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1 | INTRODUCTION

Abstract

The physiology of every living cell is regulated at some level by transporter
proteins which constitute a relevant portion of membrane-bound proteins and
are involved in the movement of ions, small and macromolecules across bio-
membranes. The importance of transporter proteins is unquestionable. The
prediction and study of previously unknown transporters can lead to the
discovery of new biological pathways, drugs and treatments. Here we present
PortPred, a tool to accurately identify transporter proteins and their substrate
starting from the protein amino acid sequence. PortPred successfully
combines pre-trained deep learning-based protein embeddings and machine
learning classification approaches and outperforms other state-of-the-art
methods. In addition, we present a comparison of the most promising protein
sequence embeddings (Unirep, SeqVec, ProteinBERT, ESM-1b) and their
performances for this specific task.
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the functioning of all living organisms; malfunctioning of
transporters is often associated with diseases and they are

Since the first work by Rothman, Schekman and Sii dhof
focused on unraveling the cell transport mechanisms' ™
and the identification of the first water channel proteins,
later called aquaporins, in 1985 by Benga,* the research
on transporter proteins has continuously increased.
Transporter proteins are now considered essential for

frequently studied as drug targets.””’

A transporter or membrane transport protein is a
protein involved in the transport of ions, small molecules
and macro-molecules across a biological membrane.®’
Transporter proteins are continuously identified and
characterized. Nowadays, they are represented and
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TABLE 1 Descriptions of substrate-specific transporters for all the classes considered in this study.

Substrate Transporter description
Amino acid Transporters for amino acid molecules that are mainly of the solute carrier family.

Examples are transporters from the Amino Acid-Polyamine-Organocation (APC) Superfamily.’
Anion The organic anion transporter (OAT) subfamily constitutes roughly half of the

SLC22 (solute carrier 22) transporter family.*

Cation/hydrogen ion

Protein involved in the transport of hydrogen ions across a membrane.

Used to power processes such as ATP synthesis and bacterial flagellar rotation.*

Electron Electron transporter proteins form chains (ETCs) where each ETC is a series
of protein complexes and other molecules that transfer electrons from electron
donors to electron acceptors via redox reactions.*

Protein/mRNA Membrane proteins involved in the movement of macromolecules, such as
another protein or mRNA 33!

Sugar The sugar transporters are responsible for the binding and transport of
carbohydrates, organic alcohols, and acids in a wide range of organisms.**

Lipid ATP-dependent ABC and P4-ATPase lipid transporters are known to contribute
to lipid translocation across the lipid bilayers on the cellular membranes.*?

Other This category includes all transporters that are not represented in the other classes.

For example transporter proteins that move metal ions like iron, nickel, copper, and zinc.**

Abbreviation: mRNA, messenger RNA.

classified in the transporter classification system (http://
www.tcdb.org/) that systematically classifies transport
proteins according to their mode of transport, energy
coupling mechanism, molecular phylogeny, and sub-
strate specificity.'®!!

The biological relevance of transporter proteins is
reflected by the expanding body of research literature on
the topic: between 2018 and 2022 18 295 papers appear
on PUBMED (https://pubmed.ncbi.nlm.nih.gov/) con-
taining the words “transporter protein” or “transporters”
in their title or abstract, while 16 365 were found as
published in the previous 4 years. The protein structure
database PDB (https://www.rcsb.org/),"* contains 5150
structures with resolution<1.5A (14-12-2022), corre-
sponding to 3424 proteins identified as transporters.
UniProt reports 7391 reviewed sequences annotated as a
transporter (14-12-2022); if the search is related to
sequences automatically annotated, the number of
transporters increases to a staggering 373 477. The huge
amount of sequence data compared to structural data
concerning transporter proteins indicates the necessity to
rely on efficient sequence-based predictors to accurately
identify transporter proteins.

Several tools predicting transporter proteins from
amino acid sequences using machine learning ap-
proaches have emerged in recent years. At the time of

this writing, the following tools were published: (1)
Transporter Substrate Specificity Prediction (TrSSP);"
(2) SCMMTP;** (3) Li et al."> approach; (4) FastTrans;'°
(5) TooT-T;'” (6) TooT-BERT-T;*® (7) TranCEP."

All these tools exploit the amino acid composition of
the protein sequences. However, the application of deep
learning (DL) approaches to encode protein amino acid
sequences has shown promising results for several tasks
such as subcellular and sub-organelle classification,
protein structure and function prediction, and protein-
protein interactions (PPIs).?’°

Following our previous works on the use of sequence
embeddings for the prediction of the subcellular localiza-
tion of peroxisomal proteins,>**° we apply a similar
framework to the development of PortPred, a prediction
tool for the accurate identification of transporter proteins
and multi-class classification of their transported
substrates.

We reviewed and compared the most recent and
frequently used DL-based protein embeddings (namely:
UniRep,”® SeqVec,”' ProteinBERT,*” and ESM-1b*) in
predicting transporter proteins and their relative sub-
strates, in combination with several machine learning
approaches.

PortPred was developed by testing both the single
embeddings and their combination thereof and finding

85UB017 SUOLULLOD A8 3(cedt dde 8y} Aq peupAob 812 s9[olLe YO 9SN J0 S9INJ 10) Aleid1 8UIIUO AB]IAN UO (SUOTIPUOD-PUE-SWLBILID"AB | 1M Aleq1pul|uo//:SdNY) SUONIPUOD pue swie | 841 88S *[£202/2T/£0] Uo ARiq1Tauljuo A|IM eu0lqig yoessay pue Aisieaiun usBulusiep Aq 06v0€ G01/200T 0T/10p/wod" A im Afe.d1eul|uo//sdny wouy pepeojumod ‘TT ‘€202 ‘vv9v.60T


http://www.tcdb.org/
http://www.tcdb.org/
https://pubmed.ncbi.nlm.nih.gov/
https://www.rcsb.org/

ANTEGHINTI ET AL.

the best protein representation and machine learning
classifier. PortPred was also tested against the state-of-
the-art transporters predictors’>'”'? for either binary
classification (transporter vs. not-transporter) and multi-
class classification related to the transporter substrates
namely: cation, anion, electron, lipid, amino acid,
protein/messenger RNA (mRNA), sugar, others. Details
about the substrate are shown in Table 1.

We found PortPred to outperform the state-of-the-art
in predicting transporter proteins and being accurate in
predicting different substrates. Finally, after in-depth
analysis of our results, we implemented PortPred which
couples a combination of the four embeddings and
Logistic Regression to perform the predictions.

2 | METHODS

2.1 | Database search queries

We obtained the number of transporter proteins available
in biological databases, mentioned in the Introduction
(Section 1), with the following queries.

