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Abstract: Real-time object detection based on UAV remote sensing is widely required in different
scenarios. In the past 20 years, with the development of unmanned aerial vehicles (UAV), remote
sensing technology, deep learning technology, and edge computing technology, research on UAV
real-time object detection in different fields has become increasingly important. However, since
real-time UAV object detection is a comprehensive task involving hardware, algorithms, and other
components, the complete implementation of real-time object detection is often overlooked. Although
there is a large amount of literature on real-time object detection based on UAV remote sensing,
little attention has been given to its workflow. This paper aims to systematically review previous
studies about UAV real-time object detection from application scenarios, hardware selection, real-
time detection paradigms, detection algorithms and their optimization technologies, and evaluation
metrics. Through visual and narrative analyses, the conclusions cover all proposed research questions.
Real-time object detection is more in demand in scenarios such as emergency rescue and precision
agriculture. Multi-rotor UAVs and RGB images are of more interest in applications, and real-time
detection mainly uses edge computing with documented processing strategies. GPU-based edge
computing platforms are widely used, and deep learning algorithms is preferred for real-time
detection. Meanwhile, optimization algorithms need to be focused on resource-limited computing
platform deployment, such as lightweight convolutional layers, etc. In addition to accuracy, speed,
latency, and energy are equally important evaluation metrics. Finally, this paper thoroughly discusses
the challenges of sensor-, edge computing-, and algorithm-related lightweight technologies in real-
time object detection. It also discusses the prospective impact of future developments in autonomous
UAVs and communications on UAV real-time target detection.

Keywords: UAV; remote sensing; real time; object detection; edge computing; deep learning

1. Introduction

Unmanned aerial vehicles (UAVs) have been widely used in different scenarios, such as
agriculture [1], urban traffic [2], and search and rescue [3]. A recent review by Nex et al. [4] has
revealed that the majority of published papers related to UAVs are focused on remote sensing
studies [5]. This is largely due to the ease of use, flexibility, and relatively moderate costs of
UAVs, which have made them a popular instrument in the remote sensing domain [4].

The emergence of more advanced algorithms will enable the realization of autonomous
UAVs [4]. Real-time object detection based on UAV remote sensing is an important per-
ception task for achieving fully autonomous UAVs. In this paper, the so-called ‘object’
refers to the instances of visual objects of a particular class in remote sensing imagery
[6]. Any remote sensing application consists of two distinct processes: data acquisition
and data analysis [7]. Although rapidly acquiring UAV remote sensing imagery is an
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essential first step, extracting valuable information from the raw imagery is also critical
to performing real-time remote sensing. It enables the interpretation and description of
the targets being measured in a particular scene. Traditional data processing has matured
with well-established workflow solutions [4]. However, users’ demand for autonomous
UAVs requires a shift in data processing from offline to real-time. The ultimate goal of
real-time object detection is to enable real-time sensing and reasoning via the automatic,
rapid, and precise processing of remotely sensed UAV data. Real-time object detection
also helps release storage and physical and virtual memory in resource-limited hardware.
Accordingly, to achieve such a goal, real-time object detection based on UAV remote sensing
is significant for rapidly extracting useful information from remote sensing images [8].

UAV technology is at the intersection of many domains, and the research in its
neighbouring fields influences the processing and utilization of remote sensing data [4].
When leveraging the outputs of remote sensing data, all of these tasks strongly rely on
the detection of one or multiple domain-related objects [9]. Object detection tasks have
been widely investigated since the beginning of computer vision [9,10], as object detection
serves as a basis for many other computer vision tasks [6]. As a result, object detection is
one of the most critical underlying tasks for processing UAV remote sensing imagery [9].
Object detection has been defined as the procedure of determining the instance of the class
to which an object belongs and estimating the object’s location by outputting a bounding
box or the silhouette around the object [11]. In UAV remote sensing research, the defini-
tion and application of object detection could be broader. For example, in a soybean leaf
disease recognition study [12], the output form of the task was not a bounding box but
somewhat different colour masks to indicate the healthy and diseased leaves. In computer
vision research, these masks often have more precise terminology, called segmentation or
semantic segmentation. Similar situations also occur in tasks such as classification [13,14]
and monitoring [15,16].

The development of autonomous UAVs for analyzing data in real time is an emerging
trend in UAV data processing [4]. Compared with manual post-processing, users’ needs
are evolving, resulting in many UAV remote sensing applications having a high demand
for real-time image detection. For example, in search and rescue scenarios, integrating
real-time object detection into a UAV-based emergency warning system can help rescue
workers better tackle the situation [17]. In precision agriculture, generating weed maps in
real time onboard is essential for weed control tasks and can reduce the time gap between
image collection and herbicide treatment [18]. Several previous reviews also emphasized
the importance of real-time object detection. For example, emergency responses can be
supported by real-time object detection [7], and people also require UAV real-time object
detection for safety reconnaissance and surveillance [19]. However, most of these articles
considered and addressed only the algorithm factor of real-time object detection while
ignoring how the algorithms can be deployed on UAVs [20]. Other UAV real-time object
detection components that have not been fully considered when developing a complete
workflow in previous studies, including software and hardware technologies based on
the embedded system, need further investigation [10]. One review [21] investigated hard-
ware, algorithms, and paradigms for real-time object detection but was limited to precision
agriculture. Another review [22] provided a well-summarized and categorized approach
to real-time UAV applications, as well as relevant datasets. However, there was no fur-
ther discussion on how to implement real-time object detection based on UAVs. From a
technological perspective, better-performing miniaturized hardware and the surge of deep
learning algorithms both have a positive impact on UAV remote sensing data processing
[4]. It is worth reviewing and investigating how these new technologies are applied in UAV
real-time object detection tasks.

As a result, most of the aforementioned studies focused on real-time detection algo-
rithm investigations. They should have paid more attention to algorithm deployment,
which could be critical to successfully implementing UAV object detection in practice.
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Although reviews also discussed solutions for UAV real-time object detection algorithms
deployed on embedded hardware, they were limited to a specific domain.

This study aims to fill the gaps in the previous work that paid limited attention to
onboard UAV real-time object detection implementation. Furthermore, the entire UAV real-
time object detection process will be summarized as a hardware and software framework
that can be used for subsequent onboard real-time processing. The hardware and software
framework can serve as a reference for researchers working in the UAV real-time data
processing field and drive them towards the development of more efficient autonomous
UAV systems. Therefore, the first research objective of this paper is to summarize the
application scenarios and the targets of real-time object detection tasks based on UAV
remote sensing in order to demonstrate the necessity of real-time detection. The second
research objective is to investigate the current implementation of real-time object detection
based on UAV remote sensing to observe the impact of sensors, computing platforms,
algorithms, and computing paradigms on real-time object detection tasks in terms of
accuracy, speed, and other critical evaluation metrics.

The rest of the paper is organized as follows. Section 2 presents and describes the
steps and methodology of our systematic literature review. Then, a general analysis of
this systematic review study is provided in Section 3. In Section 4, the quantitative results
are visualized and discussed according to the proposed research questions, and Section 5
discusses the current challenges and future opportunities of UAV real-time object detection.
Finally, Section 6 concludes the paper.

2. Methodology

This study adopted the guidelines proposed by Kitchenham [23] to undertake a
systematic literature review and finally reported and visualized the results. Based on the
original guidelines [24], a review protocol has been developed to specify the reviewing
methods used to reduce bias at the beginning of the study. The steps in this systematic
literature review protocol are documented below.

