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Abstract 

de Vos. (2023). Disentangling the epigenome during development of pig and chicken. PhD thesis, 

Wageningen University, the Netherlands 

The genome provides the entire set of DNA instructions of an organism, while the epigenome 

involves modifications that do not alter the DNA sequence. The complex interplay between the 

genome and epigenome, regulates gene expression which is important during the 

developmental trajectory including processes such as differentiation of organs and tissues. 

DNA methylation, a type of epigenetic modification, plays a crucial role in the developmental 

process. However, our understanding of the dynamics of DNA methylation in the developing 

embryo and fetus is still limited. In this thesis, I investigate the developmental process in both 

pig and chicken, using a multifaceted approach. Firstly, molecular characteristics of a pig and 

chicken cell line are investigated using various functional assays, including whole genome 

sequencing, reduced representation – and whole genome bisulfite sequencing (RRBS and 

WGBS) to investigate DNA methylation, ChIP-sequencing of histone modifications denoting 

regulatory elements, ATAC-seq profiling open chromatin, and RNA sequencing to identify gene 

expression patterns. This provides a comprehensive investigation into cell line utility from an 

(epi)genomic standpoint. Secondly, further investigation delves into the DNA methylation 

landscape of seven distinct tissues at three developmental stages in both pig and chicken. 

Moreover, I identify methylome changes during early and late organogenesis until 

birth/hatching in pig and chicken. Subsequently, these changes are identified on both a per-

site and whole-genome level during development per tissue. Integration of methylation data 

with transcriptomic profiles uncovers the intricate relationship/interplay between DNA 

methylation and tissue-specific gene expression patterns. Additionally, a comparative analysis  

between results from pig and chicken provides insights into mammalian and avian 

developmental epigenomics. This research provides a glimpse into the complex methylome 

dynamics that underpin developmental regulation in pig and chicken. By disentangling the 

complex epigenomic architecture of these species, this study contributes to the broader 

understanding of developmental processes and the potential application of these insights 

across diverse species. 
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‘Don’t only practice your art. But 

force your way into it’s secrets, for it 

and knowledge can raise men into 

divine’  

Ludwig van Beethoven 
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1 General Introduction  

All living organisms are composed of billions of cells, and DNA is the control centre of each 

cell. That leads to the question: What is DNA? It is the abbreviation for deoxyribonucleic acid, 

commonly known as the molecule that carries the genetic information necessary during an 

organisms lifetime and basic functions. Simply put it is the blueprint of life. Genes are the 

basic units of this genetic information and are inherited from parents to offspring. This is one 

of the main reasons we resemble our father, mother, siblings and family members (Calladine 

and Drew, 1997; Deoxyribonucleic Acid (DNA), 2022; Introduction: What is DNA? | Learn 

Science at Scitable, no date).  

The genome refers to the complete DNA sequence which encodes an organisms’ genetic 

composition, while the epigenome is defined as (reversible) chemical modifications which do 

not involve alterations to the DNA sequence itself but which, together with regulatory DNA 

elements, are involved in regulating gene expression (Francis, 2011; Gonzalez-Recio, Toro 

and Bach, 2015). Until recently (1990) scientists were primarily interested in protein coding 

genes which comprise only about 1-3% of the entire genome (ENCODE Project Consortium 

et al., 2012). The remaining DNA was classified as ‘junk’ DNA, although this concept started 

to be questioned by many researchers already throughout the 1990s. After a decade of 

research by scientists involved in the ENCODE project, ground breaking news emerged in 

2012, revealing that previously labelling most of the DNA as junk was incorrect. (Pennisi, 2012; 

Tragante, Moore and Asselbergs, 2014; Snyder et al., 2020). The discovery revealed that 80% 

of the human genome holds functional importance, by influencing gene expression in different 

capacities (Tragante, Moore and Asselbergs, 2014). A main conclusion from the ENCODE 

research was the sophisticated complexity of gene regulation. Many different 

methodologies and sequencing technologies were developed during and after the pilot phase 

of the ENCODE project (2007), which enabled investigating the regulatory landscapes of 

genomes. Thereafter, research into the functional regulatory genome and epigenome became 

more commonplace (ENCODE Project Consortium et al., 2012; Pennisi, 2012; Snyder et al., 

2020).  

1.1 The functional regulatory genome 

DNA is packaged within the chromosomes in a highly organized structured manner, consisting 

of DNA bound to histones. The DNA-histone complex forms nucleosomes, which further fold 

into a 30nm fibre. Through further packaging, chromatid structures are produced (Annunziato, 

2008; Klemm, Shipony and Greenleaf, 2019). The degree and process of packaging influence 

the accessibility of chromosomes to bind non-histone proteins such as transcription factors, 

which in turn determines the gene regulatory capacity (Annunziato, 2008; Klemm, Shipony and 
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Greenleaf, 2019). Regulatory elements have a paramount role in the timing and degree of 

gene expression, resulting in differences between tissues and species (Figure 1) (Liu et al., 

2004; Maston, Evans and Green, 2006; Levo and Segal, 2014). Depending on their regulatory 

role, non-coding sequences can be classified into various types of regulatory elements, such 

as promoters, enhancers, silencers, and insulators. Identifying regulatory elements poses 

greater challenges compared to identifying genes, mainly due to challenges in determining and 

characterizing promoters, enhancers and transcription factor binding sites (TFBS – see Box 

1). For instance, the cell type specificity of regulatory elements requires investigating multiple 

cell types, which is time-consuming and resource-intensive (The FANTOM Consortium and 

the RIKEN PMI and CLST (DGT), 2014). Although experimental techniques like ChIP-seq, are 

valuable, they have limitations such as technical artifacts, which can result in possible 

erroneous predictions impacting the accuracy and reliability of identified regulatory elements 

(Andersson and Sandelin, 2020). Furthermore, regulatory elements can interact over long 

genomic distances, forming complex networks of interactions, making them challenging to 

determine and to understand their interactions and functional consequences (Lenhard, 

Sandelin and Carninci, 2012; Zaugg et al., 2022).  

 

 

 

 

 

 

 

 

 

Figure 1 Illustration of gene regulation, which is involved in development and tissue 

differentiation.  Three different tissues are shown in this diagram where genes are switched on 

(green light), off (red light) and intermediate (yellow light), illustrating the difference in gene 

expression and regulation between tissues. Arrows indicate direction of transcription of the 

gene. Adapted from National Human Genome Research Institute glossary explaining gene 

regulation. 
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1 General Introduction  

1.1.1 Promoters 

The promoter is a specific DNA sequence 

located upstream near the start of a gene, 

facilitating where transcription will start (Figure 

2). The promoter region serves as a ‘docking 

site’ for basic transcriptional machinery such as 

RNA polymerase, general transcription factors 

and the transcription pre-initiation complex 

(Cramer, 2019; Andersson and Sandelin, 

2020). The binding to the described elements 

initializes transcription during which a gene’s 

DNA is used to produce a complementary RNA 

molecule. The location of the transcription start 

site (TSS) and the direction of transcription are 

defined by the promoter (Maston, Evans and 

Green, 2006; Heintzman and Ren, 2009).   

Promoters can be classified into different types 

based on their structural features, and 

functionality. These include core-, proximal-, 

constitutive-, inducible-, tissue-specific-, and bidirectional promoters. Each of these types have 

unique characteristics, which enable precise control over gene expression in response to 

specific environmental cues, developmental stages, or cellular conditions. Core promoters 

are typically found ~50 bp around the TSS, and examples thereof includes TATA-box and 

initiator elements  (Maston, Evans and Green, 2006; Haberle et al., 2014; Cramer, 2019; 

Andersson and Sandelin, 2020). Promoters of this class are diverse in their content and 

organization. Proximal promoter elements are located upstream from the core promoter and 

many binding sites are available for transcription factor activators (Maston, Evans and Green, 

2006; Andersson and Sandelin, 2020). Interestingly CpG islands are located close to or in 

promoters in 60-70% of vertebrate genes (Antequera, 2003; Illingworth and Bird, 2009; Deaton 

and Bird, 2011). A CpG island is a section of DNA, typically 500 bp to 2 kb in length, that has 

a high CG dinucleotide frequency and content in comparison to bulk DNA (Greenberg and 

Bourc’his, 2019). CpG islands and DNA methylation will be described in greater detail in the 

next section of this introduction.  

 

BOX1: Transcription 

Factor Binding Site 

(TFBS) 
A short (6-12bp) DNA sequence usually 

located within a promoter or enhancer, 

where transcription factors  bind with a 

high affinity. Transcription factors are non-

histone proteins that can bind to DNA and 

regulate the transcription of nearby genes 

e.g. activating or repressing gene 

expression by different mechanisms. 

TFBS can ultimately influence cellular 

processes such as development, 

differentiation, and response to 

environmental stimuli. 

(Klemm, Shipony and Greenleaf, 2019) 
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1.1.2 Enhancers 

Enhancers are typically specialized DNA sequences (100-1000 bp) which can be located 

further away from the promoter and gene (long-distance transcriptional control elements, 

Figure 2). In some cases enhancer elements can be located several hundred kilobases or 

even up to millions of bases (Panigrahi and O’Malley, 2021) from a promoter, and are usually 

located in intergenic and intronic regions of the genome. Enhancers contribute to gene 

regulation from such long-distances due to DNA looping, which subsequently places the 

enhancers in close proximity to the promoter and TSS (Smallwood and Ren, 2013; Grosveld, 

van Staalduinen and Stadhouders, 2021; Panigrahi and O’Malley, 2021). These elements work 

by attracting a wide variety of transcription factors and chromatin-modifying processes, 

facilitating gene transcription. Enhancers are responsible for recruiting transcription factors 

which enable the de-condensation of densely packed chromatin structures, facilitating the 

assembly of transcriptional machinery at gene promoters, and ultimately enabling transcription 

(Heintzman and Ren, 2009; Goldberg et al., 2012; Klemm, Shipony and Greenleaf, 2019; 

Andersson and Sandelin, 2020). Moreover, enhancers play a crucial role in regulating unique 

gene expression patterns across different cell types. They have been identified as one of the 

main controllers of cell-type-specific gene expression, with the majority of enhancers exhibiting 

a strictly constrained developmental window of action (Grosveld, van Staalduinen and 

Stadhouders, 2021). 

Enhancer elements use three main 

mechanisms to utilise co-factors of 

transcription factors to enhance 

transcription and target promoters. One 

mechanism involves transcription factors 

modifying the chromatin structure non-

covalently, leading to nucleosome 

remodelling. This process potentially 

expose the promoters, enabling 

transcription. Another mechanism involves 

a specific class of cofactors modifying 

histones at the N-terminal tails (e.g. 

histones H3 and H4). This induces de-

condensation of the packed nucleosome or 

attracts additional chromatin remodelling factors. The third mechanism is the recruitment of 

enhancer elements called mediator complexes which play a role in transcription by acting as 

BOX2: SUPER 

ENHANCERS 

Clusters of putative enhancers with 

abnormally high levels of enrichment for the 

binding of transcriptional coactivators. 

Generally extensive genomic areas are 

covered by these elements, with a median 

size an order of magnitude larger than  typical 

enhancers (super enhancer:~8000+ bp vs 

normal: ~700 bp). (Pott and Lieb, 2015; 

Grosveld, van Staalduinen and Stadhouders, 

2021) 
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a bridge between the general transcriptional machinery and transcription factors (Heintzman 

and Ren, 2009; Gasperini, Tome and Shendure, 2020; Panigrahi and O’Malley, 2021).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Functional genomic elements identified by the ENCODE project using diverse 

methods to investigate various types of functional elements. Methods for identifying functional 

elements are represented as purple boxes (obtained from: https://www.encodeproject.org/).  

 

1.1.3 Other elements 

Insulators, and silencing elements are other regulatory elements that are frequently found far 

from the genes they regulate (distal regulatory elements). These elements play a role in the 

transcriptional regulation of genes in addition to promoters and proximal cis-regulatory 

elements (Heintzman and Ren, 2009). Silencing elements (silencers) prevent the transcription 

of genes by binding specific proteins or by changing the structure of the chromatin. Generally, 

these elements work regardless of the promoter's orientation or distance, although some 

position-dependent silencers have been observed (Ogbourne and Antalis, 1998; Zhang et al., 

2022). Silencers can be located at various positions relative to their target genes e.g. within an 

intron, 3′-untranslated region (UTR), proximal promoter, distal enhancer, or as an independent 

distal regulatory module. Silencers can act as a binding site for repressors, which are negative 

transcription factors, and can require co-repressors. There are cases where an activator 

switches to a repressor, and these can act from both a close distance to the gene as well as 
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from a longer distance (Kellum and Elgin, 1998; 

Maston, Evans and Green, 2006; Riethoven, 

2010; Bell et al., 2011). 

Insulator elements (boundary elements) offer 

additional regulation by limiting the expansion of 

heterochromatin and prevent transcriptional 

enhancers from activating unrelated promoters. 

The main function of these elements is preventing 

genes from being impacted by the transcriptional 

activity of neighbouring genes (Riethoven, 2010). 

Insulators typically act in a position-dependent, 

orientation-independent way, and range in length 

from 0.5 to 3 kb (Gaszner and Felsenfeld, 2006). 

CTCF (CCCTC-binding factor) is a highly 

conserved 11-zinc finger DNA-binding protein that 

plays a critical role in regulating gene expression and genome organization. It is involved in 

diverse cellular processes, such as transcriptional regulation, chromatin architecture, and DNA 

damage repair (Klenova et al., 1993; Filippova et al., 1996; Bell et al., 2011; Alharbi et al., 

2021). CTCF acts as an insulator, mediating long-range chromatin interactions that define and 

maintain the three-dimensional structure of the genome. CTCF is a sequence-specific DNA-

binding protein that recognizes a palindromic DNA motif known as the CTCF binding site, with 

the consensus sequence CCGCGNGGNGGCAG. In this motif, N represents any nucleotide 

(A, C, G, T). (Lobanenkov et al., 1990; Kim et al., 2007). This motif is found at multiple genomic 

locations, including promoters, enhancers, and insulators. CTCF binding can prevent the 

spread of repressive chromatin modifications, block the interaction between enhancers and 

promoters, and facilitate the formation of higher-order chromatin structures. Recent studies 

have shown that CTCF is involved in a variety of biological processes, including stem cell 

differentiation, development, and disease (Heath et al., 2008; Phillips and Corces, 2009; van 

Ruiten and Rowland, 2021; Dehingia et al., 2022).  

1.2 Epigenomic modifications (epigenome) 

The field of epigenetics has revolutionized our understanding of how gene expression is 

regulated beyond the DNA sequence. Since the initial concept of the epigenome in 1939 

(Waddington, 1939) it has seen substantial development, and now it is defined as a collection 

of chemical modifications that occur on DNA and histone proteins that package the DNA 

(Villota-Salazar, Mendoza-Mendoza and González-Prieto, 2016; John and Rougeulle, 2018; 

Box 3: 

Heterochromatin   
Tightly packed and condensed form 

of chromatin, which consists of DNA, 

histone proteins, and other 

molecules.  

Euchromatin 
Less condensed and more 

accessible form of chromatin, which 

allows for active gene transcription 

and gene expression. 
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Klemm, Shipony and Greenleaf, 2019). These modifications play a critical role in regulating 

gene expression by controlling the accessibility of DNA to the transcriptional machinery, which 

ultimately determines which genes are turned on or off. The epigenome is dynamic and can 

be modified in response to internal and external cues, such as environmental factors or 

developmental signals. As such, it plays a critical role in a wide range of biological processes, 

including cell differentiation, development, aging, and disease (Bernstein, Meissner and 

Lander, 2007; Bogdanović, van Heeringen and Veenstra, 2012; Pal and Tyler, 2016; Wang et 

al., 2022).  

1.2.1 DNA methylation 

DNA methylation is the addition of a methyl group (-CH3) to a cytosine. In vertebrates 

methylation typically takes place at so-called CpG sites where a cytosine is located 5’ from a 

guanine. DNA methylation can be dynamically regulated through the active removal of methyl 

groups, a process known as DNA demethylation, as well as through DNA methylation by DNA 

methyltransferases (DNMTs, described in the next paragraph). Active DNA demethylation by 

TET enzymes, short for Ten-Eleven Translocation enzymes, involve several mechanisms, 

including enzymatic oxidation of methylcytosine followed by base excision repair or replication-

dependent dilution of methylated cytosines. Gene expression is influenced by DNA methylation 

and it is susceptible to environmental factors (Goldberg et al., 2012; Levo and Segal, 2014; 

Greenberg and Bourc’his, 2019; Moore et al., 2020; Greenberg, 2021; Nasrullah et al., 2022).  

