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A B S T R A C T   

The growing incidence of uncontrolled wildfires all over the globe has called for urgent close monitoring of fire 
events, awareness, prevention, and management approaches. Phenocameras, ground sensors for monitoring 
plant phenology by taking sequential RGB digital images, can be an accessible and accurate tool for identifying, 
monitoring, and analyzing fire events and vegetation recovery. Here, we evaluated the application of an RGB 
camera system as a methodological approach to monitor and assess the post-fire recovery of a tropical mountain 
grasslands, the Brazilian campo rupestre. Using camera-derived vegetation indices, we investigated the immediate 
post-fire regrowth, and short-term post-fire leafing among four vegetation types: wet grassland, peatbog, stony 
grassland, and rocky outcrop. We recorded significant variations in the post-fire recovery among the grassy 
vegetation types. The results indicated that fire represents an important driver of leafing dynamics by shortening 
the length of post-fire growing seasons. The phenological metric of growing season length (GSL) indicated a full 
post-fire ecosystem recovery in the third year after the fire. The green-up index represented well the dynamics of 
post-fire vegetation regrowth and recovery across the landscape. Phenocameras rapidly detected fire occurrence 
and post-fire vegetation responses across vegetation types, demonstrating their significant application in the fire 
ecology of grassy ecosystems. The accessible, low-cost, and easy-to-setup camera system allows the application of 
near-remote phenology as a monitoring system and an indicator of vegetation recovery, which may improve 
restoration and management plans, promoting the conservation of the highly diverse campo rupestre grassland 
ecosystems.   

1. Introduction 

There is a growing incidence of uncontrolled wildfires in all major 
continents of the world, following heatwaves and droughts, or the path 
of deforestation, while the current trends are projected to continue 
increasing (Jolly et al., 2015; Dowdy et al., 2022, Strömberg and Carla 
Staver, 2022, Pimont et al., 2022). The awareness of the effects of fire on 
biodiversity, human health, and the economy has been rising, and more 
research into effective monitoring, prediction, prevention, and man-
agement approaches are called for (dos Santos et al., 2021; Dowdy et al., 

2022; Giorgis et al., 2021; Khairoun et al., 2022; Moyo, 2022; Pivello 
et al., 2021; Strömberg and Carla Staver, 2022). On the other hand, fire 
plays a key role in several non-forested ecosystems. It interacts critically 
with plant phenology by influencing seed dormancy and plant com-
munity composition to the length of growth season, ecosystem produc-
tivity, and carbon cycling (Bond et al., 2005; Bowman et al., 2009; He 
et al., 2019; Pausas and Keeley, 2019). The increasing number of events, 
primarily the catastrophic ones, imposes a great challenge for the 
existing remote sensing phenological approaches to improve the 
refinement and monitoring needed to predict fire events and guide the 

* Corresponding author at: Instituto Tecnológico Vale, Belém, Pará, Brazil. 
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management practices in both fire-prone and fire-sensitive ecosystems 
(Hantson et al., 2016; Khairoun et al., 2022; Morellato et al., 2016). 

Land surface phenology (LSP) analysis, where phenological metrics 
are extracted from satellite-time series, has been demonstrated to be 
effective in tracking wildfires, with post-fire responses related to shifts in 
greenness metrics (Wang and Zhang, 2017, 2020). A robust analysis 
using daily 250-m MODIS time series shows that burn severity signifi-
cantly decreased greenness rates, while timing metrics have varied re-
sponses according to burn severity and also to land surface properties 
(Wang & Zhang 2020). Satellite-derived indices, such as the Normalized 
Difference Vegetation Index (NDVI), are well consolidated for the 
monitoring of fire over spatial and temporal scales (Bastarrika et al., 
2014; Giglio et al., 2010; Pereira, 2003; Roy et al., 2019). Nonetheless, 
in tropical grasslands, such as the open cerrado and campo rupestre 
mountain grasslands, the fast plant recovery may impose a challenge to 
the ability of satellites to monitor immediate post-fire regrowth dy-
namics (Alves et al., 2022; Pereira, 2003). The low temporal resolution 
of satellite observations and atmospheric disturbances, such as cloud 
cover and smoke, may impact the reliability of the imagery information 
for post-fire evaluation (Sano et al., 2007), especially across tropical 
grasslands, despite the attempts to develop satellite-derived approaches 
to overcome these limitations (Alves et al., 2022). 

