life
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3.4.2 Structural properties

We also sought to understand what structural characteristics augment a pattern’s
resilience to the different perturbation types. Do some structural features help
protect against one type of perturbation, but not another? To answer these ques-
tions we measured five traits for each pattern: density, population size, size of
the perimeter, symmetry and number of connected components.

Density The fraction of living cells within the bounding box of the pattern.

Population Size The number of living cells in the pattern.

Size of Perimeter The number of non-living cells that are at distance 1 (also in
the diagonal direction) from a living cell of the pattern.

Symmetry The similarity (as given by any of the measures above) between the
pattern and its rotation or reflection. Here, we also applied the same three
measures of similarity defined above. For instance, whether a shape is sym-
metric with respect to its x-axis is computed can be measured by whether
the shape and its mirror image are exactly equivalent (by applying equal-
ity), or whether they are just similar (by applying the cosine measure).

Number of connected components: The number of contiguous regions of living
cells. Note that every component must be not farther than one single cell
apart from another for them to be considered part of the same pattern.

3.5 Results
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Figure 3.2: Distribution of resilience results after adding a single cell to the pattern perimeter (add
one) under the three considered similarity measures.

After running our experiments, we ranked each still life by the three self-
similarity resilience metrics. We observed the distribution of these three metrics
for single-cell perturbations (Figures 3.2 and 3.3), and found an exponential de-
cline of resilience at a given rank, suggesting a tendency of the system towards
brittleness. The results from the two-cell perturbations (not shown) confirmed
this tendency. We found particularly interesting that resilience tended towards a
smooth distribution for all resilience metrics, even the equality measure, which
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Figure 3.3: Distribution of resilience results after subtracting a cell from the pattern (sub one) under
the three considered similarity measures.

had the most stringent criterion. This suggests resilience, as we’ve defined it, is
not binary, but rather a graded trait for still lifes in the GoL.

We next examined the highest ranked individual patterns for the different
resilience measures within each perturbation type (Table 3.1). For ease of pre-
sentation, resilience values (on a scale of 0 to 1) are presented as percentages (on
a scale of 0 to 100). Patterns that ranked highest on one resilience metric within
a perturbation category, rarely ranked highest on the other metrics. For exam-
ple, we found the “inflected clips” pattern (the first pattern depicted in Table
3.1) ranked first for the add one perturbation under the equality measure with
an average resilience of 21 percent but ranked 262nd under the inclusion mea-
sure and 2027th under the cosine measure. Figure 3.1 highlights how perturbing
cells nearest to the “inflected clips” core allowed the pattern to recover a sta-
ble structure, whereas perturbing cells at its periphery induced the pattern to
collapse. The points in which the pattern is resilient to perturbations can be ex-
plained by the rules. Since the dead cells within the “inflected clips” core are
surrounded by sufficiently many live neighbours, perturbations from within the
core are eliminated once faced with the overpopulation rule. In other words,
since living cells adjacent to this resilient core have only two neighbours, they
can withstand the appearance of a third without prompting a reaction. The “tub”
pattern (the second pattern depicted in Table 3.1), in contrast to the “inflected
clips” pattern, exhibited no resilience under the equality measure, but obtained
the highest ranking under the inclusion and cosine measures with 71 percent
and 78 percent resilience scores respectively. The resilience of the “tub” comes
from its ability to incorporate or to adapt to the add one single cell perturbations.
When a cell is added to the four dead corners, the cell can “come alive” and oth-
erwise persist without disturbing the structural integrity of the “tub” pattern.
Additionally, the “tub” is resilient to eight other add one perturbations, whereby
it can evolve into one of the former configurations with a corner filled out. Only
the “block” pattern scored a rank of one across all resilience measures in any of
the perturbation categories. Specifically, for the sub one perturbation, we found
that the “block” pattern was fully resilient to removing any of its cells. Since all
living cells in the pattern have three neighbours, the removal of any single live
cell would automatically result in its regeneration in the subsequent time step.
Finally, patterns that maximize resilience metrics for double-cell perturbations
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Pattern Perturbation Measure Resilience Rank

add one
equality 21 1
inclusion 21 262
cosine 27 2027

add one
equality 0 53144
inclusion 71 1
cosine 78 1

sub. one
equality 100 1
inclusion 100 1
cosine 100 1

add two
equality 4 1
inclusion 4 124
cosine 11 20166

add two
equality 16 1220
inclusion 7 1
cosine 0 1274

add two
equality 0 1220
inclusion 5 35
cosine 29 1

sub. two
equality 6 1
inclusion 6 1
cosine 11 86067

sub. two
equality 0 76
inclusion 0 76
cosine 67 1

Table 3.1: Patterns that are top-ranked according to at least one of the resilience measures for a given
type of perturbation. All resilience values are percentages (i.e. scaled by 100). Ranks are computed
out of 159100 total patterns. In case of ties, the minimum rank is given.

showed generally much lower resilience scores, and thus, they are only resilient
to few specific positions.

In general, we wanted to understand whether there were some structural fea-
tures of the patterns that could predict high resilience. For this, we computed
the Pearson-r correlations between the structural features described in the pre-
vious section and the resilience observations for single cell perturbations. We
focused on single cell perturbations, rather than also considering two-cell per-
turbations because the former showed the highest amount of variance. Results
are reported in Table 3.2, where each percentage value denotes the Pearson cor-
relation between specific resilience measure and structural feature. The number
of connected components, the population size, and the pattern’s density come
out as the most important predictors of resilience. First, only the number of con-
nected components (c.c.) remained a steady positive predictor of resilience, re-
gardless of the resilience metric or perturbation condition. Under most measures
of resilience, the number of connected components was also the strongest pre-
dictor. Our “inflected clips” example in Figure 3.1 illustrated how having greater
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Additive Perturbation
Equality Inclusion Cosine

Feature r Feature r Feature r
pop. 23 c.c. 9 c.c. 17
c.c. 20 dens. −8 dens. −10
dens. 19 sx-cos 5 pop. −7
sx-cos 17 pop. −4 m-y 3
sy-cos 12 sx 3 sx-cos 2

Subtractive Perturbation
Equality Inclusion Cosine

Feature r Feature r Feature r
c.c. 35 c.c. 36 dens. −16
pop. 18 pop. 18 c.c. 15
dens. 16 dens. 16 pop. −14
cw-cos 9 cw-cos 9 cw-cos −10
ccw-cos 9 ccw-cos 9 ccw −10

Table 3.2: Pearson-r correlations (in percentage) between resilience for single-cell perturbations
and structural features for the top-5 correlated or anti-correlated features. Key: pop=population;
c.c.=number of connected components; dens.=density; sx/sy=symmetry on x/y axis; sx/sy-
cos=symmetry on x/y axis as given by the cosine between the shape and its mirror image;
cw/ccw=invariance to clockwise or counter clockwise rotation; cw/ccw-cos=invariance to clockwise
or counter clockwise rotation measured as given by the cosine between the shape and its rotation.

numbers of connected components may facilitate additive resilience, where dis-
connected components may create an internal core that is protected from per-
turbations. The resilience observed in the subtractive case, by contrast, may be a
byproduct of the fact that many composite still lifes are often composed of blocks
among other shapes. That said, the strength and direction of the relationship
between the other predictors and resilience depended on the type of perturba-
tion and resilience metric considered. For example, while high density (dens.)
positively predicted resilience under the equality metric when performing an
additive perturbation, it negatively predicted resilience under the inclusion and
cosine metrics. Additionally, under the subtractive perturbations, high density
(dens.) positively predicted resilience under both the equality and inclusion met-
rics, but negatively predicted resilience under the cosine metric. Nevertheless, it
is important to bear in mind that these are linear correlations, and may not be
telling the full story. For example, when analyzing the effect of population size
in the additive perturbation under equality we observed that the maximum re-
silience for each population size tends to grow (with some roughness) until size
32 where it maxes out, but then starts to slowly decline.

Next we analyzed how related our own definitions of resilience were with
each other. For this, we computed the correlations between the resilience values
obtained from different types of perturbations and different types of measures
(Figure 3.4). We found that the resilience of a pattern to a given type of perturba-
tion does not transfer to other perturbation types when we restrict to measuring
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Figure 3.4: Pearson-r correlation coefficients between different types of perturbations and measures.

resilience through equality (Figure 3.4c). This supports the idea that systems
have specific resiliences to unique disruptions, rather than a general resilience
(Carpenter et al., 2001). However, when we adopted a relaxed notion of recov-
ery as given by the cosine measure (Figure 3.4d), we saw a weak, yet significant,
correlation between different types of perturbations. Thus, under this partic-
ular definition of recovery, we can see a somewhat more generalized notion of
resilience. Conversely, the correlations between our measures also change as a
function of the perturbation that we consider. If we restrict to the “add one” per-
turbation (Figure 3.4a), the inclusion and the cosine measures tend to highlight
the resilience of the same patterns while equality behaves in a more idiosyncratic
way. On the other hand, when we focus on the “subtract one” perturbation (Fig-
ure 3.4b) equality and inclusion behave almost in the same way, and differently
from cosine.

Last, but not least, we studied the length of the transients to see how many
steps these resilient patterns take to recover from a perturbation (up to a maxi-
mum of 100). We observed that for both the inclusion and the equality measures,
the transient lengths were no longer than 2 steps. For this reason, we restricted
the following analysis to just the cosine measure, which displayed more varia-
tion. Results are displayed in Figure 3.5. For small perturbations (Figures 3.5a
and 3.5b), most transient lengths are concentrated at the lower end of the spec-
trum. Nonetheless, there is a graded distribution with a decreasing number of
patterns having longer transient lengths. Interestingly, when a larger perturba-
tion is applied to the system, the transient lengths increase, as seen in Figures
3.5c and 3.5d, while still maintaining a graded distribution.
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Figure 3.5: Distribution of length of transients when using the cosine measure.

3.6 Discussion

3.6.1 Additive vs. subtractive resilience

We found virtually no still lifes in the GoL which were resilient to both additive
and subtractive perturbations. Our work reinforces previous research examining
resilience of real-world systems wherein resilience must be considered in specific
contexts (Carpenter et al., 2001), and with specific actors and stakeholders in
mind (Jones, 2018). That a system exhibits specific resiliences (vs. a general re-
silience) even in abstract environments such as Conway’s GoL suggests resilience
may be a fundamental property of complex systems. Identifying such a property
has far-reaching consequences for the study of real-world systems, as it would
invalidate a large body of work quantifying “the” resilience of such systems.

3.6.2 General trends in still life resilience

The Game of Life is highly symmetrical by nature, as all rules function equally in
all four cardinal directions. However, symmetry, as measured by the similarity
between a shape and its mirror image (both along the x axis and the y axis) did
not necessarily yield strong predictions of resilience. Although, there did appear
to be a weakly positive relationship between symmetry (as measured by the co-
sine) and resilience under the equality metric for both perturbation types. This
suggests that symmetry is not an crucial factor in a still life’s resilience.
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Additionally, a fundamental constraint of the Game of Life is that still life
patterns have a maximum density of 0.5 within their boundaries (Capcarrère &
Sipper, 2001; Chu & Stuckey, 2012; Chu et al., 2009; Elkies, 1999). This repre-
sents a tipping point in the population dynamics of the still life, and follows quite
naturally from the rules–as any density above 0.5 creates a cascade of cell deaths,
ultimately wiping out all cells in the pattern (Griffeath & Moore, 2003). Never-
theless, we found still lifes with densities approaching 0.5 were more resilient
to perturbations than those with sparser densities. It appears that still lifes ex-
isting close to the threshold of their ability to maintain structure–this might be
considered their autopoietic limit–are more resilient. This observation was men-
tioned by Holling (1996), who described how humans operate at body tempera-
tures close to lethal levels–allowing them to mobilize more energy for expanding
their living environments or responding to threats. Here we again see an inter-
esting parallel between the abstract dynamics of the Game of Life, and real-life
complex systems.

We note here that our density measure is not fully consistent with previous
work on the density of still lifes, having used an alternative method for perime-
ter construction (Elkies, 1999). However, we find support for our method in
current autopoiesis discussions regarding what constitutes living system spaces
(Harvey, 2019; Villalobos & Razeto-Barry, 2019). As such, we believe the under-
lying trends are strong enough to suggest a general pattern regarding density,
stability and resilience in autopoietic systems.

3.6.3 Conclusions and Future Work

We explored the degree to which still lifes–fixed-points in Conway’s GoL–are re-
silient to one- and two-celled perturbations. We found certain still lifes served as
stronger system attractors (Holling, 1996), in that they exhibited higher propensi-
ties to return to stable states post-perturbation. Ultimately, we observed a graded,
exponentially decaying, distribution of resilience among patterns. This suggests
that we may find patterns that are increasingly more resilient to the studied per-
turbations when examining (exponentially) larger samples. Furthermore, this
graded surface may be just what an evolutionary process needs to discover ever
more resilient shapes, even though more work characterizing the smoothness of
this surface would be needed to support that idea.

While this exponentially decaying trend of resilience in patterns was gener-
ally stable across different conditions, the particular definition of resilience given
by the used perturbation and the way to measure recovery, was prone to highlight
different patterns. This finding supports the idea that no universal notion of re-
silience exists, but rather, resilience is by nature context conditional.

Our analysis also evidenced some structural features of resilient patterns.
Population, the number of connected components, and density served as the
strongest general important predictors of resilience; however, for only the num-
ber of connected components was the direction of the relationship consistent.
Investigations using these structural insights could help lead to the discovery of
more resilient patterns in the future are left for future work. We conjecture that
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there may exist other not yet discovered patterns which maximize our resilience
metrics with respect to the studied perturbations.

While we restricted our analysis to still lifes in this study, future work will
extend our exploration to other types of autopoietic patterns in the GoL such
as oscillators and gliders (Beer, 2015). Furthermore, the perturbations that we
explored were two simple ones; however, they may not arise naturally in the
dynamics of the GoL. Thus, a natural extension to our current analysis is to test
more “naturalistic” perturbations, such as the impact of a glider hitting a still
life. Indeed, some patterns with the name of “eaters” (Griffeath & Moore, 2003)
have already been shown to be resilient to these types of perturbations. Thus,
a more systematic analysis, such as the one performed in our study could help
verify whether our resilience conclusions also hold in more complex scenarios.

Finally, exploring non-resilience is important for its own sake. For instance,
through our inclusion and cosine measures of resilience, we found perturbing
a still life can result in it re-stabilizing as a transformed still life pattern. Fu-
ture work will explore how different perturbations may transform still lifes into
oscillators, gliders, neither, or some combinations thereof.

To conclude, we have presented a systematic analysis of the resilience of still
lifes in Conway’s Game of Life. We have observed that while it is a rare prop-
erty, increasingly higher levels of resilience are observed. As argued above, this
graded landscape may provide evolution with just the right stepping stones that
it needs in order to discover ever more resilient forms of organization. We remain
cautiously optimistic that, even if rare in a universe which is, in appearance, as
brittle as Conway’s Game of Life, resilience can be found.
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Chapter 4

Robust Resilience:
Optimization with Ensembles

of Metrics May Improve
Resilience to Novel Shocks

In preparation as: Steinmann, P., van Voorn, G.A.K., and Molenaar, J. Robust
Resilience: Optimization with Ensembles of Metrics May Improve Resilience to
Novel Shocks.
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4.1 Abstract

Resilience is the ability of systems to withstand or recover from disturbances.
A key challenge in assessing a system’s resilience is quantifying it, enabling the
evaluation of potential resilience-increasing interventions. A wide variety of met-
rics have been proposed for quantifying resilience using various conceptual ap-
proaches. This introduces an uncertainty - which metric to choose? - into re-
silience analysis. We show that by using an ensemble of resilience metrics and
many-objective optimization, a system can be optimized to be resilient to a given
disturbance according to multiple independent metrics. We also observe that
such a system may have the added benefit of being more resilient to novel dis-
turbances it was never optimized for. Using ensembles of resilience metrics may
therefore enable the design of systems resilient to a range of disturbances, in-
cluding unforeseen ones.

42



4.2. Introduction

4.2 Introduction

Modern society is dependent on a wide range of socio-technical and -ecological
systems to ensure its continued functioning. Water supply, energy infrastruc-
ture, and communications networks are just some examples of such systems. To
ensure that these systems continue functioning in the face of disturbances such
as earthquakes, heatwaves, or cyber attacks, understanding and improving the
so-called resilience - the ability to withstand or recover from a disturbance - of
these systems has become a focal point of public and private decision making. A
key step in studying the resilience of such systems is translating the concept of
resilience into a measurable value. However, it is not immediately obvious how
to perform this quantification of resilience - paradoxically, not because there are
no established metrics for resilience, but because there are so many. Dozens, if
not hundreds of resilience metrics have been described (for examples, see reviews
by Hosseini et al. (2016), Quinlan et al. (2016), and Sun et al. (2020), as well as
Chapter 2.

The American National Academy of Sciences formally defines resilience as
“the ability to prepare and plan for, absorb, recover from, and more successfully
adapt to adverse events” (Committee on Increasing National Resilience to Haz-
ards and Disasters et al., 2012). This definition mashes together three distinct
schools of thought on resilience with their own scientific heritages. The first is
commonly referred to as engineering resilience, although it has also been ap-
plied to non-technical systems (e.g. Pimm, 1984). Systems which are resilient
in the engineering sense quickly return to their previous performance level af-
ter experiencing a disturbance (Holling, 1973, 1996). The second conceptual
approach to resilience is ecological resilience, and describes those systems as
resilient which can absorb a disturbance without switching to a less desirable
state (Holling, 1996). The third approach, socio-ecological resilience, incorpo-
rates adaptive mechanisms such as learning and evolution, and by means of an
adaptive cycle (Holling & Gunderson, 2002), foresees systems not just recovering
from disturbances, but improving their resilience and performance in the pro-
cess.

