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 Background 

China's agriculture is shifting towards more efficient and sustainable production systems. 

This transition is driven by several factors: changing dietary patterns that favour more meat 

and vegetables (Huang, 2016), increasing consumer willingness to pay for high-quality 

agricultural products (Sheng & Song, 2019), a shortage of young farmers (Liu et al., 2023), 

diminishing quality of arable and (Larson, 2013), and escalating soil contamination (Liu et al., 

2013). Greenhouse horticulture can offer a solution to these challenges. 

The terms “greenhouse horticulture”, “protected horticulture”, and “controlled environment 

agriculture” are often used interchangeably. They all denote a core concept: modifying the 

environment to provide crops with favourable growth conditions (Marcelis et al., 2019). For 

the remainder of this introduction, the term “greenhouse horticulture” will be used. These 

systems are highly land-use efficient and are often located near urban areas, enabling high-

yield and quality crop production with extended growing seasons. 

Greenhouse horticulture encompasses a wide array of designs with varying technological 

levels. In China, the prevalent types are single-span plastic tunnels or solar greenhouses, 

covering 2.7 million hectares (ha). These conventional low-tech production systems offer 

limited climate control, with heating often unapplied. In contrast, multi-span plastic 

greenhouses span 0.99 million ha, and high-tech glasshouses only account for 9000 ha (Sun et 

al., 2019). In line with the trend towards agricultural modernization, this thesis will focus on 

key factors in the economic feasibility of high-tech greenhouses with relatively comprehensive 

climate control capabilities, namely multi-span plastic greenhouses and glasshouses.  

The government’s agriculture policy has shifted towards promoting more industrialized and 

capital-intensive forms of agricultural production (Huang & Gao, 2013; Rogers et al., 2021). 

Over the past decade, there have been continuous efforts from the Chinese government to 

support large-scale modern farms. Governmental support takes many forms, both financial and 

non-financial. Financial support includes subsidies for qualified agriculture projects and 

government-directed loans with favourable interest rates (Gale, 2013; Huang, 2017). Non-

financial support includes access to land, the establishment of horticultural demonstration 

centres, and extension services (Cai et al., 2022; J. Huang & Rozelle, 2014).  

The producers in modern agriculture production in China are predominantly agribusiness 

firms, including firms that were not traditionally associated with agriculture, such as real estate 
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developers or IT companies (Huang, 2017; Wang et al., 2023). These agribusiness firms 

differ significantly from traditional producers, such as rural households, in that they operate on 

a large scale and have substantial capital resources. Their rise has been greatly facilitated by 

local governments, which aim to delegate these firms as agents to compete for and implement 

centrally-funded agricultural projects (Gong & Zhang, 2017).  

Many modern agricultural programs are operated in a project-based manner. The 

investment capital for these projects is typically raised through matching funds from three 

entities: the central government, local governments, and agribusiness firms (Gong & Zhang, 

2016). For example, in Beijing, the district-level government provides grants that cover 30% 

of the greenhouse construction costs, and the municipal government offers up to an additional 

20% funding for eligible greenhouse projects (Beijing Municipal Bureau of Agriculture and 

Rural Affairs, 2022). The remaining funds are contributed by the agribusiness firm.  

The substantial financial backing from the government sparked a surge in greenhouse 

investment in China. In 2017 alone, the construction area of large-scale glasshouses (above 5 

ha) surpassed 400 ha, with a total investment capital of eight billion RMB (MOA, 2018). From 

2020 to 2022, the area of newly constructed multi-span greenhouses exceeded 1288 ha (Wang 

et al., 2023). Modern multi-span greenhouses can be found in various places across China, 

including provinces such as Shandong, Gansu, Hebei, and Anhui, as well as major cities like 

Beijing and Shanghai. Zhong et al. (2020) refer to the expansion of greenhouses in China as 

“state-led food localization”.  

 Problem statement  

1.2.1 Adaptive greenhouse designs for different regions in China 

Despite the rapid development, there is an ongoing debate about the economic feasibility 

of these high-tech greenhouses in China. This concern is well-founded, as many greenhouse 

firms are finding it challenging to make a profit (Wang et al., 2023). Intriguingly, a negative 

correlation seems to exist between the technological level of a greenhouse and its profitability; 

the most technologically advanced greenhouses tend to yield the lowest economic returns 

(MOA, 2018). One explanation for this could be that the designs of these greenhouses have 

often been directly imported from countries such as the Netherlands, without sufficient 

adaptation to the local climatic and market conditions in China. Given China’s diverse climatic 

and market conditions, the appropriate designs are likely to vary across different regions.  
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The degree of climate control within a greenhouse is determined by the presence and 

capacity of various design elements, such as heating, cooling, lighting, and CO2 dosing systems. 

While a more technically advanced greenhouse has better climate control capabilities, it 

generally incurs higher investment and operating costs. The design of greenhouse production 

systems represents a multi-factorial optimization problem, involving the selection of the best 

combination of design elements to achieve desired outcomes (Van Henten et al., 2006). 

However, existing studies on greenhouse design optimization in China largely focus on one or 

two factors at a time (e.g., Luo et al., 2005a; Wang et al., 2014). There is limited knowledge 

regarding the most suitable combinations of greenhouse design elements for different regions 

in China.  

When it comes to selecting the optimal greenhouse design, one should not only consider 

the economic performance but also the environmental aspect. While high-tech greenhouses are 

highly efficient in terms of water and chemical use, there is growing concern about the high 

CO2 emissions of greenhouse production (Zhou et al., 2021). Previous studies often focus on 

either economic performance (Vanthoor et al., 2012) or environmental impact (Antón et al., 

2012; Naseer et al., 2022a; Zhou et al., 2021). Although some studies (e.g., Naseer et al., 2021; 

Torrellas et al., 2012) examined both the economic and environmental performance of various 

greenhouse designs, they assessed these dimensions separately. Such a narrow focus in 

previous studies fails to account for the varying priorities of investors and policy makers 

regarding the economic and environmental performance of greenhouse investment. There is a 

need for an integrated approach that assesses greenhouse designs considering stakeholder 

priorities in both economic and environmental dimensions.  

1.2.2 Greenhouse investment under uncertainty 

The economic feasibility of greenhouse investments is subject to multiple sources of 

uncertainty, including price and policy uncertainty. Most agricultural commodity markets are 

characterized by a high degree of price volatility (IMF & UNCTAD, 2011). The dependence 

of high-tech greenhouse production on energy, a commodity known for its high price volatility 

(Pindyck, 1999), makes its economic return even more volatile. A limitation of previous studies 

on greenhouse economic assessment is the use of deterministic prices (e.g., Shaw et al., 2004; 

Vadiee & Martin, 2013; Vanthoor et al., 2012). Accounting for uncertainty in input and output 

prices can enhance the robustness of greenhouse economic assessments.   
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Policy uncertainty adds an additional layer of complexity to greenhouse investments. As 

previously stated, government support has driven the rapid development of China’s high-tech 

greenhouse sector over the past decade. This naturally leads to the question of how Chinese 

investors might respond to more uncertain future subsidy policies. In 2023, China released its 

first national development plan for the protected horticulture sector, setting a target to construct 

a number of high-tech greenhouses in major urban cities by 2030. Considering that government 

subsidy programs usually have a limited duration, it is reasonable to anticipate that the current 

subsidy scheme may be phased out at some point after these stated goals are achieved. Previous 

studies have shown that investors make investment decisions strategically in anticipation of 

policy uncertainty (Linnerud et al., 2014; Nagy et al., 2023; Yanore et al., 2023). Traditional 

investment appraisal methods, however, fall short of adequately addressing the influence of 

policy uncertainty on irreversible investment decisions. As such, a valuation method that 

incorporates the value of investment flexibility under policy uncertainty is necessary.  

1.2.3 Stakeholder preferences for emerging technologies 

The transition towards increased digitalisation and automation is an inevitable trend in the 

greenhouse sector (King, 2017; Verdouw et al., 2021). Significant advancements have been 

made in sensor and automation technologies for greenhouse operations (van Henten, 2019). 

These technologies are expected to be gradually adopted and diffused in the near future. While 

studies on sensor and automation technologies in agriculture are largely limited to arable or 

livestock farming (e.g., Hafezalkotob et al., 2018; Miller et al., 2019; Rutten et al., 2018; Van 

De Gucht et al., 2018), to our knowledge, there is no comprehensive assessment of such 

technologies in the greenhouse sector. 

Understanding the preferences of key stakeholders, such as growers, investors, policy 

makers, and technology suppliers, is essential to facilitate the further adoption and diffusion of 

these technologies. However, a separation between invention and adoption is often observed 

in existing agricultural innovation studies (de Oca Munguia & Llewellyn, 2020). Technology 

assessment studies typically focus on the functionality of technology, while the preferences of 

the users of the technology remain largely invisible (McCampbell et al., 2023). In contrast, 

innovation adoption literature tends to focus on the characteristics of the adopter and the 

general farming context, with less attention paid to the attributes of the technology itself (Shang 

et al., 2021). An evaluation of sensor and automation technologies for greenhouse operations 

from a multi-stakeholder perspective is lacking in the literature.  



Chapter 1 

  7 

  Research objectives 

The overall objective of this dissertation was to assess the economic feasibility of greenhouse 

investments and to identify greenhouse designs, as well as sensor and robotic technologies, that 

align with the preferences of multiple stakeholders in China. To achieve the overall objective, 

the following four sub-objectives were derived: 

1. To develop a bio-economic model that assesses the economic feasibility of 

greenhouse investments, taking into account input and output price uncertainty. 

2. To develop an optimization framework that identifies greenhouse designs that are 

optimally adapted to regional climatic and market conditions, considering the 

varying priorities of investors and policy makers for economic and environmental 

performance. 

3. To examine the impact of uncertainty in output price and the abolition of subsidy 

policies on the timing of investment in high-tech greenhouses.  

4. To analyse the preferences of different stakeholder groups in the Chinese 

greenhouse sector for sensor and robotic technologies. 
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  Outline 

The dissertation is divided into six chapters, i.e., a general introduction (Chapter 1), four 

research chapters (2-5) that elaborate on the beforementioned sub-objectives, and the general 

discussion (Chapter 6). Figure 1 shows a schematic outline of the dissertation.  

Chapter 2 addresses the first research objective by developing a bio-economic model that 

assesses the economic feasibility of a greenhouse investment for tomato production. Taking 

into account fluctuations in tomato and natural gas prices, a Monte-Carlo simulation approach 

was used to obtain the probability distributions of the Net Present Values (NPVs) of a 

representative Venlo-type glasshouse for cherry tomato production in four locations: Jinshan 

(East China), Langfang (North China), Weifang (East China), and Pingliang (Northwest China), 

with different climatic and market conditions. The bio-economic model developed in this 

chapter was used for further analysis in Chapters 3 and 4.  

Chapter 3 addresses the second research objective by developing an optimization 

framework that identifies optimal greenhouse designs in terms of both economic and 

environmental performance for the four locations. The bio-economic model developed in 

Chapter 2 was used to simulate the yield, energy use, and economic performance of different 

greenhouse designs. A genetic algorithm was used to explore the large solution space in order 

to reduce the computational effort. The overall performance of the greenhouse design was 

evaluated using a directional distance function, which incorporates stakeholder priorities for 

economic and environmental performance through the directional vector. The overall 

performance was evaluated under three price scenarios to identify greenhouse designs that are 

robust to price uncertainty.  

Chapter 4 addresses the third research objective by investigating how the uncertainty about 

the abolition of subsidy scheme influences the optimal investment timing of greenhouse 

investment in China. The study employed real options analysis and modelled the evolution of 

the current subsidy scheme as a Poisson jump process. This process is governed by the subsidy 

level and a subsidy termination risk factor. The least squares Monte Carlo method was used to 

approximate the optimal investment timing and value of waiting under various combinations 

of subsidy level, subsidy termination risk factor, and tomato price evolution process.  

Chapter 5 addresses the fourth research objective by developing a performance score for 

sensor and robotic technologies that combines stakeholder preferences and attribute scores. 
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Four stakeholder groups, i.e., growers, investors, technology suppliers, and policy makers, 

were identified. To bridge the gap between technology assessment and innovation adoption, 

the evaluation framework used the technology attributes defined in the Diffusion of Innovation 

theory. The Bayesian best-worst method was used to elicit stakeholder preferences and expert-

rated technology scores for each attribute. Combining stakeholder preferences with expert-

rated technology scores produced a probabilistic performance score for each technology. 

Chapter 6 provides a general discussion of the thesis. This chapter discusses the approaches 

and findings across the research chapters and elaborates on the implications of the findings for 

business stakeholders and policy makers. It also outlines the limitations of the study and offers 

recommendations for future research. The chapter ends with the main conclusions of the 

dissertation and ideas for future research.  

 

 

Figure 1.1. Schematic outline of the dissertation.
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Abstract 

Glasshouse investments are booming in China, even though little is known about the economic 

feasibility and uncertainty of such investments. This study employed a bio-economic model to 

assess the economic feasibility and uncertainty of an investment in a Venlo-type glasshouse 

for cherry tomato production in four regions in China: Jinshan, Langfang, Weifang, and 

Pingliang, with different climate and market conditions. A bio-physical model for tomato yield 

and energy use simulation was calibrated with the climate and production data from 2019 to 

2020 of a commercial glasshouse in Shanghai, China. The average yield and energy use for 

each region were simulated with the temperature set points provided by a grower and 30-year 

climate data. The distributions of the Net Present Values (NPVs) were determined using Monte 

Carlo simulation which addressed uncertainty due to stochastic tomato and natural gas prices. 

The economic outcome of tomato glasshouse investment varies across regions, with a mean 

NPV ranging from −957.8 ¥ m−2 for Weifang, to 477.0 ¥ m−2 for Pingliang. A sensitivity 

analysis suggests that variations in natural gas prices have larger impacts on the net cash flow 

than tomato prices. This study contributes to the research on glasshouse modelling by 

introducing seasonality and uncertainty of prices in a bio-economic model of a glasshouse farm. 

The results of this study can inform investors of the economic outcomes and the risks of 

glasshouse investments. They can also aid Chinese local governments to design agricultural 

support policies that suit the regional climate and market conditions. 

 

Keywords 

Bio-economic modelling, glasshouse, regional climate, energy, investment uncertainty
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 Introduction 

China is shifting from traditional labour-intensive agriculture to modern capital-intensive 

agriculture. Since 2013, modernizing agriculture has been a top priority for the Chinese 

government (Ye, 2015). One manifestation of agriculture modernization is the development of 

protected horticulture or greenhouses. Growing crops in a controlled and protected 

environment reduces the weather dependency of crop production and greatly boosts crop yield 

(Van Straten & Van Henten, 2010). 

By 2018, the total area of protected horticulture in China reached 1.89 million ha, 66.6% 

covered by plastic tunnel greenhouses, 30.5% covered by solar greenhouses. Both types of 

greenhouses have little or no climate control ability. The area of modern multi-span 

greenhouses (plastic or glass) was 54,338 ha, only 2.9% of the total protected horticulture area. 

Only 9000 ha of multi-span greenhouses were covered with glass, accounting for less than 0.25% 

of the total area of protected horticulture in China (Sun et al., 2019). Most of the glasshouses 

in China are small in size and mainly used for research or demonstration purposes. Large-scale 

commercial production with a glasshouse is not common, as enterprises are still struggling to 

make a profit (K. Yang, personal communication, December 5, 2019).  

In recent years, the greenhouse sector in China has seen an influx of investment capital 

(Hairong & Yiyuan, 2015; Siekman, 2018). From 2016 to 2018, more than 400 ha of 

glasshouses were built, with a total investment capital of eight billion RMB (Ministry of 

Agriculture of the People’s Republic of China, 2018). A number of high-tech glasshouses have 

been built with the aid of local governments as demonstrations to promote the modern way of 

agricultural production in China (Jiang & Yu, 2008). The capital for the initial investments of 

these investments were usually contributed by public (local governments or state-owned 

enterprises) and private partners, the latter are often responsible for the day-to-day operation 

and maintenance (Rankin et al., 2016). The driving force of the increasing investment might 

be the huge market potential of high-end agricultural products in China. Faced with Chinese 

consumers’ increasing demand for quality agricultural products, shortage of professional 

farmers, mounting labour costs, and declining availability of arable land, the limitations of 

traditional tunnel or solar greenhouses are more and more obvious (Zhou & Feng, 2002). 

Instead, investments in modern glasshouses are expected to be profitable in the future (Zhou & 

Feng, 2002). 
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Despite the increasing investment in glasshouses, only a few economic feasibility studies 

have been conducted for China. The existing glasshouse economic evaluation studies in China 

(Wang et al., 2017; Xue, 2017) used relatively simple economic models: they adopted 

production data of a short timespan from a specific location and used weather data from a 

particular year, which makes it difficult to generalize results to other regions with different 

climate conditions. China is a country with very diverse climatic and market conditions. 

Climate conditions determine the duration of the production cycle. Market conditions 

determine the costs and the revenue that can be generated from production. To conduct 

economic feasibility studies that are generalizable, the economic models should be able to 

accommodate local climate and regional market price data as inputs and generate tailored 

estimates as model outputs.  

Modelling glasshouse production essentially involves a complex interplay of multiple 

biophysical processes between the outdoor climate, energy input, indoor climate, and the 

realized yield (Van Straten & Van Henten, 2010). Simply pursuing a high yield could require 

an economically sub-optimal energy use. Vice versa, minimizing the energy input regardless 

of yield would not make optimum use of the superiority of modern glasshouses. Systematic 

modelling should include the interdependent relationships between climate, energy, the yield 

of the glasshouse system (Dai & Luo, 2006; Van Der Ploeg & Heuvelink, 2005).  In this regard, 

a glasshouse should not be viewed as a stand-alone biophysical system with static material 

input and output flows, but a dynamic system that interacts with the external market 

environment.  

Just as with many food systems, the challenges associated with the glasshouse system cut 

across many disciplinary domains and should be addressed in a multidisciplinary or even 

interdisciplinary manner (Fresco et al., 2021). The integration of biophysical and economic 

models is necessary for the systematic economic evaluation of glasshouses. Examples of such 

studies can be found in Jones et al. (1990), Vanthoor et al. (2012), and Naseer et al. (2021). 

One shortcoming of these studies lies in the use of deterministic prices in the assessment of the 

economic feasibility. Prices of inputs and outputs are stochastic by nature, in particular those 

of agricultural products and energy. The result calculated using deterministic prices is only a 

‘snapshot’ of one of the economic outcomes out of many possible market conditions. Including 

stochastic prices in the evaluation can provide a more complete understanding of the economic 

prospect of glasshouse investment (Gebrezgabher et al., 2012; Platon & Constantinescu, 2014).  
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This study aims to analyse the economic feasibility of investing in a 1.4-hectare Venlo-type 

glasshouse for cherry tomato production in four regions in China with different climate 

characteristics: Jinshan (Shanghai, East China), Langfang (Hebei, North China), Weifang 

(Shandong, East China), and Pingliang (Gansu, Northwest China). By combining a biophysical 

simulation model with an economic model, this study analyses the economic feasibility of a 

glasshouse investment under different climate and market conditions. By further exploring the 

economic outcomes under different temperature management strategies, this study reveals the 

dependencies between outdoor climate, temperature management strategies, energy use, indoor 

climate, yield, and ultimately, the profitability of the glasshouse. This study contributes to the 

literature on bio-economic modelling of glasshouse by introducing uncertainty in input and 

output prices in an integrated biophysical-economic model of a glasshouse farm. The results of 

this study can inform agricultural investors in China of the economic outcomes and the risks 

of glasshouse investments and can aid growers to formulate temperature management strategies. 

They can also aid Chinese local governments to design agricultural support policies that suit 

the regional climate and market conditions. 

The remainder of this paper proceeds as follows: Sections 2.2 describes the methods and 

modelling framework. This is followed by the presentation of the data on glasshouse 

configuration, yield, and energy use simulation, and especially the sampling strategies of 

stochastic prices, in section 2.3. Section 2.4 presents the results of the model, the sensitivity 

analysis, and the break-even tomato and heating energy prices in the four regions. The paper 

ends with Discussion and Conclusions. 

 Methods and modelling framework 

Figure 2.1 presents a schematic description of the modelling framework used in this paper. The 

modelling framework consists of two parts: the biophysical model of tomato yield and energy 

consumption, and the economic model (combined with Monte Carlo simulation) in which 

seasonal stochastic prices of tomato and heating energy were plugged in for the cash inflow 

and outflow simulation. A clear definition of the glasshouse configuration in terms of 

construction and installation details is needed for the biophysical model and the estimation of 

the initial investment costs. 
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Figure 2.1 Schematic description of the modelling framework. 

The broadly validated crop model INTKAM (Marcelis et al., 2009) and the greenhouse 

climate model KASPRO (De Zwart, 1996) were employed to simulate tomato yield and energy 

use for each region. The model inputs for the INTKAM-KASPRO model are hourly outdoor 

climate characteristics (solar radiation, temperature, sky temperature, humidity, wind speed), 

glasshouse configuration and climate management strategy (heating, ventilation, screen 

closure), and crop management strategies (e.g., stem density, fruit pruning, topping date). 

Production data from 2019 to 2020 of a glasshouse in Jinshan, Shanghai, were used for model 

calibration (there was no calibration for the other three regions due to the lack of production 

data). The calibration results (see Appendix 2A) showed that the INTKAM-KASPRO model 

can give realistic predictions for Shanghai climate, which lends credibility to the 

generalizability of INKKAM-KASPRO model in the other three regions. 

The model outputs of the economic model are the distributions of annual net cash flow and 

the Net Present Value (NPV) of the tomato glasshouse investment. NPV is a widely used 

criterion to evaluate investment opportunities. The NPV takes the time value of money into 

consideration by discounting the cash flows generated in the future. The net cash flow of year 

! ("#!) of a tomato glasshouse is given by: 

 $%& = 	−*" +	∑
#$!

(&'()!
*
!+&                                                 (2.1) 

where *"  is the initial investment costs,  - is the discount rate, and . is the lifetime of 

investment. 
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Based on the NPV criterion, an investment is considered economically feasible if the NPV 

is positive. However, glasshouse production is subject to input and output price uncertainty, 

leading to fluctuating cash flows. To account for the uncertainty in the glasshouse investment’s 

financial outcome, Monte Carlo simulation was employed to calculate the stochastic cashflows 

and NPV. 

In the Monte Carlo simulation, tomato and energy prices were modeled as stochastic 

variables on a monthly basis. Tomato prices directly determine the cash inflow of glasshouse 

production, whereas energy prices have a large impact on cash outflow as the heating costs 

typically account for more than 40% of production costs in China (Costa et al., 2004; Shen et 

al., 2018). Monte Carlo simulation consists of multiple iterations, where each iteration uses a 

draw from the distribution of the monthly tomato and energy prices according to the 

corresponding sampling strategy (see Section 2.3.4). The sampled variables of each iteration 

represent the possible combinations of tomato and energy prices that could occur. The NPV 

over the project’s lifetime was calculated for each iteration. The NPV outcomes of all iterations 

together make up the distribution of NPV and can be used to determine the probability of a 

positive NPV. 

 

 

 

 Data 

2.3.1 Initial investment costs and discount rate 

The same glasshouse configuration and equipment was assumed for all four regions in China. 

The initial investment costs for a 1.4-hectare Venlo-type glasshouse was estimated to be ¥16.66 

million (€2.22 million) (Table 2.1) The typical lifetime of a Venlo-type glasshouse is 20 years. 

A salvage value of zero was assumed at the end of the investment. The local government plays 

an important role in loan guarantee (Xiong et al., 2020). It was assumed that 50% of the initial 

investment is financed by a loan with an interest rate of 5.5%. A discount rate of 6.10% was 

then computed using the weighted average cost of capital method (see Appendix 2B). 
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Table 2.1. Initial investment costs for a 1.4-hectare Venlo-type glasshouse. 

Items Cost  

€ m−2 

Cost  

€ unit−1 

Maintenance 

% year−1 

Detail 

Structure 47.5 b  0.5%c Steel structure, aluminum roof, 
38% ventilation system, outside 
and inner walls 

Cover  10.0 a  0.5%c Roof and wall glass, insect net 
Roof washer  100,000a 5% c  
Screens 20.5a  5% c Outdoor shade screen, indoor 

thermal screen 
Heating pipes  5.5b  0.5% c rail heating pipes and growing 

heating pipes 
Boiler  106,700a 1% c  
Growing gutters 14 a  2% c Hanging gutter system 
Irrigation 
system 

5.8 b  5% c Drip irrigation, fertilizer dosing 
system, water collection tank 

CO2 distribution 
system 

0.5a  5% c  

Fogging system 3.1a  5% c High-pressure fogging  
Pad and fan  3.7a    
Electrical power 
system 

3.3a  5% c Power distribution system, 
including wires, circuits, electric 
panels, etc. 

Climate 
computer 

 200,000 a 8% c Including outdoor climate monitor 
system and indoor climate control 
system 

Internal 
transport 

 9,333 a 5% c Harvest trolly (x3) 

Remaining costs 6.8 a   Costs related to technical room, 
ground foil, etc. 

Installation and 
transportation 

12 a   Labour and transportation costs 
incurred for equipment installation 

Total 158.7    
a. Source: investment budget of a commercial tomato glasshouse in Jinshan, Shanghai. 

b. Source: Vanthoor (2012). 

c. Source: Raaphorst et al. (2019). 
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2.3.2 Regional climate and production schedules 

Hourly climate data (solar radiation, temperature, sky temperature, relative humidity, and wind 

speed) for each region during 1990 and 2020 was obtained from the ERA5 dataset, produced 

by European Centre for Medium-Range Weather Forecasts (Hersbach, H. et al., 2018). 

Langfang and Weifang have similar climate characteristics: abundant solar radiation, hot 

summer, and cold winter. Pingliang’s advantage lies in its abundant solar radiation in winter 

and cool temperature in summer. Jinshan has mild winter, which implies lower heating 

demands, while it also has hot and humid summer, which significantly limits the production 

duration in that region. The transplant date and harvest end dates of each region were provided 

by a grower based on his experiences (Y. Xie, personal communication, February 6, 2022). 

The market prices of tomatoes are the lowest in summer due to the abundant supply of field-

grown tomatoes. Moreover, the high temperature and humidity in summer limit tomato growth 

and is likely to induce diseases. These market and climate factors combined make summer 

production in Langfang, Weifang, and particularly in Jinshan, not economically feasible. The 

cool summer in Pingliang enables year-round production there. The starting date of the 

glasshouse heating was defined as the date when the outdoor temperature goes stably below 

12℃, i.e., the temperature at which tomato plants suffer physiological injury (Costa & 

Heuvelink, 2018). The glasshouse heating end date was set as the date when outdoor 

temperature reaches 15℃. The detailed climate characteristics, cropping and heating schedules 

of the four regions can be found in Appendix 2C. 

2.3.3 Gas use and yield simulation under different temperature management 

strategies 

Climate data from 1990 to 2020 were used as inputs in the INTKAM-KASPRO model to 

simulate fruit yield and energy use. With 30 years of climate data, 30 runs of simulation were 

performed for each location. For each year of simulation, the inputs were hourly solar radiation, 

temperature. relative humidity, and wind speed. The yield and energy output of the year were 

aggregated into monthly values in further data processing.  

Table 2.2 presents the mean annual yield (assuming a 5% loss rate) and mean annual gas 

use at different heating temperature setpoints for the four locations of the 30 runs of simulation. 

The standard deviations of the annual yield and natural gas use were around 0.4 kg m−2 and 1.1 

m3 m−2, respectively, and differ slightly between locations. The indoor temperature is 

controlled by heating temperature setpoints, which are predetermined by growers based on 
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their experiences. The reference setpoints were based on a commercial tomato glasshouse in 

Jinshan for the production cycle Oct 2019 to Jun 2020. The reference temperature setpoints 

were kept around 17~18℃ at daytime, and 14℃ or lower at night-time. In our simulations, the 

adjustment in temperature management was controlled by a temperature shift parameter. A 

temperature shift of −1 means to reduce the setpoints on all dates by 1℃. Accordingly, the 

realized indoor temperature will also decrease by approximately 1℃.  

Jinshan has the lowest gas use, but also the lowest yield, presumably due to the short harvest 

period there. Langfang and Weifang have similar yield and energy use levels, given their 

similar climatic characteristics. Nevertheless, the production conditions in Weifang are slightly 

superior to those in Langfang, i.e., a higher yield can be expected with lower gas use in Weifang 

than in Langfang. The annual yield in Pingliang is substantially higher than in other regions, 

given the fact that the production period is seven weeks longer than in Langfang and Weifang, 

and 10 weeks longer than in Jinshan. The simulated gas use in Pingliang is the second lowest 

of all regions. The low gas use in Pingliang can be explained by the cropping schedule: 

transplanting starts on December 15, which means heating is only needed for half of December, 

one of the coldest months of the year.  

Although the impacts of temperature on yield and energy use are not linear, our simulations 

show that a 1℃ reduction in heating setpoints (compared to the reference level) leads to a 

decrease in yield by around 0.5 kg m−2 in Jinshan, Langfang, Weifang, and by 0.8 kg m−2 in 

Pingliang. It also leads to gas savings of 2.4 m3 m−2 per year in all four regions. 

 

Table 2.2. Simulated mean tomato yield and gas use under different temperature management 

strategies for four regions. 

TempShift 
Jinshan  Langfang  Weifang  Pingliang 

Yield 
kg m−2 

Gas use 
m3 m−2 

 Yield 
kg m−2 

Gas use 
m3 m−2 

 Yield 
kg m−2 

Gas use 
m3 m−2 

 Yield 
kg m−2 

Gas use 
m3 m−2 

0℃ 
(reference) 

18.01 19.54  20.37 27.24  20.57 25.60  25.07 22.45 

+1℃ 18.39 22.56  20.85 29.77  21.00 28.14  25.59 25.64 

−1℃ 17.57 17.08  19.78 24.88  20.06 23.46  24.33 20.28 
−2℃ 17.10 14.42  19.16 22.69  19.46 21.08  23.41 17.67 
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2.3.4 Parameters for stochastic price simulation 

Monte Carlo simulation incorporates the information from stochastic variables to reflect the 

inherent risk of the investment. Tomato and energy prices were modelled as stochastic 

variables in the economic model, considering their large impact on the net cash flow. The 

biggest cost component for glasshouses in China are heating costs, taking up around 40% to 

60% of the total production costs, depending on the region (Zhang, 2003). Tomato prices 

directly determine the revenue of the glasshouse. A commonly observed pattern in agricultural 

product prices is seasonality (Tomek & Kaiser, 2017).  

The structural seasonal pattern in tomato prices is even more obvious because of the 

perishability of tomatoes. Overall, the tomato prices are lowest in summer and highest in early 

spring. Therefore, we model the prices of cherry tomatoes on a monthly basis. Using geometric 

Brownian Motion (GBM), monthly tomato prices can be described as:   

 /%,! =	0,%,!/! + 1, %,!/2 (2.2) 

where %,! represents the tomato price of month 3 in year !; 0, is the drift rate; and 0, is the 

drift rate of month 3, reflecting the expected price trend compared with the same month of the 

previous year. 1, is the volatility rate, it captures price variation.  4! is a random variable that 

follows the standard normal distribution. More specifically, for ! ∈ (0,∞), %,!  follows the 

lognormal distribution with parameters ;0, −
-"
#

.
< ! and (1,√!). 

