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Abstract
1. Above-ground biomass (AGB) is an important metric used to quantify the mass 

of carbon stored in terrestrial ecosystems. For forests, this is routinely estimated 
at the plot scale (typically 1 ha) using inventory measurements and allometry. In 
recent years, terrestrial laser scanning (TLS) has appeared as a disruptive technol-
ogy that can generate a more accurate assessment of tree and plot scale AGB; 
however, operationalising TLS methods has had to overcome a number of chal-
lenges. One such challenge is the segmentation of individual trees from plot 
level point clouds that are required to estimate woody volume, this is often done 
manually (e.g. with interactive point cloud editing software) and can be very time 
consuming.

2. Here we present TLS2trees, an automated processing pipeline and set of Python 
command line tools that aims to redress this processing bottleneck. TLS2trees 
consists of existing and new methods and is specifically designed to be horizon-
tally scalable. The processing pipeline is demonstrated on 7.5 ha of TLS data cap-
tured across 10 plots of seven forest types; from open savanna to dense tropical 
rainforest.

3. A total of 10,557 trees are segmented with TLS2trees: these are compared to 
1281 manually segmented trees. Results indicate that TLS2trees performs well, 
particularly for larger trees (i.e. the cohort of largest trees that comprise 50% 
of total plot volume), where plot-wise tree volume bias is ±0.4 m3 and %RMSE is 
60%. Segmentation performance decreases for smaller trees, for example where 
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1  |  INTRODUC TION

Above-ground biomass (AGB) is an important metric that quantifies 
the amount of carbon stored in terrestrial ecosystems, and as such 
has been identified as an essential climate variable (ECV). However, 
accurate quantification of forest AGB is a significant and ongoing 
challenge owing to a number of factors, including systematic er-
rors when applying allometry to inventory data (Burt et al., 2020). 
To improve the accuracy of AGB quantification in forests, groups 
such as the International Panel on Climate Change (IPCC) and the 
Committee on Earth Observing Satellites (CEOS) have identified ter-
restrial laser scanning (TLS) as a disruptive technology (Duncanson 
et al., 2019; Ogle et al., 2019).

TLS is an active remote sensing technology that generates a de-
tailed 3D point cloud of the surrounding area with centimetre to mil-
limetre accuracy (Newnham et al., 2015; Calders et al. in Duncanson 
et al., 2019). A TLS-based approach has been used to estimate AGB 
across a range of forest types (Demol, Verbeeck, et al., 2022), for 
example; tropical forests (Beyene et al., 2020; Brede et al., 2022; 
Burt et al., 2021; Gonzalez de Tanago et al., 2018; Levick et al., 2021; 
Momo Takoudjou et al., 2018), temperate forests (Calders 
et al., 2015, 2022; Disney et al., 2020; Stovall et al., 2017), man-
groves (Feliciano et al., 2014) and trees outside forests (Kükenbrink 
et al., 2021; Van Den Berge et al., 2021; Wilkes et al., 2018). Over 
the past decade, area scanned has increased from a few trees to 
systematic acquisition across multiple hectares that replicates forest 
inventory protocols (Wilkes et al., 2017).

The benefits of TLS based methods are that they are non-de-
structive, capture tree plasticity particularly of large trees (Burt 
et al., 2021) and are (mostly) free from errors and assumptions 
associated with allometric modelling (Chave et al. in Duncanson 
et al., 2019). When compared to destructive harvest, TLS has been 
shown to be more accurate than the application of existing allome-
tries, particularly for larger trees that contribute disproportionately 
to plot-level AGB (Demol, Verbeeck, et al., 2022). However, op-
erationalising a plot-level (i.e. ≥1 ha) TLS workflow as a “turn-key” 
solution to produce an AGB product has yet to be fully realised 
(Martin-Ducup et al., 2021).

A TLS survey of a forest plot to estimate AGB typically involves: 
(1) capturing scan data from multiple fixed positions across a plot, 
(2) co-register scans to produce a single plot-level point cloud P, (3) 
instance segmentation of P into a set of point clouds that represent 
individual trees S, (4) semantic segmentation of s ∈ S into wood and 
leaf point classes, (5) estimate of woody volume for s ∈ S, for exam-
ple using a Quantitative Structure Model (QSM) approach, and (6) 
conversion of volume to AGB via an estimate of wood basic density.

Steps 1–2 have been largely been solved with improvements in 
scanner technology and standardised scanning protocols (Calders 
et al., 2020; Wilkes et al., 2017). There are also a number of exist-
ing methods for semantic segmentation (Vicari et al., 2019; Wang 
et al., 2020) and QSM generation, where s ∈ S are enclosed in a 
geometric primitives, for example a set of cylinders (Hackenberg 
et al., 2015; Raumonen et al., 2013; Stovall et al., 2017). Conversion 
of volume to mass is an ongoing challenge for all non-destructive 
methods of AGB estimation as wood density varies greatly within 
and between trees and geographic regions (Phillips et al., 2019). 
Therefore, it is suggested, that from a TLS workflow perspective at 
least, the most significant remaining challenge to operational plot 
level AGB estimation is the instance segmentation in step 3, that is 
S ⊂ P.

