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What propelled the human ‘revolutions’ that started the Anthropocene? and
what could speed humanity out of trouble? Here, we focus on the role of
reinforcing feedback cycles, often comprised of diverse, unrelated elements
(e.g. fire, grass, humans), in propelling abrupt and/or irreversible, revolu-
tionary changes. We suggest that differential ‘spread of the cycles’ has
been critical to the past human revolutions of fire use, agriculture, rise of
complex states and industrialization. For each revolution, we review and
map out proposed reinforcing feedback cycles, and describe how new sys-
tems built on previous ones, propelling us into the Anthropocene. We
argue that to escape a bleak Anthropocene will require abruptly shifting
from existing unsustainable ‘vicious cycles’, to alternative sustainable ‘virtu-
ous cycles’ that can outspread and outpersist them. This will need to be
complemented by a revolutionary cultural shift from maximizing growth
to maximizing persistence (sustainability). To achieve that we suggest that
non-human elements need to be brought back into the feedback cycles
underlying human cultures and associated measures of progress.

This article is part of the theme issue ‘Evolution and sustainability:
gathering the strands for an Anthropocene synthesis’.

1. Introduction

How did humanity get into the Anthropocene? and how can humanity make it
an Epoch to be proud of? These are huge questions with many disciplines and
perspectives contributing to answering them. Here, we focus on the processes
that determine which human systems—such as farming or capitalism—come
to dominate and transform the world, and how one system can, sometimes
abruptly and/or irreversibly, supersede another in a revolutionary change.
An abrupt transformation to sustainability is now required worldwide to
avoid the worst damages from climate change and nature loss, and to tackle
rising global inequality. Hence, it is important to understand how current
unsustainable human systems became dominant, as the same forces are prob-
ably keeping them resiliently in place. This can help point to the qualities
that more sustainable systems need to possess to rapidly displace them.

There are at least three theoretical approaches to understanding which
large-scale human systems come to dominate and transform the world. First
is cultural evolution, which considers how information capable of affecting
individuals” behaviour (i.e. culture) that is acquired from other humans, can
change over time [1]. Second is complex adaptive systems theory, which empha-
sizes how flows of information through feedback loops can give rise to and
affect the spread and persistence of different non-equilibrium sociocultural sys-
tems [2,3]. Third is the theory of long-run economic growth, which focuses on
how changing feedbacks between human population, innovation and resources
over time have produced transitions between different growth regimes [4-7].
Here, we seek to synthesize insights from these three approaches with a
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focus on identifying the reinforcing feedback loops behind
past, and possible future, human revolutions.

Recently with colleagues, we introduced a ‘survival of
the systems’ framework [3] that attempted to bridge the evol-
ution and complex systems approaches. This recognized
that selection based solely on differential persistence [8]
could be a plausible mechanism for the evolution of large-
scale social [9,10] and ecological [11,12] systems. In essence,
those systems with lower extinction rate or higher spread
rate tend to come to dominate the world [9]. As a locus for
selection, we focused on the irreducible self-amplifying or
self-damping properties of feedback cycles, as these can be
critical to determining the spread and persistence of the
social-ecological systems containing them [3]. Innovation
and selection at lower levels can provide a source of variation
in feedback cycles at the (higher) system level [13]. Differen-
tial extinction tends to be a slow evolutionary mechanism,
with a timescale of approximately 500 years which may
apply to early societies, but is far too slow to explain e.g.
the Industrial Revolution [10]. By contrast, some systems
out-spreading other systems can be a faster evolutionary
mechanism [14], intuitively closer to familiar measures of
‘fitness” based on growth and fecundity.

Here in ‘spread of the cycles’, we make a further bridge
to long-run economic growth theory, and we focus on identi-
fying and visualizing key proposed self-amplifying feedback
cycles which can affect the differential spread of major social-
ecological systems—especially those that played a role in past
‘revolutions’ that got us into the Anthropocene: the taming
of fire, the Agricultural Revolution, the rise of complex
states and the Industrial Revolution. This also draws on
existing systems approaches to the evolution of societies,
including: systems ecology’s focus on auto-catalytic feedback
cycles [15]; industrial ecology’s identification of different
socio-metabolic regimes [16]; archaeologist’s identification
of reinforcing feedbacks in the rise and fall of complex
societies [17]; and comparative historian’s inferences of
causal relationships [18].

We recognize that there are a wide variety of hypotheses
for each past revolution and often a shortage of data and
models to engage in comparative hypothesis testing. Our
aim is not to solve that problem, but rather to aid understand-
ing by synthesizing and framing existing hypotheses and
insights within a common framework of causal feedback
loop diagrams. This is a widely recognized early step in sys-
tems thinking towards more formalized systems modelling
and hypothesis testing [19], and we were struck by the lack
of it in relevant literature—with notable exceptions [20].
For some specific transitions more advanced progress is
being made, e.g. through the construction and calibration
of models from cross-cultural data [21], or formalized
hypothesis testing using large historical datasets [18].

For each past revolution, we briefly consider how to
interpret key feedbacks from a cultural evolution perspective.
Then we turn to focus on identifying alternative, more sus-
tainable feedback cycles that could play an urgent role in
getting us towards sustainability. Here, we draw on existing
systems approaches to understanding sustainability trans-
formation, including: leverage points [19]; limits to growth
[22]; industrial ecology [23]; ecological economics [24]; and
transitions research [25].