2.1. Research Questions

In order to address the problems of real-time object detection based on UAV remote
sensing, the complete workflow of real-time object detection tasks in UAV remote sensing
needs to be clearly demonstrated. Figure 1 summarizes the process of real-time object
detection based on UAVs seen in previous studies [25–27] by drawing a concept map to
illustrate each step.

The complete workflow shown in Figure 1 includes five steps. The starting point
comes from the real-time requirements for specific tasks in different application scenarios.
Therefore, determining the targets and the task scenarios is critical for selecting UAVs,
sensors, and algorithms. Then, during the data acquisition phase, the chosen UAVs are
equipped with different sensors to complete data collection according to the task’s needs.
The remotely sensed data need to be processed in real time, so computing platform selection
is essential for onboard processing. The chosen computing platforms need to establish the
computing paradigm for implementing real-time object detection. Meanwhile, the core
detection algorithms also need to be deployed on the platform in the object detection
phase. The selection of communication methods determines how the data and results are
transmitted in the workflow.

Merely obtaining detection results holds limited significance in practical applications,
as the essence of real-time detection lies in achieving rapid responsiveness. Hence, the out-
comes of real-time object detection serve as crucial outputs for activities such as decision
making, system alerts, or machinery operations. These outputs engender value and confer
purpose upon this undertaking.
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Figure 1. The concept map of real-time object detection based on UAV remote sensing. The closed
loop illustrates the complete autonomous workflow, where each node represents one step of real-time
object detection.

The closed loop in Figure 1 can be used to describe the completed autonomous work-
flow of UAV real-time object detection. According to the research objectives, this review
study will focus on advanced real-time object detection based on remote sensing technology,
including application scenarios, hardware selection, algorithm design, and implementation
methods. The research questions of this paper are correspondingly proposed as follows.

RQ1. What are the application scenarios and tasks of real-time object detection based
on UAV remote sensing?

RQ2. What types of UAV platforms and sensors are used for different real-time object
detection applications?

RQ3. Which types of paradigms were used in real-time object detection based on UAV
remote sensing?

RQ4. What commonly used computing platforms can support the real-time detection
of UAV remote sensing based on edge computing?

RQ5. What algorithms were used for real-time detection based on UAV remote sensing?
RQ6. Which improved methods were used in real-time detection algorithms for UAV

remote sensing?
RQ7. How can we evaluate real-time detection based on UAV remote sensing regard-

ing accuracy, speed, and energy consumption?
The formulation of these seven proposed RQs is based on the first four phases outlined

in the concept map. It is essential to acknowledge that rapid response constitutes a pivotal
stage within the entirety of the workflow. This stage serves as a subsequent action in
handling the outputs of real-time detection. Consequently, the exploration of the final
phase will be extended to delve into future prospects for attaining autonomous UAV
capabilities, as elaborated on in Section 5.

2.2. Search Process

The literature search was conducted on 7 February 2023, and the relevant journal
and conference articles were retrieved from two databases (Web of Science and Scopus).
This review topic was divided into three aspects: platform, task, and processing method.
In order to find more literature that encompassed the ’detection’ task, the terms on the
‘Task’ aspect were extended to use some other tasks that included ’detection’, for example,
identification, monitoring, segmentation, and classification. Based on these terms, a list of
synonyms, abbreviations, and alternative spellings was drawn up, as shown in Table 1.
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Table 1. The list of search terms based on three aspects.

Aspect Terms

Platform UAV, UAS, RPAS, drone, unmanned aerial vehicle, remotely piloted aircraft

Task real-time detection, real-time identification, real-time monitoring, real-time
segmentation, real-time classification

Processing method cloud computing, edge computing, edge intelligence, embedded

The search strings were constructed by the above terms using the Boolean operators
‘AND’ and ‘OR’, and wildcards were used to match the search better. The following search
strings in Table 2 were executed separately in the search engine of two databases.

Table 2. The search strings for two databases.

Database Search string

Web of Science

((TS=(UAV OR UAS OR RPAS OR drone OR “unmanned aerial vehicle” OR
“remotely piloted aircraft”)) AND TS=(real-time detect* OR real-time identif*

OR real-time segment* OR real-time classif* OR real-time monitor*)) AND
TS=(cloud-computing OR edge-computing OR edge-intelligen* OR embedded)

Scopus

TITLE-ABS-KEY(UAV OR UAS OR RPAS OR drone OR “unmanned aerial
vehicle” OR “remotely piloted aircraft”) AND TITLE-ABS-KEY(real-time

detect* OR real-time identif* OR real-time segment* OR real-time classif* OR
real-time monitor*) AND TITLE-ABS-KEY(cloud-computing OR

edge-computing OR edge-intelligen* OR embedded)

2.3. Inclusion and Exclusion Criteria

The search results were imported into the literature management software Endnote.
Following automated de-duplication, the remaining documents underwent manual filtering
to select the definitive literature for review. Therefore, a set of inclusion and exclusion
criteria based on the research questions was used to perform literature screening, mainly
by reading titles and abstracts. The full text was read when the title and abstract could not
be clearly determined.

Peer-reviewed articles on the following topics that had full texts written in English
were included:

1. Articles that discussed real-time object detection tasks or algorithms that are applied
to UAV remote sensing;

2. Articles that specifically mentioned onboard real-time processing and used optic sensors.

The exclusion criteria are shown as follows in Table 3.

Table 3. The table of exclusion criteria during literature selection.

ID Criterion

EC1 Papers in which the full text was unavailable
EC2 Papers that were not in English
EC3 Review paper/conference series/book chapter
EC4 Papers that did not relate to the proposed study
EC5 Papers that did not conduct real-time detection
EC6 Papers that did not aim for UAV RS detection
EC7 Papers that only conducted simulations on a high-performance computer

EC8 Papers that only provided a general description without specific methods on real-time
detection based on UAVs
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2.4. Data Extraction

The corresponding evidence was extracted from the retrieved papers to answer the
proposed questions properly. For this purpose, we designed and created a data extraction
table, including general and detailed information. The general information contained the
publication year and the source of the literature. The detailed information included the
application categories (scenario, task, and target), hardware components (UAV, sensor,
computing platform, and communication), real-time detection method (implementation
paradigm, algorithm, and improvement method), and assessment and evaluation metrics
(accuracy, speed, latency, and energy). The data were extracted by carefully reading and
reviewing the selected papers.

2.5. Data Synthesis

Data synthesis involves collecting and summarizing the results of the included primary
studies [24]. In this review study, the results are discussed in detail through descriptive
synthesis, and a quantitative synthesis is presented through data visualization to answer
the relevant research questions.

3. Analysis of Selected Publications
3.1. Study Selection

The flow-chart diagram in Figure 2 shows the process of publication selection. A total
of 477 records were obtained from searching, of which 222 were from WOS and 255 were
from Scopus. After removing duplicates, 404 documents remained, but 18 of them did
not have available full text. The remaining 386 documents were screened by reviewing
titles, abstracts, and full texts, and 310 documents were excluded based on the exclusion
criteria. In addition, one citation from the assessed papers that could potentially contribute
to the understanding of the research question was included in the final database after
the inclusion and exclusion criteria were evaluated. Finally, 77 pieces of literature were
included in our review study.

Figure 2. The process of publication selection.

3.2. Overview of Reviewed Publications

This subsection analyzes the general information contained in the 77 papers and
provides an overview of the papers reviewed.

