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Lettuce (Lactuca sativa L.) is a leafy vegetable crop with ongoing breeding efforts related to quality, resilience, and innovative production 
systems. To breed resilient and resistant lettuce in the future, valuable genetic variation found in close relatives could be further 
exploited. Lactuca virosa (2x = 2n = 18), a wild relative assigned to the tertiary lettuce gene pool, has a much larger genome 
(3.7 Gbp) than Lactuca sativa (2.5 Gbp). It has been used in interspecific crosses and is a donor to modern crisphead lettuce cultivars. 
Here, we present a de novo reference assembly of L. virosa with high continuity and complete gene space. This assembly facilitated com-
parisons to the genome of L. sativa and to that of the wild species L. saligna, a representative of the secondary lettuce gene pool. To 
assess the diversity in gene content, we classified the genes of the 3 Lactuca species as core, accessory, and unique. In addition, we 
identified 3 interspecific chromosomal inversions compared to L. sativa, which each may cause recombination suppression and thus 
hamper future introgression breeding. Using 3-way comparisons in both reference-based and reference-free manners, we show that 
the proliferation of long-terminal repeat elements has driven the genome expansion of L. virosa. Further, we performed a genome- 
wide comparison of immune genes, nucleotide-binding leucine-rich repeat, and receptor-like kinases among Lactuca spp. and indicated 
the evolutionary patterns and mechanisms behind their expansions. These genome analyses greatly facilitate the understanding of gen-
etic variation in L. virosa, which is beneficial for the breeding of improved lettuce varieties.
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Introduction
Lettuce (Lactuca sativa L.) is a crop with an economic value of ∼3 
billion USD per year (Food and Agriculture Organization of the 
United Nations 2019). To develop better lettuce cultivars, breeders 
often search for novel genetic variations in lettuce wild relatives. 
Lactuca virosa (biennial) is a donor for resistance to different pests 
and pathogens and a representative species in the lettuce gene 
pool (Maisonneuve et al. 1991, 2018; Maisonneuve 2003; Parra 
et al. 2016). The exploitation of L. virosa for lettuce breeding has 
had both challenges and successes. For example, despite repro-
ductive barriers for direct intercrossing with lettuce, breeders 
and scientists were able to execute interspecific hybridization 
bridged by L. serriola to introduce traits like robust root architec-
ture and resistance to currant-lettuce aphid, downy mildew, 
and viruses (Thompson and Ryder 1961; Eenink et al. 1982; 
Maisonneuve et al. 1995). Such interspecific crosses are part of 

the breeding pedigrees of the well-known cultivars Vanguard 

and Salinas, representing modern crisphead lettuce cultivars 

(Mikel 2007, 2013). Novel introgressions of desired genes and traits 

from L. virosa into cultivated lettuce could be realized through an 

improved understanding of its genomic content.
A reference genome and derived molecular markers are essen-

tial for breeders to select traits accurately and trace introgressions 

in cultivated lettuce from L. virosa. For example, genome-wide asso-

ciation studies (GWAS) have been performed to identify SNP var-

iants (Mikel 2013) that are associated with interesting traits in 

lettuce (Walley et al. 2017; Sthapit Kandel et al. 2020; Simko et al. 
2022) using the assembled lettuce (L. sativa) reference genome 

(Reyes-Chin-Wo et al. 2017), which can be used to develop markers 

for lettuce breeding to accelerate selection in offspring (Simko 

2013). In addition to GWAS, a reference genome of L. virosa will 

also facilitate genomic analyses for various biological questions. 
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A whole-genome screening can search genetic determinants, for 
instance, that trigger a resistance response. Genome rearrange-
ments can be detected between L. virosa and other Lactuca species 
via comparative genomics.

The creation of a reference genome for L. virosa is challenging, 
because, even though it is a diploid species (2n = 2x = 18), it has a 
considerably larger genome (3.7 Gbp) than L. sativa (2.5 Gbp) and 
L. saligna (2.3 Gbp) (Doležalová et al. 2002). This is likely due to 
transposable elements (TEs) (Wendel et al. 2016). To date, there 
is only a single available genome assembly of L. virosa 
(CGN04683) (Wei et al. 2021), which is a short-read based and high-
ly fragmented assembly (3,694,810 scaffolds; N50 = 4,910 bp) with 
relatively high completeness (BUSCO (Benchmarking Universal 
Single-Copy Orthologue) = 92.7%). Long-read sequencing could 
significantly improve the accuracy and continuity of a L. virosa 
genome assembly.

Here, we present a near chromosome-level de novo assembly 
of L. virosa (CGN04683) using a combination of long-read and 
short-read sequencing plus Bionano and Dovetail scaffolding. 
We contextualize the L. virosa genome within the lettuce gene 
pool together with the L. sativa and L. saligna (Xiong et al. 2023) gen-
omes. First, we show shared and specific homology groups across 
the 3 species. Based on homologs, we show interspecific collinear-
ity with an emphasis on inversions in different chromosomes. 
Next, we demonstrate that the proliferation of long-terminal 
repeat (LTR) superfamilies underlies the genome expansion of 
L. virosa. Finally, we describe a well-classified inventory of the 2 
important resistance-related gene types encoding nucleotide- 
binding (NB) leucine-rich repeat (NLR) receptors and receptor-like 
kinases (RLK).

