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Many traits are phenotypically plastic, i.e. the same genotype expresses different phe-
notypes depending on the environment. Genotypes and individuals can vary in their 
response to the environment and this genetic (G × E) and individual (I × E) variation 
in reaction-norm slopes can have important ecological or evolutionary consequences. 
Studies on I × E/G × E often fail to show slope variation, potentially due to the 
choice of the environmental covariate. Identifying the genuine environmental driver 
of phenotypic plasticity (the cue) is practically impossible and hence only proxies can 
be used. If the proxy is too weakly correlated with the cue, this may lead researchers 
to conclude there is little or no (variation in) plasticity, and hence lead to downwardly 
biased estimates of the potential for plastic responses (or evolutionary change in the 
slope) in response to environmental change. Alternatively, the environment-specific 
mean phenotype (ESM) across individuals – which captures all environmental effects 
on the phenotype – as covariate should be less prone to such bias. We showed by 
simulation – after verifying the concept analytically – that using weakly correlated 
proxies indeed biased estimates of slope variation vis-à-vis the true cue downward 
but that ESM as a covariate held up well, even when multiple sources of I × E or an 
interaction between environments (I × E × E) existed in the data. Analysis of two real 
datasets revealed that estimated I × E and G × E, respectively, were more sizeable and 
precise when using ESM as opposed to reasonably informative environmental proxies. 
We argue that the ESM approach should be adopted by biologists as a yardstick in the 
study of (variation in) plasticity in the wild and that it may serve as a useful starting 
point for the search of better environmental proxies and unravelling complex I × E or 
G × E patterns.
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Introduction

Many traits are phenotypically plastic (Pigliucci 2005), i.e. 
individuals or genotypes express different phenotypes in 
different environments. Phenotypic plasticity is generally 
described by a “reaction norm”’ (Woltereck 1909), which is 
defined by its intercept or elevation, commonly defined as 
the phenotype in the average environment, and its slope, i.e. 
the “sensitivity” to the environment, in the case of a simple 
linear reaction norm. Genotypes and individuals can differ in 
their reaction-norm slopes, i.e. populations can exhibit gen-
otype-by-environment (G × E) and individual-by-environ-
ment interactions (I × E) (Nussey et al. 2007). Phenotypic 
plasticity enables populations to cope with changing envi-
ronments (Yeh and Price 2004) but in the long term such 
plastic responses may be unlikely to be sufficient and the reac-
tion norms themselves (their elevation) will have to evolve 
(Gienapp et al. 2014, Ramakers et al. 2018a). 

Many studies have explored I × E and/or G × E in 
behaviour, phenology or physiology (Reed  et  al. 2009, Hau 
and Goymann 2015, Stedman  et  al. 2017), finding statisti-
cally significant variation in reaction-norm slopes in some 
(Nussey et al. 2005, Wilson et al. 2006, Brommer et al. 2008, 
Reed  et  al. 2009, Stedman  et  al. 2017) but not all studies 
(Reed et  al. 2006, Charmantier  et  al. 2008, Ramakers  et  al. 
2018a, Froy et al. 2019). Negative results always raise the ques-
tion of whether it is a genuine absence of the sought effect 
or whether the study did not have enough statistical power. 
Simulation studies showed that the power to detect individual 
variation in slopes depends on both the number of observa-
tions per individual and the number of individuals sampled 
(Martin et al. 2011, van de Pol 2012), or on the presence of 
heteroscedasticity (Ramakers et al. 2019a), but the choice of 
the environmental variable in the analysis could also play a 
role. The majority of studies on I × E and G × E use so-called 
random-regression models (Henderson 1982, Kirkpatrick 
1989, Morrissey and Liefting 2016). In random regression, 
the expected value of the trait and the (co)variance in slopes 
and elevations are modelled as a continuous (linear or non-
linear) function of the environment. Individual elevations and 
slopes are modelled as random effects, i.e. assumed random 
draws from a normal distribution with mean zero and (co)vari-
ances to be estimated. This approach means that a continuous 
environmental variable is needed as covariate against which 
the phenotypes are regressed. Using a covariate that correlates 
weakly with the true cue can lead to incorrect conclusions 
regarding the presence or absence (or magnitude) of I × E and 
G × E with respect to the true cue, i.e. the actual environ-
mental variable that individual organisms pay attention to in 
order to anticipate abiotic or biotic fluctuations (see Fig. 1 for 
a conceptual illustration of this principle). This relates to a gen-
eral statistical phenomenon termed “attenuation” (Spearman 
1904). Moreover, predictions of phenotypic and evolutionary 
change in response to directional environmental change will 
be biased downwards if based on the ‘wrong’ environmental 
variable in a reaction-norm analysis. It is not ‘wrong’ per se to 
study plasticity with respect to a proxy environmental variable 

that is imperfectly correlated with the true cue; estimates of 
reaction-norm parameters with respect to that proxy variable 
will not be biased. But such an analysis would fail to reveal 
the true potential for environment-driven phenotypic varia-
tion and scope for plastic responses to environmental change. 
In the case of G × E, an analysis based on a poor proxy would 
also underestimate the evolutionary potential of plasticity itself 
in the face of directional environmental change.

In observational studies of natural populations, many 
potential candidate covariates could be used in the analysis of 
phenotypic plasticity, and biological knowledge of the system 
would help in choosing the best. For example, phenologi-
cal traits such as flowering, migration or breeding time gen-
erally depend on ambient temperatures (Sparks and Carey 
1995, Visser et al. 2009) and hence local temperatures would 
be an obvious choice as covariate. More generally across 
traits, however, there are many different ways to quantify 
what constitutes ‘the environment’. To complicate matters 
further, traits may depend on more than one variable. For 
example, it has been shown that breeding time is affected by 
spring temperature and population density in tree swallows 
Tachycineta bicolor (Bourret et al. 2015) or spring tempera-
ture in interaction with day length in great tits Parus major 
(Gienapp et al. 2005). Body size, growth rate and fecundity 
in seed beetles Callosobruchus maculatus depend on both 
ambient temperature and the type and size of rearing resource 
(see Stillwell et al. 2007, Westneat et al. 2019, Rodrigues and 
Beldade 2020 for more examples of environmental interac-
tions). Consequently, it will very rarely be possible to identify 
the real driver of plasticity, simply because it is unknown, 
unmeasurable or a composite of several variables. Instead, a 
proxy that correlates with the real causal driver(s) of plastic-
ity has to be used (Buoro et al. 2012) and the amount of I 
× E/G × E revealed will depend on the choice of this proxy. 
For example, in a study of I × E in breeding time in col-
lared flycatchers Ficedula hypoleuca, only two out of three 
main environmental drivers (temperature, rainfall and NAO) 
revealed significant I × E (Brommer et al. 2005). Similarly, 
detection of statistically significant I × E in breeding time 
in the Wytham Wood great tit P. major population differed 
between studies depending on how the environmental proxy 
(spring temperature) was summarized (Charmantier  et  al. 
2008, Husby et al. 2010). In such analyses it will be virtually 
impossible to ascertain that the chosen proxy is correlated 
closely enough with the true driver of plasticity to allow the 
detection of I × E. 