We start by orienting our approach with respect to
existing theories and introducing some key concepts.

We take a pluralist approach to understanding which human
systems come to dominate and transform the world, drawing
on several explanatory frameworks.

Cybernetics long-ago established that a single system
with a source of variation within it can gain persistence-
enhancing feedback properties, through a series of repeated
trials over time [26-28] (without requiring a population of
systems). Darwin introduced ‘population thinking’: looking
at a population of items of different types (subpopulations)
with the frequency of types changing over time [29]. Within
population thinking, there are nested explanatory frame-
works [30]: a population is evolutionary if the frequencies of
different types at a given time is largely explained as a func-
tion of their frequencies at earlier time steps (as encapsulated
in the Price equation [31,32]). An evolutionary population is
subject to natural selection if the items exhibit variation,
faithful transmission of information through time (heritabil-
ity), and differences in fitness. Within natural selection, a
population is replicative if heritability is secured by some
form of replication.

The economic theory of long-run growth [4-7] often
portrays the development of a single ‘economic system’ trans-
forming over time, with faster growing incarnations of the
system superseding slower growing ones, thanks to stronger
reinforcing feedbacks of endogenous growth. However, the
human world contains a population of different types of
system whose proportions have changed over time—e.g.
industrialized capitalism still coexists with agrarianism and
some foraging. Hence, we focus on population thinking,
specifically evolutionary populations of systems that exhibit
variation but are not replicative. Instead of replication we
focus on variation in their feedback loops giving rise to differ-
ential spread and persistence, affecting ‘fitness’ in the sense of
dominance over space and/or time. There are several mechan-
isms of ‘heritability’ by which feedback information could
be faithfully transmitted through time, but this is a point of
debate and research [3]. Hence, we remain agnostic about
whether we are dealing with a form of natural selection,
noting that cultural evolution theory already includes other
mechanisms which are not forms of natural selection—notably,
humans intentionally produce variation in pursuit of specific
goals [30]. We do deal with a dynamical form of ‘stability-
based sorting’—or ‘survival of the stable’ [33]—the general
principle that stable systems tend to accumulate and predomi-
nate over time [34]. We interpret this here as more rapidly
spreading systems tending to predominate (so long as they
are stable in the sense of retaining their identity over time).
For example, autocatalytic feedback cycles can rapidly come
to dominate a network, accumulating more autocatalytic
cycles as they do so [35]—although they are vulnerable to
parasitism [36].

Over the past 2 Myr, human innovation has played a key
role in reinforcing feedbacks that affected which systems
came to dominate and transform the world. Innovation is
often portrayed as random (passive), just scaling with
(human) population size—i.e. a larger population has a greater
chance of producing inventors and inventions [37]. However,
innovation is also contingent in that it scales with prior knowl-
edge and innovations [38], making existing knowledge and
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Figure 1. Reinforcing feedback loops in the human use of fire. Solid lines with ‘+" signs denote direct relationships. ‘R’ denotes reinforcing ( positive) feedback loops,

which are described in the text.

technology relevant populations. Innovation is also often inten-
tional (active), scaling with education, triggered by problems
that need to be solved, and sometimes undertaken for prestige
and social reward [20,39]. This is a far cry from random
mutation as a source of variation in biology. The contingency
of knowledge and technology is one source of a ‘ratchet
effect’ whereby cultural evolution can become hard to reverse
beyond a certain point [40]. Irreversible ratchet effects are a
way that human systems can accumulate complexity over
time, building upon previous systems. ‘Cumulative cultural
evolution” describes how human cultures can accumulate
modifications over time, resulting in complex traits that no
single individual could invent [41], such as agricultural systems
[42]. Humans are also great niche constructors, altering their
ecological and developmental environments in ways that
feed back to affect their genetic and cultural evolution [43],
agricultural being a prime example [42]. Such gene-culture coe-
volution can sometimes generate strong reinforcing feedback
resulting in ‘runaway’ cultural niche construction [44].
Systems can interact spatially, exchanging genetic and
cultural information and sometimes engaging in conflict.
Differential spread of systems across space can occur through
several mechanisms. Diffusion is the tendency for anything
to move from a region of higher concentration to one of
lower concentration (and in its general form is passive not
purposive). For humans, in the absence of geographical bar-
riers, denser populations will tend to spread into less densely
populated regions (demic diffusion). Reinforcing feedbacks
may promote spread by increasing population density (trigger-
ing diffusion) and/or by involving self-reinforcing spreading
processes, such as fires or disease vectors. Technology [45]
and other cultural items (e.g. ideas, languages) may also ‘dif-
fuse’” within and between systems (cultural diffusion), but in
these cases of cultural transmission of information, adoption
(or not) is often deliberate. Where underused resources are
available somewhere and this opportunity is communicated
to others it can reinforce dispersal there. Where natural selec-
tion applies it tends to favour dispersal, even in a uniformly

populated world, to minimize competition with relatives
[46]. There are also deliberate, aggressive mechanisms of differ-
ential spread, including waging wars [47]. These may result in
one human system subsuming another, assimilating its people,
goods and innovations (a form of recombination mechanism).

Armed with these general principles we now turn to
identifying the reinforcing feedback cycles involved in past
human revolutions.