Materials and methods
DNA and RNA sequencing
L. virosa accession CGN04683, is also known as IVT280 and is resistant 
to Nasonovia ribisnigri (currant-lettuce aphid) (Eenink et al. 1982). 
Single seed descent of accession “IVT280” (seeds obtained from a 
breeding company) was grown for whole-genome sequencing. The 
seeds were stratified at 4°C for 3 days to improve germination. 
Subsequently, seedlings were grown in a growth chamber at 18–21°C 
and a relative humidity of 75–78%. After 8 weeks, plants were 
transplanted to larger pots containing potting soil and grown 
under greenhouse conditions. Tissue sampling was performed 
when plants were close to bolting, and DNA was extracted using 
the same protocol described in Xiong et al. (2023). DNA material 
was used to prepare libraries with the SMRTbell Template Prep 
Kit 1.0 and SMRTbell Damage Repair Kit. For library construction, 
we used the Procedure & Checklist –Preparing >30 kb SMRTbell 
Libraries Using the Megaruptor Shearing and BluePippin 
Size-Selection System. Then, we produced a 20-fold coverage of 
long-read data generated by PacBio Sequel technology using 20 
SMRT cells. For the Illumina data, the Illumina TruSeq DNA 
Sample Preparation kit was used. Then, mechanical DNA shearing 
using Covaris E210, Illumina TruSeq DNA Sample Preparation 
Guide. Flowcell cluster generation was done using an Illumina 
cBot device, sequencing was done using an Illumina HiSeq2000 
platform. We used an insertion size of 500 bp and a read length 
of 125 bp to obtain a 69-fold coverage of paired-end (PE) reads. 
An optical mapping library of 130 ×  coverage was produced by 
Bionano mapping for hybrid scaffolding. For Bionano, DLE-1 
(Direct Label Enzyme) labeling enzyme was used at a density of 
17.54/100 kbp. The Bionano Genomics Direct Label and Stain 
(DLS) Kit was used and 30206-Bionano-Prep-Direct-Label-and- 

Stain-DLS-Protocol_rev D was used for library construction. A 
Hi-C library produced by Dovetail Genomics provided 10,492 ×  
physical coverage of the genome (10 kbp–10 Mbp pairs) for in vi-
tro proximity ligation (Supplementary Table 1). Finally, 10X se-
quencing was performed as well with the DNA material (150 bp 
read length). For this, we used the Chromium Genome Library, 
Gel Bead & Multiplex kit. Libraries were subsequently con-
structed using the Chromium Genome Reagent Kits User Guide, 
using a 10X Genomics Chromium controller. As additional evi-
dence for gene prediction, RNA was isolated from pooled samples 
of leaf, root, and flower tissues (pooled from different floral stages) 
using a Direct Zol RNA Miniprep Plus kit (Zymo Research) followed by 
treatment with DNAse. RNA was purified by ethanol precipitation. 
The concentration and purity of RNA samples were measured with a 
Nanodrop 2000c spectrophotometer and a Qubit 4.0 fluorometer using 
an RNA Broad Range assay (Thermo Fisher Scientific). PE sequencing 
(2 × 125 bp) was performed on an Illumina HiSeq2500 platform 
(Supplementary Table 1). All library preparation, construction, 
and sequencing were performed in-house at the genomics facility 
of Wageningen University and Research Business Unit Bioscience.

Genome assembly and annotation process
Genome size estimation
After trimming, PE Illumina reads of L. virosa were used for gen-
ome size estimation (∼1,590 million reads; ∼183 Gb). Jellyfish 
v2.3.0 was used with a k-mer size of 21 to count k-mer frequencies 
(maximum 1 million count) (Marçais and Kingsford 2011). The 
Jellyfish output was used by GenomeScope (v1.0) to estimate hap-
loid genome length, percentage of repetitive DNA, and heterozy-
gosity of the L. virosa genome (Ranallo-Benavidez et al. 2020).