At this point we need to stress that the estimation of varia-
tion in slopes (I × E and/or G × E) is biologically relevant 
even if identifying the true environmental driver of plasticity 
is difficult. For example, the presence of slope variation may 
explain why populations are not responding evolutionarily 
to selection; when selection acts in the same direction across 
environments, low consistency of individual phenotypes 
due to crossing reaction norms – regardless of the underly-
ing environmental driver – means that there may be no net 
selection on the elevation (Turelli and Barton 2004, Kokko 
and Heubel 2008). Related to this, when investigating the 
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evolvability in a population we are typically interested in 
quantifying the phenotypic and genotypic variation in the 
trait per environment (the scale at which selection takes 
place). Due to sample-size constraints precluding analy-
sis per environment, this is most easily obtained by using a 
regression-type approach across environments, for which the 
identification of an environmental covariate is required (dis-
cussion in Ramakers et al. 2018b). Regardless of the environ-
mental proxy used, it is important to realize that the inability 
to find statistically significant slope variation with respect to 
that proxy does not mean that I × E or G × E is absent in the 
population. To probe this ‘hidden’ I × E or G × E variation, 

we need an unbiased proxy that captures all elements consti-
tuting the environment driving the phenotype. 

When we do not have access to a measurable, accurate 
environmental proxy, we may instead regress the phenotype 
on the environment-specific mean (ESM), i.e. the mean of 
the phenotypes of all individuals/genotypes in an environ-
ment (where the environment is a year if the relevant pheno-
typic variation is among years in a given location, a habitat 
type if the study system comprises several habitat types, or 
even ‘year within a location or habitat type’ – whichever suits 
the study system best). This approach, based on the ‘Finlay–
Wilkinson’ (FW) regression (Yates and Cochran 1938, Finlay 

Figure 1. Conceptual illustration of the relationship between the environmental cue E, its proxy E* (i.e. something we measure about the 
environment), and the phenotype y, assuming environmental stationarity (i.e. distributions of each environmental variable, and relationship 
between them, remain constant over time). We further assume an imperfect (simulated) linear correlation between E and E* with slope 
bE* =1 and correlation coefficient rE E, * .= 0 5  (a) and, for simplicity, no residual variation (stochasticity) in individual phenotype over-
and-above the effect of the true cue. Keeping intercepts at zero, let the mean linear reaction norm of the population with respect to the cue 
be drawn by y j j= 2E  and that of 30 individuals yij = (2 + δi)Ej, where y j  is the mean phenotype in environment j and δi is some random 
individual deviation from the mean. If we standardize the cue (E′), the equation of the mean reaction norm becomes y j y j= b E¢ , where 
in this case by = 4 8.  and where we have environment-specific, between-individual variance s y j

2  (b). Regressing the same reaction norms 

onto the standardized proxy variable E*′ (through least-squares estimation) gives us y rj y j= ´( )
,

*
*b

E E
E ¢  for the mean reaction norm (i.e. 

in this case the slope is halved to 2.4) and the between-individual variance is s y j r2 2´ E E, *  (i.e. in this case quartered) (c). Replacing the proxy 

on the x-axis by the (standardized) mean phenotype in each environment ( y j
¢ = ESM) retrieves the original response to the real cue, 

y yj y j= b ¢  (d), where y Ej j
¢ ¢=  and s y j

2  matches that observed in (b), given that, by definition, the unstandardized mean is expected to 
correlate perfectly with itself, with y yj j= . In (b)–(d), red lines indicate the mean reaction norm, whereas black lines indicate individual 
reaction norms; in (c), lines are least-squares regression lines.
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and Wilkinson 1963), has been widely applied in animal and 
plant breeding to test whether the (relative) merit of cultivars/
genotypes is constant across environments (Lynch and Walsh 
1998, James 2009, Malosetti et al. 2013). Since ESM incor-
porates all plastic effects of environmental drivers, it would 
be correlated closely with the true – but unknown – driver of 
plasticity (Fig. 1). A prerequisite is that the reaction norm not 
be inherently strongly non-linear, as this may lead to similar 
mean values in different environments, and that the mean 
be based on an adequate and representative (random) sam-
ple of phenotypes. We have found that, although the ESM 
approach is nothing new, its use in analysis of plasticity – and 
by extension in probing the degree of I × E/G × E – in wild 
populations remains underappreciated among ecologists (dis-
cussions in Ramakers et al. 2018b, 2019b, Brommer 2019). 
We will argue in this paper that ESM should be tested along-
side other environmental proxies whenever one is interested 
in uncovering variation in plasticity. Furthermore, beyond 
uncovering I × E or G × E per se, ESM allows for the fitting 
of individual reaction norms more accurately than weakly 
informative proxies can, and these estimated reaction norms 
can act as a yardstick for how accurate phenotypic predic-
tions in future environments can be when using environmen-
tal proxies.

Here we explore how the correlation of a proxy environ-
mental variable with the real driver of plasticity can bias 
estimates of mean plasticity and individual variation therein 
and how the ESM approach compares to using these various 
proxies. We do this to drive the point home that unravel-
ling (variation in) plasticity – and by extension prediction 
of phenotypes under changing environmental conditions 
– requires careful consideration of which environmental 
covariate to use, even if this proxy has been established by 
convention. Using random regression, we regress simulated 
phenotypes against ESMs and against nine different envi-
ronmental variables that correlate with the real driver to 
varying degrees but do not causally affect the phenotypes 
themselves (i.e. proxies). In the simulated data, individual 
variation in slopes (I × E) with respect to the true cue is 
present and the key point of interest is to determine with 
which proxy it can be detected accurately. Furthermore, 
we benchmark our environmental proxies by 1) introduc-
ing different sources of variation in the data (age structure, 
habitat structure, and a time trend in the phenotype) and 
2) by adding complexity in the I × E structure through a 
second environmental driver (I × E1 + I × E2), an I × E × E 
effect, and an effect of sampling individuals within a limited 
range of environments. As practical, real-life examples of 
the concept we reanalyse I × E in phenology in a population 
of common guillemots Uria aalge (Reed et al. 2006), and 
reinterpret data on a previous study on fledgling weight in 
great tits P. major (Mulder et al. 2016a, b) to study G × E. 
We will argue that ESMs are useful for probing the extent 
of I × E (or potentially G × E) in the data and can serve as 
a starting point for the estimation of environment-specific 
(genetic) variances and accurate reaction norms, as well as 
the search for informative environmental proxies. 

Material and methods

Here, we outline several simulated scenarios and analyse two 
real-life datasets to show that ESMs can be used to probe 
the extent of I × E (or G × E) in a population. For proof 
of how the ESM approach may outperform other environ-
mental proxies (besides conceptual Fig. 1), we provide the 
mathematical derivation in Appendix A. Simulation and data 
analysis was done in R ver. 3.5.3 (www.r-project.org) using 
the ‘lme4’ package (Bates  et  al. 2018) and ASReml-R ver. 
4 (Butler et al. 2017). The syntax is provided as Supporting 
information. 