P is encoded with geometric information of whole-tree struc-
ture, for all trees in the surveyed area regardless of size. If P is of 
sufficient density and quality then S can be accurately segmented 
and an unbiased assessment of plot-level AGB, with associated un-
certainties, can be produced (Burt et al., 2021; Calders et al., 2015; 
Momo Takoudjou et al., 2018). Currently, the most accurate method 
for S ⊂ P is to manually segment individual trees from their neigh-
bours and other vegetation using interactive point cloud editing 
software (Brede et al., 2022; Disney et al., 2020; Gonzalez de Tanago 
et al., 2018; Momo Takoudjou et al., 2018). Manually segmenting 
trees increases tree- and plot-level estimation accuracy by a factor 
of 10 and 3 respectively, compared to existing automated TLS pipe-
lines (Martin-Ducup et al., 2021). However, manual segmentation 
can be very time consuming (10's of minutes per tree) as well as sub-
jective and difficult to reproduce or validate. These factors have lim-
ited the number (and provenance) of segmented trees, where total 

DBH ≤10 cm; a number of reasons are suggested including performance of se-
mantic segmentation step.

4. The volume and scale of TLS data captured in forest plots is increasing. It is sug-
gested that to fully utilise this data for activities such as monitoring, reporting and 
verification or as reference data for satellite missions an automated processing 
pipeline, such as TLS2trees, is required. To facilitate improvements to TLS2trees, 
as well as modification for other laser scanning modes (e.g. mobile and UAV laser 
scanning), TLS2trees is a free and open-source software.

K E Y W O R D S
above-ground biomass, Forest, FOSS, segmentation, terrestrial laser scanning
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segmented trees is limited to 10's (and only in rare cases 100's) of 
trees per hectare.

Automated whole-tree instance segmentation methods 
have been previously demonstrated (Burt et al., 2019; Krisanski, 
Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021; Martin-Ducup 
et al., 2021; Tao et al., 2015; Wang et al., 2021). Tao et al. (2015) 
presented a method where a graph is constructed through clus-
tered P, then using a Dijkstra shortest-path method (Dijkstra, 1959) 
clusters are mapped to a base node resulting in segmented S. They 
applied their method to TLS data collected in three forest patches 
and reported high accuracy for number of trees correctly identi-
fied and completeness of extracted trees. Subsequent methods 
have built upon these graph based methods and have been applied 
in different forest types such as Schelorphyll, coniferous and trop-
ical forests (Martin-Ducup et al., 2021; Wang et al., 2021). Burt 
et al. (2019) presented a rule constrained clustering with proxim-
ity testing to segment trees in a tropical forest plot; this method 
also requires an allometric assumption of DBH to crown height 
and extent. The Forest Structure Complexity Tool (FSCT) (Krisanski, 
Taskhiri, Gonzalez Aracil, Herries, Muneri, et al., 2021) is an end-
to-end workflow that generates plot level estimates of structure 
parameters from laser scanning data. FSCTs innovative approach 
combines deep-learning powered semantic segmentation which is 
followed by a rule constrained cluster based instance segmenta-
tion. These methods have shown promise in demonstration plots, 
this paper aims to build on these and present a method that is 
scalable and is applicable across forest types.

There are a number of challenges that can hinder achieving 
sufficient quality of S ⊂ P with an automated workflow (Demol, 
Verbeeck, et al., 2022). These include factors attributable to scan-
ning protocol and scanner specification, such as scanner type and 
optics (Calders et al., 2020; Newnham et al., 2015), sufficient sam-
pling density to minimise occlusion (Wilkes et al., 2017), co-registra-
tion accuracy and co-alignment errors (Demol, Wilkes, et al., 2022) 
and post-processing computational constraints, for example large 
data volumes (data volumes are typically >65 Gb ha−1). Further, au-
tomated segmentation also needs to be sensitive to forest demogra-
phy and composition where trees in a plot can range in size (height, 
diameter, etc.) over orders of magnitude, neighbouring crowns may 
intersect, parasite species such as lianas could be present (Moorthy 
et al., 2019) and understorey vegetation maybe dense.

To address the interoperability and scalability challenges of au-
tomated tree segmentation from plot-level point clouds, we present 
TLS2trees. TLS2trees is a set of Python command line tools that are 
free and open-source software (FOSS) and are specifically designed 
to be horizontally scalable (Kissling et al., 2022), for example, on a 
High Performance Computing (HPC) facility. The output is a set of 
segmented point clouds of individual trees, where points are clas-
sified into leaf and wood components. Below, TLS2trees is demon-
strated at 10 forest plots that cover seven forest types; from open 
savanna to dense tropical forest. Additionally, segmented point 
clouds are compared to a set of 1053 manually segmented reference 
trees.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition

The TLS data used here were captured from 10 plots across seven 
different forest types (Table 1). At each plot, data were acquired 
with a RIEGL VZ-400 scanner (RIEGL Laser Measurement Systems 
GmbH, Horn, Austria) where a set of scans I  were captured on a reg-
ular grid (Kissling et al., 2022) or, for RUSH plots, in a star formation 
(Calders et al., 2015). At each scan position two scans were acquired 
where the scanner rotation axis was orientated perpendicular then 
parallel to the ground surface. Manually-placed reflectors were used 
as tie points between each scan position to aid co-registration. Post-
processing was done using RiSCAN Pro software (versions 2.1-2.9) 
where individual scans were co-registered to a common coordinate 
system on a per plot basis. Once registration was complete, a set of 
4 × 4 transformation matrices M were exported for each plot.