Genome assembly
PacBio reads were assembled using Canu (v1.3) and then polished 
by Pilon (v1.20) using Illumina data (Walker et al. 2014; Koren et al. 
2017). Then, we performed hybrid scaffolding for the assembly 
using the Bionano optical mapping data with the Bionano solve 
software. Mis-joins in assembled contigs were corrected using the 
HiRise pipeline with the Hi-C data (Putnam et al. 2016). Since the re-
sulting assembly of Hi-C scaffolding was only 75.2% BUSCO complete, 
the publicly available—but highly fragmented—assembly for L. virosa 
(Wei et al. 2021) was used to augment the completeness of our assem-
bly. The newly generated PE Illumina reads were trimmed before 
use with Trimmomatic v0.39 ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 (Bolger 
et al. 2014), and the barcodes of the 10X mate pairs were stripped 
with Longranger v2.2.2 basic. Before combining the assemblies, we 
first polished our assembly for a second time with the PE Illumina 
reads and the 10X mate pair reads (treated as single-end reads) using 
Pilon v1.24 –changes –diploid –fix all (Walker et al. 2014). Mapping of 
sequencing reads for combining these 2 assemblies was performed 
with bwa-mem2 v2.2.1 (Vasimuddin et al. 2019). Next, we combined 
our assembly with all sequences >1 kb in the Wei et al. (2021) assem-
bly by concatenating the 2 genome assemblies. We then aligned all PE 
Illumina and 10X data to the combined genome. The coverage of this 
data was used to get the best haplotype representation of the com-
plete genome with purge_haplotigs v1.1.1 (cutoffs were 10, 85, 180) 
(Roach et al. 2018). Since the number of sequences in the resulting as-
sembly increased from 29 to 54,814, we applied several filtering steps 
to reduce the number of small, uninformative sequences. We filtered 
out possible mitochondrial and plastid sequences by blasting (BlastN) 
all sequences to the mitochondrial and plastid NCBI databases 
(dd. 2021 August 3). We filtered out non-Viridiplantae sequences as 
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identified by a Blastn search against the NCBI database. Then, we po-
lished the newly added sequences using the same method we used to 
polish our original genome assembly before (with Pilon v1.24). Based 
on coverage of PE Illumina and 10X data, we used purge_haplotigs to 
check whether any duplications were introduced, but since this was 
not the case, we did not apply purge_haplotigs a second time. For 
scaffolding the newly added sequences, we mapped the original 
PacBio data to the genome with minimap2 v2.21-cxmap-pb 
(Li 2018). Scaffolding was done with LRScaf v1.12-misl 3-t mm 
(Qin et al. 2019). To keep only potential gene coding sequences, we 
mapped the RNA-seq data with STAR v2.7.7a (Dobin et al. 2013) and 
removed all sequences lacking a single alignment. Finally, we also re-
moved all sequences smaller than 5 kb.

Assessment of genome completeness
Genome and proteome (annotation) completeness were assessed 
using BUSCO v5.2.0 with the “eudicots_odb10” dataset (Manni et al. 
2021). K-mer completeness was assessed with KAT v2.4.1 with a 
k-mer value of 31 (Mapleson et al. 2016).

Repeat annotation
To annotate the repetitive elements in the L. virosa genome, a cus-
tom library was created by combining different sources: a de novo 
library of TEs created by RepeatModeler (v2.0.1) with -LTRStruct 
parameter, a de novo library of miniature inverted-repeat trans-
posable elements (MITEs) searched by MITE-hunter, and a specific 
database for the genus Lactuca extracted from a combined data-
base of Dfam (20170127) and Repbase (20170127) (Han and 
Wessler 2010; Bao et al. 2015; Hubley et al. 2016; Flynn et al. 
2020). Then, RepeatMasker (v4.0.7) was used to soft mask the 
L. virosa genome assembly (Smit et al. 2019). The same pipeline 
was also applied to create a TE library and mask the genome as-
sembly of L. saligna version 4 (PRJEB35809) and L. sativa version 7 
(GCF_002870075.2), which were used in reference-based repea-
tome comparison. The 3 generated TE libraries were used for a 
reference-free approach to TE classification (see Individual and 
comparative clustering analysis of repetitive elements below). 
The RepeatMasker outputs were further processed to summarize 
the different categories of repeat elements. Moreover, the LTR 
elements were extracted from the cross_match output of 
RepeatMasker and compared to the genome to determine their re-
lationship to the genetic regions using bedmap in BEDOPS toolkit 
(v2.4.40) (Neph et al. 2012).

Gene prediction
Protein-encoding genes in the nuclear assembly were annotated 
using MAKER2, which combines de novo gene prediction and 
homology prediction (Holt and Yandell 2011). rRNA reads were fil-
tered out from the RNA-seq data by SortMeRNA version 4.3.4 
(Kopylova et al. 2012) using all databases to remove noncoding 
rRNA. Subsequently, HISAT2 (v2.2.1) was applied to map the re-
maining RNA-seq reads to the final genome assembly, which in-
cludes nuclear sequences, the mitochondrion assembly of 
CGN013357 (MZ159960.1), and plastid assembly of TKI-404/ 
CGN04683 (CNP0000335 on Chinese National GeneBank (CNGB)) 
(Kim et al. 2015; Fertet et al. 2021; Wei et al. 2021). The alignment 
to the nuclear sequences was used as input to BRAKER (version 
2) and Stringtie (v2.1.6) to conduct de novo gene prediction and 
transcriptome assembly, respectively, both with default settings 
(Pertea et al. 2015; Hoff et al. 2016). The protein alignment was 
done by BLAST in MAKER2 during the integration with protein da-
tabases of A. thaliana (Araport11), L. sativa, Helianthus annuus 
(HA412.v1), and Uniprot (SwissProt set only: release-2019_10). 

The predicted transcripts were then filtered using the following 
criteria: eAED >0.9 (computed by MAKER2), protein length <50, 
identical isoforms, and missing start and stop codon.

Functional annotation
Potential biological function of proteins was inferred using 3 cri-
teria: (1) best-hit matches in SwissProt, TrEMBL using DIAMOND 
version 2.0.14 at E-value cutoff of 1e-5 (Buchfink et al. 2015); (2) 
protein domains/structure identified by InterProscan 5.53–87.0 
against the Pfam, Coils, Gene3D, PANTHER, SUPERFAMILY, 
ModiDBLite, and TIGRFAM databases (Zdobnov and Apweiler 
2001; El-Gebali et al. 2019); and (3) orthology searches for pathway 
information were conducted by Kofamscan (Aramaki et al. 2020) 
using a customized HMM database of KEGG orthologs (Kanehisa 
2000) with an E-value cutoff of 1e-5.