The concept of resilience relates closely to a number of other concepts applied
to complex systems, chiefly stability, sustainability, vulnerability, and robustness.
Depending on the author (e.g. Brand and Jax, 2007; Holling, 1973; Kelly and Har-
well, 1990; Nilsson and Grelsson, 1995) these concepts may be identical, related,
subordinated in some constellation, or even independent. As a consequence, the
term resilience has become “almost meaningless” (Klein et al., 2003) beyond a
general understanding that it describes a system’s dynamic response to distur-
bances (Hufschmidt, 2011; Zhou et al., 2010). This focus on system dynamics
may partly be the reason for the ongoing difficulties in defining and delineating
resilience, as the complexity and context of a system may change over time (cer-
tainly when it is recovering from a disturbance), making it difficult to establish
any kind of consensus on what is even being studied (Bohensky, 2008; Marshall
et al., 2007; Nelson et al., 2007). This is compounded by the fact that such sys-
tems often have contested or unclear ownership (Gotts et al., 2019), making it
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unclear who even has the authority to answer such questions (Norris et al., 2008;
Opdyke et al., 2017).

Since no unified definition of resilience seems imminent, the quantification
of resilience has received substantial scientific attention. Some authors (e.g. Car-
penter et al., 2005; Cutter et al., 2008) have called for standard resilience met-
rics that can be consistently applied to many systems, improving comparability
and transparency. Holling (1996) saw the concepts of engineering and ecologi-
cal resilience as inextricably linked to their respective metrics. However, other
researchers (e.g. Simonovic et al., 1992) have opined that every study requires a
unique formulation of resilience and its accompanying metric(s), in light of the
complexity and lacking definitional clarity. The latter approach was later for-
malized as the notion that resilience is specific to a particular stakeholder, scope,
disturbance, and time frame (Carpenter et al., 2001; Cutter, 2016; Meerow &
Newell, 2019). Favoring the specificity of resilience, a wide variety of metrics
have been created to quantify resilience in different contexts. These are based
on concepts as diverse as system-scale behavior over time (Holling, 1973), flow
magnitudes between entities in the system (Ulanowicz et al., 2009), and pre- and
post-disturbance spatial patterns (Cika et al., 2020).

The plethora of available resilience metrics may seem like a boon to scien-
tists studying resilience. However, precisely because at some point a choice must
be made between the available options (Beccari, 2016), and there is (partly be-
cause of the definitional fuzziness of resilience itself) little epistemic scaffolding
to climb on, the selection of a resilience metric represents an uncertainty in the
analysis process. As Pimm (1984) and Grimm et al. (1992) showed, this uncer-
tainty is impactful - depending on the choice of resilience metric, completely
different conclusions may be reached. Furthermore, the availability of many dif-
ferent metrics means that the likelihood of a metric being used incorrectly or
misleadingly increases (Jain, 2009).

A number of resilience scholars have proposed that using multiple metrics
may be a solution to the problem of metric selection. Dore and Webb (2003)
suggested that there is no systematic way of imposing a unidimensional met-
ric on complex ecosystems, highlighting the incompleteness of a single metric.
Mumby et al. (2014) emphasized that “broad, relatively uncorrelated categories
of ‘resilience attributes’” should be used in place of single metrics. Duveneck
and Scheller (2016) similarly advised that multiple measures should be included
when assessing the resilience of complex systems. However, none of these au-
thors actually implemented a multi-metric approach to quantifying resilience.
How could such an ensemble approach to quantifying resilience with multiple
metrics be implemented in practice?

In this paper, we evaluate optimization of a complex system’s resilience us-
ing multiple resilience metrics, and contrast it with single-metric resilience opti-
mization. We demonstrate this using a computational model of a complex system
experiencing three different disturbances, and applying five conceptually dis-
tinct resilience metrics. In a first step, we investigate how the different metrics
score the system’s resilience for the different disturbances, and how the scores re-
late across the disturbances. In a second step, we identify the system parameter
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combinations that make the system most resilient - i.e. achieve the highest scores
- according to a givenmetric and disturbance. We also identify the system param-
eter settings which make the systemmost resilient to each individual disturbance
across all resilience metrics simultaneously, using many-objective optimization.
We then compare the performances of these multi-metric-optimal parameter set-
tings if one of the other disturbances occurs - that is, how resilient the system is
to disturbances it was never prepared for.

4.3 Methods

As described in the previous section, ensemble-based resilience quantification
should incorporate a broad range of little-correlated metrics. To evaluate this
concept in practice, we select a set of conceptually distinct resilience metrics,
and apply them to a complex system experiencing a range of disturbances. In a
previously performed systematic scoping review of resilience metrics described
in Chapter 2, we identified six distinct categories of resilience metrics for com-
plex systems experiencing a single, time-bound disturbance. We select resilience
metrics representing five of these categories for this study. The sixth category
is not applicable to our case study, outlined below, for technical reasons. The
first selected metric is return time, or the time it takes the system to regain its
pre-disturbance performance level. Such metrics have been proposed by many
authors including Holling (1996) and Pimm (1984). With td representing the
time of disturbance, and tr representing the time of recovery to the system state
at t = td , resilience is quantified as:

Rrt = tr − td (4.1)

As the system has stochastic aspects and therefore does not have a true steady
state, we allow a ±10% margin for identifying tr based on the pre- and post-
disturbance performance levels. The main author experimentally derived this
threshold based on the model’s dynamics for the default parameter ranges given
by ten Broeke et al. (2016).

The second metric is performance loss, or the total performance lost due to the
disturbance (e.g.Ouyang et al. (2019)). With Pu representing the performance
over time of an undisturbed system, and Pd representing the performance over
time of a system experiencing a disturbance, resilience may be quantified as:

Rpl =
∫ tr

td

Pu −
∫ tr

td

Pd (4.2)

The third metric was introduced by Arreguin-Sanchez et al. (1998) and incor-
porates both the return time and the maximal proportional performance change.
Pmin, Pmax, and Ptd represent the minimal and maximal performance levels dur-
ing the disturbance, as well as the performance level at t = td . The term “perfor-
mance level” refers to the system property whose resilience should be quantified,
such as GDP, population level, or cost, and is generally specified by the analyst
or stakeholder(s). Under this metric, resilience is quantified as:
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Ras =

Pmax−Pmin
Ptd

tr − td
(4.3)

The fourth metric used was proposed by Perez-España et al. (2001) and incor-
porates the return time as well as the maximal and minimal performance levels
similar to the third metric, however, the pre-disturbance performance level is not
considered:

Rpe = tan−1
 1
Pmax−Pmin

tr − td

 (4.4)

The final metric was proposed by Lesnoff et al. (2012) and measures resilience
using the population multiplication rate during the recovery period. With Ptr as
the performance level at t = tr , resilience is quantified as:

Rle =
(
Ptd
Ptr

) 1
tr−td

(4.5)

To facilitate comparison, all scores generated with these metrics were re-
scaled to a [0,1] interval based on the highest and lowest scores for each met-
ric across all performed simulation experiments. This is necessary as the indi-
vidual metrics return scores differing by several orders of magnitude, hindering
comparison and evaluation of trade-offs. We also note here that without this
re-scaling, the different resilience metrics would have different dimensions, ren-
dering comparison impossible. The re-scaled values are dimensionless. We have
previously discussed the issue of unclear or mismatched resilience metric dimen-
sions in Chapter 2.

To evaluate the usage of resilience metrics ensembles with complex systems,
we draw upon a simulation model by ten Broeke et al. (2016) previously used for
studying the resilience of complex, socio-ecological systems (ten Broeke et al.,
2017). The model describes the interaction between a renewable resource and
a set of consumer agents in a spatial environment. The model it implemented
in Netlogo (Wilensky, 1999), a widespread agent-based modelling environment.
The resource grows and diffuses across a two-dimensional space, which is tra-
versed by consumer agents looking to harvest and sustain their metabolic needs,
and if sufficiently sustained, reproduce. 15 different model parameters govern
the behavior of the resource and consumers, whose interactions create different
behavior patterns depending on the parameter settings. These patterns include
oscillations, exponential growth, extinction, and steady states. For further infor-
mation about the model and its usage, we refer to the original publication and
subsequent work utilizing the model (ten Broeke et al., 2019; ten Broeke et al.,
2016; ten Broeke et al., 2021; ten Broeke et al., 2017). As in all these previous
studies, we use the population level of the consumer agents, which may be con-
sidered its performance level, as our outcome of interest.

In light of the previously discussed specificity of resilience to a stakeholder,
place, time horizon, and disturbance (Cutter, 2016), we also use an ensemble of
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disturbances to evaluate the performance of our metric ensemble. Specifically,
we choose three distinct disturbances, targeting three different parts of the mod-
elled system in different ways, based on previous research investigating different
types of disturbances resilient systems may experience presented in Chapter 2.
The first disturbance sudden-c targets a property of the agents, their harvest effi-
ciency, reducing it by 50% for a relatively short period of time, before restoring
the efficiency back to its original value. The second disturbance gradual-r af-
fects an aspect of the environment, the resource growth rate, gradually reducing
the growth rate over a longer period of time to 50% of its original value before
suddenly recovering. The final disturbance continuous-agent-population directly
targets the agent population, continually removing a small percentage of the pop-
ulation every time step over a longer period of time. Figure 4.1 demonstrates the
effects of these disturbances on the system’s performance.

Figure 4.1: The effect of the three applied disturbances, along with the undisturbed behavior, for a
randomly selected model run. The x-axis shows the simulation time steps, excluding the warm up
period. The y-axis shows the total number of agents in system, which we consider its performance
level - the system property for which resilience should be maximized.

To evaluate the performance of the metrics for different model parametriza-
tions and disturbances, we perform a so-called parameter sweep, running the
model many times with different input parameter combinations and model set-
tings. The input parameter combinations were sampled using a uniform Latin
Hypercube design. We identified the parameter ranges giving a low chance of
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population extinction using behavior-based scenario discovery (Steinmann, Aup-
ing, et al., 2020) based on the original ranges (ten Broeke et al., 2016). The used
parameter ranges are listed in Table 4.1. We generated 7000 random samples of
input parameter combinations. We then ran four distinct simulation experiments
for each input parameter combination: no disturbance to the system, the sudden-c
disturbance, the gradual-r disturbance, and the continuous-agent-population dis-
turbance. As the model has stochastic aspects, we replicated each of these sim-
ulation experiments 10 times, for a total of 280 000 simulation runs. In every
case the model was given a warm up period of 500 time steps, after which the
disturbance was applied, and the simulation was ended after 2000 time steps.
These values were experimentally derived based on the desire for reaching a
quasi-steady state after initialization and the subsequent disturbance, under a
variety of parameter settings. The simulation experiments were post-processed
in two steps. Firstly, those experiments in which any of the disturbed runs did
not return to an equilibrium within the simulation time horizon were discarded.
Secondly, all experiments were re-scaled to a common population level of 100 to
ensure comparability, based on each input parameter combination’s mean popu-
lation level for an undisturbed model run.

Table 4.1: Sampled parameter ranges. These ranges were chosen specifically to rapidly move the
system to a quasi-steady state, and therefore differ from the original, broader parameter ranges.

Parameter Range
c [0.3, 0.7]
D [0.05, 0.2]
Eb [8, 10]
Eh [0, 0.2]
Em [0, 0.15]

Emove [0, 0.75]
K [1.75, 3.75]
r [0.4, 0.5]
R0 [0, 1]

Rmax [1, 2]
Runc [0.4, 1]
vb [0, 20]
vd [0, 20]
z [0, 0.5]

We analyze our results in two ways. Firstly, for each metric, we evaluate
whether achieving a high resilience score when experiencing a given disturbance
is suggestive of also performing well on another disturbance. We do this through
visual inspection of pairwise grid plots. Secondly, we identify the Pareto-optimal
fronts across all five metrics for each disturbance - that is, the input parameter
combinations that have the best overall performance (calculated as the mean)
across all metrics. This means that a model run scoring highly on one metric and
poorly on a second metric is equally good as a model run scoring poorly on the
first metric and highly on the second metric, but a model run scoring worse on
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both metrics will be dominated and considered inferior. We then evaluate the
performance of these multi-metric-optimal combinations against the the perfor-
mance of parameter combinations optimal for a single metric when experiencing
the other disturbances.

4.4 Results

4.4.1 Disturbance responses per metric

In Figure 4.2, we visualize how every simulation run included in our analysis
performs for a every pair of disturbances and each metric in a set of scatter plots.
In essence, this figure shows whether the response to the individual disturbances
under a given metric is similar for different disturbances.

For the metric Rrt given in Equation 4.1, it appears that there is a high degree
of similarity between the disturbance responses. In other words, system param-
eter settings which have a high score on this metric (i.e. a low return time) for
some disturbance are likely to also have a low return time on one or more other
disturbances. There are very few outliers across all three disturbances, although
two interesting patterns can be observed - an outlier cluster for the sudden-c dis-
turbance, and two to three distinctive striations for each subplot.

The metric Rpl given in Equation 4.2 metric shows varying similarity levels,
with the strongest similarity apparent in the first subplot with sudden-c versus
gradual-r disturbances. For these two disturbances, system parameter combina-
tions performing well on one are likely to also perform well on the other. The
other two subplots show that this metric is relatively weakly sensitive to the
continuous-agent-population shock. In the last subplot, no similarity is immedi-
ately visible, indicating that no inference can be made from the response to one
disturbance for the other one. More outliers are visible.

Interestingly, the metric Ras given in Equation 4.3 shows both similarities and
strong differences for the different pairs of disturbances. While sudden-c and
gradual-r seem similar, the other two combinations appear distinct. This means
that if a system performs well when experiencing one of the two disturbances,
it will likely perform poorly when experiencing the other. There are not many
outliers.

The metric Rpe given in Equation 4.4 shows little to no similarity for all three
combinations of disturbances. It is therefore difficult to generalize the system’s
performance from one disturbance to another. A large number of outliers is read-
ily apparent.

Finally, the metric Rle given in Equation 4.5 also shows varying degrees of
similarity, with a strong similarity for the first pair of disturbances, and no simi-
larity for the other two pairs. There are few outliers.

When comparing between the metrics, we observe that the metrics Rrt and Rpl
have broadly similar patterns across all three disturbance pairs. Similarly, the
metrics Ras and Rle also have comparable patterns across all three disturbance
pairs. However, these two pairs of metrics are distinct from one another. The
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metric Rpe is unique in that its correlations between the disturbance pairs are not
similar to those of any other metric.

Figure 4.2: Similarities between responses to different disturbances per evaluated resilience metric.
For each resilience metric, every pairing of disturbances is plotted pairwise. The data points represent
the individual simulation runs, plotted using their scores per (rescaled) resilience metric.
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4.4.2 Resilience to novel disturbances

Figure 4.3 compares the performance of the 20 highest-scoring system param-
eter settings for each metric and disturbance combination, and the 20 best-
performing Pareto-optimal parameter combinations across all used resilience
metrics. We selected the 20 best parameter settings to represent the fact that,
when optimizing a complex system, there are often multiple configurations
which perform roughly equally well, and could all be chosen with equal justi-
fication. In line with Jain (2009), we use the mean to summarize the multidimen-
sional Pareto-optimal input parameter combinations.

For the responses to the disturbance sudden-c, when experiencing the dis-
turbance the systems were optimized for, we observe that the input parameter
combinations score quite highly on all metrics, as would be expected (see sub-
plot (a) of the top plot row). The Pareto-optimal parameter combinations score
somewhat lower, although still comparable with the systems optimized for the
metric of Rpe. However, if a different disturbance occurs - that is, either gradual-r
or continuous-agent-population - the parameter settings which would be optimal
for a sudden-c disturbance suddenly perform worse. Their scores are often signif-
icantly worse than the Pareto-optimal parameter settings’ scores, which are quite
high across the board. The sole exception is found for the parameter combina-
tions optimized for return time, which also have a high score when experiencing
disturbances they were not optimized for. This is congruent with the observa-
tions made above regarding similarities between disturbance scores per metric.

This picture does not repeat itself for the gradual-r disturbance. For every
metric, a set of high-performing system input parameter combinations can be
found (center part of the middle subplot). If a different disturbance than gradual-
r occurs, the settings optimized for the metrics Ras, Rpe and Rle perform worse
than the Pareto-optimal input parameter combinations, on the whole. Inter-
estingly, the systems optimized for return time and performance loss against the
gradual-r disturbance also perform quite well when experiencing one of the other
two disturbances.

For the continuous-agent-population disturbance, we observe that the highest-
scoring input parameter combinations have quite a large distribution even for
the disturbance they were optimized for (rightmost part of the third subplot).
As with the previous disturbance, the parameter settings optimized using the
three more intricate metrics (Ras, Rpe, Rle) perform substantially worse than the
Pareto-optimal parameter combinations when experiencing a not-optimized-for
disturbance. However, the settings optimal under the return time and performance
loss metrics also perform reasonably well for the other two disturbances.

4.5 Discussion

The main objective of this paper was to evaluate how an ensemble of resilience
metrics might be used to optimize a complex system’s resilience, and what the
benefits of this approach might be. We conducted this evaluation by using
five different resilience metrics to quantify the response of a simulation model
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Figure 4.3: Performances of system parameter settings optimized for a given disturbance when ex-
periencing a different disturbance. For each combination of disturbance and metric, the 20 highest-
scoring input parameter combinations are shown as individual points, with an underlying violin plot
(symmetrical kernel density estimate) to summarize the distribution.
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of resource-consumer dynamics experiencing three different disturbances. We
found that, depending on the metric, the scores for the various pairs of distur-
bances can be correlated in very different manners. There is also not a consistent
pattern between the different metrics. Some metrics show clear similarities in
how their resilience scores for the different disturbances are correlated. How-
ever, the “agreement” between metrics is not readily apparent from their func-
tional forms. For example, metrics Rrt and Rpl , or return time and performance
loss, show similar correlation patterns across all three pairs of disturbances, but
have completely different functional forms and constituent elements. We also
identified input parameter combinations for the simulation model which scored
highly according to all five resilience metrics for a given disturbance. Intrigu-
ingly, we observed that these parameter combinations also gave the system good
response capacity to other disturbances.