The drift rate can be seen as a periodic overall inflation rate (Van den Boomen et al., 2022). 

Though the price series of tomatoes from 2011 to 2021 showed an upward trend, input prices 

(of e.g., land rent, fertilizer, wage) also increased accordingly. There was no valid underpinning 

to assume a positive drift rate, therefore 0 was set as 0.	1 was estimated in the same manner as 

in Carey & Zilberman (2002). Tomato prices were assumed to remain in the interval 

[2/3%,",4/3%,"] with 95% probability in the next 20 years. This interval was chosen based on 

the observations of cherry tomato price series from 2011 to 2021. Given that the changes in 

ln %  are normally distributed in GBM, the 90% confidence interval is given by 

2 × 1.96 × √201 = 	 ln /
0
%," − ln

.

0
%1", this derives a volatility rate of 0.046. The same drift 

and volatility rates were assumed for the four regions.  
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Monthly wholesale cherry tomato prices of 2021 of each region were obtained from 

National commercial information platform of agricultural products (nc.mofcom.gov.cn). The 

price data were aggregated from multiple wholesale markets in the region and did not 

differentiate variety and quality differences between field and glasshouse-grown tomatoes. 

Compared to field-grown tomatoes, glasshouse-produced tomatoes are market as high-end 

agri-products and can get higher prices for its better quality and brand recognition (Wang, 2020; 

Zhang, 2010). Therefore, a price premium of 50% was added to the aggregated wholesale 

tomato prices for 2021 to represent glasshouse tomato prices as the starting points (%,") for 

price simulation (Table 2.3). Overall, Langfang, Pingliang can expect relatively high prices for 

cherry tomatoes. The price of cherry tomatoes in Weifang is lower compared to other regions. 

The tomato price in Weifang is probably limited by the supply-demand relationship, as 

Shandong (where Weifang belongs to) is the largest vegetable production province in China 

(Costa et al., 2004). 

Table 2.3. Monthly cherry tomato wholesale prices (¥ kg−1) for 2021. 

Month Jinshan1 Langfang Weifang Pingliang2 

Jan 12.00 15.23 10.86 14.01 
Feb 11.18 14.60 12.99 13.43 
Mar 9.62 16.91 12.66 15.56 
Apr 11.03 15.93 11.12 14.66 
May 13.55 14.43 9.05 13.28 
Jun 11.63 12.78 6.75 11.76 
Jul 11.81 11.58 8.58 10.65 
Aug 12.84 11.43 9.12 10.52 
Sep 14.19 11.79 9.93 10.85 
Oct 15.09 12.35 11.60 11.36 
Nov 17.82 17.18 12.84 15.80 
Dec 18.71 17.96 13.68 16.52 

Source: National commercial information platform of agricultural products 
(nc.mofcom.gov.cn). 
 

Common heating energy sources are pipeline natural gas and liquid natural gas (LNG); the 

use of coal is restricted by law as of 2017. Our study assumes LNG as the heating energy source 

 
1 Cherry tomato prices of Jiangsu province were used as proxies for Jinshan cherry tomato prices due to the lack 
of data 
2 There are no price records for cherry tomato for Pingliang. Therefore, we estimated cherry tomato prices based 
on the price difference (92%) for globe tomatoes between Langfang and Pingliang. 



Chapter 2 

  25 

in all four regions. LNG ex-factory prices, reflecting the average price at LNG liquefaction 

plants and LNG receiving stations, were obtained for each region and for 2016 to 2021 from 

Shanghai Petroleum and Natural Gas Exchange (SHPGX). The LNG end-user price were 

estimated by adding a 40% margin to the ex-factory prices. The monthly producer price data 

were fitted against triangular distributions using the R package fitdistplus (Delignette-Muller 

& Dutang, 2015). Six distributions of LNG prices for all heating months were obtained, the 

parameters are shown in Table 2.4. At each iteration of the Monte Carlo simulation, monthly 

natural gas prices were drawn from the fitted triangular distributions to estimate the stochastic 

heating costs. The natural gas prices were modelled as triangular distributions rather than 

geometric Brownian Motions because the trend in natural gas price is not stable over time and 

is difficult to predict. GMB requires a constant drift rate to reflect the stable trend in prices, 

while the natural gas prices in China from 2016 to 2021 fluctuated heavily. Thus, there was no 

reason to assign a constant drift rate to natural gas prices using GMB, as we did for tomato 

prices. 

Table 2.4. Parameters (min, mode, max) for natural gas prices (¥ m−3) simulation using 
triangular distributions. 
Month Jinshan3 Langfang Weifang Pingliang 

Jan 2.74, 5.12, 7.01 2.36, 3.23, 8.44 2.88, 4.01, 7.01 1.76, 2.61, 9.63 

Feb 3.36, 3.56, 8.33 3.04, 3.36, 6.66 3.24, 3.32, 7.25 2.68, 2.68, 7.68 

Mar 3.24, 3.25, 5.14 3.06, 3.25, 4.83 3.15, 3.56, 5.37 2.90, 2.92, 4.44 

Apr 2.54, 3.61, 4.20 3.05, 3.10, 4.17 2.95, 3.73, 4.39 2.70, 2.94, 4.01 

Oct 2.12, 3.30, 7.95 2.68,2.94, 7.77 2.36, 3.54, 7.79 2.45, 3.35, 7.62 

Nov 3.44, 3.78, 8.85 3.66, 3.75, 8.58 3.62, 3.79, 8.73 3.62, 3.73, 8.70 

Dec 3.36, 3.44, 8.68 2.65, 4.35, 7.54 3.21, 3.35, 8.80 1.79, 4.25, 9.24 
Note: Prices for LNG given by SHPGX are in the unit ¥ ton−1.  One ton of LNG was converted to 1380 

m3 of natural gas in this study. 

 

2.3.5 Other production costs 

Other production costs include labour, electricity, water, fertilizer, crop protection material, 

and maintenance costs. Labour hours, water use, fertilizer, pesticides, and other material costs 

 
3 LNG prices of Jiangsu province were used as proxies for Jinshan LNG prices due to the lack of price data for 
Jinshan. 
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were taken from data of a commercial glasshouse in Jinshan. Electricity use was an output of 

the KASPRO model. Labour was comprised of harvest labour that depends on tomato yield, 

and non-harvest labour. The latter was assumed to be the same across regions; harvest labour 

differs based on the yields of each region. Costs of seedlings, rockwool, fertilizers, pesticides, 

water, electricity, and other small items such as tomato hooks, yellow sticky traps or gloves 

were assumed to be the same for all regions, on the premise that the same crop management 

strategy was applied in the biophysical model simulation. An overview of parameters related 

to other production costs can be found in Appendix 2D. Information on wage and land rent of 

each region was obtained from the National Agricultural Products Cost-benefit Data 

Compilation-2020. 

 Simulation results  

2.4.1 Economic performance simulation under different temperature 

management strategies 

Table 2.5 shows Monte Carlo simulations on the net cash flow and NPV of tomato glasshouse 

for four regions under different temperature management strategies. The simulation consists of 

1000 iterations, and the table shows the mean, 5th, and 95th percentiles of the economic 

indicators.  

Simulations indicate that the economic feasibility of a one-hectare tomato greenhouse 

investment varies across regions. In Pingliang, one could expect on average a net cash flow of 

143.3 ¥ m−2 per year. The mean NPV is 477.0 ¥ m−2 with a 90% confidence interval ranging 

from 182.0 to 749.3 ¥ m−2. A one-hectare tomato glasshouse in Langfang has an average annual 

net cash flow of 102.0 ¥ m−2 and a mean NPV of 29.4 ¥ m−2 with a 90% confidence interval 

ranging from minus 301.2 to 347.8 ¥ m−2. The probability of a positive NPV of a tomato 

glasshouse investment in Langfang is 56.8%. Results show that Jinshan and Weifang have an 

average annual net cash flow of 48.9 ¥ m−2 and 17.1 ¥ m−2 respectively, with the average NPV 

of −593.7 ¥ m−2 in Jinshan and −957.8 ¥ m−2 in Weifang. The net cash flows obtained in Jinshan 

and Weifang are impossible to cover the high upfront investment costs of glasshouse 

construction and installation, as even the 95th percentiles are negative in Jinshan and Pingliang. 

The major barrier in Jinshan is the short production period caused by its unfavourable local 

climate, which was reflected in the low simulated yield. Weifang has similar yield and gas use 

as Langfang, but more grim economic outcomes, due to the low tomato prices.  
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Table 2.5. Simulated net cash flow and NPV of tomato glasshouse under different temperature 
management strategies for four regions. 

TempShift Indicator Unit Jinshan Langfang Weifang Pingliang 

0℃  Mean net 
cash flow 

¥ m−2 

year−1 
48.9 102.0 17.1 143.3 

Mean NPV ¥ m−2 −593.7 29.4 −957.8 477.0 

5% NPV ¥ m−2 −829.4 −301.2 −1231.0 182.0 
95%NPV ¥ m−2 −355.5 347.8 −705.0 749.3 

+1℃ Mean net 
cash flow 

¥ m−2 

year−1 
44.5 102.9 15.9 140.5 

Mean NPV ¥ m−2 −654.1 10.8 −1018.3 439.2 
5% NPV ¥ m−2 −902.5 −334.8 −1302.5 123.7 
95% NPV ¥ m−2 −398.2 343.9 −749.2 728.6 

−1℃ Mean net 
cash flow 

¥ m−2 

year−1 
54.0 104.3 23.8 138.3 

Mean NPV ¥ m−2 −546.1 26.5 −888.8 472.3 
5% NPV ¥ m−2 −768.6 −284.5 −1147.1 194.2 
95% NPV ¥ m−2 −327.0 331.0 −647.5 727.0 

−2℃ Mean net 
cash flow 

¥ m−2 

year−1 
57.9 103.7 24.4 139.8 

Mean NPV ¥ m−2 −501.1 19.8 −875.1 430.7 
5% NPV ¥ m−2 −707.6 −267.4 −1112.7 174.2 
95% NPV ¥ m−2 −300.7 310.6 −644.8 671.8 

 

2.4.2 Sensitivity analysis  

A sensitivity analysis helped to determine which factors have a major impact on the net cash 

flow of a tomato glasshouse. A regression-based sensitivity analysis procedure was applied by 

regressing the ranked net cash flow against the ranked monthly tomato and natural gas prices. 

Table 2.6 shows the standardized regression coefficients between the ranked net cash flow and 

the ranked monthly tomato and natural gas prices. The larger the regression coefficient, the 

more closely the variation in the price variable is associated with the net cash flow. Overall, 

the impact of natural gas prices variation on the net cash flow was higher than tomato prices. 

For Jinshan and Langfang, tomato prices from May and June have large impacts on the net 

cash flow. For Weifang, tomato prices from March to May and December have the largest 

impacts on net cash flow. In Pingliang, the most influential months for tomato prices are April, 

November, July, and August. Not surprisingly, the cold months, December, January, and 

February are when natural gas prices have the largest impact on net cash flow for all regions. 
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Table 2.6. Standardized regression coefficients between the ranked net cash flow and the 
ranked monthly tomato and natural gas prices. 

Variable Jinshan Langfang Weifang Pingliang 

Tomato prices  
Jan  0.15 0.11 0.09 n/a 
Feb 0.13 0.09 0.10 n/a 
Mar  0.09 0.12 0.11 0.07 
Apr 0.14 0.15 0.12 0.17 
May 0.22 0.16 0.11 0.12 
Jun 0.19 0.15 0.09 0.09 
Jul n/a (0. 02) (0.01) 0.13 
Aug n/a n/a n/a 0.13 
Sep n/a n/a n/a 0.11 
Oct n/a n/a n/a 0.11 
Nov n/a (0.01) (0.02) 0.15 
Dec 0.14 0.13 0.11 0.06 
Natural gas prices  
Jan −0.48 −0.66 −0.47 −0.29 
Feb −0.50 −0.28 −0.36 −0.28 
Mar −0.17 −0.10 −0.14 −0.12 
Apr −0.07 −0.02 −0.03 −0.06 
Oct n/a −0.02 n/a −0.29 
Nov n/a −0.32 −0.30 −0.21 
Dec −0.56 −0.48 −0.65 −0.45 

Notes: statistically insignificant coefficients (p>0.05) are reported in parenthesis. n/a indicates 
a month without yield or natural gas use. 
 

2.4.3 Scenario analysis  

Producers have no control over tomato and gas prices, while these two factors significantly 

affect both revenue and heating costs. A scenario analysis was conducted to analyse what the 

tomato and natural gas prices should be in order to make the investment break even (mean 

NPV=0). Local governments in China usually provide substantial subsidies to support 

glasshouse investments. The subsidy policies vary from province to province. In the scenario 

analysis, both scenarios with (50% of the initial investment cost) and without subsidy were 

assessed. The baseline scenario was the economic outcome under the grower reference 

temperature setpoints. The scenario analysis of Pingliang is presented here (Figure 2.2). 

Detailed results for other regions are in Appendix 2E. 
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Pingliang is the region with the most optimistic economic outcome among the four regions. 

The Without subsidy, the break-even tomato prices are 86.9% of the current tomato prices, 

given the current natural gas prices unchanged. With a subsidy of 50% of the initial investment 

costs, even if the tomato prices decrease by 29.2%, glasshouse investment in Pingliang can still 

break-even. Given the current tomato prices, the investment can tolerate an increase in natural 

gas prices by 41.9%. When a subsidy of 50% of the initial investment costs is available, 

glasshouse in Pingliang can still make a positive NPV even if the natural gas prices increase 

by 93.4%. 

 
Figure 2.2. Mean NPV of a 1.4-hectare tomato glasshouse under different tomato and gas price. 

 

 Discussion  

The objective of this study was to analyse the economic feasibility and uncertainty of a Venlo-

type glasshouse for tomato production in China, under different climatic and market conditions. 

This interdisciplinary study combined methodologies from different disciplines such as 

greenhouse engineering, crop management, and economics and explored the dependencies 

between outdoor climate, management decisions on greenhouse climate, yield, and economic 

feasibility of a glasshouse production system for tomatoes in China. The results show that the 

economic outcome of a tomato glasshouse varies across regions, with a mean NPV ranging 

from for −957.8 ¥ m−2 Weifang, to 477.0 ¥ m−2 for Pingliang. The 5th and 95th percentiles of 

NPV of a tomato glasshouse investment in Pingliang are 182.0 and 749.3 ¥ m−2, respectively. 

Such investment is unlikely to be profitable in Jinshan and Weifang. The probability of a 

positive NPV of a tomato glasshouse investment in Langfang is 56.8%. We also simulated the 

economic outcomes of tomato glasshouse under different temperature setpoints for each region. 

The highest mean NPVs in Langfang and Pingliang were obtained at the grower’s reference 

setpoints. In Jinshan and Weifang, higher NPV can be obtained by decreasing the reference 
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setpoints by 2 ℃,	at the expense of some yield reduction. A sensitivity analysis was conducted 

to evaluate the risks associated with the tomato and natural gas prices. The break-even tomato 

and natural gas prices for each region were calculated with a scenario analysis.  

The reasons that glasshouse investments in Jinshan and Weifang are unprofitable are 

multifold: first, the short production cycle limits yield levels. In Jinshan, the production 

duration is only 39 weeks, in contrast to the Netherlands where 50 weeks of production is 

possible. The annual yield of cherry tomato in the Netherlands is around 30.7 kg m−2, while the 

yield in Jinshan is only 18.01 kg m−2. Second, cherry tomato prices in China are relatively low 

(1.2 to 3.2 € kg−1), compared to for example the Netherlands (1.63 to 5.77 € kg−1; Raaphorst et 

al., 2019). Meanwhile, natural gas prices in China are relatively high (0.5 to 0.7 € m−3). In the 

Netherlands, the natural gas price is around 0.24 € m−3 (Raaphorst et al., 2019) and in Norway 

0.43 € m−3 (Naseer, et al., 2022b). The negative impacts of high natural gas price are not only 

reflected in the high heating costs, but also in the low yield levels in China. Being able to 

operate throughout the year, Pingliang’s simulated yield was around 25 kg m−2, nearly 6 kg 

m−2 lower than the yield in the Netherlands. The low yield can be partly explained by the low 

temperature setpoints set by Chinese growers for saving heating costs.  

The sensitivity analysis suggests that both tomato and natural gas prices play decisive roles 

in the profitability of glasshouse investment. In China, there is a clear trend that commercial 

glasshouses are spending more resources on branding, seeking to exercise market power and 

get price premium through brand recognition. By improving quality management and 

establishing direct contracts with high-end supermarkets or online market access to consumers, 

glasshouse-produced tomatoes may have a chance to obtain a price premium. The grower could 

also strategically choose tomato varieties that cater to specific market segments and get a higher 

revenue. For example, beef tomato can reach a much higher yield compared to cherry tomato, 

but the price of beef tomato is usually lower. It is thus a strategic decision for the grower to 

choose the tomato variety that brings the highest return.  

The sensitivity analysis also suggests that the impact of natural gas prices was much bigger 

than that of tomato prices. Natural gas price variations could impose a lot of uncertainty to 

glasshouse investments. China’s natural gas market greatly depends on import. In recent years, 

energy prices are mounting and becoming even more volatile. Building long-term contracts 

with energy suppliers is a way to reduce cost uncertainty. However, energy suppliers tend to 

only establish contracts with large buyers, but the LNG demand of a 1.4-hectare glasshouse is 
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below 200 tons per year. The use of pipeline gas, which is to some extent regulated by the 

government and therefore less volatile and slightly cheaper, could decrease the uncertainty 

about net cash flow. However, the prerequisite is that the glasshouse has connections to 

pipeline gas. The cost for pipeline construction can be as high as one million RMB per 

kilometre (K. Yang, personal communication, October 21, 2020). Agricultural infrastructure 

access is an important success factor for the development of modern agriculture in China. 

Some literature on greenhouse temperature optimization followed the principle of energy-

efficiency of biomass production (e.g., Luo et al., 2005a) or simply optimized the daily 

temperature setpoints based on a given desired average temperature (e.g., Shen et al., 2018). 

Without taking the prices of agricultural products and energy into account, these perspectives 

do not necessarily lead to the economic optimum results. What investors ultimately care about 

is the profitability of the glasshouse. In this regard, including outputs and energy prices and 

follow the profit-maximization principle is a more appropriate guideline for glasshouse 

temperature optimization. After including fixed tomato and energy prices, Su et al. (2021) 

recommended the temperature setpoints of a Venlo-type tomato glasshouse in Shanghai in 

winter to be between 16 to 20℃. After considering seasonality and uncertainty of tomato and 

energy prices, our study suggests that better economic outcome can be obtained by lowering 

the temperature by 2℃ compared to the reference setpoints, which led to an average 

temperature around 15℃. 

Crop and greenhouse climate models have been used extensively as tools to study the 

dynamics of crop growth and development and the indoor greenhouse climate. Linking such 

bio-physical models with economic models is a way forward toward more integrated 

assessments of agricultural systems (Lehmann, N., 2013).  Without simplifying the 

dependencies between outdoor climate, energy use, and tomato yield, this paper is the first to 

systematically assess the economic feasibilities of glasshouse investments in China, to the best 

of our knowledge. this study provides the distribution of possible economic outcomes which is 

helpful for investment risk assessment.  By revealing the trade-offs between yield and heating 

costs, our study appeals to adhere to the principle of profit maximization when formulating 

glasshouse climate management strategies. This paper is interdisciplinary in nature by 

integrating knowledge from crop physiologists, greenhouse energy experts, agricultural 

economists, and glasshouse practitioners.  
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There are, however, some limitations of this study that need further discussion. First, when 

exploring different heating temperature setpoints, we assumed that temperature only affects the 

yield and natural gas use. In fact, temperature also influences tomato quality, such as fruit 

colour, texture, and size (Dorais et al., 2010). The impact of temperature management on fruit 

quality was not modelled in this study, as this is beyond the scope of our biophysical model. 

Second. this study only considered Venlo-type glasshouses, a type of high-tech greenhouses 

with a complete set of climate control equipment. Although this Venlo-type glasshouse was 

found to be unprofitable in some regions under the current conditions, other types of 

greenhouses with different designs and technological levels may be economically viable in 

China. Future research can compare the economic feasibilities of different types of greenhouses 

and explore the most economic viable greenhouse design under different climate regions in 

China. Similar studies have been done for Spain (Vanthoor et al., 2012) and Norway (Naseer 

et al., 2021), but have not been done in China. This could be done with our modelling 

framework, with some modifications on the definition of glasshouse configuration. Another 

future research direction is to incorporate the yield and energy use uncertainty caused by the 

variations of the outdoor climate. This study used the mean yield and energy use simulated 

with 30 historical climate datasets as deterministic values in the calculation. The standard 

deviations of 30 years simulated yield and natural gas use were around 0.4 kg m−2 and 1.1 m3 

m−2 respectively, which could bring some extra uncertainty in the economic outcome of 

glasshouse investment. Incorporating uncertainty caused by climate variations can enable a 

more complete view of the uncertainty of glasshouse investment.  

This study used historical climate data in the bio-economic simulation to assess the 

economic feasibility of a future investment. It would be ideal to use climate projections as input 

for yield and energy use simulation to match the investment decision horizon. The effect of 

climate change on agricultural production is gaining attention in the literature. A review 

indicated that the changing temperature, CO2 concentration and precipitation patterns may have 

positive and negative impacts on different aspects of greenhouse production (Gruda et al., 

2019). Many impacts of climate change on greenhouse production discussed in the literature 

were concluded from studies of vegetables grown under adverse climate conditions, and 

simulation studies on this topic are scarce (Gruda et al., 2019). A future research opportunity 

is to study the influence of climate change on greenhouse production with bio-economic 

models using future climate projections.  
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Different climate and crop management strategies can also be studied with this modelling 

framework. In this paper, we explored the economic outcomes under four different levels of 

heating temperature setpoints and revealed the trade-offs between yield and heating costs. This 

is nevertheless a simplified temperature setpoints optimization procedure. In future work, 

climate management and crop management (e.g., pruning, leaf removal) strategies could be 

optimized simultaneously to reach the profit-maximizing point for different regions in China.  

Local governments play an important role in the development of the glasshouse industry in 

China. In fact, local governments are not only subsidy providers but also joint investors of 

glasshouse projects. Normally, the government would claim part of the glasshouse’s ownership 

based on the portion of subsidy they provided. The local government also plays an important 

role in financing, by helping the private investors to negotiate with banks for favourable loan 

terms. With a subsidy of 50% of the initial investment costs, the probability of a tomato 

glasshouse with a positive NPV can increase to 46.4% in Jinshan and 99.9% in Langfang. 

Currently, the subsidy is often given as a fixed amount paid as a proportion of the initial 

investment costs, usually paid off within three years after the glasshouse is built. The 

governments could diversify the forms of subsidy. Apart from fixed one-time payments, the 

government could consider giving annual subsidies on glasshouse production, such as energy 

price subsidy, to ensure that the glasshouses can produce sustaining cash flows. 

For a long time, glasshouse technology R&D has focused on energy-saving heating 

technologies. This is very relevant in countries with cool summers, for example the Netherlands. 

Indeed, heating is a large cost component, but given the climate characteristics in China (hot 

and humid summer), it seems to be more worthwhile to put more effort into developing energy-

efficient cooling and dehumidification technologies to enable glasshouse production 

throughout the year. With a prolonged production period, the revenue could be substantially 

increased, as can be seen from the simulation results of Pingliang. 
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Appendix 2A. INTKAM and KASPRO models calibration results 

We employed the INTKAM-KASPRO model4 to simulate yield and energy use of a Venlo-

type glasshouse in which tomato crop was grown, for the economic feasibility studies of four 

different regions in China. The model was calibrated to ensure reasonable simulation results 

for Chinese production situations. We used the production data from year 2019 and 2020 of a 

cherry tomato glasshouse in Jinshan, Shanghai (latitude 30.8173° N, longitude 121.0410° E). 

Details on the structure, equipment climate and crop management strategies of the Jinshan 

glasshouse can be found in Table A1. Table A2 and A3 presents the calibration results on yield 

and energy use of the INTKAM-KASPRO model under the Shanghai climate.  

Table A1. Actual information of the glasshouse in Jinshan and the parameters used for model 
calibration. 
Item Actual information  Description 

Area 8000 m−2 ✓ 
Gutter height 6.5 m ✓ 
Orientation EW, 0 degree ✓ 
Cover Normal glass, no 

whitewash 
✓ 

Heating Boiler (liquid natural 
gas), no heat storage; 
Two heating pipes  

maximum supply temperature of heating pipes: 
60℃ for pipe1, 50℃ for pipe 2. 

Screens Thermal screen + 
shading screen 

The thermal screens may be used when the outside 
temperature is below 12℃. When the outside 
temperature goes below 0℃, the thermal screen will 
be kept deployed until the radiation is above 200 w 
m−2. When the outside temperature is above 10℃, 
the thermal screen is only closed when the radiation 
is below 5 w m−2. The shading screen will be half 
closed when the radiation exceeds 600 w m−2 and 
fully closed when the radiation exceeds 800 w m−2. 

 
4 The KASPRO simulation model is based on physical equations that describe the heat and mass fluxes 

associated with greenhouse plant production. It dynamically simulates the greenhouse temperature, relative 
humidity, transpiration, etc. and calculates the energy and CO2 uses based on the given greenhouse climate 
setpoints. The INTKAM model simulates growth and development of greenhouse crops (in our case, tomato). 
Crop photosynthesis rate is computed at small time steps with a biochemical model on the basis of radiation, CO2, 
temperature, and relative air humidity. Instantaneous rates are integrated to a daily crop photosynthesis rate. Daily 
dry matter partitioning and organ growth rates are computed based on the sink strengths of various organs and 
assimilate availability. 
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Cooling Pad & fan, fogging. 
No dehumidification  

The maximum amount of outside air sucked in is 
100 m3 m−2 h−1. The fans will run on the maximum 
capacity when the difference between the air-
temperature and ventilation setpoint excesses 2℃. 
The air can be cooled down to 0.85 of the wet-bulb 
temperature. The outlet temperature is 15℃ above 
the average greenhouse temperature. 

Illumination No ✓ 
Heating period 11/29/2019 – 

04/23/2020 
✓ 

Heating 
setpoints 

No data  Inferred from realized indoor temperature 

Ventilation 
setpoints 

No data The maximum opening of vents is 100. When the 
outside temperature is below 5℃, the p-band is 
15℃; when the outside temperature is higher than 
20℃, the p-band is 4℃. p-band is a key parameter 
that controls how large the temperature excess has 
to be before the leeward vents are fully opened. 
The windward vents only open when the leeward 
vents are opened above 50%. 

CO2 Censor data, mean 
CO2=550 ppm ✓  

Transplant date 10/01/2019 ✓ 
Stem density 2.06 (10/01/2019) 

2.58 (since 
10/22/2019) 

✓  

Topping date 05/20/2020 ✓ 
Last harvest date 03/06/2020 ✓ 
Nr. fruit per 
truss 

Initially 8, reduced to 
6 and increased to 8 
eventually 

Fruit number per truss was calibrated accordingly 

Dry matter 
content 

5%–7%, depend on 
the development 
stage. Eventually 
stabilized around 6% 

Dry matter content was set at 6% 

Note: ✓ means that the underlying parameter reflects the exact glasshouse specification, 
climate or crop management strategies in the actual production 

Simulated yield was 2.63 kg m−2 higher than actual yield. The over-estimation can be 

explained by the fact that the model assumes absence of pests and diseases, optimal fertigation 
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management and other crop management actions, which, however, is unlikely to be achieved 

in practical production, especially the Jinshan glasshouse data was obtained from an 

experimental cultivation. Many operators were interns without working experience in 

glasshouses. In addition, some abnormal events during the production cycle 2019-2020: 

• In March, some work (leaf removal, harvest, side shoot removal) could not be 

finished in time due to labour shortage during the covid-19 pandemic.  

• In April, powdery mildew and leaf mold appeared. 

• Towards the end of harvest, blossom end rot appeared on three trusses. 

For these reasons, the model was considered to realistically simulate the tomato production 

in Jinshan. 

Table A2. Summary of simulated and actual harvest. 

Yield 

kg m−2 year−1 
Actual Simulation 

Dec 1.727 1.933 
Jan 2.121 2.859 
Feb 1.209 1.908 
Mar 1.433 2.005 
Apr 3.106 2.989 
May 3.321 4.160 
Jun 0.6345 0.325 
Total 13.55 16.18 

 

Gas use was over-estimated. The simulated gas use was 12.2 m3 m−2, the adjusted actual 

gas use (after linearly extrapolates 12 missing values) was 12.82 m3 m−2. One explanation is 

that the energy use information provided by the grower was inaccurate, for example, there were 

missing values in the daily gas use record. Overall, the daily gas use pattern has the same trend 

as the actual use pattern, therefore we decided to accept this slight over-estimation and put 

more trust in the widely validated model.  

Electricity use was under-estimated, because the simulated electricity use only took large 

electricity consumption equipment into account (e.g., heat pumps, pad and fan systems, air-

 
5	The actual harvest in June was 1.563 kg m−2, including green fruits without commercial value. We only took the 
harvested red fruit weight into account for calibration, as the green fruit were the fruits supposed to be harvested 
in later stage beyond the simulation period. The Jinshan greenhouse ended the production already on June 3 to 
avoid high cooling costs and diseases brought by the hot and humid climate in summer. 
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blower of the boiler). Smaller consumers of electricity, like circulation fans, watering pumps, 

pumps for circulating water in the heating system were not included. While the actual 

electricity use most likely takes every consumption into account. As the electricity costs only 

takes up around 5% of the total production costs, this over-estimation will have a minor effect 

on the cost estimation, which is acceptable. 

 
Table A3. Summary of the actual and simulated energy use for the Jinshan glasshouse. 

Item Value per year 

Actual gas use  12.2 m3 m−2 
Adjusted actual gas use  12.82 m3 m−2 
Simulated gas use 15.5 m3 m−2 
Actual electricity use (everything 
included) 

7.3 kWh m−2 

Actual electricity use (only for 
glasshouses) 

5.67 kWh (estimation, 70%*8.1) 

Simulated electricity use (only for heat 
pumps, air-blower of boiler, cooling) 

4.3 kWh 
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Appendix 2B. Calculation of weighted average cost of capital (WACC) 

Table B1. Calculation of weighted average cost of capital. 
Cost of debt after tax shield (GH) Rate  Source 

Cost of debt (I/) 5.5% The People’s Bank of China (2022), with 
the assumption of 20% floating rate on the 
5-year Loan Prime Rate of 2022 (4.6%) 

Marginal tax rate (.) 0.0% Enterprise Income Tax Law of the People's 
Republic of China, article 27 (2007)  

Cost of debt after tax shield  5.5%   
Cost of equity (GJ)   

Risk free rate (-K-) 2.79%  China 10-year government bond yield 
(Ministry of Finance of the People’s 
Republic of China, 2022)   

Market risk premium of China 
(-L) 

4.94% (Damodaran, 2022a) 

Beta for farming sector in 
China (M) 

0.79 (Damodaran, 2022b) 

Cost of equity  6.69% Calculated 
Capital structure  Ratio  

Debt (N) 50% Authors’ assumption 
Equity (O) 50% Authors’ assumption  

   
WACC 6.10% Calculated 

 

The discount rate - was calculated using the WACC method as follows:  

- = PQ"" =
N

N + O ∙ "N +
O

N + O ∙ "O =
N

N + O ∙ I/ ∙
(1 − .) +

O
N + O ∙

(-K- + M ∙ -L) 

  



 

 40 

Appendix 2C. Climate characteristics, cropping and heating schedules of four 

regions 

Table C1. Climate characteristics, cropping and heating schedules of four regions. 