Radar sensors have been demonstrated to be effective in monitoring 
post-fire vegetation dynamics, as backscattering microwave energy 
demonstrated to be sensitive to changes in vegetation structure, and 
because they can penetrate clouds (Balling et al., 2021; Chuvieco et al., 
2019). Synthetic-Aperture Radar (SAR) offers high-spatial and medium- 
temporal resolution datasets and represents an alternative to comple-
ment the traditional optical remote sensing dataset, particularly over 
tropical areas where cloud-cover conditions are persistent (e.g., Balling 
et al., 2021; Siegert and Ruecker, 2000; Verhegghen et al., 2016). Yet, 
few studies have been conducted with radar sensors to track vegetation 
recovery after fire and most of them consider the monthly or yearly post- 
fire recovery time due to the medium-temporal resolution of the avail-
able data (Chhabra et al., 2022; Gitas et al., 2012; Jenkins et al., 2014; 
Minchella et al., 2009; Polychronaki et al., 2013). The use of combined 
local and global scales in the last years has increased, emphasizing the 
need to obtain fine-resolution information to validate and reduce un-
certainties of global scale products (Chuvieco et al., 2020). 

Therefore, a near-ground sensor, able to collect high temporal fre-
quency information at a fine-scale resolution (hourly or daily) from the 
vegetation recovery, can improve our understanding of the ecological 
processes and shifts after a fire episode. The use of time-lapse images 
captured by digital cameras (phenocameras) in the field has been widely 
applied for vegetation monitoring, including in the tropics (e.g., Alber-
ton et al., 2014, 2019; Lopes et al., 2016; Nagai et al., 2016). Pheno-
cameras are reliable tools able to simultaneously monitor leaf phenology 
and track leaf exchange transitions at multiple sites, with reduced 
human sampling effort and a high temporal resolution (daily) of data 
collection (Alberton et al., 2017; Alberton et al., 2019; Crimmins and 
Crimmins, 2008). The near-surface remote system using ground cameras 
is a powerful tool to observe and detect shifts in vegetation structure, 
such as recovery from disturbance events of deforestation, fire, flooding, 
and species invasion (Alberton et al., 2017, 2019, 2023). We advocate 
that, through a set of daily photographs, it is possible to visualize the 
process of fire occurrence and immediate post-fire vegetation recovery, 
showing real-time vegetation regrowth responses, particularly in highly 
heterogeneous grassy landscapes (Alberton et al., 2017, 2019). There-
fore, responses detected by phenocameras can likely help to take fast 
and appropriate conservation and management measures. 

Here, we conducted a multi-site analysis to evaluate the application 
of an RGB-camera system for the monitoring and assessment of the 
immediate post-fire vegetation regrowth and short-term vegetation re-
covery across a tropical snow-free mountain grassland ecosystem. The 
Brazilian campo rupestre (rupestrian grassland) is a fire-prone (Figueira 
et al., 2016), highly diverse and heterogeneous tropical vegetation 

complex dominated by grasslands (Silveira et al., 2016). We used time 
series indices derived from the spectral information of digital cameras, 
aiming to answer the following research questions: (i) Are camera- 
derived vegetation indices a reliable methodological approach for the 
assessment of post-fire vegetation responses of tropical grasslands? and 
(ii) Are phenocameras able to systematically evaluate leafing transition 
changes after a fire episode across the grassland vegetation mosaic? We 
expect that the high temporal data frequency and fine-scale resolution of 
phenocameras monitoring will detect vegetation recovery dynamics of 
the different vegetation types and provide a systematic analysis of the 
ecosystem recovery through the assessment of leafing phenological 
transition dates of growing seasons. 