2.2  |  TLS2trees

The TLS2trees software package consists of a set of Python com-
mand line tools. TLS2trees can be considered Free and Open Source 
Software (FOSS) and is licensed under Creative Commons BY 4.0 
(https:// creat iveco mmons. org/ licen ses/ by/4. 0/ ). Processing is hori-
zontally scalable, that is can be scaled across multiple computing 
nodes (Kissling et al., 2022) where this is achieved using a tile-based 
workflow. The workflow is also modular so new or additional meth-
ods can be added or existing steps replaced. For more information 
and code see Wilkes et al. (2023).

This section presents a detailed description of the workflow. As 
is shown in Figure 1, a coregistered global point cloud P is passed 
through the TLS2trees pipeline to generate a set of segmented 
tree point clouds S. The pipeline is presented in three steps: (1) 
pre-processing (Section 2.2.1), (2) semantic segmentation (Krisanski, 
Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021) where points 
are classified into different components (Section 2.2.2), and (3) an 
instance segmentation where P is segmented to a set of individual 
trees S (Section 2.2.3). Once S ⊂ P, structure traits, such as total 
woody volume, are computed via TreeQSM (Section 2.4). Exposed 
workflow parameters for each step are listed in the Appendix 0. It 
should be noted that, although data processed for this manuscript 
was only captured with a RIEGL scanner, the workflow can be 
adapted to other scanner types, for example Wielgosz et al. (2023).

2.2.1  |  Step 1. Preprocessing

The workflow starts at the point of a set of individual scans I  and 
corresponding rotation matrices M; the first step is (I,M) ↦ P. During 
(I,M) ↦ P, I  are clipped to the plot extent determined by M, plus a 
10 m buffer (Martin-Ducup et al., 2021). The buffer is required to 
capture the crowns of trees that have germinated inside the plot but 
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where the crown overhangs the plot boundary. P is then projected 
onto a 10 m × 10 m grid to produce a set of tiled point clouds T where 
individuals tiles t ∈ T are the processing unit for subsequent steps. A 
tile index of T is also generated to map the spatial location of neigh-
bouring tiles.

As is inherent with TLS data, objects closer to the scanner are 
over sampled whereas objects further away (e.g. the top of the 
canopy, or at the edge of a scanned region) can be undersampled 
(Burt et al., 2019). To mitigate the impact of this difference and 
to reduce file size, P is downsampled to a common point den-
sity using PDAL's Voxel Center Nearest Neighbour method (PDAL 
Contributors, 2020) where here a voxel edge length of 0.02 m is 
used.

2.2.2  |  Step 2: Semantic segmentation

Semantic segmentation is the process of labelling points into ho-
mogeneous groups; here this is into classes of different biophysi-
cal components, for example ground, leaf, wood and so forth. 
Previous workflows have classified points simultaneously with or 
after instance segmentation (Vicari et al., 2019; Wang, 2020; Wang 
et al., 2020). However, instance segmentation can be hampered by 
the presence of leaves that reduce gaps between tree crowns, or 
cause neighbouring crowns to intersect.

Here we use the FSCT semantic segmentation method (Krisanski, 
Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021) prior to instance 
segmentation (Krisanski, Taskhiri, Gonzalez Aracil, Herries, Muneri, 
et al., 2021). The FSCT semantic segmentation uses the Pointnet 
deep-learning method (Qi et al., 2017) applied via Python's PyTorch. 
Using a pre-trained model, P is classified into 4 classes; ground 
(G), woody (W), leaf (L) or coarse woody debris (X) (Figure 1b and 
Equation 1)

The semantic segmentation is applied to t + tb ∈ T, b refers to neigh-
bouring tiles used to generate a 5 m buffer that mitigates any edge ef-
fect; once the semantic segmentation is complete only the class label 
for t are retained. It should be noted that the pre-trained model has not 
been modified since its initial release by Krisanski, Taskhiri, Gonzalez 
Aracil, Herries, and Turner (2021), that is the model is not trained for 
forest types specific to Table 1.

2.2.3  |  Step 3: Instance segmentation

Instance segmentation is the process of identifying and segment-
ing individual trees S =

{

s1, s2, … , sk
}

 encoded in P, that is PW+L ↦ S. 
Here, a new two step process is presented where (1) PW are grouped 
into a set of individual woody stems S (Figure 3c), then (2) PL are as-
signed to s ∈ S (Figure 3d).

Both steps use a Dijkstra's shortest path method (Dijkstra, 1959) 
where a graph G = (N, E) is constructed; N are a set of nodes and 

(1)P = PG + PW + PL + PX
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E are a set of edges that connect N. A path p can be defined that 
connects two nodes 

(

n, nk
)

∈ N, where p =
[

n, n1, n2, … nk
]

; for each 
(

n, nk
)

 pair there are multiple solutions to p. To determine the short-
est path between the pair 

(

n, nk
)

 a weight function w: E → ℝ is de-
fined (Equation 2; Tao et al., 2015).

Previous methods have constructed graphs where N is a set of vertices 
in ℝ3 and w are the Euclidean distances between N (Brede et al., 2022; 
Tao et al., 2015; Vicari et al., 2019; Wang et al., 2021). Therefore the 
shortest path min

{

w(p): n → nk
}

 is analogue to a vascular system (Tao 
et al., 2015; Figure 2 left). However, experimentation found that if one 
or more tree crown envelopes intersect, the shortest path could be 
to the base of a smaller suppressed tree, resulting in a poor instance 
segmentation (Figure 3). To solve this, a different approach is taken to 
compute w.