DNMTs are enzymes responsible for adding the methyl groups to DNA. In mammals, the two 

main types of DNMTs are maintenance DNMTs (DNMT1) and de novo DNMTs (DNMT3A and 

DNMT3B) (Greenberg, 2021). Homologs of these DNMT types identified in mammals are also 

found in other eukaryotes such as Arabidopsis (Chen and Li, 2004). Maintenance DNMTs 

ensure that DNA methylation patterns are inherited during DNA replication, while de novo 

DNMTs establish new methylation patterns during early development or in response to 

environmental stimuli (Miranda and Jones, 2007; Greenberg and Bourc’his, 2019).  

TET enzymes are a family of enzymes that play a key role in the process of active DNA 

demethylation. TET enzymes are responsible for catalysing the initial steps of DNA 

demethylation and there are three known TET enzymes in mammals: TET1, TET2, and TET3 

(Yin and Xu, 2016; Lio and Rao, 2019; Zeng and Chen, 2019).  

Two distinct forms of DNA methylation exist: CpG and non-CpG methylation, which differ in 

their target sites and patterns. CpG methylation involves the methylation of cytosine residues 

within CpG dinucleotides (Villota-Salazar, Mendoza-Mendoza and González-Prieto, 2016; 

John and Rougeulle, 2018; Nasrullah et al., 2022). CpG islands are regions of DNA with a high 
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density of CpG dinucleotides, often located near or in gene promoter regions. CpG islands can 

be either unmethylated, associated with active gene expression, or methylated, associated 

with gene silencing. This is the most common and well-studied form of DNA methylation and 

it plays a critical role in gene regulation, genomic imprinting, X-chromosome inactivation, and 

maintaining genome stability (Greenberg and Bourc’his, 2019). In normal cells, CpG islands in 

gene promoter regions are usually unmethylated, allowing for gene expression. Methylation of 

CpG sites within promoter regions can lead to gene silencing by preventing the binding of 

transcription factors and other regulatory proteins (Miranda and Jones, 2007; Jin, Li and 

Robertson, 2011; Greenberg and Bourc’his, 2019; Greenberg, 2021; Nasrullah et al., 2022). 

Non-CpG methylation involves the methylation of cytosine residues in contexts other than CpG 

(Patil, Ward and Hesson, 2014). It is prevalent in certain cell types, including embryonic stem 

cells, neurons, and germ cells (de Mendoza et al., 2021). Non-CpG methylation plays a role in 

various biological processes, such as neuronal development, X-chromosome inactivation in 

pluripotent stem cells, and DNA damage response (Ziller et al., 2011). 

DNA methylation can be studied by various methods, and a commonly used method is bisulfite 

sequencing, whereby unmethylated cytosines are converted to uracils and methylated 

cytosines remain unchanged. Site specific DNA methylation changes can be detected through 

this methodology, however application of this method on a whole genome scale (whole 

genome bisulphite sequencing – WGBS) is costly. Reduced representation bisulphite 

sequencing (RRBS) applies genome-wide DNA methylation analysis with reduced sequencing 

of about 2% of the genome, which reduces the costs for investigating DNA methylation 

(Doherty and Couldrey, 2014). Furthermore, CpG rich regions are preferentially selected and 

sequenced by RRBS which add to the biological relevance of the methods as CpG rich regions 

are important for gene regulation. Due to its cost-saving advantages, RRBS has been widely 

utilized for investigating DNA methylation. 

1.2.2 Histone modifications and ChIP-sequencing 

Histone modifications are post-translational alterations that occur on the histone proteins 

associated with DNA in eukaryotic cells. These modifications play a critical role in regulating 

gene expression, chromosome structure, and various cellular processes (Wolffe and Hayes, 

1999; Gardner, Allis and Strahl, 2011). Histone proteins are the building blocks of 

nucleosomes, which are the basic units of chromatin, the complex of DNA and proteins in the 

nucleus (Inbar-Feigenberg et al., 2013). The histone core consists of two copies, each of four 

different types of histone proteins: H2A, H2B, H3 and H4, which form an octamer. Histone 

modifications can occur through the addition or removal of various chemical groups, such as 
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acetyl, methyl, phosphoryl, ubiquitin, at specific amino acid residues on the histone protein 

tails (Kimura, 2013).  

Acetylation involves the addition of an acetyl group to lysine residues in the histone tails, and 

is generally associated with gene activation or transcriptional activation (Wolffe and Hayes, 

1999; Kimura, 2013). Acetylated histones create a more open chromatin structure, allowing 

better access to DNA by the transcription machinery (Zhang, Cooper and Brockdorff, 2015). 

Histone (H3) methylation can occur on both lysine and arginine residues in histones. 

Depending on the specific amino acid and the degree of methylation, it can either be 

associated with gene activation or gene repression (Wolffe and Hayes, 1999; Kimura, 2013; 

Zhang, Cooper and Brockdorff, 2015). Lysine can be methylated at three different levels, 

namely monomethylation (me1), dimethylation (me2), and trimethylation (me3) (Kimura, 2013). 

Histone phosphorylation involves the addition of a phosphate group to serine or threonine 

residues in histones (Kimura, 2013). Histone phosphorylation is often associated with gene 

activation and is involved in processes such as DNA repair, cell cycle regulation, and cellular 

signalling.  

These are just a few examples of the wide range of histone modifications that can occur and 

specific combinations and patterns of histone modifications, which create a "histone code", act 

as a molecular language, dictating the DNA accessibility, recruitment of protein complexes, 

and ultimately influencing gene expression and cellular processes (Gardner, Allis and Strahl, 

2011). Histone modifications are dynamic and reversible (Pazin and Kadonaga, 1997; Katan-

Khaykovich and Struhl, 2002), allowing for precise regulation of gene activity in response to 

developmental signals, environmental cues, or cellular conditions 

In 2007 the first comprehensive genome-wide binding maps implementing chromatin 

immunoprecipitation (ChIP) followed by sequencing (ChIP-seq) were created (Park, 2009). 

ChIP-seq is mainly used for the identification of histone modifications, as well as nucleosome 

modifications due to modifying proteins. Profiling of the DNA-binding proteins such as 

transcription factors, RNA polymerases and CTCF, at a genome-wide level, is also done using 

this methodology. The histone modifications are of importance because they regulate the 

chromatin states which determine the accessibility of DNA for transcription factors to bind 

which ultimately activates transcription (Park, 2009; Lorzadeh et al., 2016; Andersson and 

Sandelin, 2020).  

1.2.3 Long non-coding RNA 

Transcriptome sequencing (RNA-seq) is a powerful method for the determination and 

characterization of transcripts which in turn aids in the identification of genes (Figure 2) 
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(Ozsolak and Milos, 2011). There are many developments in RNA-seq methodology which 

enable an improved and more complete depiction of the RNA transcripts. RNA is more than 

the intermediary involved in protein synthesis. RNAs have been found to be essential in 

controlling many cellular processes including gene expression, transcription and translation. 

Development of methods for investigating RNA has enabled the subdivision of RNA into coding 

and non-coding RNA.  Although long non-coding RNA’s (lncRNA) do not encode proteins, 

these lncRNA play a pivotal role in the regulation of gene expression through the control of 

chromatin accessibility, transcription factor occupancy and epigenomic state (see next section) 

(Mattick and Makunin, 2006; Kaikkonen and Adelman, 2018). Furthermore, non-coding RNAs 

such as miRNAs regulate gene translation and expression at the level of the mRNA. This leads 

to more genes encoding regulatory RNA in comparison with protein coding genes (Guil and 

Esteller, 2015).  

1.2.4 Methods for investigating the functional regulatory 

epigenome  

Increasing use of next-generation sequencing and the decrease in costs have enabled new 

methods which describe the internal states of cells on a genome-wide level. In Table 1 I 

summarise techniques used to investigate the epigenome, functional regulatory genome and 

the transcriptome (Zhao and Garcia, 2015).  

A computational method for investigating the functional regulatory genome employs models 

that combine different data types to annotate regions of the genome into epigenomic states 

(Ernst and Kellis, 2017). This provides a definition for different regions of the genome that 

influence gene expression and chromatin structure, thereby regulating cellular processes and 

determining cellular identity. Epigenomic states can be broadly classified as active or 

repressive. In active states, genes are accessible for transcription, leading to their active 

expression (e.g. active TSS). These states are characterized by histone acetylation, low levels 

of DNA methylation, and accessible genes (regions with open chromatin), allowing the binding 

of transcription factors and regulatory proteins. In contrast, repressed or silent epigenomic 

states render genes inaccessible for transcription, leading to their repression. These states are 

often associated with histone deacetylation, high levels of DNA methylation (especially at CpG 

islands), and other repressive histone modifications. Repressed genes are typically situated in 

heterochromatin (Box 3), hindering the access of the transcription machinery to DNA. 
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Table 1 Sequencing methods (used in this thesis and the GENE-SWitCH project) for 

investigating the epigenome and functional regulatory genome 

Molecular assay Elements Description 

ChIP-seq 

(Chromatin 

Immunoprecipitation) 

H3K4me3 Epigenetic modification of Histone protein 3, with a tri-

methylation modification (me3) at the 4th Lysine residue.  This 

is found at the promoter of all expressed genes. 

H3K4me1 Epigenetic modification of Histone protein 3, with a methylation 

modification (me3) at the 4th Lysine residue. This modification 

typically marks active transcriptional enhancers. 

H3K27me3 Epigenetic modification of Histone protein 3, with a tri-

methylation modification (me3) at the 27th Lysine residue. 

Marks genes that have been silenced through regional 

modification, as well as identifies enhancers and promoters. 

Typically, for genes which are active during embryological 

development and silenced later on during development.  

H3K27Ac Epigenetic modification of Histone protein 3, with an 

acetylation modification of the 27th Lysine residue. Useful for 

the identification of active enhancer elements.  

CTCF Transcription factor: highly conserved zinc finger protein. 

Element that is involved in the 3D structure and folding of the 

genome and regulates the enhancer-promoter interactions. 

Sequence specific insulator protein.  

RNA-seq mRNA-seq Sequencing RNA molecules with a polyA tail 

Small RNA-seq Method used for the identification of different small RNA such 

as micro-RNA 

Long RNA-seq 

(Iso-seq) 

Method used to achieve full-length gene transcripts. Used to 

explore and annotate new alternative transcripts and genes.   

DNA methylation RRBS Reduced Representation bisulphite sequencing. This 

technique is used to identify areas with enriched CpG regions. 

WGBS Whole genome Bisulphite sequencing. Useful for investigating 

the methylation of the whole genome. 

Hi-C Capture Hi-C Method for investigation chromatin accessibility, which has a 

high resolution as well as is high-throughput 

ATAC-seq (Assay for Transposase-

Accessible Chromatin using 

sequencing) 

Used to study the open chromatin, nucleosome positioning, 

and transcription factor occupancy 

 

WGS (Whole genome sequencing) Provides a high resolution base-by-base view of entire 

genomes. 
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This epigenome annotation method has been utilized in species such as pig, chicken, mouse, 

and human (Pan et al., 2021; van der Velde et al., 2021; T. Wang et al., 2021; Pan et al., 2023). 

Consortia like the 'human roadmap to the epigenome' showcase the potential of compiling 

multiple (reference) epigenomic maps, enabling answering fundamental biology questions 

(Satterlee et al., 2019). Figure 3 presents an example of epigenomic states in the mouse 

during development, including among others, active TSS and different types of enhancers as 

active states, and heterochromatin repressed by polycomb as repressive states. 

 

 

 

 

 

 

 

 

  

 

Figure 3 Epigenomic states identified for 66 mouse epigenomes, obtained from van der Velde 

et al., 2021. 

 

1.3 Investigating the epigenome in two monogastric species 

Chickens and pigs are both domesticated animals that have been selectively bred by humans 

for thousands of years. Chickens were domesticated from a wild ancestor called the red 

junglefowl (Gallus gallus) that was native to South Asia. The domestication of chickens likely 

began around 10,000 years ago in Southeast Asia (Tixier-Boichard, Bed’hom and Rognon, 

2011; Larson and Fuller, 2014; Xiang et al., 2014). Over time, humans selectively bred 

chickens for traits such as egg production, meat quality, and docile behaviour. Pigs, on the 

other hand, are thought to have been domesticated around 9,000-10,000 years ago from wild 

boars (Sus scrofa) in East Anatolia and China (Groenen et al., 2012; Groenen, 2016).  
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Both chicken and pig are primary sources for meat production globally, and they also serve as 

vital biomedical models and model organisms for evolutionary studies. Chickens are 

particularly valuable for investigating various biological aspects, such as virology, 

oncogenesis, and immunology, while their embryos provide a valuable system for studying 

vertebrate development (Bednarczyk et al., 2021). Pigs, on the other hand, share genetic, 

anatomical, and physiological similarities with humans, making them valuable for research in 

human health and medicine. Additionally, both species are readily available and have a short 

generation interval, making these species ideal for scientific investigations (Meurens et al., 

2012). 

The first chicken genome was published in 2004 (International Chicken Genome Sequencing 

Consortium, 2004) and this was the first livestock species to have its genome sequenced. The 

first genome assembly had a size of 1 billion bp which was later improved and extended to 

1.21 Gb (Warren et al., 2016). The pig genome was sequenced by the Swine genome 

sequencing consortium using a Duroc sow (Groenen et al., 2012) and more recently an 

improved reference genome was published (Warr et al., 2020). Both these species have high 

quality reference genomes with initial annotation focussed predominantly on protein coding 

genes. In recent years it has become evident that differences in gene expression due to 

variation in regulatory elements (i.e. the functional genome) are important for understanding 

trait variation (Pai, Pritchard and Gilad, 2015). Therefore, understanding trait variation requires 

annotation of the functional genome of these two species. Furthermore, many traits are settled 

during early developmental stages, thus another important aspect is to determine the dynamics 

of the functional genome during early development as it will provide additional power to 

selection for important production traits.  

1.4. The vertebrate story: mammalian and bird development 

Vertebrates are animals belonging to the subphylum Vertebrata, which have a vertebral 

column with vertebrae (spinal column) from which the name originated. The following groups 

of species are classified as vertebrates: fish, reptiles, amphibians, birds and mammals (Figure 

4) (Kardong, 2019). Reptiles, birds and mammals are amniotes, in which a water-filled sac 

(amnion) surrounds the embryo and protects the embryo from impact (shock absorber), as well 

as preventing the embryo from drying out (Gilbert and Barresi, 2016; Kardong, 2019). 
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Figure 4 Phylogenetic tree of vertebrates showing the appearance of amniotes. (Obtained 

from Cárdenas and Borrell, 2020) 

 

Despite the differences in avian and mammalian development, there are also many similarities. 

Both groups of animals are amniotes, which means that they develop inside an amniotic egg 

or in the uterus (Gilbert and Barresi, 2016). Similar stages of embryonic and fetal development 

occur in both avian and mammalian species (chicken and pig). Gastrulation and the process 

of germ layer formation, which differentiates into organs and tissues, occur similarly in both 

birds and mammals. 
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1.4.1 Development of embryological germ layers 

Vertebrates have a complex body architecture 

composed of morphologically unique tissues and 

organs. During embryonic development, the cells 

of the fertilized egg divide and differentiate into 

various cell types that give rise to the different 

tissues and organs of the body. Gastrulation 

(Figure 5) is a fundamental, evolutionary 

conserved process during which three primary 

germ layers called the endoderm, mesoderm, 

and ectoderm are formed. Formation and 

differentiation of these germ layers are crucial for 

the development of a functional and healthy 

organism (Solnica-Krezel and Sepich, 2012; 

Kiecker, Bates and Bell, 2016). Organogenesis is 

the process where the embryonic germ layers 

further differentiate into various cell types that 

form specific tissues and organs (Beddington and 

Robertson, 1999; Eakin and Behringer, 2004; 

Muhr and Ackerman, 2023).  

 

 

 

 

 

 

 

 

 

Figure 5 Gastrula with the three embryological germ layers, endoderm, ectoderm and 

mesoderm which gives rise to different tissues. (Created with BioRender.com) 

BOX4:  

THE PUNCHLINE 

Animal development is a complex 

cascade of processes such as 

fertilization, cleavage, gastrulation, 

organogenesis, metamorphosis and 

senescence. The complexity of these 

processes raises questions such as: 

“How do cells become organized 

into functional organs?”  