Figure 3 illustrates that the need for real-time object detection was raised by researchers
as early as 2002. In that study [28], the authors tried to use a UAV to track a target and main-
tain its position in the middle of the image. They ensured real-time performance through
the combination of a successive-step and multi-block search method. However, it was not
until 2019 that the number of relevant studies began to increase dramatically, reaching 27
in 2021. Although the number of studies decreased in 2022, the number remained above 20,
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and the overall trend has increased during the past years. We insist that real-time object
detection thus remains a significant interest in the field of UAV remote sensing.

Figure 3. The year of publication and the distribution of literature type.

In terms of literature sources, the majority of the literature comes from journals rather
than conference proceedings. Figure 4 illustrates the names and the number of journals
that have at least two papers, and the remaining journals with only one document are
summarized in the ‘Other’ category. All conferences included only one selected paper.
Therefore, they are presented as a whole in Figure 4, called ‘Conferences proceedings’.

Figure 4. Distribution of selected publications in specific journals (Remote Sensing, IEEE Access, Journal
of Real-Time Image Processing, Sensors, Multimedia Tools and Applications, and Electronics) or conference
proceedings. Only journals with two publications or more are mentioned. Additional publications
are presented in the ’Other’ category.

The result indicates that publications on UAV real-time object detection were published
in 40 different journals and 12 different conference proceedings. Of these, 46 journals or
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conference proceedings included only one piece of literature, with the research being
relatively scattered across various fields, for example, in electronics [29,30], multimedia
applications [31–33], and transportation engineering [34–36]. The most popular journal is
Remote Sensing, which had 11 papers, followed by IEEE Access with 7 papers and Sensors
and Journal of Real-time Image Processing with 4. From this, it can be derived that research
on UAV real-time object detection has been focused on remote sensing and real-time
image processing.

4. Results

In this section, we analyze the 77 selected publications to address the previously
formulated research questions using both quantitative analysis and descriptive review.

4.1. Application Scenarios and Tasks of Real-Time Object Detection

As UAV usability expands across diverse applications, the research focus has shifted
towards real-time object detection using UAV remote sensing. This literature review encom-
passes the scope of real-time object detection scenarios, targets, and task categorizations,
as depicted in Figure 5.

  

  

 

Selected 
Publications

 

 

Detection 
Targets

Application 
Scenarios

Tasks

Figure 5. This Sankey diagram of the selected literature illustrates the connectivity among real-time
detection scenarios, detection targets, and tasks. Proceeding from left to right, the diagram categorizes
and summarizes application scenarios present in the selected literature, the diverse detection targets
within varying application contexts, and the tasks executed for each specific target. The width of the
flow between nodes signifies the amount of literature pertaining to each node.

We have summarized the seven major scenarios of UAV real-time detection. Figure 5
visually illustrates the specifics of detection targets and tasks. Furthermore, papers focused
on algorithmic aspects have been categorized under the ’Other’ category [33,37–44].

Emergency scenarios appear 20 times within the selection, directly correlated with
the imperative for real-time responsiveness during critical situations. The traffic diagram
depicted in Figure 5 underscores that in emergency scenarios, the primary detected targets
encompass humans [45–52], natural disasters [53–57], and abnormal crowd events [31,58],
all of which necessitate swift responses to avoid casualties. An additional subset of detection
targets comprises vehicles [28,59] and ships [60], both of which are susceptible to dangerous
conditions. In this regard, UAV real-time object detection emerges as a viable solution for
addressing these challenges. In particular, providing emergency services during a crisis
event is vital for rescue missions [45].

The second prominent application scenario revolves around agriculture, involving a
review of seventeen relevant papers. Precision agriculture emphasizes the fast and accu-
rate detection of crop stress, including crop diseases [61–63], pests [64], and surrounding
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weeds [18,65–67], as a means to reduce pesticide dependency and promote sustainable
farming practices [65]. Real-time information empowers swift responses to disease, pest,
and weed propagation, thereby minimizing crop stress impact. The scope of ’real-time’
technology also applies to vegetation index [68,69] and crop monitoring [70,71], facilitating
monitoring systems and informed decision-making. Additionally, this scenario encom-
passes tree detection [72–76], which is often deployed for the real-time identification of tree
canopies. This capability finds utility in precision spraying [75] and fruit yield estimation
through counting [73].

The exploration of traffic scenarios has also encompassed numerous real-time de-
tection applications, with vehicles serving as the primary detection target. A pivotal
undertaking involves traffic flow analysis, which necessitates real-time detection to derive
vehicle speed and traffic density [34,77,78]. Furthermore, real-time vehicle detection finds
application in discerning the diverse vehicle types on roads, encompassing cars, trucks, and
excavators [36,67,79,80]. Additionally, real-time vehicle detection has proven invaluable
for tracking objectives [81,82].

In the inspection scenario, real-time detection assumes a pivotal role in assessing power
facility components [29,83–88] and detecting surface cracks in bridges and buildings [35,89,90].
These applications are intricately linked to power transmission, building health, and
personnel safety.

Within less extensive application scenarios, flight planning emerges, which is primarily em-
ployed to ensure UAV flight safety by surveying surrounding targets, such as drones [30,91,92].
Additionally, specific targets are addressed for UAV flight testing [93–95].

In terms of environmental protection scenarios, [96,97] underscore the urgency of real-
time detection. Particularly, the swift movement of marine plastics mandates instantaneous
detection to enable prompt interventions.

Regarding task distribution, the predominant focus rests on detection tasks, compris-
ing 55 studies. While certain tasks diverge from object detection, such as monitoring [56]
and tracking [81], it is noteworthy that object detection stands as the foundational stride
within visual recognition endeavours [11]. Hence, the remaining studies also necessitate
real-time object detection.

4.2. UAV Platforms and Sensors for Different Real-Time Detection Applications

UAVs can be categorized based on various criteria, including purpose, size, load,
and power [21]. The most distinguishing factor often lies in their aerodynamic charac-
teristics, leading to classifications into fixed-wing, multi-rotor, and hybrid UAVs [98].
By excluding studies that did not specify UAV types, we conducted a tally of UAV clas-
sifications employed across distinct real-time object detection scenarios. The results are
presented in Figure 6a.

Figure 6. (a) Types of UAVs and (b) types of sensors used in different real-time object detection
scenarios derived from the selected set of 77 publications.
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Fixed-wing UAVs possess immobile wings that rely on forward airspeed for lift genera-
tion [98]. Nonetheless, they lack backward movement, hovering, or rotation capabilities [99]
and necessitate demanding take-off and landing conditions [21]. Our review distinctly
highlights that a mere two studies harnessed fixed-wing UAVs for real-time object detection
applications: emergencies [28] and agriculture [76].

In contrast, the domain of real-time detection applications is notably governed by multi-
rotor UAVs [85,93,94], which is primarily attributed to their economical manufacturing advan-
tages [99]. An overwhelming majority of investigations gravitate toward this classification.
Multi-rotor UAVs ingeniously employ multiple rotors for lift generation [98], facilitating
attributes such as vertical landing, agile maneuvers, and swift takeoffs. Furthermore, due to
the inherent hovering capability of multi-rotor UAVs, they are especially well-suited for aerial
photography [4]. Fixed-wing UAVs require sensors equipped with fast shutters to counteract
motion blur resulting from the absence of forward-motion compensation.

The third UAV category encompasses hybrid-wing UAVs, merging fixed-wing and
multi-rotor technologies. These hybrids utilize multi-rotors for vertical take-off and landing,
while the fixed-wing component serves extended linear coverage. Our review reveals
infrequent utilization of hybrid-wing UAVs; they are observed solely in one real-time traffic
scenario for asset detection [80].