 Jinshan  Langfang  Weifang Pingliang  
Longitude 30°49'51.96" N 39°30'34.99" N 36° 42' 24.39'' N 35°32'21.01" N 
Latitude 121°20'38.40" 

E 
116°41'40.99" E 119° 9' 42.33'' E 106°41'10.00" E 

Gross radiation of 
the year (MJ m−2) 

5383.1 5728.5 5734.5 5586.4 

Gross radiation in Dec, 
Jan, Feb (MJ m−2) 

843.2 867.0 879.2 933.6 

Average temperature 
in Jan (°C) 

6.03 −3.05 −1.24 −2.94 

Average temperature 
in Jul (°C) 

28.05 27.63 26.64 22.63 

Average humidity in Jul (%) 83.59 70.18 75.54 67.67 
Transplanting date Oct 1 Sep 15 Sep 15 Jan 1 
Heating start date Dec 1 Oct 25 Nov 5 Oct 10 
Heating end date Apr 20, next 

year 
Apr 13, next 

year 
Apr 20, next 

year 
Apr 30 

Final harvest date Jul 1, next year Jul 10, next year Jul 10, next year Dec 15 
Weeks of production 39 43 43 50 
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Appendix 2D. Overview of parameters related to other production costs 

Table D1. Parameters related to other production costs. 

Parameter Unit  Values 

Natural gas use a m3 m−2  month−1 See Table 2.2 
Electricity use a kWh m−2 

month−1 
Jinshan: 7.24   Langfang: 7.43   Weifang: 
7.56   Pingliang: 6.23 

Wage b ¥ hour−1 Jinshan: 16.9   Langfang: 13.3   Weifang: 
11.5   Pingliang: 9.35     

Harvest labour hour c hour kg−1 year−1 0.032 
Non-harvest labour 
hour c 

hour m−2 year−1 0.64 

Land rent b ¥ m−2 year−1 Jinshan: 1.06   Langfang: 0.63   Weifang: 
0.58    Pingliang: 0.50     

Water c ¥ m−2  3.33 
Electricity c ¥ kWh−1 0.682 
Fertilizers c ¥ m−2 year−1 7.15 
Rockwool c ¥ m−2 year−1 11.88 
Seedlings c ¥ m−2 year−1 1.38 
Other material c ¥ m−2 year−1 3.26 

a. Source: simulation outputs of INTKAM-KASPRO model 
b. Source: National Agricultural Products Cost-benefit Data Compilation-2020 (2020) 
c. Source: accountancy data from a cherry tomato glasshouse in Jinshan 
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Appendix 2E. Scenario analysis results and break-even prices 

 
Figure E1. Mean NPV of a 1.4-hectare tomato glasshouse under different tomato and gas price 

changes for Jinshan, without and with 50% subsidy on the initial investment costs. 

 

 
Figure E2. Mean NPV of a 1.4-hectare tomato glasshouse under different tomato and gas price 

changes for Langfang, without and with 50% subsidy on the initial investment costs. 

 

 
Figure E3. Mean NPV of a 1.4-hectare tomato glasshouse under different tomato and gas price 

changes for Weifang, without and with 50% subsidy on the initial investment costs. 
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Table E1. Break-even tomato and natural gas price levels of the four regions. 

Break-even 

prices 

Without subsidy 

ssusubsidsubsidy 

50% subsidy 

Break-even tomato price level 
Jinshan  23.7% 0.9% 
Langfang -0.6% -17.2% 
Weifang 39.6% 15.8% 
Pingliang  -13.1% -29.2% 

Break-even natural gas price level 
Jinshan  -58.1% −2.2% 
Langfang 1.43% 42.4% 
Weifang -70.6% −28.2% 
Pingliang  41.9% 93.4% 

Notes: break-even tomato (natural gas) price level refers to the percent change in the current 

tomato (natural gas) prices to make the glasshouse investment break even (mean NPV=0), 

keeping the current natural gas (tomato) prices level unchanged.
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Abstract  

 

Optimizing greenhouse design is a complex challenge that involves the large combinational 

solution space and the interactions between design elements, outdoor climate, and crops. In addition, 

evaluating greenhouse performance requires consideration of economic and environmental 

dimensions, as well as different stakeholder priorities. To address this challenge, this paper 

made a novel combination of operational research methods with bio-economic modelling. 

Specifically, a bio-economic model was used to simulate the yield, energy use, and economic 

performance of different greenhouse designs. A genetic algorithm was used to explore the large 

solution space to reduce the computational effort. The overall performance of greenhouse 

design was evaluated using a directional distance function, which incorporated stakeholders’ 

priorities for economic and environmental performance through the directional vector. The 

results identify several greenhouse designs that were found to be efficient in terms of economic and 

environmental performance for both investors and policymakers across various price scenarios. 

The most influential factors on operating income include the choice of lighting, structure, 

thermal screen, and CO2 dosing rate. Among lighting options, LED lighting outperforms HPS 

lighting in terms of both economic and environmental performance. Specifically, incorporating 

LED lamps with an intensity of 200 μmol m−2 s−1 can increase annual operating income by 

97.3 to 200.2 ¥ m−2, depending on the region. Conversely, low intensity lighting adversely 

impacts both economic and environmental performance. A synergistic relationship has been 

observed between lighting and CO2 dosing. On the other hand, lighting is the primary 

contributor to greenhouse gas (GHG) emissions. Incorporating LED lighting with an intensity 

of 200 μmol m−2 s−1 can increase CO2 equivalent emissions from 151.7 to 211.0 kg m−2. 

Incorporating thermal screens can effectively reduce GHG emissions.  

 

 

Keywords  

Greenhouse design, Data envelopment analysis, Genetic algorithm, Bio-economic model, 

Multi-stakeholder
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 Introduction 

China has the largest area of protected horticulture in the world, covering 1.89 million hectares 

(ha) by 2018 (Sun et al., 2019). However, China’s protected horticulture is dominated by 

Chinese solar greenhouses 6  (66.6%) and single-span plastic tunnels (30.5%), which are 

typically small in size and have limited climate control capabilities. In comparison, large-scale 

modern greenhouse such as multi-tunnel plastic greenhouses or Venlo-type glasshouses, only 

make up 2.9% of China’s protected horticulture area.  

Promoting agricultural mechanization has become as a top priority of the Ministry of 

Agriculture (MOA) in China. Subsidies have stimulated a surge in investment in Venlo-type 

glasshouse in China (MOA, 2018). However, the economic returns of these investments were 

questionable (MOA, 2018). One explanation may be that the designs of these greenhouses were 

often imported directly from countries such as the Netherlands, without sufficient adaptation 

to the local climatic and market conditions in China. Identifying greenhouse designs that are 

optimally adapted to the local climate and market conditions in China is currently of high policy 

relevance.  

Existing studies on greenhouse designs mostly address the design as a single factorial 

problem (e.g., Luo et. al., 2005b; Wang et. al., 2014; Esmaeli & Roshandel, 2020), i.e., by 

optimizing one design element at a time. However, the design of greenhouse production 

systems is clearly a multi-factorial optimization problem (van Henten et al., 2006), requiring 

the selection of the best combination of design elements, such as the structure and cover 

material, the choice of heating system, screens, CO2 supply, and artificial lighting. All of these 

choices mutually influence each other and are affected by local climate and market conditions 

(van Henten et al., 2006). A recent stream of literature advocates a more systematic approach, 

i.e., integrating the physical, biological, and economic models, and optimizing multiple factors 

simultaneously (e.g, Vanthoor et al., 2012; Naseer et al., 2021).  

One of the methodological challenges of taking a systematic approach is the “curse of 

dimensionality”—the number of possible combinations increases exponentially with the 

number of design elements and the number of alternatives of each design element. 

 
6 The Chinese solar greenhouse features an arc-shaped south-facing, light-transmitting roof, and an energy-
storing north wall.  During the day, solar energy is collected through the roof and stored in the north wall and 
soil. The stored energy is released at night, with a thermal blanket applied to prevent energy loss. No additional 
heating is applied this type of greenhouse (Montero et al., 2019).  
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Consequently, selecting the best combination of design options can be a complex task. 

Vanthoor et al. (2012) optimized the choice of greenhouse structure, cover material, shading 

and thermal screens, whitewash, heating and cooling system, CO2 enrichment system for Spain 

and the Netherlands. Adopting the same modelling framework, Naseer et al. (2021) identified 

the optimal design for Norway among five predefined design alternatives. 

Vanthoor et al. (2012) used the controlled random search method, which was originally 

developed for tackling continuous optimization problems (Price, 1977), to explore the solution 

space. However, the greenhouse design optimization problem is more suitable to be treated as 

a combinatorial optimization problem, as it involves discrete decisions regarding whether to 

include specific design element and which types to choose. In this regard, the genetic algorithm 

(GA) is an appropriate method (Holland, 1992). GAs fall under the category of evolutionary 

algorithms and are often used to generate solutions to search and optimization problems 

(Mendes et al., 2019). In agriculture, GAs have been applied to analyze problems such as farm 

management practices (Lehmann et al., 2013; Villalba et al., 2019), orchard replacement 

decisions (West, 2019), and food resource allocation problems (Notte et al., 2016).  

A second component of optimal greenhouse design is the choice of criteria for evaluating 

the performance of different systems. Some scholars used biological or physical performance 

criteria, such as production levels (Luo et al., 2005a) and the ability to maintain the indoor 

environment (Wang et. al., 2014). Economic indicators are also well-accepted criteria for 

selecting the optimal greenhouse design (e.g., Vanthoor et al., 2012; Naseer et al., 2021). Apart 

from economic performance, environmental impact of greenhouse production is also an 

increasing concern for stakeholders, especially policy makers. Modern greenhouse production 

is associated with a high level of greenhouse gas (GHG) emissions due to the intensive use of 

energy. Different greenhouse designs have varying energy requirements, resulting in different 

environmental impacts (Zhou et al., 2021). Different stakeholders may assign different weights 

on the economic and environmental performance, and a greenhouse design that is ideal for 

investors may not be preferred by policy makers. The economic and environmental 

performance of different greenhouse designs have been compared in some studies (e.g., Naseer 

et al., 2022b; Meyer-Aurich et al., 2012), but separately. However, for multi-stakeholder 

decision-making, the economic and environmental performance should be jointly assessed to 

achieve a form of consensus that reflects a trade-off between conflicting objectives and 

stakeholder priorities.  
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This study aims to identify greenhouse designs that are optimally adapted to the climate 

and market conditions for four different locations in China. The design elements considered 

are greenhouse structure, cover material, shading and thermal screens, heating and cooling 

systems, artificial lighting, CO2 enrichment systems, and whitewash. In order to reduce the 

computational effort, a genetic algorithm was employed to explore the large solution space. To 

identify the designs that best fit stakeholders’ preferences, a directional distance function 

approach was used to evaluate the overall performance of greenhouse designs in terms of 

economic and environmental performance. The optimal greenhouse designs were selected 

based on their ability to consistently deliver robust performance across different price scenarios. 

The resulting greenhouse designs were those where no improvement in economic performance 

can be achieved without compromising the environmental performance, and vice versa. 

The remainder of this paper is organized as follows: Section 2 presents the combination of 

methods used in this paper, i.e., the bio-physical model for simulating greenhouse yield and 

energy use, the genetic search algorithm, and the directional distance function. This is followed 

by the description of the results in Section 3. The paper ends with Discussion and Conclusions.  

 Materials and Methods 

Figure 3.1 presents the schematic overview of the combination of methods used in the 

greenhouse design optimization problem. A bio-economic model was used to evaluate the 

economic and environmental performance of a given greenhouse design (Min et al., 2022). A 

genetic algorithm was used to explore the large combinational solution space, using economic 

performance as the fitness function. The search of genetic algorithm produced a subset of 

promising greenhouse designs, the overall performance of which were then evaluated by a 

directional distance function which aims at improving the economic performance and reducing 

environmental impacts simultaneously. The categorical regression was used to estimate the 

impact of individual design element alternatives on economic and environmental performance.  
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Figure 3.1. Schematic overview of the greenhouse design optimization problem. 

This study focuses on nine greenhouse design elements: 1) type of structure, 2) cover 

material, 3) presence, type, and capacity of cooling system, 4) capacity of heating system, 5) 

presence and type of thermal screen, 6) presence and type of shading screen, 7) presence, type, 

and intensity of artificial lighting system, 8) presence and capacity of CO2 enrichment system, 

and 9) presence of whitewash. An overview of the alternatives of each design element is given 

in Table 3.1 

Table 3.1. Design element alternatives and associated economic parameters, encodings used 

for genetic algorithm. 

Design elements choices Investment  Investment Lifetime Maintenance 

 ¥ m−2 ¥ unit−1 year % year−1 

Structure (S = 1) 

A: Multi-tunnel, 1 vent 10 m−2 156.3 g  - 15 a 2% a 

B: Multi- tunnel, 1 vent 20 m−2 143.3 g - 15 a 2% a 

C: Multi- tunnel, 1 vent 30 m−2 131.0 g - 15 a 2% a 

D: Venlo, 1 vent 10 m−2 241.7 g - 15 a 0.5% a 

E: Venlo, 1 vent 20 m−2 218.3 g - 15 a 0.5% a 

F: Venlo, 1 vent 30 m−2 208.3 g - 15 a 0.5% a 

Cover (S = 2)     

A: PE (polyethylene) film 7.8 g - 7 a 5% a 

B: Double PE film 15.7 g - 7 a 5% a 

C: Glass 55.0 g - 15 a 0.5% a 

Cooling systems (S = 3) 
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A: No 

B: Fogging: 200 g  h−1 m−2   25.6 c - 10 a 5% a 

C: Fogging: 300 g  h−1 m−2   29.1 e  - 10 a 5% a 

D: Fogging: 400 g  h−1 m−2   46.5 e - 10 a 5% a 

E: Pad and fan: 60 m3 h−1 m−2   22.2 e - 10 a 5% a 

F: Pad and fan: 90 m3 h−1 m−2   27.5 e - 10 a 5% a 

G: Pad and fan: 120 m3 h−1 m−2    31.0 c - 10 a 5% a 

Heating system (S = 4) 

A: Boiler: 1.16 MW ha−1 - 412,920 e 15 a 1% a 

B: Boiler: 1.74 MW ha−1 - 432,000 e 15 a 1% a 

C: Boiler: 2.32 MW ha−1 - 475,200 e 15 a 1% a 

Thermal screen (S = 5) 

A: No 

B: a transparent woven screen 

with transmission of 72%  

12 b - 5 a 5% a 

C: made of non-transparent 

bands woven with black and 

transparent threads. Both side 

of screens are white  

18 b - 5 a 5% a 

D: a light blocking screen, 

white on one side and black on 

the other side  

27.5 b - 5 a 5% a 

E: Double-layer, the top layer an 

aluminized screen, and the low 

layer a woven black screen 

32.2 e - 5 a 5% a 

Structure for thermal screen 42 b - 10 e 5% e 

Shading screen (S = 6) 

A: No 

B: shading factor 36% 13.5 b - 5 a 5% a 

C: shading factor 45% 11 b - 5 a 5% a 

D: shading factor 56%  12 b - 5 a 5% a 

Structure for shading screen 42 b - 10 e 5% e 

Lighting (S = 7) 
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A: No supplemental lighting 

HPS (High-pressure sodium) 

bulbs (2.3 μmol J−1) 

B:  50 μmol m−2 s−1 

C: 100 μmol m−2 s−1 

D: 150 μmol m−2 s−1 

E: 200 μmol m-2 s-1 
see 

Appendix 

3A 

0.2 a ¥ W−1 10,000 a hr 1% a 

LED (light-emitting diode) 

lamp (3.1 μmol J−1),  

F: 50 μmol m−2 s−1 

G: 100 μmol m−2 s−1 

H: 150 μmol m−2 s−1 

I: 200 μmol m−2 s−1 

4.2 f ¥ W−1 35,000 a hr 0.5% a 

HPS fixtures 0.9 a ¥ W−1 7 a 1% a 

Cabling 0.9 a ¥ W−1 10 a 1% a 

CO2 enrichment (S = 8) 

A: no 

B: 50 kg CO2 ha−1 h−1 

C: 100 kg CO2 ha−1 h−1 

D: 150 kg CO2 ha−1 h−1 

E: 200 kg CO2 ha−1 h−1 

Pure CO2  kg−1 - 1d - - 

CO2 distribution system 3.7 c - 10 a 5% a 

Whitewash (S = 9)     

A: No 

B: 50% transmission 0.7 e - 1 0 
Note: The cost of the “Structure for thermal screen” is incurred only when thermal screen is 

incorporated. This rule also applies to the “Structure for shading screen”, “HPS fixtures”, “Cabling”, 

and “CO2 distribution system”.  

a. Raaphorst et al. (2019) 

b. Greenhouse screen consultant (Y. Ying, personal communication, June 7, 2022) 

c. Construction budget of a tomato glasshouse in Shanghai, China. 

d. Greenhouse grower (Y. Xie, personal communication, July 19, 2022) 

e. Vanthoor et al. (2012) 

f. Supplemental lighting consultant (X. Chen, personal communication, Nov 26, 2022) 



Chapter 3 

  55 

g. Average costs provided by three greenhouse construction companies in China. 

3.2.1 Bio-physical simulation of different greenhouse designs 

This study uses a biophysical model INKTAM-KASPRO to simulate yield and energy use 

under different greenhouse designs. KASPRO is a dynamic greenhouse climate model that 

computes the greenhouse climate as a function of outdoor climate conditions and greenhouse 

climate management settings (De Zwart, 1996). The greenhouse climate computed by 

KASPRO is then fed into the tomato crop simulation model INTKAM to compute the daily 

gross photosynthesis and ultimately fruit weight (Marcelis et al., 2008). The inputs of the 

INKTAM-KASPRO are the greenhouse design configuration, outdoor climate, and the indoor 

climate management strategies. The outputs of the INKTAM-KASPRO are the monthly tomato 

yield, natural gas use, electricity use, and CO2 use. The outputs of the biophysical model 

provided inputs for the evaluation of economic and environmental performance of a 

greenhouse design.  

Four locations were considered: Jinshan (East China), Langfang (North China), Weifang 

(East China), and Pingliang (Northwest China). The outdoor climate differs significantly across 

regions, and this could impact the optimal cropping and heating schedules. Furthermore, 

variations in the climate from year to year can have a significant impact on the economic and 

environmental performances of a greenhouse (Vanthoor et al., 2012). However, it is 

computationally infeasible to run the simulation with climate data from every historical year. 

Therefore, the solution adopted was to use the long-term climate data with sufficient 

meteorological representativeness for a location. To achieve this, we constructed a typical 

meteorological year climate dataset for each location using the historical climate data from 

2000 to 2020 obtained from the ERA5 climate dataset (Hersbach et al., 2018), following the 

method used by Song et.al (2007). The details of construction of the typical year climate dataset 

are presented in Appendix 3B. Table 3.2 displays the climate characteristics of each region 

based on the constructed typical meteorological year climate dataset.  
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Table 3.1. Climate characteristics, cropping and heating schedules of four regions. 

 Jinshan  Langfang  Weifang Pingliang  

Longitude 30°49'51.96" N 39°30'34.99" N 36° 42' 24.39'' N 35°32'21.01" N 

Latitude 121°20'38.40" E 116°41'40.99" E 119° 9' 42.33'' E 106°41'10.0" E 

Yearly gross 

radiation (MJ m−2) 

5406.3 5764.3 5715.7 5593.3 

Gross radiation in Dec, 

Jan, Feb (MJ m−2) 

913.8 932 931.3 993.4 

Average temperature 

in Jan (°C) 

6.5 -3.7 -1.6 -2.7 

Average temperature 

in Jul (°C) 

28.7 27.5 27.4 22.9 

Average humidity in 

Jul (%) 

82.8 70.8 74.1 62.6 

Transplanting date Oct 1 Sep 15 Sep 15 Jan 1 

Heating start date Dec 1 Oct 25 Nov 5 Oct 10 

Heating end date Apr 20, next 

year 

Apr 13, next 

year 

Apr 20, next 

year 

Apr 30 

Final harvest date Jul 1, next year Jul 10, next year Jul 10, next year Dec 15 

Weeks of production 39 43 43 50 

 

For the greenhouse climate manage strategies, we obtained the temperature and screen use 

setpoints from two Chinese growers and a greenhouse consultant (K. Yang, personal 

communication, December 5, 2019; Y. Xie, personal communication, February 6, 2022; Y. 

Ying, personal communication, June 7, 2022). The CO2 setpoint, which refers to the desired 

indoor CO2 concentration, increases with the use of lights and deceases with the opening of 

vent. In practice, the growers adjust their climate management strategies daily in response to 

weather conditions. The dependencies between the climate setpoints and the weather 

conditions were captured by the proportional band parameter (Pband). The detailed greenhouse 

climate management strategy can be found in Appendix 3C. The same climate setpoints were 

applied across all four locations to ensure that any differences in design performance were 

solely attributed to local climate and market conditions.  
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3.2.2 Economic Performance evaluation  

The economic performance of a greenhouse design is defined as the annual operating income 

from greenhouse production: 

 T = −OQ"234 + I − "56( (3.1)  

where Π (¥ m−2 year−1) is the annual operating income from greenhouse production, I 

(¥ m−2 year−1) is the annual revenue generated from harvested tomatoes, OQ"234 (¥ m−2 year−1) 

is the annual fixed costs incurred from the depreciation and maintenance of greenhouse 

structure and equipment. "56( (¥ m−2 year−1) is the variable costs of production.  

Greenhouse structure and equipment have different life spans, and equipment replacement 

occurs at different times. To compare the fixed costs of different design elements with unequal 

lifetimes, the fixed costs associated with each design element was expressed as the Equivalent 

Annuity Cost (EAC). The total fixed costs of owning and maintaining the greenhouse is the 

sum of the EAC of each design element.  

 
OQ",

7 =
*,
7 ∙ -

1 − (1 + -)89"
$ + *,

7 ∙ L,
7 (3.2) 

 
OQ"234 =VOQ",

7
:

,+"

				 (3.3) 

where OQ",
7 	 is the Equivalent Annuity Cost of design element 3  with alternative W . *,

7 

(¥ m−2) is the initial investment cost of design element 3 with alternative W. X,
7 is the lifetime of 

design element 3 with alternative W in years. - is the discount rate, calculated with the Weighted 

Average Cost of Capital method (see Appendix 3D). L,
7 	(% year−1) is a fixed percentage of the 

initial investment costs, reflecting the annual maintenance costs of design element 3  with 

alternative W. An overview of the initial investment costs and maintenance costs of the nine 

design elements can be found in Table 3.1. 

The annual revenue I is the sum of the economic value of tomatoes produced in all months: 

 
I =V%!;46!;! ∗ Z!;46!;	!

&.

!+&

			 (3.4) 
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where %!;46!;!  (¥ kg−1) is the tomato price of month !. Z!;46!;!  (kg m−2) is the harvested 

tomato of month !.  

Variable costs "56( is the sum of natural gas costs, electricity costs, CO2 costs (if any), and 

other costs such as seedlings, material, fertilizer, crop protection, labour costs. The costs of 

natural gas was modelled on a monthly basis. "56( is given by: 

 
"56( =	V%=62! ∗ Z=62!

&.

!+&

+ %>?>@ ∗ Z>?>@ + %#A# ∗ Z#A# + ";!B>( (3.5) 

where %=62!  (¥ m−3) is the natural gas price of month !.	Z=62!  (m3 m−2) is the natural gas use 

per unit area of month !. Annual heating costs is the sum of the product of %=62!  and Z=62!  of all 

months. We used the average monthly price of liquid natural gas from 2017 to 2022, the longest 

period for which data are available, to represent the long-term natural gas price (Table E2, 

Appendix 3E). 

Unlike liquid natural gas, the price of electricity in China is set by the government and has 

little variation from month to month. Therefore, a constant electricity price %>?>@ (¥ kWh−1) 

was applied. The electricity price is 0.682 ¥ kWh−1 for Jinshan, 0.512 ¥ kWh−1 for Langfang, 

0.525 ¥ kWh−1 for Weifang, and 0.439 ¥ kWh−1 for Pingliang. 	Z>?>@ (kWh m−2 year−1) is the 

electricity use for lighting and empowering other machineries.  

Z#A# is the amount of pure CO2 (kg m−2 year−1) supplied. %#A# (¥ kg−1) is the price of pure 

CO2, which remains constant with no monthly variation. Labour use was divided into non-

harvest labour and harvest labour, the latter was dependent on tomato yield. Variable costs not 

related to energy and labour use were assumed to be the same for all locations.  

Monthly wholesale prices for cherry tomatoes in 2021 for each region were aggregated by 

taking the average price of several markets within the same region (Table E1, Appendix 3E). 

These price data do not differentiate between variety and quality differences between field-

grown and greenhouse tomatoes. Greenhouse-grown tomatoes are marketed as premium 

agricultural products and can command higher prices due to their superior quality and brand 

recognition (Wang, 2020; Zhang, 2010). A price premium of 50% was added to the wholesale 

price to represent the prices of tomatoes produced in modern greenhouses. 
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3.2.3 Environmental performance evaluation 

The environmental performance of a greenhouse design is a multidimensional construct that 

encompasses many aspects, such as the release of hazardous chemicals into water systems, 

water use efficiency, soil degradation, and GHG emissions to the atmosphere (Zhou et al., 

2021). Assuming soilless cultivation and the same irrigation system for each greenhouse design, 

variations in the environmental performance of each design primarily stem from differences in 

GHG emissions from energy consumption (Torrellas et al. 2012). Therefore, to assess the 

environmental performance of greenhouse designs, GHG emissions from energy use during 

the cultivation phase were taken into account. Emissions from greenhouses construction, 

product storage and transportation were not included 7 . The three main types of GHGs 

considered were carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), which have 

varying effects on global warming. Emissions of each type of GHG were converted into CO2 

equivalent emissions using specific global warming potentials (GWPs), as shown in Table 3.3. 

The environmental impact of a greenhouse design was computed using equation (3.6):  

 O = V[Z=62 ∗ \=62	 ∗ ]P%=62^ + Z>?>@ ∗ \>?>@
CDC

 (3.6) 

where	O (kg m−2) is the total amount of CO2 equivalent emissions per unit area. Z=62 (m3 

m−2) and Z>?>@ (kWh m−2) are the annual consumption of natural gas and electricity per unit 

area. \=62	 is the emission factor of natural gas (liquids) for the specified type of greenhouse 

gas. ]P%=62 (CO2e kg−1) is the global warming potentials for the specified type of greenhouse 

gas. The emission factor of purchased electricity \>?>@  differs by region, depending on the 

proportion of electricity generated from renewable energy sources in the regional grid (Qu et 

al., 2017). Table 3.3 shows the emission factors of liquid natural gas and electricity. 

 

 

 
7 The GHG emission reporting guidelines for facility agriculture enterprises in China do not require reporting 
emissions from the construction and transportation phases. The guidelines specify the scope of the GHG 
assessment to include fossil fuel consumption, purchased electricity, and chemical use for greenhouse cultivation 
activities. Consequently, emissions related to other stages are of lesser concern to investors and policy makers in 
China.  
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Table 3.2. Emission factors for greenhouse gases emissions from energy use in greenhouse 

production. 

Energy type GHG type Emission factor Unit   GWP 

Liquid natural gas CO2 64200 a kg TJ−1 1 

CH4 10 a kg TJ−1 28 b 

NO2 0.6 a kg TJ−1 265 b 

Electricity CO2e Langfang: 0.9236 c 

Weifang: 0.8007 c 

Jinshan: 0.6392 c 

Pingliang: 0.5312 c 

kg kWh−1 1 

a. Source: IPCC (2007), volume 2, Chapter 2, Table 2.5. 

b. Source: IPCC (2014), Box 3.2, Table 1, with time horizon for 100 years. 

c. Source: Qu et al. (2017). 

Note: net calorific value of liquid natural gas: 51434 MJ ton−1. Net calorific value of natural 

gas: 38.931 MJ m−3. One ton of liquid natural gas was converted to 1320 m3 of natural gas. 

 

 

3.2.4 Search strategy – genetic algorithm 

For the given set of design elements, the number of possible design alternatives would be equal 

to 340,200. A simulation for one design takes 20 seconds; hence, exploring all design 

alternatives would take 197 days, and this number is multiplied by four as we would like to 

explore the optimal design for four locations. Given this enormous computational time, it is 

impractical to simulate all design alternatives for each location. To ease the computational 

effort, a genetic algorithm (GA), an adaptive heuristic search algorithm based on Darwinian 

natural selection (Aytug et al., 2003, Mayer et al., 1999), was employed to search for close-to-

optimal designs. 

GA has five basic components: 1) a genetic representation of solutions (in this case, the 

representation of greenhouse designs) to the problem, 2) A way to generate an initial population 

of solutions, 3) an evaluation function to calculate the fitness score of solutions, 4) crossover 
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and mutation operators to alter the genetic composition of off-springs during reproduction, and 

5) Values for the parameters of GA (Zbigniew,1996). The steps of genetic algorithm are: 

1. Initialization. Define $, the size of population. Randomly generate $ design strings as 

the initial population. 

2. Define the initial population as the current population. 

3. Initialize "_`X!\- = 0.  

4. Define the termination condition, the maximum number of iterations "_`X!\-46E. 

While "_`X!\- < "_`X!\-46E: 

5. Evaluation. Calculate the economic and environmental performances of each design in 

the current population.  

6. Selection. Randomly draw two design strings from the current population, select the 

design string with the higher economic performance to enter the parent pool (binary 

tournament selection). Repeat this process until the size of parent pool reaches $. 

7. Crossover. Each string in the parent pool has a probability of %@(;22;5>(  of being 

removed from the parent pool and selected to enter the mating pool. Randomly choose 

two strings from the mating pool as the parent chromosomes. Select two crossover 

points at random and swap the bits of parent chromosomes between the two points, 

resulting two offspring chromosomes. The offspring chromosomes and the remaining 

members of the parent pool together constitute the population after crossover.  

8. Mutation. The mutation operator randomly changes any position of the string to a 

random different letter with a probability of %43!6!> . After applying the mutation 

operator for each design string in the population after crossover, we obtain the 

population after mutation. 

9. Update the population after mutation as the current population. Update the string with 

the highest economic performance as the best string.  

10. Iteratively execute steps 5 to 9 until meeting the stopping criteria ( "_`X!\- =

"_`X!\-46E). 

A key step of GAs is to encode a solution of a real-world problem into a chromosome. GA 

was originally encoded as binary strings, however in the real world, especially the field of 

engineering, many problems cannot be represented with binary encoding (Gen & Cheng, 1999). 

