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Abstract

A desirable quality of plant-based meat analogues is to resemble the fibrous structure

of cooked muscle meat. While texture analysis can characterize fibrous structures

mechanically, assessment of visual fibrous structures remains subjective. Quantitative

assessment of visual fibrous structures of meat analogues relies on expert knowl-

edge, is resource-intensive, and time-consuming. In this study, a novel image-based

method (Fiberlyzer) is developed to provide automated, quantitative, and standard-

ized assessment of visual fibrousness of meat analogues. The Fiberlyzer method seg-

ments fibrous regions from 2D images and extracts fiber shape features to

characterize the fibrous structure of meat analogues made from mung bean, soy, and

pea protein. The computed fiber scores (the ratio between fiber length and width)

demonstrate a strong correlation with expert panel evaluations, particularly on a per-

formulation basis (r2 = 0.93). Additionally, the Fiberlyzer method generates fiber

shape features including fiber score, fiber area, and the number of fiber branches,

facilitating comparisons of structural similarity between meat analogue samples and

cooked chicken meat as a benchmark. With a simple measurement setup and user-

friendly interface, the Fiberlyzer method can become a standard tool integrated into

formulation development, quality control, and production routines of plant-based

meat analogue. This method offers rapid, cheap, and standardized quantification of

visual fibrousness, minimizing the need for expert knowledge in the process of qual-

ity control.
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1 | INTRODUCTION

Sustainability, health, and animal welfare concerns have motivated

consumers to replace their dietary protein sources from animals to

plants, boosting the demand for plant-based meat analogues

(McClements & Grossmann, 2022). As alternatives, meat

analogues have the highest success rate when they deliver a sensory

experience similar to the experience of consuming meat (Michel

et al., 2021). Texture, in particular a fibrous structure, is one of the

most defining quality attributes of meat analogues for consumerYizhou Ma and Miek Schlangen should be considered joint first authors.
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acceptability (Elzerman et al., 2011). A fibrous and muscle meat-like

texture can be produced through thermomechanical processing of

plant proteins by, for example, high moisture extrusion (HME) cook-

ing, low moisture extrusion (LME) cooking, or high temperature shear

cell (HTSC) technology (Dekkers et al., 2018; Grabowska et al., 2014;

Kyriakopoulou et al., 2019; McClements & Grossmann, 2022; Webb

et al., 2023). In recent years, LME, HME cooking, and HTSC technol-

ogy have produced meat analogues with a range of different struc-

tures containing various plant protein compositions (Kyriakopoulou

et al., 2019; McClements & Grossmann, 2022; Webb et al., 2023).

To better compare between samples, fibrous structures of meat

analogues are often characterized by mechanical, spectral, and imag-

ing techniques (Mcclements et al., 2021; Schreuders, Schlangen, Kyr-

iakopoulou, Boom, & van der Goot, 2021). Mechanical anisotropy,

measured through tensile testing, is generally used to describe fibrous

structures of HTSC products, but does not always agree with visual

observations of macrostructure (Barbut, 2015; Schreuders, Schlangen,

Bodnár, et al., 2021). Only weak correlations were found between

consumer visual assessment of fibrous structures and mechanical

attributes in meat analogues (Godschalk-Broers et al., 2022). Thus, it

remains uncertain whether fibrous structures of meat analogues can

be fully characterized by mechanical anisotropy. Hence, relying solely

on the mechanical anisotropy of meat analogues may not be sufficient

to assess their textural quality. Spectral techniques, such as fluores-

cence polarization and light reflectance, can also indirectly character-

ize visual fibrousness of meat analogues. The fiber orientations

(i.e., anisotropic structures) create unique light reflectance and fluo-

rescence polarization patterns, which can be used to measure fibrous

structures of meat analogues (Ranasinghesagara et al., 2006, 2009).

However, such spectral methods require special instrumentations and

algorithm development, which complicates the general use of this

visual fibrousness characterization process. In practice, many studies

relied on manual inspections of the fibrous structures of meat ana-

logues (Dekkers et al., 2016; Grabowska et al., 2014, 2016; Jia

et al., 2021; Krintiras et al., 2015; Osen et al., 2014; Schreuders

et al., 2019). While reporting images of inner structures is a simple

and effective way to compare the visual fibrousness of meat ana-

logues, it limits the results to subjective and qualitative interpreta-

tions. A robust and quantitative measurement of visual fibrousness of

meat analogues can provide objective characterization of fiber forma-

tion across different formulations and processing parameters, making

subjective human evaluations less important. Furthermore, with an

automated and quantitative measurement of fibrousness, it can moni-

tor the production of meat analogues and provide feedback for struc-

turing improvement.