Simulation scenario (i): single environmental driver 
of I × E

Individual phenotypes were simulated with an ‘individual-
based model’. Individual reaction-norm elevations and slopes 
were drawn from normal distributions with means of zero 
and variances of 5 and 0.5, respectively, with a small covari-
ance of 0.1 between them. The true driver of plasticity, envi-
ronmental variable E1, was simulated for 20 years (i.e. one 
value per year) by drawing values from a normal distribu-
tion with a mean of zero and a variance of one. Nine other 
environmental variables (E2–E10) that correlated with E1 by 
0.9–0.1 were simulated using the following equation:

E E µn n nr r= + -1 1 2 	  (1)

with En being a vector containing the nth environmental vari-
able, rn its correlation with E1, and ε a vector of random 
errors drawn from a normal distribution with mean 0 and 
variance 1. Realised rn will vary across simulations, but the 
average across simulations will reflect the input value.

Phenotypes of 500 individuals were simulated by first 
determining a first year that was drawn randomly from the 
years but ensuring that the four observations of each individ-
ual would fit within its ‘lifetime’. Phenotypes were simulated 
as follows:

y a b bij i i j ij= + + +( ) +m epop E1 	  (2)

with yij being the phenotype of individual i in year j, μ the 
population-level elevation (intercept), ai the individual 
elevation deviation (ai ~ N(0,5)), where the latter value is 
expressed as variance throughout, bpop the population-level 
slope (bpop = 0.5), bi the individual slope deviation (bi ~ 
N(0,0.5)), E1j the value of environmental variable E1 (i.e. 
the true causal driver of plasticity) in year j, and εij a random 
error (εij ~ N(0,5)). With residual variance being equal to vari-
ance in elevation, this means a repeatability of r2 = 0.5 in the 
average environment (and an expected correlation of r = 0.71 
between E1 and the ESM); other values were not explored 
to keep the length of this paper manageable, but we believe 
these values are relatively conservative yet representative for a 

 16000706, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/oik.09592 by W

ageningen U
niversity and R

esearch B
ibliotheek, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.r-project.org


Page 5 of 17

trait measured in wild, uncontrolled conditions. We did not 
model life-history variation, e.g. longer or shorter individual 
lifespan. The number of observations per individual can affect 
the power of I × E analyses and the accuracy of the estimates 
(Martin et al. 2011, van de Pol 2012) but we were not inter-
ested in general aspects of sample size. Furthermore, accuracy 
and precision may be impacted by heterogeneous residual 
variances known to occur in wild populations; this point has 
been addressed in detail elsewhere (Ramakers  et  al. 2019a) 
and we therefore do not elaborate here, although we have 
added one scenario addressing this point in the Supporting 
information.

Since the environmental variables varied ‘annually’, mean-
ingful ESMs would be annual means of the studied trait and 
were hence calculated by averaging the phenotypes over all 
individuals within years. We stress that using annual means 
may not be appropriate in all systems and that the temporal 
(or spatial) scale needs to be sensibly adjusted to the system. 
Phenotypes were regressed against all environmental vari-
ables (E1–E10) and ESMs (all standardised before analysis) 
in separate analyses using random regression corresponding 
to model 2 to estimate individual variation in elevations and 
slopes. Individual identity was fitted as a random effect and 
the environmental variable or ESM as a continuous fixed 
effect, interacting with the random effect of individual iden-
tity. The significance of variation in slopes was tested with a 
likelihood-ratio test that compared a model with individual 
variation in elevations and slopes against a model with only 
variation in elevations. Heterogeneous residual variation can 
lead to spurious individual variation in slopes (Ramakers et al. 
2019a) but since all potential variation in phenotypes across 
a given environmental variable was simulated to be driven 
by variation in slopes, residual variation was homogeneous 
across environments and was modelled as such (see the 
Supporting information for an example of heteroscedasticity 
in the data). The difference in model likelihoods is approxi-
mately χ2-distributed with two degrees of freedom. For each 
model with a different environmental covariate (E1–E10 and 
ESM) the estimated variances for elevation and slope, the sig-
nificance for variation in slopes (I × E) as well as the estimate 
for the population-level slope were stored. The simulation 
was iterated 1000 times. 

To test whether additional but unidentified variables can 
bias results from an analysis with ESM more than results 
from analyses with environmental variables E1–E10, three 
such variables were simulated in the data: age, habitat effects, 
and a systematic time trend. Age effects were –0.5, 0, 0.5 and 
0.3 for ages of 1–4, roughly simulating an increase with an 
optimum at age 3 and weak senescence for age 4. Habitat 
effects were inserted by randomly distributing individuals 
over 5 different habitats with habitat-specific effects of –0.1, 
–0.05, 0.0, 0.05 and 0.1. Individuals could disperse to dif-
ferent habitats throughout their lifetime. The time trend was 
realised by letting average phenotypes increase by 0.01 per 
year. In every class for each of these effects (age, habitat, time) 
a small variance (0.001) was assumed. The analyses described 
previously were repeated 1000 times on the three additional 

datasets containing either age, habitat effects, or the time 
trend.

Simulation scenarios (ii–iv): multiple environmental 
drivers of I × E

To test how the random-regression models performed under 
more complex I × E interaction, we simulated data where 
I × E was driven by two (weakly correlated) environmen-
tal variables. Specifically, we extended the data generated by 
model 2 to include the comparatively small I × E effect of a 
secondary environmental covariate, E10 (correlated with the 
environmental driver E1 by r = 0.1), such that

y a b b

b b

ij i i j

i j ij

= + + +( )
+ +( ) +

( ) ( )

( ) ( )

m

e

pop E E

pop E E

E

E

1 1

10 10

1

10 .
	  (3)

We compared three scenarios (scenarios ii–iv): in each sce-
nario, bi(E1) was the main driver of I × E such that bi(E1) ~ 
N(0,0.5) and bi(E10) ~ N(0,0.1)), but the population-mean 
slope differed per scenario such that (ii) bpop(E1) = bpop(E10) = 0.5 
(i.e. of similar size), (iii) bpop(E1) = 0.25 and bpop(E10)= 0.5 (i.e. 
a larger mean effect of the secondary environmental driver) 
and (iv) bpop(E1) = 0.1 and bpop(E10) = 0.5 (i.e. a much larger 
mean effect of the secondary environmental driver). Note 
that with the larger mean effect of E10 compared to E1, the 
former effectively becomes the main driver for plasticity. For 
simplicity, we did not investigate inverse slopes here. The 
performance of the random-regression model was assessed as 
above, using one of the environmental proxies (E1–E10 and 
ESM) as covariate. As in the previous scenario, we addition-
ally evaluated the effects of age, habitat structure and time 
trends in the data.

Simulation scenario (v): I × E × E

To test the performance of the random-regression of model 2 
in the presence of an (unobserved) interaction between envi-
ronments (i.e. an I × E × E effect in the data), we adapted the 
data-generating model 2 to include an interaction between 
the environmental driver (E1) and a categorical environmen-
tal effect c, comprising three categories (t ∈ {A, B, C}) ran-
domly distributed over the 20 years with equal probability 
(⅓ each). As before, bpop = 0.5 and each individual’s response 
to E1 was drawn as bi ~ N(0,0.5), but was made dependent 
on t such that biA = bi − qi, biB = bi and biC = bi + qi, where 
qi ~ N(0.25,0.25), i.e. a decrease (bpop,A = 0.25), no change 
(bpop,B = 0.5), and an increase (bpop,C = 0.75) in the mean slope, 
respectively. We also tested a scenario where qi ~ N(0.25,0) 
(i.e. no variation in the change in slope) but since the results 
of interest were very similar we do not report them here. The 
statistical model for this data is

y c a b bijt t i t it j t ijt= + + +( ) +( )pop E, ,1 e 	  (4)
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where ct is the intercept for each environmental category and 
bpop,t and bit are the (fixed) population and (random) indi-
vidual slopes with respect to environment E1 in year j specific 
to environmental category t (i.e. an interaction effect both at 
the population and individual level). The random elevations 
and slopes were jointly fitted such that
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(note that an unstructured matrix was assumed even though 
covariances were not explicitly simulated).