This holds true for the greenhouse design optimization problem, as each design component 
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consists of more than two design options. Therefore, we used literal permutation encoding to 

represent a greenhouse design as a string of nine letters, where each letter represents a design 

element and its corresponding option. The index of the design component and the letter 

representation of the options are given in Table 3.1. One example of a design string is 

DCBABAABA, which represents a Venlo-glasshouse with one vent per 10 m2 floor area, a 

fogging system with the capacity of 200 g h−1 m−2, a boiler with heating capacity of 1.16 MW 

ha−1, transparent thermal screens (transmissivity 72%), no shading screen, HPS lamps with 

light intensity of 50 μmol m−2 s−1, CO2 enrichment system at a dosing rate of 50 kg CO2 ha−1 

h−1, no whitewash applied. Glass cover is infeasible for multi-tunnel structure, and PE film 

cover are considered for Venlo-type structure. Thus the strings with  3& = {Q, c, "} and 3. = ", 

or 3& = {N, O, #}  and 3. = {Q, c} are infeasible solutions and should be removed from the 

solution space. During the iterations of GA, the infeasible design strings were always converted 

to feasible ones. 

The choice of population size, crossover and mutation probabilities is critical to the 

efficiency of GA. A small population size could lead the algorithm to provide poor solutions, 

while a too large population size would require more computation time to find a good solution 

(Diaz-Gomez & Hougen, 2007). In general, the suitable population size should be proportional 

to the number of dimensions of the problem (Harik & Lobo, 1999). A good balance between 

the crossover and mutation probabilities could direct the search towards promising regions, 

while maintaining the degree of diversity in the population, to avoid premature convergence 

(Harik & Lobo, 1999). Usually, the values for these parameters are chosen empirically for the 

specific class of optimization problems (Eremeev, 1999). After experimenting with a number 

of parameter combinations, we chose $ = 400, %@(;22;5>( = 0.5, %43!6!>+0.1, "_`X!\-46E =

60. 

3.2.5 Overall performance evaluation - the directional distance function 

approach 

We used the directional distance function approach to evaluate the overall performance of 

greenhouse production systems in terms of the revenues and GHG emissions generated. 

Following Chung et al. (1997), under the hypothesis of variable rate of return to scale, the 

directional distance function is defined as Ngg⃗ [OQ"234, "56( , R, E; /⃗^, The two types of inputs 

are OQ"234  and "56( . The two types of outputs are the (desired) annual revenue and the 
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(undesired) GHG emissions of production. /⃗  is the directional vector, defined as /⃗ =

(l2!6F>B;?G>(H ∗ R", −l2!6F>B;?G>(CDC ∗ O"),  where l2!6F>B;?G>(H , 	l2!6F>B;?G>(CDC 	 represent the 

relative importance (weights) of revenue increase and environmental impacts reduction in the 

view of the stakeholders (investors or policy makers). This choice of directional vector implies 

that for given levels of inputs, the stakeholder aims at simultaneously increasing revenue at the 

rate of l2!6F>B;?G>(H , and decreasing GHG emissions at the rate of l2!6F>B;?G>(CDC . The values for 

lH and  lCDC   are 0.86 and 0.14 for investors, and 0.7 and 0.3 for policy makers. These values 

are the averaged relative importance of economic and environmental performance according 

to ten greenhouse investors and policy makers. The values were obtained through a survey with 

the stakeholders and calculated by using the Best-Worst method (Unpublished results of Min 

et al., see Appendix 3F). 

Assuming that m = 1,… , o  is the index of greenhouse design. The performance of a 

greenhouse design is evaluated by the measure of inefficiency	 M. 	The	 inefficiency	 of	
greenhouse design m′  can be calculated as solutions to the following linear programming 

problems: 

 max
I,K

M (3.7) 

s.t.    
V|FOQ"234_F ≤ OQ"234_FM

N

F+&

 (3.8) 

 
V|F"56(%

N

F+&

≤ "56(%& (3.9) 

 
V|FRF

N

F+&

≥ (1 + Ml2!6F>B;?G>(H )RFM (3.10) 

 
V|FGHGF

N

F+&

≥ (1 − Ml2!6F>B;?G>(CDC )]Å]FM (3.11) 

 
V|F = 1
N

F+&

 (3.12) 

 |F ≥ 0, M ≥ 0 (3.13) 

A greenhouse design is considered to be fully efficient when M takes the value zero.  
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3.2.6 Scenario analysis – find out robust greenhouse designs 

The profitability of greenhouse production faces uncertainty due to fluctuating input and output 

prices. A greenhouse system that is considered optimal based on a given set of prices may not 

remain optimal for other price scenarios. A good greenhouse design should possess resilience 

and deliver robust performance in a dynamic market environment. To find out greenhouse 

designs that are robust to different price settings, we conceived three price scenarios: the 

baseline scenario, the low tomato price scenario, and the high energy cost scenario. The 

baseline scenario used 2021 tomato and energy prices as inputs for the simulation. The low 

tomato price scenario assumed a 30% reduction in tomato prices compared to the baseline 

scenario. In the high energy cost scenario, both gas and electricity prices were assumed to be 

20% higher than the 2021 levels.  

For each price scenario, we calculated the inefficiency scores M for both investors (M,95>2!) 

and policy makers (MO;?,@P ), which produced an approximation of the efficiency frontier. 

Designs with M,95>2! = MO;?,@P = 0 were considered efficient for that specific price scenario. 

Greenhouse designs that were found to be efficient across all three price scenarios were 

considered robust.  

To explore the relationship between the design elements and annual operating income or 

GHG emissions (under the baseline scenario), we performed categorical regression analyses. 

The interaction terms between the level-specific lighting and CO2 dosing choices were included, 

as CO2 enrichment and supplemental lighting were found to have a synergistic effect in 

increasing the light use efficiency of crops (Heuvelink & Dorais, 2018). A positive coefficient 

indicates that, ceteris paribus, selecting the specific design element leads to a higher operating 

income than the baseline choice. Conversely, a negative coefficient indicates a lower operating 

income compared to the baseline choice.  
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 Results 

For each location, the genetic search examined between 11,195 and 18,616 greenhouse designs, 

which represented 3.3% to 5.5% of all possible designs. Section 3.3.1 and 3.3.2 present the top 

five efficient designs based on economic and environmental performance, respectively, for 

each location. Results of the categorical regression for the operating income and GHG 

emissions are reported in Section 3.3.3 and 3.3.4, respectively.  

3.3.1 Efficient greenhouse designs with the highest operating income 

Table 3.4 presents the five efficient designs with the highest operating income in the baseline 

scenario for each location. The differences in profit per m2 between the five designs are small, 

but with an average-sized greenhouse size of 1.5 ha, the cumulative difference can be large.  

For Jinshan, a Venlo-type structure with glass cover was found to be the most favorable 

choice. A small-capacity boiler (1.16 MW ha−1) and thermal screen with moderate energy-

saving but high transmissivity was always selected. No cooling system or shading screen was 

chosen among the three efficient designs with the highest operating income in the baseline 

scenario. LED lamps with a high light intensity (200 μmol m−2 s−1) coupled with CO2 dosing 

at rate above 100 kg ha−1 h−1 were selected. Whitewash was selected only once out of the five 

efficient designs. 

For Langfang, the recommended structure and cover were either a multi-tunnel structure 

with single PE film or a Venlo-type structure with glass cover. Given the cold winters in 

Langfang, it was suggested to opt for a high-capacity boiler (2.23 MW ha−1) along with double-

layer thermal screens. All efficient designs had LED lamps with high light intensity and the 

maximum CO2 dosing rate, as well as whitewash.  

For Weifang, a multi-tunnel structure and shading screens with a shading level of 36% were 

selected in three out of the five listed designs. When using single PE film as the cover material, 

which has higher transmissivity than double PE film, the transparent thermal screens were 

recommended. This choice of cover material and thermal screen aimed to increase light use 

efficiency and maximize yield. On the other hand, when double PE film, which has better 

insulation but less transmissivity than single PE film, was selected, the recommended design 

consisted of a small-capacity boiler and double-layer thermal screen with excellent insulation 

but no transmissivity, with the focus on maximizing energy savings and reducing variable costs. 
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Similar cover and thermal screen combinations were recommended for Pingliang, with glass 

or single PE film coupled with transparent thermal screens, and double PE film coupled with 

double-layer screens. For Weifang, LED lamps with high light intensity were selected, together 

with CO2 dosing rate at 200 kg ha−1 h−1. No whitewash was applied in the listed designs.  

For Pingliang, the efficient design with the highest operating income in the baseline 

scenario was a relatively low-cost multi-tunnel structure with single PE film, without cooling 

system, shading screen or whitewash. LED lamps with the highest light intensity and a CO2 

enrichment system at the highest dosing rate were always present among the five listed designs. 

Table 3.3. Simulation results per m2 of the efficient greenhouse designs with the highest 
operating income for each location. 

Design element choice  Simulation outcome 

ST CV FG HT TS SS LT CO2 WW  "#$ % $!"# & '(' 
Jinshan   
Venlo Glass No 1.16 Transp No LED 

200 
200 No  81 543 243 223 118 

Venlo Glass No 1.16 Transp No LED 
200 

200 Yes  83 546 247 220 121 

Venlo Glass No 1.16 Transp No LED 
200 

100 No  81 529 235 217 118 

Venlo Glass 200 1.16 Transp 36% LED 
200 

200 No  99 540 234 211 114 

Venlo Glass 300 1.16 Transp 36% LED 
200 

150 No  98 533 231 209 115 

Langfang   
MT S-PE No 2.23 D-layer 36% LED 

200 
200 Yes  91 751 256 405 184 

MT S-PE 300 2.23 Transp No LED 
200 

200 Yes  77 745 264 405 176 

Venlo Glass 200 2.23 D-layer 36% LED 
200 

200 Yes  107 760 252 403 182 

Venlo Glass 300 2.23 D-layer 36% LED 
200 

200 Yes  107 761 252 403 182 

MT S-PE 200 2.23 D-layer No LED 
200 

200 Yes  84 753 267 403 182 

Weifang   
MT D-PE No 1.16 D-layer 36% LED 

200 
200 No  92 502 243 168 161 

MT S-PE No 2.23 Transp 36% LED 
200 

200 No  81 495 248 167 146 
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MT S-PE No 1.74 Transp 36% LED 
200 

200 No  80 495 348 167 147 

Venlo Glass 200 2.23 Transp No LED 
200 

200 No  84 502 251 167 146 

Venlo Glass 300 2.23 Transp No LED 
200 

200 No  85 502 251 166 146 

Pingliang   
MT S-PE No 1.16 Transp No LED 

200 
200 No  72 795 214 511 115 

Venlo Glass 200 2.23 Transp 36% LED 
200 

200 No  100 814 208 507 112 

Venlo Glass No 1.16 Transp 36% LED 
200 

200 No  94 807 206 507 112 

Venlo Glass 300 2.23 Transp 36% LED 
200 

200 No  100 814 208 507 112 

MT D-PE 200 1.74 D-layer 36% LED 
200 

200 No  100 816 211 506 123 

ST stands for structure, MT stands for multi-tunnel, CV stands for cover, FG stands for fogging, HT 

stands for heating capacity, TS stands for thermal screen, SS stands for shading screen, LT stands for 

lighting, CO2 stands for CO2 enrichment, WW stands for whitewash. S-PE stands for Single PE. D-PE 

stands for Double PE. Transp stands for Transparent. D-layer stands for Double layer. 

 

3.3.2 Efficient greenhouse designs with the lowest greenhouse gas emissions  

Table 3.5 displays the top five efficient designs with the lowest GHG for each location, under 

the condition of a positive operating income in all three price scenarios. None of the designs 

with the best environmental performance for Langfang and Pingliang included supplemental 

lighting. However, LED lamps with an intensity of 200 μmol m−2 s−1 were necessary, in order 

to maintain positive operating income across all price scenarios for Jinshan and Weifang.  

Unlike the five efficient designs in Table 3.4 for Langfang, which favored double-layer 

thermal screens, transparent thermal screens were selected when ranked on environmental 

performance. Conversely, most of the designs for Pingliang in Table 3.4 selected transparent 

thermal screens, but double-layer thermal screens became the preferred option when ranked on 

environmental performance. There are trade-offs between economic and environmental 

performance, and generally, GHG increase with operating income.  
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Table 3.4.Simulation results per m2 of the efficient greenhouse designs with the lowest GHG 
for each location, under the condition of positive operating income in all price scenarios. 

Design element choice  Simulation outcome 
ST CV FG HT TS SS LT CO2 WW  "#$ % $!"# & '(' 

Jinshan   
Venlo Glass 300 1.16 Transp 36% LED 

200 
200 No  99 540 234 211 114.4 

Venlo Glass 300 1.16 Transp 36% LED 
200 

150 No  99 533 231 208 114.4 

Venlo Glass No 1.16 Transp 36% LED 
200 

100 No  93 521 227 206 114.4 

Venlo Glass 200 1.16 Transp 36% LED 
200 

150 No  98 533 231 209 114.5 

Venlo Glass 400 1.74 Transp 36% LED 
200 

200 No  102 541 235 208 114.9 

Langfang   
MT D-PE 200 1.16 Transp No No No No  41 305 166 99 63.3 
MT D-PE 400 1.16 Transp No No 100 Yes  46 316 171 98 63.3 
MT D-PE 200 1.16 Transp No No 200 Yes  42 319 174 102 63.4 
MT S-PE No 1.74 Transp No No 100 Yes  36 322 184 103 69.5 
MT S-PE No 1.74 Transp No No 150 Yes  36 323 185 102 69.6 

Weifang 
  

Venlo Glass No 1.16 Transp 36% LED 
200 

50 No  91 467 227 150 142.1 

Venlo Glass 300 1.16 Transp 36% LED 
200 

100 No  96 481 233 153 142.4 

Venlo Glass No 1.16 Transp 36% LED 
200 

150 No  91 488 236 162 142.4 

Venlo Glass 300 1.16 Transp 36% LED 
200 

150 No  96 490 237 157 142.5 

Venlo Glass 400 1.16 Transp 36% LED 
200 

100 No  100 482 233 151 142.5 

Pingliang   
MT D-PE 300 1.74 D-layer 45% No No No  58 292 117 117 41.2 
MT D-PE No 2.23 D-layer No No 150 Yes  44 300 126 130 41.5 
MT D-PE No 1.16 D-layer No No 150 Yes  43 295 126 125 41.5 
MT D-PE 200 1.16 D-layer No No 100 No  47 301 125 129 41.6 
MT D-PE 300 1.16 D-layer No No 200 No  48 302 128 127 41.6 

ST stands for structure, MT stands for multi-tunnel, CV stands for cover, FG stands for fogging, HT 

stands for heating capacity, TS stands for thermal screen, SS stands for shading screen, LT stands for 

lighting, CO2 stands for CO2 enrichment, WW stands for whitewash. S-PE stands for Single PE. D-PE 

stands for Double PE. Transp stands for Transparent. D-layer stands for Double layer. 
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3.3.3 Relationship between the design element choice and operating income   

The results of the categorical regression analysis on operating income are shown in Table G1 

in Appendix 3G. Almost all parameters were significant at the 0.05 critical level, as could be 

expected for this number of observations. The analysis indicates that the choices of lighting 

system, structure, thermal screen, and CO2 dosing rate were the most influential factors on the 

operating income. In contrast, the choices of cover material, boiler capacity, shading screen, 

and whitewash had relatively small impacts on the operating income of a tomato greenhouse.  

A structure with lower vent area was more favourable across all locations. Using double PE 

film as the cover material reduced the operating income in Jinshan and Langfang but increased 

it in Weifang and Pingliang. A pad and fan cooling system was not suitable for a tomato 

greenhouse, as indicated by the negative coefficients for each location. A fogging system was 

economically beneficial only for Langfang. A boiler with a capacity of 1.16 MW ha−1 was the 

preferred choice for Jinshan and Weifang, while a capacity above 1.74 MW ha−1 was preferable 

for Langfang and Pingliang. Overall, the choice of boiler capacity had limited impact on the 

operating income. All types of thermal screens, compared to no thermal screen, significantly 

increased the operating income of a tomato greenhouse. The transparent and double-layer 

thermal screens were the most effective measures for increasing operating income. The 

presence of shading screens slightly decreased the operating income of a tomato greenhouse in 

Jinshan, while shading screens with a 36% shading factor was the best choice for the other 

locations. 

LED lamp with an intensity of 200 μmol m−2 s−1 was found to be the optimal lighting 

solution for all locations. LED lamp almost always outperformed HPS lamps given the same 

light intensity. The operating income in Jinshan, Langfang, and Weifang significantly 

decreased when the light intensity fell below 100 μmol m−2 s−1. CO2 enrichment without the 

presence of supplemental lighting was only profitable for Pingliang. The significance and 

magnitude of the interaction term coefficients between lighting and CO2 dosing rate indicated 

a synergistic effect between lighting and CO2 enrichment. However, the synergistic effect was 

negative for Pingliang when a low light intensity (below 100 μmol m−2 s−1) was applied. The 

combination of a high light intensity (200 μmol m−2 s−1) and a high CO2 dosing rate (200 kg 

CO2 ha−1 h−1) showed the best ability to improve operating income.  
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3.3.4 Relationship between the design element choice and GHG 

Table G2 in Appendix 3G presents the regression results regarding the effect of individual 

design elements on GHG emissions. The results indicates that lighting was the primary 

contributor to GHG emissions. Compared to HPS lamp, using LED lamp produces less GHG 

emissions. Additionally, incorporating thermal screens can effectively reduce GHG emissions, 

particularly when utilizing transparent or double-layer thermal screens. Furthermore, 

greenhouse with smaller vent areas were found to generate fewer GHG emissions. In particular, 

the Venlo-type structure was found to contribute less to GHG emissions compared to multi-

tunnel structure with the same vent area. Although double PE film offers better heat insulation, 

using it as the cover material slightly increased GHG emissions. This may be attributed to the 

reduction in light penetration, which can lead to longer lighting hours. Lastly, fogging capacity, 

boiler capacity, shading screen, CO2 enrichment, and whitewash were found to have little 

impact on GHG emissions. 
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 Discussion  

The optimization of greenhouse design is complex as it involves the large combinational 

solution space and the interrelations between design elements, outdoor climate, and crops. This 

study demonstrates how a novel combination of operational research methods together with 

bio-economic modelling can effectively address the challenge of greenhouse design 

optimization. By coupling a genetic algorithm with a bio-economic greenhouse model, the 

solution space was reduced to 3% to 5% of the entire design space. The use a directional 

distance function approach for performance evaluation allows us to identify a range of designs 

that are located on the efficiency frontier, rather than a single optimal solution.  

This study extends existing work on greenhouse design optimization in several ways. 

Previously, Vanthoor et al. (2012) focused solely on optimizing greenhouse designs based on 

economic performance. Torrellas et al. (2012) and Naseer et al. (2022b) evaluated both 

economic and environmental aspects of various greenhouse designs separately, without 

considering the trade-offs between them. Our study contributes to this field by optimizing 

greenhouse designs from both aspects, taking into account multiple stakeholders’ preference. 

This approach enables us to identify solutions that are acceptable to both investors and policy 

makers. Furthermore, the impact of price uncertainty is often overlooked in previous studies. 

While a greenhouse design may be considered optimal under a given set of prices and costs, it 

may not remain optimal under different price scenarios. To address this, we accounted for price 

uncertainty by selecting designs that were robust (i.e., optimal) under different price scenarios. 

Our results clearly indicate that different regions require distinct greenhouse designs tailored 

to local climate and market conditions. Based on the findings of our study, Chinese policy 

makers can design region-specific subsidy policies to support technologies that are well-suited 

for individual regions, rather than subsidizing a broad range of technologies. For instance, the 

Venlo-type glasshouse was the most suitable structure for Jinshan. Double-layer thermal 

screens are advantageous in colder regions such as Langfang for energy-saving purposes. 

Moreover, LED lighting and CO2 enrichment should be promoted as a bundled technology due 

to their synergistic effect on enhancing economic returns. Our findings can also help Chinese 

investors to make more informed investment decisions. Investors could flexibly select suitable 

designs based on their available budget or other relevant factors among the identified optimal 

greenhouse designs.  
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Our approach can be applied to many real-world problems, particularly those embedded in 

complex systems with interactions between factors, where establishing analytical relationships 

between decision variables and performance measures is difficult. These types of problems 

often have multiple (and often conflicting) objectives, and simulating such systems can be 

time-consuming. Previous efforts have combined DEA with GA to address challenges such as 

supplier selection (Shadkam & Bijari, 2017), agricultural production (Whittaker et al., 2009), 

resource allocation in hospitals (Lin et al., 2013), and aircraft spare parts allocation (Lee et al., 

2008). However, none of these approaches considered the presence of multiple stakeholders, 

whose weights for different objectives may differ. Therefore, our approach represents an 

advancement in this research domain. 

Some further issues can be studied in future research. Firstly, it should be noted that this 

study employed the same greenhouse climate setpoints across all price scenarios. In reality, the 

optimal climate setpoints may vary depending on the price levels, and greenhouse growers may 

adjust climate setpoints with changes in energy prices (Los et al., 2021). Therefore, a model 

that optimizes greenhouse design and climate management simultaneously is worth further 

exploration. A bilevel optimization formulation may be well-suited to this context.  

Secondly, the study used typical meteorological year climate data as inputs for its analysis. 

The typical meteorological year climate data was constructed based on climate data from 2000 

to 2020. This implies that greenhouse designs were optimized to adapt to past climate 

conditions.  However, in the context of climate change, it is also possible to take a forward-

looking perspective and optimize greenhouse designs based on projected climate conditions 

for the next 20 years.  

Weather conditions can vary greatly from year to year, affecting yield, energy use, and 

operating income. Different greenhouse designs may respond differently to weather 

uncertainties. For instance, a greenhouse design with excellent heat insulation may not produce 

the best economic outcome in a typical climate year but could potentially yield better results 

during an extremely cold year. Therefore, instead of focusing on typical climate conditions, it 

may be valuable to consider the production risk arising from weather uncertainty and examine 

the distribution of the economic outcomes. In this case, a robust optimization approach could 

be suitable.  
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Thirdly, it is worth mentioning that the environmental performance assessment in this study 

focused solely on GHG emissions generated from energy use. However, it should be 

acknowledged that the GHG emissions generated from the construction phase of different 

greenhouse designs can vary greatly. To calculate the emissions related to greenhouse 

construction, we would need detailed data on the materials and quantities associated with the 

design alternatives listed in Table 1. Unfortunately, such detailed information was not available. 

For a fairer assessment of the optimal greenhouse design, it would be more appropriate to 

include the GHG emissions associated with greenhouse construction, provided that data is 

accessible. 

 

 Conclusions 

This paper reports several greenhouse designs that were found to be efficient in terms of 

economic and environmental performance for both investors and policy makers across various 

price scenarios. The results underscore the importance of tailoring greenhouse designs to local 

climate and market conditions, with specific recommendations for different regions. For 

example, the Venlo-type structure with glass cover is the most favorable choice for Jinshan, 

while a multi-tunnel structure appeared to be a more suitable for Langfang and Pingliang. 

Applying whitewash during summer is generally discouraged, except for in Langfang. 

Incorporating double-layer thermal screens in colder regions such as Langfang can be 

economically beneficial. In other cases, transparent thermal screen is a preferred choice to 

increase light use efficiency and improve yield.   

The choice of lighting system, structure, thermal screen, and CO2 dosing rate were among 

the most influential factors on operating income. When comparing LED to HPS lamps, LED 

lighting performs better in terms of both economic and environmental performance. However, 

it is crucial to note that lighting is the primary contributor to GHG emissions. As a result, the 

optimal designs identified either opt for no lighting or incorporated LED lamps with an 

intensity above 100 μmol m−2 s−1, combined with a high CO2 dosing rate. Low intensity lighting 

negatively affects both economic and environmental performance. The use of thermal screens, 

on the other hand, can effectively reduce GHG emissions.  
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Supplementary materials 

Python code for performance evaluation of greenhouse designs and the implementation of 

genetic algorithm are available as supplementary materials at https://github.com/Xinyuan-

wur/greenhouse-design-optimization 
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Appendix 3A. Lighting installation initial investment costs calculation 

Table A1. Parameters for lighting installation initial investment costs calculation, depending 

on the lamp type and lighting intensity. 

Item Parameter Unit HPS LED 

Efficacy ÇDQR,  ÇSTU μmol J −1 2.3 3.1 

Lamp investment *V3?VDQR	,  *?64OSTU	  ¥ W−1 0.2 a 4.2 b 

Lamp lifetime XV3?VDQR	,  X?64OSTU	  hours 10,000 a   35,000 a 

Lamp maintenance L?64O
DQR	 ,  L?64O

STU	  % 1.0 a 0.5 a 

Fixture investment *W,E!3(>DQR	  ¥ W−1 0.9 a / 

Fixture lifetime XW,E!3(>DQR	  years 7 a / 

Fixture maintenance LW,E!3(>
DQR	  % 1.0 / 

Cabling investment *@6V?> ¥ W−1 0.9 a 0.9 a 

Cabling lifetime X@6V?> years 10 a 10 a 

Cabling maintenance L@6V?> % 1.0 a 1.0 a 

Initial investment costs per floor area  

50 μmol m−2 s−1 *DQRX"	 ,  *STUX"	  ¥ m−2 43.5 82.3 

100 μmol m−2 s−1 *DQR&""	,  *STU&""	 ¥ m−2 87.0 164.5 

150 μmol m−2 s−1 *DQR&X"	,  *STU&X"	 ¥ m−2 130.4 246.8 

200 μmol m−2 s−1 *DQR.""	,  *STU.""	 ¥ m−2 173.9 329.9 

a. Raaphorst et al. (2019) 
b. X. Chen, personal communication, Nov 26, 2022 

 

Lighting installation consists of several components (bulbs, fixture, cabling for HPS; lamp 

and cabling for LED). The total investment costs of lighting installation (¥ m−2), given a desired 

lighting intensity É	(μmol m−2 s−1), was calculated as: 

*DQRE	 = [*V3?VDQR	 + *W,E!3(>DQR	 + *@6V?>^ ∗ É/ÇDQR  for HPS lamps, and 

*STUE	 = [*?64OSTU	 + *@6V?>^ ∗ É/ÇSTU for LED lamps 

The initial investment costs of each component was convert into the equivalent annuity cost 

(EAC), which is dependent on the lifetime (year) of the component. To calculated the lifetime 

of lamps, we divided the annual lighting hours, which is an output of the INTKAM-KASPRO 
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model, by the lifetime (hour) of HPS bulb or LED lamp. The total EAC of lighting installation 

was give as: 

OQ"DQRE = 	OQ"DQR8V3?VE + OQ"DQR8W,E!3(>E + OQ"@6V?>E  for HPS lamps, and 

OQ"STUE = 	OQ"STU8S64OE + OQ"@6V?>E  for LED lamps.  
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Appendix 3B. Typical year climate data based on the ERA5 climate dataset from 2000 

to 2020 

To construct the typical year climate data based on the ERA5 dataset from 2000 to 2020, we 

followed the same method of typical year selection as in Song et.al (2007), for the construction 

of Chinese Standard Weather Data. 

The typical year climate data of each month is constituted by selecting a year between 2000 

and 2020 with the most meteorological representativeness of the month. Seven climate 

indicators contribute to the measure of meteorological representativeness. The indicators were 

assigned with different weights P,  according to their importance in meteorological 

representativeness, as shown in Table B1. 

Table B1. Climate indicators and the corresponding weights for meteorological typical year 
selection. 

Indicator Weight ÖY 

Daily average temperature 2/16 

Daily minimum temperature 1/16 

Daily maximum temperature 1/16 

Daily average sky temperature  1/16 

Daily average relative humidity 2/16 

Global radiation downwards 8/16 

Daily average wind speed 1/16 

 

The selecting process is described as below: 

1. Calculate for each indicator the monthly mean values of each year from 2000 to 2020: 
Ü,,4,P, where 3 denotes the climate indicator under consideration, L denotes the 
month indices and á denotes the year indices. 

2. Calculate for each climate indicator 3, the mean Üà,,4 and the standard deviation â,,4 
across multiple years.  

3. Calculate for each indicator 3 , the normalized monthly mean value of each year: 
Ç,,4,P = (Ü,,4,P − Üà,,4)/â,,4. 

4. Calculate for each month and each year, the weighted sum normalized absolute 
monthly mean of all climate indicators: N4,P = ∑ P, ∙ |Ç,,4,P|,     

5. Select for each month, the year with the smallest min
P
N4,P. 



 

 78 

6. Create the meteorological typical year data by appending the monthly climate data of 
the selected year, so for each month, the monthly data from the year with the smallest 
N4,Pbecome the same month data of the meteorological typical year. 
 
 

Table B2. Selected years for each monthly for constructing the meteorological typical year 
climate dataset. 

Month Jinshan Langfang Weifang Pingliang 

January 2007 2008 2018 2019 

February  2003 2015 2011 2015 

March 2009 2004 2013 2014 

April 2000 2001 2004 2009 

May 2012 2015 2015 2015 

June 2008 2016 2015 2011 

July 2012 2013 2005 2009 

August 2003 2010 2017 2000 

September 2001 2020 2015 2015 

October 2013 2008 2019 2011 

November 2014 2001 2016 2008 

December 2020 2019 2006 2015 
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Appendix 3C. Greenhouse climate management strategy 

Table C1. Description of the greenhouse climate management strategy. 

Parameter Values Description 

Tair_heat 

(day/night) 
17℃/14℃ The heat is turned on when the indoor temperature 

(Tair) is below 17℃ during the day and 14℃ during 
the night. 

Pband_heat 2℃, 100 W m−2, 
400 W m−2 

When radiation (Iglob) is below 100 W m−2, Tair_heat 
is unaffected and above 400 W m−2 Tair_heat increases 
by 2℃. Between 100 and 400 W m−2, Tair_heat 
increment is linearly interpolated. 

Tout_ThScr 10℃ if Iglob < 
100 W m−2; 

0℃ if Iglob < 290 
W m−2 

Thermal screen may be used when the outside 
temperature (Tout) is below 10℃ and radiation is 
above 100 W m−2. When Tout goes below 0℃, the 
thermal screen will be kept deployed until the 
radiation is above 290 W m−2. 

Iglob_ShScr 600 W m−2, 

800 W m−2 

The shading screen will be half closed when the 
radiation exceeds 600 W m−2 and fully closed when 
the radiation exceeds 800 W m−2. 

Tair_vent 16℃/19℃ Vent is open when Tair is above 19℃ during the day 
and 16℃ during the night. 

Pband vent 18℃ if Tout < 6 ℃, 
4℃ if Tout > 20℃ 

Pbandvent is a key parameter that controls how large 
the temperature excess has to be before the leeward 
vents are fully opened. The maximum opening of 
vents is 100%. When Tout is below 6℃, the p-band is 
18℃; when Tout is above 20℃, the p-band is 4℃. 

The windward vents only open when the leeward 
vents are opened above 50%. 

Tair_fan 2℃ Fans will run on the maximum capacity when the 
difference between Tair and Tair_vent excesses 2℃. 
The air can be cooled down to 0.85 of the wet-bulb 
temperature. The outlet temperature is 1.5℃ above 
the average greenhouse temperature. 

RH_fog 75% Fogging system starts working when the indoor 
relative humidity (RH) drops below 75%.     

Pband_fog 5% Fogging system works at the maximum capacity when 
RH drops to 70%. The working capacity of fogging 
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system is proportionally controlled from 0 to the 
maximum value. 

Time_light_on 00:00 Lamps are turned on at 00:00 after five weeks of 
planting; the maximum lighting hour is 18 hours per 
day. 

Iglob_light_off 400 W m−2 Lamps are turned off when radiation is above 400 W 
m−2. 