3. Palaeolithic fire use

The first human revolution was the intentional use of fire,
which marked the beginning of a social metabolism (the collec-
tively organized extension of energy and material use beyond
biological needs) [48]. Different innovative uses of fire as a tech-
nology triggered reinforcing feedbacks across scales (figure 1).
Much of early human evolution happened in or near savannah
ecosystems in Africa, where existing self-amplifying feedbacks
involving grasses promoting fire and herbivory and thus
excluding trees were crucial to the expansion and maintenance
of the savannah state [3] (figure 1; cycle '/RO’—where ‘R’ is used
throughout to denote reinforcing feedback). Sub-Saharan
grasslands expanded until approximately 1.8 Ma and their
associated fires improved resource availability for foraging ani-
mals—including early hominins [49]. It is hypothesized that
they learned to transport natural fire to expand burned area
and resource availability in this interval [49], thus increasing
food capture, energy input, population and fire use (R1).
Resulting improvement in diet, including naturally cooked
food, has been argued responsible for reductions in tooth
size, increased mobility, and thus early dispersal of Homo
erectus approximately 1.9 Ma [49,50].

Archaeological evidence for intentional, controlled use of
fire (in hearths) appears later approximately 1.5-1 Ma [51].
Cooking detoxifies food providing greater food diversity and
significantly increases food energy input per capita: to a factor
of 2—4 above average physiological energy demand [52]. This
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could support greater hunting and gathering activity and food
capture (R2), greater human population and fire use (R3) and
dispersal (R4) [46]. Controlled fire also provided warmth and
protection from predators reducing morbidity and mortality
(R5). At larger scales, use of fire for warmth probably facilitated
human dispersal to colder climates [53], increasing global popu-
lation (R6). Around 400 ka, the archaeological signal of fire
becomes geographically widespread consistent with wide-
spread cultural diffusion of this technology [54]. Later (by
approx. 165 ka) fire was used to manufacture improved tools
[55], thus further increasing food capture and energy input
(R7). With fire under control, its use in landscape modification
could increase, interacting with ecological reinforcing fire feed-
backs (R0) to facilitate (further) transition of forest to grassland
and savannah, further increasing resource availability (R1).
Deliberate conversion of woodlands to grasslands by anthropo-
genic fire is seen from approximately 40 ka in Africa [56]. In
drier Australia, Aboriginal fire management involving frequent
small-scale hunting fires buffered the landscape against large-
scale fires started by lightning strikes, increasing vegetation het-
erogeneity, mammal diversity and resource availability [57,58].

Considering these feedback cycles (figure 1) in an evol-
utionary light: small-scale reinforcing feedbacks (R2-R5)
would have contributed to fire-using groups attaining higher
population density than non-fire-using ones and thus tending
to diffuse at their expense. There could also be group selection
based on differential spread of fire-using groups [9]. Large-
scale reinforcing feedback from using fire in landscape modifi-
cation (R1) amplified pre-existing feedback (R0) which already
involved multiple ecological participants, thus creating and
enhancing the spread (R4, R6) of the first social-ecological
system [59]. Spread of the fire cycles continued after the
advent of agriculture. Today all human cultures depend on
fire and many still live in fire managed landscapes.

Although technological progress and increasing popu-
lation can be reciprocally reinforcing in hunter—gatherer
societies, it is heavily constrained by ecosystem carrying
capacity, consistent with a lack of evidence for endogenous
growth in foraging societies (in the Standard Cross Cultural
Sample dataset) [21]. Despite fire use, foraging societies still
typically needed large areas (and therefore had low popu-
lation densities) because most natural biomass is not edible
to humans. However, in places where natural resources
were concentrated, higher population densities and more
complex social structures, including settlements, handcraft,
trade and social stratification could be supported [60,61].
Settlement in turn may have facilitated the next revolution.

The Neolithic revolution was the transition from hunting and
gathering to agriculture as the predominant mode of subsis-
tence. Agriculture originated at least 6-10 times independently
during the Holocene and spread to many (but not all) cultures.
It ultimately increased social metabolism [48]—including
the conversion of solar energy into consumable calories, and
(via biomass) into heat, mechanical power and chemical
transformation (metallurgy)—but this was not the case initially.

Domesticating plants and animals was easy [62], but early
farming often had lower calorific return on investment than
foraging [63,64], posing a puzzle as to what caused agriculture
to become dominant. At low human population density,

foraging is favourable, but as population density increases [ 4 |

there are diminishing returns of additional foraging labour
owing to resource constraints [65]. By contrast, for early farm-
ers with abundant land available for conversion, there would
have been relatively constant returns to labour [65]. Hence at
a critical population density some agricultural activity could
begin alongside foraging [65]. Declining productivity of fora-
ging, increasing productivity of agriculture, or population
growth could trigger this reversible transition (trans-critical
bifurcation point) [65]. Its reversibility is consistent with his-
torical reversions from farming to foraging [61,66], and with
a variable mix of farming and foraging activities among pre-
industrial societies [61,62]. Crucially, however, farming can
support higher human population density than foraging,
because it increases the density of edible species. Hence if
population density increased further to the point it exceeded
the foraging carrying capacity of the surrounding ecosystem,
agriculture could become irreversibly locked in through a
‘ratchet effect’ [65].