The sensors of remote sensing employed in real-time object detection encompass
RGB[53,64,71,73], multi-spectral [74], hyperspectral [96], thermal infrared [48,84], and the
fusion of multiple sensors [50,60]. As evidenced in Figure 6b, the RGB sensor stands as
the predominant sensor type for real-time object detection tasks within UAV-based remote
sensing. Based on our review, it seems that all studies have defaulted the sensor required
for real-time object detection to RGB due to its advantages of being of a high resolution,
light weight, and low cost and being easy-to-use.

Multi- and hyper-spectral cameras can capture spectral information from objects of
interest [100,101], each with unique characteristics. Multi-spectral sensors offer centimeter-
level remote sensing data with several spectral bands, typically spanning blue, green, red,
red-edge, and near-infrared. In contrast, hyper-spectral sensors provide a multitude of nar-
row bands, extending from ultraviolet to longwave [21]. The application of multi-spectral
and hyper-spectral sensors in non-real-time object detection based on UAV remote sensing
has been extensively explored in various domains. For instance, spectral sensors have
found utility in precision agriculture [102,103], landslide monitoring [104], and power line
inspection [105]. However, in scenarios where real-time object detection is imperative, our
review has revealed a limited number of studies employing spectral sensors. Specifically,
only two pieces of literature have been identified that delved into the utilization of spectral
sensors for real-time object detection. These studies encompass the detection of tree canopy
detection using multi-spectral cameras [74] and the detection of macro plastic in the marine
environment using hyper-spectral cameras [96].

Of the articles under our scrutiny, two distinct studies leveraged the potential of
thermal infrared cameras to explore their temperature sensitivity. In one instance, the focal
point was the detection of photovoltaic panels[84]. In another significant context, the focus
shifted towards identifying individuals with elevated body temperatures, which can be
potentially indicative of a COVID-19 infection[48].

Furthermore, two additional research studies have reported applications involving
the fusion of multiple sensors. In [50], thermal sensors were judiciously deployed for
identifying individuals in need of rescue, while an RGB sensor was simultaneously lever-
aged for precise localization. In another study [60], an RGB camera assumed the role of
vessel morphology detection, while thermal infrared technology was adeptly employed to
pinpoint heat emissions from engines.

4.3. Two Paradigms for Real-Time Detection

Real-time object detection means that the UAVs equipped with sensors and processors
have the capacity to quickly process the collected data and reliably deliver the needed
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information. Thus, based on our review study, three kinds of paradigms are utilized for
real-time object detection: embedded systems, cloud computing, and edge computing.
The majority of real-time object detection studies (n = 72) selected the edge computing
paradigm, and 4 studies reported using the embedded system. At the same time, there was
only one study that selected the cloud computing solution.

Cloud computing is a computing paradigm that provides on-demand services to
end-users through a pool of computing resources that includes storage, computing, data,
applications, and so on [106]. The cloud computing paradigm is shown in Figure 7a.
From our review, the advantages of the cloud computing paradigm are reflected in [73].
The first advantage is that the ground station stores the images collected via UAV and
then streams them to the cloud. The data are processed on the cloud, which has powerful
computing and storage resources for massive UAV remote sensing data. The second
advantage is that the end-users from anywhere at any moment can access the cloud services.
In addition, the fault-tolerance mechanism of cloud computing ensures the high reliability
of its processing and analysis services, and the ability of the cloud center to dynamically
allocate or release resources according to users’ demand is also a strength.

Figure 7. The paradigm of (a) cloud computing, (b) edge computing with remote processing, and (c)
edge computing with onboard processing.

However, cloud computing has some drawbacks when dealing with real-time object
detection tasks on UAVs. These drawbacks mainly stem from the growing volume of data
at the edge, which is limited by network bandwidth and makes the data difficult to upload
to the cloud for processing and analysis [107].

The emergence of edge computing can effectively solve the above problem. There are
many definitions of edge computing [106–108]. However, the core of the description
is that edge computing is the provision of cloud services and IT service environments
for users at the edge of the network, with the goal of providing computing, storage,
and network bandwidth services close to the end-devices or end-users, thereby reducing
latency, ensuring efficient network operation and service delivery, and improving the
user experience.

For real-time UAV object detection, the edge end is usually the UAV that generates an
enormous volume of data. Based on the above concept of edge computing, we can divide
edge computing into two forms:

1. One form where the edge end is unable to perform large computations; it just processes
partial data and then offloades to the edge server (ground station) for processing.
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Figure 7b shows the paradigm of edge computing in this form. In this case, the so-
called ground station is a generic name and usually is a high-performance computing
platform, such as a laptop [59], mobile phone [48,51] or single-board [57].

2. Another form where the edge end is also the edge server, which has the capability
of processing data while collecting data. This paradigm can be seen in Figure 7c.
There are many of these forms of edge computing in our review [31,34,58,84,94], which
integrated sensors and embedded computing platforms onto the UAV and treated
them as a whole, which is the edge end. During the flight of the UAV, the images are
captured and processed simultaneously to obtain the detection results.

It is worth mentioning that some real-time object detection based on UAV remote
sensing is one part of a complete system [31], so the results normally will upload to
the cloud center, but the edge computing for real-time detection ends at the computing
platform or ground station providing needed information. The subsequent tasks will not
be discussed here.

Edge computing cannot be developed without embedded systems, and as we noted, edge
end computing platforms are built through embedded systems. However, some early studies
of real-time target detection [58,82] used embedded devices whose performance could not
meet the standards required for edge computing, so they were put into a separate category.

4.4. Computing Platforms Used for Edge Computing

Based on the analysis in the previous section, real-time object detection primarily
utilizes edge computing to implement, so the computing platforms used for real-time
edge computing are important. They can provide a reference for selecting hardware for
subsequent studies. In the meantime, GPU-based computing platforms can provide more
computing power for deep learning algorithms, which are popular for image processing.
Table 4 lists three typical GPU-based computing platforms that are frequently used in edge
computing applications in the selected literature.

Table 4. List of commonly used GPU-based computing platform examples. The number of symbols
‘+’ in the table represents the level of performance, with more ‘+’ indicating stronger performance.
The critical parameters of (central processing unit (CPU), graphics processing unit (GPU), memory,
power, and AI performance are compared. The price of these computing platforms is also listed for
comparison. Some typical studies’ applications in the selected literature are also listed.

Computing
Component GPU-Based

Model NVIDIA Jetson Nano NVIDIA Jetson TX2 NVIDIA Jetson
Xavier NX

Physical Figure

CPU ++ ++ +++
GPU + ++ +++

Memory + + ++
Power ++ + +++

AI Performance + ++ +++
Price ++ +++ ++++

Application Weed detection[67],
Disease detection[63]

Powerline
detection[88], Disease

detection[61]

Vehicle detection[78],
Tree detection[76]

The Nvidia Jetson TX2 is a typical and the most used computing platform. The reason
for this may come from the fact that it has a relatively balanced processing power, power
consumption, and price. The widespread use of GPU-based computing platforms is also a
side note to the development of artificial intelligence, especially deep learning, which has
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become almost preferred in the field of image recognition, making GPU platforms more
popular due to their parallel computing performance.

In this review study, field programmable gate arrays (FPGA) are not used much,
with only one mention in the literature [69], although it is also ideal for these edge com-
puting applications due to its reprogramming ability and low-power characteristics. Some
other GPU-based computing platforms have also been reported, such as the tensor pro-
cessing unit (TPU), which is optimized for tensor computing [74], and the Intel Neural
Compute Stick, which is based on a visual computing unit (VPU) [31,75]. Some CPU-
based computing platforms have also been reviewed, such as the Raspberry Pi series.
Although Raspberry Pi is normally used as a comparison item in benchmark studies, it has
also been used as the core computing platform in some studies. For example, an insulator
detection study used a lightweight algorithm on a Raspberry Pi 4B to achieve real-time
detection [87].