Based on these results, we posit that exploratory ensemble approaches may
be useful not only for parametric and structural uncertainties, but also for met-
ric uncertainty. To our knowledge, this has not been taken up in the literature
yet. This study therefore represents one of the first works to study how an en-
semble of metrics purporting to measure the same system property may be used
to support decision making. This is perhaps because metrics are often regarded
as a higher-level decision making process by problem stakeholders, and are thus
often exogenous to the analysis (Sharma & Chen, 2020). Based on our results,
endogenizing this uncertainty into the analysis may yield benefits.

Through our ensemble-based approach, we have shown that resilience met-
rics which are conceptually distinct may be correlated in practice. The similar-
ity of nominally independent resilience metrics has also been observed by Kris-
tensen et al. (2003), who referred to such metrics as “concordant”. The fact that
such similarities can only be observed once the metrics have been implemented
and evaluated in a simulation model highlights the value of the exploratory ap-
proach. Thus, when Mumby et al. (2014) call for using a diverse range of un-
correlated metrics, we support this call - but caution that it may not be possible
to identify the degree of similarity between metrics until they are applied. It is
noteworthy that there were no strong patterns regarding the similarities - some
metrics were correlated for one pair of disturbances, and uncorrelated for an-
other. This implies that it is not straightforward to translate resilience metrics
from one context to another, an argument against the usage of standardized met-
rics.

We have also shown that by reasoning across the ensemble of resilience met-
rics, we can identify system input parameter combinations which perform well
across five metrics for a given disturbance. While this may seem trivial, we be-
lieve it shows that the exploratory approach can be a real benefit to resilience
studies, especially for systems with multiple stakeholders where reaching con-
sensus on “the” resilience metric will be difficult or impossible. However, these
Pareto-optimal system parameter combinations do have a lower performance
than those optimized for a single metric. In other words, there is no free lunch
in resilience, as improved resilience likely comes at the cost of outright perfor-
mance (Karakoc & Konar, 2021; Roege et al., 2014). Identifying which of these
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to optimize for depends on thorough elicitation of stakeholder needs and desires
(Mumby et al., 2014).

We found that systems whose parameters have been optimized with an en-
semble of resilience metrics may be resilient to disturbances they were never
optimized for. In other words, it may be possible to make a system resilient
to a disturbance it has not been prepared for, or that the analyst has even fore-
seen. Munn (1992) emphasized that resilience should be about improving system
preparedness for a range of possible futures - naturally including different dis-
turbances. Ultimately, this would lead to identifying the studied system’s safe
operating space (Rockström et al., 2009) or bubble of stability (Roux et al., 1999)
- the domain within it can continue existing and functioning. This also implies
that the bespoke approach to quantification proposed by Cutter (2016) and oth-
ers may be expandable to a new kind of resilience which can respond adequately
to many different disturbances - something we might refer to as general or ro-
bust resilience. This could improve both the cost-effectiveness and success rate
of resilience-enhancing interventions in systems.

We note here that throughout this research, we have only studied one system
with a single steady state, and metrics which are amenable to such dynamics.
This is a strong limitation of our study, as natural systems are never truly stable
(Holling, 1973; Resh et al., 1988). While we attempted to account for this by us-
ing a stochastic model and a relaxed interpretation of the concept of equilibrium,
this nevertheless represents a strong simplification, especially since we discarded
simulation experiments which did not recover to the pre-disturbance steady state
within the simulation time horizon. With that said, themajority of resiliencemet-
rics used in practice assume a steady state (see Chapter 2 for details), and there
is as yet little agreement on how to measure adaptive, non-equilibrium system
resilience (Fernandez & Ahmed, 2019). This has previously been highlighted as
a valuable future research direction (Egli et al., 2019).

4.6 Conclusions

Conceptually distinct resilience metrics may return similar results based on the
disturbances and system they are applied to. This implies that the independence
of resilience metrics can only be identified ex post using exploratory analysis.
Regarding the choice of appropriate resilience metrics for systems that might ex-
perience different disturbances, we propose the following dichotomy. If a single
metric can or must be used, we recommend using a simple metric such as re-
turn time Rrt , as the systems performing optimally under that metric for a given
disturbance will also respond well to other disturbances. However, if agreement
cannot be reached on a single metric due to lack of knowledge or stakeholder dis-
agreement, then multi-metric optimization may be an effective tool for finding
consensus solutions that perform reasonably well across all metrics. The result-
ing system parameter settings may have the (rather valuable) added advantage of
performing well when experiencing other disturbances, which is not necessarily
true for their constituent metrics. This implies that it may be possible to design
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systems which are resilient to a variety of disturbances - in other words, their
resilience is robust to the uncertainty of which disturbance will occur.

In future research, we hope to study the exploratory approach to understand-
ing resilience metric similarity further, for a variety of systems and disturbances.
Furthermore, it may be useful to identify the underlying mechanisms of a sys-
tem’s resilience by linking the input parameter combinations giving it high re-
silience with an analysis of its structure, in order to better identify relevant re-
silience metrics.
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5.1 Abstract

Scenario Discovery is a widely used method in model-based decision support
for identifying common input space properties across ensembles of exploratory
model runs. For model runs with behavior over time, these properties are identi-
fied by reducing each run to a single value, which obscures potentially decision-
relevant dynamics. We address the problem of considering dynamics in Scenario
Discovery by applying time series clustering to the ensemble of model runs, and
then finding the common input properties for each cluster. This separates the
input space into multiple scenarios, each corresponding to a distinct model dy-
namic. Policy interventions can be targeted at different scenarios by analyzing
overlap of these subspaces. Our work expands Scenario Discovery by improv-
ing consideration of system behavior over time, which is highly relevant for the
management of complex nonlinear systems such as ecosystems or technical in-
frastructure.
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5.2 Introduction

Many significant societal challenges are wicked problems (Rittel & Webber,
1973). A significant hurdle in understanding these challenges is the deep (Lem-
pert et al., 2003) or Knightian (Knight, 1921) uncertainty surrounding them.
That is, the various parties involved do not know or cannot agree on the key
mechanisms of the system, associated probability distributions, and which out-
comes are of interest (Lempert et al., 2003). This is especially relevant for socio-
environmental and -technical systems which provide essential ecosystem ser-
vices, but face increasingly uncertain and volatile futures (Helbing, 2013).

Because of the intrinsic complexity of many wicked problems, model-based
analyses are useful for supporting decision making and planning (Holtz et al.,
2015; Kwakkel, Walker, et al., 2016). Human cognition struggles in the face of
complexity due to the misapprehension of feedbacks, accumulation, time delays,
and emergence (Sterman, 1994). Simulation models can be used to augment hu-
man reasoning by assessing the consequences of multiple interacting (non-linear)
processes (Sterman, 2002). However, this leaves unresolved the problem of un-
certainty. Bankes (1993) suggested to use computational experimentation across
many alternative realizations of the various irreducible uncertain factors to sys-
tematically map out the consequences of the uncertainties. Scenario Discovery
(Bryant & Lempert, 2010; Kwakkel & Jaxa-Rozen, 2016) was suggested as a way
of analyzing the results of these computational experiments in order to extract
decision-relevant information from them.

Scenario Discovery is by now an established model-based technique for sce-
nario development (Gerst et al., 2013; Halim et al., 2016; Hamarat et al., 2013;
Kwakkel et al., 2013; Lamontagne et al., 2018; Lempert & Groves, 2010; McJeon
et al., 2011; Moallemi et al., 2017; Parker et al., 2015; Rozenberg et al., 2014). It
also forms the analytical heart of various approaches for model-based decision
support under deep uncertainty (Helgeson, 2018; Herman et al., 2015; Kasprzyk
et al., 2013; Kwakkel & Haasnoot, 2019; Lempert et al., 2006).

The term “scenario” has various definitions and meanings (Spaniol & Row-
land, 2019). Scenario Discovery traces its roots to the Intuitive Logics (Bradfield
et al., 2005) school of scenario planning (Bryant & Lempert, 2010). Analogous
to Intuitive Logics, Scenario Discovery starts with the identification of uncertain
factors. Next, Intuitive Logics groups these factors into clusters or mega trends
and identifies the most uncertain, most impactful groups which will make up
the scenario logic. For an example of how the narrative-first approach of Intu-
itive Logics can be used to reduce uncertainty, see Willis et al. (2018). In contrast,
Scenario Discovery uses computational experimentation with models to explore
the implications of all the uncertain factors jointly, then the outputs of the exper-
iments are classified as being of interest or not, before trying to find orthogonal
subspaces in the uncertainty space which are predictive of the experiments of
interests. In Scenario Discovery, this subspace is called a ‘scenario’, although
sometimes the individual experiments are also confusingly called scenarios. Ab-
stractly put, however, this is only a difference in where and how the dimension-
ality of the uncertainty space is reduced into a smaller interpretable set. Scenario
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Discovery thus reduces a problem’s complexity by projecting the entire uncer-
tainty space into a few salient dimensions, thus rendering cognitive benefits for
decision makers (Bryant & Lempert, 2010) and enabling clearer analysis of de-
cision options and trade-offs (Helgeson, 2018). This has also been described as
model salience (van Voorn et al., 2016).

Central to Scenario Discovery is the classification of experiments as being of
interest (or “decision-relevant”) or not (Dalal et al., 2013; Lempert et al., 2008).
In virtually all applications of Scenario Discovery, this is done by comparing an
outcome of interest for each experiment with an external threshold. Experiments
are considered of interest if the outcome meets (or fails to meet, as may be the
case) this threshold. That is, the dynamics of the outcome of interest over time are
ignored, with some even arguing that they are not relevant (Davis et al., 2007).
Evaluating system states against such a static criterion is easy to conceptualize
and communicate to stakeholders.

However, a problem’s dynamics may be crucial for management and policy
(Gotts et al., 2019; ten Broeke et al., 2017). That is, decision makers might very
well care about the dynamics over time of the outcome of interest. Analytically,
dynamics are also relevant. Often, in particular in case of non-linear models,
different temporal dynamics originate from different regions of the model in-
put space. Lumping these different dynamics together through a static criterion
obfuscates the different origins of the types of dynamics. When using Scenario
Discovery for designing strategies, as is common in Robust Decision Making,
different temporal dynamics plausibly constitute different vulnerabilities. An in-
ability to separate these vulnerabilities because of the use of a static criterion can
result in an inability to succinctly describe the subspace(s) from which the ex-
periments of interest originate. This will in turn hamper an analyst’s ability to
design robust strategies.

In short, aggregate statistics of time series may be misleading (Anscombe,
1973), or such time series may be equifinal but dynamically distinct (Von Berta-
lanffy, 1968), impeding the discovery of decision-relevant scenarios from them
at a single point in time. This paper addresses the problem of accounting for
dynamics over time within Scenario Discovery.

We present behavior-based Scenario Discovery as a method to address the prob-
lem of accounting for dynamics over time in Scenario Discovery. Rather than
identifying a single subset of decision-relevant simulation experiments by eval-
uating an outcome of interest at a particular point in time against an external
criterion, we apply time series clustering to the entire ensemble of experiment
outputs, partitioning it into multiple behaviorally distinct subsets. Next, we can
identify the subspaces from which these behaviorally distinct subsets originate.
Each of these represents a distinct alternative future (or scenario), and can then
be used to support scenario-based decision making (Bradfield et al., 2005; Kunc
& O’Brien, 2017; Kwakkel et al., 2013; Lamontagne et al., 2018; Willis et al.,
2018), or for computational decision support under deep uncertainty (Herman
et al., 2015; Kasprzyk et al., 2013; Kwakkel & Haasnoot, 2019; Lempert et al.,
2006). This approach builds on previous efforts to combine clustering and Sce-
nario Discovery (Kwakkel et al., 2013). We extend this work with a more effective
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clustering algorithm, and consideration of the full output ensemble.
In Section 5.3, we review the Scenario Discovery literature in more detail. In

Section 5.4, we propose an integration of time series clustering into Scenario Dis-
covery to account for dynamics over time. In Section 5.5, we illustrate behavior-
based Scenario Discovery with a case study on the impact of the shale gas revolu-
tion on future oil prices. In Section 5.6, we discuss the method’s contributions to
both Scenario Discovery in particular and model-based decision making in gen-
eral, and give an outlook on future research. In section 5.7, we summarize our
main conclusions and contributions.

5.3 Literature Review

Groves and Lempert (2007) and Lempert et al. (2006) are the first reported ap-
plications of what is now called Scenario Discovery. Lempert et al. (2008) in-
troduced the name Scenario Discovery, while exploring the potential of various
rule induction algorithms for analysing large ensembles of computational exper-
iments with simulation models generated using Exploratory Modelling (Bankes,
1993; Kwakkel & Pruyt, 2013). Scenario Discovery as it is being used today was
put forward by Bryant and Lempert (2010).

In Table 5.1, we summarise the general steps of Scenario Discovery. Sce-
nario Discovery starts with large scale computational experimentation with one
or more simulation models. These experiments are designed to systematically
cover the space spanned by the many uncertain factors associated with a model.
Next, the outputs of the model for each experiment are classified as being of
interest or not. Third, a rule induction algorithm, typically the Patient Rule In-
ductionMethod (PRIM) (Friedman & Fisher, 1999), is used to identify orthogonal
subspaces within the uncertainty space that have a high concentration of exper-
iments of interest. Finally, the intervals for the various uncertain factors which
jointly characterize the orthogonal subspace are interpreted and communicated,
possibly in the form of narratives (see e.g., Greeven et al., 2016), but sometimes
also directly with evident success (Gong et al., 2017). More in depth descriptions
can be found in Bryant and Lempert (2010), and Kwakkel and Jaxa-Rozen (2016).

Scenario Discovery has been used in the context of climate adaptation (e.g.
Kwakkel et al., 2015; Lempert & Groves, 2010), climate mitigation (e.g. Gerst et
al., 2013; Greeven et al., 2016; Hamarat et al., 2013; Lamontagne et al., 2018; Mc-
Jeon et al., 2011; Moallemi et al., 2017; Rozenberg et al., 2014), water resources
management (e.g. Matrosov et al., 2013; Watson & Kasprzyk, 2017), transport
and logistics (e.g. Halim et al., 2016), material scarcity (e.g. Kwakkel et al., 2013),
and national security (e.g. Pruyt & Kwakkel, 2014). Scenario Discovery is also at
the heart of various robust decision making approaches (Kasprzyk et al., 2013;
Lempert et al., 2006), and adaptation pathways (Haasnoot et al., 2013; Kwakkel,
Haasnoot, & Walker, 2016).

Scenario Discovery conventionally uses a binary classification to identify
model outputs as being decision-relevant or not (Bryant & Lempert, 2010). In
such cases, only a single scenario region of the input parameter space can be iden-
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Table 5.1: Steps for conventional Scenario Discovery

Step Action Comments
1. Generation Conduct simulation experiments on a system

model by sampling from the input parameter
space, passing these inputs to the model and
recording the generated outputs.

The simulation model acts as a black-box generator function (Lem-
pert et al., 2006), making this step agnostic to the underlying simula-
tion paradigm (differential equation system, agent-based model, discrete
event simulation, etc.)
Input sampling should be uniform to ensure unbiased and complete cov-
erage of the parameter space. Sampling density can vary, and should be
chosen carefully based on computing infrastructure and model complex-
ity (Davis et al., 2007; Moallemi et al., 2018; Pruyt & Islam, 2015).

2. Identification Reduce each model output to a single value.
Evaluate this value against an external criterion.
Model outputs fulfilling the criterion are identi-
fied as being “of interest”.

“Model output” refers to all data captured for a single simulation experi-
ment, which may include multiple variables. Analysts must then identify
which variable is especially descriptive of the system’s overall condition,
and how to reduce it to a single value. Depending on the context, this
might be an end value, mean, amplitude, or other statistical simplifica-
tion.
The external criterion is a proxy or direct specification of stakeholder
goals. It usually takes the form of a threshold value (Greeven et al., 2016),
but could also be a range (Guivarch et al., 2016).

3. Rule Induction Find the subspace (or region) in the input parame-
ter space where the inputs generating the outputs
of interest lie, by inducing its parameter rules.

Various rule induction algorithms exist Dalal et al., 2013; Guivarch et
al., 2016; Kwakkel, 2019; Kwakkel and Jaxa-Rozen, 2016; Lempert et al.,
2008. They generally function by drawing a bounding box around the
entire input space, and then iteratively restricting the size of this box
along one or more axes of the space. These restrictions are referred to as
rules, since they prescribe which values a variable can take.
The restriction process is governed by three key attributes of the induced
subspace - coverage, density, and interpretability (Kwakkel, 2019; Lem-
pert et al., 2006). Coverage refers to the ratio of decision-relevant over to-
tal inputs contained in the subspace, and should be maximized. Density
captures the ratio of decision-relevant over decision-irrelevant inputs in
the subspace, and should also be maximized. Interpretability describes
the number of parameter space axes along which the box is restricted in
size, and should be minimized.
Rule induction is generally conducted once, as there is only a single sub-
set of decision-relevant model outputs. However, these outputs may
stem from multiple regions of the input space, requiring multiple passes
(Bryant & Lempert, 2010; Guivarch et al., 2016). Repeated rule induc-
tion for the same subset of inputs can also improve the quality of the box
describing their subspace (Kwakkel & Cunningham, 2016).

tified. This approach can limit the usefulness of Scenario Discovery, as scenario-
based planning benefits from having multiple comparable and internally consis-
tent scenarios with which to evaluate possible future developments and interven-
tions (Schoemaker, 1993; Willis et al., 2018).