PubMed query 1: ((transporter protein
[Title/Abstract]) OR

(transporters[Title/

Abstract])) AND

(("2014" [Date - Publication]
"2018" [Date — Publication])).

PubMed query 2: ((transporter protein
[Title/Abstract]) OR

(transporters[Title/

Abstract])) AND

(("2018"[Date - Publication]
"3000" [Date - Publication])).

PDB query: (Structure Keywords HAS ANY
OF WORDS "transport, transporter, trans-
porters, transporter protein") AND

(Refinement Resolution=[0-1.5]).

UniProt query: (cc_function:tran-
sporter)

2.2 | Overview of existing methods for
the prediction of transporter proteins and
their substrate

Transporter Substrate Specificity Prediction'>: It implements
Support Vector Machines (SVM) classifier on six prediction
modules considering the following features respectively: (1)
amino acid composition;*> (2) AAIndex that considers the
biochemical composition of the amino acid residues.>***” In
particular, a subset of the AAIndex database which has 49

o o, TR

selected physical, chemical, energetic, and conformational
properties;*’ (3) The position-specific scoring matrix profile
(PSSM)*** run on the Swissprot data set.”’ PSSM captures
the conservation pattern in the alighment and summarizes
evolutionary information of the protein where the scoring
matrix is at the basis of protein BLAST searches (BLAST
and PSI-BLAST);* (4) combination of AAIndex/PSSM with
the Swissport based PSSM; (5) PSSM run on UniRef90;*! (6)
a combination of AAIndex/PSSM (UniRef90).

Scoring card method (SCM) for membrane transport
proteins (SCMMTP)'*: Tt implements a SCM based on
the dipeptide composition of the amino acid sequence to
identify putative membrane transport proteins. In
SCMMTP, the first step is the creation of a matrix of
(20 x 20) 400 dipeptides which represents the normalized
dipeptide propensity scores of the Membrane Transport
Proteins (MTPs). This matrix is then optimized using the
Improved Genetic Algorithm (IGA) for maximum
satisfiability (MAX-SAT) problems,.** IGA optimizes
the dipeptide propensity scores maximizing the predic-
tion accuracy and conserving the original sequence
information. The fitness function of IGA is concerned
with the area under the receiver operating characteristic
(ROC) curve (area under the curve [AUC]* and
Pearson's correlation coefficient between the initial and
optimized propensity scores of 20 amino acids.

Li et al.’: This approach first creates a hybrid feature
representation of the amino acid sequence which integrates
the PSSM,* the amino acid composition, biochemical
properties from the PROFEAT (Protein Features),* and
Gene Ontology (GO) terms. The hybrid feature is created by
recursively selecting features using an SVM-based back-
ward feature extraction model which is used to predict the
substrate class of transmembrane transport proteins.
FastTrans'®: Tt generates a word-embedding representation
of the protein sequence implementing a natural language
processing (NLP) approach. First, biological words are
generated by splitting the amino acid sequence into
overlapping fragments of the same length. Second, a word
embedding vector for each biological word is generated using
Skip gram®™ or Continuous Bags of Words (CBWO)
models.*® The classification is performed using SVM.*’
TooT-T'": It is an ensemble classifier that combines the
predictions from homology annotation transfer and
machine-learning classifiers. The ensemble classifier uses
six predictions (three from the homology annotation
transfer and three from SVM classifiers) and outputs the
final binary prediction (transporter vs non-transporter).
It is implemented using the Gradient Boosting Machine,
as available by caret package in R https://CRAN.R-
project.org/package=caret. Given a query protein, this
method starts with a homology search of the Transporter
Classification Database’ using BLAST.*® The query
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sequence is classified as a transporter if a hit is found
using three predetermined sets of thresholds, thus
generating the three homology modeling annotation
transfer predictions. Second, three variations of newly
generated features called psi-composition feature
psiAAC, psiPAAC, and psiPseAAC are computed.'” Psi-
composition combines amino acid composition with
alignment results from PSI-BLAST.*® These psi-
composition features are then used as input for three
SVM classification models.

TooT-BERT-T"®: This tool harnesses the power of BERT*
representations to dissect and distinguish between
transporters and non-transporters. The core of this
approach lies in the utilization of a Logistic Regression
classifier,”® which leverages BERT's deep contextual
understanding. The performances of both frozen and
fine-tuned representations, originating from two distinct
BERT models have been validated.

TranCEP": It uses the pair amino acid composition
(PAAC) encoding scheme, the TM-Coffee algorithm for
generating multiple sequence alignments (MSAs),”" and
its relative transitive consistency score (TCS).> The
predictor relies on eight SVM classifiers, one for
distinguishing between each pair of classes of substrates.
TranCEP has been further expanded into TooT-Sc which
encompass a diverse data set of eleven substrate classes.
The methodology underpinning TooT-SC combines the
power of pairwise amino acid composition (PAAC),
evolutionary insights from MSAs facilitated by TM-
Coffee, and precise focus on critical alignment positions
through TCS. Notably, experimental evaluations have
showcased the remarkable performance of TooT-SC.>*>*

221 | Software
We report the links to the tools mentioned and tested in
this study (if available).

o TrSSP—https://www.zhaolab.org/TrSSP/

« SCMMTP—http://iclab.life.nctu.edu.tw/iclab_
webtools/SCMMTP/

« FastTrans—http://bio216.bioinfo.yzu.edu.tw/fasttrans/

« TranCEP—https://github.com/bioinformatics-group/
TranCEP

2.3 | DL based protein sequence
embeddings

We considered four recently proposed methods for the
embedding of protein sequences based on deep-learning
approaches and protein sequences:

ANTEGHINTI ET AL.

The unified representation (UniRep)™: Is based on a 1900-
hidden unit recurrent neural network architecture, able
to capture evolutionary, chemical and biological infor-
mation encoded in the protein sequence starting from 24
million UniRef50 sequences** where UniRef50 is a non-
redundant sub-cluster of Uniprot.>’ In UniRep, the
protein sequence is modeled by using a hidden state
vector, which is recursively updated based on the
previously hidden state vector. That means the method
learns by scanning a sequence of amino acids, predicting
the next one based on the sequence it has seen before.
Using UniRep, a protein sequence can be represented by
an embedding with a length of 64, 256, or 1900 units,
depending on the neural network architecture. In this
study, we used the 1900 units length (average final
hidden array). For a detailed explanation of how to
retrieve the UniRep embedding, we refer the reader to
the specific GitHub repository https://github.com/
churchlab/UniRep (11.2021) or the bio-embeddings
GitHub repository https://github.com/sacdallago/bio_
embeddings.