Model 4 served as the benchmark model to which we 
compared the random regression for model 2 for each of 
the environmental variables (E1–E10 and ESM). For each 
model we looked at 1) the fit according to AIC, 2) the root 
mean squared error (RMSE), averaged over all individuals 
and 3) the slope variance (for model 2 only). To calculate 
RMSE, predicted values across observed environments were 
computed for each individual as ˆ ˆ ˆyij j t i t= +( )´ ( ) ( )hh b u , 

where is ŷij  is the predicted value for individual i in envi-
ronment j, ηj is the jth row vector of the model matrix ([1, 
xj]), b̂ t( )  contains the fixed coefficients and ûi t( )  contains the 
random elevation and slope coefficients (with t in parenthe-
ses indicating the category-specific coefficients when appli-
cable). RMSE for each individual can then be calculated as 

RMSEi
j

J

ij ijJ
y y= -

=å1
1

2( )ˆ . The entire procedure was 

iterated 1000 times.

Simulation scenario (vi): mean, linear slope 
changing with the environment

The last scenario investigated here is where the mean slope 
of the population changed with the environment (i.e. the 
slope of the mean, linear reaction norm is steeper in later 
than in earlier years). In theory, this could occur when the 
environment changes over time and the population evolves 
to a steeper/shallower mean reaction norm. To examine this 
scenario, a generous correlation of r = 0.8 between ‘year’ and 
the cue (E1) was generated. The twenty environments were 
equally divided into three environmental categories (t ∈ {A, 
B, C}), where each group contained six or seven consecutive 
values of the environment E1. Similarly to previous scenarios, 
individuals were randomly assigned a first year, but due to the 
correlation between year and E1, observations of the same 
individual were likely to be in similar environments. When 
observations of an individual spanned multiple categories 
(e.g. A and B), the one that occurred most often was assigned 
as this individual’s category; with equal occurrence (e.g. A, A, 

B, B), the category was chosen randomly. Phenotypes were 
drawn as before, with bi ~ N(0,0.5) throughout, but with bpop 
∈ {0.5,1,1.5}, depending on the environmental category t. 
Therefore, an individual’s phenotype was described as

y a b bijt i t i j t ijt= + + +( ) +( )m epop E, ,1 	  (5)

where the mean slope depended on t. The model in Eq. 2 was 
run as before on these data, using either of the 10 environ-
mental proxies (E1–E10) or ESM as covariate.

Two practical examples: I × E in common guillemots 
and G × E in great tits

To exemplify the use of the ESM approach with real data, 
we reanalysed two real datasets. The first one concerns I × E 
in breeding time in the common guillemot U. aalge on the 
Isle of May, Scotland (Reed et al. 2006). The second exam-
ple involves G × E in fledgling weights of great tits P. major 
from the Hoge Veluwe, the Netherlands, obtained from an 
online repository (Mulder  et  al. 2016a, b). The purpose of 
these reanalyses is to show how the ESM approach can aid 
in unveiling the magnitude of I × E/G × E in the data and 
how ESM-based estimates of reaction norms can actually be 
more accurate than a coarse environmental proxy. For full 
details of the analysis, we refer the reader to the Supporting 
information.

The breeding dataset for the common guillemot contains 
2593 egg-laying dates of 245 females guillemots, recorded 
over the period 1983–2005 in five sub-colonies ranging from 
23 to 69 individuals each. The median number of breeding 
attempts per female is 10, with a range of 4–22. Annual mean 
laying date in this population correlates negatively (r2 = 0.24) 
with the North Atlantic Oscillation (NAO) index, which was 
found to be the strongest environmental predictor for guil-
lemot phenology among local sea-surface temperatures and 
number of days with easterly winds across a 21 year study 
(Frederiksen et al. 2004), but individual variation in reaction-
norm slopes (I × E) was reported to be small (slope variance: 
0.01) and statistically insignificant (Reed  et  al. 2006). The 
guillemot data are therefore a good candidate for investigat-
ing the presence of I × E despite the apparent absence of 
NAO-driven I × E. To assess the presence of I × E in the guil-
lemot population, we regressed laying date against NAO or 
ESM (mean laying date within a year) using an adjusted ver-
sion of model 2 that accounted for different mean responses 
to the environment within the different subpopulations and 
for year effects. In addition, we calculated for each individual 
the fit of each line through individual-specific root mean-
squared error (RMSE) values (Supporting information).

For the great tit fledgling-weight dataset, the original 
analysis by Mulder  et  al. (2016b) aimed at analysing the 
genetics of within-brood variability of fledgling weights. 
The dataset contains all broods from 1973 to 2012 with ≥ 
5 nestlings that were weighed shortly before fledgling age at 
15 days (n = 17 535 nestlings from 2175 broods). We note, 
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therefore, it is not a completely random subset as it excludes 
nests with smaller clutch sizes or those where part of the nest-
lings died before weighing (see the Supporting information 
for a histogram of clutch sizes and number of nestlings). We 
used the dataset to estimate G × E, but not I × E, in fledgling 
weight across different years, since each nestling had only 
one observation and pedigree information is available (see 
Mulder et al. 2016a, b for details). We chose the number of 
nests in a particular year – a proxy for breeding-pair density 
and thus food availability through between-brood competi-
tion – as the main covariate for our models and contrasted it 
to a model where the mean fledgling weight of the popula-
tion (ESM) was the main covariate. Again, the model used 
was an adapted version of model 2 that accounted for pedi-
gree information to be able to estimate G × E, as well as 
for within-brood competition and hatch date and for effects 
of year, mother and brood. To assess the model fit using 
either metric (breeding density versus ESM), RMSEs were 
calculated, but as this could not be done per individual we 
fitted year-specific RMSEs on the fitted values (Supporting 
information).

Results

Simulation models (i–iv): single and double  
sources of I × E

Unsurprisingly, in all I × E scenarios (i–iv) using the envi-
ronmental variable that was used to simulate the phenotypes 
(E1) as a covariate in the analysis recovered the input val-
ues for reaction-norm slopes and variances in elevations and 
slopes closely (Fig. 2; elevations not shown). The estimates 
for population-level slopes and among-individual variation 
in slopes clearly declined with a decreasing correlation of the 
used covariate with the ‘real driver’ (E1). As the estimated 
individual variation in slopes declined, the power, i.e. the 
proportion of replicates in which I × E was statistically sig-
nificant, decreased, indicating that it would be increasingly 
unlikely to detect statistically significant individual variation 
in slopes as the correlation with E1 decreased (Supporting 
information). 