Homology analysis
Gene space analysis
To enable a comparison between L. virosa, L. saligna, and L. sativa, 
we used PanTools v3.4.0 (Jonkheer et al. 2022) to calculate homolo-
gous relationships in a predicted panproteome of these 3 species. 
We used the longest isoform for each gene. Based on an optimal 
distribution of BUSCO genes, we decided to use “pantools group 
-rn 2” for homology grouping. Subsequent gene classification of 
the homology groups was also done with PanTools. The number 
of shared groups was visualized with ComplexUpset (Krassowski 
2020). Functional enrichment analyses were performed and vi-
sualized for the unique sets of genes with ClusterProfiler v3.18.1 
(Yu et al. 2012).

Synteny detection
MCScanX (Wang et al. 2012) was utilized to detect syntenic blocks 
(default settings) among the 3 Lactuca species using the calculated 
homology groups from PanTools v3.4.0. The interspecific collinea-
rities were visualized using SynVisio (Bandi and Gutwin 2020). 
MCScanX was run a second time to detect the tandem arrayed 
genes using DIAMOND (version 2.0.14) on proteomes for each 
species.

Individual and comparative clustering analysis of 
repetitive elements
RepeatExplorer2 on a Galaxy server was used (https:// 
repeatexplorer-elixir.cerit-sc.cz/) to conduct individual and com-
parative clustering of Illumina PE reads (all trimmed to a length 
of 120 bp) for 3 Lactuca species (L. sativa, L. saligna, and L. virosa) 
(Novák et al. 2020). Resequencing data of these 3 Lactuca species 
were retrieved from the European Nucleotide Archive (ENA) data-
base (PRJEB36060). Trimmed FASTQ reads were converted to 
FASTA format and interlaced before the clustering analysis. In 
addition, a 4-letter prefix identity code was added to each sample 
dataset (i.e. Lsat for L. sativa, Lsal for L. saligna, and Lvir for L. vir-
osa). After a preliminary round, each set of reads was randomly 
subsampled with the same proportion to maximize the repeat de-
tection and annotation accuracy. For individual analysis, reads re-
presenting 20% of the genome size were separately clustered for 
each Lactuca species (i.e. genome proportion = 0.2X, L. sativa =  
4,166,668 reads, L. saligna = 3,833,334 reads, and L. virosa =  
6,166,668 reads). For comparative analysis, a mixed dataset of 
reads equal to 0.07 ×  depth for all species were clustered at 
once (i.e. genome proportion = 0.07 ×, L. sativa = 1,307,006 reads, 
L. saligna = 1,420,966 reads, and L. virosa = 2,103,018 reads). For 
both analyses, the reads were clustered based on the default 
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settings (90% similarity, 55% coverage), and clusters containing 
more than 0.01% reads were classified at a supercluster level.

After clustering, repeat reads were annotated based on a simi-
larity search to REXdb (protein domain in retrotransposons, 
Viridiplantae version 3) (Neumann et al. 2019) using BLAST on 
the Galaxy server. Additionally, the custom libraries previously 
created by reference-based searches were utilized as an addition-
al custom library to further annotate the repeat clusters (see pre-
vious section: Repeat annotation). After annotation, clusters from 
plastid and mitochondrial origins were identified and excluded for 
downstream analysis. Next, we quantified different TE categories 
based on clusters and their connections to superclusters. To char-
acterize the interspecific difference, the clusters resulting from 
the comparative analysis were sorted via hierarchical clustering 
(ward.D2) using transformed read number [log2(count + 1)] in 
each cluster for every species.

Analysis of immune gene repertoire
NLRs were searched for in the predicted proteomes of L. virosa and 
L. sativa, and retrieved from the L. saligna genome (Xiong et al. 
2023). HMMER v3.3.2 (Finn et al. 2011) was used to search Hidden 
Markov Models (HMMs) profiles obtained from Pfam or the UC 
Davis database for structural domains of NLR proteins (E-value 
cutoff = 1e-10): PF00931.23 and NBS_712.hmm (https://niblrrs. 
ucdavis.edu/At_RGenes/HMM_Model/HMM_Model_NBS_Ath.html) 
for the NB domain; PF01582.20 and PF13676.6 for TIR (TOLL/ 
interleukin-1 receptor); PF05659.11 and PF18052.1 for CC (coiled- 
coil); and 8 HMMs for the LRR (leucine-rich repeat) domain 
(PF00560.33, PF07723.13, PF07725.13, PF12799.7, PF13306.6, 
PF13516.6, PF13855.6, PF14580.6). Furthermore, NB and LRR do-
mains identified by InterProScan (see Functional annotation), 
and CC motifs predicted by Paircoil2 (P scores <0.025) were com-
bined with the HMMER output (Zdobnov and Apweiler 2001; 
McDonnell et al. 2006). The identified NLRs were classified as 
TNL [Toll-interleukin-1 receptor-like NB site Leucine-rich repeat 
(NBS-LRR)] or CNL [Coiled Coil (CC), Resistance to powdery mil-
dew8 (RPW8), or potato R protein domain (Rx_N) NBS-LRR] based 
on the presence of either the TIR or CC domain, respectively. To 
further solve the unclassified NLRs (TNL or CNL), a phylogenetic 
tree for amino-acid (aa) sequences with NB domains was con-
structed. First, aa sequences were aligned using HmmerAlign 
(Finn et al. 2011). The alignment was then trimmed by trimAl using 
-automated1 mode and retained 727 residues for phylogenetic 
construction (Capella-Gutiérrez et al. 2009). A maximum- 
likelihood (ML) tree was inferred by IQTREE version 1.6.12 (-m 
PMB + F + R10) with 1,000 ultrafasta bootstrap (UFBoot) replicates 
(Nguyen et al. 2015). The phylogenetic tree was visualized and an-
notated using iTOL v6 (Letunic and Bork 2021).