A promising technique for developing such a method is com-

puter vision (CV). CV is a collection of algorithms that allow digital

interpretation of visual information from images and videos. CV has

been widely used in agri-food applications, such as in meat analogue

color analysis, 3D food printing performance, and meat quality eval-

uation (Fan et al., 2013; Ma, Potappel, Chauhan, et al., 2023;

Taheri-Garavand et al., 2019). Furthermore, one study applied a CV

algorithm, called Hough transformation, to calculate a fiber index for

a set (n = 9) of meat analogues produced through HME cooking

(Ranasinghesagara et al., 2005). The study found that fiber index

calculated from image analysis correlated well with a noninvasive

fluorescence polarization method. However, as Hough transforma-

tion only detects straight lines on an image, the method developed

by Ranasinghesagara et al. (2005) may have limitations when detect-

ing inner structures with curved or bended fibers as for example

found in HTSC samples. Other CV techniques such as shape analy-

sis have been applied to provide comprehensive morphological char-

acterizations of barley kernels and wheat grains (Sharma

et al., 2021; Zapotoczny et al., 2008). These morphological analysis

methods can potentially be adopted to measure the visual fibrous-

ness of meat analogues. Furthermore, while the conventional evalu-

ations by human experts can only provide a single value to assess

fibrousness, a CV-based method has the potential to offer visual

similarity assessment, for example using real meat, because it can

characterize multiple morphological features of the fibrous struc-

tures. A first step in the development of this tool is the validation

of the quantitative measure of fibrous structure with a CV-based

method and to place it into context with human evaluations, which

can then establish practical significance of an automated method

(Ma, Potappel, Schutyser, et al., 2023). Eventually, such tool could

replace time- and resource-consuming human evaluations for the

quality control of meat analogues.

This study aims to develop an automated visual assessment

method called “Fiberlyzer” based on CV to quantify fibrousness of

meat analogues. Specifically, the Fiberlyzer method utilizes image seg-

mentation followed by shape analysis to calculate a robust fiber score

to serve as an alternative to human evaluation. The computed fiber

score is then validated by expert fiber scores collected from a survey.

Additionally, the method generates a unique texture fingerprint for

each image, allowing precise comparison between texture of meat

and meat analogues.

2 | MATERIALS AND METHODS

2.1 | Materials

Soy protein isolate (SPI) (Supro 500E), pea protein isolate (PPI)

(NUTRALYS® F85M), and mung bean protein isolate (MBPI)

(UNIMUNG M70) were obtained from Solae (Dupont, St. Louis, MO,

USA), Roquette Freres S.A. (St. Louis, Missouri, USA), and Barentz

(Hoofddorp, NL), respectively. SPI, PPI, and MBPI were composed of

81.7 wt.% (N � 5.7), 74.5 wt.% (N � 5.4), and 68.9 wt.% (N � 5.7)

protein on a dry weight basis using a rapid N exceed® analyzer

(Elementar, Langenselbold, Germany). SPI, PPI, and MBPI had a dry

matter content of 91.2, 92.4, and 97.3 wt.%, respectively. Cooked

chicken breast (Scharrel Kipfilet, Albert Heijn, the Netherlands), tofu

(Biologische tofu naturel, Albert Heijn, the Netherlands), and vegan

chicken (De Vegetarische Slager Kipstuckjes, Unilever, the

Netherlands) were purchased at a local supermarket (Albert Heijn,

the Netherlands).
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2.2 | Sample preparation

To obtain meat analogue samples with a variety of textures, plant pro-

teins were structured using the HTSC technology (Wageningen Univer-

sity & Research, the Netherlands). First, protein doughs were prepared

by manually mixing various amounts of demineralized water with SPI,

PPI, or MBPI to achieve final dry matter concentrations of 35, 40, or

45 wt.% (Table 1). In addition, blended protein doughs were made by

combining SPI and PPI or SPI and MBPI in a 50:50 ratio (Table 1). For-

mulations made from MBPI and SPI with 45 wt.% dry matter are miss-

ing, as these could not be structured into meat analogues in

preliminary experiments due to poor protein hydration. In total, 13 for-

mulations were prepared for subsequent shear cell structuring.