The estimates for individual variation in slopes from the 
model using ESM as covariate closely matched, on aver-
age, the input value of 0.5 caused by E1 in the first scenario 
(Fig. 2a, b). However, when an additional (small) I × E vari-
ance of 0.1 (caused by E10) was present in the data (scenarios 
ii–iv), ESMs performed less well compared to the first sce-
nario, particularly when the mean slope for E10 was higher 
than for E1 (Fig. 2c, d versus e, f and g, h). Nevertheless, in 
the second scenario (with equal mean slopes related to E1 
and E10), ESM still outperformed, on average, most other 
proxies with the exception of E1 and E2 (which have a r ≥ 
0.9 with the real driver (E1); Fig. 2d). In the third scenario 
(with unequal mean slopes between E1 and E10), ESM per-
formed approximately equally well as proxy E4 (r = 0.7 with 

real driver; Fig. 2f ), whereas in the fourth scenario, ESM 
performed approximately equally well as proxy E5 (r = 0.6 
with real driver; Fig. 2h). In scenarios (i) and (ii), the power 
to detect I × E at p < 0.05 using ESM was high (~ 0.8; 
Supporting information), but moderate in scenarios iii and 
iv. Thus, both in the absence and presence of a secondary 
(small) source of I × E (E10), ESM performed well to mod-
erately in recovering the primary source of I × E (E1), but as 
the mean slope effect of E10 increased relatively to that of E1, 
recovered slope variances increasingly reflected E10- rather 
than E1-induced I × E (hence the reduction in power). This 
is to be expected since E10 is now in fact the main environ-
mental driver for (mean) plasticity.

Other factors that affect the phenotype but are unac-
counted for will alter the ESM phenotypes and can thereby 
potentially affect the results. Here, age, habitat structure, and 
a systematic time trend were tested. None of them led to any 
systematic bias in the probability to detect I × E and its esti-
mates in the first scenario (a single environmental driver of I 
× E; see the Supporting information). However, in the sec-
ond (ii) and third (iii) scenarios (with multiple environmental 
drivers of I × E) the presence of these factors improved how 
well the ESM-based estimates of mean slope and among-
individual variance in slopes did in comparison to E1–E10 
(Supporting information). Thus, additional sources of varia-
tion in the data partly negated the detrimental effect of E10 
on the accuracy with which ESM could estimate E1-induced 
I × E variance (cf. Fig. 2). In scenario (iv), however, where 
the mean slope of E10 was much higher than that of E1, esti-
mation of I × E variance by ESM that reflect E1 was clearly 
compromised (Supporting information). Again, however, 
this must be viewed in the light that with an increasing mean 
slope with respect to E10, the latter actually becomes the 
main environmental driver. 

Simulation model (v): I × E × E

In the scenario where datasets contained an interaction effect 
between environments (E1 × environmental category), the I 
× E × E random regression of model 4 (conforming to the 
data) naturally performed best based on AIC as well as RMSE 
(Fig. 3a–b). In the random regressions ignoring the interac-
tion (model 2), proxy E1 (the driver) performed best based 
on AIC and was directly followed by ESM; all other prox-
ies performed less well than ESM (Fig. 3a). Based on aver-
age RMSE, the I × E × E model performed best as expected 
and was followed by random regressions fitting proxies E1–
E3; ESM performed as well as E4 (r = 0.7 with real driver), 
although differences between the proxies were small (Fig. 3b). 
Standard deviations in RMSE for ESM, however, were on 
par with that for E1, indicating a higher consistency in pre-
diction errors across individuals. Estimated slope variances 
decreased as the correlation with E1 decreased, but the vari-
ance for ESM was on par with E2/E3 (Fig. 3c). Combined, 
these results suggest that ESM performed well in the presence 
of an I × E × E interaction.
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(h) Var[r=1] = 0.5, Var[r=0.1] = 0.1

Environmental covariate (correlation [r] with real driver)

Figure 2. Boxplots of estimates for the population-level slope (a, c, e, g) and individual variation in slopes (b, d, f, h) depending on the 
covariate included in the random-regression model for simulation scenarios (i–iv) (scenarios did not include any effects of age, habitat, or 
time trend). The covariates included in the model are indicated by their correlation with environment E1; ESM indicates environment-
specific mean phenotypes as covariate. (a, b) Only a single environmental driver (E1 [r = 1]) is responsible for I × E in the data; (c, d) two 
environmental drivers (E1 [r = 1] and E10 [r = 0.1]) for I × E in the data, with similar mean slopes but different slope variances; (e, f ) two 
environmental drivers (E1 [r = 1] and E10 [r = 0.1]) for I × E in the data with different mean slopes and different slope variances (with E10 
now effectively being the main driver of the phenotype); (g, h) two environmental drivers (E1 [r = 1] and E10 [r = 0.1]) for I × E in the data 
with an even greater difference between mean slopes. The dashed lines indicate the input values for the mean slope and variation in slopes. 
Bold line indicates median, box margins 1st and 3rd quartile and whiskers 1.5 × inter-quartile range.
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Simulation model (vi): change in mean, linear slope 
across environmental gradient

In the scenario where the mean slope changed with the envi-
ronment (with bpop = 0.5, 1 or 1.5 across three environmental 
categories), the estimated population slope from the model 
with the driver (E1) as a covariate was estimated, on aver-
age, to be around 0.9 (we would expect it to be around 1, 
i.e. the average of the three input values) (Fig. 4a). For the 
other proxies, the estimated slope was lower except for ESM, 
which averaged at 1, following expectations. slope variation 
was slightly above the input value of 0.5 for E1, gradually 

decreasing for other proxies; for ESM, the estimated slope 
variance ranked between that of E2 and E3 (i.e. r = 0.9 and 
r = 0.8 with E1, respectively), making ESM a better covariate 
than most other proxies.

Common guillemot analysis

As shown previously (Reed et al. 2006), there was little evi-
dence for I × E variance in the guillemot population using 
NAO as the covariate (Fig. 5a, c; estimated variance 0.043 ± 
0.271; χ2 = 0.078, df = 2, p = 0.63). The ESM model, how-
ever, provided evidence for significant I × E variance (Fig. 5b, 
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Figure 3. Results for simulation scenario (v), where an I × E × E effect was present in the data. ΔAIC values (a) are referenced to the bench-
mark random-regression model that included an I × E × E effect (lower is better). RMSE (b) are averages (grey) and standard deviations 
(no colour) across individuals. Slope variances (c) are estimates from random regressions using one of the environmental proxies as covari-
ate. The covariates included in the random regressions are indicated by their correlation with environment E1; ESM indicates environment-
specific mean phenotypes as covariate; I × E × E (in b only) represents the benchmark interaction random-regression model conforming to 
the data structure. Bold lines in boxplots indicate median, box margins 1st and 3rd quartile and whiskers 1.5 × inter-quartile range.
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Figure 4. Boxplots of estimates for the population-level slope (a) and individual variation in slopes (b) depending on the covariate included 
in the random-regression models for simulation scenario (vi), i.e. with a change in mean slopes in the data being dependent on the environ-
ment E1. The covariates included in the model are indicated by their correlation with environment E1; ESM indicates environment-specific 
mean phenotypes as covariate. The input mean slope value was 0.5, 1 or 1.5, increasing in steps with E1 (Methods); its estimates with 
respect to the cue (E1) are therefore expected to average at around 1.
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d; χ2 = 16.421, df = 2, p = 0.0001), although variance in 
slopes was modest (0.338 ± 0.227). Predicted reaction norms 
(Fig. 5a, b) were more accurate in the ESM model than the 
NAO model (difference average RMSEi across individuals: 
2.86–2.82 = 0.04; bootstrapped 95% CI of difference: 0.01–
0.07). Overall, I × E was thus modest but clearly present in 
the guillemot population but could only be detected statisti-
cally when using ESM as the covariate.