To define a graph GW for wood classified points PW, a set of nodes 
NW are first generated. To do this, PW is sliced horizontally (relative 
to ground normalised height calculated from PG) at intervals of 0.2 m; 

slicing is required to regularise the distance between clusters. Then 
for each slice, DBSCAN (Ester et al., 1996) is used to map PW to a 
set of clusters CW (Figure 2). DBSCAN parameters are dependent on 
acquisition and point cloud characteristics; after downsampling an 
eps value of 0.1 m and minimum_sample of 20 points are used here.

For each cluster c ∈ CW, a convex hull is computed generating a 
set of hull vertices VW where VW ⊂ CW ⊂ PW (Figure 2 right). A convex 
hull retains information on the occupation of space and proximity to 
neighbouring clusters, whereas collapsing a cluster to a single vertex 
does not. A k-nearest neighbour search is then performed on VW to 
identify vertices in neighbouring clusters; within cluster connections 
are disregarded. The Euclidean distance where min

(

dist
(

VWcx
,VWcy

))

 
is used as the edge weight function w (Figure 2 right). w(p) is there-
fore determined by distance between cluster edges (i.e. connec-
tivity) as opposed to distance between cluster centroids (i.e. path 
length). A parameter is available to set allowable maximum distance 
between VWcx

 and VWcy
 (Appendix 0).

Dijkstra shortest path analysis requires a subset of source nodes 
nb ⊂ NW from which to calculate distance from. Here nb are gener-
ated by taking a slice through CW

[

z1, z2
]

; z1 and z2 are upper and lower 
bounds of the slice relative to ground height and the median height 

(2)w(p) =

k
∑

i=1

w
(

ni−1, ni
)

F I G U R E  1  TLS2trees applied to a 
70 m × 20 m strip of forest in plot RUSH 
where (a) P is coloured by calibrated 
reflectance, (b) semantic segmentation 
into four classes using a method adopted 
from FSCT Wielgosz et al. (2023), (c) 
instance segmentation where only points 
classified as wood are displayed and 
segmented trees are coloured randomly 
and (d) instance segmentation where leaf 
points are attributed to individual stems.
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of c ∈ CW is used to determine intersection. RANSAC cylinder fitting 
is then used to identify stem bases from noise such as small branches 
or misclassified leaves (Burt et al., 2019). It is important to attempt 
to identify all stems, regardless of diameter, otherwise smaller stems 
can be erroneously included into larger neighbouring stems; here a 
lower limit of � = 0.05 m is used for stem detection.

Once the graph GW is generated, the Dijkstra shortest path 
method is used where multiple source nodes nb can be defined. The 
output of the shortest path analysis is a disjoint union of undirected 
acyclic graphs. Then NW ↦ CW and therefore PW can be mapped to a 
set of individual stems S.

Once step 1 is complete, another graph GL is created that maps 
leaf classified points PL (and PW that are not attributed to a stem) to 
s ∈ S. NL are computed by first mapping PL to a set of voxels CL with 
an edge length of 0.5 m; CL is equivalent to the clusters CW above. A 
set of 6 vertices are generated for c ∈ CL where a vertex is assigned 
to the centroid of each voxel facet; this results in VL which are equiv-
alent to VW above. EL and corresponding w are determined by calcu-
lating the Euclidean distances to neighbouring v ∈ VL. A set of source 
nodes nb ⊂ NW are taken from GW where n ∈ NW have no children, 
that is n is a branch tip; nb are already associated with s ∈ S. Shortest 
path analysis is again used to connect NL with nb and therefore assign 
PL to s ∈ S.

To run the instance segmentation, each t ∈ T is buffered by 
neighbouring tiles (see Table 2 for example buffer size). Once com-
plete, S is pruned so that only trees whose germination point is within 
t are retained; further, a first-pass filter to remove trees where DBH 
<0.1 m (as determined by the RANSAC cylinder fitting) is applied.

2.3  |  Manually segmented trees

A total of 1281 trees have been manually segmented in previous 
studies (Table 1). Methods for selecting trees to manually segment 
from P differed for each plot. For RUSH plots, trees were selected 
by the Victorian State Government to update statewide AGB allom-
etry, where a subset of trees were harvested across a range of sizes 
and species (Calders et al., 2015; Murphy et al., 2014). For WYT, all 
trees within a central 1 ha plot were segmented from a larger 6 ha 
scanned area, this reduces edge effects inherent at other plots. 
Individual tree point clouds were also split into >1 tree if bifurca-
tion occurred <1.3 m (Calders et al., 2018). All trees were segmented 
from NOU where DBH >0.2 m (Burt et al., 2019) and KOG where 
DBH >0.1 m. For AEP and MLA plots, tree species that comprised 
80% of total basal area were selected and a 2–3 trees from each 
species were segmented (Shenkin et al., 2020). It should be noted 
no trees have been specifically manually segmented or modified for 
this manuscript, that is trees were segmented before the inception 
of this method.

Trees from plots RUSH, MLA, AEP and KOG were manually 
segmented from the plot-level point cloud using either RiSCAN 
Pro or CloudCompare v2.X (https:// www. danie lgm. net/ cc/ ). Data 
from WYT (Calders et al., 2018, 2022), NOU (Burt et al., 2019) and 

CALI (Disney et al., 2020) were first segmented with treeseg (Burt 
et al., 2019), after which trees were modified manually, for exam-
ple removing overlapping crowns. During this process all trees were 
manually verified for commission and omission errors by an experi-
enced operator.