(Gilbert and Barresi, 2016) 

“Which regions of the genome play 

a role in these processes” (this 

thesis) 
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1.4.1.1 Endoderm 

The endoderm is the innermost germ layer, which gives rise to the lining of the digestive tract, 

respiratory tract, and various organs such as the liver, pancreas, and thyroid gland (Grapin-

Botton and Melton, 2000; Bellairs and Osmond, 2005; Nowotschin, Hadjantonakis and 

Campbell, 2019). During embryonic development, one of the first steps is the formation of the 

endoderm (Gilbert and Barresi, 2016), which plays an essential role in a few processes such 

as the exchange of gasses and nutrients. In the amniote, nutrients and oxygen are provided 

to the fetus from the placenta or yolk sac and the formation of mesodermal organs are induced 

by the endoderm. Secondly, the linings of tubes such as the digestive tube, and respiratory 

tract are constructed from the endoderm. These further develop into structures such as the 

liver buds, pharynx, and pancreatic buds. Lastly the endoderm is responsible for the formation 

of epithelium in several glands e.g. tonsils and thyroid (Spence, Lauf and Shroyer, 2011; 

Gilbert and Barresi, 2016). The functions and molecular composition of some tissues will be 

described in more detail in the following sections.  

a. Small intestine  

The small intestine is a long, narrow tube that is part of the digestive system and is located 

between the stomach and the large intestine. It is responsible for most of the nutrient 

absorption during the digestive process, where it receives partially digested food from the 

stomach. Through a series of chemical and mechanical processes, the nutrients in the food 

are broken down further and absorbed into the bloodstream.  

Tiny, finger-like projections, called villi, cover the wall of the small intestine which increase the 

surface area of the intestine and facilitate nutrient absorption. The small intestine is divided 

into three regions: the duodenum, jejunum, and ileum.  The ileum is the last section of the 

small intestine, whose primary function is absorption of nutrients (Eckert and Randal, 1983; 

Frandson and Spurgeon, 1992; Spence, Lauf and Shroyer, 2011; Gilbert and Barresi, 2016). 

It also plays a role in the immune system, as it contains specialized lymphatic tissue called 

Peyer's patches.  

b. Lungs 

The lungs play a vital role in gas exchange between inhaled air and the bloodstream. Inside 

the lungs, air enters into tiny sacs called alveoli, where the exchange of gases take place. 

Oxygen from the air passes through the walls of the alveoli and into the bloodstream, where it 
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is transported to the body's tissues. Carbon dioxide from the tissues is transported back to the 

lungs via the bloodstream and expelled from the body during exhalation.  

Lungs are complex organs that are divided into several lobes and are composed of several 

layers of tissue and structures. Bronchi and bronchioles are a network of tubes that bring air 

into the lungs. Bronchi are formed from the trachea, where the bronchi branch off into smaller 

tubes called alveolar ducts. (Eckert and Randal, 1983; Frandson and Spurgeon, 1992; Gilbert 

and Barresi, 2016).  

c. Liver 

The liver performs many essential functions in the body, including detoxification and 

metabolism of nutrients, such as carbohydrates, proteins, and fats. Furthermore, the liver 

produces bile, which helps to digest and absorb fats from the small intestine (Eckert and 

Randal, 1983; Frandson and Spurgeon, 1992). During early fetal development in eutherian 

mammals this organ plays a direct role in the synthesis of red blood cells, with this role 

changing in later life to the destruction of red blood cells (Frandson and Spurgeon, 1992) .  

The liver is composed of many lobes, which are divided into smaller units called lobules and 

is one of the most vascularised tissues in the body with the most important being the hepatic 

artery and hepatic portal vein. It contains several types of cells, including hepatocytes, 

which are the primary functional cells of the liver. Kupffer cells are a type of immune cell that 

reside in the liver and help to remove toxins and foreign substances from the blood. Bile ducts 

are a network of tubes that transport bile from the liver to the gallbladder and small intestine 

(Frandson and Spurgeon, 1992; Kardong, 2019).  

1.4.1.2 Mesoderm 

One of the major processes during gastrulation is the formation of the mesoderm between the 

endoderm and ectoderm layers. Initially a paraxial -, intermediate -, and lateral plate mesoderm 

are formed. The intermediate mesoderm gives rise to the kidney and gonads, while muscles, 

tendons and cartilage originate from the paraxial mesoderm. The lateral plate mesoderm forms 

the circulatory system, pelvis, body cavities, and limb bones (Gilbert and Barresi, 2016).  

a. Muscles 

Muscles are specialized tissues that play a vital role in movement, stability, posture, and body 

temperature regulation (e.g. shivering). In the body, three types of muscle are found namely, 

smooth muscle, cardiac muscle, and skeletal muscle. Skeletal muscle is the muscle type 
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which constitutes the meat that is consumed from domestic animals and are attached to the 

bones.  

Muscle is composed of specialized cells called muscle fibers. Muscles are organized in a 

structured manner, where bundles of muscle fibers are surrounded by fibrous connective 

tissue (endomysium). A sheath surrounds these bundles of muscle fibers and is known as 

the perymisium and lastly, the epimysium is the connective tissue encapsulating the entire 

muscle. Each muscle fiber contains many myofibrils, which are long, cylindrical structures 

that are responsible for muscle contraction. Myofibrils are made up of two types of protein 

filaments: thick filaments made of myosin and thin filaments made of actin. When the muscle 

is stimulated, the myosin filaments interact with the actin filaments, causing the muscle to 

contract (Frandson and Spurgeon, 1992; Gilbert and Barresi, 2016). Upon investigation at a 

microscopic level, bands of myofibrils are observed where I-bands consist only of thin 

filaments, and A-bands have both thick and thin filaments overlapping. A Z-line is classified 

as a line which bisects each I -band, and a segment of myofibril between two Z-lines is known 

as the sarcomere which is the basic unit of contraction (Frandson and Spurgeon, 1992; 

Csapo, Gumpenberger and Wessner, 2020; Mukund and Subramaniam, 2020; Z. Wang et al., 

2021).   

b. Kidney 

The kidney plays a role in filtering waste products from the blood, regulating electrolyte 

balance, and controlling fluid levels in the body. It also helps to regulate blood pressure and 

produces hormones that stimulate the production of red blood cells. Waste products and 

excess fluid from the blood is filtered by the kidney, and thereafter is eliminated from the body 

in the form of urine or uric acid in mammals and birds respectively. Embryonic development of 

this organ is very similar across vertebrate groups (Kardong, 2019). 

The functional unit of the kidney is the nephron, which contains many thousands of cells and 

more than 10 different cell types. During development the kidney goes through three main 

stages, with the final stage being the only stage contributing to the functional kidney. Two main 

regions are found in the kidney: the renal cortex and renal medulla. The outer layer of the 

kidney is called the renal cortex, and millions of nephrons are found here. Nephrons filter the 

blood and reabsorb useful substances. The renal medulla is the inner layer of the kidney 

which contains renal pyramids and collecting ducts. Urine is transported via ducts from the 

nephrons to the renal pelvis, which connects to the ureter (Eckert and Randal, 1983; Frandson 

and Spurgeon, 1992; Gilbert and Barresi, 2016).  
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1.4.1.3 Ectoderm 

The outermost germ layer is known as the ectoderm, and gives rise to the skin, hair, nails, 

nervous system, and various sensory organs such as the eyes and ears. 

a. Skin 

Skin is the largest organ of the body and serves several important functions, such as providing 

a protective barrier that helps to shield the body from physical, chemical, and microbial 

damage. The skin contains nerve endings that allows perception of touch, pressure, 

temperature, and pain. Another important function is the regulation of body temperature 

through the process of shivering and sweating in species with sweat glands. The skin excretes 

small amounts of waste products, including sweat and sebum. However, birds lack sweat 

glands, while farm animals including pigs and buffaloes possess fewer sweat glands compared 

to cattle (Frandson and Spurgeon, 1992; Ratnakaran et al., 2016; Gourdine et al., 2021; Mota-

Rojas et al., 2021; Khan et al., 2023). 

The skin is composed of three primary layers, namely the epidermis, dermis, melanocytes 

and subcutaneous tissue. Epidermis is the outermost layer of the skin and is primarily 

composed of keratinocytes, which produce a tough, waterproof protein called keratin (Gilbert 

and Barresi, 2016). Melanocytes, which produce the pigment melanin are found within the 

epidermis. Langerhans cells, which are involved in immune response are also found in the 

epidermis. The dermis is the middle layer of the skin and is composed of collagen, elastin, 

and reticular fibers. The dermis contains blood vessels, lymphatic vessels, and nerve 

endings, as well as hair or feather follicles and sebaceous glands (Frandson and Spurgeon, 

1992).  

b. Brain 

The brain serves as the central control centre of the nervous system, playing a fundamental 

role in coordinating and regulating various physiological and cognitive functions. It receives 

and processes sensory information from the body, transforming it into meaningful perceptions 

of the surrounding environment. Additionally, it actively regulates a multitude of autonomic 

bodily functions, including digestion, blood pressure regulation, and heart rate control. 

Brain composition is complex with several different structures, each with its own unique 

functions. Cerebrum is the largest and most complex structure of the brain and is responsible 

for consciousness, perception, and voluntary movement. The cerebellum is located 

underneath the cerebrum and is responsible for coordinating movement and balance. At the 
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base of the brain, the brainstem is located, and many automatic bodily functions, such as 

breathing, and heart rate are regulated here. The brain is composed of two major types of 

specialized cells called neurons and glial cells, that work together to ensure the proper function 

of the brain. Neurons are responsible for transmitting electrical and chemical signals 

throughout the brain, while glial cells provide support and protection for the neurons (Frandson 

and Spurgeon, 1992).  

1.4.2 Differences in development between mammals and birds 

Key differences in germ layer and organogenesis in birds and mammals are summarized in 

Table 2. There are several differences between avian and mammalian development, which 

can be attributed to differences in the way that the two groups of animals evolved.  

 

Table 2 Summary of some key differences in fetal development and birth between mammals 

(pig) and birds (chicken). Many resources are available discussing this topic and further details 

can be found in the referenced resources (Gilbert and Barresi, 2016; Kardong, 2019) 

Function or tissue Mammals (eutherian) Birds 

Parity/birth Viviparity 

Live birth of offspring that develop 

inside the womb of the mother. 

Oviparity 

Birds lay eggs that develop 

outside of the mother's body. 

Amniotic composition Mammalian embryo develops inside 

a fluid-filled sac called the amniotic 

sac. 

Avian egg has a hard outer 

shell. 

Placenta vs Yolk 

nutrient supply 

Placenta  

Embryo is nourished by the 

placenta, an organ that forms during 

pregnancy and allows the exchange 

of nutrients and waste products 

between the mother and the 

developing fetus. 

In mammals, early development is 

slower and more complex, as the 

embryo must develop specialized 

structures for exchange of nutrients 

and waste products with the mother. 

Yolk 

Egg yolk contains all the 

nutrients needed for the 

developing embryo, so the 

early stages of development 

occur rapidly. 
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Organ development - Brain 

Characterized by a large cerebral 

cortex. 

 

- Lung 

Alveoli are tiny, grape-like 

structures within the lungs where 

gas exchange takes place and the 

walls thereof are thin, allowing for 

diffusion of gases between the air 

and the bloodstream.  

- Brain 

More prominent cerebellum, 

which is associated with motor 

coordination. 

- Lung 

Avian lungs lack alveoli, and 

instead, gas exchange occurs 

across parabronchi, which are 

tube-like structures in the avian 

lung. 

 

1.5. Aims and outline of this thesis 

A major goal of genomics is to understand the functional components of the genome and 

epigenome. While the ENCODE project has been valuable for the initial identification of the 

functional elements in the human genome, the identification of functional elements in the 

genomes of pig and chicken in specific tissues during different phases of fetal development 

are still limited. The activation status of these functional elements may vary between cells and 

developmental stages. My research focuses on identifying the regulatory elements that 

regulate the genome during different stages of development (early and late organogenesis) in 

pig and chicken. This investigation contributes to identifying the 'switches' that regulate the 

activation status of these elements during different developmental stages. The developmental 

stages studied in pig and chicken were aimed to be similar, allowing for a functional 

comparison and the study of the evolution of these elements. Figure 6 provides an outline of 

this thesis. It begins with a molecular characterization of two functionally relevant cell lines in 

pig and chicken (Chapter 2). Next, I describe a bioinformatics pipeline (Chapter 3) developed 

for the analysis of DNA methylation data, which was utilized in my research to identify changes 

in DNA methylation during development. Chapters 4 and 5 investigate the dynamics of the 

DNA methylome at a spatio-temporal level, with a focus on pig fetal development (Chapter 4) 

and chicken embryo development (Chapter 5). These chapters identify elements that regulate 

organ development in chicken and pig, as well as in mammals and birds in general. The thesis 

concludes with a discussion (Chapter 6) of the general findings, the broader impact of this 

research, and future perspectives. 
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Figure 6 Schematic overview of the chapters in the thesis entitled “Disentangling the 

epigenome during development of pig and chicken”. (Created with BioRender.com) 
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Highlights 

• Untransformed, non-tumorigenic IPECJ2 and SL-29 cell lines show some aneuploidy. 

• Aneuploid chromosomes result in increased gene expression. 

• Positive correlation between hypo-methylation, H3K4me1, H3K27ac and gene 

expression.  

• Identified enhancer and promoter regions play an important role as a reference. 
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Summary 

The pig IPEC-J2 and chicken SL-29 cell lines are of interest because of their untransformed 

nature and wide use in functional studies. Molecular characterization of these cell lines is 

important to gain insight into possible molecular aberrations. The aim of this paper is to provide 

a molecular and epigenetic characterization of the IPEC-J2 and SL-29 cell lines, a cell-line 

reference for the FAANG community, and future biomedical research. Whole genome 

sequencing, gene expression, DNA methylation, chromatin accessibility, and ChIP-seq of four 

histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3) and an insulator (CTCF) are 

used to achieve these aims. Heteroploidy (aneuploidy) of various chromosomes was observed 

from whole genome sequencing analysis in both cell lines. Furthermore, higher gene 

expression for genes located on chromosomes with aneuploidy in comparison to diploid 

chromosomes was observed. Regulatory complexity of gene expression, DNA methylation, 

and chromatin accessibility was investigated through an integrative approach. 

Introduction 

The genome of all eukaryotic species is regulated at the chromosome level 1, where DNA is 

packaged in a highly organized structure of DNA and histones. Gene expression is regulated 

through a network of physical interactions of enhancers, promoters, insulators, epigenetic 

marks, and chromatin binding factors, which is responsible for the chromatin accessibility. 

Epigenetic marks such as DNA methylation, non-coding RNAs and histone modifications can 

be investigated to obtain insight into regulation of the epigenome. Some histone modifications 

are highly informative regarding gene expression and are associated with transcriptional 

activation, promoters, and enhancers 2–5. In addition, DNA methylation is important in 

identifying gene expression and gene silencing as methylation and gene expression generally 

show an inverse correlation. Together these (epi)genetic marks can be used to annotate the 

functional genomic elements that determine gene expression.  

The Functional Annotation of Animal Genomes (FAANG) consortium is a scientific driven 

community, with the aim of providing the functional annotation (functional maps) specifically 

for farm and companion animals 6. Earlier projects in human 7 and model animals (e.g. Mouse 

ENCODE) provided strategies for using omics data to obtain insights into the functional 

genome. This is achieved by performing genome-wide analysis focusing on genome 

expression, regulatory functions, methylation, chromatin accessibility and modifications 

providing insights into the functional genome. 

Cell lines provide an interesting model to study the genomic architecture and regulatory 

genome of species of interest. Cell lines directly derived from tissues or organs of an animal 
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are referred to as a primary cell line. Such cells can then either continue growing indefinitely 

or die off after a certain number of cell divisions 8–10. Cell lines that can be grown indefinitely 

(i.e., that have become immortalized) often show cell aneuploidy or heteroploidy which is most 

pronounced in cancer cell lines 11,12. In this study a pig IPECJ2 and chicken SL-29 (CRL) cell 

lines were used. The pig IPECJ2 cell line is frequently used in e.g. intestinal transport studies 

due to the uniqueness of the cell line being neither transformed nor tumorigenic in nature. 

Chicken SL-29 (CRL) is useful for investigation of the substrate of virus propagation, 

recombinant protein expression and recombinant virus production 13. Characterizing commonly 

used cell lines holds value for the FAANG community, where further comparative and/or 

combined studies will be performed. Determination of technical variation in data between 

different labs is important to identify as it will be useful in future comparative analyses in 

identifying differences due to biological variation. The main aim of the current research was 

the molecular characterization of the pig IPEC-J2 and chicken SL-29 cell lines using an 

integrative approach of a variety of omics data (genome sequencing, epigenomic 

modifications, DNA methylation and RNA-seq).  

Results 

The IPECJ2 cell line in pigs and the chicken SL-29 cell line are of interest for the animal 

genomics community because of the untransformed nature and wide use in functional studies 

in these cells. We have analyzed both the pig and the chicken cell lines with a range of whole 

genome based assays. We first report the results from the pig IPECJ2 cell line followed by the 

chicken SL-29 cell line. For each of these cell lines we first focus on chromosome level 

structural variation followed by an in-depth analysis of the expression, chromatin accessibility, 

and methylation of the cell line genomes.  