Once sedentism and farming began, several reinforcing
feedbacks could have brought population density past this irre-
versible tipping point of agricultural lock-in [21,62] (figure 24;
‘R1’): sedentism reduces limitations on family size imposed by
a nomadic lifestyle, increasing population density and reliance
on agriculture (R2). Children can be put to useful work in farm-
ing (but rarely in foraging), increasing productivity (R3) [62].
Wealth can also be more easily accumulated (as possessions
do not need to be carried around) potentially producing
social stratification, which includes demands for luxury food
(R4) [62]—although some societies actively countered this
[61]. Crucially, sedentism (affording more time) and popu-
lation growth (producing more inventors) can trigger
innovation and technological improvement [4,62,63], increas-
ing agricultural productivity and population density (R5)
[21]. This endogenous growth feedback (R5) even has a
quantitative estimate of its gain factor (approx. 0.25) from com-
paring pre-industrial societies [21]. It would have interacted
with the inherent reinforcing feedback in population growth,
and the damping (Malthusian) feedback that increasing
population reduces resources per capita (B1).

Accepting the evidence that increasing population density
spurs technological innovation [4,63], the question becomes;
what were the technological innovations and investments in
landscape improvement [67] that (transiently) boosted agricul-
tural productivity and population density? Several reinforcing
feedbacks of agricultural intensification can be identified
(figure 2b): water management systems e.g. storage, canals,
irrigation channels, increased water input [68] (R1). Soil
improvement included stone clearance and terracing (to control
erosion) [69] (R2). Nutrient addition included the use of natural
fertilizers (e.g. guano) [70] (R3). Nutrient recycling began with
the return of human excreta to fields as fertilizer (night soil)
(R4). Recycling of animal manure and urine added to a highly
productive, self-perpetuating system [71] (R5). Addition of
charcoal to soils—creating ‘anthropogenic dark earths'—aided
the retention of water and nutrients [72] (R6). Draft animal
power improved efficiency and productivity [73] (R7).

Reinforcing feedbacks of agricultural extensification can also
be identified, which built on existing feedbacks (figure 2b): pro-
ductive agricultural area was increased through the use of fires
to clear forests e.g. in the pre-Columbian Amazon approxi-
mately 4.5 ka [74] and New Zealand approximately 1 ka [75]
(R8). Domesticated grazers then helped maintain pasture by
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Figure 2. Reinforcing feedback loops proposed to have propelled the Neolithic agricultural revolution. (a) Feedbacks behind the establishment of agriculture. (b)
Feedbacks behind the endogenous growth of agrarian systems. Solid lines with ‘+’ signs denote direct relationships, dashed lines with ‘—" signs denote inverse
relationships. ‘R" denotes reinforcing (positive) feedback loops, ‘B" balancing (negative) feedback loops. Numbered loops are described in the text.

eating tree saplings (R9). In many climates, the cleared
land increased natural wildfire excluding trees (‘R(’, as in
figure 1). Pastoralism is a form of extensification to lands unsui-
table for crop growing, which can also be reinforced by
intentional fires (R8) and the domesticated animals themselves
maintaining more productive landscapes (R9) [76]. Concen-
trations of manure in the pastoralist landscape (e.g. around
watering holes) can also produce long-lived islands of
productivity and nutrition [77] (R5).

Once dense farming populations were established, they
would have tended to diffuse at the expense of less dense fora-
ging ones [78,79]. Reinforcing feedbacks of extensification
(figure 2b; R8, R9, R0) could also propel the spread of farming
across space, creating persistent changes in landscape and
reducing land and natural resource availability for foragers
(although it might invite them to plunder farms). Spread of
farming traits by cultural diffusion would have depended
on the relative productivity of foraging (which could be

superior). Where both ways of living were equally productive,
the persistence of agricultural landscape modifications and the
irreversible lock-in to farming would have tended to cause
farming to spread at the expense of foraging. Data from
Europe suggests slow genetic (demic) diffusion dominated
over faster cultural diffusion [78,79].

Considering these feedback cycles in an evolutionary
light: some are within social systems (figure 2a; R2, R4), but
most involve other species (domesticated and wild) and
environmental variables (figure 2b). Their success (or other-
wise) in amplifying the population of farmers was a property
of the feedback loops, dependent on other species and
abiotic variables. For example, persistence and spread of
pasture created in an originally forested region could depend
on both domesticated herbivores (R9) and altered fire
frequency (RO).

Productive agriculture was a necessary condition for the
next revolution [18].
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5. Rise of complex states

The first complex states started to emerge abruptly from
approximately 7 ka onwards, following periods of conflict
and limited population growth (or even decline) [80] (possibly
linked to climate or environmental degradation). Once
established, they were propelled by reinforcing feedbacks of
innovation, including increasing governance complexity boost-
ing agricultural productivity [18], and specialization (division
of labour) improving performance [3]. Thanks to these
feedbacks, agricultural states are estimated to have had three
times the population density of non-state-occupied agricultural
regions [81]—enabling their diffusion. In addition, agricultural
productivity improvements supported the maintenance of
armies and associated warfare [18], improving the competitive
advantage of farming states over less productive farming
groups, and of larger states over smaller ones. This reinforcing
feedback produced a ‘competitive ratchet’ [82], in which war
was a key driver of increasing social complexity [18,83].
Geography was also important. China’s tendency towards
early and persistent political unification, in contrast with Eur-
ope’s protracted polycentrism, can be explained by the
existence of a core region of highly productive agricultural
land in northern China, whereas Europe’s productive lands
are divided by topographical barriers [84]. Farming states
and confederations of nomadic pastoralists repeatedly came
into conflict at steppe grassland frontiers, where domesticable
horses provided a key military technology for the nomads
enabling them to conquer and extort resources from the farm-
ers [85]. This generated reinforcing feedback between military
technological innovation on both sides, increasing agrarian
state complexity, size and resources that could be plundered
[81,85] (figure 3). This reinforcing feedback can explain the
expansion to extraordinary size of some old world states [81].
However, those very large states typically did not have