2. Material and methods 

2.1. Study sites 

The study was conducted in the National Park of Serra do Cipó and its 
buffer zone, the Environmental Protection Area Morro da Pedreira, 
located at the Serra do Cipó, the southern portion of the Espinhaço range 
(19o 10′-20′ S and 43o 30′-40′ W), Minas Gerais, Southeastern Brazil 
(Fig. S1). The Southern part of the Espinhaço Mountain Range, largely 
represented by Serra do Cipó, occupies a transition zone between the 
Cerrado and the Atlantic Forest (Morellato and Silveira, 2018). The 
campo rupestre is an ancient mountaintop ecosystem occurring mostly 
over 900 m altitude above sea level (Fig. S1), composed of different 
types of herbaceous and shrubby vegetation growing side-by-side over 
shallow, quartzitic, acidic, and nutrient-poor soils (Mattos et al., 2019; 
Silveira et al., 2016). Characterized by a vegetation mosaic with a 
dominant grassland matrix, the unique heterogeneous landscape pre-
sents a high species diversity and elevated rates of endemism (Silveira 
et al., 2016; Le Stradic et al., 2018a; Morellato and Silveira, 2018, 
Mattos et al., 2019, Fernandes, 2016). The climate is classified as trop-
ical altitudinal climate (Cwb) (Köppen, 1931), with warm and wet 
summers and cold and dry winters. The annual average temperature is 
21.2 ◦C and the annual average rainfall is ca. 1622 mm (Le Stradic et al., 
2018a). Rainfall distribution is seasonal, mainly concentrated during the 
rainy season from November to April (monthly rainfall >60 mm), while 
the dry season extends from May to October (monthly rainfall <60 mm, 
Alvarado et al., 2017, Stradic et al., 2018a). 

We have monitored four campo rupestre sites distributed along the 
altitudinal gradient of Serra do Cipó, named as follows: Cedro (CE) 
(1101 m), Reserva Vellozia (RV) (1150 m), Pedra do Elefante (PE) 
(1255 m), and Quadrante 16 (Q16) (1303 m), (Mattos et al., 2019). The 
dominant vegetation types at CE, PE, and Q16 sites captured within the 
phenocameras imagery were recognized based on local surveys (Mattos 
et al., 2019; Rocha et al., 2016) to assess the main plant families and 
species. The RV vegetation types were identified by in situ inspection 
and by a quick comparative plant survey (Morellato et al., unpublished). 
We sampled the four dominant vegetation types of campo rupestre along 
the study sites (Mattos et al., 2019): wet grassland (Wg), stony grassland 
(Sg), rocky outcrop (Ro), and the peatbog (Pb). 

2.2. Near-surface remote phenology: phenocameras setup for pre- and 
post-fire monitoring 

The long-term, ongoing, near-surface phenological monitoring of 
campo rupestre at Serra do Cipó was set up in 2014, to survey the seasonal 
vegetation patterns across the landscape after a one-site pilot study that 
started in 2013. Besides accurately characterizing leaf phenological 
patterns, the monitoring of burned sites and vegetation recovery took 
crucial importance since camera deployment occurred just after an 
extensive fire event in October 2014 (Fig. S2 and Fig. 1), affecting 
several of our long-term study sites (Silveira et al., 2019). A Mobotix 
Q24 and a PlantCam time-lapse camera were installed at Q16, the pilot 
site, in September 2013, both facing the same field of view (for more 
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details see Table S1). The other three sites (RV, CE, PE) have been 
monitored by the time-lapse PlantCam since October 2014, right after 
the extensive fire event that burned all four study sites (Fig. 1). We 
placed one camera per site facing the typical campo rupestre vegetation. 
The phenocameras at all sites were attached to a pole by the side of a 
local meteorological station. The timelapse PlantCam and Mobotix 
cameras were configured to capture one square JPEG image (2592 ×
1944 pixels), and five landscape JPEG images (1280 × 960 pixels), 

respectively, in the first 10 min of each hour, starting at 6 am and ending 
at 6 pm (UC-3 Universal Time Coordinated). 

2.3. Image processing and analysis 

We visually screened the raw images to remove photographs where 
the vegetation view was obstructed (heavy rains, fog, dim light). The 
remaining images were analyzed as described by Alberton et al. (2014, 

Fig. 1. Photographs and original typical images of the phenocameras (PlantCam) monitoring sites at the Serra do Cipó, Brazil. (a) PlantCam system setup at the 
Reserva Vellozia field site; (b-c) fire passage and burned landscape of campo rupestre, respectively, occurred in the fire event of October 2014; (d-k) Images showing 
the burned vegetation right after the fire event on October 14th and the immediate post-fire vegetation regrowth between May 10th and May 20th 2015, respectively, 
at (d-e) Pedra do Elefante (PE) site; (f-g) Reserva Vellozia (RV) site; (h-i) Quadrante 16 (Q16) site; and (j-k) Cedro (CE) site. 
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2019). Regions of interest (ROIs) were selected in the images of each site 
to capture the vegetation types of the campo rupestre (Fig. 2). We 
sampled ROIs for wet grasslands (n = 5), stony grasslands (n = 4), rocky 
outcrops (n = 6) and peatbog (n = 1), totaling 16 ROIs sampled for all 
the four cameras. We carried out field expeditions to identify and vali-
date the vegetation types (Mattos et al., 2019) selected as ROIs in the 
field of view of each image site (Fig. 2). 