Pig IPECJ-2 cell line 

Chromosomal abnormalities and variations within the genome 

The whole genome sequence data was investigated in different ways to determine the 

structure of the genome. Chromosomal abnormalities such as aneuploidy and heteroploidy 

can occur in cell lines which grow indefinitely. We therefore first investigated the chromosomal 

structures and possible changes in aneuploidy. Aneuploidy events can be detected using WGS 

data by examining both the read-depth and the ratio of reads that support the alternative allele 

for heterozygous SNPs. This should be around 0.5 for diploid chromosomes (figure 1d), while 

e.g. around 0.33 or 0.67 is expected for triploid chromosomes. Figure 1a provides an overview 

of the read depth and ratio of read support for heterozygous SNPs called from WGS data.  
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Figure 1. Chromosomal abnormalities in pig IPEC-J2  

For a Figure360 author presentation of this figure, see 

https://www.sciencedirect.com/science/article/pii/S2589004223003292?via%3Dihub#mmc4 

(a) Circos plot showing the read-depth per chromosome in bins of 50 kb on the genome-wide 

level (outer track shown in green) and the allele support for heterozygous SNPs called from 

the WGS data per chromosome (inside track shown in red). The scale of the read-depth track 

starts from a minimum of 10 and increases in counts of 20 per line up to a maximum of 90. 

From the SNP distribution on the inner track of the plot a normal diploid chromosome will result 

in many heterozygous SNPs where both alleles are supported by 50% of the reads. However, 

a triploid chromosome would result in heterozygous SNPs supported by 33% or 67% of the 

reads. (b) Representation of WGS read-depth for chromosomes 16, 17, and 18, indicating 

triploidy of chromosome 17. (c and d) Histogram of the (ratio of the allele) count of reference 

allele for heterozygous SNPs of chromosome 16 (c) and chromosome 17 (d). 

 

Some chromosomes, e.g. chromosome 17 (figure 1d), show clear evidence of aneuploidy, 

while other chromosomes contain large structural variations such as chromosome 2. This 

chromosome shows a diploid allele ratio distribution of 0.5 for the first part of the chromosome 

and a distribution of the SNPs around 0.75 and 0.25 towards the end of this chromosome, 

indicating possible triploidy for this segment of the chromosome. This possible triploidy is less 

clear from the read depth for this part of this chromosome. A low number of heterozygous 

SNPs is observed for the first half of chromosome 8 (which could indicate partial monosomy), 
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while the second half of chromosome 8 has SNP support ratios at around 0.25 and 0.75, 

supporting higher ploidy. However, this observation on chromosome 8 is not very well reflected 

in the read depth for this chromosome. On chromosomes 9 and 17 the read depth is 

significantly higher compared to other chromosomes, indicating higher ploidy levels of these 

chromosomes. This is supported by the allele ratio distributions of these two chromosomes, 

where most SNPs are observed at a frequency of 0.25-0.35 and 0.65-0.75 indicating possible 

triploidy. Much variation in read-depth is observed for the individual chromosomes (figure S3), 

specifically for chromosome 16 (figure 1b) showing a likely deletion between position 9-17 Mb.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Structural variations observed in pig IPEC-J2 cell line  
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Relative number of SVs per chromosome. Data normalized for size of chromosomes, with 

normalized counts shown on the y axis, detected by (a). Manta and (b) CNVnator. DEL, 

deletion; DUP, duplication; INV, inversion; and INS, insertion. 

 

We further investigated additional structural variants within the genome of this cell line with 

Manta (Figure 2a) for the detection of small variants and CNVnator for large variants (> 1Mbp) 

(Figure 2b). 

For small variants, deletions are the most abundant type of variant for all chromosomes and 

relatively more insertions and deletions are observed on chromosome 17. For large variants, 

the number of deletions and duplications varies between the chromosomes and the 

chromosomes showing evidence of triploidy (figure 1) have a relatively large number of 

duplications. We further investigated the effects of the structural variation, i.e. variants 

potentially affecting genes or regulatory regions using the VEP tool. As expected, most 

structural variants (small and large variants) are found within intron and intergenic regions. The 

most prominent effect was observed for large variants with 25% effecting transcription 

amplification and 17% transcription ablation. Results for both large SV and CNV, variant effect 

prediction analyses are shown in the supplementary figures S4 and S5.  

Gene expression profile 

RNA-seq data provides insight into gene expression levels across the genome. This can 

provide insight into elements that regulate gene expression like promotors, enhancers, and 

epigenetic marks, as well as chromosomal abnormalities affecting them. Of the 31,907 genes 

tested, 10,412 were expressed (TPM > 1).  
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Figure 3. Gene expression profile of the pig IPEC-J2 cell line  

Boxplots of the TPM expression values of genes per chromosome. Only genes with TPM>2 

were used, which removes genes with very low/no expression. 

 

Interestingly, the expression levels on chromosomes 2, 5 and 17 (all chromosomes with ploidy 

aberration or large structural changes), were higher compared to the diploid chromosomes. 

Gene expression levels per chromosome in the IPECJ2 cell line were compared to the gene 

expression levels for jejunum tissue and jejunum derived organoids and IPECJ2 samples 

cultured for a longer time (van der Hee et al., 2020 figure S6). The gene expression in IPECJ2 

cells seems to be more variable between chromosomes when compared to gene expression 

in jejunum tissue and the organoids derived of the jejunum tissue. A clear elevated gene 

expression is detected on chromosome 17 in the IPECJ2 cells compared to tissue and 

organoids and a notably high gene expression is observed on chromosome 2 for all samples.    

Chromatin accessibility and genome architecture 

Genome wide profiling of histone modifications provides insight into chromatin structure, as 

well as the location of regulatory elements such as promoter and enhancer regions. Therefore, 

ChIP-seq data was generated and analysed for four different histone modifications (table 1) 

and the insulator CTCF to provide insight into the regulatory genome of the IPECJ2 cell line. 
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Furthermore, to assess the conformity between ChIP-seq experiments, ChIP-seq for three 

marks were repeated in another laboratory. The results of peak calling from the two respective 

experiments are shown in table 1.  

Table 1 Number of ChIP-seq reads, peaks identified per mark and overlap between rounds of 

experiments.   

Histone 

modification 

Round1 

# Reads  

Round2 

# Reads  

Read 

coverage 

correlation 

of 

overlapping 

regions 

# Peaks 

Round1 

# Peaks 

Round2 

Overlap Signal value 

correlation of 

overlapping 

peaks 

H3K4me1b 27080156 32321068 0.52 99735 59260 54607 0.1 

H3K4me3a 18423318 28552134 0.9 22074 24448 16759 0.62 

H3K27aca 25285609 20466802 0.8 52584 48000 45199 0.3 

H3K27me3b 26873342 na na 46470 na na na 

CTCFa 34767672 na na 7555 na na na 

a Narrow peak, b Broad peak, na - not analysed 

 

A high number of peaks was shared between the two experiments (70-95%), with histone mark 

H3K4me3 sharing the lowest number of peaks most likely resulting from the lower number of 

reads for this mark in the first experiment. We assessed the relationship of the shared peaks 

and investigated the similarities between the two experiments, by calculating Pearson 

correlations (table 1). A high correlation is seen for the read coverage of overlapping peak 

regions for H3K4me3 and H3K27ac. Correlations between the signal values (measure of 

overall enrichment of the region) of overlapping peak regions for each experiment are low for 

H3K4me1 and H3K27ac, and moderate for H3K4me3. Histone modifications enriched around 

the TSS (+/- 1000bp) are generally indicative of promoter activity. Histone marks H3K4me3 

and H3K27ac are enriched around the TSS of expressed genes (TPM>1) (figure S7), with 

histone mark H3K4me3 enriched at approximately ~17,5% of the TSS and histone mark 

H3K27ac enriched at ~5% of the TSS.  

In ChromHMM analyses, the active promoter state is identified by an enrichment of histone 

marks H3K4me3, H3K27ac and H3K4me1 (Figure 4). The two enhancer states show an 

enrichment in H3K4me1 and H3k27ac. The histone mark H3K27me3 indicates the gene 

silencing state. Most of the genome is in a quiescent state (without any of the assayed histone 

marks; figure 4b right panel) while a small fraction is in the weakly repressive state. Both the 
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TSS as well as TSS +/- 2kb show enrichment in promoter and enhancer states (Figure4b, right 

panel). The CpG islands show strong enrichment for the repressive state as well as the 

promoter state. The TSS is highly enriched for the active promoter and enhancer states. Figure 

4c shows a typical example of the genome distribution of the histone marks. A strong 

enrichment of H3K27me3, H3K4me1 and H3K27ac can be seen around the MESD and 

TLNRD1 TSS (see figure S8 for read alignments in this region). Further downstream from 

these genes, enrichment of the H3K4me3 mark can be observed in a gene poor region (gene 

desert). Annotation of the peak regions identified for each histone modification provides insight 

into the types of functional elements close to the histone modifications (figure S9). The 

annotation of these peak regions shows distribution of histone modification peaks in different 

genomic regions, which confirm the enrichment of H3K4me3 and H3K27ac around the 

promoter region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CTCF 

H3K4me1 

H3K4me3 

H3K27ac 

H3K27me3 

Input 

Coding 

Non-Coding 

49.800M  49.820M  49.840M  49.860M  49.880M 
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Figure 4. Histone modifications in pig IPEC-J2 cell line  

(a) Summary of the informativity of the histone marks. (b) Six chromatin states were defined 

using 4 histone modifications (H3K4me1, H3K27me3, H3K4me3, and H3K27ac), with the left 

panel describing the chromatin state annotations, central panel showing the emission 

coefficients in the ChromHMM model, and the right panel showing the relative enrichment of 

coverage for the whole genome (genome%), transcription start site (SS_TSS), transcription 

end site (SS_TES), 2000 bp surrounding the TSS (SS_TSS2kb), exon regions (Ss_exon), 

genic regions (Ss_gene), and CpG islands. (c) Individual histone modification and CTCF 

profiles in the IPEC-J2 cell line for the MESD (TPM = 110.85) and TLNRD1 (TPM = 42.63) 

genes (both involved in mesodermal development) on chromosome 7. 

 

Overrepresented sequences motif analysis for histone marks associated with promoter and 

enhancer regions identify types of transcriptions factors (TF) related to gene expression. The 

peaks called for H3K4me3, H3K27ac and H3K4me1 were provided to Homer for identification 

of enriched TF involved in gene expression in IPECJ2. Table2 shows the three most enriched 

motifs and their corresponding TF identified for three histone marks associated with promoter 

and enhancer regions. Other motifs enriched (motifs with p-values <1e-12) are shown in 

supplementary results (Table S4). 

Table 2 Motif enrichment in histone H3K4me3, H3K27ac, H3K4me1 peak regions. Top three 

enriched known binding motifs identified from consensus peaks. 

Histone mark Motif  Transcription factor % of target 

regions 

P-value 

H3K4me3  

 

PB0075.1_Sp100_1 54.95 1e-316 

 

 

IRF2(IRF) 4.45. 1e-287 

 

 

SD0001.1_at_AC_acceptor  68.6 1e-220 

H3K27ac  

 

E2F 49.69 1e-141 

 ZNF449 45.56% 1e-120 
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REL 41.29% 1e-111 

H3K4me1  

 

Fos(bZIP)  8.24% 1e-305 

 

 

TEAD(TEA)  20.48% 1e-188 

 

 

HOXC13 50.85% 1e-120 

 

The significant transcription factors identified, were Sp100 and IRF for the peak regions of 

H3K4me3, E2F and ZNF449 for H3K27ac, and FOS and TEAD for H3K4me1. We identified 

36,638 enhancer regions and motif analysis for these enhancers are shown in supplementary 

table S4. Significant TFs identified within the enhancer regions include Fra1, TEAD3, EWS-

ERG fusion, FOXN3, which are responsible for cell growth, tumour suppression, suppression 

of transcription of transforming growth factor and play a role in several cancers. The CTCF 

motif generated using both MEME and homer tools (Figure S10), shows high similarity with 

the human consensus sequence supporting the conserved nature of CTCF binding sites.  

DNA Methylation profile of the genome 

Gene expression is negatively correlated to DNA methylation, therefore investigating the 

methylome provides further insight into specific characteristics of the cell line’s genome 

characteristics. The methylome was investigated using both RRBS and WGBS (Table 3).  
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Table 3 Average methylation levels for cytosine in different base content between RRBS and 

WGBS for pig IPECJ2 cell line. 

 

 

 

 

 

 

 

Most DNA methylation is observed at CpG sites (42.76 - 45.6%, table 3) while at non-CpG 

sites little DNA methylation is detected (0.68 -1.13%).  Therefore, as expected, the cell line 

displays a methylation pattern similar to what has been observed in porcine tissue methylation 

studies (Schachtschneider et al., 2015). The average coverage for the RRBS methylation of 

chromosomes is 14.2 and most chromosomes are similarly covered (figure S11), except for 

chromosome 17 which has a higher read coverage of 22.4, confirming the triploid status of this 

chromosome also supported by the RRBS data. A global view of WGBS CpG methylation 

levels per chromosome shows methylation levels to fluctuate between 0.3-0.6 (figure S12).  

WGBS is referred to as the gold standard for investigating DNA methylation, in particular 

because it provides more information on a whole genome level compared to RRBS. RRBS is 

usually perceived as being more cost-effective, as a reduced number of sites are sequenced 

(usually more focus on CpG regions). We therefore investigated whether all sites identified by 

RRBS are also covered by WGBS. To do so, we disregarded any sites with a coverage <10 

for both types of data as not being sufficiently informative. In total, 23,952 sites covered by 

RRBS are not covered by WGBS. Further details on possible functional relevance of these 

RRBS specific sites is done for the chicken cell line (see below).  

Integrative insight into epigenome marks 

The interactions between regulatory elements and methylation play a critical role in gene 

expression. We studied these complex interactions and the relation to gene expression using 

an integrative approach. The individual relationships between the regulation of gene 

Site Assay Average methylation 

level (%) 

CpG 

RRBS 

42.76 

CHG 0.6 

CHH 0.53 

CpG 

WGBS 

45.6 

CHG 0.35 

CHH 0.33 
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expression and histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K27me3) and 

CTCF are shown in figure 5a.  

The Histone modifications associated with promoter and enhancer regions (H3K4me3, 

H3K4me1 and H3K27ac) show patterns as expected with a positively correlation with gene 

expression. Histone mark H3K27me3, which is associated with gene suppression, shows a 

negative correlation with gene expression (Figure 5b). As expected, there is a negative 

correlation for the methylation data at the TSS with the promoter and enhancer regions 

(H3K4me3 and H3K27ac). The methylation levels within the gene-body show both a weaker 

negative correlation to CTCF and H3K27me3, and a positive correlation (WGBS_GB) with 

H3K4me3 and H3K27ac. A positive correlation is also observed between gene expression and 

the histone marks H3K4me3 and H3K27ac.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Integrative insight into histone marks and DNA methylation together with 

expression in pig  

IPEC-J2 Integrative analysis of various histone marks and DNA methylation together with gene 

expression. (a) Violin plots of the peak score for each histone mark relative to the TPM 

expression values. TPM values are divided into different classes ranging from very lowly 

TPM     RRBS_TSS WGBS_TSS    RRBS_GB   WGBS_GB 

CTCF-Peak 

Score 

 

H3K27ac-

Peak Score 

 

H3K27me3-

Peak Score 

 

H3K4me1-

Peak Score 

 

H3K4me3-

Peak Score 
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expressed (TPM>1) to very high expression values (TPM>100). (b) Heatmap of the peak score 

values for each histone mark relative to the TPM expression values as well as methylation 

levels (RRBS and WGBS) at different positions. RRBS_TSS = RRBS level at the transcription 

start site (TSS), RRBS_GB = RRBS level within the gene-body (GB), and WGBS level at the 

same locations TSS and GB. Levels of correlations are shown by colour panel on the right, 

and the value of each correlation is also shown on the heatmap. 

 

The methylation levels at the TSS and within the gene-body for RRBS and WGBS (figure 6a) 

follow the expectation that methylation levels are negatively correlated with gene expression 

(i.e. highly expressed genes show lower methylation levels and vice versa) (figure 6b). This 

relationship between methylation and expression values is especially evident at the TSS. Low 

methylation of RRBS within the gene body can likely be explained by a lack of coverage in the 

gene body compared to WGBS. In addition, for WGBS the methylation level in the gene-body 

increases at higher gene expression.  
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Figure 6. Integrative insight into DNA methylation together with expression in pigIPEC-

J2  

Box showing integrative analysis plots for methylation levels and expression levels. (a) 

Average methylation level at various regions (RRBS and WGBS data at the TSS and GB, 

notations are as above in Figure 5) for different levels of expression. (b) Heatmap of the various 

groups of methylation levels (RRBS and WGBS at the TSS and GB) together with expression. 