Great tit analysis

Great tit fledgling weight responded quadratically, though 
weakly, to standardized breeding density at the population 
level (linear and quadratic slope 0.803 ± 0.229 and –0.508 
± 0.183, respectively). Additive genetic variance varied sig-
nificantly with breeding density, indicating G × E (Fig. 6a; 
estimated variance: 0.179 ± 0.106; χ2 = 43.76, df = 2, p < 
0.0001). Replacing breeding density with ESM (average 
weight) increased estimated G × E variance (1.112 ± 0.119; 
χ2 = 144.73, df = 2, p < 0.0001; although note that G × E 
variances are not directly comparable between methods as 
ESM and breeding density do not correlate perfectly) and 
considerably increased the range of estimated genetic vari-
ance across different years (Fig. 6b). Annual RMSE was, on 
average, lower in the ESM compared to the breeding-density 
model (difference average RMSEj: 0.705 – 0.600 = 0.105; 
95% CI of difference: 0.014–0.195). Overall, G × E in fledg-
ling weight was present in the data and was most pronounced 
when using ESM as the covariate.

Discussion

Performance of ESMs as an environmental covariate in 
simulations

As has been found previously (Brommer  et  al. 2005, 
Husby  et  al. 2010) and systematically explored here, the 
choice of the environmental variable that affects the phe-
notype in the reaction norm can affect the probability to 
detect variation in slopes. The less related the included 
environmental variable is to the real driver of plasticity, the 

Figure 5. Fitted reaction norms (deviations from the mean trend) for six randomly selected female guillemots (a, b) as well as the phenotypic 
variance for laying date across the environment (c, d), resulting from a random-regression model with NAO (a, c) or ESM (b, d) as the 
environmental covariate (both covariates scaled between –1 and 1). Lines in (c) and (d) represent estimates with approximate 95% CIs.

Figure 6. Estimated additive genetic variances for fledgling weight 
in great tits as a function of breeding density (a) and ESM, i.e. aver-
age weight (b) (both covariates scaled between –1 and 1). Lines 
represent estimates with approximate 95% CIs.
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lower the probability to detect statistically significant I × 
E (Supporting information). This may lead the researcher 
to (wrongfully) dismiss the potential for I × E or G × E 
(henceforth collectively termed slope variation) based on 
testing a single covariate, or a few covariates. Using envi-
ronment-specific population means (ESM) as a covariate, 
inspired by the ‘Finlay–Wilkinson’ regression (Yates and 
Cochran 1938, Finlay and Wilkinson 1963), could pro-
vide an alternative means to explore slope variation in the 
absence or presence of alternative proxies, even in the pres-
ence of additional sources of (small) I × E (Fig. 2), I × E × 
E (Fig. 3) or a change in mean slope across the environmen-
tal gradient (Fig. 4).

It could be shown (Appendix A) that the correla-
tion between the true driver of plasticity and the ESM 
approaches one with decreasing ‘sampling variation’ in the 
ESM. This sampling variation should decrease with increas-
ing sample size. However, since it also incorporates variation 
due to individual (or genetic) variation in reaction norms, 
it will also decrease with a decrease in reaction-norm varia-
tion. This means the smaller the effect of interest becomes, 
the more precise the estimated ESMs become and the bet-
ter their suitability to detect variation in reaction norms. If 
the presence of slope variation has been shown using ESM, 
further analyses can aim to identify the meaningful biotic 
or abiotic environmental variables that drive slope variation 
in the trait of interest (i.e. back-tracing the results obtained 
with ESM). If slope variation of similar magnitude to that 
with ESM can be found using an environmental variable, it 
can then be concluded that this variable is reasonably closely 
correlated with the environmental variable that causally 
affects the trait. 

A caveat is that when multiple sources of slope variation 
exist in the data, this variation will in principle be harder to 
detect using ESM, provided that the population harbours 
strong mean plasticity with respect to the ‘secondary’ com-
pared to the ‘primary’ environmental driver. Quotation 
marks are in order, since in this case the former would in 
fact be the primary driver, for which I × E variation can 
be recovered very well with ESM (Fig. 2). Furthermore, 
estimation of slope variation with ESM may be impaired 
when multiple environmental drivers collectively explain 
more variation in the trait than the main driver. However, 
in this case it will also be substantially more complicated 
– if not impossible – to correctly identify all these envi-
ronmental drivers. Our simulations show, however, in 
the former scenario (two sources of I × E) that ESM may 
still perform equally well as other environmental proxies 
that correlate with the ‘primary’ driver E1 by r ≥ 0.7 (but 
note, again, that in scenarios (iii) and (iv) the E1 de facto 
becomes the secondary driver); in the latter scenario (v) (I 
× E × E), ESM performed as well as the proxies that cor-
relate by r ≥ 0.7 up to 0.9 (whether it be based on RMSE 
or AIC, respectively). In this sense, a ‘Finlay–Wilkinson’-
derived approach can still serve as a ‘yardstick’ with which 
models featuring other environmental covariables can be 
compared. 

Relevance of the ESM approach in real data

Why should we be bothered to look at ESM when study-
ing (variation in) plasticity in the wild? There are a number 
of reasons why we should aspire to study I × E (and G × 
E) in general, even if we do not have an accurate proxy for 
E, as well as why we should consider ESM even when we 
do have reasonable proxies, which we outline (non-exhaus-
tively) below.

First, whether or not I × E, and also genetic variation 
in slopes (G × E), is present in a population or species is 
biologically relevant, even if the true environmental driver 
of plasticity cannot be identified. For example, I × E can 
increase or decrease the amount of among-individual varia-
tion in novel environments, which affects the opportunity 
for selection and thereby potential evolutionary change, even 
in the absence of G × E (Hoffman and Merilä 1999, Lédon-
Rettig et al. 2014, Ramakers et al. 2018b). The absence of I × 
E can also be biologically interesting; for example, Reed et al. 
(2006) found no I × E in breeding time of common guil-
lemots U. aalge in response to the North Atlantic Oscillation 
and argued that this lack of I × E was a consequence of the 
benefits of coordinated breeding in colonial birds, such as the 
common guillemot. However, in such cases it would be desir-
able to be sure that this absence of I × E is not caused by an 
unsuitable choice of the environmental variable affecting the 
trait. In fact, when re-analysing this data using ESM – in this 
case annual mean egg-laying dates – as environmental vari-
able, statistically significant I × E was found, although the 
magnitude of I × E was low, conforming to expectation con-
sidering the biology of the species (discussion in Reed et al. 
2006). When comparing the fit of individual reaction norms, 
the root mean-squared error was lower (on average) for ESM 
than for NAO, which inspires confidence that the ESM 
approach provided a better fit and hence made for better pre-
dictions in particular environments.