The protein doughs were covered with parafilm and left to

hydrate at room temperature (20�C) for 30 min. The doughs were

then loaded into a pre-heated HTSC to structure them into meat ana-

logues. During the HTSC process, the materials were sheared at a rate

of 39 s�1, 120�C for 15 min (controlled by a Haake Polylab QC drive,

Germany). Subsequently, the samples were cooled at 0 s�1 for 5 min,

using an external oil bath with a temperature of 25�C. The cooled

sample was removed from the HTSC, tempered to room temperature,

sealed in an air-tight bag, and stored in the freezer (�18�C) until fur-

ther analysis. Freezing can positively impact the fibrous appearance

and has previously been applied to texturize animal and fish proteins

and soy protein gels (Chantanuson et al., 2022; Dekkers et al., 2018).

2.3 | Image acquisition and pre-processing

The frozen HTSC sample was first thawed to 20�C, and three squares

of approximately 3 � 3 cm were randomly cut out and manually

folded open in the direction parallel to the shear flow to expose the

inner structure. The folded sample was held in place by a clamp and

imaged in a light-controlled photo booth with a digital camera (A6000,

SONY, Japan) equipped with a 100 mm macro lens (Tokina, Tokyo,

Japan). The camera was placed approximately 20 cm from the folded

sample. Figure 1a,b provide an example image of the inner structure

of the HTSC sample. After obtaining the raw images, a region of inter-

est was manually selected by cropping out the background to allow

assessment of the inner structure of the HTSC samples (Figure 1c).

For samples that were completely fractured (i.e., Figure 1b), region of

interest was only focussed on half of the sample to avoid fracture

edges (Figure 1d).

2.4 | Expert visual assessment of fibrous
structures

Quantitative visual assessment was performed through an online sur-

vey designed in Qualtrics (Washington, USA). Twenty-six experts with

prior experience in evaluating macrostructures of HTSC meat ana-

logues were recruited for this study. The survey consisted of

13 images of HTSC meat analogues, three images of commercial sam-

ples (cooked chicken breast, tofu, and vegan chicken), and two mir-

rored images as quality control samples. The two mirrored images

were included to check whether the experts rated products with iden-

tical fibrousness similarly. All images were acquired and pre-processed

as described in Section 2.3.

Experts were instructed to evaluate fibrousness of the samples

on a visual analogue slider ranging from 0 to 100. The slider contained

five labels (not fibrous, somewhat fibrous, fibrous, very fibrous, and

extremely fibrous) at the 0, 25, 50, 75, and 100 positions. Further-

more, images of a nonfibrous and an extremely fibrous HTSC sample

served as references and were presented to the experts at the begin-

ning of each survey question. For every HTSC and commercial sample,

one out of five images was randomly selected and presented to an

expert. With 26 experts, this resulted in at least five evaluations per

image. The median of the five scores was calculated and used as a

measure for expert visual fibrousness. All experts were presented the

same mirrored images to evaluate the consistency in fibrousness eval-

uations. A sample survey is available in the Supplementary Materials

of this study.

TABLE 1 Overview of the dry matter
composition of the doughs prepared
from mung bean protein isolate (MBPI),
pea protein isolate (PPI), soy protein
isolate (SPI), and combinations of SPI-
MBPI and SPI-PPI.

Protein ingredient(s) MBPI (wt.%) PPI (wt.%) SPI (wt.%) Total dry matter (wt.%)

MBPI 35 – – 35

40 – – 40

PPI – 35 – 35

– 40 – 40

– 45 – 45

SPI – – 35 35

– – 40 40

SPI-MBPI 17.5 – 17.5 35

20 – 20 40

22.5 – 22.5 45

SPI-PPI – 17.5 17.5 35

– 20 20 40

– 22.5 22.5 45

MA ET AL. 3
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2.5 | Fiberlyzer: Automated visual assessment of
fibrous structures

Fiberlyzer, a Python-based image analysis method, was developed to

automate the visual assessment of fibrous structures of the HTSC

meat analogue samples. The automated visual assessment pipeline

consisted of image collection, segmentation, and shape analysis

(Figure 2). The image collection and pre-processing step was intro-

duced in Section 2.3, and the details of segmentation and shape analy-

sis steps are introduced in the following sections.