The sequence-to-vector embedding (SeqVec)*': Is based on
a NLP approach. It embeds biophysical information of a
protein sequence where amino acids are words and
proteins are sentences. SeqVec is obtained by training
ELMo,>® on UniRef50.*' ELMo is a deep contextualized
word representation that models both complex charac-
teristics of word use (e.g., syntax and semantics) and how
these vary across linguistic contexts. It consists of a two-
layer bidirectional LSTM>® backbone pre-trained on a
large text corpus. The SeqVec embedding can be obtained
based on either a per-residue level (word level) or a per-
protein level (sentence level). The per-residue level
protein sequence embedding is informative in predicting
the secondary structure or intrinsically disordered
region; The per-protein level is useful to predict
subcellular localization and to distinguish membrane-
bound versus water-soluble proteins.*' Here we use the
per-protein level representation, where the protein
sequence is represented by an embedding of length
1024. For a detailed explanation of how to retrieve the
SeqVec embedding, we refer the reader to the specific
GitHub repository  https://github.com/mheinzinger/
SeqVec or the bio-embeddings repository https://github.
com/sacdallago/bio_embeddings.

ProteinBert’”: Is inspired by the Bidirectional Encoder
Representations from Transformers (BERT) which is a
DL model that utilizes a transformer architecture to
pretrain on large amounts of unlabeled text data,
enabling it to generate high-quality contextualized word
representations for various NLP tasks.*” ProteinBERT
was instead pretrained on the raw protein sequences
available in Uniref100 (<106 million proteins).**** The
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original BERT model is trained on two tasks: (1)
language modeling where 15% of tokens are masked
and the model predicts the masked tokens from context;
(2) next sentence prediction where BERT is trained to
predict the probability of a chosen next sentence given
the first sentence. BERT learns contextual embeddings
for words and can be finetuned on small data sets for
optimized predictions on specific tasks.** In Protein-
BERT sequences are treated as separate documents,
where the “next” sentence prediction is not used. The
masking procedure works by training randomly masked
protein sequences, similar to the original BERT model. In
particular, the model takes a sequence (sentence) as
input, masks 15% of the amino acids (words) from it and
is asked to output the complete sequence. ProteinBert
was pretrained on two simultaneous tasks. (1)
Bidirectional language modeling of protein sequences
(2) GO annotation prediction, which captures diverse
protein functions.’® The final embedding has a length of
1024. For a detailed explanation of how to retrieve the
ProteinBert embedding, we refer the reader to the
specific GitHub https://github.com/nadavbra/protein_
bert.

The evolutionary scale modeling-1b (ESM-1b): Was trained on
250 million sequences of the UniParc database® and relies
on a deep transformer architecture,”® a powerful model
architecture for representation learning and generative
modeling in NLP. The peculiarity of the transformer
architecture is that it is able to return for each amino acid
(word) of the sequence (sentence), an embedding with
contextual information. In other terms, it compares every
amino acid (word) in the sequence (sentence) to every other
amino acid (word) in the sequence (sentence), including
itself, and reweighs the embeddings of each word. The
modules responsible for this process are called self-attention
blocks and consist of three main steps: (1) Dot product
similarity and alignment scores; (2) Scores normalization
and embedding weight; (3) Reweighing of the original
embeddings. In ESM-1b, the transformer processes inputs
through a series of blocks that alternate self-attention with
feed-forward connections. In this case, since it has been
trained on proteins, the self-attention blocks construct
pairwise interactions between all positions in the sequence,
so that the transformer architecture represents residue-
residue interactions. In addition, ESM-1b was trained using
the masked language modeling objective® which forces the
model to identify dependencies between the masked site and
the unmasked parts of the sequence to make the prediction
of the masked parts. Finally, the model was optimized
scaling the identified hyperparameters to train a model
with~650 M parameters (33 layers) on the UR50/S data set,
resulting in the ESM-1b Transformer.® The final length of
the ESM-1b vector is 1280.

o o, RS

24 | Overview of PortPred development
and benchmarking

The overall strategy for the development of the PortPred
tool for the prediction of transporter proteins and their
substrates is schematized in Figure 1. It consists of 4
main steps: (1) Curation of protein sequence data; (2)
Generation of the embeddings (ESM-b1, UniRep, SeqVec,
ProteinBERT) of the amino acid sequence; (3) Evaluation
of different ML approaches; (4) Benchmarking with
available tools.

2.5 | Data sets

Our ML architecture was trained on three different
training sets. Training set 1 is a newly generated data set
(the PortPred data set); Training set 2 is the TrSSP
training set and Training set 3 is the FastTrans training
set.'”»'® It was then tested against three different
validation sets. Validation set 1 is an independent data
set containing Peroxisomal proteins, Validation set 2 is
an independent data set from the TrSSP predictor,'* and
Validation set 3 is an independent data set from the
FastTrans predictor.'® Each Validation set is independent
from each Training set.

Training set 1, Training set 2 as well as Validation set
1 and Validation set 2 were used as benchmarks. See
Sections 2.5.3, 2.5.4, and 2.5.1 for details. The newly
generated data set, that contains peroxisomal proteins,
was used as a specific real-world use case (see
Section 2.5.2).

Some of the used data sets have differences among
the classes of transporter proteins, in particular in
Training set 2 the class “lipid” is not present while it is
the only one containing the class “anion.” Please note
that the PortPred final tool does not have the “anion”
label. A complete summary of the used data sets is
available in Table 2.

Moreover, we invite researchers to consider the
approach introduced by Alballa and Butler,®* which
aims to streamline the process, reduce subjectivity in
data set curation, and eliminate external data set curator
judgment with an automated tool.*

2.51 | Training set 1, the PortPred data set
Given the high percentage of sequence similarity (70%)
present in the data set available in the literature
(see 2.5.3), that could be considered redundant, we
defined a novel data set that we consider more reliable
for the final model training. The proteins were retrieved
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FIGURE 1 Overview of the PortPred development. Data curation: retrieval and selection of protein sequences (see Section 2.5).