After segmentation, all tree point clouds underwent a seman-
tic segmentation into leaf and wood points using the TLSeparation 
Python package (Vicari et al., 2019); the exception being WYT where 
data were captured in leaf-off conditions. Using the wood classified 
point cloud only, per tree structural traits were then modelled using 
TreeQSM (see Section 2.4).

2.4  |  Quantitative structure models

Quantitative Structure Model (QSM) methods enclose the wood-
only point clouds in a set of geometric primitives, for example a cylin-
der. This allows for the estimation of morphological and topological 
traits such as volume, length and surface area metrics (Raumonen 
et al., 2013). TreeQSM (version 2.3.1, Raumonen, 2019) is used to 
generate a QSM for all manually and automatically segmented trees. 

F I G U R E  2  A comparison of methods for the construction of 
graphs through point clouds. Displayed are clusters (vertically 
orientated) along a stem, adjacent clusters have been exploded 
so connections between clusters are clearly visible. For the 
“Euclidean” method, edge weights (values to the right) are 
calculated as the Euclidean distance between cluster centres; this 
is synonymous with path length (Tao et al., 2015). For the “Convex 
hull” method, edge weights are calculated as the distance between 
the vertices of neighbouring convex hulls (i.e. connectivity).
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Since the version of TreeQSM and iterated parameter space may dif-
fer from previously published versions, it should be noted that mod-
elled values for manually segmented trees may also differ.

A set of TreeQSM parameters control the overall fit of cylinders, fol-
lowing Raumonen et al. (2013) three parameters are iterated over here; 
PatchDiam1 =

[

0.20, 0.22, … , 0.3
]

 , PatchDiam2Min =
[

0.5, 0.7, … , 0.15
]

 
and PatchDiam2Max =

[

0.15, 0.17,…,0.25
]

. TreeQSM is run in Octave 
(Eaton et al., 2020) where, for each parameter set permutation 5 
models are generated. This results in a total of 625 models per seg-
mented tree. An optimal model is then selected by minimising the 
point to cylinder surface distance (Burt et al., 2019; Martin-Ducup 
et al., 2021).

2.5  |  Comparing tree pairs

To assess the accuracy of segmentation, a corresponding pair of 
trees is identified in the manually and TLS2trees segmented sets. 
Pairs are identified by firstly taking a slice through all segmented 
trees between 2 and 3 m and computing the centroid of the slice. 
Tree pairs are then matched by selecting a tree from the TLS2trees 
data set that mostly closely matches the position of a manually seg-
mented tree. Trees where more than one target tree is within 1 m of 
the reference tree or where a match is >2 m from the reference tree 
are disregarded from further analysis.

For matched tree pairs, QSM and point cloud metrics are com-
pared. QSM metrics include total woody volume (m3), trunk volume 
(m3), total branch length (m) and DBH (m). Point cloud metrics include 
leaf-on crown height (m), leaf-on projected crown area (m2), wood/
leaf point classification ratios and Jaccard Index metrics. The Jaccard 
Index (Jaccard, 1912) is a measure of spatial concordance; values 
range from 0%–100% where 0% and 100% indicate no overlap and 
complete overlap of point clouds accordingly (Brede et al., 2022). 
A Weighted Jaccard Index is calculated here by first voxelising the 
segmented point clouds with an edge length of 0.5 m, a weight w is 

then assigned to each voxel corresponding to the number of points 
per voxel. Then for each tree pair the weighted intersection and 
union of voxel sets is computed using Python's sklearn (Pedregosa 
et al., 2011) jaccard_index method.

Owing to the unbalance in number of segmented trees per plot, 
when deriving metrics for all matched pairs, a bootstrap sampling 
approach is taken where for each iteration a sample of 10 trees per 
plot is drawn.

2.6  |  Computing infrastructure and software

Insufficient computing infrastructure can be a bottle neck to pro-
cessing large geospatial data sets, such as point cloud data. TLS data 
can generate particularly large data sets for relatively small regions 
of interest when compared to other laser scanning instruments, for 
example airborne. Therefore, for a new TLS data processing pipeline 
to be operationalised it would ideally be capable of being horizon-
tally scaled.

Horizontal scaling is achieved in the semantic and instance seg-
mentation steps of TLS2trees by mapping P to a set of tiles T; then 
t ∈ T are run independently and in parallel. To process the plots in 
Table 1, the UK's Natural Environment Research Council's (NERC) 
JASMIN computing facility and the NERC Earth Observation Data 
Acquisition and Analysis Service (NEODAAS) MAssive GPU for 
Earth Observation (MAGEO) cluster were used. The JASMIN facil-
ity (https:// jasmin. ac. uk/ ) is designed for data intensive computing 
and comprises a large volume of storage combined with general 
purpose batch computing capability. The MAGEO cluster (https:// 
www. neoda as. ac. uk/ ) is a specialised system designed for earth ob-
servation data and comprises 40 GPUs, 200 GPU cores and 0.5 PB 
of fast storage. Data processing requirements and times for a subset 
of plots are presented in Table 2.

All steps use Python as a base programming language, this in-
cludes common scientific libraries such as Numpy, Scipy and Pandas 

F I G U R E  3  A tree segmented using (a) manual segmentation by Calders et al. (2015) (b) segmented using the convex hull method of 
TLS2trees and (c) segmented using a Euclidean distance method. Grey boxes A and B highlight branches that have been wrongly attributed to 
Trees 2 and 3, respectively [black points in (c)]. Trees 2 and 3 (c) can be seen at the base of the manually segmented tree [(grey points in (a)]. 
Leaf points identified in Panel a using TLSeparation (Vicari et al., 2019).
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(see Wilkes et al. (2023) for full list) which are managed with the 
conda package and environment manager. In addition, the pre-pro-
cessing step also uses the PDAL library (PDAL Contributors, 2020), 
semantic segmentation uses PyTorch libraries (version 1; Fey & 
Lenssen, 2019) and instance segmentation uses Networkx (Hagberg 
et al., 2008).