All ROIs were analyzed regarding the relative brightness of red, 
green, and blue colour channels (RGB chromatic coordinates – RGBcc - 
Woebbecke et al., 1995). The normalized RGBcc index is considered the 
most suitable for detecting leafing transitions, and efficient for sup-
pressing light variations (Alberton et al., 2014; Gillespie et al., 1987; 
Richardson et al., 2009; Sonnentag et al., 2012). We calculated the Gcc 

(green chromatic coordinate), a normalized vegetation index, related to 
the greening signal or vegetation leafing, and the most common camera- 
derived index applied in ecological studies (Alberton et al., 2014; Gil-
lespie et al., 1987; Richardson et al., 2009; Woebbecke et al., 1995). The 
camera-derived vegetation index was calculated according to the 
equation: 

Gcc =
G

(R + G + B)
(1) 

Gcc was calculated for each of the hourly images taken each day. In 
this study, we extracted one single value, taking the 50th percentile of 
all midday values observed daily (from 10 a.m. to 2 p.m.) to compose the 
Gcc time series of each ROI. This data filtering was the most suitable for 

Fig. 2. Original images from the phenocameras monitoring the Serra do Cipó study sites, showing the selected regions of interest (ROIS): (a) Q16 (Mobotix camera), 
(b) Q16 (PlantCam), (c) Reserva Vellozia (PlantCam), (d) Pedra do Elefante (PlantCam), and (e) Cedro (PlantCam). Colored lines represent ROIS of each vegetation 
type: rocky outcrop (pink line), stony grassland (orange line), wet grassland (blue line), and peatbog (green line). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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our dataset since cameras are placed in different cardinal positions along 
sites due to setup limitations. To minimize noise in the time series in-
formation (Gcc) due to illumination changes, weather, season, and time 
of the day, we aggregated daily values in a 3-day window (adapted from 
Sonnentag et al., 2012), smoothing Gcc time series without losing 
important phenological transitions (Alberton et al., 2019, 2023). 

2.4. Data analysis 

2.4.1. Assessing immediate post-fire vegetation regrowth 
We fitted Generalized Additive Mixed Models (GAMM) to the Gcc 

time series, using the time (sequence of observations) as a smooth in-
dependent variable (Alberton et al., 2019). Afterward, we generated 
10,000 independent simulations of the fitted curve to calculate the de-
rivative of each simulated curve at each time step, building a confidence 
interval for the rate of changes (with a derivative significantly different 
from zero) (Fig. 3). From the derivatives, we were able to calculate a 
green-up rate, corresponding to the significant period of increase in 
greenness values reaching the peak of the rising curve (Fig. 3), using 
observation from the first day after the fire, up to the complete vege-
tation coverage (50 observations from a three-day time series, equiva-
lent to 150 days). We applied the derivative approach to extract the 
green-up rate from the Gcc time series of all ROIs. Since the green-up 
metric is based on a linear regression of increasing values of Gcc in the 
function of time, we used the slope value of the model to be compared as 
a potential regrowth rate among the vegetation types. 

2.4.2. Short-term vegetation recovery 
We calculated phenological metrics to evaluate the significant pe-

riods of increasing and decreasing greenness along the year, defined as 
the Start of the growing season (SOS)— a day of year representing the 
beginning of the growing season and measured as the 20% of a signifi-
cant derivative from the total seasonal amplitude on the left side of the 
curve; End of the growing season (EOS)—a day of year representing the 
end of the growing season and measured as the 80% of a significant 
derivative from the total seasonal amplitude on the right side of the 
curve; and of Growing season length (GSL)—representing the duration 
(days) of the growing season and calculated as the difference between 
SOS and EOS (Alberton et al., 2019). Then, to evaluate the short-term 
post-fire vegetation recovery among all ROIs, we extracted the pheno-
logical metrics of SOS, EOS, and GSL from the following growing seasons 
(GS): Pre-fire = GS in the year before fire (2013–2014, when available); 
Fire = the GS just after the fire (2014–2015); Post-fire 1 = the GS of the 
subsequent year (2015–2016); Post-fire 2 = the third GS after fire (2016- 
2017); and Post-fire 3 = the fourth GS after fire (2017-2018). 