Embedding: conversion of protein sequences to standard encodings, namely: ESM-b1, unified representation (UniRep), sequence-to-vector

(SeqVec), and ProteinBERT (ProtBERT). PortPred construction: application of different classification algorithms (Section 2.6), evaluation

and selection of the best single embedding (step 1), evaluation and selection of the best combination of sequence embeddings using recursive

feature elimination (RFE) (see Section 2.7.3) (step 2). Benchmarking: comparison of PortPred tool and or data set with the transporter

classifiers available in literature: Scoring Card Method for Membrane Transport Proteins (SCMMPT); Transporter Substrate Specificity

Prediction (TrSSP); FastTrans; TooT-T.

from Uniprot (02-10-2021)* obtaining 6631 transporter
protein sequences and 19 139 non-transporter sequences.
The data set was clustered using cd-hit®® for 40% of
sequence identity and filtered to not overlap with the
Training set 2 (see Section 2.5.3). We obtained a data
set containing 1781 transporter proteins divided into
7 classes, namely: hydrogen ion transporters (116),
electron transporters (262), lipid transporters, amino
acid transporters (92), protein/mRNA transporters (656),
sugar transporters (125), others transporters (465) which
include calcium, cobalt, copper, porin, iron, potassium,
sodium, zinc, nickel, neurotransmitter, oxygen, phos-
phate, sulfate and ammonia. An example query that can
be applied to each class changing the specific keyword is:
‘(locations:(location:membrane) AND (reviewed:true)
AND (keyword:KW-0762) AND (fragment:no) AND
(existence: “evidence at protein levels”)’. That means
our data set only contains manually curated proteins. We

also retrieved 1781 non-transporter proteins as negatives
among our random sample of non-transporter proteins.
The negatives were obtained searching for reviewed
membrane proteins not associated to the keyword
transport. The query is the following: ‘(reviewed:true)
NOT (keyword:KW-0813) AND (fragment:no) AND
(existence: “evidence at protein levels”) AND (location-
s:(location:membrane)’. Moreover, we checked that 100%
of the proteins are associated to a publication that
confirms the class label for all classes including the
negatives. Given some limitations in the generation of
the embeddings for very long protein sequences (e.g.,
ESM-bl does not embed proteins longer than 1024
residues), we removed them from the data set, which
finally consists of a balanced and non-redundant data set
of 1580 positives entries and 1621 negatives entries.
The data set is available at https://github.com/
MarcoAnteghini. An overview can be seen in Table 2.

85UB017 SUOLULLOD A8 3(cedt dde 8y} Aq peupAob 812 s9[olLe YO 9SN J0 S9INJ 10) Aleid1 8UIIUO AB]IAN UO (SUOTIPUOD-PUE-SWLBILID"AB | 1M Aleq1pul|uo//:SdNY) SUONIPUOD pue swie | 841 88S *[£202/2T/£0] Uo ARiq1Tauljuo A|IM eu0lqig yoessay pue Aisieaiun usBulusiep Aq 06v0€ G01/200T 0T/10p/wod" A im Afe.d1eul|uo//sdny wouy pepeojumod ‘TT ‘€202 ‘vv9v.60T


https://github.com/MarcoAnteghini
https://github.com/MarcoAnteghini

ANTEGHINTI ET AL.

TABLE 2 The six data sets used in this study.

Amino Cation/
acid Anion hydrogen ion Electron
Training set 2 70 60 260 60
Validation 15 12 36 10
set 2
Training set 3 61 N.A. 73 184
Validation 12 N.A. 15 37
set 3
Training set1 92 N.A. 116 262
Validation N.A. N.A. NA. N.A.
set 1

WILEY—L 2

Protein/

mRNA Sugar Lipid Other Positives Negatives Total
60 N.A. 200 780 600 1380
12 N.A. 20 120 60 180

380 71 66 165 1000 875 1875
13 12 33 197 167 372

656 125 65 465 1781 1781 3562

N.A. N.A. NA. NA. NA N.A. 173

Note: In bold are Training set 1 and Validation set 1 which are newly generated data sets from this work. Validation set 1 is an independent data set which

contains peroxisomal proteins. Note that the Validation set 1 does not contain information about the specific transporter substrates and it is used as a real-
world case scenario. Training set 2 is the training set used in the Transporter Substrate Specificity Prediction (TrSSP) paper. The Validation set 2 is an
independent data set also from the TrSSP paper. Training set 3 is the training set used in the FastTrans paper. The Validation set 3 is an independent data

set also from the FastTrans paper.
Abbreviation: mRNA, messenger RNA.

2.5.2 | Validation set 1, a peroxisomal
proteins data set

A data set for a specific use case scenario was created
using peroxisomal protein only. We searched on Uniprot
(20/03/2022) for reviewed peroxisomal proteins corre-
lated to the GO term “transport,” obtaining 173 entries
using the query ‘locations:(location:"Peroxisome mem-
brane [SL-0203]") goa:("peroxisomal membrane [5778]")
goa:("transport [6810]") AND reviewed:yes)’. In Table 2 it
is shown that the transporter protein class and true
transporter function of the peroxisomal protein in
unknown when building the data set. This was decided
to create a real-world use case scenario.

2.5.3 | Training set 2 and validation set 2
from TrSSP data set

The data set (composed of training and independent
validation sets) for the model benchmarking with other
available predictors was the same used in all of them.'*'%3
This benchmarking data set (Training set 2 and Validation
set 2) provided by Mishra et al.,"* is collected from the
Swiss-Prot database?® release 2013_03 and has been filtered
considering the 70% of sequence similarity using CD-HIT.**
The TrSSP data set'® contains a total of 1560 sequences,
divided into Training set 2 and Validation set 2 as shown in
Table 2. The categories related to the 900 transporters
present in the data set are 85 amino acid/oligopeptide
transporters, 72 anion transporters, 296 cation transporters,
70 electron transporters, 85 protein/mRNA transporters, 72

sugar transporters, 220 other transporters. Also, 660 non-
transporters were included as negatives. The data set can
either be found at https://www.zhaolab.org/TrSSP/?
dowhat=datasets or on GitHub at https://github.com/
MarcoAnteghini.

2.5.4 | Training set 3 and validation set 3
from FastTrans data set

As an additional data set for benchmarking our approach
with the multiclass prediction, we used the same data set
used for FastTrans by Nguyen et al.'® This data set is
divided into Training set 3 and Validation set 3 (see
Table 2). The protein sequence in this data set was retrieved
from UniProt*® (release 2018_10) and contained proteins
involved in the biological process of transporting ions/
molecules. The data set does not contain fragmented
sequences and sequences annotated with more than two
substrate specificities. In addition, sequences with more
than 20% similarity were removed using PSI Blast.** The
data set consists of 1050 membrane proteins (negatives) and
1197 transporters (positives). Note that the hydrogen ion
substrate category from Nguyen et al.'® is either called
hydrogen ion or cation and represents the same set of
proteins.

2.6 | Classification algorithms

The determination of transporter and non-transporter
proteins is easily translated into a binary classification
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problem, while to distinguish among substrate categories
we used a multi-class classification approach. For both
tasks, we considered four widely used classification
algorithms.