3  |  RESULTS

3.1  |  Plot wide segmentation

A total of 10,557 trees were segmented from 10 plots, of which 
3908 trees were inside the plot boundary and have a DBH >0.1 m 
(Table 3). The tallest tree segmented is a 78.9 m dipterocarp from 
MLA and the largest tree by volume is a 211 m3 coastal redwood 
from CALI (CALI-A, Figure 3). Trees from WYT have far longer total 
branch length where the longest is 8.5 km, this compares to the long-
est tropical branch length of <2 km. This could be as a result of a 
trees ontogeny, for example repeated pollarding followed by aban-
donment, or a systematic method bias where aggressive semantic 
segmentation misclassifies smaller branches as leaves for evergreen 
trees.

Estimated segmented stem density ranges from 247 stems ha−1 
at the RUSH plots to 761 stems ha−1 at the AEP plot (Table 3). 
Compared to reported stem density values (Table 1) these are ±10% 
for RUSH, WYT, NOU and MLA; larger discrepancies are evident at 
AEP (−25%), KOG (+39%). Fujimori (1977) reported a large interval 
for stem density in CALI-type (coastal redwood) plots as a function 
of succession; values reported here fall within that range.

Figure 4 shows per plot the largest segmented tree point clouds 
(by total woody volume); for each tree, both wood and leaf points are 
displayed (and coloured accordingly). The Supplementary Material 
presents all trees segmented for plots where TreeQSM computed 
DBH >0.1 m. In general, tree crowns appear complete with only small 
omission and commission errors evident, for example small twigs/
branches from neighbouring trees. The crowns of large tropical trees 
(plots MLA and NOU) are well segmented, even capturing the idio-
syncrasies of crown morphology, for example tree MLA-Q has bro-
ken and repsprouted (top row Figure 4). Along the length of some 
tree stems there are erroneous leaf points that are either attributable 
to lianas or crowns of smaller mid and understorey trees (e.g. trees 
NOU-A and MLA-B in Figure 4). As described in Section 2.2.3, leaf 
points PL are connected to a stem via branch tips, this would suggest 
that graph connections have been made to branch points surround-
ing the stem. It should be noted that PL are not used to model volume.

TreeQSM appears to have overestimated the total volume of a 
few trees (e.g. trees KOG-B, RUSH-AG, AEP-H, AEP-J and NOU-L 
in Figure 4). This is a result of TLS2trees derived commission errors 
where small disconnected woody structures (e.g. shrubs) have in-
flated the size of cylinders used to estimate volume, particularly at 
the base. Further, a number of trees in the KOG plot have numerous 
smaller stems at the base of each tree (see Section 4).TA
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3.2  |  Comparison with manually segmented trees

A total of 1053 segmented trees were successfully paired to a 
manually segmented tree, this represents a match rate of 82% 
(Table 4). For the majority of plots a corresponding tree pair is 
found for >90% of trees and for all plots a pair is found for all seg-
mented trees that constitute the largest 50% of total segmented 
volume. The lowest rates are observed at WYT: see Section 4 for 
discussion.

Scatter plots that compare key QSM and point cloud metrics 
are presented in Figure 5. TLS2trees derived point clouds result in 
TreeQSM total woody volume estimates (a precursor for estimating 
AGB) with a per plot bias of ±0.4 m3 and RMSE of 0.5–3 m3. The 
exception being CALI where total woody volume bias and RMSE 
are −1.4 and 16.7 m3 (%RMSE = 70%) respectively. Segmentation 
of smaller trees by TLS2trees is less accurate, this results in a 
TreeQSM derived per tree total woody volume %RMSE of >1000%. 
However, when considering the largest trees that constitute 50% 
of total woody volume, %RMSE of per-tree woody volume reduces 
to 60%.

Presented in Figure 6 is a comparison of per plot summed total 
volume; summed volume from TLS2trees segmented trees were 
±10% that of manually segmented trees for all plots. The exception 
is the RUSH and KOG plots where an 18% and 30% overestimate in 
total woody volume is evident.

If using an existing allometric equation to estimate tree volume 
or AGB then other structure metrics are important, for example 
DBH and tree height. Tree height is estimated with an %RMSE of 
27% where the largest errors were at the tall tree sites (MLA and 
CALI) as well as AEP. For AEP, tree height is underestimated owing 
to semantic segmentation errors near the base of trees where 
wood points were classified as leaf, this also impacted estimates of 
DBH. Crown area is consistently overestimated by TLS2trees seg-
mented trees with a bias of 20 m2. DBH is also overestimated by 
TLS2trees segmented trees with a bias of 0.04 m and an %RMSE of 
100%, this reduced to <40% when considering the cohort of larg-
est trees. Inflation of crown area and DBH by TLS2trees segmented 
trees are attributed to outlier points that increase projected area; 
it is suggested that a method to filter outlier points could improve 
results.