4.5. Real-Time Object Detection Algorithms

Based on our review of the selected literature, three categories of algorithms have
been employed for real-time detection in unmanned aerial vehicle (UAV) remote sensing:
traditional methods, machine learning, and deep learning. Previous surveys [8,12,21] have
indicated that deep learning stands as a pivotal approach for achieving real-time detection
in UAV remote sensing owing to its widespread application in image detection. The findings
of this study further corroborate this assertion. With the exception of one reference that
does not explicitly outline a specific algorithm, among the remaining literature, 60 works
utilized deep learning algorithms, 5 employed machine learning methods, and 11 adopted
conventional approaches. Figure 8 illustrates the distribution of specific algorithms utilized
within each category.

Figure 8. Classification of different real-time detection algorithms. The tree map shows the specific
algorithms in each category and the number of uses.

The so-called “traditional methods” predominantly refer to approaches grounded in digi-
tal image processing techniques and analyze characteristics such as the morphology and colour
of the target object. To elaborate, articles utilizing feature-matching methods [28,72,81,93,109]
are encompassed within this category, including a geometric approach for matching morpho-
logical features [93]. Additionally, segmentation methods based on colour [57,73,86] have also
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been mentioned. Furthermore, studies targeting non-RGB sensors incorporate techniques
such as signal processing, as seen in applications such as the water-filling method [84]. Some
research focuses on computing vegetation indices [68,69], which can be calculated by using
the required bands to obtain the detection results.

Regarding machine learning, most research used the support vector machine (SVM)
algorithm [37,60,79,110]. While deploying SVM alone usually does not achieve the re-
quirement of real-time detection, in these studies, commonly modified or added methods
were adopted to speed up the algorithm, such as the bag of features approach, whose
origin stems from the bag of words model and which was used to simplify the model [79].
Moreover, research using multi-class classification has also been documented [96].

In recent years, deep learning has found extensive application in image detection
tasks. However, it also imposes significant demands on computational and storage re-
sources, rendering its deployment in real-time tasks challenging [21]. As a result, there
is often a need to streamline deep learning models. In our investigation, we identified
4 articles [42,54,63,77] utilising custom-designed networks, while the remaining 56 refer-
ences optimized pre-existing models for application in real-time detection tasks within
UAV remote sensing.

Deep learning-based object detection has been categorized into two-stage and one-
stage algorithms [111]. Although two-stage detection was successful in the early stages,
its speed has been an important challenge. A one-stage object detection algorithm takes
the entire image and passes it through a fixed grid-based CNN rather than in patches.
Among the literature optimizing pre-existing models, the majority of the studies tended
to favour the selection of one-stage models. Notably, the YOLO (You Only Look Once)
model, in its various versions, represented a substantial portion with a total of 35 articles.
The versions of YOLO included, for example, YOLOV3-Tiny [94], YOLOv4 [43], YOLOV5
[97], etc. Additionally, another single-stage detection algorithm, SSD (Single Shot De-
tection) [40], was featured in 3 articles. Two studies were reported to employ two-stage
detection algorithms, specifically RCNNs (regions with convolutional neural networks)
[83]. Furthermore, several other deep learning algorithms with light-weight architectures
have been used for real-time object detection, including MobileNetV2 [36,41,52,95], U-Net
[66,67,74,76], ResNet18 [38,65], AlexNet [18,44], FCN [58], and SegNet [71].

4.6. Technologies Used for Improving UAV Real-Time Object Detection Algorithms

In pursuit of enhanced performance, deep learning models are often designed to
be deeper and more complex, which inevitably introduces computing latency. However,
in real-time tasks, precision is not the only criterion. Therefore, the aforementioned architec-
tures need further refinement to suit the resource-constrained environment of unmanned
aerial vehicles (UAVs). Among the 60 articles employing deep learning models, we con-
ducted an analysis and found that 42 articles have optimized the speed of UAV real-time
detection. Among these, 36 articles proposed algorithmic optimisations. Figure 9 illus-
trates the frequency of the different optimisation methods mentioned across the 33 articles
discussing algorithmic improvements.

The remaining 6 articles did not choose algorithmic optimisations. Instead, they
pursued enhancements to the overall speed of the real-time detection system through
strategies such as refining output results in conjunction with GPU hardware architecture.
For instance, they selectively output only the portions of the image containing detected
objects, thereby reducing transmission overhead [61,80].
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Figure 9. Number of uses of improving methods for real-time UAV detection algorithms.

The essence of lightweight design lies in the substitution of compact convolution
filters for their bulkier counterparts. Specifically, larger convolution filters are replaced
by multiple smaller ones, which are subsequently concatenated to achieve a comparable
outcome. In our investigation, this approach is commonly applied to the backbone net-
work of the YOLO algorithm, yielding promising results such as model size reduction
and improved inference speed. In [75], ShuffleNetV2 replaced the backbone network of
YOLOV3-Tiny. In [90], MobileNetV2 substituted for the DarkNet53 backbone of YOLOV3.
Moreover, in [43,56,88], MobileNetV3 was adopted to replace the CSPDarkNet53 backbone
in YOLOV4.

There are parameter redundancies in deep learning networks, which not only increase
the size of the model but also slow down the running speed. Thus, pruning the parameters
of deep learning models to achieve higher processing speeds is also a way to lighten these
models [21]. For instance, studies have reported parameter pruning in the fully connected
layers [83], as well as pruning applied to each layer of the model [64,82]. Further pruning
involves reducing the number of channels in convolutional layers [38,55,111,112].

The purpose of parameter quantisation is to reduce the volume of trained models
during storage and transmission. Typically, the focus is not on designing smaller model ar-
chitectures but rather on employing lower-bit fixed representations. This approach reduces
model storage space and significantly decreases the required computational resources by
diminishing model precision. In [74], model parameters were quantized into 8-bit integers,
facilitating real-time execution while maintaining an acceptable level of accuracy loss.
Leveraging TensoRT on GPU hardware also enables model quantisation for accelerated
performance. This approach has been employed in References [35,40,94].

Furthermore, the downsampling of images [49,70] by reducing their resolution can
also effectively reduce computational load and subsequently enhance inference speed.
In our review, downsampling is often employed in conjunction with other optimization
techniques for improved outcomes. For instance, in [58], downsampling synergizes with
lightweight design for algorithmic refinement. Similarly, in [54,55,64], downsampling is
combined with parameter pruning for optimisation.

4.7. UAV Real-Time Object Detection Evaluation

Real-time object detection based on UAVs has four evaluation aspects. Accuracy is an
important metric for evaluating detection algorithms. However, in real-time tasks, detection
speed is also essential. In addition, the latency performance considers the communication
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delay, computation delay, and so on during the progress from image acquisition to output.
Last but not least, energy consumption is important, especially for practical operations.

4.7.1. Accuracy

According to our review, ten evaluation metrics were used in the literature. As Figure 10
shows, the accuracy was used as the highest number as an evaluation metric. Accuracy
is defined as the ratio of the number of correctly predicted samples to the total number of
predicted samples. Although there are 23 studies using accuracy as an evaluation criterion for
model performance, it is often criticized for failing to reflect the proportion of true positives,
and it is questionable whether the detection results are comprehensive. In addition, precision,
recall, F-score, and mAP, which appear more than 10 times, can better present the model’s
performance by considering true positives, true negatives, false positives, and false negatives.
These are the most commonly used metrics for object detection; we also have some other
metrics that can evaluate the model to some extent.