 

Chicken SL-29 cell line 

Chromosomal abnormalities and variants in the genome 

As with the pig cell line, whole genome sequencing for the chicken cell line provided a 

comprehensive insight into genetic variation, chromosomal abnormalities, and structural 

variation at the global genome level. Multiple chromosomal abnormalities such as aneuploidy 

and heteroploidy are observed for the chicken SL-29 cell line (figure 7).  

 

 

 

 

 

 

 

 

Figure 7. Chromosomal abnormalities in chicken SL-29  

(a) Circos plot showing the read-depth per chromosome in bins of 50 kb on the genome-wide 

level (outer track shown in green) and the inside track (in red) showing the allele support for 

heterozygous SNPs called from the WGS data per chromosome. (b) Read-depth for individual 

chromosomes 19, 20, and 21, which show the higher read-depth in a tetraploid chromosome 
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(chromosome 20) compared with chromosomes 19 and 21. (c–e) Examples of SNP distribution 

of a diploid. (c) Chromosome 1: it can be observed that many heterozygous SNPs are 

supported by 50% of the reads. (d) Chromosome 11: heterozygous SNPs supported by 33% 

or 67% of the reads. (e) Chromosome 20: many heterozygous SNPs are supported by 50% of 

the reads. 

 

A higher read-depth (figure 7a, first outer line of the read-depth track) is seen for chromosomes 

6, 7, 11, 14, 20, 27 and 33 in comparison with other chromosomes in the genome. Figures 7 

c-e show the SNP distribution for chromosomes 1, 11 and 20, with chromosome 20 classified 

as a possible tetraploid. The region at 7-8 Mb on chromosome 19 shows low read depth (figure 

7b) suggesting a possible large deletion at that position within this cell line. We assessed the 

presence of structural variants, in particular deletions and duplications, using Manta. Results 

show different small structural variants within the genome of this cell line (figure 8a). Several 

large copy number variants such as deletions and duplications of more than 1Kbp were 

detected using CNVnator, (figure 8b).  

Relative abundance of copy number variants is higher for some of the small micro-

chromosomes (i.e. chromosomes 16, 25, 30, 31, 32, 33), while the macro-chromosomes have 

relatively fewer copy number variants. Intron variants (48% of total variants) and intergenic 

variants (28% of total variants) are the most abundant consequences from the copy number 

variants in this cell line. The effects, as determined by VEP, of both copy number variants and 

large structural variants identified through CNVnator are shown in figures S13 and S14. 
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Figure 8. Structural variations observed in chicken SL-29 cell line  

Normalized count of SVs per chromosome, with normalized counts on the y axis. (a) Manta for 

copy-number variants and (b) CNVnator for structural variants >1 kb. 
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Expression profile of the genome 

The expression profile for this cell line was investigated to obtain further insight into the genes 

expressed, and interaction of regulatory elements, aneuploidy and CNV’s affecting gene 

expression. We tested the expression of 24,356 genes, of which 13,546 were expressed (TPM 

>1).  

 

 

 

 

 

 

 

 

 

Figure 9. Boxplot of the expression levels of genes per chromosome 

Higher levels of gene expression are observed on chromosomes 20, 25, 27, and 33 (Figure 

9). This shows the influence of aneuploidy and structural variation on gene expression levels, 

e.g. with tetraploid chromosome 20 showing a higher expression level compared to the diploid 

chromosomes (e.g chr 1). 

 

Chromatin accessibility and genome architecture 

As described for pigs, histone modifications are of importance to investigate chromatin 

accessibility and providing further insight into regulatory elements. The peak calling results for 

the chicken cell line are shown in table 4.  

Table 4 Number of peaks identified per mark for the respective rounds of the experiments, 

overlap and number of reads for each round of experiment.   
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Histone 

modification 

Round1 

# Reads 

Round2 

# Reads 

Read 

coverage 

correlation 

of 

overlapping 

regions 

# Peaks 

Round1 

# Peaks 

Round2 

Overlap Signal value 

correlation 

of 

overlapping 

peaks 

H3K4me1b 36204354 33307742 0.90 46568 58599 42902 0.15 

H3K4me3a 51732192 28850772 0.92 17168 16376 12278 0.6 

H3K27aca 42046042 20967712 1.00 30157 55507 21974 0.3 

H3K27me3b 53134788 na na 51652 na na na 

CTCFa 86075418 na na 44922 na na na 

a Narrow peak, b Broad peak, na - not analysed 

 

The peaks called show much overlap between the replicates for H3K4me1, H3K4me3 and 

H3K27ac. The two ChIP-seq experiments were compared using Pearson correlations (table 

4). High correlations between the read coverage of overlapping regions are observed, together 

with low correlations between the signal values from overlapping peaks for H3K27ac and 

H3K4me1. H3K4me3 shows a higher correlation of signal values of overlapping peaks.  
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Figure 10. Histone modifications investigated for the chicken SL-29 cell line  

(a) Six chromatin states were defined using the 4 histone modifications (H3K4me1, 

H3K27me3, H3K4me3, and H3K27ac), with the left panel describing the chromatin state 

annotations, central panel showing the emission coefficients in ChromHMM model, and the 

right panel showing the relative enrichment of coverage in whole genome (genome %) and in 

different genomic regions(transcription start site (GG_TSS), transcription end site (GG_TES), 

2000bp surrounding the TSS (GG_TSS2kb), exon regions (GG_exon), genic regions 

(GG_gene), and CpG islands. (b) View of the individual histone modification and CTCF profiles 

in the SL-29 cell line for MICAL1 (TPM = 0.54), TULP1 (TPM = 0.03), and FKBP5 (TPM = 

100.06) on chromosome 26. 
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Various chromatin states were identified, through identification of presence or absence of 

histone marks using ChromHMM, which provides insight into interactions between different 

histone marks. Histone marks H3K4me3 and H3K27ac are enriched around the TSS of 

expressed genes, with H3K4me3 enriched at approximately 20% of the TSS and H3K27ac 

enriched at >5% of the TSS (figure S15). The chromatin dynamics (figure 10a) displays states 

2 and 3 as repressed states due to the presence of H3K27me3. States 4, 5 and 6 display 

active dynamics because these are associated with the presence of H3K27ac/H3K4me1, 

H3K27ac/H3K4me3 and H3K4me1/H3K4me3.The states identified around 2 kb of the TSS are 

states 4, 5 and 6 with states 5 and 6 showing a very strong enrichment. State 6 is enriched 

within exons while states 1, 4, 5, and 6 are enriched within genes. State 6 also shows 

enrichment within CpG islands. A strong enrichment of H3K4me1 and H3K27ac, is seen for 

the expressed gene FKBP5 (figure 10b), enrichments of H3K27me3 are seen around the lowly 

expressed genes (MICAL1 and TULP1).  

Annotation of the peak regions to genomic features provides insight into functional elements 

related to the histone modifications. As for the histone/CTCF marks in the pig cell line, most 

marks are found in intron and intergenic regions of the genome. Furthermore, a large 

percentage (16-21%) of the H3K4me3, CTCF and H3K27ac histone modifications are found 

within promoter regions (figure S16), and 11% of H3K4me3 has been identified in exon regions 

of the genome.  

Table 5 Motif enrichment in histone marks peaks of H3K4me3, H3K27ac, H3K4me1. Top three 

enriched known binding motifs identified from consensus peaks. Further results shown in table 

S4 for motifs with p-values <1e-12.   

Histone 

mark 

Motif Transcription factor % of target 

regions 

P-value 

H3K4me3  IRF1(IRF) 3.4 1e-232 

  OVOL2  58.27 1e-137 

  MSANTD3 28.26 1e-105 

H3K27ac   

 

 ZNF711(Zf) 9.38 1e-86 

  

 

YY2 6.05 1e-78 
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AP-2alpha(AP2) 13.78 1e-59 

H3K4me1   

 

Atf3(bZIP) 3.93 1e-89 

 

 

Pax8(Paired,Homeobox) 0.09 1e-42 

 

 

PSE(SNAPc) 0.07 1e-42 

 

Significant consensus sequences for known motifs identified the TFs IRF1, ZNF711, YY2, AP-

2alpha, Atf3, and Pax8 for the three histone marks (H3K4me3, H3K4me1 and H3K27ac) (table 

5). In the H3K4me1 consensus sequence of the peak region a core promoter factor PSE 

(SNAPc) is observed. In this cell line a total of 18,516 enhancer regions were identified and 

the motif analysis is shown in table S5. Significant TFs identified within the enhancer regions 

include SMAD2:SMAD3, EWS-ERG fusion, TWIST1 and TEAD3 which play important roles in 

regulation of transcription in transforming growth factors and embryonic development, and 

which are associated with cancers. The motif sequence for CTCF identified with both homer 

and MEME (figure S17) is similar to the human consensus sequence, supporting the 

conservation of the CTCF binding site beyond mammals.  

Genome wide chromatin accessibility 

Chromatin accessibility was profiled in the chicken SL-29 cell line using ATAC-seq data, from 

which 86,983 peak regions were identified. To infer the functional significance of accessible 

regions that were identified, consensus peaks were characterized by genomic localization. 

Annotation of ATAC-seq showed most accessible (open) chromatin is found in the intron and 

intergenic regions of the genome, (figure S18), with 12% of accessible chromatin found at 

promoters (as define by TSS location). To interrogate the potential function of accessible 

regions (peaks), they were subjected to a consensus motif enrichment analysis.  
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Table 6 Consensus motif enrichment in predicted open chromatin regions. Top ten enriched 

known binding motifs identified from the consensus peaks. 

Motif Known transcription 

factor motif 

% of target regions P-value 

 

 

PAX6 1.74 1e-1706 

 

 

IRF6 1.78 1e-1220 

 

 

PB0201.1_Zfp281_2 1.62 1e-1184 

 

 

PRDM1 1.28 1e-1081 

 

 

PRDM15(Zf) 2.06 1e-697 

 

 

PB0152.1_Nkx3-1_2 6.81 1e-464 

 

 

SF1(NR) 7.81 1e-393 

 

 

Zac1(Zf) 11.27 1e-376 

 

 

ZBTB26 12.4 1e-335 

 

 

ZSCAN29 4.53 1e-329 

 

Overall, consensus peaks identified for PAX6 recognition sites as most significant, with about 

1.74% of accessible regions harbouring this consensus motif (Table 4). Roles of the TFs 

identified are as expected related to this cell line, e.g. PRDM1 TF which is involved in immunity, 

PRDM15 which regulates transcription of WNT and TFs involved in the MAPK-ERK signalling 

pathway which is related to pluripotency of a cell.  

DNA Methylation profile 

We also determined the average methylation levels for cytosine for the chicken cell line, 

calculated from both RRBS and WGBS data (table 7).  
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Table 7 Average methylation levels for different sites between RRBS and WGBS for chicken 

SL-29 cell line   

 

 

 

 

 

 

 

As expected, average methylation (>10 reads) is observed at CpG sites (37-59%) and slightly 

higher average non-CpG methylation (1-2%) is observed. Average chromosome level 

methylation levels estimated from WGBS fluctuate around 0.2-0.6 (figure S19). The average 

read coverage calculated for the WGBS data was 55.1, with chromosome 20 having a very 

high (~95) read coverage (figure S20).  

As stated above for the pig, it is of importance to investigate sites covered by RRBS data while 

not covered by WGBS (and vice versa), as WGBS is considered as the gold standard for 

insight into whole genome DNA methylation. 926,495 sites were identified by RRBS and not 

by WGBS in the chicken cell-line (the total number of WGBS sites is 35,805,306 and for RRBS 

it is 2,830,991). We further investigated if these sites specifically covered by RRBS overlayed 

regions within predicted promoters and enhancer regions (from the ChIP-seq data). Examples 

of such regions (chromosome 1 and 2) covered by only RRBS data including predicted active 

enhancers/promoters are shown in figure 11.  

 

 

 

 

 

Site Assay Average methylation 

level (%) 

CpG 

RRBS 

 

37.44 

CHG 0.55 

CHH 0.55 

CpG 

WGBS 

59.66 

CHG 0.98 

CHH 1.05 
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Figure 11. Sites covered by RRBS data while not covered by WGBS  

(a) Example of a region on chromosome 1 (1339500-1339800) with high RRBS coverage (703) 

and lower than 10X WGBS coverage (%43). This region contains part of the SMO gene (TPM 

= 210.09), and the histone marks H3K4me3 and H3K27ac are identified and show a peak 

within this region, which indicates possible promoter/enhancer regions. The histone marks 

H3K4me1 and H3K27me3 are also displayed here but no peaks were observed within this 

region. The difference in RRBS and WGBS data coverage is very evident in this example, 

together with the presence of promoter and enhancer histone marks within a region that is well 
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covered by RRBS data and sparsely covered by WGBS data. (b) Region on chromosome 2 

(900,400-900425), with RRBS methylated sites (0.7) at a high coverage (833)and WGBS at a 

low coverage (2). The H3K4me3 mark is identified here together with (c) the most significant 

(p-value = 1e-55) motif of identified enhancers (transcription factor YY2). 

 

The transcription factor motif analysis of identified enhancers which overlap with the identified 

specific RRBS regions is shown in table S6. One of these motifs, for transcription factor YY2, 

has a strong CpG consensus sequence suggesting that these regions only covered by RRBS 

may include important regions involved in regulation of gene expression.  

Integrative insight into epigenome marks 

An integrative approach was used to gain insight into the dynamics of methylation and histone 

modifications for regulation of gene expression (figure 12). As expected, methylation levels are 

negatively correlated with gene expression (i.e. highly expressed genes show lower 

methylation levels and vice versa) at the TSS. Within the gene body (GB) we observe a slight 

increase in methylation levels with WGBS followed by a decrease with higher expression levels 

(20>TPM<100). The low methylation seen for RRBS within the gene body can be explained 

by a lack of coverage in the gene body compared to WGBS. Heatmap correlations reflect the 

results observed in the boxplots with negative correlations between methylation levels both at 

the TSS, and within the gene-body and gene expression. 
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Figure 12. Integrative approach for investigation into regulation of gene expression by 

epigenomic marks in chicken SL-29  

(a) Boxplots of the methylation levels at TSS and GB for RRBS and WGBS data across 5 

classes of gene expression levels. (b) Heatmap of the correlations between methylation levels 

and TPM expression values. 

 

The correlations between the 4 histone marks (H3K4me1, H3K4me3, H3K27ac and 

H3K27me3), ATAC-seq and distinct classes of gene expression levels are visualised in figure 

13. Enhancer histone marks H3K27ac and H3K4me3, together with ATAC-seq show an 

increase in peak score for genes with a higher gene expression level. H3K4me1 and 

H3K27me3 show little variation in peak scores across different classes of gene expression. 

TPM           RRBS_TSS         WGBS_TSS                     RRBS_GB          WGBS_GB 
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For H3K27me3, slightly lower peak scores were observed for very highly expressed genes 

while higher peak score were seen for very lowly expressed genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Integrative analysis of histone marks (H3K4me1, H3K4me3, H3K27ac and 

H3K27me3) and ATAC-seq with gene expression in chicken SL-29  

(a) Violin plots of the relationship between the 4 histone marks, ATAC-seq, and 5 classes of 

gene expression levels (TPM). (b) Heatmap showing the correlations between the 4 histone 

marks, ATAC-seq, gene expression, and methylation levels of both RRBS and WGBS data at 

the TSS, as well as gene-body. 

The positive correlation observed for H3K4me3 and H3K27ac with the gene expression (figure 

13b) is higher compared with the methylation and gene expression results presented in figure 

12b. Negative correlations are observed between methylation levels at both the TSS and gene-

body for RRBS and WGBS with promoter and enhancer marks (H3K4me3, H3K27ac), as well 

ATAC-Peak 

Score 

 

H3K27ac-

Peak Score 

 

 

H3K27me3-

Peak Score 

 

H3K4me1-

Peak Score 

 

H3K4me3-

Peak Score 

TPM           RRBS_TSS         WGBS_TSS             RRBS_GB   WGBS_GB 
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as with ATAC-seq. Low correlations between the histone marks H3K4me1 and H3K27me3 

with methylation are observed. An example of a region with genes and all epigenomic 

modifications is shown is figure S21. 

Discussion 

Cell lines provide an ethical approach for research in animal production, and thus molecular 

characterisations are necessary for functionally relevant cell lines. The pig IPECJ2 and chicken 

SL-29 cell lines have never been characterized using an integrative genomics approach. 