CO2_setpoint 

(day/night) 
800 ppm/400 ppm Extra CO2 is applied is the indoor CO2 concentration 

is below 800 ppm during the day, and 400 ppm during 
the night. 

CO2_light 1000 ppm CO2 setpoint set to 1000 ppm if lights are on. 

CO2_vent 100%, 20%; 

50%, 40%; 

25%, 75% 

when the (leeward) vents are opened till 20%, the 
maximum CO2 dosing capacity is kept at 100%. 
When vents are opened till 40%, the CO2 dosing 
capacity is reduced to half its maximum capacity. 
When vents are opened above 70%, the dosing 
capacity stays at 25% of the maximum capacity. 
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Appendix 3D. Calculation of weighted average cost of capital (WACC) 

 

Table D1. Calculation of weighted average cost of capital 

Cost of debt after tax shield (GH) Rate  Source 

Cost of debt (I/) 5.5% The People’s Bank of China (2022), with 
the assumption of 20% floating rate on the 
5-year Loan Prime Rate of 2022 (4.6%) 

Marginal tax rate (.) 0.0% Enterprise Income Tax Law of the People's 
Republic of China, article 27 (2007) 

Cost of debt after tax shield  5.5%   

Cost of equity (GJ)   

Risk free rate (-K-) 2.79%  China 10-year government bond yield 
(Ministry of Finance of the People’s 
Republic of China, 2022)   

Market risk premium of 
China (-L) 

4.94% (Damodaran, 2022a) 

Beta for farming sector in 
China (M) 

0.79 (Damodaran, 2022b) 

Cost of equity  6.69% Calculated 

Capital structure  Ratio  

Debt (N) 50% Authors’ assumption 

Equity (O) 50% Authors’ assumption  

WACC 6.10% Calculated 

The discount rate - was calculated using the WACC method as follows:  

- = PQ"" =
N

N + O ∙ "N +
O

N + O ∙ "O =
N

N + O ∙ I/ ∙
(1 − .) +

O
N + O ∙

(-K- + M ∙ -L) 
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Appendix 3E. Tomato and natural gas prices 

 

Table E1. Monthly cherry tomato wholesale prices (¥ kg−1) for 2021 (with 50% price 
premium). 

Month Jinshan8 Langfang Weifang Pingliang9 

Jan 12.00 15.23 10.86 12.81 
Feb 11.18 14.60 12.99 12.23 
Mar 9.62 16.91 12.66 14.36 
Apr 11.03 15.93 11.12 13.46 
May 13.55 14.43 9.05 12.08 
Jun 11.63 12.78 6.75 10.56 
Jul 11.81 11.58 8.58 9.45 

Aug 12.84 11.43 9.12 9.32 
Sep 14.19 11.79 9.93 9.65 
Oct 15.09 12.35 11.60 10.16 
Nov 17.82 17.18 12.84 14.6 
Dec 18.71 17.96 13.68 15.32 

Source: National commercial information platform of agricultural product (nc.mofcom.gov.cn). 

 

 

Table E2. Average monthly price (¥ m−3) of natural gas from 2017 to 2022 for four regions. 

Month Jinshan Langfang Weifang Pingliang 

Jan 4.93 4.76 4.89 4.62 
Feb 5.03 4.69 4.91 4.24 
Mar 4.56 4.44 4.75 4.05 
Apr 4.32 4.12 4.51 3.87 
Oct 4.37 4.36 4.45 4.25 
Nov 4.95 4.93 5.07 5.02 
Dec 5.11 4.84 5.23 5.05 

 
  

 
8 Cherry tomato prices of Jiangsu province were used as proxies for Jinshan cherry tomato prices due to the lack 
of data 
9 There are no price records for cherry tomato for Pingliang. Therefore, we estimated cherry tomato prices based 
on the price difference (92%) for globe tomatoes between Langfang and Pingliang. A transportation tarif of 1.2 
¥ kg−1 was applied for Pingliang, after consulting a greenhouse manager in Pingliang. 
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Appendix 3F. Derivation of stakeholder weights 

 

The values of stakeholders’ weight for revenue increase l2!6F>B;?G>(H  and environmental 

impacts reduction l2!6F>B;?G>(CDC  used in this study were derived based on the unpublished 

results of Min et al. This appendix explains how the survey was conducted and how the weights 

were derived.  

The survey aimed to elicit the relative importance of the six criteria, including cost-benefit 

and environmental impacts of greenhouse technologies, among multiple stakeholders in the 

Chinese greenhouse sector. The survey was designed according to the guidelines of the Best-

Worst method, a multi-criteria decision-making method developed by Rezaei (2015) for 

addressing complex problems with multiple conflicting and subjective criteria. The survey was 

documented in Excel format.  

We collected data from four groups of stakeholders: greenhouse growers, private investors, 

machinery and equipment suppliers, and agricultural policy makers in China. Ten respondents 

for each group were reached through snowball sampling. Specifically:  

Investors were general managers or directors in a modern greenhouse company, located in 

Beijing, Shanghai, Shandong, Gansu, Jiangsu, Yunnan, and Guangdong provinces. The sample 

of growers and investors covers the stakeholders of major modern greenhouse companies in 

China.  

Policy makers were recruited from the local ministry of agriculture, agricultural research 

institutes, extension centers, and quasi-commercialized state-owned enterprises. Policy makers 

were only included if they had participated in the design of local agricultural policy or had been 

involved in local greenhouse projects.  

The surveys were conducted through a web conferencing platform and presented to the 

respondents through screen sharing. Each respondent was presented with an overview of all 

evaluation criteria. The respondents were first asked to identify which criteria they considered the 

most and least important when adopting (for investors) or promoting (for policy makers) digital or 

automation technology for greenhouse production. Respondents were then instructed to compare the 

remaining criteria to the selected most and least important criteria by assigning a number between 1 and 

9. Throughout the survey interview, respondents were also asked to explain their choices.  
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A BWM solver was employed to calculate the optimal weights and the consistency ratio. In case 

of inconsistency, respondents were asked if they were willing to reconsider their judgement for 

the most inconsistent pair-wise comparison. Figure F1 presents an example of a survey 

response that we collected.  

 

Figure F1. Example of a survey response. 

After deriving the optimal weights for each respondent, we calculated the weight for each 

stakeholder group by taking the arithmetic mean of the optimal weights for individual respondents 

within the stakeholder group. The values for )$%&'()*+,(-.  and )$%&'()*+,(-/0/  were then calculated as: 

)$%&'()*+,(-. =	 )$%&'()*+,(-1*$%23(4(56%

)$%&'()*+,(-
1*$%23(4(56% +)$%&'()*+,(-(476-*48(4%&+ 

)$%&'()*+,(-/0/ = )$%&'()*+,(-(476-*48(4%&+

)$%&'()*+,(-
1*$%23(4(56% +)$%&'()*+,(-(476-*48(4%&+ 	 
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Appendix 3G. Categorical regression results: the effect of individual design element on 

operating income and GHG emissions  

 

Table G1. Categorical regression results: the relationship between design element choice and 
the annual operating income (baseline scenario). 

Variable Design element choice Jinshan Langfang Weifang Pingliang 

Structure_A Multi- tunnel, 1 vent 10 m−2 baseline choice 
Structure_B Multi- tunnel, 1 vent 

20 m−2 
24.7 
(0.3) 

34.9 
(0.4) 

26.2 
(0.3) 

36.3 
(0.5) 

Structure_C Multi- tunnel, 1 vent 
30 m−2 

39.1 
(0.2) 

52.0 
(0.3) 

41.7 
(0.3) 

55.0 
(0.5) 

Structure_D Venlo, 1 vent 10 m−2 8.4 
(0.3) 

7.7 
(0.5) 

5.3 
(0.4) 

10.6 
(0.7) 

Structure_E Venlo, 1 vent 20 m−2 33.5 
(0.3) 

41.8 
(−0.4) 

33.6 
(0.4) 

44.5 
(0.6) 

Structure_F Venlo, 1 vent 30 m−2 46.2 
(0.3) 

55.2 
(0.4) 

46.1 
(0.3) 

59.8 
(0.6) 

Cover_A Single PE film baseline choice 
Cover_B Double PE film −3.5 

(0.2) 
−5.1 
(0.2) 

0.7 
(0.2) 

7.0 
(0.4) 

Cooling_A No cooling baseline choice 

Cooling_B Fogging: 200 g  h−1 
m−2 

−6.5 
(0.2) 

5.1 
(0.3) 

−4.9 
(0.2) 

−4.4 
(0.4) 

Cooling_C Fogging: 300 g  h−1 
m−2 

−7.0 
(0.2) 

5.6 
(0.3) 

−5.7 
(0.2) 

−5.4 
(0.4) 

Cooling_D Fogging: 400 g  h−1 
m−2 

−10.1 
(0.2) 

2.3 
(0.3) 

−9.0 
(0.3) 

−8.4 
(0.4) 

Cooling_E Pad and fan: 60 m3 h−1 
m−2 

−42.2 
(0.3) 

−17.4 
(0.4) 

−22.2 
(0.3) 

−53.5 
(0.7) 

Cooling_F Pad and fan: 90 m3 h−1 
m−2 

−54.1 
(0.3) 

−25.0 
(0.4) 

−32.6 
(0.3) 

−65.1 
(0.7) 

Cooling_G Pad and fan: 120 m3 
h−1 m−2 

−64.
6 (0.3) 

−33.4 
(0.4) 

−40.8 
(0.4) 

−75.1 
(0.7) 

Heating_A 1.16 MW ha−1 baseline choice 
Heating_B 1.74 MW ha−1 −0.4 

(0.2) 
0.6 

(0.2) 
−0.5 
(0.2) 

1.4 
(0.3) 

Heating_C 2.32 MW ha−1 −0.1 
(0.2) 

1.0 
(0.2) 

0.1 
(0.2) 

1.4 
(0.3) 

Thermal_screen
_A 

No thermal screens baseline choice 

Thermal_screen
_B 

Transparent, 72% 
transimission 

40.5 
(0.3) 

59.0 
(0.4) 

53.8 
(0.3) 

73.0 
(0.6) 

Thermal_screen
_C 

Non-transparent, white 23.8 
(0.3) 

35.5 
(0.4) 

31.2 
(0.4) 

46.8 
(0.7) 
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Thermal_screen
_D 

Light blocking, one 
side black 

22.5 
(0.3) 

39.0 
(0.4) 

33.8 
(0.4) 

47.6 
(0.7) 

Thermal_screen
_E 

Double-layer, top 
layer aluminized 

32.9 
(0.3) 

57.4 
(0.4) 

49.8 
(0.3) 

70.0 
(0.7) 

Shade_screen_
A 

No shade screens baseline choice 

Shading_screen
_B  

36% shading  −4.4 
(0.2) 

3.4 
(0.2) 

0.5 
(0.2) 

1.0 
(0.4) 

Shading_screen
_C  

45% shading −8.6 
(0.2) 

−4.0 
(0.3) 

−4.8 
(0.2) 

−4.5 
(0.4) 

Shading_screen
_D 

56% shading −9.1 
(0.2) 

−3.6 
(0.3) 

−5.1 
(0.2) 

−4.4 
(0.4) 

Light_A No lighting baseline choice 
Light_B HPS, 50 μmol m−2 s−1 −25.4 

(1.1) 
−8.8 
(2.1) 

−79.2 
(2.1) 

57.7 
(4.4) 

Light_C HPS, 100 μmol m−2 
s−1 

−49.9 
(1.1)  

−8.7 
(2.1) 

−92.4 
(1.9) 

28.0 
(3.9) 

Light_D HPS, 150 μmol m−2 
s−1 

36.7 
(0.8) 

154.4 
(1.4) 

−3.9 
(1.3) 

229.4 
(2.1) 

Light_E HPS, 200 μmol m−2 
s−1 

57.6 
(0.6) 

186.1 
(1.0) 

17.1 
(1.1) 

252.3 
(1.3) 

Light_F LED, 50 μmol m−2 s−1 −13.9 
(1.0) 

−3.6 
(1.9) 

−74.1 
(1.7) 

42.1 
(3.9) 

Light_G LED, 100 μmol m−2 
s−1 

−27.8 
(1.0) 

−9.5 
(2.0) 

−82.8 
(1.6) 

28.8 
(3.3) 

Light_H LED, 150 μmol m−2 
s−1 

72.1 
(0.8) 

159.6 
(1.9) 

10.4 
(1.2) 

224.8 
(2.6) 

Light_I LED, 200 μmol m−2 
s−1 

97.3 
(0.5) 

200.2 
(0.7) 

33.2 
(0.6) 

253.1 
(1.3) 

CO2_A No CO2 enrichment baseline choice 
CO2_B 50 kg CO2 ha−1 h−1 −16.8 

(1.0) 
−26.8 
(1.9) 

−85.7 
(1.4) 

15.2 
(3.4) 

CO2_C 100 kg CO2 ha−1 h−1 −18.9 
(0.9) 

−27.1 
(1.2) 

−87.5 
(1.1) 

13.4 
(2.5) 

CO2_D 150 kg CO2 ha−1 h−1 −18.6 
(0.9) 

−32.3 
(1.0) 

−89.7 
(0.9) 

7.7 
(1.7) 

CO2_E 200 kg CO2 ha−1 h−1 −19.3 
(0.8) 

−33.5 
(1.0) 

−89.3 
(0.8) 

6.0 
(1.4) 

Whitewash_A No whitewash baseline choice 
Whitewash_B 50% transmission −4.6 

(0.1) 
2.3 

(0.2) 
−5.6 
(0.2) 

−8.8 
(0.3) 

light_B*CO2_B  14.3 
(1.7) 

29.7 
(3.3) 

83.3 
(2.8) 

−39.2 
(6.1) 

light_B*CO2_C  13.1 
(1.6) 

23.4 
(2.8) 

82.1 
(2.5) 

−38.5 
(5.8) 

light_B*CO2_D  11.2 
(1.6) 

30.9 
(2.5) 

82.0 
(2.4) 

−36.0 
(4.9) 

light_B*CO2_E  7.7 
(1.5) 

28.9 
(2.4) 

82.4 
(2.4) 

−41.5 
(4.7) 
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light_C*CO2_B  16.9 
(1.8) 

27.7 
(3.3) 

86.9 
(2.8) 

−22.9 
(6.1) 

light_C*CO2_C  15.1 
(1.6) 

24.8 
(2.7) 

85.3 
(2.4) 

−22.5 
(5.3) 

light_C*CO2_D  10.9 
(1.6) 

27.8 
(2.5) 

86.3 
(2.2) 

−19.7 
(4.6) 

light_C*CO2_E  9.9 
(1.5) 

28.2 
(2.4) 

83.6 
(2.2) 

−22.8 
(4.2) 

light_D*CO2_B  23.7 
(1.4) 

42.5 
(2.6) 

91.9 
(2.0) 

17.5 
(4.4) 

light_D*CO2_C  26.3 
(1.3) 

42.2 
(2.0) 

95.8 
(1.8) 

35.4 
(3.5) 

light_D*CO2_D  25.5 
(1.3) 

52.8 
(1.8) 

100.1 
(1.7) 

52.9 
(2.8) 

light_D*CO2_E  24.9 
(1.2) 

55.9 
(1.8) 

98.4 
(1.6) 

62.1 
(2.6) 

light_E*CO2_B  25.9 
(1.2) 

58.9 
(2.2) 

99.6 
(1.9) 

25.0 
(3.6) 

light_E*CO2_C  33.2 
(1.0) 

75.3 
(1.6) 

108.7 
(1.6) 

52.1(
2.7) 

light_E*CO2_D  35.3 
(1.0) 

87.8 
(1.4) 

112.2 
(1.4) 

75.6 
(1.9) 

light_E*CO2_E  37.1 
(1.0) 

94.5 
(1.4) 

113.3 
(1.4) 

87.1 
(1.6) 

light_F*CO2_B  14.8 
(1.7) 

28.1 
(3.1) 

84.7 
(2.5) 

−14.4 
(5.9) 

light_F*CO2_C  13.5 
(1.5) 

25.5 
(2.5) 

81.1 
(2.2) 

−22.1 
(5.3) 

light_F*CO2_D  10.8 
(1.5) 

31.5 
(2.4) 

82.9 
(2.1) 

−16.7 
(4.5) 

light_F*CO2_E  7.4 
(1.4) 

29.1 
(2.3) 

80.6 
(2.0) 

−20.7 
(4.2) 

light_G*CO2_B  18.2 
(1.7) 

33.7 
(3.1) 

86.6 
(2.4) 

(−0.8
) (5.6) 

light_G*CO2_C  17.0 
(1.6) 

31.4 
(2.7) 

85.6 
(2.2) 

−13.4 
(4.6) 

light_G*CO2_D  12.4 
(1.5) 

36.2 
(2.5) 

87.1 
(2.0) 

−9.1 
(4.1) 

light_G*CO2_E  10.9 
(1.5) 

37.7 
(2.4) 

84.1 
(1.9) 

−12.1 
(3.6) 

light_H*CO2_B  21.9 
(1.4) 

43.3 
(2.9) 

92.4 
(2.0) 

11.6 
(4.8) 

light_H*CO2_C  24.7 
(1.3) 

53.9 
(2.4) 

97.7 
(1.7) 

36.9 
(4.0) 

light_H*CO2_D  25.4 
(1.2) 

61.6 
(2.2) 

101.9 
(1.5) 

54.3 
(3.2) 

light_H*CO2_E  25.0 
(1.2) 

64.8 
(2.1) 

100.7 
(1.5) 

63.8 
(3.0) 

light_I*CO2_B  26.7 
(1.1) 

57.6 
(2.0) 

101.9 
(1.5) 

24.6 
(3.7) 
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light_I*CO2_C  34.6 
(1.0) 

75.2 
(1.3) 

110.9 
(1.2) 

49.3 
(2.8) 

light_I*CO2_D  36.8 
(0.9) 

88.7 
(1.2) 

115.7 
(1.0) 

71.1 
(2.0) 

light_I*CO2_E  38.3 
(0.9) 

94.0 
(1.1) 

116.2 
(0.9) 

81.0 
(1.7) 

Note: Standard errors of the coefficients were given in brackets. The insignificant coefficients 
are underlined, all other coefficients are significant at 0.05 level. 
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Table G2. Categorical regression results: the relationship between design element choice and 

greenhouse gas emissions. 

Variable Design element choice Jinshan Langfang Weifang Pingliang 

Structure_A Multi- tunnel, 1 vent 10 m−2 baseline choice 
Structure_B Multi- tunnel, 1 vent 

20 m−2 
−8.0 
(0.1) 

−9.1 
(0.2) 

−8.5 
(0.1) 

−7.1 
(0.1) 

Structure_C Multi- tunnel, 1 vent 
30 m−2 

−12.6 
(0.1) 

−14.7 
(0.1) 

−13.7 
(0.1) 

−11.3 
(0.1) 

Structure_D Venlo, 1 vent 10 m−2 −5.8 
(0.1) 

−5.1 
(0.2) 

−5.1 
(0.2) 

−5.0 
(0.2) 

Structure_E Venlo, 1 vent 20 m−2 −13.2 
(0.1) 

−13.5 
(0.2) 

−13.1 
(0.1) 

−11.4 
(0.1) 

Structure_F Venlo, 1 vent 30 m−2 −17.5 
(0.1) 

−18.4 
(0.2) 

−17.5 
(0.1) 

−14.6 
(0.1) 

Cover_A Single PE film baseline choice 
Cover_B Double PE film 6.9 (0.0) 10.8 

(0.1) 
9.0 

(0.1) 
7.0 

(0.1) 
Cooling_A No cooling baseline choice 

Cooling_B Fogging: 200 g  h−1 
m−2 

0.0 
(0.1) 

0.5 
(0.1) 

0.1 
(0.1) 

0.1 
(0.1) 

Cooling_C Fogging: 300 g  h−1 
m−2 

0.1 
(0.1) 

0.5 
(0.1) 

0.0 
(0.1) 

0.0 
(0.1) 

Cooling_D Fogging: 400 g  h−1 
m−2 

0.1 
(0.1) 

0.5 
(0.1) 

0.0 
(0.1) 

0.2 
(0.1) 

Cooling_E Pad and fan: 60 m3 h−1 
m−2 

10.2 
(0.1) 

12.0 
(0.2) 

11.1 
(0.1) 

10.3 
(0.2) 

Cooling_F Pad and fan: 90 m3 h−1 
m−2 

15.0 
(0.1) 

18.4 
(0.2) 

16.7 
(0.1) 

15.0 
(0.2) 

Cooling_G Pad and fan: 120 m3 
h−1 m−2 

20.1 
(0.1) 

24.7 
(0.2) 

22.8 
(0.2) 

20.0 
(0.2) 

Heating_A 1.16 MW ha−1 baseline choice 
Heating_B 1.74 MW ha−1 0.4 

(0.0) 
1.2 

(0.1) 
1.2 

(0.1) 
0.2 

(0.1) 
Heating_C 2.32 MW ha−1 0.5 

(0.0) 
1.0 

(0.1) 
1.0 

(0.1) 
0.4 

(0.1) 
Thermal_screen
_A 

No thermal screens baseline choice 

Thermal_screen
_B 

Transparent, 72% 
transimission 

−21
.4 (0.1) 

−27.1 
(0.2) 

−27.1 
(0.1) 

−27.3 
(0.1) 

Thermal_screen
_C 

Non-transparent, white −14
.8 (0.1) 

−7.2 
(0.2) 

−11.7 
(0.2) 

−13.5 
(0.2) 

Thermal_screen
_D 

Light blocking, one 
side black 

−14
.9 (0.1) 

−9.7 
(0.2) 

−13.6 
(0.2) 

−13.1 
(0.2) 

Thermal_screen
_E 

Double-layer, top 
layer aluminized 

−21
.4 (0.1) 

−27.1 
(0.2) 

−27.1 
(0.1) 

−27.3 
(0.1) 

Shade_screen_
A 

No shade screens baseline choice 
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Shading_screen
_B  

36% shading  −2.
5 (0.0) 

−3.0 
(0.1) 

−3.3 
(0.1) 

0.0 
(0.1) 

Shading_screen
_C  

45% shading −1.4 
(0.1) 

−0.3 
(0.1) 

−1.0 
(0.1) 

0.9 
(0.1) 

Shading_screen
_D 

56% shading −1.4 
(0.1) 

−0.4 
(0.1) 

−1.0 
(0.1) 

1.0 
(0.1) 

Light_A No lighting baseline choice 
Light_B HPS, 50 μmol m−2 s−1 115.9 

(0.1) 
156.5 
(0.4) 

147.1 
(0.3) 

114.6 
(0.3) 

Light_C HPS, 100 μmol m−2 
s−1 

155.4 
(0.1) 

211.5 
(0.4) 

193.7 
(0.3) 

151.4 
(0.3) 

Light_D HPS, 150 μmol m−2 
s−1 

187.5 
(0.1) 

257.6 
(0.3) 

228.2 
(0.3) 

180.6 
(0.3) 

Light_E HPS, 200 μmol m−2 
s−1 

210.7 
(0.1) 

284.4 
(0.3) 

248.4 
(0.2) 

200.5 
(0.2) 

Light_F LED, 50 μmol m−2 s−1 99.2 
(0.1) 

133.8 
(0.4) 

128.2 
(0.3) 

101.1 
(0.3) 

Light_G LED, 100 μmol m−2 s−1 123.1 
(0.1) 

166.3 
(0.3) 

156.3 
(0.3) 

1227. 
(0.3) 

Light_H LED, 150 μmol m−2 s−1 142.1 
(0.1) 

194.7 
(0.3) 

177.4 
(0.3) 

140.0 
(0.3) 

Light_I LED, 200 μmol m−2 s−1 155.8 
(0.1) 

211.0 
(0.2) 

189.9 
(0.2) 

151.7 
(0.2) 

CO2_A No CO2 enrichment baseline choice 
CO2_B 50 kg CO2 ha−1 h−1 0.0 

(0.1) 
0.4 

(0.2) 
0.3 

(0.1) 
0.1 

(0.2) 
CO2_C 100 kg CO2 ha−1 h−1 −0.1 

(0.1) 
0.6 

(0.2) 
0.4 

(0.1) 
0.3 

(0.2) 
CO2_D 150 kg CO2 ha−1 h−1 0.0 

(0.1) 
0.3 

(0.2) 
0.5 

(0.1) 
0.2 

(0.1) 
CO2_E 200 kg CO2 ha−1 h−1 0.1 

(0.1) 
0.6 

(0.2) 
0.4 

(0.1) 
0.5 

(0.1) 
Whitewash_A No whitewash baseline choice 
Whitewash_B 50% transmission 3.5 

(0.0) 
7.76 
(0.0) 

6.78 
(0.0) 

5.80 
(0.0) 

Note: Standard errors of the coefficients were given in brackets. The insignificant coefficients 
are underlined, all other coefficients are significant at 0.05 level.
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Abstract 

Uncertainty in output prices and the potential phasing-out of the subsidy scheme could jointly 

affect the optimal timing of greenhouse investment in China. Accounting for price and policy 

uncertainty simultaneously, this study employed a real options approach and formulated the 

investment decision as an optimal stopping problem. The least squares Monte Carlo method 

was used to approximate the optimal investment timing and the value of waiting under various 

combinations of subsidy level, subsidy termination risk factor, and tomato price evolution 

process. The numerical illustration shows that uncertainty about the phasing-out of the subsidy 

scheme can significantly reduce the value of waiting and induce earlier investment. In addition, 

an increase in the subsidy level could reduce the value of waiting and encourage earlier 

investment. A combination of a high subsidy level and the signalling of subsidy termination 

can substantially reduce the value of waiting and create a strong incentive for early investment. 

 

Keywords 

Investment decision, real options, policy uncertainty, subsidy policy, greenhouse horticulture
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 Introduction 

Under China’s “vegetable basket” policy, local governments are incentivised to transform local 

food production into more productive and safer systems (Zhong et al., 2020). Greenhouses, 

offering high efficiency in land, water and chemical use, as well as higher crop yields compared 

to field production (Zhou et al., 2021), can be a key solution to provide cities with year-round 

supply of fresh produce.  

However, greenhouse investments are capital-intensive. A 1-hectare Venlo-type 

greenhouse, for example, can cost over 1 million RMB (around 125,000 €). In China, many 

greenhouse projects are funded through matching contributions from the central government, 

local governments, and agribusiness firms (Gong & Zhang, 2016). In Beijing, district-level 

governments provide subsidies covering 30% of greenhouse construction costs, and municipal 

governments offer an additional 20% for eligible projects (Beijing Municipal Bureau of 

Agriculture and Rural Affairs, 2022). The remaining funds come from the greenhouse firms 

themselves. These subsidies play a significant role in improving the economic feasibility of 

greenhouse investments. In some regions of China, a 50% subsidy can turn a greenhouse 

investment from unprofitable to profitable (Min et al., 2022). 

In 2023, the Chinese government introduced its first national development plan for the 

horticultural sector. The plan focuses on three key areas: encourage new greenhouse 

investments, upscale production, and modernize existing infrastructure. A specific target has 

been set to increase the percentage of vegetables supplied by greenhouses from 30% to 40% 

by 2030. To achieve this, the plan calls for the construction of over 200 high-tech greenhouses 

and protected agricultural parks, primarily in the suburbs of major cities (MOA et al., 2023). 

Along with this development plan, the government plans to allocate additional fiscal resources 

to the greenhouse sector through various channels. 

The use of government subsidies has long been an important tool to achieve industrial 

development goals in China (Gong & Zhang, 2017; Yang et al., 2016). However, these subsidy 

programs in China typically have a limited duration. For example, the first phase of the electric 

vehicle subsidy program was introduced in 2009 and ended in 2012 (Hao et al., 2014). 

Similarly, the renewable energy sector received substantial subsidies from 2006 to 2014, but 

subsidy levels began to decrease in 2015 and were completely eliminated for new projects in 

2021 (Zhao et al., 2022). Given these precedents, it is reasonable to anticipate that the current 
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subsidies for the greenhouse sector will also be phased out once the goals outlined in the 2023 

development plan are achieved. This raises an important question: How will the uncertainty 

about the phasing-out of subsidy programs affect the decision-making of potential investors in 

China’s greenhouse sector? 

Previous studies have assessed the economic feasibility of greenhouse investments in China. 

For example, Min et al. (2022) evaluated the distribution of the Net Present Value (NPV) for 

an investment in a greenhouse for tomato production, taking into account price uncertainty in 

both inputs and outputs using Monte-Carlo simulation. However, this study largely overlooked 

the uncertainty related to subsidy policies. In scenarios where both price and subsidy policy 

uncertainty exist, traditional capital budgeting methods—which typically view investments as 

“now or never” decisions—may fail to fully account for investors’ strategic considerations. 

The real option approach (ROA) recognizes the value of flexible decision-making under 

uncertain environments and provides a useful framework for addressing investment problems 

with multiple sources of uncertainty.  

ROA began with the seminal works of Arrow & Fisher (1974) and Henry (1974), and has 

gradually found applications in agricultural investment problems. Applications of ROA in 

agriculture have mainly focused on uncertainty related to economic aspects, modelling factors 

such as input and output prices or investment returns as stochastic processes (e.g., Frey et al., 

2013; Luong & Tauer, 2006; Musshoff, 2012; Schulte et al., 2018; Smith, 2018; Spiegel et al., 

2021). A number of studies have also employed ROA to assess the impact of agricultural 

policies. For example, Feil et al. (2013) compared the impact of price floors, investment 

subsidies, and production ceilings on agricultural investment in competitive markets. Di Corato 

& Zormpas (2022) explored how the European Union’s decoupled payments affect farmers’ 

investment decisions. However, these studies generally assume static policy environments, i.e., 

they do not take into account uncertainty about future policy changes. As a result, their focus 

is mainly on price or production uncertainty, rather than uncertainty directly related to evolving 

policies.  

Only a handful of studies have explicitly examined how policy uncertainty affects 

agricultural investment decisions. Purvis et al. (1995) were among the first to apply ROA to 

examine policy uncertainty within the agricultural sector. They analyzed investment in free-

stall facilities on dairy farms under uncertain environmental regulations. Their model assumed 

a normally distributed random component of the investment costs to account for changes in 
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environmental compliance requirements. Floridi et al. (2013) studied the adoption of automatic 

milking systems under uncertain subsidy schemes with a simple two-period model. They 

modelled subsidy amounts as a Wiener process and concluded that higher uncertainty leads to 

delayed adoption. More recently, Yanore et al. (2023a) analyzed the production expansion 

strategies of Dutch dairy farmers in the face of uncertainty about the implementation of a 

phosphate emission right system. In their model, policy uncertainty was represented in a 

straightforward way, with either the probability of policy implementation or the timing of 

policy introduction fixed. The NPVs of investing and waiting were compared under different 

scenarios. 

While a common insight of real options theory is that higher levels of uncertainty usually 

increase the value of waiting and thus lead to a delayed investment, this is not always the case. 

Sarkar (2000) found that for low-growth and low-risk projects, increased volatility in 

investment returns can actually increase the probability of investing. Yanore et al. (2023a) 

showed that when farmers expect a delayed introduction of the phosphate emission right system, 

the optimal investment strategy is to expand production. The modelling of the underlying 

stochastic process can also affect the timing of investment.  