correspondingly long lifetimes, because within them escalating
elite conflict for control of dwindling resources led to instability
and civil war [81]. The inter-polity reinforcing feedback
(figure 3) repeated when European settlers introduced horses
to Native American communities, who then rapidly assimi-
lated them into trade networks, hunting practices and
resistance against the invaders (e.g. the Comanche) [3].

Thinking evolutionarily: crucial reinforcing feedbacks had
now shifted further to the social realm, but still depended
on other ecological participants in ever more productive
agricultural systems. A tension between spread and persist-
ence emerges: reinforcing feedbacks accelerating the spread
of a new system may end the persistence of incumbent sys-
tems but are not in themselves a source of stability for the
spreading system. Sometimes they may trigger internal rein-
forcing feedbacks that shorten persistence of the spreading
system—e.g. growing social inequality and internal conflict
[81]. However, while specific states and levels of social com-
plexity may be transient, underlying feedback structures (e.g.
figure 3) appear persistent.

With agriculture predominant, population and technology
remained stabilized in a ‘Malthusian regime’ [21], where
increasing resources per capita caused population growth but
that diluted resources per capita (damping feedback), leading
to minimal long-term growth in population or well-being [5].
Several conditions are hypothesized as necessary for the next
revolution: the emergence of agrarianism then mercantilism
provided the foundations for modern capitalism—an econ-
omic system based on the private ownership of the means of
production and their operation for profit. The ‘Age of Discov-
ery’ decimated indigenous populations of the Americas and
established persistent geographical differences in economic
prosperity, with richer western European nations extracting
labour (slaves) and raw materials (e.g. cotton, sugar, tobacco)
from poorer nations in a reinforcing cycle [86]. Britain had
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high wages and cheap access to energy (coal), which gave
strong incentives to invent technologies that substituted capital
and coal for relatively costly labour, in order to compete glob-
ally [87]. In 1715-1750, England also saw stable weather, good
harvests and low food prices, which increased demand for
industrial goods.

6. Industrial Revolution

The Industrial Revolution has been defined as the sustained
increase in the rate of growth of total and per capita output
at a rate which was revolutionary compared with what
went before [88]. Also known as the ‘Great Divergence’,
the abrupt and sustained increase in growth rates of gross
domestic profit (GDP)/capita occurred around 1800 in
Great Britain [89], while the transition to new manufacturing
processes spanned roughly 1760-1840. The Industrial Revolu-
tion radically increased social metabolism through accessing
and using fossil fuel energy [48]. During it, Malthus issued
his famous (1798) warning [90] that arithmetic growth of
food supply would limit exponential growth of popu-
lation—and thus labour supply for economic growth.
However, actually in the Industrial Revolution, technological

progress drove accelerating growth of output faster than
population growth diluted resources per capita—representing
a switch to a ‘post-Malthusian’ growth regime [5]. Here, we
focus on the reinforcing feedback cycles that propelled
the extraordinary growth of output [20], rather than the ulti-
mate causes of why the Industrial Revolution started where
and when it did, recognizing that there are a diversity of
hypothesis for both, which remain contested [87].

Adam Smith'’s theory [91] of economic growth is central to
most descriptions of the Industrial Revolution and can be
portrayed in terms of two key reinforcing feedbacks [20]
(figure 4a). On the supply side (R1), investment (by capitalists
of business profits) in innovation and new and more special-
ized methods of production involving increased division of
labour, increases productivity and output, reducing unit costs
and price and increasing profits, supporting further invest-
ment. On the demand side (R2), increasing employment,
income and standard of living increases demand for goods,
revenue and profit, supporting further investment. Balancing
feedback (B1) operates if demand exceeds supply causing
delays and pushing prices up, thus reducing demand (or if
supply exceeds demand lowering prices thus increasing
demand). However, if supply keeps up with demand,
demand stays high, and operating costs remain low, growth
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can continue—at least until increased competition for labour,
employment and wages, and declining profits lead to a station-
ary state [91]. The demand side reinforcing feedback (R2) is
questioned by evidence that average real wages and standard
of living for workers remained low during the Industrial
Revolution [92,93]—but this can be understood as the result
of decreasing wages for those working in the existing handi-
craft economy and increasing wages for those working in the
new industries [87].