3. Results 

The visual detection of the fire occurrence was clear among all four 
sites monitored that encompassed the most common vegetation types of 

the quartzitic campo rupestre. The fire event was also screened in the 
time-lapse digital images (Fig. 1) and by the Gcc time series (Fig. S3), 
detecting the increasing growth dynamics for all vegetation ROIs 
(Fig. 4). The phenocameras tracked as well, the differences in the post- 
fire Gcc patterns among vegetation types (Fig. 4). 

According to the post-fire Gcc curves, the wet grasslands and peat-
bogs ROIs presented a faster and marked post-fire increase in the Gcc 
values (Fig. 4a and g), reflected in the slope values of post-fire green-up 
rates (Table S2 and Fig. 4b and h). We assessed the peak date of the Gcc 
curve, representing the complete post-fire vegetation coverage that 
occurred for each habitat’s ROI analyzed. For wet grasslands, the peak 
dates of Gcc curve were between November 3rd and November 21st, or 
day of the year (DOY) 307 and 325, respectively, and on November 30th 
(DOY = 334) for the peatbog, both less than two months after the fire 
event. In contrast, the stony grassland and rocky outcrop vegetation 
types presented a smoother and slower pattern of post-fire Gcc increase 
(Fig. 4 c and e) with lower values of green-up rates (Table S2 and Fig. 4 
d and f). The peak of post-fire vegetation coverage occurred between 
November 9th and March 12th (DOY = 313 and 71) for the rocky 
outcrop, and between December 3rt and March 12th (DOY = 337 and 
71) for the stony grassland, up to five months after the fire event. 

By expanding the post-fire time series analysis to the previous and 
the subsequent growing seasons (GS), we detected differences in the 
leafing transition dates of Gcc times series among cycles (Table S3 and 
Fig. 5). Considering the average of all ROIs of the campo rupestre, at the 
Pre-fire GS, the SOS mean dates started at DOY 310 ± 34.5, and EOS 
occurred at DOY 224 ± 25.5 in the following year, resulting in a growing 
season length (GSL) of 279 days ±27.7 (Fig. 5). For the Fire GS, SOS 
occurred around DOY 303 ± 24.7, while EOS had an earlier occurrence 
at DOY 188 ± 96.1 in the following year, which resulted in the shortest 
GSL observed (208 ± 85.2) (Fig. 5). The Post-fire 1 GS presented the 
earliest SOS (DOY 282 ± 23) and EOS (DOY 173 ± 33.3) mean dates, 
resulting in a GSL of 255 days ±19.9. Post-fire 2 and Post-fire 3 growing 
seasons presented increasing GSL values, with 296 ± 20.6 and 264 ±
1.4, respectively (Fig. 5c). 

Leafing transition dates varied among vegetation types as well 
(Table S3). In general, the GSL mean values of each vegetation type 
followed a similar pattern of variation across the years, but with 
different ranges of variation among them (Fig. 6). Wet grasslands and 
the peatbog presented the higher range of variation of leafing transition 
dates among the years, reaching the smallest mean values of GSL (248 
days ±51.1 and 246 days ±66.8, respectively) (Fig. 6 a and d). 
Conversely, rocky outcrops and stony grasslands times series presented 
the lowest range of variation of leafing transition dates among all years 
and the highest mean values of GSL (268 ± 18.5 and 265 ± 33, 
respectively) (Fig. 6 b and d). 