Second, ESM can be used to give a meaningful, biologi-
cal interpretation of the effect of environmental proxies on 
phenotypic responses. In experimental research, for example, 
manipulating one aspect of the environment in order to elicit 
a phenotypic response may inadvertently lead to changes in 
other aspects of the environment, obscuring the true effect 
of the manipulation. Food supplementation, for example, 
has been a popular method of studying the timing of avian 
breeding, more specifically why birds breed at the time that 
they do (Verhulst and Nilsson 2008, Ruffino  et  al. 2014). 
Leaving aside for the moment the issues regarding the valid-
ity of such experiments in answering the specific question at 
hand, the food supplementation itself may lead to an increase 
in the population density, may alter the dynamics of compe-
tition, and may attract predators, all of which may impact 
the expression of the studied phenotype alongside the food 
manipulation itself. Hence, in the study of plasticity, it is 
uncertain whether the environmental proxy termed ‘food 
availability’ is solely responsible for the observed phenotypic 
responses. Comparing the results to a model using the ESM 
will shed light on this. 
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Third, while the ESM approach per se does not give bio-
logical insights into the environmental variable underlying 
phenotypic plasticity and slope variation in the analysed trait, 
it does have a methodological application, related to how 
important evolutionary parameters are estimated. For exam-
ple, we may be interested in estimating, retrospectively, the 
evolutionary potential (and response) of the trait over time 
or across locations (discussion in Ramakers et al. 2018b). For 
this purpose, evolutionary parameters (selection, genetic vari-
ance, breeding values) need to be computed at the level of the 
environment (year/location), but this will in most practical 
cases be impossible due to sample size. For example, estimat-
ing the evolutionary response in a given environment at the 
genetic level directly (Morrissey et al. 2012) equates to esti-
mating an additive genetic covariance between fitness and the 
focal trait in that environment; to pull this off statistically, we 
would need unrealistically rich relatedness data for each envi-
ronment (Gienapp et al. 2017). Random-regression models 
get around this by estimating (genetic) reaction-norm param-
eters (elevation, slope and their covariance), from which per-
environment (genetic) variances can be estimated directly 
(Kirkpatrick  et  al. 1990, Meyer 1998). To do a random-
regression analysis, however, we need a decent covariate; if a 
such an informative proxy cannot be identified from available 
environmental data, the ESM provides a solid – and likely a 
less biased – alternative (Ramakers et al. 2018b).

Fourth, if we are specifically interested in predicting the 
phenotypic or evolutionary consequences of (directional) 
environmental change, the ESM approach can be of aid 
here as well. Naturally, unravelling slope variation per se is 
uninformative in this regard but the ESM approach can help 
‘benchmark’ the used proxy. For example, in the guillemot 
and great tit data, the best conceivable proxies (NAO and 
breeding density, respectively) were outperformed by ESM 
(Fig. 5, 6). This means that any predictions based on these 
proxies, such as predicting future changes in guillemot breed-
ing time based on NAO indices derived from climate models, 
will likely be unreliable and that it would be worth identify-
ing other, better performing, proxies. An important caveat 
here – which is not just limited to the ESM approach – is that 
the underlying relationships between different environmental 
cues and the trait should remain (largely) unchanged. This is 
because in case of an environmental shift, even when the cue 
and environmental proxy shift at the same rate, the predic-
tion of the shift in phenotypes using environmental proxies 
will tend to be under- or overestimated (see Appendix B for  
a brief numerical elaboration on this matter).

Finally, the relative size of I × E interaction with respect 
to ESM versus an environmental proxy may hint toward the 
presence of complex I × E in the trait. Under ‘simple’ I × E, 
one may expect ESM to outperform proxies that correlate 
even relatively strongly with the true environmental driver 
(Appendix A, Fig. 2a–b). However, when estimated ‘I × 
ESM’ variance is smaller than ‘I × proxy’ variance, this indi-
cates that 1) the chosen proxy is a particularly relevant one 
for the organism and that 2) there may be some underlying 
complexity (e.g. I × E × E) that ESM is not able to pick up. 
The nature and extent of this complexity will not be revealed 

by merely comparing the estimated slope variances, but it will 
hopefully spark a quest to tease apart I × E further and ulti-
mately fit better models.

Practical considerations when using ESM approach

An important assumption underlying the ‘Finlay–Wilkinson’ 
regression is that the response to the ‘true’ driver of plasticity is 
(approximately) linear, as strongly non-linear reaction norms 
(e.g. quadratic or sigmoidal) could lead to identical mean 
phenotypes in different environments, which would interfere 
with reliably estimating slope variation. It is also important 
that the ESM be based on adequate sample sizes (e.g. ≥ 50), 
which so happens to be a requirement for reliable estimation 
of G × E per se (Calus et al. 2004). Moreover, the sample on 
which ESM is based should be reasonably assumed to be ran-
dom; non-random missingness of phenotypes, for example 
due to different between-individual variation in phenotypes 
between environments, should lead to biased estimation of 
slope variance with respect to ESM. To ensure a good fit of 
the data, it is good practice to compare the accuracy of fitted 
individual reaction norms in observed environments between 
different covariates (in the case of I × E interactions), as we 
did in simulation scenario (v) and in the guillemot example, 
for example by computing the root mean squared error on 
each reaction norm. This will, however, be less straightfor-
ward to do for G × E interactions (which essentially entail 
family reaction norms), although model fits can still be com-
pared, e.g. through environment-specific RMSE and infor-
mation criteria. Additionally, directly comparing estimated 
residual variances between models may reveal how well a par-
ticular environmental covariate explains G × E variation, as 
larger residual variances would indicate a greater amount of 
G × E left unexplained.

Trait expression is not only affected by environmental 
variables but also by individual ‘state’ variables, such as age 
or physical condition and potentially additional environmen-
tal variables, for example habitat in addition to temperature. 
Not accounting for such variables can bias ESM phenotypes. 
For example, if age structure in the population varies from 
year to year, this could potentially lead to specific biases in 
estimates from ‘Finlay–Wilkinson’-inspired regressions. This 
potential bias may be especially problematic when there is a 
consistent time trend in phenotypes, as caused, for example, 
by a genetic selection response. Such potential biases would 
also affect the phenotypes, albeit not the covariate, of analyses 
based on environmental variables. The results here show that 
random-regression models with ESM are not biased in this 
respect. In fact, under more complex I × E patterns (i.e. two 
sources of I × E), the use of ESMs as a covariate led to bet-
ter estimates of I × E by negating the secondary I × E effect 
at least in scenarios (ii) and (iii) (Supporting information). 
Moreover, ESM performed admirably well in the presence of 
I × E × E (Fig. 3). It is, however, always preferable to include 
and test all variables potentially affecting the trait to obtain 
more accurate estimates of (variation in) reaction norms and 
also to gain a better understanding of which abiotic and 
biotic variables affect the trait.
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Genetic variation in slopes (G × E) is biologically relevant 
as environmental change likely leads to selection on both 
elevation and slope (Gienapp et al. 2014). How the power 
to detect G × E, rather than I × E, depends on the choice of 
the covariate included in the analysis was not addressed in the 
simulations because of the specific issues with the power of 
quantitative genetic analyses. The sampling variation in heri-
tability estimates depends on the sample size but also on the 
variation of relatedness within the population (Visscher and 
Goddard 2015). The variation in relatedness depends on a 
number of species- or population-specific ecological param-
eters such as dispersal or mating system. It would have been 
possible to simulate G × E but the obtained results would 
have been difficult to generalise. However, I × E is generally 
regarded as an ‘upper limit’ for G × E. Having found no I × E 
with sufficient sample size and using the ‘Finlay–Wilkinson’-
inspired regression it would hence be highly unlikely to find 
G × E in the same population. It should, however, be noted 
that this ‘yardstick’ cannot universally be applied, as in short-
lived species that cannot be sampled repeatedly the necessary 
repeat observations of individuals may never be achieved. 
Hence, I × E may not be well estimable but – given suit-
able relatedness information – quantitative genetic analyses 
could be possible and statistically significant G × E could be 
found. A good case in point is the great tit fledgling weight 
data presented in the present study. For this type of data, 
repeat observations do not exist (as individuals are fledg-
lings only once in their lives) but our data did show that G 
× E in fledgling weight was substantially more sizeable with 
respect to ESM than to breeding-pair density. This is likely 
because ESM is a more accurate description of the general 
environment (including, for example, food availability) than 
breeding-pair density alone. The difference in G × E mag-
nitude (range of estimated additive genetic variance) means 
potentially a difference in environment-specific heritability 
and hence estimates of evolutionary potential.