2.5.1 | Segmentation of fibrous regions

To automatically identify the fibrous regions of an inner structure, a

segmentation method is required. The saturation values of color

images have shown correlations to 3D shape perceptions in the

human visual system (Marlow et al., 2022). Therefore, a saturation-

based technique was used to identify and segment potentially fibrous

regions on the pre-processed image. The images were first converted

into the hue, saturation, value color space, and a threshold level was

set to create a binary image. The binary image was smoothed using

the Gaussian pyramid construction and median blur with a filter size

of 7 � 7 pixels. Connected component analysis was then performed

to identify and locate the individual fibrous regions using a connectiv-

ity of four. A minimal area of a connected component was defined as

a fraction of the total image size and used to filter unwanted noise

from the prior binarization step.

2.5.2 | Fiber shape analysis

Each isolated region was then analyzed separately to obtain various

shape features. For each region, image skeletonization was used to

identify a set of curves that pass through the center of connected

regions known as the “skeleton.” The longest path (Lmax) was found

by iteratively looping through all unique pairs of branches of the skel-

eton. Meanwhile, the Euclidean distance (LE) between the start and

F IGURE 1 Example images of samples produced for this study. (a) An image of a folded sample made of soy protein isolate (35%). (b) An
image of a folded sample made of mung bean protein isolate (35%). (c) The cropped image of soy protein isolate sample shown in (a). (d) The
cropped image of mung bean protein isolate sample shown in (b).

F IGURE 2 Fiberlyzer workflow consisting of collection, segmentation, and shape analysis. Lmax indicates longest skeleton path. LE indicates
Euclidian distance between start and end points of the longest path.

4 MA ET AL.
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end points of the longest path was calculated, and a curvature factor

was then determined by taking the ratio between Lmax and LE. Only

regions with a curvature factor of less than 1.2 were further analyzed

to avoid over-curved skeletons. The shortest distance from each pixel

on a skeleton to the edge of the shape was then calculated for each

isolated skeleton. These distances were averaged to obtain the width

of the potential fibrous region. Image skeletonization was then per-

formed on all isolated regions to obtain the length, width, area, and

number of branches of the individual region. A fiber score, F, was cal-

culated for each region with Equation 1.

F¼ longest skeleton path length
average path width

: ð1Þ

The average fiber score, F, was calculated among all isolated

regions of one image and served as the main shape feature to quantify

fibrousness of the meat analogue sample. To obtain the best segmen-

tation parameters, a grid search was performed using a range of mini-

mal area (from 0.005% to 0.05%) and saturation threshold (from 80%

to 95%) to calculate F of each image.

2.6 | Visual fiber similarity analysis

While the computed fiber score from Fiberlyzer gives a quantitative

fibrousness assessment at the image level, additional fiber similarity

analysis was carried out to measure how closely the fibrous structure

from HTSC samples resembles cooked chicken breast. The obtained

fiber shape features of HTSC samples were compared with those

obtained from a reference image of cooked chicken breast. Distribu-

tions of fiber score, area, and number of branches were overlayed

with those from the reference image, respectively. The overlapped

area of the two distributions, f xð Þ for meat analogue samples and g xð Þ
for the reference sample, was estimated by calculating the coefficient

of overlapping (Δ) using a method developed by Ridout and Linkie

(2009) (Equation 2).

Δ f,gð Þ¼
ð
min f xð Þ,g xð Þf gdx, ð2Þ

where x represents the individual shape feature of fiber score, fiber

area, or number of fiber branches.

The Δ f,gð Þ of each shape feature was then averaged to obtain a

collective similarity score between a given HTSC sample and the ref-

erence chicken breast.

2.7 | Data analysis and software availability

Pearson's correlation tests were conducted using the R programming

language. The Fiberlyzer method was developed in-house using the

OpenCV, NumPy, Pandas, and Matplotlib libraries in the Python pro-

gramming language. The software including a graphical user interface,

raw scripts, and raw images used for the software development are

open-source and can be accessed through: https://git.wur.nl/yizhou.

ma/fiberlyzer3.