Support Vector Machines: Is a supervised learning
algorithm for two-group classification which aims to
find the maximal margin hyperplane separating the
points in the feature space.*”** SVMs also perform non-
linear classifications applying the kernel trick, thus
implicitly mapping their inputs into high-dimensional
feature spaces. In the case of multiple classes, multiple
binary classification problems are performed. It can be
done in two ways®: (1) One-vs-One, a binary classifier per
each pair of classes; (2) One-vs-Rest, a binary classifier per
class. In this study, we used the One-vs-Rest approach.
Random Forest (RF): Is an ensemble learning method
that, in the case of a classification task constructs a
multitude of decision trees and outputs the mode of the
classes of the individual trees.®®¢’

Multilayer Perceptron (MLP): Is a class of feed-forward
artificial neural networks that can distinguish among
non-linearly separable data and uses backpropagation for
training.®®*® Each node in an MLP, with the exception of
the input node, uses a nonlinear activation function. In
this study, we used the ReLu activation function.”
Logistic Regression (LR): Estimates the parameters of a
logistic model.”" In binary classifications, the correspond-
ing probability of the values associated with two different
labels can vary between 0 and 1. The multinomial LR
model, for K possible outcomes, runs K-1 independent
binary logistic regression models, in which one outcome
is chosen as a “pivot” and then the other K-1 outcomes
are separately regressed against the pivot outcome. We
used a penalized implementation of multivariable logistic
regression.

2.7 | PortPred implementation

271 | Model training and validation

In this study, we used three different training sets with
no overlap between them and three independent valida-
tion sets.

Training

To be consistent with the other methods, each model was
evaluated on the training data sets, respectively, using 10-
fold cross-validation (10-CV).”? In every iteration, a
single fold was kept as the testing set, and the remaining
nine sets were used to train the respective model. The
trained model was then tested using the test set. The

ANTEGHINTI ET AL.

procedure stops when all 10 subsets are used as a test
once. The average performance for each model was
considered as a single estimation. To obtain a stable error
estimation, we repeated the 10-CV 10 times with
different random splits. The variations between runs
were highlighted by the standard deviation (SD). The
cross-validation performances are reported as mean+ SD
of the 10 different runs of the 10-CV.

The cross-validation procedures include a (hyper)grid
search: for each set of hyperparameters, the average
classification score is computed across the folds. The
hyperparameters corresponding to the best classification
score are then used to fit a classification model whose
quality is assessed on the validation set. The reference
metric is the F1 score. The Hyperparameters optimiza-
tion details are shown in Table 3).

Validation
The independent data sets were used to perform
additional validations. The data in the independent
validation sets were not used during the cross-
validation processes and are completely unknown to
the models.

2.7.2 | Concatenation of embeddings

To obtain a comprehensive overview of the single
embeddings capabilities, we first evaluated each model
using a single embedding and finally, we run a training
and test procedure where every protein was repre-
sented with a concatenation of all the available
embeddings.

2.7.3 | Recursive feature elimination

Recursive Features Elimination (RFE) defines an
optimal subset of informative features with respect to
a given task. It starts considering all features in the
training data set (the 4 concatenated embeddings in
our case) and successfully removes one or more of
them until the performance worsens or an arbitrary
number of features remains. The performance is
evaluated through a CV (10-CV here) classification.
The approach creates a model where the desired input
is a hybrid version of all the analysed embeddings. In
particular, just the relevant features (values) of the
concatenated embedding are kept (e.g., 2328 out of
5228). We used the RFECV function, available on
scikit-learn that automatically selects the number of
features chosen by RFE.”* We adopted Logistic
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TABLE 3

Method Hyperparameters

SVM C
gamma
kernel

RF n_estimators
criterion
max_depth

min_samples_split
max_features
MLP hidden_layer_sizes
activation
solver
alpha
learning rate
LR penalty
solver

C

Hyperparameters for the grid searches.

Description

Inverse of regularization strength

Kernel coefficient

Specifies the kernel type to be used in the algorithm

The number of trees in the forest

The function to measure the quality of a split

The maximum depth of the tree

The minimum number of samples required to split an internal node
The number of features to consider when looking for the best split
The number of neurons in each hidden layer

Activation function for the hidden layer

The solver for weight optimization

Strength of the L2 regularization term

Learning rate schedule for weight updates

Specify the norm of the penalty

Algorithm to use in the optimization problem

Inverse of regularization strength

i g o, RS

Search space
logspace(—2,10,13)
logspace(—9,3,13)
‘linear’,“poly’,rbf’, ‘sigmoid’
15,25,50,75,100,200,300
‘gini’,‘entropy’

2,5,10,None

2,4,8,10

‘sqtr’,‘auto’, log2’
(200,),(100,),(50,),(200,100,6,1)
‘relu’

‘Ibfgs’

1.0

‘constant’

10,12

‘liblinear’,’saga’

logspace(—3,9,13)

Note: The logspace function, as available on NumPy’* returns numbers spaced evenly on a log scale. In logscale(start, stop, numbers), the sequence starts at
base start (base to the power of start), ends with base stop and numbers is the number of samples to generate. The listed methods are: Support Vector Machines
(SVM); Random Forest (RF); Multilayer Perceptron (MLP); Logistic Regression (LR).

r N \
Total Iength: 5228 Uy, Uz, Uz, ..., Uigpo [Sl, S2, S3, ..., S1024 [pl: P2, P3, --- » P1024 ey, €, €3, ..., 1280 J
J
UniRep SeqVec ProtBert Esmilb
-
Total length: 5128 (ul. Uz, Ug, ..., U100, S1, S2, S3, «.» S1024, P1y P2y P3y «ov y P1024, €1, €2, €3, ..., €1280
Hybrid embedding Performance
Improvement
Total length: 5028 Luu U2, ... y U1900, S3, «. S1024y P1s P2y «++ y P1024, €1, €2, €3, ... , €1280 W
J
Hybrid embedding
Total |8l1g[h; 2328 U2y oo y U1900y S3y «+« S10245 P2y «+v y P1024, €1, €2, €3, ... , €1280

Hybrid embedding

FIGURE 2 Schematic representation of the recursive feature elimination process. The initial data set contains a vector of length 5228.
Each iteration remove a fixed number of random features, in this case, 100. The performance is then evaluated with the reduced embedding
and the process continues until it worsens or the minimum number of features to consider has been reached. The final vector (length 2328)

representation is saved.