In essence, ROA treats dynamic investment decisions as optimal timing problems 

(Wesseler & Zhao, 2019). The interactions between price and policy uncertainty can affect the 

optimal timing of investments, potentially pushing it in opposite directions. The optimal timing 

depends on trade-offs between the lost profits during waiting compared to the risks of losing 

subsidies if the subsidy policy is abolished. To our knowledge, no study has explored the 

interactions between these two effects in the agricultural context.  

The aim of this study is to examine the impact of uncertainty about output prices and the 

phasing-out of subsidy policies on the timing of investment in greenhouses in China. This 

research seeks to fill a gap in the literature on agricultural investment, in particular the limited 

understanding of the interactions between price and policy uncertainty. Through numerical 

illustration, the study identifies the conditions under which tomato prices, subsidy levels, and 

investors’ expectation on the duration of subsidy schemes, may lead to a postponed investment 

in greenhouses in China.  

    The remainder of this paper is organized as follows: Section 2 presents the analytical 

framework. It explains how the price and policy uncertainty was modelled and describes how 
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the optimal investment timing and the value of waiting were calculated using the Least squares 

Monte Carlo (LSM) algorithm. Section 3 provides a numeric illustration under different 

combinations of parameters related to price and policy uncertainty. The paper ends with 

conclusions and discussion. 

  

 Analytical framework  

4.2.1 Description of the investment problem 

This paper assumes that an investor can flexibly determine the timing of investment in a 

greenhouse over a time horizon of .  years. Once the investment is made, the greenhouse 

project can operate for a lifetime of ã years. The payoff of the investment made at year ! can 

be calculated as: 

 
&! =	−

*!
(1 + -)! +V

"#?
(1 + -)?'&

!'S

?+!

 (4.1) 

where - is the discount rate, *! is the initial investment outlay at time !. The value of *! is 

dependent on the existence of the subsidy scheme at time !. "#! is the cash flow generated in 

year !. At each time point, the investor is aware of the past market and policy conditions but 

has no information on the future market and policy conditions. At each time point, the investor 

decides whether to invest or (continue to) delay the investment. The investor needs to choose 

the optimal timing !∗ of the investment that maximizes the value of investment &!∗. The value 

of waiting P at ! = 0 is the difference between the investment value determined by the ROA 

and the value of investing at ! = 0: 

 P = max	{&!∗ − &", 0} (4.2) 

 

4.2.2 Uncertainty about subsidy policy 

In our model, we accounted for the uncertainty associated with the termination of the existing 

subsidy scheme. A sudden termination of a subsidy scheme can be modelled as a jump process 

(Boomsma & Linnerud, 2015; Dixit & Pindyck, 1994). The change in the investment outlay, 

denoted as /*, is given by: 
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/* = ç 0

		é*"	
			 

with probability 1 − ./0 
(4.3) 

 with probability ./0 

where é is the level of subsidy and is a fraction between 0 and 1. | denotes the subsidy 

termination risk factor. The probability that a subsidy termination occurs within a short time 

interval /! is |/!. The subsidy scheme is in effect at the beginning of the investment horizon 

!" , the actual investment outlay at that moment is (1 − é)*" . If termination occurs, the 

investment outlay will increase by é*", representing the lost subsidy. We assume that a subsidy 

scheme is not reintroduced after it has been terminated.  

 

4.2.3 Stochastic tomato price 

The choice of stochastic process of a specific commodity price is not straightforward. Both 

geometric Brownian motion (GBM) and mean-reversion (MR) are commonly used stochastic 

diffusion processes for real options valuation (Bastian-Pinto et al., 2021). GMB has been used 

to model the prices of various agricultural products, including crops (Di Corato & Zormpas, 

2022), sugar (Smith, 2018), wheat (Tozer, 2009), milk (Tauer, 2006), and coffee (Luong & 

Tauer, 2006).  

Some researchers claim that MR is more appropriate for modelling prices of agricultural 

products, as in the long term, prices of agricultural products should converge to the marginal 

costs of production (Bastian-Pinto et al., 2021; Bessembinder et al., 1995). MR has been used 

to model prices for coppice biomass price (Spiegel et al., 2020), milk (Schulte et al., 2018), 

and the overall farm revenue (Delbridge & King, 2016; Sanderson et al., 2016).  

Either  GBM or MR have elements of truth in commodity prices, using either model for a 

specific commodity may be too simplistic (Bastian-Pinto et al., 2021). A model that captures 

both the “random walk” and “mean-reverting” effects may offer a more realistic representation 

of commodity prices (Schwartz & Smith, 2000). Following Linnerud et al. (2014), we model 

the monthly tomato price process as 

 /%,! = 0%,!/! + Ç(%à, − %,)/! + 1 %,!/c!   (4.4) 

where %,! represents the tomato price of month 3 in year !; α is the drift rate, reflecting the 

expected price trend compared with the previous year. Ç is the speed of reversion, %à, is the 
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“normal” price level to which the tomato price tends to revert. 1 is the volatility rate, it captures 

price variation.  P!  is the standard Brownian motion, c! = 4√/! , 4  is a standard normal 

distribution. When Ç is zero, the price follows a GBM. When 0 < Ç < 1 and 0 ≠ 0, the price 

follows a MR process with trend.  

4.2.4 Value of waiting and the optimal investment timing 

It becomes difficult to derive an analytical solution to the optimal stopping problem when 

multiple sources of uncertainty exist. Therefore, we used the Least Squares Monte Carlo (LSM) 

method to approximate the optimal investment timing and the option value (Longstaff & 

Schwartz, 2001). The LSM method is a backward dynamic programming algorithm that starts 

at the final decision point and works backwards. The objective of the LSM algorithm is to 

provide a pathwise approximation to the optimal stopping rule that maximizes the option value. 

The option value is the sum of the payoff of investing at ! = 0 (&") and the value of waiting at 

! = 0 (P). In the following analysis, we will focus on the value of waiting. The procedure of 

the LSM algorithm is as follows: 

Price simulation. We started by simulating the tomato price and subsidy continuation 

processes. We generated 10,000 paths for future tomato prices as defined by Eq. (4.4) and the 

subsidy continuation process as defined by Eq. (4.3). These simulations covered a time horizon 

of . + ã years, with a time-discretization of 1 year.  

Valuation procedure. At the final decision point ., the algorithm evaluates whether the 

investment is in the money (&* 	> **) for each simulation path. The algorithm then proceeds to 

the previous decision point and checks the optimal exercise policy at . − 1. Here, the investor 

can choose either to invest immediately or to wait and revisit the decision at the next point .. 

The optimal exercise policy is determined by comparing the payoff from investing at . − 1 

(&*8&) with the expected continuation value ("*8&).  

Estimation of continuation value. The expected continuation value is estimated using least 

squares regression to approximate the conditional expectation function. More specifically, the 

algorithm used a third-degree polynomial regression on the current project values. Only in-the-

money paths were used for running the regression, as recommended by Longstaff & Schwartz, 

(2001). After determining the coefficients of the conditional expectation function, the 

continuation value at . − 1 can be predicted using these estimated coefficients. The result of 
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the least squares regression is an efficient, unbiased estimator of the conditional expectation 

function (Longstaff & Schwartz, 2001). 

Optimal stopping. If the estimated continuation value is smaller than the immediate exercise 

payoff, then the optimal exercise policy at . − 1 is to invest. The payoff at . − 1 is updated to 

&*8&, and the subsequent payoffs along the same path are set to zero. Otherwise, the payoff at 

. − 1 is zero and the remaining payoffs along the same path are left unchanged. The recursion 

proceeds backwards until the exercise decisions at each discrete time point along each path 

have been determined.  

Optimal timing of investment and value of waiting. The optimal timing of investment !∗ë  is 

the average optimal investment timing over all paths. The expected value of waiting Pë  is the 

average of the difference between the discounted maximum investment payoffs &!∗ and the 

value of investing at ! = 0 (&")	over all paths. 

 

 Numerical illustration 

This section first provides the parameters used in the numerical illustration. Sections 4.3.2 to 

4.3.4 present the results of the numerical illustration. We begin by exploring the impact of 

subsidy termination risk on the investment decision, specifically looking at how variations in 

the subsidy termination risk factor | affect the optimal timing !∗ and the value of waiting Pë . 

After that, we explore the impact of different subsidy levels é on the expected waiting value 

and optimal investment timing. Finally, we discuss how the evolution of tomato prices interacts 

with the subsidy termination risk to collectively shape investment decisions.  

4.3.1 Parametrization  

The default value of é was set at 0.3, aligning with the typical 30% subsidy offered to new 

greenhouse projects in China. For the numerical illustration, the value of é was varied within 

the range of 0 to 0.5. The occurrence of an event in a jump process follows a Poisson 

distribution. The expected duration of the subsidy scheme is &
K
. Since there is no objective 

measure for the likelihood of subsidy termination, &
K

 reflects the investor’s subjective 

expectation of the duration of the subsidy scheme. We varied the value of | between 0 and 0.4, 
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which corresponds to an expected duration of the subsidy scheme ranging from an indefinite 

period to as short as 2.5 years.   

The ideal approach for parameterizing the model in Eq. (4.4) would be to statistically 

estimate these parameters using multi-year historical price series. Unfortunately, historical 

price data of sufficient length for parameter estimation are not available, especially not for 

specific greenhouse tomato varieties. GBM appears suitable for modelling tomato prices, 

especially given an observed upward trend in vegetable prices in China (Li & Zhang, 2013; 

Xiong et al., 2018; Xu et al., 2017), as shown in Figure 4.1. Xiong et al. (2018) attribute the 

growth of vegetable prices to inflation. In our model, the default value for 0 was set to 0.03, 

aligning with the inflation target set by the Chinese government for 2023, which implies that 

tomato prices remain fixed in real terms. 

 
Figure 4.1. Five vegetable price series in China, from Xiong et al. (2018). 

The value of 1 was set at 0.25, an average estimate derived from volatility rates for other 

agricultural products. For example, the volatility was 0.2963 for soy and 0.2941 for castor in 

Brazil (Brandão et al., 2013). In the United States, the estimated volatilities for soybean were 

0.1926 when modelled as GBM and 0.1941 under MR. For cotton, they were 0.2537 when 

modelled as GBM and 0.2557 when modelled as MR (Bastian-Pinto et al., 2021). For sugar in 

the US, it was 0.2512 when modeled as GBM (Smith, 2018). The estimated volatility for wheat 

in Australia under GBM was 0.2441 (Tozer, 2009).  

To investigate whether the impact of policy uncertainty varies under different tomato price 

processes, we also examined scenarios incorporating a mean-reverting component into the 

tomato price models. A Ç value of 0.1 implies that any deviation of the tomato price from the 
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normal price level would be corrected by 10%. In the numerical illustration, the value of Ç was 

varied between 0 and 0.2. 

Table 4.1 summarizes the parameter values or ranges thereof used in the numerical 

illustration. The initial investment costs, monthly yield and variable costs that are needed for 

calculating the yearly net cash flow, and discount rate are taken from Min et al. (2023).  

Table 4.1. Overview of parameter values or ranges. 

Parameter Description Value or range Remark or source 

Cash flow 
*" Initial investment 

outlay  
1056.5 

¥ m−2 
Min et al. (2023) 

%," 2021 Monthly 
tomato prices 

  Min et al. (2023) 

			"# Yearly net cash flow   Min et al. (2023) 
- Discount rate  6.1% Min et al. (2023) 

Price uncertainty 
0 Drift rate  0 – 0.04  Varied around the inflation target of 0.03 
Ç Mean reversion 

factor 
0 – 0.2  A Ç value of 0.1 means the tomato price will 

adjust back towards its normal level by 10%.  
1 Volatility  0.25 Based on Bastian-Pinto et al. (2021), Brandão 

et al. (2013), Smith (2018), Tozer (2009) 
Policy uncertainty 

é Subsidy level 0 to 0.5 Varied around the current subsidy level of 0.3 
				| Subsidy termination 

risk factor  
→0 to 0.4 The expected duration of the subsidy scheme 

ranges from indefinite to 2.5 years  
Time horizon 

. Investment horizon 10 years Authors’ assumption. 
ã Lifetime of a 

greenhouse  
20 years The average lifetime of a glasshouse is 20 years 

 

4.3.1 Effect of subsidy termination risk 

Figure 4.2 shows the optimal timing of investment !∗ and the expected waiting value Pë  for 

various combinations of subsidy termination risk factor (|) and drift rate (0) of tomato prices. 

These calculations assume fixed values for Ç = 0, 1 = 0.25, é = 0.3, suggesting that monthly 

tomato price is modelled as a geometric Brownian motion.  
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When there is no risk of subsidy phasing-out (| → 0), an increase in drift rate 0 can lead 

to a significant increase in both the optimal timing of investment and the value of waiting. This 

suggests that investors anticipating an upward trend in tomato prices are more likely to delay 

their investment decisions. In particular, when 0 is set at 0.03, in line with the inflation target, 

investors may delay their investment by up to 5.2 years.  

When uncertainty about the phasing-out of the subsidy scheme is introduced, the value of 

waiting is significantly reduced, leading to earlier investment. For example, under a positive 

price trend (0 = 0.03), if the investor has a subjective expectation that the expected duration 

of the subsidy scheme is 10 years (| = 0.1), !∗ decreases from 5.2 years to 2.2 years, and Pë  

decreases from 259 ¥ m–2 to 133 ¥ m–2. As | increases, these figures continue to	decrease. 

When the expected duration of the subsidy scheme is reduced to 5 years (| = 0.2), !∗ and Pë  

decrease to 0.8 years and 99 ¥ m–2, respectively. This suggests that when investors anticipate 

the risk of subsidy phasing-out, they are more likely to invest earlier to avoid the potential loss 

of subsidy.  

  

Figure 4.2 The optimal investment timing !∗  and the value of waiting Pë  for different 
combinations of drift rate 0 and subsidy termination risk factor | (Ç = 0, 1 = 0.25, é = 0.3).   

4.3.1 Effect of subsidy levels 

Figure 4.3 displays the optimal timing of investment !∗ and the expected value of waiting Pë  

for various combinations of subsidy level (é) and subsidy termination risk factor (|), while 

keeping 0	ì!	0.03, Ç = 0, and 1	ì!	0.25. 

As the level of subsidy é increases, both  Pë  and !∗ decrease. With a positive price trend 

(0 = 0.03), if é is low, say 0.1, even a high subsidy termination risk factor (| = 0.3) cannot 
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fully offset the value of waiting caused by the upward trend in tomato price. In such cases, the 

investor may defer the investment decision for approximately 3 years. If é increases to 0.5, !∗ 

is reduced from 2.8 years to 0.1 years. Furthermore, given the same value of |, the marginal 

impact of raising é on reducing Pë  and !∗ is more significant when starting from a lower level 

of subsidy. For a given value of |, the decline in Pë  and !∗ caused by increasing é from 0.1 to 

0.2 is greater than the corresponding reduction achieved by increasing é from 0.4 to 0.5. 

The impact of subsidy levels on reducing the value of waiting is more pronounced when it is 

combined with the risk of the phasing-out of the current subsidy scheme. In scenarios without 

the risk of subsidy phasing-out, an increase in	é from 0.1 to 0.5 results in a decline in Pë  from 

359 ¥ m–2 to 201 ¥ m–2 — a decrease of 158 ¥ m–2. When there is a risk of subsidy termination 

(| = 0.1), changing é from 0.1 to 0.5 results in Pë  dropping from 277 ¥ m–2 to 72 ¥ m–2, a 

reduction of 205 ¥ m–2 

 

Figure 4.3. The optimal investment timing !∗  and the value of waiting Pë  for different 
combinations of subsidy level é and subsidy termination risk factor | (Ç = 0, 1 = 0.25, | =
0.1).  

 

4.3.1 Effect of tomato price evolution  

Figure 4.4 shows the optimal timing of investment !∗ and the expected value of waiting Pë  for 

various combinations of the mean reversion factor (Ç)  of tomato prices and the subsidy 

termination risk factor (|), while keeping 0	ì!	0.03, 1	ì!	0.25, and é	ì!	0.3. 

Compared to a GBM model of tomato prices where Ç = 0, the inclusion of a very small 

mean-reversion component in tomato prices can significantly reduce the value of waiting. As 
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the mean reversion factor Ç increases, both Pë  and !∗ decrease. For instance, keeping | at 0.1, 

when Ç increases from 0.05 to 0.1, Pë  diminishes from 29 ¥ m–2 to 0.3 ¥ m–2. In such conditions, 

the value of waiting almost vanishes, making immediate investment a more favourable choice. 

This implies that if an investor believes that tomato prices will fluctuate around their normal 

level, they will have a lower value of waiting and would be inclined to invest earlier.  

However, it is important to note that the potential uncertainty about the phasing-out of the 

subsidy scheme can still reduce both Pë  and  !∗ , whether the monthly tomato price is 

characterized by a GBM or a mean reverting process. 

Figure 4.4. The optimal investment timing !∗  and the value of waiting Pë  for different 
combinations of mean version factor Ç and subsidy termination risk factor | (0 = 0.03, 1 =
0.25, é = 0.3). 

 

 Conclusions and discussion 

The purpose of this study was to examine how uncertainty in output prices and the potential 

phasing-out of the subsidy scheme affect the timing of greenhouse investments in China. We 

represented the continuity of the subsidy scheme as a jump process and modelled the tomato 

price with two stochastic processes: a geometric Brownian motion and a mean reverting 

process. Using the real options approach, the investment problem was formulated as an optimal 

stopping problem and was solved using the Least Squares Monte Carlo method. Through 

numerical illustration, we showed how the optimal timing of investment and the value of 

waiting vary under various combinations of parameters tied to price and policy uncertainty. 

These parameters reflect the investors’ expectations about the future evolution of tomato prices 
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and subsidy policies. Our results identified the critical parameter values that could either delay 

or accelerate an investment.  

The main findings of this study can be summarised as follows. First, uncertainty about the 

phasing-out of the subsidy scheme can significantly reduce the value of waiting and induces 

investors to invest earlier. Second, an increase in the subsidy level could also reduce the value 

of waiting and encourage earlier investment, even without the risk of the subsidy being 

terminated. The marginal impact of raising the subsidy level is more pronounced when starting 

from a lower initial subsidy level. Third, the combination of a high subsidy level and the 

signalling of subsidy termination could greatly reduce the value of waiting and prompt 

immediate investment.  

This work contributes to the literature by simultaneously accounting for both price and 

policy uncertainty, two prevalent sources of uncertainty in agricultural investment that have 

not been jointly considered in previous ROA applications in agriculture. Contrary to earlier 

studies that concluded policy uncertainty generally leads to delayed investment (Floridi et al., 

2013; Purvis et al., 1995), our findings suggest that it can also induce earlier investment, a 

conclusion that aligns with Yanore et al. (2023a). Compared to previous research, our analysis 

accounts for price and policy uncertainty simultaneously, offering insights into how the timing 

of a sudden policy change interacts with subsidy levels and price uncertainty to jointly 

determine the optimal timing of investment.  

The findings of this study provide valuable insights for policy makers. When designing 

subsidy policies, policy makers could influence the pace of greenhouse investments in two 

ways: by altering the level of subsidies or by influencing investors’ expectations about the 

duration of the current subsidy scheme. Policy makers need to decide carefully how much 

information to disclose about future subsidy plans, as uncertainty of subsidy policies can 

significantly affect the timing of investment. On one hand, to achieve sector development goals 

within a specific timeframe, they can encourage early investment by increasing subsidy levels 

and signalling a potential phasing-out of the program. On the other hand, to prevent premature 

investment in immature markets, policy makers can foster stable expectations among investors 

by clearly stating the conditions or timeframe for the phasing-out of subsidies, or by confirming 

that the subsidy scheme will continue if it is intended to be permanent. 
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As is common in real options analysis, the valuation outcomes in this study are sensitive to 

the values of various parameters. In our numerical illustration, the parameters related to price 

uncertainty were varied within a range of possible values based on literature or the inflation 

target. While policy uncertainty cannot be objectively quantified, it is the investors’ subjective 

expectations about this uncertainty that determines their decision-making (Hardaker & Lien, 

2010). In our model, the subsidy termination risk factor | was varied within a range from 0 to 

0.4. This range reflects the expected duration of the subsidy scheme ranging from an infinite 

period to as short as 2.5 years. Future research could enhance this part by incorporating Chinese 

greenhouse investors’ subjective probabilities regarding the phasing-out of the subsidy scheme. 

The subjective probabilities of investors could be elicited using one of the methods suggested 

by Norris & Kramer (1990). 

This study approaches the investment problem from a normative perspective, assuming that 

investors have high degrees of rationality and can correctly determine the optimal timing of 

investment based on the expectation of discounted future payoffs. An alternative approach is 

to adopt a descriptive perspective, incorporating more realistic assumptions about investor 

behaviour, as noted by Miller & Shapira (2004). Improving our understanding of the 

implications of bounded rationality, information imperfection, and behavioural biases could 

bring the real options model closer to the real-world investment context (Trigeorgis & Reuer, 

2017). Recent studies have begun to explore the impact of risk preferences within the 

framework of real option analysis. For instance, Yanore et al. (2023) accounted for farmers’ 

risk preferences by adding a risk premium to the risk-free discount rate. Spiegel et al. (2021) 

found that higher levels of risk aversion can lead to earlier but smaller-scale adoption of 

agricultural technology. According to Menapace et al. (2013), decision-makers’ risk 

preferences and subjective probabilities of uncertain events are likely to be interrelated. If this 

is true, these factors would collectively influence the optimal timing of investment, a topic 

warranting further research. Apart from risk preferences, future studies could also examine 

how time preferences affect investment decisions under price and policy uncertainty. 

Researchers could consider using hyperbolic discounting rather than exponential discounting.  
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Abstract 

This study evaluates sensor and robotic technologies that are driving the digitalisation and 

automation transition of the greenhouse sector in China. To bridge the gap between technology 

assessment and innovation adoption, the evaluation framework used the technology attributes 

defined in the Diffusion of Innovation theory, and involved multiple stakeholder groups: 

growers, investors, technology suppliers and policy makers. The Bayesian best-worst method 

was used to elicit stakeholder preferences and expert-rated technology scores for each attribute. 

Combining the two produced a probabilistic performance score for each technology. The 

results highlighted the heterogeneous preferences of different stakeholder groups. The leaf 

temperature sensor received the highest score among growers and policy makers. Investors and 

technology suppliers favored the scouting and harvesting robots, respectively. These findings 

underscore the importance of tailoring strategies to promote technologies that align with the 

specific priorities of each stakeholder group.  

Keywords 

Adoption, Technology assessment, Agricultural innovation, Stakeholder, Best-worst method
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 Introduction 

The agricultural sector is currently undergoing a rapid transition towards increased 

digitalisation and automation (King, 2017; Saiz-Rubio & Rovira-Más, 2020; Verdouw et al., 

2021). This transition is described using various terms, including smart farming (Regan, 2019; 

Verdouw et al., 2021), digital farming (Shamshiri et al., 2018), and agriculture 5.0 (Saiz-Rubio 

& Rovira-Más, 2020). Regardless of the terminology used, the underlying digitalisation and 

automation technologies remain similar across application domains, i.e. (i) sensors and the 

Internet of Things for data collection, (ii) data platforms and cloud management for data storage 

and analytics, (iii) artificial intelligence for advanced planning and optimisation, and (iv) 

automation technologies for replacing human labour and executing physical tasks (Ehlers et al., 

2022; Shamshiri et al., 2018). The transition towards digitalisation and automation is 

particularly evident in greenhouse production systems, which are designed as relatively closed 

environments for climate control, with the help of various equipment and technologies 

(Verdouw et al., 2014). 

Technology innovation in the horticultural sector has witnessed considerable progress in 

recent years. Sensors that directly monitor the status of plants (e.g., sap flow, leaf 

photosynthesis) are available on the market (van Straten et al., 2010). In addition, robotics for 

leaf removal (Van Henten et al., 2006), targeted spraying for pest control (Dai et al., 2022; 

Sammons et al., 2005), and harvesting (Bac et al., 2014) have been developed and tested in 

some exploratory cases. However, the adoption of these technologies by greenhouse producers 

has been very limited (Bac et al., 2014; Hemming, 2020). 

A possible reason for the limited adoption of digitalisation and automation technologies 

could be the weak role of adopter preferences in the innovation process. Technologies should 

be evaluated not only on their performance on a given criterion, but also on the extent to which 

the adopter values that criterion (de Oca Munguia & Llewellyn, 2020; Geisler, 2002). However, 

in existing agricultural innovation studies, there is often a separation between invention and 

adoption. The focus of technology assessment studies is typically on the functionality of 

technology, while the users of the technology remain largely invisible (McCampbell et al., 

2023). On the other hand, in the agricultural innovation adoption literature, researchers have 

often focused solely on the adopter’s characteristics and the general farming context, and less 

on the attributes of the technology itself (Shang et al., 2021).  
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To bridge the gap between technology characteristics and adopters' characteristics, the 

diffusion of innovation (DOI) theory offers a potential solution. The DOI theory recognizes 

that it is not only the characteristics of the innovation itself, but rather the adopters’ perceptions 

of the technology attributes that significantly influence its adoption 30/11/2023 14:11:00. 

Furthermore, innovation is a coevolution process with a lot of feedback in which many different 

actors at various levels play a role (Smits & Den Hertog, 2007). Therefore, it is essential to 

extend the focus beyond technology adopters and consider a broader range of stakeholders in 

the technology adoption and diffusion process (Alcon et al., 2014; Moretti et al., 2023; Yazdani 

et al., 2023). This includes growers, investors, technology suppliers, and policy makers, who 

collectively drive the adoption process in the greenhouse sector in China (Gomes et al., 2018). 

In China, growers are merely involved in management activities and do not have ownership 

of the greenhouse units. Their responsibilities encompass analyzing data produced by sensors 

and climate computers, optimizing the greenhouse environment, conducting regular crop 

scouting and registration, and making cultivation decisions such as de-leafing, harvesting, and 

crop protection. Growers’ goal is to increase greenhouse production and achieve higher 

economic returns. An innovation will diffuse only if information about its use-value 

characteristics is transmitted to the potential users (Lundvall, 2016). Growers could act as end-

users, modifiers, designers, and also as opponents of innovative technologies, and thus have a 

significant influence on the diffusion process of digital greenhouse technologies (Oudshoorn 

& Pinch, 2003). 

Due to the high investment costs, high-tech greenhouse investors in China are usually run 

by agricultural companies, rather than households. Many of the high-tech greenhouse 

companies in China do not have an agricultural background but instead come from the real 

estate, construction, or information technology sectors (Wang et al., 2023). These investors 

typically do not directly participate in the management of greenhouse operations. Instead, they 

serve as providers of funds and hold ownership of the greenhouse assets.  

Greenhouse horticulture is a typically supplier-dominated sector, where research and 

development (R&D) is mainly performed and diffused by technology suppliers and public-

funded research and extension services (Berkers & Geels, 2011; Pavitt, 1984). Private 

agricultural R&D investment has grown rapidly since 2000 (Hu et al., 2011). In addition to 

selling products, technology suppliers offer training and post-installation technical support. 

They maintain direct contact with investors and growers, closely monitor the implementation 
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of their products in greenhouses, and gather feedback on implementation experiences from 

growers. When problems occur, growers often turn to technology suppliers for solutions. 

Finally, policy makers play a crucial role in the greenhouse sector in various ways. Firstly, 

universities and research institutions, among other public entities, serve as primary sources of 

agricultural innovation in China, and policy makers can steer the direction of R&D in the 

agricultural sector (Hu et al., 2011). The 14th Five-Year Plan for agriculture modernization of 

China has identified sensors and robotics technologies as key R&D areas in the agricultural 

sector (MOA, 2021). Secondly, policy makers can accelerate the adoption of technologies by 

designing subsidy schemes (e.g., deciding which technologies are eligible for subsidy), 

allocating funds to project-based development programs, facilitating land leasing, or providing 

training or demonstration programs on digital technologies (Zhong et al., 2020). Thirdly, policy 

makers can act as joint investors of greenhouse projects in China (Gong & Huang, 2016).  

The objective of this study is to analyze the preferences of different stakeholder groups in 

the Chinese greenhouse sector for different innovative greenhouse technologies. The paper 

defines each technology in terms of six attributes of innovation defined in the DOI, i.e., cost-

benefit, environmental impact, trialability, observability, complexity, and compatibility, as 

important explanations of adoption. Next, it uses the Bayesian Best-Worst (Bayesian BWM) 

method to determine the preferences of stakeholders for the different attributes. This 

information is combined with attribute scores for each technology which were obtained through 

expert elicitation. Finally, a composite overall performance score was calculated for each 

technology, by multiplying the stakeholder weights with the attribute scores. 
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 Evaluation framework  

In the evaluation framework, we aim to link the technology and stakeholder dimensions. 

The evaluation framework consists of two stages (see Figure 5.1). The first stage is the 

elicitation of the relative importance of the attributes of technologies from four groups of 

stakeholders: growers, investors, technology suppliers, and policy makers. In the second stage, 

technical experts were employed to elicit the performance score of technology on the identified 

attributes.  

 
Figure 5.1. Evaluation framework. 

 

The evaluation framework defines the evaluation criteria based on the Diffusion of 

Innovation of Rogers (1962), a widely adopted theory in agricultural innovation adoption 

studies. DOI identified five perceived attributes of an innovation: relative advantage, 

complexity, compatibility, trialability, and observability, as important explanations of adoption. 

In this evaluation framework, relative advantage is decomposed into cost-benefit and 

environmental impacts. Cost-benefit is further decomposed into three sub-criteria: initial 

investment, cost reduction, and revenue increase. An overview of the description for each 

evaluation criterion is shown in Table 5.1. 
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Table 5.1. Description of the evaluation criteria situated for greenhouse production. 

Criteria Description 

Cost-benefit ("&) The initial investment to obtain the technology, the reduction in 

operational costs, and the increase in revenue as a result of using 

the technology. 

Initial investment ("&&) The initial costs or outlay of the investment to obtain the 

technology. 

 Cost  reduction ("&.) The reduction in yearly operation costs or expenditures as a result 

of using the technology. 

Revenue  increase ("&0) The increase in revenue (through an increase in yield or quality) 

as a result of using the technology. 

Environmental impacts 

(".) 

The ability of the technology to reduce negative environmental 

impacts (greenhouse gas/carbon emissions and chemical residues) 

generated from the greenhouse production process. 

Trialability ("0) The ease with which the technology can be tested and tried on a 

small scale in the greenhouse before having to decide to adopt it. 

Observability ("/) The benefits or results of using the technology are tangible, have 

social visibility, they can be observed, imagined, and perceived 

by myself and others. 

Complexity ("X) The level of difficulty to understand, learn, and use the 

technology. 

Compatibility ("[) How well the technology fits well the existing greenhouse 

physical infrastructure and the established work routine, 

practices, and management platform. 

    

 

The evaluated technologies are sap flow sensor, leaf temperature sensor, deleafing robot, 

harvesting robot, and scouting robot. A description of the functionalities of the technologies is 

given in Table 5.2. As these technologies are still at the trail stage and there is little knowledge 

and commercial application of these technologies, experts were consulted on their performance.  
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Table 5.2. Description of the evaluated greenhouse technologies. 

Technology Function 

Sap flow sensor (.&) Monitoring plant water consumption, which can reflect water 

deficit or over-irrigation of plant status. 

Leaf temperature sensor (..) Providing real-time data on the surface temperature of plant 

leaves to avoid overheating or unwanted cooling. 