The Scenario Discovery literature contains only a small number of studies
that have identified multiple distinct scenarios using Scenario Discovery. Both
Rozenberg et al. (2014) and Guivarch et al. (2016) do not explicitly specify out-
comes of interest, instead choosing to split the model output space into multiple
regions representing different Shared Socioeconomic Pathways (O‘Neill et al.,
2014). For the model outputs in each region, Scenario Discovery is performed
in turn to identify the underlying drivers. In a study on economic growth, en-
ergy consumption, and carbon emissions, Gerst et al. (2013) partitions the input
parameter space by clustering model outputs along multiple decision-relevant
output dimensions, and then using another rule induction algorithm, Classifica-
tion and Regression Trees (CART) (Breiman et al., 1984; Lempert et al., 2008),
to identify the input parameters most useful for distinguishing clusters. While
analyzing conditions under which the European Emission Trading System would
fail to meet its stated objectives, Hamarat et al. (2013) identify three different
subspaces using Scenario Discovery. Based on an in depth explanation of why
under each subspace, the emission trading system would fail, they conclude that
these subspaces represent clearly distinct vulnerability scenarios. It is notewor-
thy that none of these aforementioned studies analyze relations between the iden-
tified scenarios, such as overlap or adjacency. In this work, we show that analysis
of scenario overlap is both possible and can yield novel and policy-relevant in-
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sights.

5.4 Behavior-Based Scenario Discovery

Behavior-based Scenario Discovery is a variation of conventional Scenario Dis-
covery, with the goal of deriving decision-relevant future scenarios from model
behaviors. Behavior-based Scenario Discovery primarily entails a modification
of step 2 (see Table 5.1). Instead of imposing a binary classification on a set
of computational experiments based on model outputs, behavior-based Scenario
Discovery applies time series clustering to the model outputs. This enables the
separation of distinct model behaviors. In step 3, rule induction can be applied
to each cluster of behavior which is deemed to be of interest given the purpose of
the study.

Time series clustering aims at grouping a set of time series into two or more
subsets with high similarity within each subset, and low similarity across the sub-
sets (Cryer & Chan, 2008; Shumway & Stoffer, 2017). Liao (2005) identifies three
main approaches to quantifying time series similarity: feature-based, data-based,
and model-based methods. Feature-based methods identify salient properties of
time series, such as amplitude or number of peaks (see e.g. Paparrizos & Gravano,
2015). Similarity between time series is then a function of these features. Data-
based methods match individual data points between time series, and determine
the points’ similarity using various distance definitions (see e.g., Berndt & Clif-
ford, 1994; Keogh & Ratanamahatana, 2005). Model-based methods replace each
time series with a mathematical model of itself, such as a linear regression or
Markov Chain Monte Carlo distribution, and then determine similarity based on
the parameters of those models (see e.g. Corduas & Piccolo, 2008).

Based on the determined similarities, the set of time series can be grouped
into a number of internally similar clusters. Clustering methods can be hard,
soft, or hierarchical (Shumway & Stoffer, 2017). Hard clustering means every
time series is included in exactly one cluster, while in soft clustering, time se-
ries are members of multiple clusters, to varying degrees (Cryer & Chan, 2008).
Hierarchical clustering also assigns every time series to multiple clusters, but at
different levels of aggregation (see e.g. Gerst et al. (2013) and Rodrigues et al.
(2008)).

The starting point of behavior-based Scenario Discovery is a verified and
validated system model, together with an input parameter space capturing the
model’s aleatory and epistemic uncertainties (Hoffman&Hammonds, 1994). The
first step is identical to that of conventional Scenario Discovery - a number of sim-
ulation experiments are performed on a system model, randomly sampling from
the input parameter space to generate outputs. In the second step, time-series
clustering is applied to find common macro-level behaviors in the ensemble of
output time series. In step 3, rule induction is performed for each time series
cluster in turn.

The primary benefits of this approach over conventional Scenario Discovery
are two-fold:
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1. The induced regions in the input parameter space are associated with
model behaviors over time, rather than a static snapshot of the model’s
state.

2. Every output in the ensemble is included in a cluster and mapped to a re-
gion in the input parameter space, rather than just a small subset.

In turn, we suggest that the induced regions in the input parameter space, since
they are associated with a given type of dynamics over time, will be more clearly
separable compared to the existing practice of using a static threshold based ap-
proach for identification of experiments which are of interest.

5.5 Case study: Behavior-based Scenario Discovery
for future oil price dynamics

In this Section, we demonstrate behavior-based Scenario Discovery through a
case study. To showcase its benefits, it is necessary to analyse a complex system
model with both a significant number of uncertain factors, and highly nonlinear
dynamics. Therefore, we use a study on climate mitigation policies, developed by
Auping et al. (2016) using a System Dynamics approach (Forrester, 1961). The
model includes both uncertain input parameters as well as uncertainty about
model structure in order to capture the ambiguity of the global energy market,
and, as will be shown, has highly nonlinear dynamics.

5.5.1 Generation

We re-used an existing data set created by Auping et al. (2016). The data includes
2000 simulation experiments generated using the Exploratory Modelling work-
bench (Kwakkel, 2017) under uniform Latin Hypercube sampling (McKay et al.,
1979). Figure 5.1 illustrates the diversity of model behaviors that result from dif-
ferent combinations of input parameters. The wide variety of possible behaviors
and the non-linearity of the model is apparent.

5.5.2 Identification of dynamics

We focused our analysis on one particularly interesting variable in the model
outputs - future oil price (Oil Price [ $

BBTU ]). The ensemble of outputs for this
variable, shown in Figure 5.1, features a variety of dynamics, including oscilla-
tions and extreme outliers.

We applied time series clustering with typical settings to the ensemble of
model outputs. We chose Complexity-Invariant Distance (CID) (Batista et al.,
2014) as our similarity metric. In previous work (Steinmann, 2018), we com-
pared a range of time series clustering metrics. We found that CID-based time
series clustering was best able to identify tipping points for two simple nonlinear
systems, one featuring a saddle-node bifurcation (Ludwig et al., 1978), the other
a Hopf bifurcation (Strogatz, 2018). Given that CID performed best on these two

64



5.5. Case study: Behavior-based Scenario Discovery for future oil price dynamics

Figure 5.1: Data by Auping et al. (2016) shows a variety of nonlinear dynamics. 100 (of 2000) ran-
domly selected outputs for the outcome of interest, each representing a possible alternative future oil
price.

test problems, where we know analytically the correct answer, we expect that
CID is likely to perform well on more complex, non-linear dynamical systems as
well.

CID is based on Dynamic Time Warping (Berndt & Clifford, 1994), but in-
troduces a correction factor to account for the time series complexity. For every
pair of time series Q,C, the complexity-invariant distance between them is cal-
culated as the summed Euclidean distance ED between their points, multiplied
by a correction factor CF:

CID(Q,C) = ED(Q,C) ∗CF(Q,C)

The correction factor is the quotient of the time series’ minimal and maximal
complexity estimates:

CF(Q,C) =
max(CE(Q),CE(C))
min(CE(Q),CE(C))

To estimate a time series’ complexity, Batista et al. (2014) consider its path
length:

CE(Q) =

√√√
n−1∑
i=1

(qi − qi+1)2

Based on internal validation (Arbelaitz et al., 2013) of the solutions for dif-
ferent cluster counts, we selected a cluster count of k = 6. Hard clustering (i.e.
each time series is assigned to a single cluster) was performed using the TSclust
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package (Montero & Vilar, 2014), which implements CID clustering for the R
computing environment (R Core Team, 2018). More recently, CID-based time se-
ries clustering has also been implemented in the Python-based EMA workbench
(Kwakkel, 2017). Figure 5.2 shows the six identified clusters, each representing
a set of distinct future dynamics. Based on visual inspection it is apparent that
CID-based time series clustering does a reasonably good job of separating dif-
ferent dynamics. For example, if we compare clusters #1 and #2 we see clearly
different dynamics. Cluster #1 contains runs that show an early drop and then
stay low, with some runs showing small oscillations. In contrast, cluster #2 con-
tains runs where the price drops slightly, but then quickly recovers and stay high
for the remainder of the simulation. For some of the other clusters, the differ-
ences are less striking. For example, both clusters #4 and #5 seem to contain
many oscillating dynamics in the middle of the output range.

Figure 5.2: Six subsets of model dynamics, clustered using Complexity-Invariant Distance.
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5.5.3 Rule Induction

We performed rule induction for each cluster using the Patient Rule Induction
Method (PRIM) (Friedman & Fisher, 1999) as implemented in the Exploratory
Modelling workbench (Kwakkel, 2017). In Table 5.2, we present the regions of
the input parameter space for each cluster. PRIM identifies a region by restricting
input parameter values with rules. We give the rules for each cluster along the
five most commonly predictive dimensions, along with the coverage and density
of each cluster’s orthogonal box (see Table 5.1 for a formal definition of these
concepts).

Table 5.2: Induced rules for most commonly predictive input parameters, per cluster

Cluster Rules Box Statistics
Switch

price/supply
dominance
{1, 2}

Initial unit
costs oil

[1000, 8000]

Effect of
supply shortage
on GDP growth

[-0.3, 0]

Switch legal
emissions cap
{0, 1, 2, 3}

Average
throughput
time stocks
[0.05, 0.2]

Coverage
[0, 1]

Density
[0, 1]

1 1 [1002, 4945] [-0.299, -0.088] {0, 1, 2, 3} [0.057, 0.2] 0.658 0.649
2 2 [1000, 8000] [-0.27, 0] 0 [0.05, 0.2] 0.613 0.807
3 2 [1000, 8000] [-0.22, 0] {1, 2, 3} [0.05, 0.2] 0.594 0.449
4 1 [3368, 7997] [-0.3, -9.6e-05] {0, 1, 2, 3} [0.05, 0.11] 0.615 0.548
5 1 [2293, 7753] [-0.299, -0.015] {0, 1, 2, 3} [0.084, 0.2] 0.724 0.766
6 2 [1002, 5819] [-0.282, -0.028] {1, 2, 3} [0.05, 0.2] 0.655 0.555

For each of the six clusters, at least one of the five most predictive dimensions
was not predictive at all, indicating that the parameters are only predictive for
certain behavior modes, and only over a part of their uncertainty range. This un-
derlines the inherent complexity and richness of the underlying model, and has
both positive and negative aspects. While it may make it easier to target policy
interventions on particular behaviors, it also may be harder to identify globally
representative signposts and triggers for adaptive policy design. As an example,
oil price will remain constant or increase (cluster #2) without a global emissions
cap of some kind, due to unbridled demand and consumption. This indicates that
an emissions capmay be an effective way to reduce oil prices long-term. However,
there are also some cases in which prices stabilize without a cap, or exhibit un-
desirable behavior despite the presence of a cap. Similarly, cluster #5, which ex-
hibits rapidly fluctuating oil prices, has a low average throughput time for stocks
in the model. This mirrors the bullwhip effect sometimes found in stock-flow
models or games such as the Beer Game (Meadows, 2007), and would indicate
that enforcing slower throughput (e.g. by restricting trading) could reduce price
fluctuations. However, there are also model runs with little price fluctuation and
low throughput time, as well as large fluctuation despite high throughput time.

The induced rules for the Switch legal emissions cap variable also show how
Scenario Discovery may be useful for model validation - while the categorical in-
put is specified with four levels {0,1,2,3}, only two can reliably be distinguished:
0 and {1,2,3}. This indicates that this part of the model structure may be unnec-
essarily specific - or conversely, that the emissions cap levels are not graduated
well enough.
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5.5.4 Analysis of Scenario Regions

One advantage of behavior-based Scenario Discovery is that policy interventions
can be targeted at specific types of dynamics in light of the identified conditions
under which they occur (i.e, the identified region in the input parameter space).
To ensure that such interventions only affect the intended dynamics, the respec-
tive input parameter regions of each scenario must be well separated from other
scenarios, with little to no overlap. Based on the explicit boundaries for each
subspace region (or “box”) induced by PRIM, we analysed the overlaps between
them. As discussed in Section 5.3, this analysis, although potentially insightful
from a multi-scenario perspective, had never previously been performed.

In Table 5.3, we give both inherent and relational properties for each induced
box. Specifically, we list howmany time series were attributed to the correspond-
ing cluster, and how many of their inputs ended up inside the corresponding in-
duced input region (true positives). We also show how many members of other
clusters were included in the region (false positives).

Table 5.3: Members of input parameter regions

Region
Total in
targeted
cluster

Total in
induced
region

Included
members of
cluster 1

Included
members of
cluster 2

Included
members of
cluster 3

Included
members of
cluster 4

Included
members of
cluster 5

Included
members of
cluster 6

1 386 391 254 1 1 41 69 25
2 287 218 1 176 37 3 0 1
3 426 564 16 61 253 17 13 204
4 234 263 36 11 21 144 49 2
5 308 291 164 16 65 73 223 38
6 359 423 34 14 106 15 19 235

It is apparent that while each region predominantly includes the members of
its targeted cluster, there is a significant number of false positives. We believe this
is due to the orthogonality of the input space regions induced by PRIM, which
has been criticized before (Auping, 2018; Quinn et al., 2017).

For policy design, overlap between the regions is a crucial point of analysis.
To ensure an intervention targeting a specific scenario does not have unintended
consequences for other input space regions, the regions must be clearly separated
in the multidimensional input parameter space. In Table 5.4, we quantify the
overlap between the six scenario regions by determining how many experiments
they share.

Table 5.4: Shared experiments (overlap) for induced scenario regions

Boxes 1 2 3 4 5 6
1 391 0 0 65 208 0
2 218 0 0 0 0
3 564 0 0 324
4 263 100 0
5 291 0
6 423

It is apparent that the regions are separable - only 4 of 15 pairs overlap. The
overlaps for box pairs #1 and #5, as well as #3 and #6, are noteworthy. The clus-
tering solution in Figure 5.2 shows that the pairs have similar behavior, and Table
5.2 indicates they share structural uncertainty parameters. It is therefore not sur-
prising that they overlap to some degree. However, it may still be interesting to
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distinguish them for scenario purposes, especially #3 and #6, as the latter shows
a more severe oil price drop than the former, which could have significant policy
implications (Smith, 2004).

5.6 Discussion

5.6.1 Case study results

In our case study, we chose to use Complex Invariant Distance in combination
with hard clustering as the method for performing time series clustering. The
central claims of this paper do not rest on this particular choice. It is conceiv-
able that for other models, e.g. models characterized by more discrete temporal
variations, other time series clustering algorithms are more suitable. Still, as ev-
idenced by Figure 5.2 and the more in depth analysis of the separability of the
clusters in the model input space, CID did perform quite well. As such, we sug-
gest that CID is a promising first choice method for time series clustering in the
context of behavior-based Scenario Discovery.

We combined CID with agglomerative clustering, which results in a hard as-
signment of individual time series to a specific cluster. The analysis of the overlap
between the induced regions in Table 5.4 as well as the visual inspection suggests
that a soft clustering might have been more appropriate. Only cluster 2 is per-
fectly separable in the model input space. While the other clusters are harder to
separate both in the input space as well as having some apparent overlap based on
visual inspection. It is unclear however how to embed a soft cluster assignment
within Scenario Discovery, given its reliance on rule induction, which requires a
binary classification.

5.6.2 Contribution to Scenario Discovery

Scenario Discovery is a computational approach for identifying consistent,
decision-relevant futures (Bryant & Lempert, 2010). For the management of non-
linear systems, understanding the dynamics and behaviors of these futures is cru-
cial (Sterman, 2000). However, conventional Scenario Discovery analyzes model
outputs at a single point in time, ignoring these dynamics. With behavior-based
Scenario Discovery, we present a method of deriving decision-relevant scenarios
from these dynamics. Our approach builds on previous work regarding static vs.
dynamic (or “transient”) scenarios (Haasnoot et al., 2015), identifying common
patterns in complex model outputs (Kwakkel et al., 2013), and inducing mul-
tiple decision-relevant input space regions (Gerst et al., 2013; Guivarch et al.,
2016; Hamarat et al., 2013; Rozenberg et al., 2014). We combine these lines of
research into a novel enhancement of Scenario Discovery, capable of identifying
and characterizing behaviorally distinct futures. We see our work as a contri-
bution to the ongoing discussion and development of Scenario Discovery in this
journal (Bryant & Lempert, 2010; Kwakkel & Cunningham, 2016; Kwakkel et al.,
2013; Kwakkel & Pruyt, 2013; Walker et al., 2010) and elsewhere.
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5.6.3 Contribution to model-based decision support

The presented approach for applying Scenario Discovery to ensembles of dy-
namic model runs is of particular interest in the context of an ongoing discus-
sion on the use of Scenario Discovery for developing global change scenarios.
The existing SSP/RCP framework is based on a story line and simulate approach
(Garb et al., 2008). First, internally consistent narratives are developed by groups
of experts. Next, these narratives are translated into sets of inputs for specific
integrated assessment models for quantitatively exploring specific Shared Socio
Economic Pathways (O‘Neill et al., 2014), or in combination with Reference Con-
centration Pathways.

Rozenberg et al. (2014) argued that the a priori specification of challenges to
mitigation and adaptation is problematic, instead favouring a posteriori identifi-
cation assisted by Scenario Discovery. One advantage of such a simulate and sto-
ryline approach (Greeven et al., 2016) is that it offer better guarantees of properly
bounding the space of possible futures. Guivarch et al. (2016) methodologically
developed this idea further. Lamontagne et al. (2018) demonstrated the feasi-
bility of this approach by systematically sampling all possible combinations of
drivers from the SSP dimensions, evaluating them using the integrated assess-
ment model GCAM. They empirically confirmed the theoretical point raised by
Rozenberg et al. (2014) - similarly looking challenges to adaptation and mitiga-
tion can arise from quite disparate combinations of driving forces. The approach
presented in this paper offers a further methodological extension allowing for the
explicit consideration of temporal dynamics.

5.6.4 Future Research

We see three main avenues for future work on behavior-based Scenario Discov-
ery. Firstly, we hope to see our analytical method tested with other dynamic
models to validate its general applicability. In particular, it may be interesting
to consider stochastic models, such as agent-based or discrete event models, as it
remains to been how sensitive our proposed approach is to noisy time series out-
puts. To this end, we have made our code publicly available both on GitHub
(https://github.com/steipatr/BBSD-Public), and in the Exploratory Modelling
Workbench (Kwakkel, 2017).