These two cell lines were chosen specifically for their usability and application to research in 

animal production as well as biomedical research.  Using different omics data (WGS, RNA-

seq, ChIP-seq, ATAC-seq, RRBS, WGBS), the genome structure, transcriptome, methylome, 

and chromatin accessibility were investigated and characterized for these cell lines. This 

provides a reference of the genome architecture of these cell lines for future functional studies 

using these cell lines as well as for farm animal research community.   

Results for both pig and chicken cell lines show that aneuploidy is common in both cell lines 

as we observed various chromosomes that were either (partly) monoploid, triploid, and even 

tetraploid. More aneuploidy as well as more structural variants were observed for the chicken 

SL-29 cell line in comparison to the pig IPECJ2 cell line. For SV this could be due to the 

additional filtering of common structural variants from the pig cell line. Previous studies have 

shown that more chromosomal abnormalities, as well as structural variants occur when cell 

lines are maintained in culture for a longer time (more passages) 14,15 emphasizing the 

importance of limiting the number of cell passages for cell line experiments. It has also been 

suggested that the culture conditions can influence the chromosomal stability 16. Conditions 

such as techniques for cell detachment and disaggregation, and oxygen concentration during 

culture can also affect the chromosomal stability and genomic integrity over a longer period of 

culture 17. To ensure that conditions do not influence the genomic integrity precisely defined 

protocols for cell culture should be followed as much as possible.  

The increase in ploidy leads to an increase in expression of the genes on these chromosomes, 

likely affecting functional relevant aspects of these cell lines. A comparison of the results from 

the pig cell line to similar tissue type and organoid samples showed pronounced higher rates 

of expression of the genes on the triploid chromosome 17 of the pig cell line. From this 

comparison it is evident that these cell lines show higher rates of gene expression on all 

chromosomes, followed by organoids, and with tissue showing the lowest rates of gene 

expression. This is in agreement with studies showing that organoids resemble gene 

expression levels and physiology of tissue more closely than cell lines 18,19. It has also been 
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shown that aneuploidies and structural variants can influence gene expression level, 

specifically structural variants can cause changes in cis-regulatory elements, promoters, and 

enhancers 20–22. These expression observations in cell lines provide a useful resource for 

studies where potential genes of interest can be identified and investigated for increased 

expression levels.  

The results from the WGS and RNA-seq show the potential of using these assays to detect 

chromosomal abnormalities, in addition to investigation of variation in the genome 23,24 and 

gene expression respectively. Traditional methods such as karyotyping and staining 

(multifluor-FISH), are limited to detection of chromosomal abnormalities specifically 

chromosomal rearrangements such as translocations and provide little insight into genome 

variation25. WGS as a tool for detection of pre- and post-natal anomalies is investigated and 

implemented more regularly26,27. An example of using NGS (Next Generation Sequencing) for 

detection of pre-natal anomalies is discussed in Guseh, 2020, where trisomy 21 is detected 

when a higher proportion of DNA fragments are mapped to chromosome 21 in comparison to 

a reference28. This shows the potential of WGS for detection of chromosomal abnormalities. 

Chromatin accessibility and histone modifications were investigated to gain further insight into 

the genome architecture of both cell lines using ChIP-seq data for CTCF and four histone 

modifications: H3K4me1, H3K4me3, H3K27ac, H3K27me3. The importance of using a 

standardized protocol for comparative ChIP-seq studies was explored using two technical 

replicates of the ChIP-seq experiments for three histone marks, performed in two different 

laboratories and using different inputs as a background (IgG and DNA, respectively). This 

provides insight into the reproducibility of results between different laboratories and the use of 

DNA or IgG as an input. We conclude there is a high consensus between overlapping peaks 

of the experiments and secondly the read coverage between experiments showed medium to 

high consensus between experiments. However, signal values show little correlation between 

experiments suggesting that the confidence related to the high number of overlapping peaks 

is limited and should therefore be used with care if the signal values are used for comparative 

analysis. A reason for this low correlation of signal values could be the differences in 

background signal in the two experiments. ChIP-seq guidelines and practices from 

(mod)ENCODE have found that an IgG control mimics a ChIP experiment more closely than a 

DNA input control. Cases of strong sonication bias are rarely observed, but this can potentially 

affect peak calling 29.  Thus, for comparative studies utilizing ChIP-sequencing similar protocol 

should be followed.  

Peak regions identify possible binding sites of proteins associated with DNA (protein-chromatin 

interactions) and provide insight into regulatory regions and elements. The number of histone 
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marks identified are different between tissues, stages of development and number of reads 

sequenced. ENCODE standards have shown that the number of peaks that can be identified 

ranges from thousands to tens of thousands of peaks 30,31. Coincidentally the number of peak 

regions called for narrow peaks (H3K4me3 and H3K27ac) for both pig and chicken cell lines 

were similar to previous studies in monogastric species 32,33. We confirmed the quality of the 

data by investigating the occurrences of the respective marks around 2 kb of the TSS. We 

observed an elevation of the marks H3K4me3 and H3K27ac around the TSS. It has been 

observed that H3K4me3 is most often found at TSS (regardless of H3K27ac) and indicative of 

a promoter, as seen in this study. H3K4me3 is often co-occupied by H3K27ac in the genome 

34–36, however H3K27ac is not always found to be co-occupied by H3K4me3 and is also 

observed further from the TSS site. H3K4me1 and H2K27ac are indicative for enhancer 

regions 37. The number of broad peak regions of H3K27me3 for both cell lines is similar to that 

observed in other vertebrate species, with variations between tissues 38. This mark is 

associated with gene silencing, as shown in chromatin state analyses 39,40. Combinations of 

histone modifications result in variable chromatin structures leading to different levels of 

transcription, which is also reflected in the integrative analysis.   

To evaluate the quality of the experiments and the success thereof we compared the 

consensus motif for the CTCF sites identified for pig and chicken to the human CTCF 

consensus sequence. There was good similarity between the consensus motifs for both pig 

and chicken to human. Furthermore, this motif was also identified in the human K562 cell line 

as a CTCF mark. CTCF is a highly conserved protein in mammals (between pig and mouse) 

as well as in vertebrates 41–43. This is indeed confirmed by our CTCF results, supporting the 

good quality of our results for CTCF. 

Further investigation into motifs identified for the histone marks in both cell lines, together with 

comparison of similarities thereof to known motifs, provides insight into possible TFs. Firstly, 

interferon receptor factor (IRF) was identified in both cell lines (pig IRF2 and chicken IRF1). 

IRF is part of a TF family that is found in humans as super enhancer TFs and which is highly 

conserved within species 44.  This TF plays a role in immunity, cell growth, differentiation and 

anti-tumor defences in vertebrates 45–47. TFs such as YY2, TEAD, E2F, which regulate cell 

growth and proliferation, as well as development were also identified 48,49.  

Open chromatin was investigated using ATAC-seq data for the chicken cell line with a number 

of regions identified, slightly lower than expected when following ENCODE recommendations 

which suggests >100,000 peaks. However, this is similar to the number of enriched regions 

identified by other studies in animals 50,51. Most of the accessible chromatin was identified 
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within intronic, intergenic, and promoter regions, which is in line with previous research in 

multiple species and suggests similar patterns between cell-lines and tissues 52,53. 

Further insight into gene expression and the molecular characteristics of both cell lines was 

obtained through characterization of the methylome, which ensures comprehensive 

characterization of the functional genome. DNA methylation is an epigenetic mark that is found 

in most species and has been found to be inherited and influenced by environmental factors 

(and often used for comparative analysis and fundamental research into e.g. adaptation 54,55. 

In both cell lines a higher coverage in the methylation data (RRBS and WGBS) was observed 

on aneuploid chromosomes, relating to the change in copy number which is reflected in the 

methylome as well as on a whole genome level. Methylated cytosines occur primarily at CpG 

sites in most cell types while non-CpG methylation (CHG, CHH) occurs only in specific cell 

types such as brain, oocytes, and stem cells 56. This is in agreement with our observation in 

our cell lines, where CpG methylation is the primary type of methylation. Additionally, the non-

CpG methylation levels in the chicken cell line are slightly higher than observed in tissues of 

birds, excluding brain tissue 57,58. This occurrence could be due to the chromosomal 

aberrations and higher ploidy observed and the cell lines behaving in a tumorigenic manner. 

Ploidy effects on DNA methylation (epigenome) has been theorized in studies in plants 59,60 

and tumours 61,62. We observed regions within the genome covered by RRBS that were not 

identified by WGBS or had a low coverage (<10 x) by WGBS. Some of these regions are highly 

relevant as they are located at the promoter of specific genes (close to the start site of the 

gene) or overlapping with enhancer elements. It is noteworthy that the coverage of the WGBS 

data is high (>50x) and therefore should theoretically cover all of the genome especially at 

informative sites 63. This is a relevant observation as WGBS is often seen as the golden 

standard for investigating the methylome as it is supposed to cover almost all sites in contrast 

to RRBS which is seen as a cost-effective alternative method. RRBS usually shows reduced 

coverage of methylated sites in intergenic and distal regulatory regions, especially in 

comparison to WGBS 64 but our study suggests that RRBS is complementary to WGBS and to 

obtain the most comprehensive genome wide estimation of DNA methylation the two methods 

should be combined.  

Finally, we attempted to integrate the various epigenetic marks together with gene expression 

to show how the functional genome regulates expression levels. Correlations between the 

expression data and methylation, indicate that promoter methylation has a reverse relationship 

with gene expression, with, as expected, methylated sites inhibiting gene expression. 

Interestingly the methylation level within the gene-body in the pig cell line increases slightly 

with higher expression levels, whereas the methylation in the gene-body of the chicken cell 
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line decreases slightly with increased expression levels. This is similar to what has been 

observed within the gene-body in earlier studies of the methylome in pig and avian species 

65,66. This phenomenon has not been studied extensively, however Derks et al 66 suggested 

possible explanations such as methylation suppressing the transposable elements (TE) and 

preventing TE insertions which can be interruptive in the genome. A reason for this could be 

the higher number of TE in mammals compared to birds, which require higher methylation 

levels in gene bodies. As expected, the histone modification H3K27me3 which is associated 

with gene silencing shows a strong positive correlation to lowly expressed genes and a 

negative correlation to highly expressed genes. Histone modifications associated with 

promoter and enhancer regions all show a positive correlation to highly expressed genes and 

a negative correlation to lowly expressed genes. This confirms previous studies regarding 

these epigenetic marks regulating gene expression levels.  

 

Conclusion 

This paper is the first to describe the molecular characteristics (structure) of the pig IPECJ2 

and chicken SL-29 cell lines. The genomic approaches provided an insight into the different 

levels of the epigenome influencing gene expression in these cell lines, as well as provided a 

description of the architecture of the epigenome. Chromosomal abnormalities, copy number 

variations and aneuploidy, typical for a cell line, were identified for several chromosomes for 

both cell lines. These cell lines are referred to as non-tumorigenic and non-transformed, 

however as these cells go through many passages aneuploidy events do occur. Future 

researchers should note the characteristics of these cell lines and proceed with caution for 

interpretation of results. Epigenetic marks such as histone modifications, chromatin 

accessibility and DNA methylation were integrated with expression data for both cell lines. This 

provided insight into the interactions between the epigenetic marks and gene expression. The 

characteristics as described in this paper for these cell lines will be similar for cells cultured 

using the same protocol and cells grown for the same number of passages. Deviations from 

these guidelines/methodologies are expected to result in different genomic and epigenomic 

characteristics. Understanding these cell lines and the (epi)genetic make-up thereof can 

provide a better understanding of the limitations of these cell lines as a model for in vivo 

research. We propose these cell lines as a reference for future functional and comparative 

studies in animals whereby knowledge of ploidy, expression profile, chromatin landscape and 

methylome provide the backbone for the comparison. 
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Limitations of the study 

The ATAC-seq data was unavailable for the pig IPECJ-2 cell line. Further investigation using 

traditional methods for confirmation chromosomal abnormalities e.g. karyotypes staining would 

be beneficial.  

Supplemental information  
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• All data types (WGS, RNA-seq, WGBS, RRBS, ChIP-seq – H3K4me1, H3K4me3, 

H3K27ac, H3K27me3, CTCF and ATAC-seq) from pig IPECJ2 and chicken SL-29 cell 

lines  have been deposited at ENA / FAANG DCC and are publicly available as of the 

date of publication. Accession numbers are listed in the key resources table.  

• All original code has been deposited at Zenodo (DOI10.5281|zenodo.7274310) and is 

publicly available as of the date of publication. DOIs are listed in the key resources 

table.  

• Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

The intestinal epithelial pig IPECJ2 (ACC-701) cell line was obtained from the cell repository 

at DSMZ 67, which is an intestinal columnar epithelial cell line derived from the mid-jejunum of 

a neonatal unsuckled piglet (piglets less than 12 hours old). These cells were originally isolated 

in 1989 by Helen Berschneider at the University of North Carolina 68. For chicken the SL-29 

cell line (ATCC CRL-1590), was derived from embryonic fibroblast cells obtained from the cell 

repository at ATCC 69. Cells were cultured at 37°C and 5% CO2 in Dulbecco’s MEM with 5% 

FBS, Pen/Strep and Glutamax using a standard FAANG operating procedure. The media was 

refreshed twice a week and progressing to the next passage mostly 1/20 of the cells were 

transferred to a new flask. These cells were cultured for 4 passages in chicken SL-29 and 67 

passages in pig, before harvesting. 

METHOD DETAILS 

Sequencing and assays 

These cells were then used for whole genome sequencing (WGS), RNA sequencing, reduced 

representation bisulfite sequencing (RRBS), whole genome bisulfite sequencing (WGBS), 

ChIP-seq and ATAC-seq. DNA and RNA were isolated from the cell lines using the All Prep 

DNA/RNA Mini Kit (Qiagen) following manufacturer’s instructions. WGS libraries of ~ 300-

400 bp fragments were prepared using Illumina paired-end kits (Illumina, San Diego, CA) and 

150 bp paired-end sequenced with Illumina HiSeqX. RNA-seq library preparation and 

sequencing was done as described in van der Hee et al (2020) using TruSeq RNA sample 

preparation kit (Illumina), incorporated within the Novogene manufacturer’s protocol. 

Thereafter, samples were sequenced with Illumina Hi-Seq 4000 producing raw data with 150 

bp paired-end reads. RRBS was done as described in Corbett et al (2020). In brief, DNA was 
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fragmented using the MSPI restriction enzyme followed by a 20-250 bp fragment size selection 

and library preparation using the Ovation RRBS library (NuGEN). Samples were pooled and 

sequenced with the TruSeq SBS sequencing kit version 4 on the HiSeq 2500 (Illumina). A 

biological replicate was also sequenced following the same procedure for both pig IPECJ2 cell 

line. For WGBS genomic DNA was spiked with lambda DNA, fragmented by sonication to 200-

400 bp with Covaris S220 (Covaris, Inc., Woburn, MA, USA), followed by end repair and A-

ligation. Cytosine-methylated barcoded adapters were ligated to the sonicated DNA. The DNA 

bisulfite conversion was performed using the EZ DNA Methylation Gold Kit (Zymo Research, 

Irvine, USA). DNA fragments were size selected and amplified using the KAPA HiFi HotStart 

ReadyMix (2X) (Kapa Biosystems, Wilmington, USA). Library concentration was quantified 

using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, USA) and qPCR (iCycler, 

BioRadLaboratories, Hercules, USA). Libraries were sequenced using the HiSeqX S4 flow cell 

with PE150 strategy. 

ChIP-seq for both cell lines was performed for the insulator Anti-CTCF (polyclonal antibody lot 

# 2887267; Millipore) and histone marks H3K4me1 (polyclonal antibody ChIP grade ab8895; 

Abcam), H3K4me3 (polyclonal antibody lot # A1052D; Diagenode), H3K27ac (polyclonal 

antibody ChIP grade 4729; Abcam) and H3K27me3 (polyclonal antibody, lot # a1811-001P; 

Diagenode). These histone marks were chosen as they provide insight into transcriptional 

activation and the location of enhancers and promoters. ChIP-seq data sets were generated 

in two different laboratories (two replicates; experiment 1 and 2) for each cell-line. As input 

control in the first experiment, an IgG “mock” control was used, whereas in experiment two, an 

“input” DNA control was used for the ChIP-seq studies. In the second experiment only three 

histone marks (H3K4me1, H3K4me3 and H3K27ac) were assayed. The same ChIP-seq 

protocol was applied in both laboratories. Chromatin preparation was performed where cells 

(cultured in petri-dishes) were cross-linked with 1.1% formaldehyde for 10 min, stopped by 

adding 1/10 vol of 1.25 M Glycine for 2 min and washed with cold PBS. Cells were harvested 

by scraping, incubated with different buffers and finally resuspended in an incubation buffer 

with PIC with a final concentration of 15 million cells/ml. Shearing of the cells was performed 

in 300 µl cell suspension /tube  with 10 cycles 30 seconds on and 30 seconds off at 4°C using 

the Bioruptor Pico sonicator (Diagenode). Lastly the sonicated material was divided into 

aliquots and stored at -80 °C. The overnight immunoprecipitation step with the different 

antibodies at 4°C was performed on the chromatin using 4.5 million cells as input per antibody. 