3 | RESULTS AND DISCUSSION

In the following sections, the expert assessment of visual fibrousness

is first introduced to understand structural differences among the

HTSC samples produced in this study. We then highlight the shape

feature measurements from the Fiberlyzer method. The aggregated

measurement from the Fiberlyzer method was correlated with the

expert assessment as a validation. A visual fiber similarity analysis

between a reference cooked chicken image and HTSC sample images

was also performed to select formulations with the highest potential

to mimic chicken. Lastly, we discuss the limitations and future applica-

tions of the Fiberlyzer method.

3.1 | Expert assessment of visual fibrousness

Visual fibrousness of meat analogues and commercial products (tofu,

vegan chicken, and chicken) were assessed in a survey of 26 meat

analogue experts. Quality control samples (mirrored images of a HTSC

sample) were included in the survey to check the consistency of the

fiber scoring among the experts. No significant difference (p > .05) in

fiber score was found between the two quality control images (μmir-

rored image = 43.1, μnon-mirrored image = 42.8), showing that the experts

were consistent when assigning fiber scores. However, the expert

fiber scores of the quality control samples had a large variation with a

range between 0 and 85 (Figure S1). The large scoring variation is

likely due to that the experts were untrained to specifically rate

fibrousness of HTSC samples, so the fiber scores were not primed

toward a certain range or calibrated with standards. Nevertheless, the

expert survey revealed differences in fibrousness among the surveyed

samples (Figure 3). MBPI 35 and 40 wt.% were found to exhibit no

visual fibrousness, with median fiber scores of 0. The fibrousness

assessment agrees with previous findings, where pure MBPI-based

meat analogues were described as “gel-like” and displayed no fiber

formation (Samard & Ryu, 2019; Schlangen et al., 2023). For PPI sam-

ples, at 35 and 40 wt.%, very minimal fibrousness was found from the

expert survey. In previous studies, PPI was often blended with other

ingredients, such as wheat gluten and pectin, to assist structure elon-

gation and form anisotropy (Schreuders et al., 2019; Schreuders,

Schlangen, Bodnár, et al., 2021). However, PPI alone has been textur-

ized into a fibrous structure at high dry matter content (45 wt.%) using

HME cooking before (Osen et al., 2014). This finding from Osen et al.

(2014) agrees with the fiber scores rated by the experts in this study,

showing the potential of producing fibrous structures of PPI at high

dry matter content (45 wt.%).

SPI samples and SPI-PPI blends both showed higher fiber scores

compared to the other HTSC samples (Figure 3). Typically, wheat glu-

ten or pectin is added to SPI to induce fiber formation in shear

MA ET AL. 5
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structuring, as SPI alone was previously shown not to form a fibrous

structure (Dekkers et al., 2016). However, freezing may have assisted

fiber formation in this study. It is also worth mentioning that the blend

of two nongluten proteins (SPI-MBPI and SPI-PPI) could be structured

into fibrous products, which was only reported from a previous HME

cooking study (Wittek et al., 2021). Overall, the variations in expert

fiber scores show that inner structures of HTSC samples exhibit dif-

ferences. The wide range of expert fiber scores can therefore be used

as references for the subsequent validation of the Fiberlyzer method.

3.2 | Fiber shape features in meat analogues

The image-based Fiberlyzer method can provide measurements of

fiber shape features including the fiber score, fiber area, and number

of fiber branches. For example, Figure 4 highlights distributions of

shape features of four images acquired in this study. Figure 4a shows

the variation in computed fiber score among cooked chicken, MBPI

with 35 wt.% dry matter, SPI-PPI with 35 wt.% dry matter, and tofu

images. The chicken image had a bimodal distribution of the com-

puted fiber score with peaks centers around 5 and 17. Such a broad

range of fiber scores agreed with the hierarchical fiber presence of

cooked chicken (Figure 4a) as meat muscle fibers occur at different

length scales (van der Sman & van der Goot, 2023). MBPI with

35 wt.% dry matter had a narrow distribution with a low fiber score

peak around 3. The narrow distribution of the fiber score corre-

sponded well with the image of the sample, of which the MBPI

35 wt.% dry matter sample appeared to be crumbly and grainy. On

the other hand, the computed fiber score distribution of SPI-PPI with

35 wt.% dry matter was bimodal with a broad distribution of scores,

similar to chicken. The fibrousness of the SPI-PPI 35 wt.% dry matter

was also scored closer to chicken in the expert evaluation (Figure 3).