Secondly, the method presented in this paper uses univariate clustering to
group the model outputs. However, multivariate clustering—grouping simu-
lation experiments based on the similarities of multiple time-dependent model
variables at once—maymore reliably distinguish model dynamics by encompass-
ing a wider range of system performance markers. It might also help integrate
differing stakeholder opinions about which system variables should form the ba-
sis for deliberation—a core challenge in decision-making under deep uncertainty
(Kwakkel & Haasnoot, 2019; Lempert et al., 2003; Walker et al., 2010). A sim-
ilar extension from univariate to multivariate Scenario Discovery, motivated by
the same considerations, has already been presented by Gerst et al. (2013) for
analysis at a single point in time.
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Thirdly, we found that scenario regions overlap in some cases. We believe this
is due to inherent orthogonality limitations of the used rule induction algorithm,
which have been discussed elsewhere (Auping, 2018; Quinn et al., 2017). De-
veloping non-orthogonal rule induction methods, possibly based on genetic al-
gorithms (Kwakkel, 2019), may reduce region overlap and improve separability,
allowing more precise identification of the root causes of specific model behav-
iors.

5.7 Conclusions

We have presented behavior-based Scenario Discovery. Where the established
practice of Scenario Discovery virtually always focuses on the outcomes of a
model at a particular point in time, behavior-based Scenario Discovery enables
the analysis of dynamics over time instead. This is relevant for several reasons.
In the context of designing robust strategies through Robust Decision Making,
different undesirable dynamics over time constitute different kinds of vulnera-
bilities. By analyzing the model outcomes at a particular point in time, analysts
will be unable to differentiate these dynamically distinct vulnerabilities. Second,
different types of dynamics over time often originate from distinct regions of the
uncertainty space. Explicitly considering dynamics over time within Scenario
Discovery will improve the partitioning of the uncertainty space that can be pro-
duced by the existing rule induction algorithms used within Scenario Discovery,
such as PRIM.

Behavior-based Scenario Discovery replaces the existing threshold-based bi-
nary classification of computational experiments with a time series clustering
step. Next, rule induction can be performed for each cluster of computational
experiments. As demonstrated in our case study, behaviorally distinct future sce-
narios can be identified by clustering an ensemble of time series model outputs,
and characterized by inducing and analyzing the subspaces in the uncertainty
space from which they originate. These scenarios based on dynamics can then
be used for a variety of model-based decision support purposes, including uncer-
tainty exploration, adaptive policy design, and strategic planning.

We focused in this paper on the clustering of time series as a precursor to rule
induction within Scenario Discovery. We suggest that our arguments in favor of
this multinomial approach in case of temporal dynamics apply more broadly. For
example, instead of imposing a binary classification on the results of a spatially
explicit model, it might be more useful to first cluster based on spatial patterns,
and then use Scenario Discovery on these clusters. In particular in the context of
land use change models, as used for e.g., climate adaptation, such an approach
might be fruitful for identifying the drivers behind distinct land use patterns.
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6.1 Abstract

Complex systems such as cities, energy grids, or the global climate have many
plausible futures. Scenarios, or structured narratives of decision-relevant fu-
tures, are a common decision support tool for making the complexity and un-
certainties of complex systems humanly interpretable. However, the effective-
ness of scenario-based decision support depends in part on the usefulness of the
selected scenarios. Here we show an optimization-based approach for generat-
ing scenarios that are specifically designed to be diverse, plausible, and com-
prehensive. We establish the advantages of our method by evaluating it against
three previously proposed methods: scenario matrices, generic archetypes, and
clustering. Our case study is Schelling’s segregation model, a tractable yet be-
haviorally rich simulation of a complex system. Our results show the proposed
optimization-based approach can generate more diverse, plausible, and compre-
hensive scenarios than existing approaches. The resulting scenarios may provide
a more insightful and robust basis for policy decisions, especially for complex
systems with emergent behavior, or where substantial uncertainties are present.
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6.2 Introduction

Scenarios, or structured sets of plausible future narratives driven by external
forces (Spaniol & Rowland, 2019), are commonly used for decision support in
and across the social, technical, and environmental domains. As compelling and
easy-to-grasp representations of how the future might develop, they have cap-
tured decision-makers’ attention, and the public’s imagination, in contexts in-
cluding climate change (Nakićenović et al., 2000), pandemics (Skegg et al., 2021),
and sea level rise (Wolters et al., 2018). They can be used for a variety of pur-
poses, including presenting contrasting futures, identifying key uncertainties in
systems, and evaluating policy alternatives (Bell, 2003), and are especially suited
to long-term decision-making contexts (Pot et al., 2022).

A number of methods have been proposed for generating sets of scenarios
which are useful for decision support. These methods generally rely on itera-
tive interactions between scenario analysts, stakeholders, and domain experts
to qualitatively identify performance indicators, causal relations, and external
drivers of change. From these elements, scenarios can then be generated. How-
ever, such expert-driven approaches fail to identify policy-relevant scenarios in
complex and deeply uncertain decision-making contexts, both because the range
of possible outcomes is not knowable a priori, and because the most relevant sce-
narios might emerge from unexpected combinations of external forces (Dolan et
al., 2021; Lamontagne et al., 2018). AsMcPhail et al. (2020) showed, the selection
of scenarios for decision support can have substantial impact on the quantitative
outcomes of the subsequent decision. Thus, we identify a knowledge gap regard-
ing how to generate useful scenario sets when complexities and uncertainties are
present.

In this paper, we address the highlighted research gap by introducing a new
method for generating scenario sets for complex systems based on simulation-
based optimization. We compare our method to three existing scenario gener-
ation approaches, and show that it performs best overall across three distinct
criteria. Concurrently, we highlight several shortcomings in existing scenario
generation methods. Finally, we discuss some implications for scenario-based
planning in particular, and decision support in general.

6.3 Background

The Anthropocene is characterized by a wide variety of interdependent socio-
technical-environmental systems such as energy infrastructure, financial mar-
kets, or agro-industrial production. These globally networked systems are both
vulnerable and difficult to control, as disruptions can unexpectedly propagate to
other domains (Helbing, 2013), cascade across levels of hierarchy (Iwanaga et al.,
2022), and self-reinforce (Siegenfeld & Bar-Yam, 2020).

The challenges in design and governance of such systems are compounded by
a lack of consensus on the relevant external drivers, internal causal relations, and
outcomes of interest underlying a decision-making context. These deep uncertain-
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ties (Lempert et al., 2003) amplify the difficulties of successful governance, espe-
cially in situations where ownership and control are contested between multiple
actors (Gotts et al., 2019). The resulting gridlock may have critical consequences,
as the wickedness of the decision problem affords little time for hesitation, and no
possibility for a do-over (Rittel & Webber, 1973).

In order to make both the complexity and uncertainty inherent in these sys-
tems’ governance comprehensible to decision-makers, a variety of decision sup-
port methods have emerged. A unifying theme across these methods is the usage
of scenarios (Bell, 2003) - combinations of external drivers and resulting system
narratives or outcomes. These narratives are internally consistent, plausible in
the context of the studied system, and commonly appear in sets, allowing com-
parison between alternative futures.

A well-designed set of scenario summarizes the system’s complexity, and the
decision problem’s uncertainties, by reducing the entirety of the future behavior
space to a handful of comprehensible examples. Decision-makers can then fo-
cus on a few relevant alternatives, rather than worry about every permutation of
plausible behavior. At the same time, careful selection of the included scenarios
can challenge preconceived notions of the system’s expected future by purpose-
fully excluding “business as usual” futures (Voros, 2017) in favor of those requir-
ing not only timely preparation and adaptation (Haasnoot et al., 2013), but also
negotiation of distributive justice among current and future stakeholders (Jafino
et al., 2021).

6.4 Theory

Sets of scenarios illustratemeaningfully different ways the futuremight plausibly
develop. For such a set to be useful for a given decision-making context, the
scenarios included in the set should be diverse, plausible, and comprehensive, as
argued in the following section.

Diverse scenarios are meaningfully different alternatives to one another
(Spaniol & Rowland, 2019), that is, they describe clearly distinguishable differ-
ent future trajectories. Meaning stands in relation to the specific decision prob-
lem the analyst or stakeholder faces, and is derived from the legitimacy (Oreskes
et al., 1994) or validity (ten Broeke & Tobi, 2021) of the conducted analysis -
establishing that the proposed insights are useful to its audience. As Dolan et
al. (2021) and Lamontagne et al. (2018) have highlighted, the meaningful or
decision-relevant scenarios for complex systems are difficult to identify a priori -
that is, without evaluating the behavior resulting from a system’s causal relations.

At the same time, the presented alternative futures must be plausible, or
within the scope of what could physically occur within the studied system - even
if the probability is low. Establishing what is or is not plausible is difficult when
studying complex systems, as even simple ones can exhibit any desired behavior
pattern (Cook, 2004), to say nothing of the involved uncertainties (Funtowicz &
Ravetz, 1993). Rittel and Webber (1973) emphasize that the futures of complex
problems are not exhaustively describable, which is the limiting factor on our
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ability to predict their future behavior (Polhill et al., 2021). This is coupled with
humans’ limited capacity for “mental simulation”, or the ability to reason about
nonlinear interactions in complex systems (Sterman, 1994). Simulation models
have become an attractive method for these input-output evaluations (de Regt &
Parker, 2014), as the models can systematically explore the implications of large
number of possible system configurations and assumptions (Bankes, 1993; Wins-
berg, 2010).

Finally, the considered scenarios should give a comprehensive overview of the
system’s plausible future trajectories. Otherwise, blind spots will be introduced
into the decision process, with potentially disastrous results. The concept of a
“futures cone”, a layered arrangement containing the possible, preferable, pre-
dicted and/or projected futures extending forward in time, has been discussed
by a number of authors including Voros (2017) and Maier et al. (2016). When
making decisions under deep uncertainty, it may be appropriate to reason across
the widest and most comprehensive range of this cone, encompassing all plausi-
ble outcomes (Derbyshire, 2020, 2022; Zatarain Salazar et al., 2022). This ensures
that the resulting analysis is robust to whichever future eventually ends up ma-
terializing (Lempert et al., 2006; Rosenhead et al., 1972), up to and including the
possibility of black swans - extreme (or even existential) risks with unknowable
likelihood (Taleb, 2007).

A growing body of research on simulation-based scenario development is ex-
ploring how models can be used to improve scenario-based planning, broadly
along two lines of research. The first line, which might be termed behavior search,
focuses on how the plausible behavior space of models can be efficiently and
comprehensively explored (Chérel et al., 2015; Davis et al., 2007; Islam & Pruyt,
2016; Pruyt & Islam, 2015). The second line, which is often referred to as scenario
discovery, explores how specific model outcomes of interest can be related to re-
gions of input space, for either one (Bryant & Lempert, 2010; Edali & Yücel, 2019;
Kwakkel, 2019; Kwakkel et al., 2013; Stonedahl & Wilensky, 2011; ten Broeke et
al., 2021) or multiple outcomes of interest (Jafino & Kwakkel, 2021; Steinmann,
Auping, et al., 2020; Trindade et al., 2020). In the present work, we build on ideas
proposed by Verstegen et al. (2017) to create a new method which straddles the
two aforementioned lines of research - combining directed search (Kwakkel &
Haasnoot, 2019) with many-objective optimization (Maier et al., 2019) to gener-
ate maximally diverse, plausible, and comprehensive scenario sets for complex
systems.

6.5 Methods

6.5.1 Framework

In the following, we describe our proposed method for generating diverse, plau-
sible, and comprehensive scenario sets, which we have named scenario search. We
frame the challenge of generating such scenario sets as an optimization problem.
Optimization simply means that we optimize an object function that represents
the relevant optimization criteria. In this case, the function is a simulation-based
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Figure 6.1: A visual representation of scenario search. In the first step, the maximal and minimal
Pareto fronts across the model outcomes of interest are found through many-objective optimization.
In the second step, all possible subsets of size k (here: k = 4) are generated from the points on the
Pareto fronts, and the subset with the highest cumulative between-point distance is found through
single-objective optimization. This subset then forms the final scenario set, which is maximally com-
prehensive, diverse, and plausible.

scenario generator, the inputs are the external drivers associated with those sce-
narios, and the criteria are the previously described diversity, plausibility, and
comprehensiveness. We thus conceptualize a scenario as a combination of model
inputs, and resulting simulation experiment outcomes or outputs.

In theory, we wish to simultaneously maximize our three criteria of diversity,
plausibility, and comprehensiveness. In practice, the resulting optimization pro-
cedure would take a very long time to compute. Instead, we split the optimization
into two steps - first optimizing for comprehensiveness, and then for diversity.
We assume that the third criterion, plausibility, is given due to the underlying
simulation model being validated and appropriate for the given decision-making
context. As we outlined earlier, simulation models are assumed to already en-
code all plausible futures (and prohibit the unreachable ones), even though they
are not known yet.

In the first step of scenario search (establishing comprehensiveness, see Figure
6.1), we define the simulation model’s outputs of interest as the objectives and
use many-objective optimization (Maier et al., 2019) to find the maximal and
minimal Pareto fronts across combinations of outputs of interest. We then join
these individual fronts together to form the Pareto hull, which encompasses all
plausible outcomes of the model.

In the second step (establishing diversity), we search the model outcomes on
the Pareto hull for the most diverse subset of a desired size. We measure diver-
sity as the Euclidean distance between two points in the output space, rescaled to
[0,1] along all axes. Because the Pareto hull contains only a handful of outputs,
we can exhaustively calculate their distances and compare them without signif-
icant computational overhead. With this comparison, we identify the subset of
most distant (i.e. diverse) model outputs. This subset then forms the scenario
set, whose constituent outputs (or scenarios) are maximally diverse, plausible,
and comprehensive.

The size of the final scenario set is an exogenous parameter in our method.
This parameter, which we dub k as an analogy to a similar parameter in clus-
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tering, can be set based on audience and analyst desires for how many scenarios
should be considered. In the presented work, we use k = 4 scenarios for two
reasons. Pragmatically, when evaluating our method against other scenario gen-
eration methods, this is a convenient number for comparison. However, it also
seems that four alternatives may be a limit of human working memory (Rouder
et al., 2008), and therefore a practical upper bound for scenario-based planning
with stakeholders.

6.5.2 Case study

To demonstrate and evaluate our proposedmethod, we draw upon a heavily stud-
ied model from the literature on complex adaptive systems, Schelling’s segrega-
tion model (Schelling, 1971). This is a cellular automaton, or grid-based system
in which each grid cell updates its properties based on the properties of the cells
in its Moore neighborhood. In Schelling’s model, two classes of cells exist. Cells
seek to surround themselves with at least a certain number of neighboring cells
of the same class, governed by the input homophily. If a cell does not have at least
this many neighbors of its own class, it will relocate to a different grid location,
the availability of which is controlled by the input density. When repeating this
simple procedure for every grid cell over many time steps, macro-scale dynamics
such as wastelands and neighborhoods emerge across the grid. This combination
of model simplicity and behavioral richness makes Schelling’s segregation model
an attractive case study for us. In addition, it has a low run time, which may be
desirable in model-based decision support (Helgeson et al., 2021).

In the context of our many-objective optimization, we specify the input space
as [0.05,0.95] for density and [3,8] for homophily on a square lattice grid. We calcu-
late two outputs of interest from the resulting spatial grid, happiness and number
of patches. The former captures which fraction of all occupied grid cells have
found at least their desired amount of same-class neighbors, and the latter de-
scribes how many neighborhoods (contiguous regions of same-class neighboring
cells) have emerged. These are the two objectives which we maximize and mini-
mize to find the Pareto hull. We choose these two outputs because they represent
system state variables, or dynamic attributes of the system, which we deem of
interest to decision-makers regarding segregation.

We perform the many-objective optimization using the ϵ-NSGA-II optimiza-
tion algorithm (Kollat & Reed, 2006) implemented in the Platypus library
(Hadka, D., 2015) for Python, and controlled through the Exploratory Modelling
and Analysis Workbench (Kwakkel, 2017). Based on testing for convergence, we
use 10 000 function evaluations (population size: 100) for the optimization with
10 replications each to account for the stochasticity in the model. All other pa-
rameters are left at Platypus default values. We limit the model to 100 time
steps.
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6.5.3 Experiment

To evaluate the effectiveness of scenario search, we compare it with three pre-
viously proposed methods for generating scenario sets with simulation models:
scenario matrices, generic archetypes, and clustering.

Matrix-based scenario generation methods such as Intuitive Logics (Wright
et al., 2013) generally start by identifying the most important external drivers
of change. These are then clustered into a small number of axes or forces, for
each of which high and low levels are determined. Across the axes, these levels
form a matrix, hence the name. Each matrix cell then becomes an element of the
scenario set, together with an accompanying narrative of how the world result-
ing from these driver levels would look. Scenario matrices thus reason from the
drivers to the narratives, or, in a modelling sense, from the input to the output
space. We apply this method by sampling the k corners of the model input space,
representing high(est) and low(est) levels for every axis. Davis et al. (2007) pre-
viously advocated a similar approach in the context of behavior search. These
corner points are then passed into the simulation model, and paired with their
resulting outputs.

By contrast, scenario methods based around generic archetypes start by
identifying a set of decision-relevant future narratives based on preexisting
archetypes such as paradise, wastelands, or best-guess (Bezold, 2009; Dator,
2009). For each alternative narrative, the external drivers which might create
that world can then identified. Thus, the reasoning is from the narratives to the
drivers, or from the outputs to the inputs. We apply this method by estimating
likely low and high values for every model output axis, which together form the
k scenario outputs. In our case study, we selected {0.2,0.8} for number of patches,
and {10,100} for happiness. We then find the input combination which generates
the output closest to each desired scenario, and pair that input with the output
to complete the scenario.