85UB017 SUOLULLOD A8 3(cedt dde 8y} Aq peupAob 812 s9[olLe YO 9SN J0 S9INJ 10) Aleid1 8UIIUO AB]IAN UO (SUOTIPUOD-PUE-SWLBILID"AB | 1M Aleq1pul|uo//:SdNY) SUONIPUOD pue swie | 841 88S *[£202/2T/£0] Uo ARiq1Tauljuo A|IM eu0lqig yoessay pue Aisieaiun usBulusiep Aq 06v0€ G01/200T 0T/10p/wod" A im Afe.d1eul|uo//sdny wouy pepeojumod ‘TT ‘€202 ‘vv9v.60T



e ey R

Regression as an estimator within the RFECV func-
tion, given its consistency during our initial estima-
tions and its capability of working with both binary
and multiclass classification tasks. In the RFECV
function, the number of features to remove at each
iteration must be specified, we used 100 to have a
granular but fast process. The chosen metric for the
performance optimization was the F1 score. A detailed
explanation of the metric can be seen in Section 2.8. An
overview of the process is shown in Figure 2.

2.8 | Metrics
We used several metrics to quantify the quality of the
classification models, namely: sensitivity (SEN), specific-
ity (SPE), accuracy (ACC), F, score,”> Matthews correla-
tion coefficient (MCC)’® and the AUC of the ROC. Given
that TP is the number of true positives, FP is the number
of false positives; TN and FN are the numbers of true and
false negatives, respectively, the following formulas are
defined as:

Sensitivity (SEN) or True positive rate (TPR) is
defined as

SEN/TPR = — % _ o)
TP + FN

Specificity (SPE) is defined as

TN
SPE = ————
TN + FP @

Accuracy (ACC) is defined as

ACC — TP + TN 3)
TP + TN + FP + FN

F, score” is defined as

PPV x TPR
F=2Xx—" (4)
PPV + TPR

where PPV is the positive predicted value (or precision)

TP
PPV = ——
TP + FP %)

TheF, score is the harmonic mean of recall and
precision and varies between 0, if the precision or the
recall is 0, and 1 indicating perfect precision and recall.

Matthews correlation coefficient (MCC)’® is defined as

ANTEGHINTI ET AL.

MCC
TP X TN — FP X FN

J(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

MCC is the correlation coefficient between the true
ad predicted class: it is bound between——1 (total
disagreement between prediction and observation) and
+1 (perfect prediction); 0 indicates no better than
random prediction. The MCC is appropriate also in
presence of class unbalance.”’

The AUC of the ROC curve which plots the true
positive proportion or the Sensitivity against the Speci-
ficity, is defined as

AuC= [ 1_0 TPR(FPR-!(x))dx
. 7
:fm TPR(T)FPR(T)dT

The AUC analysis enables the evaluation of the
performance of a binary classifier system according to the
variation of the discrimination threshold. A perfect
prediction has an AUC score of 1.0 while an AUC of
0.5 indicates randomness.”®

2.9 | Data availability and software

The data that support the findings of this study are
openly available in PortPred at https://github.com/
MarcoAnteghini/PortPred. A stand-alone version of the
tool is available at https://github.com/MarcoAnteghini/
PortPred. Moreover, the data sets, together with an
explanatory Jupyter notebook, are available at https://
drive.google.com/drive/folders/1L_
zdaDa2EoPTWQzOdNgSHCweQFixcsHe.

The final version of PortPred generates an
hybrid representation of the four concatenated embed-
dings and perform its classification with a Logistic
Regression.

3 | RESULTS

3.1 | Embeddings correlation

Different embeddings store different information and in
some cases, concatenating two or more embeddings can
improve the performances.”” In this study we first
checked for a possible correlation between the embed-
dings using Pearson’s correlation coefficient.”” We
observed that combining four different encodings
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FIGURE 3

Correlation among UniRep (1900 features), SeqVec (1024 features), PortPred (1024 features), and ESM-1b (1280 features)

protein sequence embeddings. Pearson's linear correlation is used and are calculated over 1580 transporter protein sequences of the PorPred

training set. The four embeddings are uncorrelated.

and/or embeddings gives a better prediction of transporter
proteins and their substrates. In particular, concatenating
UniRep, SeqVec, ProteinBERT and ESM-1b showed a
noticeable improvement in the performances. That indi-
cates that the four embeddings carry different and
complementary information about the properties of the
protein sequence, as given in Figure 3, which shows how
the four embeddings are not correlated.

3.2 | PortPred development

We selected Logistic Regression for the final models to
predict transporter proteins and their substrates, using
the PortPred data set. These models were subse-
quently employed in the final tool. For the binary
classification task, we obtained a model with the
following hyperparameters: C=10.0, class_weight=
(0:1, 1:1), solver="liblinear’. For the multiclass classi-
fication task, we derived a model with the following

class_weight=(0:1,
random_state=10,

hyperparameters: C=1000000.0,
1:1), multi_class=‘multinomial’,
solver=‘newton-cg’.

The final tool consists of two classification
steps. First, the classifier distinguishes between
transporter and non-transporter proteins. Second, a
multiclass classification is performed to assign
proteins to specific transporter categories, which
include lipid, sugar, protein/mRNA, electron, hydro-
gen ion, amino acid, and other. A schematic repre-
sentation of the tool's functionalities is provided in
Figure 4.

3.2.1 | Transporter versus non-transporter
prediction on Training set 1

We analysed the performances of each embedding for a
binary classification task (“transporter” vs. “non-
transporter”) on the Training set 1 and the Validation
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FIGURE 4 A schematic representation of the PortPred tool functionalities in three steps. (1) The algorithm takes as input the
embedding of a protein sequence; (2) IF condition. If the protein is predicted as transporter the algorithm proceed, otherwise it stops; (3) The
algorithm predicts which substrate the transporter carries. The two prediction steps (1) transporter vs. non-transporter; (2) substrate class

prediction relies on two separate models, independently trained.

set 2 (reported in table as Ind.), explained in
Section 2.5. As classifiers, we tested LR, RF, SVM,
and MLP (see Section 2.6). The results in terms of
sensitivity, specificity, accuracy, AUC and f1 score are
shown in Table 4 (see Section 2.8 for details about the
metrics). The ESM-1b embedding coupled with an
SVM classifier reaches the best performances with an
F1 score of 84.65% and ACC of 84.67% during cross-
validation.

Second, we analysed the concatenated embeddings
performances, and the hybrid embeddings perform-
ances (details in Section 2.7.3) on the same data
set. Results are shown in Table 5. In this case, the
hybrid embeddings obtained with an RFE procedure
slightly outperformed the concatenated embeddings.
The best classifier in handling the hybrid embedding
is SVM, reaching ACC of 84.27% in the cross-
validation.