When Adam Smith wrote in 1776 [91], he was concerned
that competition for land would constrain industrialization,
assuming wood as an energy source—but then cheap coal
took over. The supply and use of fossil fuel energy and
mineral resources—notably coal and iron—were key to reinfor-
cing feedbacks propelling the Industrial Revolution [20]
(figure 4b). Investment in innovation in energy and material
extraction led (through discoveries, economies of scale, and
technical progress in energy conversion) to cheaper useful
energy (exergy) supply, which substituted for labour and capi-
tal, lowering production costs (increasing productivity),
increasing profits and demand for goods, and stimulating
further investment, innovation and substitution of mechanical
power for human (and animal) labour [94] (R3). The sheer
mass of minerals involved required investment in a transport
network (e.g. to connect mines and factories), whereas organic
materials beforehand did not. This increased access to mineral
resources, fuelling further investment, innovation, extraction
and use [95] (R4). The transport network in turn got used to
expand the market both for industrial goods and for organic
goods (e.g. cotton), thus increasing demand, production, prof-
its, investment and innovation [95] (R5). Overall economic
efficiency increased to a point where investment in industry
could yield as good (or better) return as investment in the land.

Deliberate innovation and entrepreneurship, supported by
a ‘gentlemanly’ culture of trust and cooperation [96], and
including available credit to invest with no immediate return,
were key to the Industrial Revolution. They relied on an under-
pinning Enlightenment foundation of existing knowledge
and inventions [97]. Schumpeter [98] famously described
innovation—a feat not of intellect, but of will'—as a uniquely

egative) feedback loops. Numbered loops are described in the text.

disruptive process that creates an inherent instability in capital-
ism. Innovation increased productivity, creating whole new
products and markets, and happened fast enough to keep prof-
its rising. Innovation triggered reinforcing feedbacks (figure 4c)
of increased prestige for the entrepreneurs encouraging further
innovation [39,96] (R6), advancement of science and knowl-
edge providing a greater foundation for further innovation
[97] (R7), and learning-by-doing (R8).

Considering these feedback cycles (figure 4) in an evolution-
ary light: in ‘Smithian growth’, the reinforcing feedback of
specialization (division of labour) improving performance
(R1) is a generic one with a precedent in ecology [3]. Its oper-
ation at the level of businesses (as groups) could be part of
spread/persistence-based selection between businesses. The
reinforcing feedback of a growing and consuming middle
class (R2) was economy and society wide, containing diverse
(human) components, and thus its spread is hard to frame in
terms of individual or group selection. The reinforcing feedback
of increasing energy supply fuelling production and further
resource extraction (R3) has parallels in biosphere history
[48,99], and was also economy-wide. Reinforcing feedbacks of
transport network construction (R4, R5) were somewhat unin-
tended and society wide. Entrepreneurial innovation was
clearly intentional and the feedbacks reinforcing it (R6-8) are
a mix of psychological and social, ranging across scales. Overall,
key feedbacks became divorced from ecology but clearly
depended on energy and material resources.

The Industrial Revolution was followed by a demo-
graphic transition to a modern growth regime characterized
by a negative relationship between income and population
growth rate [5] (figure 5). This can be understood in terms
of a switch in parental decisions [5]: technological progress
provided greater income allowing households to spend
more on raising children—which during the Industrial Revo-
lution still resulted in them having more children (R1)—but it
also raised the rate of return to human capital inducing
parents to reallocate increased resources from quantity to
quality of children. This switch is seen in a dramatic rise in
schooling in Europe over the nineteenth century [5]. Better
educated children in turn tend to accelerate technological
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progress, producing reinforcing feedback (R2), which is
linked to declining population growth. Declining population
growth in turn reduced the influence of the Malthusian
damping feedback (B1) of diluting finite resources. Increasing
education rather than increasing population became a driver
of ongoing technological progress and growth. Although it
took the UK nearly a century to halve fertility rates from
more than six to less than three children per woman, sub-
sequent countries have done so progressively faster—many
in less than 25 years, and China in only 11 years (before the
introduction of the one-child policy) [100,101].

Thinking evolutionarily, voluntarily reducing the number
of ones’ descendants is completely at odds with natural selec-
tion (even if they have a longer and more prosperous life).
‘Cultural evolution” has clearly become (it if wasn’t already)
fundamentally different to biological evolution. Purposeful
innovation supported by investment in education, further
shows that actual learning has superseded the learning algor-
ithm of natural selection [102]. The differential spread of
wealth has become more important than that of people—
societies in the modern growth regime dominate the world in
terms of wealth, power and ideology, if not (yet) population
or territory. It is maintained and reinforced by the richest
nations appropriating resources (materials, energy, land and
labour) from less prosperous nations, exacerbating between-
country inequality [24]. While an alternative planned economic
system spread temporarily, its largest example in terms of area
and power—the Soviet Union—failed to persist, catastrophi-
cally. (China while nominally a ‘socialist market economy’
contains key elements of capitalism.) The modern growth
regime is reinforced by the increasingly efficient conversion
of fossil fuels to useful energy (exergy), which lowers prices
and increases production [94]. More recently it has also been
reinforced by information and communications technology
substituting knowledge for labour, capital and energy [103].
Thus, key feedbacks still depend on energy and materials,
but some decoupling has begun.