The average accuracy represents the average recall rate of each class in multi-object
detection. Compared with accuracy, this metric can better reflect the impact of class
imbalance. AUC means the area under the curve of an ROC. However, since an ROC is
not easy to measure, the average precision is equivalent to calculating the area under the
precision/recall curve. Meanwhile, the IoU is a simple measurement standard for object
detection, which represents the intersection ratio of the ground truth and the prediction,
and the mIoU is the average of each class.

Figure 10. The number of studies using different metrics for accuracy.

4.7.2. Speed

As a study on real-time target detection, real time is of prime importance here, and the
computation time of target detection can be considered as the most time-consuming item
in the whole task. We counted the 63 pieces of literature that reported the detection speed
while they used different units. For easy comparison, the units were standardized to frame
rate, noted as FPS (frame per second), which is a more common metric in the literature.
A higher frame rate indicates a faster speed and shorter time consumption. Some studies
recorded the speed in more than one different experiment situation, and the shortest time
consumption in the literature was used to represent that study’s result. The detection speed
was divided into 9 categories, and the distribution is shown in Figure 11.
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Figure 11. Detection speed interval distribution. The detection speed was divided into 9 categories,
which are less than 1 FPS, 10 FPS, 20 FPS, 30 FPS, 40 FPS, 50 FPS, 60 FPS, 70 FPS, and more than
100 FPS. The figures outside the bar indicate the number of studies in that speed interval. The blue,
red, and green bars represent the literature that used traditional methods, machine learning, and deep
learning, respectively.

Although such a comparison does not account for factors such as input image size,
hardware capabilities, algorithm complexity, network conditions, or other potential influ-
ences on task detection speed, it does highlight that the majority of applications concentrate
detection speeds within the range of 1 to 30 frames per second (FPS). As a result, detection
speeds falling within this range can generally be considered as fulfilling the real-time pro-
cessing demands for most scenarios. Indeed, faster detection must be better in real practice,
but the faster speed sacrifices detection accuracy to some extent, for example, by using
simple algorithms. Two studies that used traditional methods for real-time detection re-
ported more than 60 FPS. They both selected RGB cameras to detect vegetation indices and
obtain the 311 FPS result in the case of low image resolution [69]. Another study using
FPGA hardware and software co-design optimized implementation to achieve 107 FPS [68],
which has some specificity and cannot be a general approach for every application.

4.7.3. Latency

Based on the review results, there are not many studies discussing latency in real-
time object detection. In the cloud-computing paradigm, latency mainly refers to the
transmission time from the end device to the cloud center. In our database, the edge
computing paradigms accounted for 95.8%. In these studies, based on edge computing,
they mainly adopted onboard processing, so the latency between edge end and edge server
has not been studied much.

However, one study [88] indicated that offloading the computing to the edge server
can reduce the computing delay. The author stated that the total delay consists of the delay
in UAV data transmission to the edge server, the UAV computing delay, and the edge
server computing delay. The study [80] also considered different communication methods.
They compared the transfer time over Wi-Fi and 4G.

4.7.4. Energy Consumption

Energy consumption is an evaluation metric that could be easily overlooked, and as is
evidenced by our review, just 6 studies (< 10%) reported energy consumption. Considering
that detection missions are carried out on UAVs, the batteries of these UAVs have to provide
energy for their own flight, the computing platform, and data transmission at the same
time. However, the energy seems not easy to calculate. In [88], a data transmission energy
consumption model, a UAV computing energy consumption model, and a UAV flight
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energy consumption model were developed to estimate the total energy consumption over
the whole real-time object detection task.

5. Discussion

In this survey, 77 studies were included in a systematic review of real-time object
detection based on UAV remote sensing. These studies covered different application
scenarios and were analyzed in terms of hardware selection, algorithm development,
and improvement to achieve real-time detection over the past 20 years. In summary, real-
time object detection is a technology that is increasingly in demand in UAV remote sensing
because of its advantages related to higher detection efficiency and faster response times.
In this section, the research challenges and the outlook for realizing UAV real-time object
detection are discussed.

5.1. Current Challenges
5.1.1. Sensor Usage for UAV Real-Time Object Detection

Promising performance for various real-time object detection applications has been
shown for four types of sensors and one type of sensor combination that can be used on
UAVs, namely RBG, multi-spectral, hyper-spectral, and thermal sensors, as well as the
combination of RGB and thermal sensors. Based on the analysis of the sensors deployed,
the challenges of sensors in real-time applications are further discussed. Although the
choice of sensors for UAV real-time object detection tasks comes in part from the needs of
the measured targets and scenarios, more importantly, RGB sensors are used in most studies
because of their smaller data size, more accessibility to setup, and the more superficial
processing of RGB images. Meanwhile, the lower price of the RGB camera is also the reason
to choose it, especially in some large-scale applications [113]. However, it is important to
note that the spectral information provided by RGB is limited.

Multi-spectral and hyper-spectral cameras can obtain more band information than RGB
cameras, especially hyper-spectral imagery containing fine spectral resolution, although
this also means a larger data volume and increasing computational complexity. According
to the investigation conducted in this article, there are only two studies on real-time object
detection using hyper-spectral data with UAVs. One of the studies [96] aimed to detect
plastics in the ocean by selecting three feature bands, including bands sensitive to non-
plastics, PE polymers, and PET polymers. The authors combined the data from these three
bands as training data and used a linear classifier for supervised learning to obtain the
plastic detection algorithm. The advantage of the linear classifier is that it requires very little
computing resources, making it possible to implement real-time detection on lightweight
computing platforms mounted on drones. However, the authors also emphasized the
disadvantage of this approach, which is the inability to automatically extract features and
the need for a large amount of pre-processing compared to deep learning algorithms that
require more computing resources. Another study [114] focused on ship detection in the
maritime environment. The authors proposed a complete solution for real-time hyper-
spectral detection based on UAVs. The solution includes a hyper-spectral system with
a camera and control board, a geographic positioning system with a Global Positioning
System (GPS) and an inertial measurement unit (IMU), and a data processing system
with a CPU. They used a processing method called hyper-spectral derivative anomaly
detection (HYDADE) to analyze peak values in the spectral response by processing the
first and second derivatives of the spectrum obtained for each pixel and comparing them
with an adaptive threshold to detect ships. Based on these two cases, it can be observed
that in order to achieve real-time detection, researchers have employed relatively simple
algorithms for processing hyper-spectral data to adapt to the limited computing resources
on UAVs. Therefore, it is noteworthy that there are only a few algorithms available for the
real-time processing of hyper-spectral images up to this point. However, in other scenarios,
especially in agriculture, although hyper-spectral offline processing has been widely used in
applications such as disease detection [102] and crop identification [115], it is still limited in
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its real-time application. Therefore, considering the potential application of deep learning
in the field of edge computing, its integration is expected to play a significant role in
real-time detection. Thus, it may be worthwhile to explore the possibility of developing a
real-time detection algorithm for hyper-spectral images using neural network architectures.