We reported the results with and without the ESM-1b
embedding to have an additional comparison since it
cannot handle long protein sequences (longer than 1024
residues).

3.2.2 | Validation on the peroxisomal
proteins data set

We tested the tool with a subset of peroxisomal proteins
called Validation set 1 (Section 2.5.2). The predictor
produced promising results, thus allowing us to suggest
new transporter protein candidates in peroxisomes. In
particular, we analyzed the predictor performances in
highlighting transporter proteins in a generic subset of
peroxisomal proteins that have been associated with
transport functions in Uniprot. A total of 26 proteins out
of 167 were identified as non-transporter proteins.
Looking into this predicted negative data set, we realized

that just 3 out of 26 had a clear transporter function
(True Negatives) while the remaining are part of more
complex machinery not directly connected with trans-
porter function. For example PEX12 (UniprotID:
Q8V(C4R), predicted as negative, is a peroxisome assem-
bly protein. More precisely, it is a component of a
retrotranslocation channel required for peroxisome
organization. This proteins only forms a channel once
assembled with PEX2 and PEX10. The complete list of
predictions is available at https://drive.google.com/drive/
folders/1XKnORs8uEb_T61Nhgi0aCx8PzscOrRNA.

We performed a manual curation for all the entries
(available at https://github.com/MarcoAnteghini/PortPred/
blob/main/peroxisomal_proteins_dataset/Validation_set1.
csv). From the manual curation the metrics concerning the
binary prediction task are ACC: 70.66%, ROC AUC: 82.62%,
MCC: 0.4756, SEN: 65.24%, SPE: 1.0%, F1: 65.23%.

3.2.3 | Transporter versus non-transporter
prediction on Training set 2 and benchmarking

We first analysed the performances of each embedding
for a binary classification task (“transporter” vs. “non-
transporter”) on the Training set 2 and the Validation set
2 (TrSSP benchmark data set). As classifiers, we tested
LR, RF, SVM, and MLP (see Section 2.6). The results in
terms of sensitivity, specificity, accuracy, Mattew corre-
lation coefficient, AUC and f1 score are shown in Table 6
(see Section 2.8 for details). The ESM-1b embedding
coupled with an SVM classifier reaches the best
performances with an F1 score of 85.54% and ACC
of 88.70%.

Second, we analysed the concatenated embeddings
performances and the hybrid embeddings performances
(details in Section 2.7.3) on the same benchmark data set
(TrSSP). Results are shown in Table 7. In this case, the
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ANTEGHINTI ET AL.

hybrid embeddings obtained with an RFE procedure
outperformed the concatenated embeddings. Both, in
general, outperform the single embeddings' perform-
ances. The best classifier in handling the hybrid
embedding is LR, reaching an F1 score of 94.45% and
ACC of 94.53% in the cross-validation.

We reported the results with and without the ESM-1b
embedding to have an additional comparison since it
cannot handle long protein sequences (longer than 1024
residues). Nevertheless, the average length of a transporter
protein sequence found on Swissprot (20.01.2023) is 447

i o o RS

residues and the median is 347. We computed this value by
averaging the length of 7420 proteins. These proteins were
found with the query * (cc_function:transpor-
ter) AND (length:[50 TO *]) AND (revie-
wed:true) AND (fragment:false)’.

Finally, we report the performances of our best
classifier trained on the Training set 2 against the results
of recently published works.'*'*'®!” Results are visible
in Table 8. Our model outperforms the state-of-the-art in
predicting transporter proteins with an ACC of 94.53% on
the independent validation set.

TABLE 8 Performance comparison between the proposed method (PortPred) and those of recently published works in predicting

transporter proteins trained on the Training set 2 and validated on Validation set 2.

SEN % SPE % ACC % MCC
Tool Ind. Ccv Ind. (6)% Ind. Cv Ind. Cv
PortPred 95.24 92.59 87.72 93.85 92.59 94.53 0.84 0.89
SCMMTP 80.00 83.76 68.33 77.68 76.11 81.12 0.47 0.62
TrSSP 76.67 76.67 81.67 78.46 80.00 78.99 0.57 0.58
FastTrans 100.00 83.14 77.50 84.48 85.00 83.94 0.73 0.68
TooT-T 94.17 90.15 88.33 89.97 92.22 90.07 0.82 0.80

Note: Performances are measured in terms of sensitivity (SEN), specificity (SPE), accuracy (ACC), Mattew correlation coefficient (MCC), area under
the curve (ROC AUC) and F1 score (F1). The evaluation was performed on 10-fold cross-validation data (see CV columns) and on an independent data set

(see Ind. columns).

TABLE 9 Performances of the PortPred model, trained on the Training set 1 and the Training set 3 in terms of F1 score (macro average)

and Mattew correlation coefficient (MCC).

Data set Classifier F1%
Ccv

1 88.24 +0.57
LR

3 96.65 + 0.24

1 64.13 +0.29
RF

3 61.42 +0.37

1 88.15+0.61
SVM

3 88.44 +0.67

1 86.55 + 0.64
MLP

3 87.45 +,0.66

MCC

Ind. CVvV Ind.

89.14 0.9184 + 0.0031 0.9071
90.26 0.9706 + 0.0024 0.9137
66.63 0.7406 + 0.0064 0.7512
65.04 0.7099 + 0.0067 0.7619
88.92 0.9183 + 0.0044 0.8980
89.89 0.8967 + 0.0058 0.9135
88.51 0.9057 + 0.0032 0.9274
91.56 0.8900 + 0.0058 0.9283

Note: The first column indicates the data set; the second column indicates the classifier among Logistic Regression (LR), Random forest (RF), Support Vector
Machines (SVM) and Multilayer perceptron (MLP); from the third column the performances are shown in terms of F1 and MCC, whit the CV indicating the
cross-validation process on the specific Training set (1 or 3) and the column Ind. indicating the performances of the model trained on the specific Training set
(1 or 3) but tested only against Validation set 3. The results refer to the prediction task “substrate category prediction.”
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TABLE 10 Performances of the PortPred model in a multiclass prediction task.

Training set Substrate SEN SPE ACC AUC MccC
CvV Ind. CV Ind. CV Ind. CV Ind. CV Ind.