Concluding remarks

In animal and plant breeding the ‘Finlay–Wilkinson’ regres-
sion has long been used in the context of ‘genotypic stability’ 
analysis, but very rarely outside this field (James 2009). We 
argued here that it can be usefully extended to a random-
regression framework and that it has its biological merits in 
the study plasticity in wild populations. It can be used as a 
‘yardstick’ in analyses exploring individual (and genetic) vari-
ation in slopes as its results are unbiased by the correlation 
between it and the environmental variable causally affect-
ing the trait. This can be especially relevant for studies not 
finding statistically significant slope variation using known 
environmental proxies and could therefore give us a better 
understanding of how prevalent (or not) I × E interactions 
really are. Importantly, we argued that the environment-spe-
cific trait means (ESM) can be a useful starting point for the 
search for quantifiable environmental proxies. We caution, 
however, that in the presence of multiple sources of I × E, 

this ESM approach may lead to too conservative estimates 
of I × E (and by extension G × E), and we would therefore 
encourage researchers to think critically about the mecha-
nisms that could give rise to plasticity in the first place.
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Appendix A. Mathematical derivation of ESM approach

Here the correlation between the true driver of plasticity (E1) and ESM is derived for the case that E1 is the main driver of 
plasticity. The ESM is the average phenotype in any given environment:

ESM int slp Ej

i

n

i i j i jn
= + +( )´

=
å1 1

1

e ,

with inti and slpi being the intercept and the slope of the reaction norm of individual i, E1j the ‘real driver’ in environment 
j, εi,j a random error term, and n sample size. inti and slpi are the sum of the population-mean values and random deviations 
from them and for infinite sample sizes the averages over all individual intercepts and slopes, inti  and slpi , become equal to 
the population mean values and hence the average of the ESM in any environment E1 simply would equal the expectation

E ESM int slp Ej j( ) = + ´ 1

with int and slp being the population mean values of the reaction norm intercept and slope. However, for limited sample sizes 
the individual deviations from the population reaction norm plus the additional error term imply that the average becomes

ESM int slp Ej j ju= + +´ 1

with uj being the ‘sampling error’ incorporating individual deviations from the population reaction norm and summed indi-
vidual error terms. The contribution of uj to ESMj will tend to decrease with sample size n.

Now we can write the correlation between E1 and ESM across environments j as

r
u

sd sd uE ESM
cov E int slp E
E int slp E1

1 1
1 1,

,
=

+ +( )
( ) + +( )

´
´ ´

which can be simplified to

r
u

sd sd uE ESM
cov E slp E
E slp E1

1 1
1 1,

,
=

´ +( )
( )´ ´ +( )

Since cov(aX + bY, cW + dV) = ac  cov(X,W) + ad  cov(X,V) + bc  cov(Y,W) + bd  cov(Y,V) and var = (aX + bY) = a2var(X) + b
2var(Y) + 2ab cov(X,Y), the above equation can be re-written as:

r
u

u
E ESM

slp cov E E cov E

var E slp var E var
1

2

1 1 1

1 1
,

, ,
=

´ ( ) + ( )
( )´ ( ) + ( ) ++ ( )éë ùû2 1slp cov E ,u

Assuming unbiased sampling such that cov(E1,u) equals zero and using cov(E1,E1) = var(E1), this can be simplified to:

r
sd u

E ESM
slp var E

E slp var E var
1 2

1

1 1
, =

´ ( )
( )´ ( ) + ( )

and further to:

r
sd E

u
E ESM

slp

slp var E var
1 2

1

1
, =

´ ( )
( ) + ( )

.
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If we now express the ratio of var(u) and var(E1) as x, then we can re-write the above equation as:

r
sd

x

sd

x sd
E ESM

slp E

slp var E

slp E

slp E
1 2 2

1

1

1

1
,

( )
=

´ ( )
+ ´ ( )

=
´ ( )
+ ´ ( )

which can be simplified to:

r
x

E ESM
slp

slp
1 2, =

+

With decreasing var(u), for example due to increasing sample size n, x will approach zero and the above correlation will 
approach a value of one for positive values of slope slp, which means that the ESM would then outperform any other proxy.

Appendix B. Environmental proxies will under- or overestimate phenotypic shifts under 
environmental change

When the true environmental cue changes (e.g. through a shift to a new mean of environmental values), resultant phenotypic 
change will be under- or overestimated if we use an environmental proxy to predict it. This is the case whenever the slope of 
the cue on the proxy < 1 or > 1, respectively. In this section we briefly work out this principle using a numerical example.

Let the slope of the environmental proxy E* against the cue E be bE E*~ = 2  and let the slope of the phenotype y on the cue 

be βy~E = 4. The slope of y on the proxy then becomes b b
by y~ ~

~
E E

E E

*
*

= ´ = ´ =1 4 1
2

2  (where 1
bE E* ~

 equals the slope of E 

against E*). Now suppose cue and proxy (both in the same units) change by 1 unit each year (ΔE = ΔE* = 1; i.e. a directional 
environmental change). The predicted rate of change per year in the mean trait value (ΔyE) owing to plasticity is ΔyE = βy~E ⨯ 
ΔE = 4 ⨯ 1 = 4; prediction based on the proxy (DyE* ) gives us D = ´D = ´ =y yE E E* *

*b ~ 2 1 2 .

So, the phenotypic shift is underestimated when 1 1
bE E* ~

<  (and overestimated when 1 1
bE E* ~

> ). The only circumstance 

where we should find an equal shift in the phenotype is when D = DE E*

E E

/
*

1
b ~

. In this example, we thus have D = =E*

/
1

1 2
2  

and consequently D = ´D = ´ =y yE E E* *
*b ~ 2 2 4 . In practice, this means that in case of an environmental shift (e.g. due to 

climate change), prediction of phenotypes based on the proxy estimated before the shift will almost invariably be biased.
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