Furthermore, the enormous volumes of hyper-spectral data not only limit them to
real-time processing on the low-performance embedded processors but also pose challenges
for transmitting data in the edge computing environment. Compressing hyper-spectral
data to achieve their real-time transmission is a solution [116]. However, the performance-
constricted computing platform onboard also limits the compression algorithm due to
the high data rate produced by hyper-spectral sensors. Therefore, in the above study
[116], the authors also mentioned several requirements for using a compression algo-
rithm onboard to achieve real-time hyper-spectral imagery transmission, including its low
computation cost, a high compression ratio, an error-resilient nature, and a high level of
parallelism that allows for taking advantage of low-power graphics processing units (LPG-
PUs) to speed up the compression process. These requirements are very similar to those
found in the space environment for satellites [117]. In this review, [118] introduced different
hyper-spectral image compression algorithms for remote sensing. They concluded that ex-
ploring parallel and hardware implementation is beneficial for reducing computation time
and computation power and improving performance. From the algorithm optimization
aspect, in this work [119], they reuse the information extracted from one of the compressed
hyper-spectral frames to avoid repeat execution in the subsequent hyper-spectral frames
based on HyperLCA [120], which is a compression algorithm for satellites. Moreover, this
study demonstrated that the proposed algorithm could be implemented in a Jetson Xavier
NX on a UAV to compress in real-time hyper-spectral data captured by a Specim FX10
camera, which can transmit to ground stations at up to 200 FPS.

On the other hand, lossless and near-lossless compression showed limited research [118],
and it is also difficult to attain ratios better than 4:1 just depending on lossless compression [121].
Some research proposed a combination of image size and encoding algorithms for lossless
image compression in the medical field [122]. Thus, in order to achieve the real-time
transmission of hyper-spectral data, it is necessary to perform lossy compression to meet
the compression ratios imposed by the transmission acquisition data rate and transmission
bandwidth, but the quality of the hyper-spectral data received by the edge server (or ground
station) must be sufficient to guarantee the minimum standards required by the tasks [116].
Similarly, other sensors, such as RGB and multi-spectral sensors, should also consider the
impact of compression algorithms on data quality (resolution) during transmission when
applying the edge computing paradigm to transmit data to edge servers for detection tasks
and computation.

In terms of multi-spectral sensors, although processing multi-spectral data is not as
complex as hyper-spectral data, some algorithms quickly slow down as the number of
bands to be processed increases or their parameters change [123]. In one selected study
[74], the authors successfully trained a deep learning network to detect trees using one-
band spectral images. This indicates that multi-spectral sensors have a similar challenge
as hyper-spectral sensors, which need to know the spectral information from targets of
interest to conduct spectral matching instead of going further to exploit the advantages
of multi-spectral or hyper-spectral data including more spectrum information to detect
specific targets.

5.1.2. Edge Computing Paradigm for UAV Real-Time Object Detection

In this review, edge computing is the most commonly used paradigm for real-time
detection, rather than cloud computing, as we illustrated in Figure 8. Cloud computing
needs to upload large amounts of raw data to the cloud, which is a great challenge for
network bandwidth. Although 5G can provide large bandwidth and low latency to realize
quick transmission between the data generator end and the cloud center [124], in our
investigation, using 5G technology is not the first choice for object detection based on UAV
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remote sensing applications. A possible reason for this is that the capacity of the network
is measured by the bandwidth per cubic meter, and for UAV remote sensing applications,
the number of 5G base stations and the number of connected devices in a large space may
limit the performance of 5G [124]. Thus, despite some success with 5G in object detection
that is not in the UAV remote sensing scenario, this problem still exists to some extent
[125]. The odds of edge computing is that it allows for more functions to be deployed
to end devices at the edge to enable them to process the generated data, thus solving
computationally intensive offloading and latency problems [126].

There are two kinds of edge computing paradigms. One is to deploy a local edge
server (ground station) for UAV information processing (Figure 7b), and the other one is to
implement a UAV-onboard real-time embedded platform (Figure 7c).

Undoubtedly, the ideal situation for UAV real-time object detection tasks is to perform
onboard computation, which avoids the raw data transfer, which usually puts pressure on
the transmission of the sensor-generated imagery data in object detection using computer
vision. At the same time, although embedded edge computing platforms with GPU accel-
eration are available in the industry and have been validated in different UAV real-time
detection scenarios, their computing power is still not comparable to that of professional-
level computing platforms, which has led to a lot of research focusing on how to optimize
algorithms [56,65,85], and most commonly, compress computer vision models that con-
sist of deep neural networks. In [127], the authors pointed out that onboard processing
could greatly increase the energy consumption of the UAV, making it impossible to take
advantage of practical applications. In particular, the battery packs of commercial UAVs
are for propulsion [128], and once this power is allocated to onboard processing and data
transmission, the flight time will be significantly reduced, which will also lead to a decrease
in the overall efficiency of the detection tasks [129]. Although an external battery can be
chosen to power the computing platform exclusively, this in turn will increase the payload
on the UAV and thus reduce the flight time as well.

In this review, only 7 studies attempted to consider computing offloading. Computa-
tion offloading can significantly reduce energy consumption and computing resource require-
ments by a large margin, and this is a current area of research on mobile edge computing [130].
Some studies indicated that offloading processing is a feasible solution for real-time tasks,
which takes into account energy consumption and processing speed [125,127,129]. There
are four types of offloading types: binary offloading, partial offloading, hierarchical archi-
tectures, and distributed computing [126]. The offloading type depends on the UAV’s flying
time and the computational capacity of both the UAV-aided edge server and the ground
edge server, and [131] pointed out that energy consumption and task completion time are
the most crucial performance metrics for designing an offloading algorithm. The included
literature in this review did not discuss the offloading technology applied in UAVs. One
challenge mentioned by [132] indicated that the ground edge server may not have sufficient
energy to execute an offloaded task. Another issue is the offloading delay, which was
raised in [131] and which has several causes, such as obstacles, low-frequency channels,
and task size, as well as the constant innovations in neural networks that cannot be ignored
[126]. Additionally, service latency could affect UAV real-time object detection, as men-
tioned in [131], and a higher latency causes system overhead, which severely deteriorates
offloading performance.

5.1.3. Lightweight Real-Time Object Detection Algorithms Based on UAVs

Real-time object detection algorithms run on resource-limited edge computing plat-
forms, and those models need to be relatively lightweight, thereby reducing the reliance
on computational resources as well as reducing inference time to meet real-time require-
ments. In [6], the authors highlighted that it has been challenging to improve the detection
time of detectors, and they provided an overview of the speed-up techniques, including
feature map shared computation, cascaded detection, network pruning and quantification,
lightweight network design, and numerical acceleration. In our review study on UAV
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real-time object detection, the most commonly used methods to improve the speed of
the algorithm are network pruning [54,56,65,112], quantification [67,82,92], and the use of
a lightweight network design.

Network pruning is an essential technique for both memory size and bandwidth re-
duction, and it can remove the redundancy of a network and parameters, which can reduce
computations without a significant impact on accuracy. In [133], the authors demonstrated
the possibility of pruning 90% of all weights in a ResNet-50 network trained on ImageNet,
with a loss of less than 3% accuracy. However, in [134], the authors noted that although net-
work pruning sometimes progressively improves accuracy by escaping the local minimum,
the accuracy gains are better realized by switching to a better architecture [135]. In the
meantime, the performance could also be bottlenecked by the structure itself, and a net-
work architecture search and knowledge distillation can be options for further compression
[136]. From the practical point of view, due to the limitation of embedded device resources,
large-capacity optimization networks are not allowed, so in [137], the authors pointed out
that when pruning a network, it is best to consider the deployment environment, target
device, and speed/accuracy trade-offs to meet the needs of the constrained environment.