An Inventory of RLKs was also performed for L. virosa and 
L. sativa. First HMMER (v3.3.2) was used to search the Pkinase do-
main (PF00069; E-value cutoff = 1e-10). Then, proteins containing 
Pkinase were examined for the existence of extracellular domains 
using HMMER (E-value cutoff = 1e-3) and transmembrane regions 
using TMHMM (v2.0) and SCAMPI (v2) (Krogh et al. 2001; Peters 
et al. 2016).

Results and discussion
Genome assembly and annotation
We created a complete and structurally informative genome as-
sembly for L. virosa with a total length of 3.45 Gbp (Table 1). 
Based on a k-mer analysis of Illumina data, we estimated the gen-
ome size to be 3.3 Gbp with 73% repeat content and 0.169% 

heterozygosity rate (Supplementary Fig. 1). This predicted size 
was lower than the previously measured C-value (3.7 Gbp) 
(Doležalová et al. 2002), which might be caused by the large repeat 
content of L. virosa (Ranallo-Benavidez et al. 2020). The long-read 
assembly was based on PacBio and Illumina data and scaffolded 
using Bionano and Hi-C data. The longest 12 scaffolds out of the 
29 scaffolds comprised 99.8% of the total length (3.3 Gbp) of this 
first assembly, yet not all chromosomes were reconstructed in 
full. Therefore, we completed the assembly through additional 
polishing and leveraging the fragmented, short-read-based gen-
ome assembly of the same L. virosa accession (Wei et al. 2021) 
which we combined in a nonredundant way (Supplementary 
Data 1 and Supplementary Figs. 2b and 2d). The final combined as-
sembly consisted of 5,855 contigs spanning a total of 3.45 Gbp with 
an N90 score of 116,478,781 and an L90 score of 10 (Supplementary 
Fig. 2c and Table 2). The BUSCO completeness score was 96.2% 
(the duplication score was 4.5%; Supplementary Table 3 and 
Fig. 2d).

Based on both expression and orthology evidence, 39,887 
protein-coding genes with a total of 42,791 transcripts were anno-
tated. We mapped RNA-seq data from root, leaf, and flower tissue 
to the genome assembly to support de novo gene prediction. Next, 
we aligned protein sequences of model plant species to the gen-
ome and used MAKER for merging all gene predictions. We filtered 
the predicted genes to only retain annotations that were in ac-
cordance with the provided evidence. The BUSCO score on the 
resulting proteome was 90.2%, indicating a high level of complete-
ness. Furthermore, we were able to predict functional domains in 
93% (37,106) of the genes for various databases (Supplementary 
Table 4 and Data 2a and 2b). This structural and functional anno-
tation is vital for the biological interpretation of L. virosa data.

Homology grouping of 3 representative Lactuca 
spp.
Even though the genome size of L. virosa is substantially larger 
than L. sativa and L. saligna, the number of genes annotated across 
species was similar (Table 1). A comparison of L. virosa with L. sal-
igna and L. sativa showed that about half of the homology groups 
are shared across Lactuca (Fig. 1; Supplementary Data 2c). These 
17,741 homology groups in Lactuca contained 19,270 L. virosa 
genes, meaning that about half of the L. virosa genes are part of 
the core Lactuca genome. This is comparable to what was found 
in other interspecies comparisons. For example, in rice ∼62% of 
core genes were reported between 2 species (Zhao et al. 2018), 
and in Raphanus, ∼50% of core genes were reported among 11 ac-
cessions belonging to 2 species (Zhang et al. 2021). Both L. virosa 
and L. saligna share fewer homologous genes with each other 
than with L. sativa. This stresses the importance of wild species 
in breeding as they contain a large pool of novel genes. The large, 
unique genomes of both L. virosa and L. saligna indicate that these 
wild species are rich sources of genetic diversity that thus far has 
been unexploited for lettuce breeding. We performed a functional 
annotation for the proteomes of the 3 species with InterProScan to 
perform functional enrichment for the unique content of L. virosa 
(15,048 genes; Supplementary Data 2d). The InterProScan domain 
enrichment found disease resistance proteins to be among the set 
of significantly enriched domains (Supplementary Fig. 3). 
Therefore, the genome of L. virosa is a resource for potential novel 
genes needed for resilience breeding in lettuce.