The similarity in fiber score distribution between chicken and SPI-PPI

35 wt.% dry matter may explain the higher expert fiber score that

SPI-PPI 35 wt.% dry matter received (Figure 3). The computed fiber

score may therefore be an indication of the expert fiber scores col-

lected from the survey.

However, the tofu image also yielded a computed fiber score dis-

tribution that was relatively similar to the HTSC samples (Figure 4a).

Nonetheless, the computed fiber distribution of tofu disagreed with

the expert panel results in Figure 3, where all experts gave a fiber

score of 0 for the tofu image. Tofu may carry a different fractal

appearance from HTSC samples upon folding, because of its relatively

isotropic structure. Also, the surface moisture on tofu may have inter-

fered with the fiber segmentation algorithm developed in this study.

The unexpected high fiber score indicated that tofu was an outlier in

visual fibrousness assessment using Fiberlyzer and was therefore dis-

carded for subsequent analysis.

For the area distributions (Figure 4b), MBPI with 35 wt.% dry

matter showed a sharp distribution centered around a lower value

compared to the broad distribution of chicken. The lower fiber area

may correspond to the crumbly and granular texture observed in the

image. The small granules were segmented and identified by

the Fiberlyzer as small fiber areas. By comparing the area distribu-

tions, SPI-PPI with 35 wt.% dry matter had a similar fiber area range

as the chicken image, indicating the potential similarity in visual

fibrousness. Figure 4c illustrates distributions of number of fiber

branches identified in the samples. Again, the SPI-PPI sample with

35 wt.% dry matter appeared to have a more similar distribution to

chicken than the MBPI with 35 wt.% dry matter. The distinct fiber

shape features of different samples showed the potential of using the

Fiberlyzer method to characterize fibrous structures of HTSC

samples.

3.3 | Validation of computed fiber scores

Although fiber shape feature distributions can characterize the fibrous

structures of HTSC samples, further analysis is needed to directly

compare the computed fiber shape features to the expert fiber scores.

The fiber shape features were averaged per image to produce aggre-

gated representations of fiber score, fiber area, and the number of

fiber branches. Because segmentation parameters during image analy-

sis can impact the shape feature calculation, a grid search was

35 40 35 40 45 35 40 35 40 45 35 40 45 - - -
MBPI PPI SPI SPI-MBPI SPI-PPI Tofu VC C

0

20

40

60

80

100

Ex
pe

rt 
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re
 s

co
re

 Median Line  Outliers F IGURE 3 Expert fiber scores of high
temperature shear cell samples with
various dry matter contents (35, 40, and
45 wt.%). C, chicken; MBPI, mung bean
protein isolate; PPI, pea protein isolate;
SPI, soy protein isolate; VC, vegan
chicken.
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performed to identify the best combination of segmentation parame-

ters. The correlation of determination (r2) was used as the parameter

selection criterion when determining the segmentation parameters of

threshold percentile and minimal fiber area. During preliminary experi-

ments, we only found significant correlations between the averaged

computed fiber score and the expert fiber score, so the subsequent

validation focused on evaluating computed fiber score as an auto-

mated measurement to replace expert visual assessment.

The correlation between the computed fiber score and expert

fiber score was influenced by both the threshold percentile and the

minimal area (Figure 5a). A high threshold percentile reduced the r2

value, likely due to the exclusion of fibrous regions during the

saturation-based segmentation step. Conversely, a low threshold

percentile led to an overestimation of fibrous regions, including non-

fibrous areas (i.e., noise) falsely identified as region of interests.

When the minimal area was set below 0.03%, a decrease in

correlation was observed, probably due to the inclusion of relatively

small regions (i.e., noise) that are nonfibrous in nature but that were

used in the calculation of the computed fiber score. The combina-

tion of an 82% threshold percentile and a 0.045% minimal area

yielded the highest r2 value and were thus selected as the best seg-

mentation parameters on a per-image basis. These parameters were

used to plot the computed fiber score against the expert fiber score,

resulting in a r2 of 0.66 on a per-image basis (Figure 5c). This mod-

erate correlation suggests that the Fiberlyzer method can partially

replace the expert evaluation of visual fibrousness. The computed

fiber scores effectively differentiated between the nonfibrous

images (MBPI) and highly fibrous images (chicken). However, com-

paring the other samples remains inconclusive due to the variations

in fibrous structure from image to image.