Segmented tree pair similarity is tested using the Jaccard Index 
(see Section 2.5). Mean Jaccard Index results for all trees is 75%; this 
indicates that a pair of trees shared 75% of the voxel space (weighted 
by point density; Table 4). Differences were predominantly caused 
by the foliage around stems (e.g. top row Figure 4). Considering all 
points, a Jaccard Index of >90% is evident at 3 the least densely 
stocked plots the sites. Jaccard index values increase for all plots 
when considering only the largest trees that comprise 50% of total 
woody volume and are generally greater than 75% (except CALI 
plots; Table 4). Trees at AEP performed poorly when considering 
Jaccard Index values, with a median score of 13% increasing to 75% 
when considering the 7 largest trees; it is suggested this is again due 
to a poor semantic segmentation.TA
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Considering wood and leaf point voxel occupancy (Table 4), 
the Jaccard Index values were lower than for all-points values. 
This indicates that there is a mismatch between wood/leaf point 
segmentation methods. For example, at MLA 67% of points were 
classified as leaf using TLSeparation whereas 91% of points were 
classified as leaf using the deep-learning segmentation (Table 4). 
This also impacts total branch length (Figure 5e) where TLS2trees 
significantly underestimates length compared to manually seg-
mented trees.

4  |  DISCUSSION

TLS methods are capable of generating accurate estimates of tree 
and forest AGB. Operationalising TLS workflows could therefore 

have implications for activities including National Forest Inventories 
(NFI) (Liang et al., 2018); measurement, reporting and verification 
(MRV) protocols; benchmarks; and reference datasets for AGB fo-
cused satellite missions (e.g. BIOMASS and GEDI; Chave et al., 2019) 
and new or updating allometry (Disney et al., 2020; Stovall 
et al., 2017). However, achieving operationalisation of TLS methods 
has proved challenging for a number of reasons. In particular, and the 
focus of this work, is the labour-intensive and time-consuming effort 
to accurately segment individual trees from plot-level point clouds 
which have caused a significant processing bottleneck. To address 
this issue, here we have presented TLS2trees, a FOSS and horizon-
tally scalable Python-based pipeline for segmenting individual trees 
from plot-scale TLS point clouds.

Manually segmenting trees from plot-level point clouds is cur-
rently regarded as the most accurate method, and it is suggested 

F I G U R E  4  The largest trees (by volume) segmented using TLS2trees for different forest types. Points are coloured leaf or wood 
components as classified during the semantic segmentation step.
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that this is unlikely to change. However, such approaches are not 
reproducible and lack the traceability or transparency that would 
be required for carbon accounting and reporting programmes. 
Manual segmentation is also not scalable, where, along with is-
sues of subjectivity, operator fatigue may degrade results. An 
automated approach, such as TLS2trees, aims to address these 
issues of reproducibility, subjectivity and scalability. However, 
routinely segmenting many hundreds of trees per hectare pres-
ents additional challenges, for example, quality assurance (QA). As 
seen here, different forest types present different challenges in 
terms of generating an accurate result and therefore an applica-
tion focused QA strategy is suggested. For example, if the metric 
of interest is AGB, a strategy of sampling the largest trees, that 
disproportionately contribute to plot level AGB, as well as a subset 
of smaller trees across the AGB range should identify systematic 
issues.

TLS2trees performs well across a range of forest types, from open 
savanna (KOG) to tall tropical rainforest (MLA), the workflow also 
performs well within plots segmenting trees across a range of sizes 
(Table 3). This is despite the fact the semantic segmentation base 
model is only trained on a small area of Australian and New Zealand 
forest (Krisanski, Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021) 
and TLS2trees model parameters were not adjusted for forest type 
(Appendix 0). Retraining the semantic segmentation model to be for-
est type or sensor specific has yielded improved results (Wielgosz 
et al., 2023); however, we suggest that using the FSCT base model is 
sufficient for a first pass. We would also like to stress that TLS2trees 
is a work in progress and there are a number of aspects of TLS2trees 
that could be improved. We hope this can be achieved through a 
user community (e.g. see Wielgosz et al., 2023) and have made the 
source code open-source to facilitate this.

The success of each step presented in Figure 3 depends on the 
success of the previous step. For example, as seen at the AEP plot, 
misclassification of wood points as leaf points around the base of trees 
caused errors in the instance segmentation. Similarly, QSM methods 
such as TreeQSM require a “clean” point cloud with minimal noise 
(Raumonen et al., 2013) and this is not always achieved, for example 
inclusion of small neighbouring stems leads to volume inflation. Model 
parameterisation will be forest type and scanner specific, for exam-
ple, the height at which –-find-stems-boundary (Appendix 0) is 
taken will differ depending on tree height and height and density of 
the understorey. It is therefore suggested that improved results can 
be achieved through an optimisation (Wielgosz et al., 2023) or heu-
ristic approach where model parameters are tested on individual tiles 
before scaling up. Another approach could be to test different param-
eterisation in a simulated forest, for example a comparison of semantic 
segmentation methods (Morel et al., 2020).