1 0.90+0.10 0.83 099+0.01 0.99 099+0.01 098 095+0.05 091 0.91+0.06 0.86
Amino acid

3 0.89+0.12 0.75 0.99+0.01 0.99 099+0.01 098 094+0.04 087 0.93+0.07 0.81

1 0.94+0.02 099 099+001 0.99 099+0.01 099 098+0.02 099 0.95+0.02 0.99
Electron

3 0.99+0.02 099 099+001 0.99 099+0.01 098 099+0.01 099 0.98+0.02 0.95

1 0.90+0.08 099 099+0.01 0.99 099+0.01 099 095+0.04 099 0.93+0.03 0.99
Hydrogen ion

3 091+0.11 093 099+001 098 099+0.01 099 095+0.06 096 0.93+0.09 0.93

1 0.50+0.16 099 099+0.01 099 0.98+0.01 0.99 0.75+0.08 099 0.64+0.12 0.99
Lipid

3 0.87+0.11 0.78 0.99+0.01 0.99 099+0.01 099 093+0.06 0.89 0.92+0.08 0.88

1 0.98+0.01 099 0.98+0.01 099 098+0.01 0.99 098+0.01 0.99 0.95+0.01 0.99
Protein/mRNA

3 0.99+0.01 099 0.98+0.01 098 0.99+0.01 098 099+0.01 098 0.98+0.03 0.96

1 0.93+0.09 099 099+£0.01 0.99 099+0.01 099 096+0.05 099 0.92+0.09 0.96
Sugar

3 0.99+0.01 0.99 0.99+0.01 0.99 0.99+001 099 0.99+001 099 096+0.03 0.93

1 0.94+0.02 097 097+0.19 099 096+0.01 099 095+0.01 098 0.90+0.02 0.96
Others

3 098+0.03 091 099+0.01 099 0.99+0.01 098 098+0.02 095 095+0.04 0.92

Note: The model was trained on Training set 1 and Training set 3. Results are shown in terms of sensitivity (SEN), specificity (SPE), accuracy (ACC), Mattew
correlation coefficient (MCC) and area under the curve (ROC AUC) (F1). The first column indicates the data set; the second column indicates the substrates;
from the third column the performances are shown, whit the CV indicating the cross-validation process on the specific Training set (1 or 3) and the column
Ind. indicating the performances on the model trained on the specific Training set (1 or 3) but tested only against Validation set 3. The results refer to the

prediction task “substrate category prediction.”
Abbreviation: mRNA, messenger RNA.

3.2.4 | Transporter substrate categories
prediction and benchmarking

Our method's capability in predicting substrate-specific
transporter proteins is shown in Table 9. The results in
terms of F1 score and MCC show the consistency of our
method when trained on two different data sets (Training
set 1 and Training set 3) and validated on the same
independent data set (Validation set 3). The Training set
3 comes from the work of Nguyen et al.,'® reported as
FastTrans. Training set 1 is a newly generated PortPred
data set. For details about the data set refer to Section 2.5.

As an additional comparison, Table 10 reports similar
performances of PortPred trained with Training set 1 and
Training set 3 in classifying specific kinds of transporter
proteins. Moreover performances of our PortPred model

validated on the Validation set 3, retrieved from the
FastTrans paper, are visible as confusion matrix in
Figure 5.

4 | DISCUSSION AND
CONCLUSION

Transporter proteins play a crucial role in the transport
of ions, small molecules, and macromolecules across
biological membranes. They are essential for the
functioning of all living organisms and are frequently
studied as drug targets due to their association with
various diseases. The research on transporter proteins
has significantly increased since their first discovery and
characterization. In this study, we focused on developing
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FIGURE 5 Confusion matrix of the Logistic Regression model
for the different transporter categories. This matrix represent the
results of the PortPred model trained on the Training set 3 and
tested on Validation set 3.

PortPred, a prediction tool for transporter proteins, using
DL approaches and protein sequence embeddings.

DL-based sequence embeddings have shown
promising results in various bioinformatics tasks,
including subcellular and sub-organelle classification,
protein structure and function prediction, and PPIs.
Inspired by these advancements, we explored the use
of DL-based sequence embeddings for the accurate
identification and classification of transporter
proteins.

To develop PortPred, we reviewed and compared
several DL-based protein embeddings, including Uni-
Rep, SeqVec, ProteinBERT, and ESM-1b. These em-
beddings capture the underlying features and repre-
sentations of protein sequences and can be used to
encode protein information for downstream prediction
tasks. We evaluated the performance of each embed-
ding and their combination in predicting transporter
proteins and differentiating among various categories
of transporters.

Our comprehensive analysis revealed that hybrid
embeddings, which combine multiple embeddings
with a feature selection procedure, generally out-
performed single embeddings alone. The combination
of embeddings provided a more informative represen-
tation of transporter proteins, leading to improved
prediction performance. However, we observed that
the ESM-1b embedding alone showed comparable or
even higher performance than the hybrid embedding,

o o, RS

demonstrating the effectiveness of this DL-based
approach.

In particular, ESM-1b proved to be the most influential
embedding even within the hybrid representation, while the
others (UniRep, SeqVec, ProteinBERT) exhibited similar
performance levels. Therefore, we emphasize the adaptabil-
ity of the ESM-1b embedding for fine-tuned prediction tasks.
Additionally, these results align with our prior studies on
DL-based protein embeddings, as demonstrated in Anteghini
et al.** and Anteghini et al.*

Our research initially focused on a binary prediction
task, distinguishing transporter from non-transporter
proteins. PortPred exceeded expectations with an accu-
racy of 94.53%. Encouraged by this success, we expanded
our analysis to multiclass prediction, categorizing various
transporter protein classes. PortPred maintained its
excellence, achieving an average accuracy of 98.71%.
These results underscore PortPred's robustness and
reliability for transporter protein prediction, starting
from a binary task.

Furthermore, we emphasize the importance of
critically evaluating and validating DL methodologies
in bioinformatics. It is essential to avoid the trend of
simply improving the state-of-the-art without thoroughly
assessing the reliability and interpretability of the results.
Therefore, we performed consistent benchmark analyses
to validate the performance of PortPred and ensure the
reproducibility of our findings in a FAIR (Findable,
Accessible, Interoperable, and Reusable) manner.

In practical applications, PortPred shows promising
potential. When applied to a real-world case scenario
involving peroxisomal proteins, PortPred achieved an
accuracy of 82.62% and exhibited high specificity, making
it a reliable tool for avoiding false positives. This
highlights the practical utility of PortPred in identifying
transporter proteins and can aid in the understanding of
their biological functions and implications.

In conclusion, our study demonstrates the adaptability
and effectiveness of DL-based sequence embeddings for
transporter protein prediction. We encourage the scientific
community to make informed choices when selecting and
utilizing DL-based pre-trained representations, considering
the specific requirements and characteristics of their
prediction tasks. Furthermore, we advocate for rigorous
validation, adaptation, and reporting of the limitations of
these embeddings to ensure their reliability and usefulness in
extracting meaningful biological insights.
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