To account for the image-to-image variations, Figure 5b,d pre-

sent a formulation-based comparison by averaging the scores of

F IGURE 4 Example measurements of fiber shape features of chicken, mung bean protein isolate (35 wt.%) (MBPI35), a blend of soy protein
isolate and pea protein isolate (35 wt.%) (SPI-PPI35), and tofu. (a) Distributions of computed fiber score. (b) Distributions of computed fiber area.
(c) Distribution of number of fiber branches.
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5 images of the same formulation. Here, a higher threshold percen-

tile (91%) and a lower minimal area (0.040%) improved the r2 to

0.93. From Figure 3 it already became evident that there were con-

siderable variations in the expert fiber scores. Figure 5d reveals

large variations in computed fiber score as well. The variations in

computed fiber score can be attributed to the inhomogeneous fiber

distribution within the meat analogues, which may be a desired

property of the product. However, the variations could also be

explained by variations in selecting of samples and/or imaging tech-

nique. The large inner structure variations were also reported in

other studies based on x-ray tomographic characterizations

(Nieuwland et al., 2023). Similar to the expert survey results,

chicken images scored higher than the meat analogue images,

despite variations in computed fiber scores. Overall, the averaged

result on a formulation basis improved the correlation (r2 = 0.93),

suggesting that the Fiberlyzer is a practical method to replace

expert fiber assessment digitally.

3.4 | Image-based similarity analysis

While the computed fiber score provides automated and direct

quantification of fibrous structures, it is also important to

understand how closely the HTSC samples can mimic the visual

appearance of meat products. To quantify the similarity found in

the three fiber shape features (fiber score, fiber area, or number of

fiber branches), a similarity analysis method (Equation 2) was imple-

mented by considering the distribution overlapping between a HTSC

sample image and a reference chicken image (Figure S2). Figure 6a

shows the similarity analysis based on overlapping of averaged

shape feature distributions. Four other chicken images were used as

benchmarks to establish a threshold similarity score. In Figure 6a,

the chicken similarity scores ranged from 0.64 to 1, indicating that a

“chicken-like” sample should have a similarity score of at least 0.64.

Among each formulation, a large variation was found again, due to

the structural heterogeneity of the HTSC samples as discussed in

Section 3.2. Although with variations, MBPI samples were found to

be the most dissimilar to the chicken reference image (Figure 6a).

Samples made from other formulations had no clear distinctions

when comparing all three shape features to determine similarity.

Several samples had a similarity score exceeding the threshold as

indicated by the dash line, which suggests resemblance to the refer-

ence cooked chicken image according to the Fiberlyzer method.

However, similarity score computed based on the average parame-

ters may not provide the required resolution to differentiate fibrous

structures among HTSC samples.

F IGURE 5 Parameter correlation on (a) per-image basis and (b) per-formulation basis, and corresponding scatter plots of expert fiber score
versus computed fiber score with (c) threshold percentile of 82% and minimal area of 0.045%, and (d) threshold percentile of 91% and minimal
area of 0.04%.
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With no clear distinction in fiber similarity based on three shape

features, Figure 6b evaluates fiber similarity using the fiber scores

alone. A new similarity threshold (0.72) was determined based on the

reference chicken images. A large range of similarity (0.35–0.6) was

found in the PPI samples, indicating large structural variations in terms

of fibrous structures. Structural variation may be desired as it suggests

heterogeneity. However, in practice, too large of a structural variation

may not be desirable because it impacts perceived spatial uniformity

(McClements & Grossmann, 2022). The SPI and SPI-MBPI samples

had a similar trend to PPI samples, which agrees with the similar range

of expert fiber scores received by these samples. A unique sample

among the similarity analysis was SPI-PPI with 40 wt.% dry matter

with a median similarity score of 0.70, very close to the similarity

threshold found earlier (0.72). Therefore, from a formulation selection

perspective, SPI-PPI with 40 wt.% dry matter may have the most

potential of visually mimicking the cooked chicken appearance.