One particular aspect where TLS2trees performed poorly is 
with the segmentation of smaller trees. Example errors include 
commission errors where multiple stems are grouped into a sin-
gle tree or omission errors where smaller stems are missed. Again, 
a different parameterisation of TLS2trees may improve perfor-
mance. An example is presented in Figure 7 where a change in TA
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–-maximum-cumulative-gap reduces the number of erroneous 
stems at the base of the tree; however, if the parameters is re-
duced too far then portions of the crown are removed. Instrument 
limitations should also to considered when resolving smaller fea-
tures, where laser beam and scanning characteristics can limit ca-
pability (Demol, Wilkes, et al., 2022). An example of the impact of 
the smallest trees is evident at WYT where total volume %RMSE 
is 2000% when compared to manually segmented trees. However, 

if considering only the largest trees that contributed 90% and 50% 
to total volume, %RMSE reduced to 50% and 25% respectively. 
Further, matching pairs of trees was a challenge at WYT where cop-
piced stools that forked below 1.3 m were often regarded as a single 
tree by TLS2trees; whereas they were manually extracted as indi-
viduals by Calders et al. (2018). A suggested solution to improving 
instance segmentation for small, forked trees is to perform a further 
instance segmentation based upon topological information derived 

F I G U R E  5  A comparison of manually and TLS2trees segmented tree pairs for metrics (a) tree height, (b) crown area, (c) total volume, (d) 
trunk volume, (e) total branch length and (f) DBH. Smaller panels are zoomed into the lower 50th percentile of tree pairs. The “boostrap” line 
represents a mean regression line for all plots, the grey shaded area is a 99% confidence interval for the regression.
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from the QSM. The output from TLS2trees is a point cloud file for 
each individually segmented tree; therefore any tree can be man-
ually edited using software such as CloudCompare (https:// www. 
danie lgm. net/ cc/ ).

Considering the scalability of TLS2trees there may be a number 
of options for improving code and routine efficiency. For example, a 
10 m x 10 m processing unit (see Section 2.2.1) was chosen to allow 
high compute parallelisation of 1 ha plots; however, this may not be 
optimal for all forest types and processing architectures. Further, a 

high tile edge length to area ratio increases the likelihood of dupli-
cate segmented trees. Other options for improved efficiency include 
larger vertical slice (and therefore reduced number of clusters) in the 
instance segmentation step (see Section 2.2.3) may improve com-
pute times. Here, TLS2trees was run on a state-of-the-art computing 
facility that may not be available to all groups. An alternative option 
would be to run on a commercially available cloud computing service 
(e.g. Amazon Web Service or Microsoft Azure), to facilitate this we 
have provided a containerised version of TLS2trees.

Lastly, although the name TLS2trees implies the workflow is lim-
ited to the processing of just TLS data, we suggest that the frame-
work presented here could be applied to other laser scanning modes. 
The horizontal scalability functionality, built in to TLS2trees, is well 
suited to the large area acquisitions possible with airborne platforms.

5  |  CONCLUSION

There is an estimated 260 ha of plot-level TLS data collected from 
forests across the globe (pers. comm. Dr. Atticus Stovall, NASA, 
22nd November 2022); processing this data archive could yield 
upwards of 260,000 individuals trees. The biophysical and eco-
logical insight that could be drawn from this data, including and 
beyond the estimation of AGB, could be significant. Further, there 
are a number of other potential uses for this data, including ac-
curate 3D representations of forest plots in radiative transfer 
Calders et al. (2018) or other large area modelling approaches. 
However, much of this data remains unprocessed (to individual 
tree level) owing to instance segmentation bottlenecks, a prob-
lem we suggest is one of the remaining hurdles to operationalis-
ing TLS protocols. Here we have presented TLS2trees, a workflow 

F I G U R E  6  A comparison of per plot summed woody volume for 
manually and TLS2trees segmented trees.

F I G U R E  7  An example of different outcomes when altering model parameters. The parameter –-maximum-cumulative-gap alters the 
maximum cumulative gap between node and a base node. In this example, a low value segments the base well but removes smaller branches 
at the top of the canopy whereas a higher value results in small stems around the base being included. The value used for this manuscript is 
–-maximum-cumulative-gap = 2 m.
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and processing pipeline to segment point clouds of individual trees 
from plot-level TLS point clouds, that we hope will begin to redress 
this issue.
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APPENDIX A

Python tools and exposed parameters

TABLE A.1 Python commands and parameter values used to segment trees. All code can be found at https:// github. com/ tls- tools - ucl/ TLS2t 
rees. *specific to RIEGL VZ scanners.

Parameter Purpose Value used

1. Preprocessing

rxp2ply.py*

–-tile Edge length of tile 10

–-deviation Upper and lower bounds of deviation values 0, 15

–-reflectance Upper and lower bounds of reflectance values −20, 0

downsample.py

–-length Edge length voxel where 1 point is retained per voxel 0.02

tile_index.py

2. Semantic segmentation

semantic.py

–-buffer Size of buffer to use from surrounding tiles 5

–-model File path to trained model Defaults to FSCT model

3. Instance segmentation

instance.py

–-n-tiles Number of tiles to use as a buffer, that is by 3 × 3 or tiles or 5 × 5 tiles 3, 5 or 7

–-slice-thickness Vertical slice thickness for constructing graph 0.5

–-find-stems-boundary Upper and lower bounds for extracting a slice within which to identify stems 2.0, 2.5

–-find-stems-min-radius Minimum radius of found stems 0.025

–-find-stems-min-points Minimum number of points for found stems 200

–-graph-edge-length Maximum distance between individual nodes in a graph 2
–-graph-maximum-

cumulative-gap
Maximum cumulative distance between a base and a node 3

–-min-points-per-tree Minimum number of points for a tree to be segmented 200

–add-leaves Whether to add leaf points TRUE

–add-leaves-voxel-length Voxel size when add leaves 0.5

–add-leaves-edge-length Maximum distance used to connect points in leaf graph 1
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