Finally, clustering has been explored by a number of researchers (Jafino &
Kwakkel, 2021; Kwakkel et al., 2013; Rozenberg et al., 2014; Steinmann, Auping,
et al., 2020) as a method of deriving scenario sets from large (computational) data
sets. First, a number of simulation experiments are performed on a simulation
model. Then, the resulting outputs are clustered, and a representative outcome
is identified for each cluster, often using centrality or mean calculation. These
representative outcomes then form the scenario set. We apply this method by
conducting a uniform parameter sweep of the model, dividing the resulting out-
puts into k clusters using k-means (MacQueen, 1967), and identifying the cluster
centroids, which may be thought of as representative of the cluster. As with the
generic archetypes, we then find the best-matching input-output combinations
for each cluster centroid. The parameter sweep underlying this clustering con-
tains 3000 Latin Hypercube samples of the input space, with 10 replications each
to average out the influence of the random initial patch arrangement.

For our evaluation, we draw upon the three scenario criteria introduced pre-
viously: diversity, plausibility, and comprehensiveness. As in the optimization
procedure, we measure diversity as the Euclidean distance between two scenario
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points in the model output space. The output space is rescaled to [0,1] for all
axes to give a common basis for comparison. In Equation 6.1, we give the diver-
sity calculation for scenario points S1,S2 defined by Cartesian coordinates (x,y)
in a two-dimensional Euclidean space.

D(S1,S2) =
√
(S1,x − S2,x)2 + (S1,y − S2,y)2 (6.1)

To determine plausibility, we measure the distance between each scenario’s
model output, and the closest model output generated by a parameter sweep of
the model’s input space. To facilitate the analysis, we construct the metric given
in Equation 6.2 for the plausibility calculation for a scenario point S1 and a set of
parameter sweep outputs R. This calculation is again performed in the rescaled
output space.

P(S1) =
1

minB∈RD(S1,B) + 1
(6.2)

Finally, we measure comprehensiveness by calculating the proportion of the
model’s entire output range covered by the polygon spanned by the scenarios.
In Equation 6.3, we give the area calculation for a scenario set S in a two-
dimensional Euclidean space. Note that the scenarios must first be ordered clock-
wise.

A(S) =
1
2

|S |∑
i=1

Si,x(Si+1,y − Si−1,y) (6.3)

6.6 Results

In the following section, we first describe the scenarios generated with the dif-
ferent methods, and then compare the scenario sets with each other using the
three criteria of diversity, plausibility and comprehensiveness introduced earlier.
Finally, we evaluate the overall effectiveness of the scenario generation methods
by jointly considering the three criteria.

6.6.1 Scenario generation methods

Over our entire model exploration, the total number of patches ranges from 2
to roughly 150, while the happiness ranges from 0.0 to 1.0. The maximization
of these two objectives results in a broadly S-shaped line with both convex and
concave sections, whereas the minimization of the objectives results in a discon-
tinuous front with an irregular shape (Figure 6.2). We note that the Pareto hull
does not cover all outcomes generated by the parameter sweep, this does not have
a substantial effect on the following analysis. The Pareto hull covers slightly less
than half (49.9%) of the entire output space.

In the parameter sweep, six distinctive bands (grouped by the value of the ho-
mophily input) emerge, leaving large areas between them which are unreachable
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by the model. These bands are roughly aligned, but also intersect in some ar-
eas of the output space. Model outcomes are not evenly distributed, with higher
densities in the corners of the output space.

The scenarios generated with the scenario matrices method appear in the four
corners of the input space. In the output space, three of the four scenarios have
very low happiness values, and few patches. The fourth scenario has high hap-
piness, and also very few patches. Two of the scenarios are almost identical re-
garding happiness and number of patches, with correspondingly similar spatial
maps. The two remaining spatial maps differ mainly in the granularity, with
predominantly large and small neighborhoods, respectively.

The scenarios generated with scenario search are situated in the three corners
of the Pareto hull, as well as roughly halfway along the maximization front. Their
corresponding inputs roughly form a square, which is substantially smaller than
the entire input space. The spatial representations of these scenarios show four
distinct patterns, including dense fill with low granularity, dense fill with high
granularity, sparse fill with high granularity, and sparse fill with regions of high
and low granularity.

When considering the results of the generic archetypes method, we note that
three of the four scenarios lie in regions of the output space which are unreach-
able by the underlying simulation model. Thus, there are no associated inputs
or spatial representations of these three scenarios. The fourth scenario’s spatial
representation is characterized by a medium-density fill with high granularity,
while its associated input lies roughly near the middle of the input space.

The scenarios generated with clustering are spread throughout the output
space. Two of the four scenarios show a similar spatial pattern (low density and
high granularity). The other two scenarios are distinct, with one showing low
density and low granularity, and one medium-high density and regionally vary-
ing granularity.

6.6.2 Scenario Criteria

6.6.2.1 Diversity

The most diverse scenarios are created by scenario search (Figure 6.3), this sce-
nario set having the largest intraset diversity, mean, and lower quartile values.
Five of the intraset distances are roughly equal, with one longer outlier.

The scenarios created with a scenario matrix form two distinct and equally
sized distance clusters, as three of the four scenarios are close together in the
output space, and fourth is far away. Mean and lower quartile are the lowest,
while the upper quartile is the highest of all four methods. Notably, one distance
is close to 0, indicating these two scenarios are virtually identical regarding their
outputs. Thus, distance in the input space does not translate into distance in the
output space, highlighting the model’s nonlinearity.

The generic archetype-based scenarios, being arranged in a square in the out-
put space, have four identical shorter and two identical longer distances. Upper
and lower quartiles are the closest together of all four methods.
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Figure 6.2: Input and output spaces of Schelling’s segregationmodel. In each space, we show four sets
of four scenarios each, one set per evaluated scenario generation method. The different methods are
double-coded by color and marker shape, with the color hue distinguishing the four scenarios within
each set. The markers in the in- and output spaces correspond. The underlying parameter sweep and
Pareto hull are in grey. For each scenario in each set, an exemplary resulting spatial representation is
shown, with the two agent classes in red and blue, and empty space in grey. Note that some markers
are nearly overlapping in the output space, and that three markers are missing from the input space,
as their corresponding outputs represent points which are unreachable for the model.
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Figure 6.3: Evaluation of all four scenario generation methods against the three scenario set criteria.
Where applicable, means and quartiles are represented with underlying box plots. The point markers
are jittered to avoid overlap. The radar chart shows the criteria as polar axes in one figure, allowing
overall comparison between the four different scenario generation methods.
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The scenarios found with clustering have varying distances, with two flyers
beyond the upper quartile, indicating some scenario pairs are far more diverse
than others. The mean is roughly comparable to scenario matrices and generic
archetypes methods, but lower than that of scenario search. This is because the
representative cluster centroids by nature lie inward of the output space bound-
aries, and are therefore closer together.

Overall, the performance of scenario search, generic archetypes and cluster-
ing are all noticeably better than scenario matrices, with scenario search perform-
ing best.

6.6.2.2 Plausibility

The three model-based scenario generation methods (scenario search, scenario
matrices, and clustering) all have comparably high plausibility scores. Further-
more, the scenarios are all within the Pareto hull of plausible model outcomes
(Figure 6.2), indicating these scenarios could plausibly occur.

The generic archetypes method, which relies on a priori assumptions about
the output space size and is therefore not strictly model-based, generates at least
one impossible scenario - a hypothetical model state which is not actually reach-
able. Specifically, this scenario envisions a world in which both high happiness
and high granularity (many patches) materialize. There are two more scenarios
which, while they lie within the bounds of the Pareto hull and thus appear feasi-
ble, lie between the distinctive bands noted earlier, which the model also cannot
reach.

Under the more narrow definition of plausibility mentioned above (within or
near one of the bands in the output space), the clustering method also generates
one scenario which is less plausible, even though the data underlying the cluster-
ing is entirely model-generated.

Overall, the three model-based methods (scenario search, scenario matrices,
and clustering) perform substantially better than generic archetypes, with sce-
nario matrices performing best by a small margin.

6.6.2.3 Comprehensiveness

Scenario search covers the output space most comprehensively. In fact, it even
covers more of the output space than the Pareto hull, with over 105% coverage.
This is because the Pareto hull is slightly concave for high patch numbers and
low happiness (see Figure 6.2), which the calculated scenarios polygon does not
account for.

The scenarios generated with a scenario matrix cover less than 20% of the
Pareto hull, as they all have few patches (<40) and therefore miss most of the
output space, which goes up to 150 patches.

The generic archetype scenarios span an area equal to almost 80% of the
Pareto hull, which is the second-highest coverage. However, this is a generous
calculation, since one of the scenarios included in this calculation lies outside the
Pareto hull. Excluding it would reduce the coverage to around 50%.
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diversity plausibility
comprehen-
siveness

multi-
plicative
rank
(score)

additive
rank
(score)

scenario
search 1 3 1 1 (3) 1 (5)

scenario
matrices 4 1 4 3 (16) 3 (9)

generic
archetypes 3 4 2 4 (24) 3 (9)

clustering 2 2 3 2 (12) 2 (7)

Table 6.1: Rankings of the four scenario generation methods across the three scenario set criteria,
with overall rankings computed using both multiplicative and additive scoring.

The clustering-generated scenarios omit the most extreme regions of the out-
put space by necessity, and therefore span a polygon covering only roughly 40%
of the Pareto hull’s area. Notably, one side of this polygon is concave (decreasing
its area slightly), as one scenario lies within the triangle spanned by the other
three.

Overall, none of the methods apart from scenario search cover a substantial
part of the entire Pareto hull. This is important because it shows that not only
are many plausible futures not being considered, but that these not-considered
futures are more extreme than the considered ones. In other words, the blind
spots are more impactful than the “visible spots”.

6.6.3 Comparison

When evaluating the four scenario generation methods across all three criteria
(see radar chart in Figure 6.3), we find that scenario search scores best overall,
scoring highest on diversity and comprehensiveness, and a close third on plausi-
bility. The other three methods have varying performance across the three crite-
ria, although they all perform poorly on at least one criterion.

By ranking the four scenario generation methods on each scenario set met-
ric, and then combining these rankings into a global ranking, we can identify
the best-performing method overall. The results are presented in Table 6.1. Us-
ing two different ranking methods, scenario search performs best overall, despite
being punished for ranking a close third on plausibility. Clustering ranks sec-
ond across both ranking methods, while the two model-free methods (scenario
matrices and generic archetypes) perform worst.
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6.7 Discussion

6.7.1 Scenario generation methods

Scenarios are widely used to support decision-making, but generating decision-
relevant scenarios for complex and deeply uncertain systems is difficult. We
therefore proposed a method which could computationally generate maximally
diverse, plausible, and comprehensive scenario sets for such systems. We then
evaluated this method against three existing scenario generation methods, and
found that it performed best overall based on the three aforementioned criteria.
In this section, we review our results and discuss their implications.

Overall, we find that scenario search generates the best scenario set, based on
the three established criteria. Our proposed method scores best on diversity and
comprehensiveness, and also performs very well on plausibility. Scenario matri-
ces ranks third, with its most significant shortcomings being that the resulting
scenarios are too similar, and that the range of plausible outcomes is poorly cap-
tured. The generic archetype-based scenarios rank last overall, failing to perform
well on any criterion. Finally, clustering ranks second overall, performing rea-
sonably well on two criteria, but failing to capture the most extreme plausible
outcomes. The overall effectiveness of the two truly model-based methods (sce-
nario search and clustering) indicates that simulation-based scenario generation
may be a useful method for decision support, especially where complexity and
deep uncertainty make mental simulation of the problem difficult.

Our analysis shows that at least for Schelling’s segregation model, distance
(which we interpret as diversity) in the input space does not translate into dis-
tance in the output space, and vice versa. The most distant input sets did not
generate the most extreme outputs, and only one of the most extreme outputs
lies against an edge of the input space. Supported by Lamontagne et al. (2018)
and Dolan et al. (2021), we believe this generalizes to many (if not all) complex
systems. By extension, existing scenario generation methods (e.g. scenario ma-
trices or generic archetypes) may not be applicable to complex systems.

As Derbyshire (2022) argues, futures in which extreme risks or black swans
materialize deserve more attention in decision-making than they currently re-
ceive. Including such extreme scenarios in scenario-based decision-making may
be an effective method of doing so. However, as shown in Figure 6.2, existing sce-
nario methods exclude themost extreme plausible scenarios, potentially blinding
decision-makers to precisely those futures which require more attention. The un-
derlying reason for this is different for every method. Matrix-based approaches
cannot know a priori which input combinations will create extreme or otherwise
decision-relevant futures, based on the system’s inherent nonlinearities. Scenar-
ios based on generic archetypes similarly presume a priori knowledge of the range
of plausible system behaviors. Finally, clustering identifies representative sce-
narios by selecting the most centrally located model outputs for each cluster, and
will therefore never select an edge case as a representative scenario. This further
supports the notion that these methods may be insufficient for decision support
where plausibility, rather than probability, is a focal point.
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The goal of policy analysis is to assist decision-makers in choosing preferred
courses of action, based on understanding the trade-offs between the conse-
quences of alternative solutions (Walker, 2000). In this context, the Pareto hull,
an intermediate result of our analysis, can be helpful to quantify these trade-
offs (Verstegen, Jonker, et al., 2017). Furthermore, it is desirable to base such an
analysis on future scenarios which could actually materialize. However, at least
one, and potentially two, of the studied scenario generation methods produced
scenarios which could never actually occur in the studied system. This may not
only make the resulting decisions less robust and effective, but also erode trust
in (computational) policy analysis as an analytical toolkit for effective decision
support.

6.7.2 Limitations

There are a number of limitations to scenario search. Firstly, a simulation model
must be used, which not only costs time andmoney to create, but may give a false
sense of security about our understanding of the system’s dynamics (Thomp-
son & Smith, 2019). Secondly, the optimization requires an explicit definition
of policy objectives. However, this is especially difficult under conditions of deep
uncertainty (Lempert et al., 2003). Thirdly, the simulation model must contain
the policy-relevant decision variables as inputs to actually generate useful in-
sights. Finally, running the many-objective optimization is time-consuming even
for simple models (Helgeson et al., 2021). In some decision-making contexts,
this time may not be available, or rapidly evolving circumstances may invalidate
simulation-based insights as quickly as they can be generated.

There are also methodological criticisms that can be levied against our anal-
ysis. By using Euclidean distance calculation for our optimization, we implicitly
weight the two outputs of interest equally. This may not be appropriate in all sit-
uations, or there may be constraints limiting one or more outputs. Furthermore,
we use a test case with a well-defined input space, which is unlikely to be the case
for more complex problems. On top of that, and in line with the first limitation,
our plausibility metric is based on the assumption that the simulation model is
a reasonable representation of the real-world system it mimics, which may not
be the case. Scenarios considered implausible by our approach, may therefore
still be reachable in reality. Finally, an approximation of the Pareto hull could
likely be found by drawing a convex hull around the results of a simple param-
eter sweep, eliminating the vast majority of function evaluations needed for the
optimization. However, it is likely that this would not capture the most extreme
and diverse scenarios plausible.

6.8 Conclusions

Scenario-based decision-making relies on sets of scenarios which are diverse,
plausible, and comprehensive. In this paper, we presented a novel approach for
generating such scenario sets which outperforms existing approaches based on a
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multi-criteria analysis. Our method, which we named scenario search, achieves
this by applying a two-step optimization procedure to a simulation model of the
studied system. Along the way, we showed that existing approaches may have
significant flaws when applied to complex systems, including generating indis-
tinguishable or nonsensical scenarios.

Based on the demonstrated effectiveness of our proposed method, and the
shortcomings of existing methods, we advocate for an increased usage of simu-
lation models when generating scenarios for decision support, especially where
complex systems are concerned. At the same time, we urge that in those deci-
sion support contexts where matrix- or archetype-based scenarios are currently
being used, that these scenarios be critically reviewed regarding their diversity,
plausibility, and comprehensiveness. A key area where such a review might be
necessary is the matrix-based set of Representative Concentration Pathways (van
Vuuren et al., 2011) and Shared Socioeconomic Pathways (Riahi et al., 2017) that
are widely used in climate modelling, and whose suitability and plausibility has
been criticized (Pielke & Ritchie, 2021).

A key step in ensuring a sustainable, equitable and livable future for human-
ity is understanding and embracing the complexity and uncertainty present in
the socio-technical-environmental systems surrounding us (Derbyshire, 2020).
Where scenarios are used for decision-making and governance, they must also
be generated in a way which acknowledges these inherent difficulties. While we
have shown that existing methods may not be sufficient for this task, there is
still much work to do in making more suitable concepts such as scenario search
in particular, or simulation-based exploratory modelling (Bankes, 1993) in gen-
eral, palatable to decision-makers. Therefore, we join Stanton and Roelich (2021)
in highlighting the need for continued research on how model-based decision
support can be integrated with the organisational and individual contexts of
decision-making challenges.
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Chapter 7

General Discussion

In this thesis, I explored methods for quantifying resilience under deep uncer-
tainty. This final chapter contains the main findings of the individual preceding
chapters, overarching themes of those chapters, implications for decision support
practice, suggestions for future research, and a conclusion.

7.1 Findings of Individual Chapters

I studied the quantification of resilience under deep uncertainty along two lines.
The first line of inquiry dealt with a condition I termed Multiplicity, or more
formally, level 4a uncertainty. This level of uncertainty is present when there
are many plausible metrics available for quantifying a system’s resilience, none
of which are inherently preferable. In Chapters 2, 3, and 4, we studied what
types of different resilience metrics exist, how different metrics apply to a simple
system, andwhether ensembles ofmetrics are a suitable approach for overcoming
the uncertainty of choosing a single resilience metric. I give a summary of these
chapters below.