Immunoprecipitated chromatin was incubated overnight with a 50:50 mix of PureProteome 

Protein A and G magnetic beads (Millipore). The beads were washed (6 washes with 4 wash 

buffers), rotated and de-cross-linked. The de-cross-linked DNA was finally purified (MinElute 
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PCR Purification columns (Qiagen)), and DNA quantities were determined with Qubit 

fluorometric quantification (ThermoFisher Scientific). A qPCR analysis of ChIP DNA was 

performed with iQ SYBR Green Supermix (Bio-Rad) on a CFX96 Real-Time System C1000 

Thermal Cycler (Bio-Rad).  Library prep was performed using the Kapa Hyper Prep Kit for 

Illumina sequencing using the manufacturers protocol, with the following adjustments. DNA 

was used as an input together with NextFlex adapters (Bioo Scientific), followed by PCR 

amplification. Post-amplification cleanup was performed using QIAquick MinElute columns 

(Qiagen) and library size selection (300-bp fragments) was performed using the E-gel iBase 

(Invirtogen). Thereafter the quality and quantity of the library was examined using a High 

Sensitivity DNA Chip on a Bioanalyzer 2100 system (Agilent).  Finally, the libraries were paired-

end sequenced using Illumina high-throughput sequencing protocol on a HiSeq2000 (Illumina). 

For the second experiment sequencing was performed on a HiSeq4000 (Illumina). 

Lastly ATAC-sequencing was completed following the Fast-ATAC-sequencing protocol as 

described in Corces  et al., 2016, with the following exceptions we used 25k cells as input and 

the standard Illumina Nextera primers for library amplification.  These libraries were sequenced 

on a HiSeq4000 (Illumina), paired-end with 150 bp.  

Data analysis 

Pig (Sus Scrofa 11.1) and chicken (Gallus GRCg6a) reference genomes, together with 

ENSEMBL annotations (Sus Scrofa 11.1 - release 103  & Gallus GRCg6a - release 103) were 

utilized for all data analyses of our study. Default settings were used unless otherwise stated, 

and a brief overview of the data analyses is shown in figure S1. Genome indexes were built 

using the required reference genomes (and annotations where required) with the tools 

described below. Quality of all datasets was evaluated, and the statistics thereof is shown in 

tables S1 and S2. 

Whole genome sequence analysis 

Whole genome sequences were trimmed using Sickle v1.33 72 in paired-end mode, where a 

sliding window approach was used for trimming adapters. Alignment of the trimmed reads 

together with removal of duplicates was completed using bwa mem (v0.7.15) 73 together with 

Samblaster (v0.1.26) 74. The aligned reads were further processed using samtools (v1.9) 75 to 

fill in mate coordinates, as well as add requirements from mate related flags. Mapping quality 

was evaluated using Qualimap (v2.2.1) 76 to ensure correct and accurate mapping.  

Read-depth, genome structure, and possible large structural variants were evaluated using the 

tinycov package (v0.3.0)77 and SNV calling was done using FreeBayes (v1.3.1) 78. Read 
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support (ratio) was evaluated for heterozygous variants within the VCF file using a custom unix 

script (de Vos, 2021) and the results were plotted as histograms. The read-depth and SNV’s 

were then plotted using Circos (v-0.69-9) 80 for the visualization at a whole genome level, as 

well as for specific regions of interest. 

Structural variant analysis of both cell lines was completed using Manta (v1.4.0) 81. For the pig 

cell line these variants were filtered in the following way: structural variants from healthy pig 

tissue samples with similar high read depth (in house samples: two muscle and one liver) were 

identified using Manta and overlapping structural variants between cell-lines and tissues were 

filtered out from the cell line structural variants. This strategy was used to exclude naturally 

occurring structural variants not unique to the cell line. For chicken Manta analysis this strategy 

was not possible due to lack of WGS chicken data with sufficient high coverage. Large SVs 

(deletions and duplications) were investigated using CNVnator (v0.3.3) 82, and results verified 

using a genome browser 83. Variant Effect Predictor 84 was used to determine the 

consequences of all copy number and structural variants on the genomes. 

RNA-sequencing analysis 

Stranded RNA-seq data sets for both cell lines (pig IPECJ2 and chicken SL-29) were trimmed 

for adapters, quality and minimum length using TrimGalore v0.6.4 a wrapper for Cutadapt 

v1.18 85 and the sequence data quality was evaluated using FastQC v0.11.9 86. The trimmed 

reads were used for alignment and gene quantification using RSEM 87, with STAR v2.7.3a as 

aligner 88. Further analyses were completed using custom shell scripts for basic statistics and 

average gene expression level per chromosome was calculated and plotted using a custom 

python script with the Seaborn package (de Vos, 2021). Various minimum transcript per 

kilobase million (TPM) thresholds were implemented for different analyses to reduce noise of 

uninformative genes that are very low expressed.  

Additional raw RNA-sequencing data was downloaded from ENA from the PRJNA610529 

project: two pig jejunum organoid samples grown for different time periods (3 weeks 

(SAMN14300031) and 12 weeks (SAMN14300021), a 5 week old pig jejunum tissue sample 

(SAMN14300018), cell lines IPECJ87, an IPECJ2 cell line grown for 87 passages 

(SAMN14300016), and IPECJ91, an IPECJ2 cell line grown for 91 passages 

(SAMN14299997). We trimmed, aligned, and completed gene quantification of this data 

following the same procedure as the above procedure used for the IPECJ2 cell line used in 

this study. These samples were used to compare the average gene expression level per 

chromosome in jejunum tissue, organoid and IPECJ2 cell line.   

ChIP-sequencing analysis 
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Raw reads were trimmed with TrimGalore v0.6.4 a wrapper for Cutadapt v 1.18 90 for adapter 

sequences, length, and quality. Reads for the different marks were aligned using bowtie2 

(v2.3.2 )91. Secondly, reads with red label (very low) on “per tile sequence quality” metric of 

FastQC were scanned with FilterbyTile (v.38.20) from BBMap package 92. FilterbyTile 

increases the quality of Illumina reads, which are dependent on location in a flow cell. 

Moreover, the reads of the second experiment were truncated to match the read length of the 

first experiment (36 bp) allowing better comparison of the two. Samtools was used on the 

aligned reads for conversion of the alignment into BAM format, sorting, removing PCR 

duplicates, and keeping only paired-end reads, as well as uniquely aligned reads. 

Peak calling for the respective marks, was completed using MACS2 (v2.7.1) 93,94, with the input 

(IgG and DNA respectively) used as the negative control. Visualization of the marks around 

the transcription start site (TSS) of expressed genes (TPM>1) was achieved using plot 

enrichment from deeptools (v3.1.3) 95. ChromHMM (v1.22) 96,97 was used for the identification 

of different chromosome states based on interactions between marks, and the interaction 

around the TSS.  Motif-based sequence analysis with MEME suite specifically MEME-ChIP 

was used, which is suitable for ChIP-seq data (v5.2.0) 98,99, for the CTCF mark to determine 

consensus motifs at the CTCF peak regions. A 500 bp region around the mid-position of CTCF 

called peaks is used for identification of motifs with MEME-ChIP (-norand, -ccut 0, -meme-

nmotifs 30, -meme-minw 8 -meme-maxw 13) and MEME (-nmotifs 10 -minw 8 -maxw 12). 

Homer software (v4.1.0) 100 was used for gene, promoter, and transcription factor binding site 

(TFBS) discovery (-size 300 -len 8,10,13 -mset vertebrates), as well as annotating peak 

regions for the histone and CTCF marks. Regions showing gene silencing, promoters and 

enhancers were visualized using DROMPA 101. Lastly, enhancers were identified as H3K27ac 

peaks which are not within 1000 bp of H3K4me3 peaks 102. Read coverage and signal value 

of peaks, for respective histone marks H3K4me3, H3K4me1, H3K27ac of each experiment are 

compared using bedtools (v2.30.0) 103 and plot correlation. 

ATAC-sequencing analysis 

Trimming and alignment of the ATAC-seq reads were completed as described above for ChIP-

seq reads. PCR duplicates were removed using picard (v2.23.9), and only unique, paired-end 

reads were kept for further analysis 104. Further filtering included removing the mitochondrial 

(MT) data, as a method of reducing bias in the results. Reads were shifted + 4 bp and − 5 bp 

for positive and negative strands respectively using an in-house unix script (de Vos, 2021) and 

this was done to account for the 9 bp duplication that occurs due to DNA repair of Tn5 

transposase nick 105. This shift ensures accurate regions of the chromatin state for TF-footprint 
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and motif related analysis. MACS2 (v2.7.1) 106,107 was used for peak calling using default 

parameters. Peak annotation (homer v4.1.0) and motif analysis 108 for the peak regions were 

obtained, and identified motifs were scanned for known motifs such as TFBS and TATA-box 

using the Homer tool 109.   

Methylation analysis 

RRBS and WGBS raw reads were trimmed as described above for ChIP-seq reads, with an 

additional --rrbs parameter for RRBS data. Genome index was built using BSseeker2 v 2.1.8 

110, with bowtie2 as aligner, for RRBS and WGBS genome, with additional parameters for 

RRBS: -r -l 10 -u 280. Thereafter the reads were aligned using BSseeker2 (v 2.1.8), with 

additional parameters for RRBS: --rrbs, -c MspI, -L 10 -U 280 -m 4 and for WGBS: -I 0 -X 1000 

-m 4. BSSeeker2 was used for the alignment as this tool is tailored for RRBS as it  ‘builds’ a 

custom reference based on the restriction enzymes cutting sites. It is also more suitable to 

align gapped-reads than other tools commonly used for methylation analysis111. We decided 

to keep methylation analysis standard across assays and thus implemented BSSeeker2 for 

WGBS data as well. The aligned reads of the biological replicates of the pig cell line were 

merged for further analysis, after a Pearson correlation 112 showed a high correlation of 0.96 

between the two RRBS technical replicate samples (figure S2). CGmaptools (v0.1.2) 113 was 

implemented for the methylation calling from the aligned reads. Further statistical analysis of 

the methylation data was completed using CGmaptools (v0.1.2) and MethylKit (v1.16.1) 114. 

Correlations and clustering between the biological replicates were analysed using MethylKit.  

Finally, the number of sites identified by RRBS data and not by WGBS data was investigated 

using the following approach. Firstly, the methylation calls were filtered for only CG sites and 

for a coverage of more than 10. Thereafter bedtools (v2.30.0) 115 was used to identify the sites 

unique to RRBS data, and for merging these regions. Functional importance of these regions 

was investigated by overlaying regions with enhancer and promoter regions detected from the 

ChIP-seq analysis, visual examination of the sites using Jbrowse 116, and motif discovery using 

homer. 

Integrative analysis 

An integrative approach was used to investigate the relationship between WGS, expression 

data (RNA-seq), methylation status and ChIP-seq marks. Output files from the homer annotate 

called peaks for the respective marks, gene expression values from RSEM, and methylation 

calls from CGmaptools were used. For this investigation, correlations, scatterplots, and 

boxplots were created from these files using an in-house python script (de Vos, 2021). 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Pearson correlations between the read coverage and signal value of peaks for histone marks 

H3K4me1, H3K4me3 and H3K27ac of each experiment was done using bedtools (v2.30.0) 103, 

statistical function (scipy.stats) and seaborn package for visualisation in python. A pearson 

correlation was performed between two technical replicates of the pig IPECJ2 cell line, we 

used the tool MethylKit (v1.16.1) 114 for this quantification.  A high correlation of 0.96 (figure 

S2) confirmed that the two samples could be merged for further downstream analysis. 

Integrative analysis used heatmaps, Pearson correlations, scatterplots and boxplots to 

investigate the relationships between gene expression, various histone modifications 

indicating promoters, enhancers and gene silencing (H3K4me1, H3K4me3, H3K27ac, 

H3K27me3), TF (CTCF) and open chromatin (ATAC-seq). This was done using an in-house 

python script which is available (de Vos, 2021).  
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Abstract 

Background 

DNA methylation is a process by which methyl groups are added to the DNA molecule. 

Methylation of promoters influence gene expression, as the addition of a methyl group can 

prevent the binding of certain transcription factors and repress the transcription of the 

associated gene. Bioinformatics pipelines are a series of computational steps or workflows 

designed to analyse biological data such as sequencing data. Typically several steps, such as 

data pre-processing, quality control, alignment, and downstream analysis are involved. These 

pipelines can be tailored to a specific research question and can be customized with various 

software and tools. GENE-SWitCH is an EU H2020 project with the aim of providing the 

functional genome annotation in pig and chicken, with many different assays specifically DNA 

methylation. 

Results 

We present a pipeline for processing bisulfite sequencing data, which uses nf-core methylseq 

as a foundation. This extension pipeline includes useful steps such as analysing a bam file, 

methylation calling, methylation visualisation on a genome-wide level, and methylation 

statistics.  

Conclusion 

Our pipeline is useful for the analysis of bisulfite sequencing data, ensuring reproducible 

results, and stable tool versions. It is easy to use and implement for any given data set and  

we executed it for analysis of > 80 RRBS and WGBS data sets. 

Keywords 

DNA methylation, alignment, pipeline, methylation calling 

Background 

DNA methylation is an epigenetic mechanism whereby a methyl group is added to the 5th 

position of cytosine. DNA methylation changes the activity of a DNA segment and is generally 

associated with repression of gene expression when located in a regulatory sequence [1, 2]. 

This epigenetic modification has become more widely studied and there are different methods 

to assess the methylation status of DNA positions. One method is bisulfite sequencing, 

whereby the unmethylated cytosines are converted to a uracil and methylated C’s stay 

unchanged after bisulfite treatment, followed by sequencing. This gives a resolution at the 
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single nucleotide level over the entire genome, WGBS (whole genome bisulfite sequencing) or 

on a reduced level, by which approximately 2% of the genome is sequenced (Reduced 

representation bisulfite sequencing – RRBS) [3]. RRBS provides insight into a subset of the 

genome especially areas of the genome with a high CpG content (promotor and other 

regulatory regions). Costs for RRBS sequencing are lower in comparison with WGBS, which 

is a major advantage of using this method over full genome bisulfite sequencing [4]. 

Given the strong association with regulation of gene expression, DNA methylation has become 

a research topic of interest and many datasets are produced [1]. Hence, one of the important 

aspects of this research is the reproducibility of results. Workflow management systems 

provide an important resource that contributes to reproducibility of results. Tools such as 

Nextflow [5] and Snakemake [6] contribute to data and code management [7] together with 

container platforms such as Singularity and Docker [8, 9]. For Nextflow, nf-core is a scientific 

community driven effort to create bioinformatics pipelines for genomic data using Docker for 

containerization of the tools [10].   

A range of tools are currently available for the analysis of bisulfite sequencing data, including 

quality control, methylation calling, and downstream comparative analyses. More specifically, 

steps for analysing bisulfite sequence data commonly include quality control, trimming, 

alignment/mapping, deduplication, methylation calling, and visualization. Further downstream 

analyses are specific to the research questions and can include differential methylation 

analyses, and investigations into the associations with expression data. Tools commonly used 

for alignment of methylation data include Bismark, BSseeker2, and bwa-meth, which 

implement different alignment strategies [11, 12].  

The GENE-SWitCH project is an EU H2020 project, with the aim of obtaining the functional 

genome of two monogastric species (pig and chicken) during three developmental stages in 

seven different tissues representative of germ layers. Different assays are used to investigate 

the functional genome within the project (including WGBS and RRBS datasets) [13]. 

Determination of the changes in gene expression, epigenetic states and activity of functional 

regulatory elements, provide insight into development and the underlying mechanisms 

regulating the biological process of development. The development and identification of 

suitable pipelines for the analysis of the various data types produced within this research is a 

strategy implemented within the project to ensure reproducible results.  

In the current study we aimed to compile the various steps for methylation data processing into 

an easy to use bioinformatics pipeline to ensure reproducibility of results. Here we present a 

GENE-SWitCH DNA methylation analysis pipeline (GSM), specifically for the analysis of 
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bisulfite sequencing data. This pipeline was initially developed using the nf-core methylseq 

pipeline as a foundation including additional features for visualization and integration of gene 

expression data.  