4. Discussion 

The near-surface monitoring system allowed us to detect fire and 

Fig. 3. Graphical example showing the derivative calculation approach for the calculation of the vegetation regrowth rate. (A) fitted GAM model with identified 
derivatives over the phenological time series, (B) fitted linear models over the increasing side of the curve (dashed line) and estimated green up (red line). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Immediate post-fire vegetation regrowth (three-day Gcc time series) and green-up rates (linear model estimate of increasing Gcc values after the fire) for each 
campo rupestre vegetation type monitored by phenocameras at Serra do Cipó, Brazil. Vegetation regrowth (left side), lines represent the fitted GAMM models with 
their confidence intervals (gray shaded areas), dots represent observed data; Green up rate (right side). Gcc time series were extracted from the ROIs of each 
vegetation type: (a-b) wet grassland; (c-d) rocky outcrop; (e-f) stony grassland; (g-h) peatbog. Colors refer to study sites: CE (1101 masl); PE (1255 masl); Q16 (1303 
masl); RV (1150 masl). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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evaluate the immediate regrowth and post-fire vegetation recovery 
across the four major vegetation types of the campo rupestre at a fine 
temporal scale. Camera-derived observations tracked differences among 
each vegetation type regarding speed and pattern of vegetation recov-
ery, revealed by their post-fire green-up curve rates. In general, moist 
environments, such as the wet grassland and peatbog, achieved the 
highest and faster rates of post-fire green-up, while in the driest stony 
grassland and rocky outcrop, recovery was slower, despite the reported 
high resilience after a fire (e.g., Figueira et al., 2016; Le Stradic et al., 
2018b). 

The phenological metrics indicated fire as one of the major forces 
driving changes in leafing dynamics by shortening the length of the post- 
fire growing seasons. We estimated a fully recovered growing season 
length to occur in the third year after the 2014 fire. The fast recovery of 
campo rupestre grass-dominated vegetation is likely the result of the 
regeneration strategies of the plant community, mainly the resprouting 
from underground organs of the perennial herbaceous layer (e.g.: Simon 
et al., 2009; Le Stradic et al., 2018a, 2018b; Pilon et al., 2019, 2021; 
Zupo et al., 2021). However, the observed differences in the phenolog-
ical recovery among vegetation types indicated that soil humidity de-
fines the fast recovery of peatbog and wet grassland. However, 
differences in community structure and composition (Mattos et al., 
2019) may also affect fire recovery (Le Stradic et al., 2018b). For 

instance, the number of species and individuals may increase and sta-
bilize six to eight months after a fire in grass-dominated savannas in 
Southeastern Brazil. At the same time, the percentage of bare soil de-
creases until reaching the pre-fire values (Pilon et al., 2021). 

Phenocamera monitoring proved essential to assess the dynamic 
vegetation response across the campo rupestre. The camera-derived time 
series detected the fast start of vegetation regrowth a single day after the 
fire event for some ROIs, indicating an accelerated post-fire vegetation 
recovery. A greening peak was reached within the first four months after 
the fire event, demonstrating the quick after-fire recovery pattern of the 
campo rupestre ecosystem. Our results concur with on-the-ground local 
observations (Kolbek and Alves, 2023; Neves and Conceição, 2010; Le 
Stradic et al., 2018b; Carvalho Barbosa et al., 2014) reporting fast spe-
cies responses (especially flowering) within a few months after the fire. 
The dominance of perennial grasses (Le Stradic et al., 2018a), the ex-
istence of the resprouters (Neves and Conceição, 2010; Pilon et al., 2021; 
Zupo et al., 2021), species able to resprout from any plant structure 
(Bell, 2001; Keeley and Fotheringham, 2000), and the inherent char-
acteristics of each vegetation type (Le Stradic et al., 2015; Le Stradic 
et al., 2018b, Mattos et al., 2019, Loiola et al., 2023), appear to drive the 
fast and dynamic fire response detected for campo rupestre vegetation 
mosaic. 

A remote sensing study of the fire dynamics across the South 

Fig. 5. Boxplots of the phenological metrics extracted from the three-day Gcc time series during the growing seasons of Pre-fire, Fire, Post-fire 1, Post-fire 2, and Post- 
fire 3 from all the ROIs of the campo rupestre study sites at Serra do Cipó, Brazil. (a) Start of growing season (SOS), (b) End of growing season (EOS), and (c) Growing 
season length (GSL). 

Fig. 6. Boxplots of the mean values of the growing season length (GSL) extracted from the three-day Gcc time series during the following growing seasons: Pre-fire, 
Fire, Post-fire 1, Post-fire 2, Post-fire 3, for each one of the campo rupestre vegetation types: (a) wet grasslands, (b) rocky outcrops, (c) stony grasslands, and (d) peatbog. 
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Espinhaço range, including all the Serra do Cipó region, suggests a 
moisture-dependent fire regime, mostly defined by the drought during 
the ignition season, and a high recovery potential of campo rupestre 
landscape, under the prevalence of low and moderate fire frequencies 
(Alvarado et al., 2017). Moreover, the fire event evaluated here occurred 
in the middle of October, in the transition between the dry to the rainy 
season, which could favor the fast recovery of vegetation (Alvarado 
et al., 2017). Short-term postfire spectral dynamics studies have shown a 
faster recovery of grasslands burned in the middle of the dry season than 
grasslands burned in the early dry season, suggesting the effects of rain 
on vegetation recovery (Alves et al., 2022). A recent study has also re-
ported a fast post-fire recovery of campo rupestre vegetation, reporting 
no differences between the time of return to a pre-fire state in burned 
grasslands at the beginning of the rainy season compared to the control 
unburned plots (Araújo and Conceição, 2021). 