Chapter 2 described a systematic scoping review of resilience metrics for
socio-ecological and -technical systems. We documented a variety of resilience
metrics found in the peer-reviewed scientific literature, and grouped them into
10 distinct categories based on the underlying conceptual approaches to quanti-
fying resilience, six for systems experiencing a single disturbance, and four for
systems experiencing multiple sequential disturbances. We also identified four
distinct categories of disturbances - sudden (e.g. earthquakes), continuous (e.g.
droughts), multiple sequential (e.g. repeated droughts), and suddenly ending
(e.g. bans on excessive resource extraction). Notably, the latter does not appear
in at least two previously published frameworks for disturbance types (Collins
et al., 2011; Lake, 2000). Finally, we found that there is little alignment between
socio-technical systems being studied using “engineering resilience” metrics (i.e.
within a single basin of attraction), and socio-ecological systems being studied
using “ecological resilience” metrics (i.e. multiple basins of attraction), respec-
tively. In other words, systems such as fisheries are studied as if the resource
stocks can never be extinguished, and conversely, systems such as power grids
are studied as if they can take on different configurations in response to a distur-
bance.

In Chapter 3, we studied the resilience of a set of stable cell patterns in the
cellular automaton Game of Life, so-called still lifes. We did this by applying a
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variety of disturbances to the still lifes, and quantifying their response using dif-
ferent resilience metrics centered around the still lifes’ pre- and post-disturbance
spatial patterns. We found that still lifes which are highly resilient to a particu-
lar disturbance are often poorly resilient to other disturbances. We also observed
that specific attributes of the still lifes, namely their number of connected com-
ponents, their size, and their density were good predictors of their resilience.
However, the strength and direction of the predictors varied depending on the
chosen resilience metric, indicating that no single metric can usefully describe a
still life’s resilience, and that a still life’s resilience is always specific to a given
disturbance and metric.

In Chapter 4, we studied whether the sensitivity to the choice of resilience
metric, established in the two previous chapters, could be overcome by using not
a single metric to study a system’s resilience, but an ensemble of metrics. This
had been proposed in the scientific literature by several authors, but not applied
in an optimization context yet. We applied a variety of disturbances to a simula-
tion model of resource-consumer dynamics, and quantified the system’s response
using a variety of conceptually distinct resilience metrics. Both the disturbances
and the metrics were based on the systematic scoping review performed in Chap-
ter 2. Using many-objective optimization techniques, we identified system pa-
rameter settings which gave high resilience scores across all five utilized metrics
for a given disturbance. We further showed that, with these multi-metric-optimal
parameter settings, the system may be more resilient when experiencing other
disturbances it was not optimized for, compared to parameter settings optimized
with a single metric. This indicates it may be possible to prepare systems to cope
with unforeseen future disturbances.

The second line of research dealt with a condition I termed Ignorance, or more
formally, level 4b uncertainty, which is present when there is no knowledge what-
soever about suitable metrics for quantifying a system’s resilience. Under such
conditions, immediate quantification is not advisable, as choosing a metric with-
out fully understanding its characteristic behavior might have undesired conse-
quences for the resulting decision outcomes (Jain, 2009). In place of quantifi-
cation, it may instead be appealing to qualitatively explore a system’s plausible
future behavior. This exploration can then be used as the basis for the analyst
and/or stakeholders to identify what constitutes resilience in this system, and
what appropriate metrics capturing this resilience might be - reducing the un-
certainty level from 4b to 4a, and enabling quantitative methods to be used. In
Chapters 5 and 6, I described two methods for exploring and summarizing a sys-
tem’s behavior using sets of scenarios. I recount these two chapters below.

In Chapter 5, we studied how the diverse dynamics of a complex system can
be summarized using time series clustering and rule induction. We first clus-
tered a simulation model’s time series outputs, each representing a plausible fu-
ture trajectory of the modelled system. We then performed rule induction for
each cluster, linking it to the underlying input parameter ranges from which its
constituent time series originated. Each of these clusters and associated gener-
ative input ranges can be thought of as a scenario representing some portion of
the system’s plausible behavior over time. We found it was possible to link clus-
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ters to highly specific parameter settings and model structure elements, exposing
potential time-dependent vulnerabilities to analysts and stakeholders.

Finally, Chapter 6 describes a novel approach to exploring the behavioral di-
versity of a complex system’s output space. We applied a two-step optimization
procedure to a simulation model, with the goal of finding a small number of
model outputs which summarize the model’s entire range of potential outputs.
These outputs can again be thought of as a scenario set, each output representing
one plausible future of the system which is maximally distinct from all others.
We compared this approach to three other methods for generating such scenario
sets, including one method inspired by Chapter 5, and found that our proposed
method performed equally or better than the existing methods on a number of
criteria, creating more diverse, plausible, and comprehensive sets. These sce-
narios may be beneficial for showing analysts and stakeholders unexpected or
extreme future states of the system.

7.2 Overarching Themes

From the different papers included in this thesis, a number of overarching themes
and insights emerge. In the following, I describe these insights, framed as state-
ments, and explain how they tie my and others’ work together. I also highlight
potential future research directions, and implications for model-based decision
support.

Statement 1: In the presence of a multiplicity of resilience met-
rics, quantifying resilience using an ensemble of conceptually
distinct metrics is a preferential solution to the problem of met-
ric choice.

Selecting a metric when analysing a system’s resilience is a sensitive task (Jain,
2009; Quinlan et al., 2016). Using an ensemble of conceptually distinct resilience
metrics for decision making, an approach which we laid the groundwork for in
Chapter 2, explored in Chapter 3, and demonstrated in Chapter 4, is a feasible
solution to the problem of selecting a resilience metric, with the additional ben-
efit of potentially making the system more resilient to novel disturbances. This
addresses my first line of research: how to quantify resilience under conditions
of multiplicity, or level 4a uncertainty.

In Chapter 2, we found that many alternative metrics exist for quantify-
ing what is conceptually the same attribute of complex socio-technical and -
ecological systems - their resilience. This observation is in line with the outcomes
of other reviews of resilience metrics, such as those by Hosseini et al. (2016),
Quinlan et al. (2016), and Sun et al. (2020). However, we believe our system-
atic approach and resulting conceptual classification are a useful contribution to
the literature, addressing the need for conceptually distinct (or “independent”)
resilient metrics highlighted in previous work (e.g. Kristensen et al. (2003) and
Mcmillan et al. (2017)).

93



7. General Discussion

In Chapter 3, we took the idea of conceptually distinct resilience metrics from
the systematic scoping review and applied it to a complex system experiencing a
variety of disturbances. We found that the evaluation of the system’s resilience
depended heavily on the specific resilience metric and disturbance. This outcome
resonates well with previous theoretical work framing resilience as specific to a
particular system, place, time, disturbance, etc. (Carpenter et al. (2001), Cutter
(2016), Meerow and Newell (2019)). Resilience analysis using multiple metrics
simultaneously, as we did it, has also been reported by a number of authors, in-
cluding Angeler and Allen (2016), Ingrisch and Bahn (2018), and Knippenberg
et al. (2019). By investigating correlations across the different applied metrics
and disturbances, we found that certain system parameter settings were more
or less resilient across the different disturbances, implying that resilience might
generalize after all.

In Chapter 4, we showed that using a set of conceptually distinct resilience
metrics may enable the configuration of a system which is more resilient to dis-
turbances it was not optimized for than a system which was optimized using a
single metric. This may represent a significant step towards general resilience,
or systems which can respond effectively to any disturbance they might experi-
ence, even ones they were never explicitly prepared for. Multi-metric reasoning
for decision support in general has been proposed by Mitchell (2009) and Man-
heim (2023), among others. In the context of resilience, Mumby et al. (2014)
and Duveneck and Scheller (2016) have proposed ensemble approaches to quan-
tification. To our knowledge, we are the first to apply the ensemble approach
in a resilience context using many-objective optimization. In a comparison of
multi-objective decision analysis methods, Huang et al. (2011) found that, for
the quality of the outcomes, the exact choice of method was secondary to the fact
that multi-objective approaches were used in the first place. This is tentative sup-
port that our proposed multi-metric approach to optimizing resilience, which we
applied to just one model, may generalize to other problem contexts.

Based on the outcomes of my first line of research, I recommend that re-
silience analysts evaluate a number of conceptually distinct metrics instead of
indiscriminately selecting a single one. Chapter 2 of this thesis may be helpful
in identifying candidate metrics. Furthermore, if the system’s resilience is to be
optimized, a many-objective optimization approach as demonstrated in Chap-
ter 4 may improve the robustness of an optimization process, at least in terms
of disturbances. However, the outcome of this is heavily dependent on the in-
volved metrics. Future research should therefore investigate more thoroughly
what correlation or similarity means in the context of (resilience) metrics, al-
lowing a more thoroughly grounded identification of candidate metrics for an
ensemble approach to quantifying resilience.
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Statement 2: In the absence of any suitable resilience metrics,
computational methods for scenario generation can explore and
summarize a system’s dynamics and the resulting vulnerabilities
and risks.

Under the most severe conditions of deep uncertainty, analysts are totally ig-
norant of, or stakeholders in complete disagreement about, suitable metrics to
quantify a system’s resilience. With quantification impossible, only qualitative
approaches remain, such as using scenarios to explore and summarize a system’s
plausible futures. Ideally, such scenario-based methods could be used to iden-
tify decision-relevant dynamics and vulnerabilities, as well as stakeholder pref-
erences, which may then inform the future selection of resilience metrics. In
Chapters 5 and 6, we developed and demonstrated novel methods for generating
and identifying such scenarios. The resulting scenarios may be useful for expos-
ing a system’s characteristic behavior modes and vulnerabilities over space and
time (Sterman, 2000), both of which are important for analyzing resilience (Smer-
lak & Vaitla, 2017; Zelnik et al., 2018). The two presented methods contribute to
my second line of research: how to quantify resilience under conditions of total
ignorance, or level 4b uncertainty.

Abandoning measurement may be a useful strategy under some circum-
stances, such as the absence of agreement or significant fear of the metric(s) being
gamed (Manheim, 2023). It also prevents undesired outcomes stemming from an
uninformed choice of metric (Boerlijst et al., 2013; Jain, 2009). However, it also
puts useful methods of model-based decision support such as global sensitiv-
ity analysis (Saltelli & Homma, 1992; Steinmann, Wang, et al., 2020) or (many-
objective) optimization (Kasprzyk et al. (2013), Chapter 4) out of reach. Thus, it
may be desirable to use qualitative methods such as scenario analysis to engage in
a dialogue with analysts and/or stakeholders about their perspectives on the sys-
tem’s resilience, and how this might be quantified. As Hitch (1955) pointed out,
eliciting these objectives is the primary goal of any systems analysis. The process
of building the simulation model underlying the generated scenarios may also
contribute in this regard, serving as a repository of knowledge (Alexandra et al.,
2023) or competing perspectives (Gotts et al., 2019) about the system, and help
kick-start dialogue and joint reasoning among stakeholders about their shared
system. With appropriate guidance (Moallemi et al., 2023), this may help create
shared perspectives, and eventually enable a quantitative approach as demon-
strated in Chapter 4, with all the benefits that brings.

Based on my second line of research, I recommend that analysts tasked with
decision support for improving the resilience of a complex system use scenario
methods to explore plausible future trajectories of the system in order to expose
new insights about the system’s behavior and the stakeholders’ objectives. The
method presented in Chapter 6 may be especially effective in this regard, as it
outperforms common scenario generation approaches, as well as a simplified ver-
sion of the clustering approach used in Chapter 5. Future research building on
this work should investigate how sets of scenarios can be used to elicit stake-
holder objectives and preferences specifically for resilience, for example by ap-
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plying the behavior clustering presented in Chapter 5 to resilience curves (Poulin
& Kane, 2021), or by applying the scenario search concept explored in Chapter
6 to ensembles of resilience metrics such as those in Chapter 4 to identify model
parameter settings generating maximal disagreement between resilience metrics.

Statement 3: Resilience metrics are models.

Resilience is not an inherent property of a complex system, but an attribute that
can be ascribed to (parts of) its dynamic behavior (Derissen et al., 2011; Meerow
& Newell, 2019; Park et al., 2013). The exact conditions under which this at-
tribute can be ascribed will differ based on the chosen metric. Therefore, it may
be more useful to think of the various resilience metrics identified in Chapter 2
and applied in Chapters 3 and 4 not as some inviolable truth about the studied
systems, but as (imperfect) models of what someone thinks resilience looks like
in those systems.

A resilience metric, such as the return time of a system to its pre-disturbance
performance level following a disturbance, is a simplified expression of the mul-
tidimensional concept of resilience - the ability of a system to withstand and
recover from a disturbance. This relation maps well to the term “model” - a pur-
poseful simplified representation of some other thing (Ackoff & Gharajedaghi,
1996). As Batty (2021) put it, models contain “the essence of the phenomenon
under scrutiny for the particular purpose in mind”. One could therefore say that
different resilience metrics are competing models of the concept “resilience”. As
Thomas and Uminsky (2022) pointed out, metrics merely showwhat is important
to the analysts who create them - it is therefore no surprise that different metrics
exist, with no inherent primacy over one another. To be clear, resilience metrics-
as-models are not simulationmodels like the case studies described in this thesis.
However, they certainly represent the complex concept of resilience in a simpli-
fied, static form. In the framing of Thompson and Smith (2019), the concept of
resilience is the Real World, and the metric is Model Land - and moving between
these domains must be done carefully and explicitly.

Under this proposed framing of resilience metrics as models, many of the
lessons formulated for modelling in general become immediately applicable to
such metrics. As Levins (1966) pointed out, the truth in modelling sits at the in-
tersection of independent lies - an interesting nod to the ensemble approach for
resilience metrics we proposed in Chapter 4. Page (2016) and Batty (2021) sim-
ilarly advocated for “many-model thinking”, which can only be interpreted as
an ensemble approach. By framing metrics as models, scientists formulating re-
silience metrics may also be encouraged to take on some habits which the (simu-
lation) modelling community has spent decades developing, such as documenta-
tion and reproducibility standards. This may alleviate several issues we encoun-
tered when studying resilience metrics, especially poor or lacking definitions of
applied metrics (Chapter 2, Myers-Smith et al. (2012), Smaldino (2017)). Finally,
by accepting that models are necessarily incomplete (Rosenblueth & Wiener,
1945) and serve more as a heuristic than a definitive representation (Oreskes
et al., 1994), the urge to define or identify “the one” metric for resilience may be
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tempered or even extinguished.
Based on the framing resilience metrics as models outlined above, it would

benefit analysts creating and using resilience metrics for decision support to rec-
ognize that their metrics are incomplete simplifications of their chosen interpre-
tation of the concept of resilience. I recommend that they apply best practices
from the simulation modelling community to their resilience metrics, such as
documentation or the exploration of alternative hypotheses (read: metrics). Fu-
ture research in this regard might investigate how documentation standards for
simulation models, such as the ODD protocol (Grimm et al., 2010), could be con-
ceptually translated for resilience metrics.

Statement 4: The paucity of generic multiple-attractor resilience
metrics is a major obstacle to scientific progress in understand-
ing and managing the resilience of complex systems.

Resilience metrics fall into two distinct categories - those operating within a sin-
gle basin of attraction, and those operating across multiple basins of attraction.
Holling (1996) referred to these two categories as “engineering resilience” and
“ecological resilience”, respectively. As we found out in Chapter 2, the former
category is very well represented among published resilience metrics, and the lat-
ter quite poorly. This imbalance - or rather, the overall lack of multiple-attractor
resilience metrics - became a genuine hurdle for our research described in Chap-
ters 3 and 4.

In Chapter 2, we found that the majority of resilience metrics included in our
synthesis, 37 out of 46 metrics (80%), operated within a single basin of attrac-
tion. This included 10 case studies of socio-ecological systems. One noteworthy
example was the work of Harada et al. (1992), who studied the resilience of whale
stocks to industrial whaling. In light of the extensive legal protections afforded
to whales on account of their near-extinction due to whaling, modelling such a
system with a single basin of attraction - that is, without the possibility of the
population dying out - is at least naive, if not outright dishonest. In some sense,
every system has at least two basins of attraction which are relevant for its behav-
ior - existence and nonexistence. However, most systems we documented in our
review were still studied using a single basin of attraction. In other words, their
continued existence was never at threat. Of the few metrics identified through
the systematic review which did allow for multiple basins of attraction, none of
them were formulated generically enough that they could easily be translated to
a different target system, unlike many of the single-attractor metrics. As a result,
we were also not able to classify the multiple-attractor metrics.

In Chapter 3, we used only metrics with a single basin of attraction, even
though many of the still lifes we examined disappeared (“died”) when exposed
to disturbances, in effect moving to a second basin of attraction. We also ob-
served several still lifes which reached alternative “live” steady states, indicating
that further basins of attraction existed. However, it was unclear how to quan-
tify these moves between attractors in a principled manner. In Chapter 4, we
similarly restricted ourselves to metrics with a single basin of attraction, as we
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wanted to ground our metric choices in the conceptual categories identified in
Chapter 2. We also had to discard a number of simulation experiments in which
the system did not reach its pre-disturbance performance level within the cho-
sen time frame. Some of these experiments may have shown the system reaching
a second basin of attraction, however, we were not able to quantify this with
our chosen metrics. In both chapters, the lack of generic resilience metrics for
systems with multiple basins of attraction hindered us from fully analyzing the
studied systems.

As this statement describes an observed gap in the scientific literature, it is
difficult to formulate positive recommendations for practitioners. This gap has
previously been highlighted by Angeler and Allen (2016), Egli et al. (2019) and
Fernandez and Ahmed (2019), among others. The future direction of research
is clear: developing generic resilience metrics for systems with multiple basins
of attraction will greatly enhance our ability to understand and manage the re-
silience of complex systems.

7.3 Conclusion

Based on the findings of this thesis, the following can be concluded: (1) if many
resilience metrics are available, resilience can be quantified using an ensemble
of conceptually distinct metrics, (2) if no resilience metrics are available, scenar-
ios can be generated exploring the system’s dynamics and vulnerabilities, (3) re-
silience metrics are models of the concept of resilience, and (4) the lack of generic
resilience metrics allowing for multiple basins of attraction is hindering scien-
tific progress in managing complex systems. The work in this thesis adds im-
portant knowledge to the fields of resilience and model-based decision support.
Advances at the intersection of these fields may result in more resilient socio-
technical and -ecological systems, and ultimately a planet better prepared for an
uncertain and volatile future.
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Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de
Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder,
P. K., Costanza, R., Svedin, U., . . . Foley, J. A. (2009). A safe operating
space for humanity. Nature, 461(7263), 472–475.