Deleafing robot (.0) Detecting leaf petioles and cutting the old leaves. 

Harvesting robot (./) Localizing and determining the ripeness of fruit; griping and 

detaching ripe fruit and transport of a detached fruit. 

Scouting robot (.X) Detecting pests and diseases, mapping defects caused by 

pests, and counting flowers and fruits. 

 

5.2.1 Bayesian BWM 

Best-worst method (BWM) is a multi-criteria decision-making (MCDM) method developed by 

Rezaei (2015) for a complex problem with multiple conflicting and subjective criteria. BWM 

makes use of pairwise comparisons for weighting. In the BWM, 2X − 3  comparisons are 

evaluated by the decision-maker for a problem with X criteria. According to Rezaei (2020), 

BMW offers advantages over other MCDM methods in establishing a clear understanding of 

the range of evaluation for the decision-maker, mitigating possible anchoring bias, and thus 

generating more consistent pairwise comparisons. The procedure of BWM can be summarized 

in five steps: 

Step 1. Determine a set of decision criteria " = {î&, î., … , î9}. 

Step 2. Identify the best (most important) î\ and the worst (least important) criteria î]. 

Step 3. Determine the preference of the best criterion c over all the other criteria using a 

number between 1 and 9 (1: equally important, 9: extremely more important). The resulting 

Best-to-Others vector would be: 

Q\ = (ì\&, ì\., … , ì\9) 

where ì\7 indicates the preference of the best criterion c over criterion W, with ì\\ = 1. 
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Step 4. Determine the preference of all the other criteria over the worst criterion P using a 

number between 1 and 9. This results in the Other-to-Worst vector 

Q] = (ì&] , ì.] , … , ì9])* 

where ì7^ indicates the preference of criterion W over the worst criterion P, with ì]] = 1. 

Step 5. Calculate the optimal weights (l&∗, l.∗, … , l9∗). The optimal weights are derived by 

solving the following problem: 

L3X ï 

s.t. ∑ l77 = 1 

ñ^(
^$
− ì\7ñ ≤ ï, for all W 

ó^$
^)

− ì7]ó ≤ ï, for all W 

Solving the above problem gives the optimal weights (l&∗, l.∗, … , l9∗) and ï∗.  

The consistency of the decision-maker’s judgement is evaluated by the consistency ratio =

ï∗/consistency index. The value of the consistency index depends on the value of ì\] (Table 

5.3). The lower the consistency ratio, the higher the reliability of the result. In case of 

inconsistency, a DM is asked if they are willing to reconsider the judgement for the most 

inconsistent pair-wise comparison.  

Table 5.3. Consistency index (CI) table, from Rezaei (2015). 

ò_` 1 2 3 4 5 6 7 8 9 

CI 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 
 

BWM can calculate a weight vector for one DM at a time. When multiple DMs are present, a 

single weight vector for the group is often obtained by aggregating individual priorities using, 

for example, the arithmetic or geometric mean (Ishizaka & Labib, 2011). However, this way 

of aggregation is sensitive to outliers. If one DM has different weights from the entire group, 

the aggregated group weights will be significantly influenced. Moreover, the information on 

the dispersion of DM’s preference is also lost due to the aggregation (Mohammadi & Rezaei, 
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2020). In group MCDM problems, a criterion is ranked as more important than another 

merely if its group (weighted) average weight is higher than another. However, this way of 

determining the ranking of criteria does not reveal the confidence of the importance 

relationship between each pair of criteria. 

The nature of the underlying problem is a group decision-making problem. Facing the 

preferences of a group of DMs, we want to develop a deeper understanding of the confidence 

of importance of criteria among stakeholders. In 2019, Mohammadi & Rezaei (2020) proposed 

the Bayesian Best-Worst method (Bayesian BWM). The inputs of the Bayesian BWM are the 

same as those of the original BWM. The difference is that the Bayesian BWM assumes the 

optimal group weights as a probability distribution, rather than a precise weight vector. The 

notion of credal ranking was introduced to describe the degree to which one criterion is more 

important than one another.  

The Bayesian BWM meaningfully views the multicriteria group DM problem from a 

probabilistic perspective. The criteria are seen as random events, and the weights are their 

likelihoods of occurrence. For probabilistic reasoning, all the inputs and outputs of the 

Bayesian BWM are modeled as probability distributions. The inputs of the BWM, the Best-to-

Others vector Q\F  and the Others-to-Worst vector Q]F , are modeled as multinomial distributions: 

Q]F |lF~L`ö!3X_L3ìö(lF), ∀m = 1,… , o 

Q\F |lF~L`ö!3X_L3ìö ú
1
lFù , ∀m = 1,… , o 

The weight vector 	l  is modeled as the Dirichlet distribution, which satisfies the non-

negativity and sum-to-one properties. The Dirichlet distribution is a conjugate prior of the 

multinomial distribution, which means that the posterior distribution would also be a Dirichlet 

distribution: 

N3-(l6==|0) =
1

c(0)ûl7
a$8&

9

7+&

, 0 ∈ ℝ9 

The individual weight vector lF is expected to be in the proximity of l6==: 

lF|l6==~N3-(† × l6==), ∀m = 1,… , o 

where † is a non-negative parameter that governs the closeness between lF and l6==.	†	
follows a gamma distribution: 

†~°ìLLì(ì, ¢) 
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The values of a and b were set to 0.1, as °ìLLì(0.1, 0.1)  is similar to a uniform 

distribution. Using it as an uninformative prior distribution can avoid biased inference on the 

posterior distribution. 

A Bayesian hierarchical model is proposed to compute the overall weights of the group DM 

problem (see Figure 5.2). The value of the overall group weight vector l6== depends on the 

weight of individual DM lF; the value of lF is dependent on Q\F  and Q]F .  

 

Figure 5.2. Probabilistic hierarchical model of the Bayesian BWM, from Mohammadi & 

Rezaei (2020). 

The prior distribution of  l6== is modeled as an uninformative Dirichlet distribution: 

l6==~N3-(1) 

The specified Bayesian model does not have a closed-form solution. The posterior 

distributions can be computed using the Markov-chain Monte Carlo (MCMC) technique (Gilks 

et al., 1995). The “just another Gibbs sampler” is used to generate the random sample (Plummer, 

2004). The confidence of the importance relations between various criteria (credal ranking) can 

be calculated based on the approximated posterior distribution of l6== . For details on the 

Bayesian BWM, please refer to the work of Mohammadi & Rezaei (2020). For this study, we 

used a Bayesian BWM solver (https://bestworstmethod.com/software/) to compute the weight 

vector of stakeholders and the experts’ scores of technologies performance. 
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5.2.2 Data collection on stakeholders’ preferences  

We collected data from four groups of stakeholders: greenhouse growers, private investors, 

machinery and equipment suppliers, and agricultural policy makers in China. The interviewees 

were asked to provide their functions to verify their eligibility to be qualified respondents. 

Growers were only included if they are in cultivation management roles, e.g., setting 

greenhouse climate strategies, and managing labour, in a modern greenhouse. Investors were 

general managers or directors in a modern greenhouse company, located in Beijing, Shanghai, 

Shandong, Gansu, Jiangsu, Yunnan, and Guangdong provinces. The sample of growers and 

investors covers the stakeholders of major modern greenhouse companies in China. Machinery 

and equipment suppliers were the technical or marketing specialists from companies that 

provide equipment, such as sensors, climate computers, and screens, to greenhouse companies. 

Policy makers were recruited from the local ministry of agriculture, agricultural research 

institutes, extension centers, and quasi-commercialized state-owned enterprises. Policy makers 

were only included if they had participated in the design of local agricultural policy or had been 

involved in local greenhouse projects. 10 respondents for each group were reached through 

snowball sampling.  

Additional information on age, management experience (in years), greenhouse size, types 

of crops planted, and educational level were collected from growers. In the sample of growers, 

almost everyone grows tomatoes. Half of them also planted cucumbers. A few grow flowers, 

peppers, or lettuce. Only one grower cultivates hops for beer brewing. The grower ranges from 

30 to 48 years old, with an average age of 36 years. They have been working in the greenhouse 

sector for 5 to 13 years, managing a greenhouse of 5 to 30 hectares. Most of them hold a 

bachelor’s degree or higher.  

The survey was designed according to the guidelines of BWM (see supplementary material) 

and documented in Excel format. The surveys were conducted through a web conferencing 

platform and presented to the respondents through screen sharing. At the beginning of the 

survey, a list of greenhouse plant-monitoring sensors and automation technologies and their 

functions was presented. Each interviewee was asked if they had heard of or worked with these 

technologies. Next, an overview of all evaluation criteria was presented, during which the 

interviewer read out the description of each criterion in Table 1 for the respondent. In the main 

part of the survey, respondents were asked to indicate which criteria would be the most and 

least important in a situation where they use (for growers)/ adopt (for investors)/ promote (for 
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policy makers)/ communicate (for suppliers) a digital or automation technology for greenhouse 

production. Respondents were then asked to compare the other criteria to the selected most and 

least important criteria, by assigning a number between 1 and 9. The respondents were asked 

to explain the choices they made throughout the interview. A BWM solver was employed to 

calculate the optimal weights and consistency ratio. The interview ended with some general 

discussion, where the respondents were invited to share their experiences on using, adopting, 

communicating, or promoting greenhouse technologies. Each interview lasted 40 to 70 minutes.  

5.2.3 Expert evaluation of technology performance  

A second round of interviews was conducted with the technical experts to elicit the score of 

technologies on a given criteria. The experts were selected to make sure they have knowledge 

about each technology. Experts from both the academic and the industry were included to make 

sure that the expertise was complementary. Table 5.4 shows the background and expertise of 

the experts. An example of the questionnaire with experts can be found in supplementary 

material.  

Table 5.4. Experts’ details. 

Expert Background 

#1 Industry. Director of a horticultural consultancy company. 

#2 Academia. Senior Scientist, Wageningen University& Research. Experts on crop 

production, crop physiology, cropping systems, and crop growth models. 

#3 Industry. Director of an agricultural robotic company. 

#4 Academia. Senior Scientist, Wageningen University& Research. Experts on 

sensors and detection systems. 

 

5.2.1 Overall performance of technology 

A composite index, the overall technology performance score ( â! ), was developed by 

combining stakeholder preferences and expert scores: 

â! = l&(l&&é&&! +l&.é&.! +l&&é&0! ) +Vl,é,!
[

,+.
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where l&&, l&.,	and l&0 are the weights of the cost-benefit sub-criteria. é&&! , é&.! , and é&0!  

are the expert scores of technology ! on the three sub-criteria of cost-benefit. l, and é,! are the 

stakeholder weight of and the expert score of technology ! on criterion 3.   

Stakeholder preferences and expert scores were both estimated using the Bayesian BWM. 

The MCMC sampled 15,000 weight vectors from the posterior distributions of (l&, … , l[) and 

(l&&, l&., l&0 ), and 15,000 score vectors from the posterior distribution of (é,&, … , é,X ). 

Multiplying the weight vectors and the score vectors based on the formula above produces an 

approximation of the probability distribution of the overall performance scores of technologies. 

The credal ranking of the overall performance scores of technologies could be calculated based 

on the 15,000 samples of the overall performance score.  

 

 Results  

5.3.1 Stakeholders’ heterogeneous preferences on technology attributes  

The overall optimal global weights of the six attributes and the local weights of the cost-benefit 

sub-criteria of each stakeholder group are shown in Table 5.5 and 5.6. Cost-benefit was the 

most important criterion for all stakeholder groups. Furthermore, different stakeholders showed 

different preferences for the technology attributes defined in the DOI. 

Table 5.5. The overall optimal global weights and their rankings of different stakeholder groups. 

Criteria Growers Investors Suppliers Policy makers 

"& Cost-benefit 0.308 (1) 0.314 (1) 0.319 (1) 0.292 (1) 

". Environment 0.108 (5) 0.110 (6) 0.110 (6) 0.155 (4) 

"0 Trialability 0.176 (2) 0.128 (4) 0.112 (5) 0.124 (5) 

"/ Observability 0.136 (4) 0.201 (2) 0.180 (2) 0.160 (2) 

"X Complexity 0.099 (6) 0.129 (3) 0.131 (4) 0.109 (6) 

"[ Compatibility 0.174 (3) 0.119 (5) 0.148 (3) 0.160 (2) 

Note: Rankings are shown in parentheses. 
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Table 5.6. The overall optimal local weights of the cost-benefit sub-criteria of different 
stakeholder groups. 

Criteria Growers Investors Suppliers Policy makers 

"&& Initial investment 0.230 0.213 0.258 0.329 

"&. Cost reduction 0.396 0.267 0.482 0.218 

"&0 Revenue increase 0.375 0.520 0.260 0.415 

 

Policy makers ranked environmental impact as the fourth most important criterion. The 

group weight on environmental impact of policy makers was 0.155, while that of growers, 

investors, and suppliers was 0.108, 0.110, and 0.110, respectively. According to policy makers, 

there are existing environmental regulations in place for greenhouse production. For example, 

the local agricultural bureau does not approve greenhouse projects that use coal for heating or 

do not recycle drain water. However, these assessments are typically performed at the initial 

stages of greenhouse projects. Environmental impact was the least or the second least important 

criterion for growers, investors, and suppliers. One investor stated, “If the additional costs of 

environmentally friendly technologies are not compensated by other entities, environmental 

impacts would be my least concern.” Nevertheless, some investors have recognised that 

environmental impact may become increasingly important in the future. Two investors 

mentioned that they have started greenhouse gas emission accounting for their greenhouse 

production, in anticipation of the possible extension of the cap-and-trade system, currently 

limited to the power generation sector, to the agricultural sector in China.  

Trialability was ranked as the second most important criterion among growers, while it was 

ranked the fourth or fifth for other stakeholders. This can be attributed to the fact that 

trialability is directly related to the implementation of technology, making it more relevant for 

growers, who are the end-users of technologies. During interviews, several investors indicated 

that they would only adopt technologies that have demonstrated benefits. In China, the 

government often takes the lead in introducing new agricultural technologies, typically through 

demonstration programs. Once there are sufficient successful use cases for a technology, the 

investors would not bother to conduct trials in their greenhouses before adopting it. One 

supplier also confirmed that many large-scale greenhouses in China do not typically conduct 

trials.  
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Observability was ranked second in importance for investors, suppliers, and policy makers, 

while it is of lesser importance (fourth) for growers. Growers indicated that their primary focus 

is yield and quality, and whether the technology has high observability is not a key concern for 

them. One investor raised the point that evaluating the benefit of a technology can be 

challenging if its effects are not easily observable for them as investors, who do not have 

specialised knowledge on agricultural production. One policy maker mentioned that 

observability is a primary factor to consider for the government when promoting innovative 

technologies.  

Complexity was the least important criterion for growers, a finding that differs from many 

previous studies on agricultural technology adoption (e.g., Aubert et al., 2012; da Silveira et 

al., 2023; Reichardt et al., 2009). This finding can be attributed to the unique sample of growers 

in our study, who work as managers in high-tech greenhouses, and most of whom have a 

bachelor's degree or higher. Several growers stated that learning new technologies is part of 

their job and that being able to master complex technologies is a demonstration of their 

professional competence. Complexity is also the least of policy makers’ concerns. According 

to one policy maker, modern farmers possess greater skills than farmers of the past, and when 

promoting greenhouse technologies, the government aims to support skilled farmers who can 

act as early adopters and knowledge disseminators within the farmer network. Among investors, 

complexity was ranked third in importance. One investor suggested that a complicated 

technology might incur indirect costs associated with employee training. Another investor 

expressed concerns about the sunk cost of the initial investment if employees were unable to 

master a complicated technology.  

Compatibility was one of the primary concerns for growers, suppliers, and policy makers, 

but was only ranked fifth among investors. Investors tended to believe that incompatibility 

issues can be easily solved. If the technology is incompatible with employees’ working routines, 

the problem can be addressed by establishing standard operating procedures for employees. 

Modifying the physical infrastructure is not a problem either, as the adjustment only needs to 

be made once, as long as the adjustment costs can be offset by the economic benefits of the 

technology. One supplier suggested that the importance of compatibility depends on the nature 

of the technology. For automation technologies, compatibility is not a major concern, but it is 

critical for sensors that deal with data. One grower confirmed that growers prefer to operate on 

one integrated data platform that has access to all sensor data. Furthermore, a policy maker 
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suggested that when they are promoting greenhouse technologies, they do not only focus on 

technologies that can be applied in high-tech greenhouses, but also consider the potential of a 

technology to be spread to solar or plastic greenhouses, which accounts for over 90% of the 

protected horticultural area in China.  

5.3.2 Performance scores of technologies on the given attribute   

Table 5.7. Performance scores and their rankings of technologies on the given criteria.  

Criteria Sap flow 

sensor 

Leaf temperature 

sensor 

Deleafing 

robot 

Harvesting 

robot 

Scouting 

robot 

"&& Initial investment 0.370 (2) 0.389 (1) 0.083 (4) 0.067 (5) 0.091 (3) 

"&. Cost reduction 0.082 (4) 0.080 (5) 0.274 (2) 0.389 (1) 0.176 (3) 

"&0 Revenue increase 0.207 (2) 0.195 (3) 0.160 (5) 0.169 (4) 0.269 (1) 

". Environment 0.166 (3) 0.198 (2) 0.125 (4) 0.108 (5) 0.403 (1) 

"0 Trialability 0.339 (2) 0.371 (1) 0.087 (4) 0.071 (5) 0.131 (3) 

"/ Observability 0.071 (5) 0.094 (4) 0.244 (2) 0.360 (1) 0.231 (3) 

"X Complexity 0.090 (5) 0.111 (4) 0.310 (1) 0.277 (2) 0.213 (3) 

"[ Compatibility 0.313 (2) 0.361 (1) 0.102 (2) 0.073 (5) 0.151 (3) 

Note: Rankings are shown in parentheses. 

Table 5.7 presents the score on each attribute of each technology. The leaf temperature sensor 

has the lowest initial investment costs, with one leaf temperature sensor costing less than 1000 

euros. The investment costs for sap flow and leaf temperature sensors are similar. Compared 

to sensors, robotic technologies are much more expensive. The initial investment costs of 

harvesting robots are higher than deleafing robots, and the initial investment of deleafing robots 

is higher than scouting robotics. According to experts, one harvesting robot costs between 

80,000 and 150,000 euros. Experts predicted a significant reduction in the cost of robotics in 

the future. They also anticipate that the business model of sensor and robotics producers will 

differ greatly. Robotics are more likely to be adopted based on a leasing model, where 

greenhouse firms do not need to purchase ownership of the robotics, but instead can lease them 

from agricultural equipment service providers. 

Labour costs typically make up a sizeable portion of the operating costs, and automation 

technologies are aimed at replacing human labour. Among the robotic technologies, the 

harvesting robot has the greatest potential for decreasing operating costs, followed by the 
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deleafing robot and scouting robot. This is because the labour requirements for harvesting are 

higher compared to deleafing and scouting. Sensors have limited capacity to reduce the 

operating costs of greenhouse production.  

All five technologies have the potential to increase the revenue of greenhouse production. 

The scouting robot can prevent production loss by detecting pests and diseases at an early stage, 

therefore increasing revenue. The sap flow sensor can provide better insights into crop 

development, possibly leading to higher yield and crop quality and thus higher revenue.  

All experts rated the scouting robot as the most environmentally friendly technology 

because of its ability to detect and prevent pests and diseases, leading to a reduction in chemical 

use. The deleafing robot could enhance environmental performance by performing more 

precise cutting than human labour, reducing the likelihood of diseases caused by inaccurate 

cutting and consequently reducing chemical use. The leaf temperature sensor has the potential 

to reduce greenhouse gas emissions generated from energy use, provided that growers can 

improve temperature management based on sensor data.  

Sensor technologies in general scored higher than robotics in terms of trialability. The 

installation of sap flow and leaf temperature sensors is relatively easy, by clipping them to the 

plant or positioning them above the canopy. Once upon installation, they simply generate data 

without affecting operations in the greenhouse. To a robot, especially the deleafing and 

harvesting robot, growers need to conduct multiple trials, row by row to evaluate its 

performance in their greenhouses. Among the robotic technologies, the scouting robot is the 

easiest to trial as it does not perform any actions on stems or fruits, making it less risky to trial. 

The harvesting robot received the lowest score for trialability. This is because if the harvesting 

robot fails to identify the correct cutting position, it risks damaging the main stem, which will 

result in the production loss of the entire stem.  

Robotic technologies generally scored higher than sensors on observability. The harvesting 

robot scored the highest on observability. The concept of the harvesting robot can be 

understood even by those who are not familiar with greenhouse production, whereas it is not 

the case for the deleafing robot. Sensors are much smaller in size and therefore less visible 

compared to robotics.  

According to experts, sensors generally scored lower on complexity than robotic 

technologies. Following the taxonomy of previous studies on precision agriculture, robotics 
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falls into the category of embodied knowledge technologies, while sensors are information-

intensive technologies (Miller et al., 2019). For robotics, the value of the technology is 

‘embodied’ within it, and it does not require specialized skills for end-users to make full use of 

the technology. However, for sensors, while they are easy to install, experts tend to believe that 

it is difficult for growers to translate the data generated by sap flow sensors into meaningful 

managerial decisions. Growers need to have good knowledge of plant physiology to fully 

leverage the data generated by sap flow and leaf temperature sensors. 

Robotic technologies are less compatible than sensor technologies because they require 

more modifications to the physical infrastructure of the greenhouse, such as the pipe-rail 

system or the power station. In contrast, sensors can be easily installed with little or no change 

to the greenhouse infrastructure. The harvesting robot received the lowest score for 

compatibility. To successfully integrate the harvesting robot, it requires additional 

modifications to the logistics system to enable the automatic grading and packing of fruit 

directly after harvesting. The scouting robot needs a computer connection to track its 

movements and record data on pests and diseases. 

5.3.3 Overall scores and credal rankings of technologies  

Table 5.8 displays the calculated overall performance scores and rankings, using the weights 

of the different stakeholder groups. In terms of the two sensor technologies, the leaf 

temperature sensor scored higher than the sap flow sensor across all stakeholder groups. The 

deleafing robot received the lowest overall performance score using the weights of all 

stakeholder groups. The harvesting robot received the highest score using the weight of 

suppliers, while the scouting robot obtained the highest score according to the weights given 

by investors.  

The credal rankings of the overall performance scores of the technologies for each 

stakeholder group are shown in Figure 5.3 to 5.6. The interrelation of the between technology 

performance is represented by direction and weight. From the grower’s perspective, the leaf 

temperature sensor and sap flow sensor were ranked first and second, respectively, among all 

technologies. The scouting robot was ranked third in terms of the overall performance score; 

however, the confidence of the sap flow sensor has a higher overall score than the scouting 

robot is only 0.57. The harvesting robot was ranked fourth on the overall performance score 

for growers. 
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Table 5.8. The overall performance scores and rankings of technologies of different stakeholder 
groups. 

Technology Grower Investor Supplier Policy maker 

Sap flow sensor 0.210 (2) 0.190 (4) 0.187 (4) 0.208 (3) 

Leaf temperature sensor 0.233 (1) 0.210 (2) 0.209 (3) 0.231 (1) 

Deleafing robot 0.168 (5) 0.181 (5) 0.185 (5) 0.166 (5) 

Harvesting robot 0.184 (4) 0.202 (3) 0.211 (1) 0.180 (4) 

Scouting robot 0.204 (3) 0.218 (1) 0.208 (3) 0.216 (2) 

 

 
Figure 5.3. Credal ranking on the overall performance of technologies – growers’ perspective. 

For investors, the scouting robot has the highest overall performance score, followed by the 

leaf temperature sensor. The confidence of the scouting robot has a higher overall score than 

the leaf temperature sensor is only 0.58; and the confidence of it has a higher overall score than 

the harvesting robot, the third-ranked technology, is 0.65. According to the overall performance 

score, the sap flow sensor is less interesting to investors compared to the scouting robot, leaf 

temperature robot, and harvesting robot.  
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Figure 5.4. Credal ranking on the overall performance of technologies – investors’ perspective. 

For suppliers, the harvesting robot, leaf temperature sensor, and scouting robot are the 

technologies with the three highest overall performance scores, and their scores are similar. 

The confidence between each pair of these three technologies is just above the 0.5 threshold. 

The sap flow and deleafing robot were the technologies with the lowest scores, and their scores 

were also similar.  

  
Figure 5.5. Credal ranking on the overall performance of technologies – suppliers’ perspective. 
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The leaf temperature sensor received the highest score calculated using the preferences of 

policy makers, followed by the scouting robot and sap flow sensor. The harvesting robot, which 

was ranked first among suppliers, was ranked only fourth among policy makers. The deleafing 

robot was ranked last in terms of the overall performance score for all stakeholder groups. 

  
Figure 5.6. Credal ranking on the overall performance of technologies – policy makers’ 

perspective  
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 Conclusions and discussion 

This study examined the heterogeneous preferences of different stakeholders regarding the 

adoption of innovative greenhouse technologies in China. Group weights for the six perceived 

attributes of the technologies were elicited using the Bayesian BWM. In addition, five 

innovative greenhouse technologies were evaluated by experts on the defined attributes using 

the same method. An overall performance score was developed to gain insight into the adoption 

and diffusion potential of these technologies.  

To our knowledge, this is the first study to provide a comprehensive evaluation of sensor 

and robotic technologies in a commercial greenhouse production setting. It contributes to 

bridging the gap between technology assessment and adoption by adopting an innovation-

oriented perspective. This approach emphasizes the factors that are crucial to successful 

technology diffusion, rather than limiting the evaluation to a narrow techno-centric view. By 

involving not only experts but also stakeholders involved in the technology adoption and 

diffusion process, the evaluation process aims to yield more robust results and incorporate 

richer perspectives compared to evaluations conducted solely by experts (Grunwald, 2009). 

This study contributes to the technology assessment literature by introducing a probabilistic 

evaluation score through the application of the Bayesian BWM. By combining stakeholder 

preferences and expert scores, both modeled as Dirichlet distributions, probability distributions 

of the overall performance scores of different technologies were obtained. This approach 

allows for a probabilistic ranking of technologies based on distributions, rather than relying 

solely on the absolute value of the scores. It offers a more nuanced understanding of the 

confidence relationship between technology performance. This approach is particularly 

suitable for early-stage assessment of technologies with limited information available.  

The findings offer insights to policy makers on designing effective policies to facilitate the 

ongoing digital transformation of the greenhouse sector in China. The heterogeneous 

preferences of stakeholders and technology performance underscore the need to tailor strategies 

for disseminating innovative technologies to accommodate the specific priorities of each 

stakeholder group. For example, to convince growers, the focus should be on showcasing the 

compatibility and trialability of technologies. This can be achieved through demonstration 

programs organized by policy makers and technology suppliers.  
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The findings on technology performance also hold relevance for other countries, as the 

available technologies and production environments in high-tech greenhouses are similar 

across countries. The high initial investment costs and limited trialability pose potential barriers 

to the adoption of robotic technologies. Technology developers should note the low ranking of 

the deleafing robot among all stakeholder groups, indicating the possible low acceptance in the 

future. To promote sensor technologies, which score low on observability, efforts should be 

made by extensionists and technology suppliers to provide growers and investors with access 

to information about these technologies. It is worth noting that although the leaf temperature 

sensor received high overall performance scores, its low complexity score suggests the 

possibility of disadoption after initial adoption. To ensure the continued adoption of sensors, 

comprehensive training programs should be offered by expansionists and technology suppliers 

to empower growers with knowledge and skills to fully leverage the values of sensor 

technologies.  

It is important to acknowledge that this study, like any quantitative study, has some inherent 

limitations. The results of the evaluation are highly dependent on the criteria included in the 

evaluation framework. In this study, the evaluation criteria are based on the DOI theory, which 

is widely used in agricultural innovation studies. However, it is important to recognize that the 

DOI theory cannot capture all the complexities of agricultural technologies. Lyytinen and 

Damsgaard (2001) criticized the completeness of the technology attribute list defined by the 

DOI and questioned whether all innovations can be adequately characterized using these 

attributes. It is worthwhile to consider additional criteria such as data safety (Shang et al., 2021), 

user safety (Hemming, 2020), social impact (Schimmelpfennig, 2016), which have been used 

in other studies focusing on digital technologies. 

The results of the assessment should not be seen as a replacement for decision-making, but 

rather as information to support the decision-making process. One challenge of technology 

assessment is the integration of multiple evaluation criteria, as highlighted by Grunwald (2009). 

Technology alternatives were often assessed based on various criteria, some of which are 

partially incommensurable. To achieve a comprehensive evaluation, these criteria need to be 

carefully weighted and aggregated. The overall performance score is a highly aggregated 

construct, calculated as the sum of weights multiplied by scores, which convert performance 

on disparate criteria to a common scale. The calculations are highly dependent on the specific 

weighting and aggregation procedure used, and the resulting weights are subjective to the 
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assumptions and subjective scaling procedures of the Bayesian BWM, which also determines 

how the quantitative results should be interpreted appropriately.  

Furthermore, this study is a “static” assessment and does not account for the dynamic nature 

of technological progress that may occur in the future. The technologies were evaluated based 

on their current cost and capabilities. However, sensor and robotic technologies evolve rapidly. 

For example, experts predict significant improvements in the speed and cost reduction of 

harvesting robots in the future. Additionally, the study evaluates technologies independently, 

without considering potential interdependencies between technologies. For example, an expert 

indicated that effective leave pruning is a prerequisite for the successful operation of harvesting 

robots. Future research could incorporate the dynamics of technological progress and consider 

technology bundles in their assessment.  

Nevertheless, these limitations do not diminish the value of this research. This study was 

based on a transparent evaluation procedure. By considering multiple criteria and taking into 

account the complex networks of stakeholders involved, this study provides valuable insights 

for technology assessment and offers a systematic and structured framework for evaluating 

technologies. 
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 Introduction 

The overall objective of this dissertation was to assess the economic feasibility of greenhouse 

investments and to identify greenhouse designs, as well as sensor and robotic technologies, that 

align with the preferences of multiple stakeholders. The ultimate goal was to contribute to well-

informed decision-making on investment and policy design in China’s greenhouse sector. More 

specifically, this thesis (1) developed a bio-economic model that assesses the economic 

feasibility of greenhouse production, taking into account input and output price uncertainty, (2) 

developed an optimization framework that identifies greenhouse designs that are optimally 

adapted to regional climatic and market conditions, considering the varying priorities of 

investors and policy makers for economic and environmental performance, (3) examined the 

impact of uncertainty in output price and the abolition of subsidy policies on the timing of 

investment in high-tech greenhouses, and (4) analysed the preferences of different stakeholder 

groups in China’s greenhouse sector for sensor and robotic technologies. 

This concluding chapter begins with a synthesis of the results. The implications of the thesis 

for business and policy makers are discussed in section 6.3. Section 6.4 reflects on the data and 

methods used in this thesis, followed by recommendations for future research. This chapter 

ends with the main conclusions of this dissertation.   

 Synthesis of the results 

6.2.1 Greenhouse investment under uncertainty 

Greenhouse investments are subject to many types of uncertainty. This paper has focused 

mainly on price and policy uncertainty, and this section discusses how price and policy 

uncertainty affect economic feasibility, optimal greenhouse designs, and the timing of 

greenhouse investments. 