3.5 | General discussions

The Fiberlyzer method has demonstrated its potential as an alterna-

tive and automated method to assess fibrousness in HTSC samples.

F IGURE 6 Visual similarity analysis between high temperature shear cell samples and cooked chicken based on averaged shape features
(a) and computed fiber score (b). MBPI, mung bean protein isolate; PPI, pea protein isolate; SPI, soy protein isolate. (c): cooked chicken. Samples
were produced at dry matter contents of 35, 40, and/or 45 wt.%. Dashed line indicates similarity threshold to cooked chicken.
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However, there are some limitations that the image-based Fiberlyzer

method carries. First, as shown in Figure 4a, tofu was misidentified to

have fibrous structures due to false fiber segmentations. Therefore,

suitable samples for the Fiberlyzer method should be limited to meat

analogues that are free of surface moisture to minimize interference

of light reflection. In addition, a parameter search demonstrated in

Section 3.3 may be necessary to identify the best image processing

parameters because the Fiberlyzer method relies on a

saturation-based segmentation method. Changes of lighting condi-

tions and imaging devices may further impact the segmentation

parameters, so calibrations may be needed when implementing the

method with a new imaging setup. Lastly, the Fiberlyzer method

requires to fold the HTSC sample to expose the inner structure. The

folding leads to fracturing of the HTSC sample, making it impossible

to assess fibrous structure nondestructively for in-situ measurements.

Despite the mentioned limitations, the Fiberlyzer method can

serve as a digital method to replace the conventional expert inspec-

tion of visual fibrousness of meat analogues in most of the cases. In

addition to the immediate application in the assessment of visual

fibrousness, the Fiberlyzer method may empower potential future

applications. One potential future application lies in the optimization

of formulations and processing conditions for meat analogues.

The method can be used to precisely pinpoint differences between

the meat products and the analogues. The use of the method can lead

to valuable insights on the effect of different ingredients, dry matter

contents, temperature, shear rate, and other processing conditions on

the visual texture of the products. This information can then be used

to optimize and tailor the texture of meat analogues to fit consumer

wishes. Additionally, with Fiberlyzer being a rapid method for quantifi-

cation of visual fibrousness, it could serve as a valuable tool for quality

control in meat analogue production industry. For example, deviations

and inconsistencies in products are easily detected with the Fiberlyzer

method.

Furthermore, the unique fingerprint of visual texture provided by

the Fiberlyzer method holds potential to be used in meat analogue

research and development. By conducting comparative analyses

between meat and meat analogues, a deeper understanding of the dif-

ferences in textural properties can be achieved. This knowledge can

then help to further develop meat analogues that exhibit a closer

resemblance to the texture and visual appearance of animal meat. The

similarity score in this study was calculated based on cooked chicken

as a reference. In the course of time, alternative reference products

can be used, such as fish, pork, or beef to allow a broader similarity

assessment across meat types.

In the future, the Fiberlyzer method has the potential to bridge

the gap between visual fibrousness and mechanical texture properties

of meat analogues. Previous studies showed that mechanical anisot-

ropy was not always linked to a visually fibrous macrostructure

(Schreuders, Schlangen, Bodnár, et al., 2021). By connecting the com-

puted fiber scores with mechanical analyses, such as tensile

testing, the relation between mechanical anisotropy and visual

fibrousness can be further understood. Such a clear understanding of

fibrous structures helps to develop meat analogues that can best

appeal to consumers.

4 | CONCLUSIONS

This study developed and validated an automated visual assessment

method (Fiberlyzer) to quantitatively characterize fibrous structures

in meat analogues based on image analysis. Fiber shape features

were successfully segmented and measured in terms of fiber score

(ratio between length and width), fiber area, and number of fiber

branches. Among the fiber shape features, fiber score was found to

be correlated to expert assessments of fibrousness both at the

image (r2 = 0.66) and formulation levels (r2 = 0.93). A similarity anal-

ysis was performed to identify the most similar HTSC samples to a

reference cooked chicken image, offering a new criterium of select-

ing visually-mimicking samples for meat analogue applications. The

Fiberlyzer method is open-source and simple to be implemented

into the current product development routine of meat analogues.

Such a digital tool can further contribute to formulation develop-

ment in the production of meat analogues and enhance the current

understanding of visual and textural fibrous structures in meat

analogues.
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