Our phenological metrics analysis demonstrated that fire may drive 
changes in the campo rupestre growing seasons after the vegetation is 
burnt. The fire impacted leafing patterns by shifting leaf flushing and 
senescence onsets, as observed by the shortened GSL values just after the 
fire and in the first post-fire growing season. Leaf phenology plays a key 
role in ecosystem productivity, by controlling photosynthetic rates and 
carbon cycle (Reich, 1995; Richardson et al., 2013; Piao et al., 2019). 
Camera-derived Gcc index is widely used to track phenological leafing 
transitions and has been related to gross primary productivity in 
temperate forests, and grasslands (Peichl et al., 2015; Toomey et al., 
2015), and more recently to tropical ecosystems (Alberton et al., 2023). 

Leafing dynamics in campo rupestre were fast and the different grassy 
vegetation types, located very close to each other in the landscape, 
presented varied responses after a fire. The complex landscape mosaic, 
determined by the different vegetation types, the irregular topography, 
and various soil substrates, are likely driving the fire regime to cause 
distinct effects on vegetation (Anjos et al., 2022). Phenocameras were 
applied as a new source of data to provide fine-resolution analysis of 
post-fire events across species-rich and heterogenous grassy landscapes. 
A similar post-fire monitoring analysis using the current satellite prod-
ucts would not be suitable for tracking the vegetation’s fast response 
given the lack of imagery resolution at the scale of each vegetation type 
(Streher et al., 2017, Medeiros et al., 2023). For instance, MODIS time 
series have lower spatial accuracy, considering that a single 250-m pixel 
would include a mix of different vegetation types (e.g., wet grasslands, 
rocky outcrops, stone grasslands, and peat bogs), besides the low tem-
poral frequency. 

Concerning fire detection, it is important to highlight that camera 
systems intended to monitor wildfires may have some practical limita-
tions in terms of the total area of coverage that cameras can reach, the 
uncertainty of capturing the fire occurrence from a fixed camera posi-
tion, or the fact that fire can damage the camera itself. Implementing a 
camera network with sensors spread along target sites with a wide field 
of view could address those shortcomings. Furthermore, strategies, such 
as installing cameras right after the fire event, and extending phenoca-
mera application into field experiments to monitor burned and un-
burned plots, could leverage the reliability of cameras as post-fire 
monitoring systems. 

5. Conclusions 

Time-lapse cameras are an accessible tool to monitor, predict effects, 
and follow the regrowth process of vegetation after fire. The camera- 
derived greening index contributes to filling the gap between on-the- 
ground and satellite land-surface phenology, with future scale-up of 
fine-scale temporal data (e.g.: Khare et al., 2022) allowing large-scale 
tracking of fast-response tropical ecosystems. The accessible, low-cost, 
and easy setup phenocameras may improve the amount of precise, on- 
site, fine-scale information on fire response and recovery, not yet 
available for reserves and national parks, with a positive impact on their 
conservation, restoration, and future management policies (Fernandes 

et al., 2018, 2020). In this sense, phenocamera monitoring can foster 
studies assessing changes in fire effects over long post-fire times (Giorgis 
et al., 2021). Fine-scale leaf phenology analysis is an accurate indicator 
of plant responses to wildfires and may help evaluate fire impact on 
ecosystem dynamics and serve as an indicator of the resilience of natural 
grasslands (Buisson et al., 2017), particularly in tropical grassy ecosys-
tems with a fast postfire recovery. Phenocameras monitoring can also 
contribute to restoration projects with the application of phenological 
metrics as an indicator of the restoration process (Alvarado et al., 2017; 
Buisson et al., 2017). Establishing a long-term record of the vegetation 
regrowth will provide insights into how tropical grasslands are 
responding to environmental changes and especially climate change, a 
sensitive factor for mountain ecosystems. 
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