Furthermore, it will be relevant to sequence and produce high- 
quality assemblies of other wild relatives of lettuce, such as 
L. georgica, L. serriola, and L. aculeata, to obtain an overview of the 
entire Lactuca gene space (Wei et al. 2021; Guo et al. 2023). Using 
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high-quality genetic resources will enable the construction of a 
comprehensive pangenome that covers the variation in the genus 
Lactuca.

Synteny detection between 3 Lactuca spp. via 
comparative genomics
By synteny detection of homologous pairs, we identified major 
chromosomal inversions between the 3 Lactuca genomes. 
Overall, there was whole-genome collinearity (synteny) among 
Lactuca species (Fig. 2). Based on the collinearity, we determined 
the major 12 scaffolds that comprised 96% (3.30 Gbp) of the total 
genome assembly (Supplementary Table 5). Compared to the 
L. sativa genome, 3 species-specific inversions were identified on 
different chromosomes (Fig. 3). Two of the 3 inversions that 
were previously described between L. saligna and L. sativa were va-
lidated and further characterized: one is specific to L. saligna on 
Chr5 and one is specific to L. sativa on Chr8 (Xiong et al. 2023). 
Furthermore, synteny also revealed a large inversion specific to 
L. virosa on tentative Chr7 (Scaffold8) (Fig. 3; Supplementary 
Table 5). These inversions could hamper genetic mapping of inter-
esting traits and further introgression. The syntenic patterns be-
tween L. virosa Chr9 (scaffold7) and the other 2 species showed 

complicated inverted and translocated regions, which might be 
due to a reversed joining indicated by the mapping of Hi-C data 
(Supplementary Fig. 4).

Comparative repeatomics between 3 Lactuca spp. 
via reference-based and reference-free 
approaches
In the 3 reference assemblies, we annotated repeat elements and 
classified them into TEs and other repeats (Supplementary Data 
3a). The genomes of all 3 Lactuca species contained a major propor-
tion of TEs, in agreement with previous studies (Supplementary 
Table 6) (Simko et al. 2022). Unsurprisingly, the TE content of the 
L. virosa (60%) assembly is proportionally lower than that of both 
L. sativa (74%) and L. saligna (77%), which is likely caused by an in-
complete search due to the high N content in the L. virosa assembly. 
After excluding the N content of each genome, the percentage of 
TEs for all Lactuca genomes exceeded 80% (Supplementary Fig. 5; 
Supplementary Table 6). Moreover, almost all identified LTRs 
(99%) were located in the intergenic regions (Supplementary Fig. 6). 
To conclude, this reference-based repeat annotation showed that 
TEs are the most abundant components of Lactuca spp. genomes. 

Table 1. Summary of assemblies for Lactuca spp. in this paper.

Characteristic L. sativa L. saligna L. virosa

Accession ID GCF_002870075.2 PRJEB35809 PRJEB50301
Source RefSeq (NCBI) ENA This study
Assembly size (Gb) 2.39 2.17 3.45
# seq 8,325 10 5,855
N50 scaffold 257.9 Mb 238.6 Mb 316.9 Mb
L50 scaffold 4 4 5
Genome complete BUSCO 97.8% (2,273) 92.4% (2,147) 96.2% (2,236)
# protein-coding genes 36,136 42,908 39,887
# transcripts 46,867 45,476 42,791
Proteome complete BUSCO 98.5% (2,291) 88.8% (2,065) 90.2% (2,096)
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Fig. 1. Overview of homology grouping for L. sativa, L. saligna, and L. virosa in an upset plot. The numbers on bars are groups of homologous genes. In total, 
there are 62,526 homology groups.
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However, genome incompleteness and N content of the reference 
genome assemblies hamper a precise estimation of TEs.

In addition to reference-based repeat annotation, we also classi-
fied repeat components and estimated their composition for 3 
Lactuca spp. using a reference-free approach. First, the same depth 
of reads (0.2×) were sampled and clustered for each species for re-
peat classification (Supplementary Tables 7 and 8). L. virosa had the 
highest percentage of repeated reads assembled as clusters (82%). 
The genomic proportion of repeated sequences annotated as TEs 

was more than 60% for all species, with L. virosa having the highest 
amount of LTRs (68.34%). Another comparative analysis (read 
depth = 0.07×) indicated that L. virosa carries a higher percentage 
of repeats compared to the other 2 species (Supplementary Data 
3b and Table 8). For example, cluster 10 was annotated as LTR/ 
Gypsy and mainly composed of L. virosa reads (Supplementary 
Fig. 7). Moreover, in-depth cluster analysis showed that LTR prolif-
eration in L. virosa drove its genome expansion (Supplementary 
Data 3c and 3d). The heatmap of hierarchical clustering shows 6 
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Fig. 2. Circos plot of L. virosa genome compared with the L. sativa and L. saligna genomes. a) For each of the 3 genomes (Lsat: L. sativa; Lvir: L. virosa; Lsal: 
L. saligna), only sequences larger than 1 Mbp are shown. For L. sativa and L. saligna, the number of sequences correspond to their chromosomes. Since 
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groups that were either dominated (D) by one of the 3 Lactuca spe-
cies: L. sativa (Lsat), L. saligna (Lsal), or L. virosa (Lvir) (Fig. 4a: left). 
The bar plot in Fig. 4a (right) further decomposes the read sources 
for each group. The Lvir_D2 group is the largest and dominated by 
L. virosa reads. This group mainly consisted of LTR subfamilies 
Gypsy (27.31%) and Copia (20.46%) (Supplementary Table 9). 