To perform network quantization is to compress a neural network by reducing its
value precision, i.e., by converting FP32 numbers to lower-bit representations, which can
accelerate inference speed [136]. However, the literature also mentioned that quantization
usually leads to accuracy loss due to information loss during the quantization process.
In UAV real-time object detection tasks, it is a common idea to adopt a compact network
as the initial model. Unfortunately, the accuracy drop during quantization is especially
obvious in compact networks. Some advanced quantization techniques [136], including
asymmetric quantization [40] and calibration-based quantization [64], can improve the ac-
curacy. In practice, 8-bit quantization is widely used, and in our review studies [67,74], good
trade-offs between accuracy and compression were achieved in real-time object detection.

5.1.4. Other Challenges for Real-Time Object Detection on UAV Remote Sensing

Since the implementation of real-time object detection for UAVs is a complex task,
there are still some neglected issues that need to be taken into account.

In the detection process of UAVs, remote sensing images are often collected by setting
up missions in the system. Mature UAVs have stable flight control systems and autonomous
navigation through active or passive sensors [4]. However, in order to achieve the task
of real-time target detection, with the potential for UAVs to penetrate deeper into the
environment rather than just detecting at high altitudes, consideration needs to be given to
whether there is competition for computational resources between increasingly complex
autonomous navigation and obstacle avoidance strategies and target detection, as well as
the challenges posed by increased energy consumption.

For UAV real-time target detection, the collected data need to be read onboard. How-
ever, commercial UAV manufacturers usually do not open-source their flight control, map
transmission, or other systems due to copyright considerations, and only a few UAV series
are open to a limited API interface. These studies [138,139] used the SDKs provided by
DJI. This certainly makes secondary development more difficult in situations where the
required information is not directly available. Although the option of using open-source
flight control, such as PX4 Autopilot (https://px4.io/ (accessed on 6 June 2023)), exists,
there is also a significant amount of design expertise required to ensure its stability, safety,
and legality. This may account for the lack of implementation of real-time object detection
on UAVs from a practical operation perspective during this review process.

5.2. Future Outlook
5.2.1. Autonomous UAV Real-Time Object Detection

As we illustrated in Figure 1,for the concept of real-time object detection based on UAV
remote sensing, when the computing platform executes the detection models, outputting
the results and real-time responses can make the real-time object detection tasks more

https://px4.io/
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automatic and form a closed loop. The idea of autonomous UAV tasks is to reduce human
operation, where humans can just issue commands to deploy, monitor, and terminate
the missions of UAVs. The UAV can conduct remote sensing according to a specified
mission plan and run its algorithms automatically to output results. These results can
be sent to humans, machines, or systems to make quick decisions and respond. In [140],
the authors used UAVs to identify infected plants and link the results to the system. Then,
the system decided the chemical and exact amount of spray to use. In this simulation,
the researchers developed an automatic collaboration between UAVs to detect garbage
pollution across water surfaces and USVs to pick up garbage [141], thus establishing more
reliable frameworks to realize a collaborative platform between UAVs and systems or
robots (air-to-air and air-to-ground) in real-time detection scenarios [142]. This will have
the opportunity to further bridge the gap between UAVs and manned aerial and terrestrial
surveys [4].

In fact, the demand for UAV real-time object detection comes from the demand for
real-time response. It is meaningless if only a real-time detection result is obtained. Humans
need to use real-time detection results to reduce losses and improve efficiency. To achieve
this, some technologies, including multi-machine collaborative work [143,144], knowledge
graphs [145], natural language processing [146], and blockchain [147], are needed.

5.2.2. Communication in Real-Time Object Detection Based on UAV Remote Sensing

As we discussed in the previous section, edge computing is an ideal technology
for achieving real-time object detection, except for improving lightweight models and
offloading technology. In contrast, the development of communication technologies cannot
be ignored.

The limitation of 5G basically arises from the need to reach data rates of up to 100 Mbps
and 50 Mbps for downlink and uplink, respectively [125]. Compared to 5G, 6G needs more
significant improvements in performance, such as bandwidth, delay, and coverage, which
expands 5G’s requirements for scenarios such as ultra-low latency, massive connections,
and ultra-large bandwidth to achieve higher peak transmission rates [148]. Benefiting from
the large communication bandwidth and high transmission rate of the 6G mobile network,
UAVs can achieve efficient data collection in a shorter period, which also overcomes the
problem of insufficient collection time caused by the short battery life of UAVs. In addition,
the challenge of real-time detection is not only solved by reducing latency and increasing
network bandwidth but also by considering technologies such as pre-training and online
learning to solve real-time tasks.

The above-mentioned discussion points indicate that it is essential to support machine
learning or deep learning algorithms at the edge. Future generations of wireless commu-
nication systems have the opportunity to solve this issue. The communication channels
in THz and optical frequency regimes, while exploiting modulation methods capable of
10 b/symbol, can achieve data rates of around 100 Tb/s with such assumptions in mind
to provide a communication link that can enable massive computations to be conducted
remotely from the device or machine that is undertaking real-time processing at the edge
of the network [149].

However, there are also some challenges that need to be considered, such as how
to enable the interaction between the data generated by UAVs in the airspace network
and other heterogeneous networks and how to solve the problem of insufficient spectrum
resources caused by massive UAV access to a 6G network. Additionally, even though there
is automatic battery replacement technology for UAVs, it still cannot solve the root problem
of short battery life [150].

6. Conclusions

This study reviewed the recent literature on real-time object detection based on UAV
remote sensing. We investigated the advances in aerial real-time object detection and
comprehensively considered different aspects, including application scenarios, hardware
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usage, algorithm deployment, and evaluation metrics. Accordingly, the current research
status and challenges are presented, and a basis and suggestions for future research have
been proposed.

We have adopted a systematic literature review approach by first defining a concept
map for real-time object detection by UAV remote sensing, and according to the concept
map analysis, seven research questions were analyzed (RQs).

The review findings well-illustrated seven research questions. More real-time object
detection research exists in emergency rescue, precision agriculture, traffic, and public facil-
ity inspection scenarios (RQ1). Multi-rotor UAVs are the most-used platforms due to their
ability to hover, thus providing easy access to remote sensing images. Although thermal
and spectral sensors have emerged for studies, they currently need to become mainstream
for real-time detection but are limited by the form and size of their image data. Thus,
RGB images are being studied more in UAV remote sensing (RQ2). Most real-time detec-
tion adopts the edge computing paradigm, and the number of studies using the onboard
processing strategy is much greater than those using the computation offloading strategy
(RQ3). GPU-based edge computing platforms are widely used to complete real-time object
detection in UAV remote sensing images. However, some applications also use CPU, VPU,
TPU, and FPGA according to their requirements (RQ4). With the widespread use of deep
learning, it has become the first choice for real-time object detection tasks (RQ5), so it is vital
to optimize these algorithms to better deploy them on resource-constrained computing
platforms. Optimization can be carried out, e.g., by the use of lightweight convolutional
layers, by pruning parameters, utilizing low-rank factorization, and incorporating knowl-
edge distillation (RQ6). Finally, for evaluation metrics, in addition to accuracy and speed,
latency and energy deserve equal attention (RQ7).

In conclusion, this paper has highlighted the challenges and key issues associated with
implementing real-time object detection for UAV remote sensing. Through a comprehensive
analysis of sensor usage, edge computing, and model compression, this paper has identified
areas that require further research and development. Future research needs to explore
real-time processing solutions for multi-spectral and hyper-spectral images and investigate
the possibilities of hardware and algorithms under different edge computing paradigms.
As mentioned in this paper, bridging multiple disciplines, such as robotics and remote
sensing, is crucial to fostering innovation and progress in real-time UAV remote sensing,
and collaborative research efforts that connect different fields of study can further leverage
the latest technologies for the benefit of society.
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