Chapter 2 developed a bio-economic model that assesses the economic feasibility of 

greenhouse investment for tomato production. The model incorporated uncertainty in both 

input and output prices and generated the probability distributions of the Net Present Value 

(NPV) of investing in a greenhouse for tomato production for four locations in China using 

Monte Carlo simulation. The wide range of NPVs suggests that fluctuations in tomato and 

natural gas prices can significantly affect the economic feasibility of greenhouse investments, 

making their economic returns highly uncertain.  
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Specifically, in Jinshan, NPVs ranged from −829.4 ¥ m−2 at the 5th percentile to −355.5 

¥ m−2 at the 95th percentile, with a mean of −593.7 ¥ m−2. In Langfang, the range was from 

−301.2 ¥ m−2 at the 5th percentile to 347.8 ¥ m−2 at the 95th percentile, with a mean of 29.4 

¥ m−2. In Weifang, the NPVs ranged from −1231.0 ¥ m−2 at the 5th percentile to −705.8 ¥ m−2 

at the 95th percentile, with a mean of −957.8 ¥ m−2. In Pingliang, the range was from 182.0 

¥ m−2 at the 5th percentile to 749.3 ¥ m−2 at the 95th percentile, with a mean of 477 ¥ m−2. The 

analysis in Chapter 2 differs from previous studies that used deterministic prices for the 

economic evaluation of greenhouses (Naseer et al., 2021; Vanthoor et al., 2012; Xue, 2017). 

Price uncertainty also affects the choice of greenhouse design. While a greenhouse design 

may be considered optimal under a given set of prices, it may not remain optimal under 

different price scenarios. Chapter 3 identified the optimal greenhouse designs under three 

different price scenarios: the baseline scenario, the low tomato price scenario, and the high 

energy price scenario. The identified designs varied depending on the specific price scenario, 

highlighting the importance to consider price uncertainty when selecting greenhouse designs. 

This aspect has been largely overlooked in existing greenhouse design literature (e.g., Ghoulem 

et al., 2019; Golzar et al., 2021; Naseer et al., 2021; Vanthoor et al., 2012).  

Compared to price uncertainty, there is a relative dearth of studies addressing policy 

uncertainty in agricultural systems (Komarek et al., 2020). The scenario analysis in Chapter 2 

compared two scenarios: one without subsidy and another with a fixed subsidy level of 50% 

on the initial investment. However, subsidy policies can change over time. It is likely that the 

current subsidy scheme may be phased out in the future, introducing further uncertainty into 

greenhouse investment.  

Building upon the bio-economic model developed in Chapter 2, Chapter 4 examined the 

role of policy uncertainty in greenhouse investment decisions. Using a real options framework 

that simultaneously accounts both price and policy uncertainty, this chapter found that 

uncertainty about the phasing-out of the subsidy scheme significantly reduces the value of 

waiting and induces earlier investment. Moreover, an increase in the subsidy level could also 

reduce the value of waiting and encourage earlier investment, even without the risk of the 

subsidy being terminated. The combination of a high subsidy level and the signalling of subsidy 

termination could greatly reduce the value of waiting and prompt immediate investment. 

Contrary to earlier studies that concluded policy uncertainty generally leads to delayed 
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investment (Floridi et al., 2013; Purvis et al., 1995), our findings suggest that it can also induce 

earlier investment, a conclusion that aligns with Yanore et al. (2023a).  

6.2.2 Optimal greenhouse designs and technology evaluation  

The complexity of agricultural systems requires the engagement and coordination of multiple 

stakeholders (Kilelu et al., 2013; UNEP et al., 2023). In light of this, Chapters 3 and 5 adopted 

a multi-stakeholder approach. This section discusses how stakeholder preferences affect 

optimal greenhouse designs and evaluation of emerging technologies.  

Chapter 5 evaluated five sensor and robotic technologies for greenhouse operations, using 

the technology attributes defined in the Diffusion of Innovation theory. Four key stakeholder 

groups were identified: growers, investors, technology suppliers and policy makers. The 

elicitation of preferences revealed notable differences among these groups.  

For all stakeholder groups, the cost-benefit of technology was the most important attribute. 

Observability was the second most important attribute for investors, technology suppliers, and 

policy makers. Despite its importance, it has received less attention in the agricultural 

innovation literature compared to other attributes such as compatibility and complexity (Kante 

et al., 2017; Pathak et al., 2019). This underscores the potential need for more attention to this 

attribute in agricultural innovation studies. Compatibility of technology was the third most 

important attribute among growers, suppliers, and policy makers. The importance of 

compatibility on the adoption of agricultural innovation was supported by other studies (Aubert 

et al., 2012; Kante et al., 2017). Interestingly, growers ranked complexity of technology as the 

least important attribute, a finding that differs from previous research (Aubert et al., 2012; 

Reichardt & Jürgens, 2009; Robertson et al., 2012). This discrepancy is likely due to our unique 

sample: growers who predominantly hold a bachelor's degree or higher and work as managers 

in high-tech greenhouses. Policy makers are more concerned about the environmental impact 

of technology, ranked it fourth. In contrast, it was the least important among investors and 

technology suppliers.  

By combining stakeholder preferences with expert-rated technology scores for each 

attribute, an overall performance score was obtained for each technology. The deleafing robot 

obtained the lowest score across all stakeholder groups. The harvesting robot received the 

highest score when evaluated by suppliers’ preferences, while the scouting robot received the 

highest score based on the weights of investors. For the two sensor technologies, the leaf 
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temperature sensor consistently scored higher than the sap flow sensor across all stakeholder 

groups. These divergent outcomes clearly demonstrate that incorporating stakeholder 

preferences in technology assessment would result in different rankings of technology for 

different stakeholder groups.  

Stakeholder preferences were also taken into account in the selection of greenhouse designs 

in Chapter 3. According to Chapter 5, policy makers place greater emphasis on environmental 

impact than investors. Their varying priorities need to be considered when determining optimal 

greenhouse designs. To address this, Chapter 3 employed a directional distance function to 

assess the overall performance of greenhouse designs. Specifically, the relative importance of 

the economic and environmental dimensions of investors and policy makers, as elicited in 

Chapter 5, was incorporated into the directional distance function via the directional vector. By 

incorporating stakeholder preferences and addressing several objectives, this study 

distinguishes itself from previous greenhouse design optimization studies (e.g., Ghoulem et al., 

2019; Golzar et al., 2021; Naseer et al., 2021; Vanthoor et al., 2012), which typically focus on 

a single objective within a single stakeholder perspective. 

Chapter 3 identified a set of efficient greenhouse designs that are optimal for both investors 

and policy makers. Here, an “efficient design” was defined as one where neither an increase in 

revenue nor a reduction in greenhouse gas (GHG) emissions can be achieved without incurring 

additional fixed or operating costs. Notably, the identified optimal greenhouse designs differ 

from one region to another. This highlights the importance of adopting the “adaptive 

greenhouse” concept (Van Henten et al., 2006), which advocates for tailoring greenhouse 

designs to the specific climate and market conditions of each region. 

A general pattern in the efficient designs for all regions is that when sorted by the highest 

operating income, the efficient designs incorporated LED lamps with a light intensity of 200 

μmol m−2 s−1 coupled with CO2 dosing at a rate above 100 kg ha−1 h−1. Compared to High-

Pressure Sodium (HPS) lamps, Light-Emitting Diode (LED) lamps can achieve a higher annual 

operating income with less electricity consumption. However, lighting is also the primary 

contributor to GHG emissions. When sorted based on the lowest GHG emissions, designs 

without lighting were identified for Langfang and Pingliang. For Jinshan and Weifang, LED 

lighting is essential to ensure a positive operating income under the low tomato price scenario. 
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Fogging is the recommended means of cooling for all regions, provided that a cooling 

system is selected in the efficient designs. For Jinshan, the recommended design components 

include a Venlo-type structure with glass as cover material, a small-capacity boiler (1.16 MW 

ha−1), and transparent thermal screens. For Langfang, Weifang, and Pingliang, either a multi-

tunnel structure or a Venlo-type structure can be considered. Applying whitewash during the 

summer is not recommended, except for in Langfang. When sorting by lowest GHG emissions, 

the preferred choice for Pingliang is a multi-tunnel structure with double PE as cover material 

and double-layer thermal screens, probably due to the region’s cold winter and ample solar 

resources.  

 

 Business and policy implications 

6.3.1 Policy implications 

The findings of this dissertation present several implications for policy makers in designing 

new policies for China's high-tech greenhouse sector. This section summarizes the policy 

recommendations, focusing on subsidy policies and the non-financial support the government 

could provide to facilitate the development of this sector.  

Subsidy policies play an essential role in the development of the greenhouse sector. First, 

subsidies are crucial for ensuring the economic feasibility of greenhouse investments in 

specific regions (Chapter 2). Second, the availability and prospective phasing-out of subsidies 

could induce early investment in high-tech greenhouses (Chapter 4). These two observations 

might explain the initial surge in investments and subsequent abandonment of high-tech 

greenhouses during the early years: an investor who overestimates the economic return of a 

greenhouse investment and simultaneously anticipates the subsidy scheme to be short-lived 

may rush into an economically infeasible investment. Such investment behaviour could 

undermine the sustainable development of the sector. If an investment is discontinued, not only 

are sunk costs lost, but also valuable learning opportunities. High-tech greenhouse operations 

are complex and involve steep learning curves. Management experience and increased 

efficiency can sometimes only be gained through learning by doing (Foster & Rosenzweig, 

1995). To avoid such premature investments triggered by the anticipation of the subsidy 

scheme’s termination, the government could foster stable expectations among investors by 

clearly stating the conditions or the time frame for the phasing-out of such subsidies, or by 
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confirming the continuity of the subsidy scheme if it is intended to be permanent. Additionally, 

the government could explore alternatives to the existing lump-sum upfront subsidy, such as 

annual operational subsidies that are contingent on the sustained operation of the greenhouse. 

However, as this thesis did not delve into the impact of alternative subsidy forms, the discussion 

will not expand in that direction. 

The encouragement of regionally suitable greenhouse designs could be achieved through 

region-specific subsidy policies. Rather than subsidizing a broad range of climate control 

technologies, these policies should focus on technologies that are well-suited for individual 

regions. As outlined in Chapter 3, the suitable greenhouse designs vary across regions. For 

instance, the Venlo-type glasshouse was the most suitable structure for Jinshan. The multi-span 

greenhouse may be a more appropriate choice for regions like Langfang and Pingliang. Double-

layer thermal screens are advantageous in colder regions such as Langfang for energy-saving 

purposes. Moreover, LED lighting and CO2 enrichment should be promoted as a bundled 

technology due to their synergistic effect on enhancing economic returns.  

In addition to providing subsidies, the government can also support the growth of the 

greenhouse sector through various non-financial supports. Chapter 5 reveals that investors and 

suppliers often place little importance on the trialability of new technologies, stating that on-

farm trials are rarely conducted in commercial greenhouses. Consequently, the results of 

government-funded demonstration programs serve as information sources for them to learn 

about new technologies. Therefore, the government should invest more resources in technology 

demonstration and provide timely information to reduce uncertainty among stakeholders about 

factors such as yield and quality effects, input costs, and practical guidance on the use of the 

technologies.  

Energy prices significantly influence the profitability of greenhouse production, especially 

for greenhouses that rely on liquid natural gas (LNG) for heating (Chapter 2). Unlike pipeline 

natural gas, the end-user price of which is state-regulated and relatively stable, the prices of 

imported LNG are volatile (Paltsev & Zhang, 2015). One way to decrease energy costs is to 

utilize residual heat by locating greenhouses near facilities such as power generation factories. 

This strategy has already been implemented in some Chinese greenhouses. In the absence of 

residual heat, pipeline gas is a good alternative. However, this requires access to pipeline 

infrastructure, the construction costs of which may be prohibitive for many greenhouse 

investors. One approach is to cluster new greenhouses in areas in close proximity with existing 
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pipeline networks. Such agglomeration allows not only for cost-sharing of pipeline 

infrastructure, but also fosters knowledge-sharing and accelerates innovation, as observed in 

the Dutch horticulture sector (Korthals Altes & van Rij, 2013). It should be noted that the 

holistic planning of high-tech greenhouses cannot be accomplished by the Bureau of 

Agriculture and Rural Affairs alone. It requires coordinated efforts of multiple agencies, 

including the Bureau of Housing and Urban-Rural Development, which is responsible for 

planning and constructing urban natural gas pipeline networks (Dong et al., 2017).  

The results of Chapter 5 show that policy makers place higher importance on the 

environmental impacts of technologies than other stakeholders. During our interviews, several 

investors and growers indicated that they would give greater priority to the environmental 

impacts of technologies if there were more stringent regulations in place. Currently, regulations 

for China’s horticulture sector focus mainly on plastic film recycling, drainage recycling, waste 

disposal, and chemical use. There are no regulations on energy use or GHG emissions, except 

for a ban on the use of coal for heating. Research on the Dutch horticulture sector suggests that 

stricter environmental regulations have reduced the technical inefficiencies of greenhouse 

firms (van der Vlist et al., 2007). This finding may have implications for China’s greenhouse 

sector, especially concerning the use of lighting. LED lighting is not only more cost-effective, 

but also produces fewer GHG emissions than HPS lamps (Chapter 3). Despite these advantages, 

HPS lamps remain more widely used in Chinese greenhouses, probably due to their lower 

upfront costs. Implementing stricter regulations on energy use could potentially incentivize a 

shift towards LED lighting. This shift would be economically beneficial to greenhouse firms 

in the long term and would also make the sector more sustainable.  

If policy makers want to improve the monitoring of environmental impacts, they could 

establish national standard guidelines for assessing the environmental footprint of greenhouse 

firms. In 2017, Beijing introduced a regional guideline for the GHG emissions accounting of 

protected agricultural enterprises. The scope of this guideline is refined to emissions generated 

from the use of electricity, heat, fuel for machinery, and nitrogen fertilizer. When developing 

a national guideline, policy makers should consider whether to include additional stages, such 

as storage, packaging, distribution, and retailing, as these constitute a more complete life cycle 

of horticultural products. 
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6.3.2 Business implications 

In Chapter 5, interviews with investors indicated that before entering the greenhouse sector, 

they typically grapple with three questions: where should the greenhouse be located, which 

greenhouse design should be selected, and what are the expected economic returns? Chapters 

2 and 3 addressed these questions. Using a representative glasshouse design as a reference, 

Chapter 2 presented the probability distribution of NPV of a glasshouse investment for tomato 

production in four regions. Building on the bio-economic model developed in Chapter 2, 

Chapter 3 further explores the optimal greenhouse designs.  

Based on insights gained from Chapter 2 and 3, it is clear that the location matters. 

Pingliang’s year-round production cycle allows it to achieve higher yields with less gas use. 

When it comes to selecting a greenhouse design, the Venlo-type glasshouse seems to be the 

optimal choice for Jinshan. Meanwhile, both the Venlo-type and multi-tunnel plastic 

greenhouse are viable options for Langfang, Weifang, and Pingliang. In areas with cold winters 

and high energy prices, a double-layer thermal screen can be an optimal choice. For investors 

with abundant capital and stable sales channels, investing in LED lighting coupled with CO2 

dosing can greatly increase yield, leading to higher profit. It is worth noting that although HPS 

lighting is a more common option in Chinese greenhouses due to its lower upfront costs, when 

one accounts for its short lifespan and the higher electricity consumption, LED lighting is more 

economical in the long run.   

Seeking price differentiation based on product quality and safety is essential for ensuring 

high and stable revenues. Chapter 2’s break-even analysis indicates that a 20-40% increase in 

tomato prices could make a greenhouse investment in Jinshan and Weifang profitable, even in 

the absence of subsidies. Before committing to a greenhouse investment, investors should 

carefully evaluate their sales channels. Establishing a strategic alliance between greenhouses 

and retailers through agro-food supply chain integration could be a promising approach (Zhao 

et al., 2021). While some larger greenhouse firms in China have successfully established direct 

purchasing arrangements with retailers, not all have managed to do so. Another important 

consideration is access to affordable energy, especially for heat-loving crops such as tomatoes. 

By strategically locating the greenhouse near sources of residual heat or natural gas pipelines, 

investors can mitigate the risks associated with energy price fluctuations.   
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Sensors and robotics suppliers can develop market strategies aligned with the preferences 

of different stakeholders. For example, sensor technologies are characterised by a low 

observability, whereas investors and policy makers prioritize this characteristic (Chapter 5). 

This discrepancy may eventually hinder the adoption of sensor technology. To enhance the 

observability of their products, sensor suppliers could organize workshops and encourage early 

adopters to share their successful experiences. As the high initial cost of robotic technologies 

is likely to be a primary barrier to their adoption, a leasing model may be more acceptable than 

outright ownership. Growers are more concerned with the trialability and compatibility of a 

technology (Chapter 5). When approaching growers, suppliers should focus on these concerns. 

They could offer live demonstrations and provide additional support to help growers integrate 

these technologies seamlessly into their work routines. 

 Limitations and future research 

A variety of methods and data sources were used to achieve the research objectives of this 

thesis. This section reflects on the modelling choices, data and theory used and the 

methodological choices made in achieving the specific research objectives. 

The bio-economic model developed in Chapter 2 forms the foundation of the analysis 

throughout this dissertation. The INTKAM-KASPRO model has been validated for a wide 

range of climate conditions, including in Shanghai, China (Luo et al., 2005a). However, the 

model also has several assumptions which may not always hold in reality. The INTKAM model 

assumes that irrigation, fertilization, disease and pest control, and crop handling are managed 

optimally (Salm et al., 2023). Additionally, the model assumes the use of mature plant 

seedlings at the transplant stage, with the first flowers already appearing on the plant. This may 

not be the common practice in Chinese greenhouses. These assumptions could explain the gap 

between the model’s predicted yield and actual yield. This yield gap was accounted for in our 

analysis by applying a 5% loss rate on the predicted yield. In retrospect, this may have been 

underestimated, a loss rate of 10% or even a 15% loss rate may have been more realistic. 

Moreover, our analysis calculated revenue solely based on yield, while in commercial 

production, both yield and quality jointly determine the greenhouse revenue. A more realistic 

modelling approach could incorporate a tomato quality model into the biophysical model, as 

suggested by Vanthoor et al. (2011). 
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Economies of scale were not taken into account in the analysis of this dissertation. A study 

of Dutch greenhouse firms shows that the unit costs of energy, labour, and capital investment 

vary with the size of the greenhouse. Larger greenhouses usually have lower per unit energy 

costs and can obtain higher output prices (Los et al., 2019). The per unit labour and 

miscellaneous costs used in this dissertation were derived from the accounting data of a 1.4-ha 

greenhouse in China. Large greenhouses of more than 20 ha are emerging in China. The per 

unit costs of these larger greenhouses may differ from those used in this dissertation. Future 

studies could take into account economies of scale and further investigate the optimal size for 

greenhouse production in China. Such an analysis would require data from multiple greenhouse 

firms with detailed cost and production data for each firm. To our knowledge, no such dataset 

exists for the Chinese greenhouse sector.  

Following the publication of Chapter 2, feedback from two growers indicated that the 

tomato prices in the model were higher than what they received for their products. This 

discrepancy is likely to be due to the 50% premium added to 2021 tomato prices. The premium 

was included based on the assumption that tomatoes produced in high-tech greenhouses are 

premium varieties, which would be sold through high-end sales channels. However, this is not 

always the case. Not all greenhouse firms have access to high-end sales channels. Despite the 

potential limitation of overestimating tomato prices, this concern has been partially addressed 

by including a break-even analysis in Chapter 2 and by considering a low tomato price scenario 

in Chapter 3.  

This dissertation has partially captured the complexity of the behavioural components, with 

Chapter 4 focusing on strategic investment decisions under policy uncertainty and Chapter 5 

examining stakeholder preferences. However, the economic analysis in this dissertation 

contains assumptions that may not always mirror real-world investment behaviour. For 

example, the constant discount rate used in Chapters 2 to 4 assumes that investors have a 

constant time preference. However, empirically observed discount rates are often not constant, 

but appear to decline over time (Frederick et al., 2002). Greater descriptive realism can be 

achieved by relaxing the constant time preference assumption, for example by using hyperbolic 

discounting (Frederick et al., 2002). 

Chapter 2 presents break-even points determined by setting the expected NPV equal to zero, 

presuming that investors are risk-neutral. This may not necessarily represent the risk attitudes 

of real-world investors, as many Chinese agricultural decision-makers tend to be risk-averse 
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(Jianjun et al., 2015; Mao et al., 2019). Future work could delve into the risk attitudes of 

Chinese greenhouse investors. Incorporating risk aversion into the bio-economic model is 

relatively straightforward. The degree of risk aversion can be quantified through the Arrow-

Pratt coefficient of relative risk aversion (Pratt, 1964). When combined with the variance of 

the economic returns of greenhouse investment (which can be derived based on the probability 

distribution of NPVs), a risk premium associated with the investment could be calculated.  

The bio-economic model currently does not take into account growers’ adaptive 

management strategies in response to price risks. In practice, growers may adjust input levels 

based on the input and output prices they observed during the growth season. An empirical 

study shows that Dutch greenhouse growers adjust their climate management strategies to 

reduce energy use when energy prices are high (Los et al., 2021). Future studies could capture 

these nuances by incorporating dynamic greenhouse management strategies that respond to 

energy and tomato prices. 

Future work could investigate different forms of subsidy schemes and their impact on 

greenhouse investments. The subsidy scheme considered in this thesis is a lump-sum subsidy 

that is paid off at the beginning of a greenhouse investment. The Chinese government likely 

recognized the inefficiency of the current subsidy scheme. In 2020, the MOA of Beijing 

introduced a subsidy scheme based on the production outputs, but it is currently limited to 

traditional vegetable production farms. The National Development Plan for Modern Protected 

Agriculture (2023-2030) released in 2023 encourages local governments to implement reward-

based subsidies (known as 以奖代补). However, the plan does not provide clear details 

regarding the qualifying criteria for receiving these rewards.  

 Main conclusions 

• The economic feasibility of investing in a tomato greenhouse varies across regions due 

to differences in regional climate and market conditions. Considering a representative 

Venlo-type glasshouse, the mean NPV is 477.0 ¥ m−2 for Pingliang, −593.7 ¥ m−2 for 

Jinshan, 29.4 ¥ m−2 for Langfang, and −957.8 ¥ m−2 for Weifang (Chapters 2 and 3).  

• The economic feasibility of greenhouse investments is highly uncertain due to price 

and policy uncertainty. This is evident from the broad range of NPVs. Specifically, 

without subsidies, the NPV in Jinshan ranges from −829.4 ¥ m−2 at the 5th percentile to 

−355.5 ¥ m−2 at the 95th percentile. In Langfang, the range is from −301.2 ¥ m−2 at the 
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5th percentile to 347.8 ¥ m−2 at the 95th percentile. In Weifang, NPVs vary from −1231.0 

¥ m−2 at the 5th percentile to −705.8 ¥ m−2 at the 95th percentile. In Pingliang, the range 

is from 182.0 ¥ m−2 at the 5th percentile to 749.3 ¥ m−2 at the 95th percentile (Chapters 

2 and 4).  

• Subsidies exert a twofold impact on greenhouse investments, affecting not only the 

economic feasibility but also the timing of such investments. For example, a subsidy of 

50% of the initial investment costs could change the mean NPV of a tomato greenhouse 

investment in Jinshan from −593.7 ¥ m−2 to close to break-even. In addition, the 

expectation of a future phasing-out of a subsidy can create a strong incentive for early 

investment in greenhouses (Chapters 2 and 4). 

• The optimal greenhouse design differs by region in China. For Jinshan, the 

recommended design components include a Venlo-type structure with glass as cover 

material, a small-capacity boiler, and transparent thermal screens. For Langfang, 

Weifang, and Pingliang, either a multi-tunnel structure or a Venlo-type structure can be 

considered. Applying whitewash is not recommended, except for in Langfang (Chapter 

3). 

• The choices of lighting, structure, thermal screen, and CO2 dosing rate were among the 

most influential factors on operating income. Lighting is the primary contributor to 

GHG emissions, while the use of thermal screens can effectively reduce GHG 

emissions (Chapter 3).  

• The observability of technology is highly valued by investors, technology suppliers, 

and policy makers. Meanwhile, growers place a higher emphasis on the technology’s 

trialability and compatibility. Compared to other stakeholders, policy makers assign 

greater importance to the technology’s environmental impact (Chapter 5).  

• The deleafing robot received the lowest overall performance score across all 

stakeholder groups. The leaf temperature sensor has the highest overall performance 

score among growers and policy makers. The scouting robot and the harvesting robot 

received the highest overall performance scores among investors and suppliers, 

respectively (Chapter 5). 
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Summary  

Despite the rapid development, there is an ongoing debate about the economic feasibility of 

high-tech greenhouses in China. The designs of these greenhouses are often not adequately 

adapted to the local climatic and market conditions in China. Price and policy uncertainty adds 

further complexity to greenhouse investment decisions. As the greenhouse sector transitions 

towards increased digitalisation and automation, understanding the preferences of key 

stakeholders is essential to facilitate the further adoption and diffusion of emerging sensor and 

robotic technologies. The objective of this thesis was to assess the economic feasibility of 

greenhouse investments and to identify greenhouse designs, as well as sensor and robotic 

technologies, that align with the preferences of multiple stakeholders. 

Chapter 2 assessed the economic feasibility of a greenhouse investment for tomato 

production. Taking into account fluctuations in tomato and natural gas prices, a Monte-Carlo 

simulation approach was used to obtain the probability distributions of the Net Present Values 

(NPVs) of a representative Venlo-type glasshouse for cherry tomato production in four 

locations: Jinshan (East China), Langfang (North China), Weifang (East China), and Pingliang 

(Northwest China). The economic outcome for such an investment varies across regions, with 

a mean NPV of 477.0 ¥ m−2 for Pingliang, −593.7 ¥ m−2 for Jinshan, 29.4 ¥ m−2 for Langfang, 

and −957.8 ¥ m−2 for Weifang. The economic feasibility of greenhouse investments is highly 

sensitive to fluctuations in tomato and natural gas prices, as indicated by the wide distribution 

of NPVs.  

Chapter 3 identified several optimal greenhouse designs in terms of both economic and 

environmental performance for both policy makers and investors for the four locations in China. 

The bio-economic model developed in Chapter 2 was used to simulate the yield, energy use, 

and economic performance of different greenhouse designs. A genetic algorithm was used to 

explore the large solution space to reduce the computational effort. The overall performance of 

the greenhouse design was evaluated using a directional distance function, which incorporates 
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stakeholder priorities for economic and environmental performance through the directional 

vector. The results identify several greenhouse designs that were found to be efficient in terms 

of economic and environmental performance for both investors and policymakers across 

various price scenarios. The choices of lighting system, structure, thermal screen, and CO2 

dosing rate were among the most influential factors on operating income. Lighting is the 

primary contributor to GHG emissions, while the use of thermal screens can effectively reduce 

GHG emissions.  

Chapter 4 examined how the uncertainty in output prices and the potential phasing-out of 

the subsidy scheme affect the optimal timing of greenhouse investment in China. The study 

employed a real options approach and formulated the investment decision as an optimal 

stopping problem. The least squares Monte Carlo method was used to approximate the optimal 

investment timing and the value of waiting under various combinations of subsidy level, 

subsidy termination risk factor, and tomato price evolution process. The numerical illustration 

shows that uncertainty about the phasing-out of the subsidy scheme can significantly reduce 

the value of waiting and induce earlier investment. In addition, an increase in the subsidy level 

could reduce the value of waiting and encourage earlier investment. A combination of a high 

subsidy level and the signalling of subsidy termination can substantially reduce the value of 

waiting and create a strong incentive for early investment. 

Chapter 5 evaluated five sensor and robotic technologies based on the technology attributes 

defined in the Diffusion of Innovation theory. Four stakeholder groups, i.e., growers, investors, 

technology suppliers, and policy makers, were identified. The Bayesian best-worst method was 

used to elicit stakeholder preferences and expert-rated technology scores for each attribute. A 

probabilistic overall performance score for each technology was obtained by combining 

stakeholder preferences with expert-rated technology scores. Stakeholders present 

heterogeneous preferences for the technology attributes. The observability of technology is 

highly valued by investors, technology suppliers, and policy makers. Meanwhile, growers 

place a higher emphasis on the technology’s trialability and compatibility. Compared to other 

stakeholders, policy makers assign greater importance to the technology’s environmental 

impact. The deleafing robot received the lowest overall performance score across all 

stakeholder groups. The leaf temperature sensor has the highest overall performance score 

among growers and policy makers. The scouting robot and the harvesting robot received the 

highest overall performance scores among investors and suppliers, respectively. 
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The main conclusions of this thesis are: 

• The economic feasibility of investing in a tomato greenhouse varies across regions due 

to differences in regional climate and market conditions. Considering a representative 

Venlo-type glasshouse, the mean NPV is 477.0 ¥ m−2 for Pingliang, −593.7 ¥ m−2 for 

Jinshan, 29.4 ¥ m−2 for Langfang, and −957.8 ¥ m−2 for Weifang (Chapters 2 and 3).  

• The economic feasibility of greenhouse investments is highly uncertain due to price 

and policy uncertainty. This is evident from the broad range of NPVs. Specifically, 

without subsidies, the NPV in Jinshan ranges from −829.4 ¥ m−2 at the 5th percentile to 

−355.5 ¥ m−2 at the 95th percentile. In Langfang, the range is from −301.2 ¥ m−2 at the 

5th percentile to 347.8 ¥ m−2 at the 95th percentile. In Weifang, NPVs vary from −1231.0 

¥ m−2 at the 5th percentile to −705.8 ¥ m−2 at the 95th percentile. In Pingliang, the range 

is from 182.0 ¥ m−2 at the 5th percentile to 749.3 ¥ m−2 at the 95th percentile (Chapters 

2 and 4).  

• Subsidies exert a twofold impact on greenhouse investments, affecting not only the 

economic feasibility but also the timing of such investments. For example, a subsidy of 

50% of the initial investment costs could change the mean NPV of a tomato greenhouse 

investment in Jinshan from −593.7 ¥ m−2 to close to break-even. In addition, the 

expectation of a future phasing-out of a subsidy can create a strong incentive for early 

investment in greenhouses (Chapters 2 and 4). 

• The optimal greenhouse design differs by region in China. For Jinshan, the 

recommended design components include a Venlo-type structure with glass as cover 

material, a small-capacity boiler, and transparent thermal screens. For Langfang, 

Weifang, and Pingliang, either a multi-tunnel structure or a Venlo-type structure can be 

considered. Applying whitewash is not recommended, except for in Langfang (Chapter 

3). 

• The choices of lighting, structure, thermal screen, and CO2 dosing rate were among the 

most influential factors on operating income. Lighting is the primary contributor to 

GHG emissions, while the use of thermal screens can effectively reduce GHG 

emissions (Chapter 3).  

• The observability of technology is highly valued by investors, technology suppliers, 

and policy makers. Meanwhile, growers place a higher emphasis on the technology’s 

trialability and compatibility. Compared to other stakeholders, policy makers assign 

greater importance to the technology’s environmental impact (Chapter 5).  
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The deleafing robot received the lowest overall performance score across all stakeholder 

groups. The leaf temperature sensor has the highest overall performance score among growers 

and policy makers. The scouting robot and the harvesting robot received the highest overall 

performance scores among investors and suppliers, respectively (Chapter 5).
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