Additionally, the subgroups Tekay and Angela were the primary 
elements for the Gypsy and Copia clusters within the Lvir_D2 group 
(Fig. 4b; Supplementary Table 9).

L. virosa is estimated to have a significantly larger genome 
(3.7 Gbp) than L. sativa (2.5 Gbp) and L. saligna (2.3 Gbp) 
(Doležalová et al. 2002). TEs have been shown to drive plant 

Lsat Lsal Lvir

−1

0

1

Lsal_D1

Lsat_D1

Lvir_D1

Lsal_D2

Lsat_D2

Lvir_D2

0

0.2

0.4

0.6

0.8

1.0

Lsat_D1 Lsat_D2 Lsal_D1 Lsal_D2 Lvir_D1 Lvir_D2

Clustered group

C
lu
st
er
 re
ad
 c
ou
nt
 (m

ill
io
n)

Species

Lsat
Lsal
Lvir

C
op
ia

G
yp
sy

0 5 10 15 20 25
LTR genomic proportion (%)

LTR of Lvir_D2

Copia/Angela

Copia/SIRE

Copia/REST

Gypsy/Tekay

Gypsy/Athila27.31

Gypsy/REST

20.46

Sub-groups

(a)

(b)

Fig. 4. Proliferation of long-terminal repeats (LTR) drives the expansion of the L. virosa genome. Read clusters assembled by RepeatExplorer2 using a mix 
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Fig. 3. Synteny discloses species-specific inversions across 3 Lactuca species. Through genomic comparison, major interspecific inversions (red) were 
identified among the reference genomes of 3 Lactuca species. Here, the synteny in 4 sets of scaffolds/chromosomes reveals species-specific inversions: L. 
saligna (Lsal: purple), L. sativa (Lsat: orange), and L. virosa (Lvir: green). The chromosome numbers are labeled in the middle. Black arrows at the bottom 
indicate reversed scaffolds in the L. virosa assembly. Supported by Supplementary Table 5.
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genome expansion (Wendel et al. 2016); for example, within the 
genus of rice (Ma and Bennetzen 2004; Piegu et al. 2006; 
Ammiraju et al. 2007). Based on our combined findings, we con-
clude that the subgroups of transposon LTR, Tekay in Gypsy, 
and Angela in Copia drove the genome expansion of L. virosa.

Comparison of NLR and RLK genes between 3 
Lactuca spp.
Besides the difference within TEs, there is also sizable variation in 
the number of genes as shown by the homology grouping (acces-
sory/unique genes) among these 3 Lactuca species (Supplementary 
Fig. 3), which might convey resilience to important traits like re-
sistance against various pathogens or pests. In our previous study, 
an extensive search of resistance genes was performed for lettuce 
and its wild relative L. saligna (Xiong et al. 2023). Using the new 
L. virosa assembly, we identified and classified immunity-related 
genes encoding NLR and RLK proteins for L. virosa and compared 
them to L. sativa and L. saligna.

The L. sativa genome was found to have the highest number of 
NLRs (385), followed by L. saligna (323), and L. virosa (309) (Table 2; 
Supplementary Table 10). In association with the homology 
grouping, a Venn diagram showed that the NLRs identified in 3 
Lactuca spp. are highly diverged, where more than 50% of NLRs 
in each species belong to specific homology groups (Fig. 5a: left; 
Supplementary Data 5a). This observation is in line with our en-
richment study of homologs specific to L. virosa, where 
InterProScan domains were significantly enriched with terms re-
lated to NLR proteins (Supplementary Fig. 3). Furthermore, NLR 
proteins were classified into TNL and CNL types based on the 
N-terminal domain (TIR or CC domain, respectively) and curated 
by the phylogeny of a NB domain alignment (Supplementary 
Fig. 8; Supplementary Data 4a and 4b). The difference between 
L. sativa, L. saligna, and L. virosa was mainly contributed to TNL 
genes (227 vs 184 and 180), and the difference between L. saligna 
and L. virosa can be explained by the CNL type (139 vs 162). Due 
to the unequal completeness of the proteomes, we applied the ra-
tio of complete BUSCOs for proteomes as a benchmark to antici-
pate whether NLR genes expand or contract between the 3 
Lactuca spp.: L. sativa (2,291), L. saligna (2,065), and L. virosa 
(2,096). The ratio of BUSCOs (1.10 : 1.00 : 1.02) reflects the NLR ratio 
across species (1.25 : 1.05 : 1.00), where L. sativa showed a slight 