Rodrigues, P. P., Gama, J., & Pedroso, J. (2008). Hierarchical clustering of time-
series data streams. IEEE transactions on knowledge and data engineering,
20(5), 615–627.

Roege, P. E., Collier, Z. A., Mancillas, J., McDonagh, J. A., & Linkov, I. (2014).
Metrics for energy resilience. Energy Policy, 72, 249–256.

Rosenblueth, A., & Wiener, N. (1945). The Role of Models in Science. Philosophy
of Science, 12(4), 316–321.

Rosenhead, J., Elton, M., & Gupta, S. K. (1972). Robustness and Optimality as
Criteria for Strategic Decisions. Journal of the Operational Research Society,
23(4), 413–431.

Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte,
M. S. (2008). An assessment of fixed-capacity models of visual working
memory. Proceedings of the National Academy of Sciences, 105(16), 5975–
5979.

Roux, D., Kempster, P., Kleynhans, C., Van, V., & Du, P. (1999). PROFILE: Inte-
grating Stressor and Response Monitoring into a Resource-Based Water-
Quality Assessment Framework. Environmental Management, 23(1), 15–
30.

Rozenberg, J., Guivarch, C., Lempert, R., & Hallegatte, S. (2014). Building ssps
for climate policy analysis: A scenario elicitationmethodology tomap the

111



BIBLIOGRAPHY

space of possible future challenges tomitigation and adaptation.Climatic
Change, 122(3), 509–522.

Saltelli, A., & Homma, T. (1992). Sensitivity analysis for model output: Perfor-
mance of black box techniques on three international benchmark exer-
cises. Computational Statistics & Data Analysis, 13(1), 73–94.

Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathemat-
ical Sociology, 1(2), 143–186.

Schoemaker, P. J. (1993). Multiple scenario development: Its conceptual and be-
havioral foundation. Strategic management journal, 14(3), 193–213.

Sharma, P., & Chen, Z. (2020). Probabilistic Resilience Measurement for Rural
Electric Distribution System Affected by Hurricane Events. ASCE-ASME
Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engi-
neering, 6(2), 04020021.

Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications
(4th ed.). Springer International Publishing.

Siegenfeld, A. F., & Bar-Yam, Y. (2020). An Introduction to Complex Systems Sci-
ence and its Applications. Complexity, 2020, 1–16.

Simonovic, S. P., Venema, H. D., & Burn, D. H. (1992). Risk-based parameter se-
lection for short-term reservoir operation. Journal of Hydrology, 131(1),
269–291.

Skegg, D., Gluckman, P., Boulton, G., Hackmann, H., Karim, S. S. A., Piot, P., &
Woopen, C. (2021). Future scenarios for the COVID-19 pandemic. The
Lancet, 397(10276), 777–778.

Smaldino, P. E. (2017). Models are stupid, and we need more of them. In Compu-
tational Social Psychology (pp. 311–331).

Smerlak, M., & Vaitla, B. (2017). A non-equilibrium formulation of food security
resilience. Royal Society Open Science, 4(1), 160874.

Smith, A. B., & Katz, R. W. (2013). US billion-dollar weather and climate disas-
ters: Data sources, trends, accuracy and biases. Natural Hazards, 67(2),
387–410.

Smith, B. (2004). Oil wealth and regime survival in the developing world, 1960–
1999. American Journal of Political Science, 48(2), 232–246.

Spaniol, M. J., & Rowland, N. J. (2019). Defining scenario. Futures & Foresight
Science, 1(1), e3.

Stanton, M. C. B., & Roelich, K. (2021). Decision making under deep uncertain-
ties: A review of the applicability of methods in practice. Technological
Forecasting and Social Change, 171, 120939.

Steinmann, P. (2018). Behavior-based scenario discovery (Thesis). Delft University
of Technology.

Steinmann, P., Auping, W. L., & Kwakkel, J. H. (2020). Behavior-based scenario
discovery using time series clustering. Technological Forecasting and Social
Change, 156, 120052.

Steinmann, P., Wang, J. R., van Voorn, G. A., & Kwakkel, J. H. (2020). Don’t try to
predict COVID-19. If you must, use Deep Uncertainty methods. Review
of Artificial Societies and Social Simulation.

112



BIBLIOGRAPHY

Sterman, J. (2002). All models are wrong: Reflections on becoming a systems sci-
entist. System Dynamics Review, 18(4), 501–531.

Sterman, J. D. (1994). Learning in and about complex systems. System Dynamics
Review, 10(2-3), 291–330.

Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a com-
plex world. Irwin, McGraw-Hill.

Stonedahl, F., & Wilensky, U. (2011). Finding Forms of Flocking: Evolutionary
Search in ABM Parameter-Spaces. In T. Bosse, A. Geller, & C. M. Jonker
(Eds.),Multi-Agent-Based Simulation XI (pp. 61–75). Springer Berlin Hei-
delberg.

Strogatz, S., Friedman, M., Mallinckrodt, A. J., & McKay, S. (1994). Nonlinear
dynamics and chaos: With applications to physics, biology, chemistry,
and engineering. Computers in Physics, 8(5), 532.

Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With applications to physics,
biology, chemistry, and engineering. CRC press.

Sun, W., Bocchini, P., & Davison, B. D. (2020). Resilience metrics and measure-
ment methods for transportation infrastructure: The state of the art. Sus-
tainable and Resilient Infrastructure, 5(3), 168–199.

Taleb, N. N. (2007). The Black Swan: The Impact of the Highly Improbable (1st ed).
Random House.

ten Broeke, G. A., van Voorn, G. A. K., Ligtenberg, A., & Molenaar, J. (2019). Co-
operation can improve the resilience of common-pool resource systems
against over-harvesting. Ecological Complexity, 40, 100742.

ten Broeke, G., & Tobi, H. (2021). Mapping validity and validation in modelling
for interdisciplinary research. Quality & Quantity, 55(5), 1613–1630.

ten Broeke, G., van Voorn, G., & Ligtenberg, A. (2016). Which Sensitivity Analy-
sis Method Should I Use for My Agent-Based Model? Journal of Artificial
Societies and Social Simulation, 19(1), 5.

ten Broeke, G., van Voorn, G., Ligtenberg, A., & Molenaar, J. (2021). The Use
of Surrogate Models to Analyse Agent-Based Models. Journal of Artificial
Societies and Social Simulation, 24(2), 3.

ten Broeke, G. A., van Voorn, G. A. K., Ligtenberg, A., & Molenaar, J. (2017).
Resilience through adaptation. PLOS ONE, 12(2), e0171833.

Thomas, R. L., & Uminsky, D. (2022). Reliance on metrics is a fundamental chal-
lenge for AI. Patterns, 3(5), 100476.

Thompson, E. L., & Smith, L. A. (2019). Escape from model-land. Economics,
13(1), 20190040.

Tricco, A. C., Lillie, E., Zarin,W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher,
D., Peters, M. D., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C.,
McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Gar-
ritty, C., . . . Straus, S. E. (2018). PRISMA Extension for Scoping Reviews
(PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine,
169(7), 467–473.

Trindade, B. C., Gold, D. F., Reed, P. M., Zeff, H. B., & Characklis, G. W. (2020).
Water pathways: An open source stochastic simulation system for in-

113



BIBLIOGRAPHY

tegrated water supply portfolio management and infrastructure invest-
ment planning. Environmental Modelling & Software, 132, 104772.

Ulanowicz, R. E., Goerner, S. J., Lietaer, B., & Gomez, R. (2009). Quantifying sus-
tainability: Resilience, efficiency and the return of information theory.
Ecological Complexity, 6(1), 27–36.

van Voorn, G. A. K., Verburg, R. W., Kunseler, E. M., Vader, J., & Janssen, P. H. M.
(2016). A checklist for model credibility, salience, and legitimacy to im-
prove information transfer in environmental policy assessments. Envi-
ronmental Modelling & Software, 83, 224–236.

van Vuuren, D. P., Edmonds, J., Kainuma,M., Riahi, K., Thomson, A., Hibbard, K.,
Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen,
M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative
concentration pathways: An overview. Climatic Change, 109(1), 5.

Varela, F. G., Maturana, H. R., & Uribe, R. (1974). Autopoiesis: The organization
of living systems, its characterization and a model. Biosystems, 5(4), 187–
196.

Varela, F. J. (1997). Patterns of life: Intertwining identity and cognition. Brain and
Cognition, 34(1), 72–87.

Verstegen, J. A., Jonker, J. G. G., Karssenberg, D., van der Hilst, F., Schmitz, O., de
Jong, S. M., & Faaij, A. P. C. (2017). How a pareto frontier complements
scenario projections in land use change impact assessment. Environmen-
tal modelling & software, 97, 287–302.

Verstegen, J. A., van der Hilst, F., & Karssenberg, D. (2017). Locating the position
of a scenario projection in solution space. The 20th AGILE Conference on
Geographic Information Science.

Villalobos, M., & Razeto-Barry, P. (2019). Are living beings extended autopoietic
systems? An embodied reply. Adaptive Behavior.

Von Bertalanffy, L. (1968). General system theory. Braziller.
Voros, J. (2017). Big History and Anticipation. In R. Poli (Ed.), Handbook of Antic-

ipation (pp. 1–40). Springer International Publishing.
Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. P. (2004). Resilience,

Adaptability and Transformability in Social-ecological Systems. Ecology
and Society, 9(2), art5.

Walker, W. E. (2000). Policy analysis: A systematic approach to supporting poli-
cymaking in the public sector. Journal of Multi-Criteria Decision Analysis,
9(1-3), 11–27.

Walker, W. E., Lempert, R. J., & Kwakkel, J. H. (2013). Deep Uncertainty. In S. I.
Gass & M. C. Fu (Eds.), Encyclopedia of Operations Research and Manage-
ment Science (pp. 395–402). Springer US.

Walker, W. E., Marchau, V. A. W. J., & Swanson, D. (2010). Addressing deep un-
certainty using adaptive policies: Introduction to section 2. Technological
Forecasting and Social Change, 77(6), 917–923.
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2
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B
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d
, 

T
D
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P
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k
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N

S
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0
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4
) 

𝐼 𝑛
=

𝑋

𝑋
𝑚
𝑎
𝑥

 
𝑋

: 
w

ei
g
h
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 s
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er

 

𝑋
𝑚
𝑎
𝑥
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m
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 s
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s 
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w
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S
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n
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n
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le
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u
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s 
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1
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n
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D
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b
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d
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 b
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 s
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p
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p
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p
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 c
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b
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N
o
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ap
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le
 

S
o
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o

-e
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g
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m
u

lt
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m
u
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2
2
 

M
o
n
d

al
, 
M

S
; 

W
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i,

 
S

A
 (

2
0
0
7

) 
𝛾 𝑟
,𝑠
( 𝑛
)
=
1
−
P
ro
b
[(
𝑋
𝑟
,𝑠
+
1
∩
𝑋
𝑟
,𝑠
+
2
∩
…
…
∩
𝑋
𝑟
,𝑠
+
𝑛
)
∈
𝐹
|𝑋
𝑟
,𝑠
∈
𝐹
] 

𝑟:
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ea
r 
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n
 

𝑋
: 
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st

em
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u
tp

u
t 
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e 

𝑛
: 
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ep

s 
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ea
d
 

𝐹
: 
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il

u
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te
 

S
o
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o

-t
ec

h
n

ic
al

 
si

n
g

le
 

m
u

lt
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le
 

2
3

A
 

Ja
in

, 
S

K
 (

2
0
0
9

) 
𝛾 m

e
a
n
=
1 𝑀
[∑

𝑑 𝑗

𝑀 𝑗=
1

]−
1

 
𝑀

: 
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l 

n
u
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b
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f 
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il
u
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𝑑 𝑗
: 
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u

ra
ti

o
n

 o
f 
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j 
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o
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o
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h
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n
g
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u
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B
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in

, 
S

K
 (

2
0
0
9

) 
𝛾 m

a
x
=
[m
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𝑗
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−
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𝑑 𝑗
: 
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u
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o
n
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f 
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il

u
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en

t 
j 

S
o
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o
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h
n
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n
g
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m
u

lt
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le
 

2
4
 

P
et

ch
ey

, 
O

L
; 

G
as

to
n

, 
K

J 
(2

0
0
9

) 
“O

u
r 

m
ea

su
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f 

re
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li
en

ce
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𝑅
𝑋
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 t
h
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 c
h
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g
e 
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u
n
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n
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d
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 c
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d
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y
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h
e 
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o
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g
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n
) 
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f 

a 
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u
b
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d
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m
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N

o
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b
le

 
S

o
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al
 

m
u
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d
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2
5
 

R
ee

d
, 
D

A
; 

K
ap

u
r,

 K
C

; 
C

h
ri

st
ie

, 
R

D
 (

2
0
0
9

) 
𝑅
=
∫

𝑄
( 𝑡
) 𝑑
𝑡

𝑡 2 𝑡 1 (𝑡
2
−
𝑡 1
)

 

𝑄
( 𝑡
) :

 q
u
al

it
y

 c
u
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e 

𝑡 1
,𝑡
2
: 
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d
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o
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 o
f 
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e 

ti
m

e 
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d
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n
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h
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2
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A
 

W
an

g
, 

D
W

; 
Ip

, 
W

H
 

(2
0
0

9
) 

𝑟 𝑖
=
∑

𝑝
𝑗
𝑞
𝑗
m
in
{𝑑

𝑖,
𝑠 𝑗
,𝑐
𝑗
}

𝑔 𝑗=
1

𝑑
𝑖

 

𝑔
: 

su
p
p
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s 

𝑝
𝑗
: 
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p
p

ly
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b
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y
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f 
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j 

𝑞
𝑗
: 
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y
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f 
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e 

j 
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 d
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d
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f 
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 c
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2
6

B
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an

g
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D
W

; 
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, 
W

H
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0
0
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) 

𝑅
=
∑

𝑤
𝑖𝑟
𝑖

𝑛
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𝑛
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d
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𝑟 𝑖
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d
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2
7
 

W
h

it
so

n
, 
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; 
R
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-

M
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q
u
ez

, 
JE

 (
2
0

0
9

) 
𝑅
(𝛼
,𝛽
)
=
𝑃
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)
≥
𝑑
|𝛼
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)∀
𝛽

 
𝛼
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s 
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 c
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 c
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D
o

ll
in
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O
R
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V
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E
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h
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 d
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 p
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 c
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𝐸
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𝐷
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 p
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 d
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h
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 t
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𝑛

𝑛
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𝑚
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 p
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𝑛
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𝑇
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o
e,

 E
; 

S
ch

u
lm

an
, 

P
R

 

(2
0
1

2
) 

“[
..

.]
 w

e 
d

ev
el

o
p

ed
 a

 g
ra

p
h
ic

 d
is

p
la

y
 o

f 
w

h
at

 w
e 

te
rm

 a
n
 “

ed
g

e
 

re
si

li
en

ce
 t

ra
je

ct
o

ry
” 

(E
R

T
).

 [
..

.]
 O

n
e 

m
ea

su
re

 o
f 

th
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h
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 p
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N
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C
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o
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H
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ra
n
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P
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 c
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D
u

v
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k
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M
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S
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M
 (

2
0
1
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) 
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𝑘
=
√
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𝑘

√
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𝑑 𝑗
𝑘
: 

m
in

im
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 m
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d
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 t
im

e 
(j

) 
an

d
 (

k)
 

S
o

ci
o

-e
co

lo
g
ic

al
 

si
n
g

le
 

su
d
d
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o
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E

; 
D
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er
, 

U
; 

H
ag

h
ig

h
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A
; 

N
o

w
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, 
W

 (
2

0
1
9

) 
𝐻
𝑃
𝐼
=
1
0
0
×
(
1
−
𝑉 𝑓
𝑙𝑜
𝑜
𝑑
𝑖𝑛
𝑔

𝑉 𝑟
𝑢
𝑛
𝑜
𝑓
𝑓

)
 

𝑉 𝑓
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𝑜
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l 
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v
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e 
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𝑢
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𝑜
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𝑓
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e 
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n
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B
u
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an

, 
S
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B
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o
, 

R
; 

A
h

m
ed

, 
W

; 
A
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an

, 
M

; 
R

ai
s,
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N

; 

R
af

iq
u

e,
 A

; 
A

n
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ri
, 
K
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0
1

9
) 

R
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n
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=
P
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1
) ϵ
N
F
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)ϵ
F
} 

S
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b
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n
d

er
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n
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d
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n
 

N
F
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o
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p
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ed

 
F
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o
t 
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o
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o
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h
n
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n
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m
u
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M
in

, 
O

; 
C

h
u

an
g

, 
L

; 
M

in
, 
X

 (
2
0

1
9

) 
𝑅
=
∑

𝑤
𝑖
×
𝑃
𝑅
(𝑡
𝑐𝑖
)

𝑚 𝑖=
1

 
𝑤
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h
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t 

𝑃
𝑅
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𝑐𝑖
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n
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 l
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𝑡 𝑐
𝑖 
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n
d
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J;

 C
h

en
, 
K

F
; 

W
o

o
d

, 
R

R
; 

L
u

d
w
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, 

R
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0
2

0
) 

𝐹
𝑅
𝐼 ℎ
( 𝑡
)
=
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∑
𝑊
𝐹 𝑦
∙𝐼
𝑦
(𝑡
)

∑
𝑊
𝐹 𝑦

,𝑡
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𝑠
,𝑡
𝑒
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𝐹
𝑅
𝐼 ℎ
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−
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∏

(𝐼
𝑥
)𝑊

𝐹 𝑥
]0
,0
0
1

∑
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