Globally the ongoing spread of the industrialized modern
growth regime is what continues to accelerate us into the
Anthropocene. However, it is threatening itself in at least two
ways: the growing consumption of non-essential goods, ser-
vices and associated resources is causing climate change, loss
of nature and disruption of humanity’s life-support system
[104] which is starting to trigger human conflict [105]. At the
same time, appropriation of resources by the richest is exacer-
bating inequality between nations [24] and within some of
the richest nations [106], producing geopolitical tension,
social unrest and conflict [107] (despite average wealth increas-
ing). Clearly, spread is not equivalent to persistence—as with
historical empires, the fastest and furthest spreading system
may also be the one prone to most rapid internal breakdown.
However, waiting for the industrialized growth regime to
bring about its own collapse is not an attractive option for
those within it. Rather humanity needs to transform towards
sustainability without losing some hard-won gains.

Having used the lens of ‘spread of the cycles’ to help under-
stand how current unsustainable human systems became
dominant, we now use it to identify some qualities that more
sustainable systems need to possess to rapidly displace them.

Given the ongoing spread of fossil-fuelled industrialization [ 9 |

and associated inequality, there is an immediate need to out-
spread its cycles with some based on (more) sustainable and
socially just behaviours and technologies. However, this sets
up a clear tension: promoting short-term ‘green growth’
(spread) in pursuit of longer-term sustainability (persistence)
is an oxymoron if indefinite economic (GDP) growth is imposs-
ible on a finite planet [108-110]. Evidence suggests GDP
growth cannot be decoupled from useful energy (exergy) use,
and only relative decoupling from material consumption has
been observed [110,111}—although absolute decoupling of
greenhouse gas emissions has begun to occur in some industri-
alized nations (thanks to transitioning to renewable energy
and decreases in energy use) [112]. Furthermore, if promoting
‘green growth’ perpetuates existing patterns of ecologically
unequal exchange [24], it will not offer a path to social
justice [113], let alone inter-species justice [114]. ‘Green
transformation’ policies that realign growth to sustainable
development principles are beginning to be applied, particular
in the energy sector, in pursuit of more socially just outcomes
[113]. However, a more fundamental ‘green revolution’
of structural transformation may be needed to achieve
sustainability [113,115].

Given these considerations, we next consider the specific
example of accelerating to net zero greenhouse gas emissions
by mid-century before turning to the broader challenge of
justly transforming to sustainability.

If more sustainable systems are to out-spread fossil-fuelled
industrialized systems, they are going to need strong reinfor-
cing feedbacks behind them. Such ‘virtuous cycles’ [116] of
uptake of sustainable options, if they get strong enough,
can become self-propelling [117-121]. In the Global North,
already in the modern growth regime, the question is: how
can more sustainable systems spread at the expense of incum-
bent systems (i.e. displace them)? Whereas in parts of the
Global South yet to industrialize or enter a modern growth
regime, the question is: how can more sustainable systems
spread more effectively than fossil fuelled ones?

Taking decarbonization as an example, the energy sector
comprises approximately 75% of global emissions with
power (electricity) generation approximately 25%. Renewable
energy has just started to out-spread and displace fossil-
fuels in the power sector, with global growth in new renewable
energy installation exceeding the growth in electricity demand
in 2022 [122], and generating electricity cheaper than new fossil
fuel power stations in most of the world [123]. Strong reinfor-
cing feedback loops (figure 6) of learning-by-doing (R1) and
economies of scale (R2)—Wright's Law [124]—have made
renewable energy markedly cheaper the more that is deployed.
Over the last decade, the price of solar power has fallen nearly
90% and of onshore wind power around 70% [125] (whereas
fossil fuels have been a similar price for over a century [126]).
As the price of renewable power continues to drop this will
incentivise electrification wherever possible, and where not,
its use to produce fuels (e.g. hydrogen, ammonia). Thanks to
reinforcing feedbacks reducing battery costs by nearly 90%
over the last decade [125], electric vehicles are already starting
to displace internal combustion engine vehicles in several
major economies [118]. Reinforcing feedbacks across sectors
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are also emerging, for example, cheap batteries provide electri-
city storage reinforcing the transition to renewable energy,
which in turn reinforces the transition to electrifying mobility
[118]. The spread of renewable power and electrification
increases the thermodynamic efficiency of energy conversion
to useful work (exergy), lowering prices of energy, goods
and services (R3), increasing demand, revenue, profits and
stimulating further investment (R4), and also increasing pro-
duction, wages and substitution of exergy for labour (R5)
[94]. It is projected to generate net employment, reinforcing
growth [122]. These strong reinforcing feedbacks mean the
more that gets invested in the energy transition, the faster it
will unfold, saving us all money [126].

More broadly, reinforcing feedbacks of sustainable
technology innovation (recall figure 4c) can be triggered by
environmental regulation increasing productivity, profit and
efficiency [127]. Already approximately 30% of global inno-
vation and trade in ‘green’ technologies is coming from
the Global South [128,129], where the declining cost of renew-
ables suggests ‘green’ technologies have the potential to spread
faster than fossil-fuelled ones. Constraints on raising finance
for green projects in the Global South are holding things back
[130], but the energy transition will improve the balance of
trade for most least developed countries (as they will e.g. no
longer have to import fuel as well as vehicles), producing
reinforcing feedback of more capital to invest. If the energy
transition thus helps lift countries out of poverty, abrupt
shifts to lower fertility rates should follow, contributing
towards long-term sustainability.

The bigger challenge is: how to transition from maximiz-
ing growth (of production) to maximizing persistence
(sustainability)? Key to this is for human systems to deliber-
ately shift emphasis from reinforcing (positive) to damping
(negative) feedbacks. At a minimum humanity will need to
get better at correcting its mistakes [131].