inflation. For different NLR types, the number of CNLs was similar 
in the examined species L. sativa, L. saligna, and L. virosa (1.14 : 1.00 
: 1.06); however, the ratio of TNL numbers highly deviated from 
the BUSCO ratio (1.41 : 1.14 : 1.00; Supplementary Table 10). 
Such comparison suggests an expansion of NLRs in L. sativa, 
which is possibly caused by tandem duplication events as in 
most studied angiosperms (Wu et al. 2021). This hypothesis is 
supported by a whole-genome search of tandem duplicates 
(TDs) clusters between 3 Lactuca spp. genomes (Supplementary 
Data 5b). The number of TDs encoding NLRs in L. sativa (121) 
was approximately 2-times larger than that in L. saligna (61) 
and L. virosa (76), which principally explains the number differ-
ence among the 3 species (Fig. 5b: left). In addition to tandem du-
plication, transposon activities (e.g. LTRs) could also greatly 
elevate the number of NLRs by retroduplication as reported in 
the chili genome (Kim et al. 2017). The retroduplicated NLRs could 
partially explain the lineage-specific homologs among Lactuca 
species (Fig. 5a: left).

We next identified RLK proteins by searching for the extracellu-
lar, transmembrane, and intracellular domains. Then, resulting 
RLKs were classified into 9 types based on their extracellular 
and kinase domains (Supplementary Tables 11 and 12 and Data 
4c and 4d). Like NLRs, we found more genes encoding RLK proteins 
in the L. sativa (597) genome assembly than in L. saligna (478) or 
L. virosa (445; Table 2). Sequence similarity shows that RLKs were 
much more conserved in Lactuca spp. compared to NLRs, where 
70% of RLKs in each Lactuca species were homologous to another 
RLK from at least one sister species (Fig. 5a: right). Compared to 
the BUSCO completeness, the RLK ratio (1.25: 1.00: 1.00) showed 
an increase of RLKs in L. sativa, suggesting a possible expansion 
of the RLK family. The majority of expansions in L. sativa were 
due to G-LecRK, followed by Malectin-RK and WAK, while other 
types of RLKs were either similar in all species or slightly inflated 
in L. sativa. The extra G-LecRK and WAK copies might confer specif-
ic immunity in L. sativa. For example, G-LecRK and WAK can both 
mediate resistance to Phytophthora spp. (oomycete) in tobacco and 
melon plants (Wang et al. 2020; Pi et al. 2022). On the contrary, 
the expansion of Malectin-RK might benefit pathogen invasion in 
L. sativa, like the increased susceptibility to Hyaloperonospora arabi-
dopsidis (oomycete) observed in Arabidopsis (Hok et al. 2011). 
Similar to NLRs, RLKs also commonly expand via tandem duplica-
tions. For example, a G-LecRK expansion was reported in soybean 
(Rodgers-Melnick et al. 2012; Liu et al. 2018). The number of 
tandem arrayed RLKs in L. sativa was 1.5 and 1.9 times that of 
the RLKs in L. saligna and L. virosa, respectively, which constitutes 
more than 60% of the difference between L. sativa and other 2 spe-
cies (Fig. 5b: right; Supplementary Data 5b). Especially for G-LecRK, 
the number of tandem genes appeared to more than doubled in 
L. sativa (Supplementary Data 5b).

Conclusions
Here, we present a near chromosome-level genome assembly for 
L. virosa (accession CGN04683) that has a high level of complete-
ness. As a representative of the tertiary lettuce gene pool, this 
L. virosa genome assembly enables comparisons with L. sativa of 
the primary gene pool and L. saligna of the secondary gene pool. 
For gene content, L. virosa harbors a large number of genes absent 
from L. saligna and L. sativa and may thus constitute an important 
source of novel genes for lettuce breeding. Based on synteny, a 
3-way genome comparison uncovered species-specific major 
inversions. These inversions should be considered as likely 
barriers to gene introgression in future breeding. In addition, 

Table 2. Identification and classification of candidate 
immunity-related genes for Lactuca spp.

Immune genes Species

Family Classification L. sativa L. saligna L. virosa

NLR CNLa 158 139 148
TNL 227 184 161
Total 385 323 309

RLKb Rcc1-RK 5 5 2
WAK 61 48 36
G-LecRK 132 79 70
L-LecRK 31 29 21
C-LecRK 1 1 1
CRK 41 35 38
Malectin-RK 55 55 32
LysM-RK 12 12 11
LRR-RK 258 213 233
PERK 1 1 1
Total 597 478 445

a RPW8 and Rx_N type of CNL included in this study. 
b RLK classification based on the extracellular domain (Supplementary 

Tables 11 and 12).
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we demonstrated that genome expansion in L. virosa is driven by 
the proliferation of LTR elements. An assembly-based comparison 
of NLR and RLK genes between Lactuca spp. found more immune 
system-related genes in the L. sativa genome than in those of the 
L. virosa and L. saligna genomes. These findings may contribute 
to future research on gene expression and regulation in L. virosa. 
Using this novel genome assembly, researchers can subsequently 
study the genetic variation in L. virosa populations to fully release 
its potential for lettuce breeding.

Data availability
The genome assembly of L. virosa, is available under the 
BioProject PRJEB50301 (and available under CAKMRJ010000000.1 

from ENA). All raw sequencing reads have been deposited in the 
ENA database under BioProject PRJEB56289. This includes the 
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as well as RNA sequencing data for genome annotation. 
Supplementary data are available at https://doi.org/10.4121/ 
21900588.

Supplemental material available at G3 online.
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