If the world manages to massively reduce greenhouse gas
emissions through ‘green growth’ or ‘green transformation’,
overall material use will still probably increase—as absolute
decoupling from GDP has never been observed [111]. Switching

to a material recycling ‘circular economy’ is a prerequisite
for sustainability [131] and possible in principle: renewable
energy from the Sun can power a near perfect material recycling
system without violating the second law of thermodynamics—
just as it does in the biosphere—so long as there is a reservoir of
inactive wastes alongside the materials in active use [23,99].
This is inhibited in practice by the equating of social ‘progress’
with production, i.e. growth that maximizes consumption
(GDP), without any consideration of natural capital or social
justice. It remains thermodynamically possible that knowledge
(information) could continue to grow powered by a (growing)
sustainable supply of useful energy (exergy) in a steady-
state material recycling economy [23,94,103]. However,
instead the modernist notion of ‘progress’ equated with
production may need to be abandoned in favour of a
different notion of prosperity anchored in a new worldview
that redefines what we depend upon—and need to politi-
cally defend—as the Earth’s life-support system [115]. The
resulting shift in cultural values towards cherishing our life-
support system, quality of (all) life, and ‘Earth system justice’
(including multiple forms of social justice) [114], would be
profound indeed.

This may seem unrealistic, particularly given the thus far
modest emergence of a new ‘ecological class’, and its struggles
to mobilize popular support [115]. However, there are power-
ful precedents of attitude shifts that are hard to explain from
the strive for economic progress, wealth or power. For instance,
despite formidable economic interests, the trans-Atlantic
slave trade that flourished for centuries became globally aban-
doned within a few decades [132]. After persisting for about a
millennium, the practise of foot-binding in China was even-
tually abandoned within one generation [133,134]. Smoking
in public places was recently rapidly abandoned in most devel-
oped countries [135]. Traditionally high fertility rates have
halved within a generation in many countries [100,101].
Drivers of such change of dominant attitudes often include
growing awareness of dissonance between the practice and
broader values held by society, and they typically involve
cascading co-evolving change in attitudes and regulations.
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The transitions are typically preceded by long periods during
which social movements and policy efforts pushed for
change (seemingly) unsuccessfully.

At heart this, and coming generations, face a deep cul-
tural evolutionary challenge: given a history of innovation
generating reinforcing feedbacks that out-spread existing
systems, humanity needs to evolve to innovate to maximize
persistence (sustainability). Happily, there is nothing un-
evolutionary about such a revised goal—as the phrase
‘survival of the fittest’ encapsulates.

Our aim has been to help explain what propelled the human
‘revolutions’ that started the Anthropocene and to offer some
clues as to what could speed humanity out of trouble. This is
not the same as explaining what triggered (or could trigger)
revolutionary change, which may be owing to internal evol-
ution, external forcing or a particular perturbation of a
complex adaptive system. However, for change to become
large-scale, abrupt and/or irreversible—and hence ‘revolu-
tionary—in any complex system, usually requires the
presence of reinforcing feedback loops that can become
strong enough to be self-propelling. Hence, we have sought
to synthesize existing hypotheses as reinforcing feedback
loops, or parts thereof. This complements existing approaches
by bringing together mechanistic proposals in a common
framework of causal feedback loop diagrams. We also offered
a novel framing of the immediate sustainability challenge as
one of outspreading the incumbent cycles of the industrialized
growth regime.

There are several ways to develop and apply these ideas
further. Mapping feedbacks is a first step towards developing
a process-based, dynamical system model. While data invari-
ably get sparser going further back in time, this presents an
opportunity for deeper understanding of the dynamics of
more recent revolutions. The Industrial Revolution would
seem an obvious target given there are sufficient data for
econometric modelling [136]. The rise of complex states [18]
and even the agricultural revolution [21] also have sufficient
data to identify and begin to quantify key reinforcing feed-
back loops. For a prospective future ‘green revolution’,

dynamical system models of innovation feedbacks coupled [ 11 |

to the macro-economy already exist [137] with considerable
potential to extend their representation of feedbacks and
the coverage of sectors.

To strengthen the link to cultural evolution theory
requires deeper consideration of whether and how the feed-
back cycles we identify can evolve. Trying to develop
conceptual models of spread/persistence-based selection of
cycles should be instructive. At a theoretical level fundamen-
tal questions need addressing [3], notably: how is information
pertaining to the irreducible properties of whole feedback
loops—e.g. their sign and strength—transmitted through
time? This whole-system information is not (by definition)
contained in the components of the loop but could conceiva-
bly be culturally transmitted. This paper is a humble step
towards that goal, but what are its predecessors?

To conclude, we have traced the reinforcing feedback cycles
whose differential spread propelled the human ‘revolutions’
that brought us into the Anthropocene. We have also begun
to suggest some new cycles that could help speed us out of
trouble. The cycles behind early human revolutions were
often comprised of diverse, interconnected, unrelated, human
and non-human elements. Over time, the spread of cycles
based purely on human elements (albeit diverse ones)
became progressively more important. Looking ahead we
suggest that non-human elements need to be brought back
into the feedback cycles underlying cultures, human notions
of progress, and theories of cultural evolution—if humanity
is to make another revolutionary cultural shift from
maximizing growth to maximizing persistence.
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