Implementation 

The GSM-pipeline is written using nextflow as the workflow manager, and a docker container 

for all required tools. The pipeline includes different tools to analyse bisulfite sequencing data 

from raw reads (fastq) to methylation calling, and provides detailed general methylation 

statistics. The tools included in this pipeline have been extensively validated individually and 

we have combined the best practice tools into this pipeline. Fig 1 shows the flow of the pipeline 

together with the various tools incorporated to achieve basic analysis of bisulfite sequencing 

data.  

 

 

 

 

 

 

 

 

 

Figure 1 Overview of the workflow of the GSM-pipeline. 

 

Quality control & Mapping  

The pipeline starts with processing raw reads and performing quality control using FastQC 

[14], and adapter trimming with TrimGallore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Users of the pipeline have 

the flexibility to decide between two different aligners, either Bismark [15] which relies on 
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Bowtie2 or HISAT2 as well as Samtools for alignment, or BWA-meth [16]. Deduplication for 

the removal of PCR duplicates is dependent on the aligner used. Bismark includes a 

deduplication process and Picard MarkDuplicates [17] is executed when using BWA-meth as 

aligner. In addition, alignment files (BAM files) can be used as input for downstream analysis. 

Lastly the alignment statistics are determined with Qualimap [18] and all results from QC, 

trimming and alignment are compiled into a single report file using MultiQC [19].  

 Methylation calling & statistics 

Methylation calling is performed using Bismark to generate a comprehensive methylation 

report, which is necessary for downstream analysis and MethylDackel [20]  which is only used 

in conjunction with the BWA-meth aligner. In addition to the above processes provided by the 

original nf-core pipeline, our pipeline includes CGmaptools and MethylKit. CGmaptools [21] is 

used as an additional tool for methylation calling, providing CGmap and ATCGmap output files 

which include comprehensive information (e.g. non-cytosine context) regarding the methylome 

provided for downstream analysis. CGmaptools provides insight into genome-wide and 

chromosomal methylation levels, and coverage of the methylome can be investigated in detail. 

Additional descriptive statistics on DNA methylation profiles, such as frequency of methylation 

per CpG and mean CpG coverage are visualised using the MethylKit package [22].  

Results  

Datasets for development and testing 

Results shown in this section are from a WGBS pig IPECJ2 cell line aiming to demonstrate the 

usability of the pipeline. This dataset contained 1.13 billion raw reads, with 939 million aligned 

paired end reads and an alignment rate of 85%.  

Performance  

Performance reports are provided from the pipeline which displays CPU usage, job run time, 

and memory usage for each individual process in the pipeline. We observed a total of 437.7 

CPU hours for completion of the pipeline. Alignment is the single process which can be done 

using multi-threading (we used 8 CPUs) and uses the most memory (>30G) and takes most 

runtime. Trimming and methylation calling processes use 4 CPU’s (~4) and indexing as well 

as Qualimap needs about 20-25G of memory for a single WGBS dataset. This is as expected 

when evaluating the performance of these tools and processes separately. Run time, CPU and 

memory use vary depending on the type of data (WGBS vs. RRBS).  

Methylation and quality statistics 
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Results from CGmaptools provide information on read coverage per chromosome (Fig 2b), 

methylation statistics (Fig 2c), and methylation levels per chromosome (Fig 2a).  

 

 

 

 

 

 

 

 

Figure 2 Results for the WGBS from pig IPECJ2 cell line showing a.) average CG methylation 

level per chromosome b.) Methylation effective coverage (MEC) plot, providing the global read 

coverage as well as coverage per chromosome (left panel). The (MEC) is calculated as the 

average read coverage only for cytosines. The right panel shows the distribution of the overall 

coverage calculated for each chromosome, which is calculated as the average read coverage 

on all nucleotides on both strands. c.) Pie charts describing the percentage of CpG, CHH and 

CHG sites across the genome. 

 

The methylation contexts are different for plants and animals. For plants, the contexts for DNA 

methylations are known as CG, CHG and CHH, where H= {A, C, T}. For animals, the situation 

is different. Guo et al., (2014) [23] showed that it is unnecessary to separate CHG methylations 

and CHH methylations in human. In 2016 Guo [24], designed the MiDD method and de novo 

predicted that the main separated contexts for non-CG (CH) methylation should be CW {W = 

A, T} and CC, and that mCW is cell-type specific and conserved between human and mice. 

The average CG methylation levels for the WGBS from the pig IPECJ2 cell line are between 

0.5-0.7 with peaks on chromosomes 5, 8 and 12 (Fig 2a). Most methylation is CpG methylation 

and non-CpG methylation is relatively rare (Fig 2c). Lastly the average read coverage for this 

sample is ~14.6x and most chromosomes are well covered (coinciding with the average), 

except for chromosome 17 which has a very high read coverage (25). 
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Histogram of the frequency of the methylation levels provides valuable insight into the quality 

of the data, and a bimodal distribution is expected. Differences between RRBS and WGBS 

data types as well as between species can be observed in research. This metric is useful in 

determining the significant difference in methylation % parameter which is implemented in 

downstream differential analysis.  

Conclusion 

We present a comprehensive pipeline for the analysis of bisulfite sequencing data. We 

benchmarked the pipeline using a WGBS dataset of pig IPECJ2 cell line. In addition, the 

pipeline is extensively tested on a variety of datasets from the GENE-SWitCH consortium (7 

different tissues in 2 vertebrate species, chicken and pig), about 80 RRBS and WGBS. The 

processed data from the pipeline can easily be imported into tools for visualization of 

methylation levels across genomic features. Additionally, this pipeline is currently in DSL1 

format, however a newer version of DSL (DSL2) was released. There will be updates to the 

code in future to accommodate with the continuous release of various tools and programming 

languages. We believe this pipeline will be of great value for scientists working with bisulfite 

sequencing data as it is easy to use and implement for any given dataset. This pipeline 

contributes to attaining reproducible results for bisulfite sequencing analysis to investigate 

methylation. 

Availability and requirements 

Project name: GSM pipeline (GENE-SWitCH Methylation pipeline) 

Project home page: https://github.com/FAANG/GSM-pipeline 

Operating system(s): Platform independent 

Programming language: Nextflow 

Other requirements: Nextflow, Singularity or Docker 

License: MIT license 

Any restrictions to use by non-academics: No 
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Abstract 

DNA methylation is an epigenetic modification which plays a crucial role in mammalian 

development. However, there is still limited understanding of the overarching dynamics of DNA 

methylation in the developing fetus. In this study we used both whole genome- and reduced 

representation bisulfite sequencing data to evaluate the methylome dynamics in seven tissues 

(liver, kidney, brain, muscle, skin, small intestine and lung) during three developmental stages: 

30 days post fertilization (30 dpf), 70 days post fertilization (70 dpf), and newborn in the pig. 

We further assessed differentially methylated expressed genes by combining the DNA 

methylation with the transcriptome of the same seven tissues. Developmental transitions were 

investigated using a two-fold approach: 1) based on whole genome methylation data dividing 

the methylome into unmethylated regions (UMR), indicative of possible promoters, lowly 

methylated regions (LMR) indicating possible enhancers, and fully methylated regions (FMR) 

and 2) based on both whole genome and reduced genome methylation performing differential 

methylation analyses. The number of UMR across developmental stages within the various 

tissues ranged from 10,822 to 14,680 and from 35,073 to 75,477 for LMR. The defined 

methylation states (UMR, LMR and FMR) were used to determine the dynamic changes of the 

methylome and associated cis-regulatory elements during fetal development. The most striking 

was the shift of methylation states, from hypo to hyper methylation, in liver 70 dpf stage to 

newborn stage. Differentially methylated expressed genes are involved in biological pathways 

related with general growth, e.g. regulation of developmental processes, during early  stages 

of development (30 dpf to 70 dpf). This indicates a lack of complete tissue differentiation at 30 

dpf, which is established  at 70 dpf. This pattern was observed for most tissues, except in liver 

and brain, which showed a distinct methylome profile during early developmental stages. 
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Background 

Epigenetics is the study of phenotypic changes that do not involve alteration in the DNA 

sequence. The epigenome is most often defined as many interdependent layers of epigenetic 

modifications, such as DNA methylation, histone modifications and chromatin accessibility, 

that affect the regulation of gene expression [1]. Variations in the genome and epigenome 

within regulatory genomic elements, e.g. promoters and enhancers, determine the specific 

level of gene expression in cells and tissues. Consequently, understanding variation in the 

functional regulatory genome will help explaining the differences between tissues and species, 

and thus improve the functional annotation of the genomes of species studied. 

Regulation of gene expression is determined by a variety of epigenomic marks which work 

together to facilitate correct gene expression during a lifetime. One of the most important marks 

to regulate gene expression is DNA methylation, defined as the transfer of a methyl group onto 

cytosine at the 5th position forming 5-methylcytosine [2,3]. DNA methylation plays an important 

role in mammalian development, with critical roles in gene silencing, genomic imprinting [4], 

and X-chromosome inactivation [5,6]. In vertebrates methylation is mostly restricted to the CpG 

context, with four enzymes (DNMT1, DNMT3a, DNMT3B, TET) playing important roles in the 

deposition, maintenance, development, and removal of DNA methylation.  

Numerous assays have been developed to investigate genome-wide DNA methylation. 

Bisulfite sequencing, which is considered as the current golden standard,  is a method whereby 

unmethylated cytosine residues are converted to uracils and methylated cytosines remain 

unchanged. Site specific DNA methylation changes are detected through this methodology, 

however applying this method on a whole genome scale (whole genome bisulfite sequencing; 

WGBS) is costly. Reduced representation bisulfite sequencing (RRBS) applies genome-wide 

DNA methylation analysis with reduced sequencing of about 2% of the genome (primarily 

targeting CpG rich regions often present in e.g. promoter regions), which reduces the costs for 

investigating DNA methylation at large scale [7].  

GENE-SWitCH is a project under the umbrella of the FAANG consortium, aimed at providing 

functional annotation of farm animal genomes. This project investigates the changes occurring 

in the functional regulatory genome specifically during embryonic development in two 

monogastric species, namely chicken and pig. Most studies thus far have predominantly been 

investigating adult tissue in livestock species, advocating for characterising the epigenome 

during development. During embryonic development three primary germ layers, the endoderm, 
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ectoderm, and mesoderm, are formed, giving rise to specific tissues and organs. The germ 

layers develop in an intricate fashion, with the liver, pancreas, lining of the respiratory and 

digestive tracts developing from the endoderm layer, the mesoderm layer giving rise to tissues 

such as muscle, bones, and kidney, and from the ectoderm layer the nervous system, skin and 

sensory organs are developed.  

The importance of dynamics of DNA methylation during mammalian development is apparent 

as the genome undergoes two waves of CpG methylation pattern reprogramming [6]. The first 

wave, which involves a large scale resetting of DNA methylation, occurs after fertilization, 

whereas the second wave occurs after germline cell specification [8]. During the second wave 

the reestablishment of DNA methylation on specific regions of the genome occurs. In this 

research we aimed to identify the dynamic changes in the methylome during development in 

pig which regulate gene expression during tissue formation (development). We specifically 

assess the changes in the methylome from 30 days post fertilization (dpf; early organogenesis) 

to 70 dpf (late organogenesis) and from 70 dpf to newborn.  

Results 

To study the methylome changes during development we analysed seven different tissues, 

representing the three germ layers, at two fetal stages of development (30 and 70 dpf) and in 

newborn piglets. We generated 63 RRBS datasets (3 samples * 3 timepoints * 7 tissues) and 

21 WGBS datasets (1 sample * 3 timepoints * 7 tissues).   

Pig methylome during development 

Global cytosine methylation levels ranged from 8–10% for RRBS and 3-4% for WGBS. CpG 

methylation levels ranged between 60-80% for both RRBS and WGBS data sets and non-CpG 

methylation levels were between 0.38-0.65% and 0.95-1.5% for WGBS and RRBS, 

respectively (Table S1). Sample correlations within WGBS datasets exhibit moderate to high 

levels of correlation (0.6-1.00; Fig. S1), particularly among tissues originating from the same 

germ layer and developmental stage. 

In the following section, we will primarily focus on genome-wide results using WGBS data, 

while results from RRBS data are mentioned in notable instances. The lowest CpG methylation 

levels are seen in liver at 30 dpf and 70 dpf (Fig. 1a), with an increase in liver methylation 

levels at the newborn stage but still lower than for other tissues at newborn stage. Similar 

patterns are observed in the distribution of methylation levels in liver, showing a lower 

percentage of fully methylated sites at 30 dpf and 70 dpf in comparison to liver newborn and 

other tissues (Fig. S2). The brain, skin, and muscle show a decrease in methylation levels at 
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70 dpf followed by an increase at the newborn stage. Lastly, the kidney, lung, and small 

intestine show relatively stable overall methylation levels throughout development. 

All samples show a clear decrease in methylation levels at the transcription start site (TSS) 

followed by an increase in the gene body (Fig. 1b). This trend is similar for all seven tissues 

at the various development stages, except for liver tissue at 30 dpf and 70 dpf showing the 

lowest methylation level at the TSS, and more pronounced low methylation within the gene 

body.  

From the hierarchical clustering we observed a distinct cluster at the first developmental stage 

(30 dpf) for muscle, skin, kidney, lung, and small intestine (Fig. 1c). Interestingly, lung and 

small intestine, originating from the endoderm germ layer, consistently cluster together at each 

stage of development. Liver and brain, on the other hand, showed another pattern, with tissue 

specific clustering across all three stages of development, and forming separate branches from 

other tissues (Fig. 1c). Notably for RRBS data, the liver clusters on a separate branch for 

samples at 30 dpf and 70 dpf, while liver newborn clusters on a different branch (Fig. S3a).  

PCA clustering analysis (Fig. 1d) revealed distinct patterns in tissue clustering at different 

developmental stages. Notably, brain tissue at 70 dpf and newborn tissues exhibited a close 

clustering pattern, while liver at 30 dpf and 70 dpf showed a similar clustering proximity. 

However, liver at the newborn stage was found further away from this cluster. These results 

are similar to PCA clustering results from RRBS (Fig. S3b).  

Hierarchical and PCA clustering for RRBS data are shown in Fig. S3 and we observed that in 

both WGBS and RRBS data, the majority of individual samples cluster based on tissue type at 

the two later developmental stages. 
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Fig. 1 Methylation patterns and distribution of the tissues at different developmental stages 

based on WGBS data a. CpG methylation levels for each tissue and timepoint. CpG 

methylation levels on the y-axis are actual methylation values ranging from 0-1, with 0 being 

unmethylated and 1 being fully methylated. SI=small intestine. b. Methylation levels across 

genes for each tissue per developmental stage from 2000 bp upstream, of the TSS, to 2000 

bp downstream of the gene. c & d. Clustering of all tissue samples at 3 developmental stages. 

c. Hierarchical cluster using Ward.D2, with distances being measured from percent 

methylation per base. d. PCA clustering showing PC1 and PC2 with highest explained 

variance.   
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Dynamics of DNA methylation in regulatory and repeat elements 

We examined the methylation levels across different chromatin states as defined by Pan et al. 

2021 [9] (Fig. 2a, Data S1) . We observed lowest methylation levels in active promoters (E1), 

and low methylation levels in TSS-proximal transcribed regions (E3-E4), E2 (Flanking active 

TSS without ATAC  (assay for transposase-accessible chromatin)) and E5 (Transcribed region 

without ATAC) showed moderate methylation levels. Among the enhancer states (E6-E10), 

the strongly active (E6) and medium active enhancers with ATAC (E7) exhibited the lowest 

methylation levels. Conversely, the enhancer states categorized as weakly active, poised, and 

active without ATAC (E8-E10) demonstrated higher methylation levels.  

Furthermore, we evaluated the methylation patterns in different repeat types and families (Fig. 

2b, c, d, Data S2 and S3). In general repeats are highly methylated (Fig. 2b). Only the 

LTR/ERVK and LTR/ERV1 repeat elements have somewhat lower methylation, especially in 

small intestine, lung, and muscle (Data S2). Methylation levels of LTR/ERVK elements show 

increased methylation levels at the 5’ and 3’ end of the repeat element and lower methylation 

patterns in between (Fig. 2b), however, for other repeats this pattern is less pronounced (Data 

S2). ERVK and ERV1 repeats are known to be associated with activation or repression of gene 

expression leading to somewhat lower methylation levels at these repeat families [10,11]. L1, 

L2  and ERV1 elements showed a peak in methylation patterns just upstream and downstream 

of the repeat elements (Fig. 2c,d, Data S2), while DNA transposons showed stable high 

methylation levels across the elements. Furthermore, liver showed low methylation levels in 

L1 and ERV1 in comparison to other tissues, indicating a systematic lower methylome profile 

for the liver in earlier developmental stages (Fig 2c,d).  
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Fig. 2 Visualisations of the relationship between methylation levels, regulatory elements and 

repeats. a. Distribution of methylation levels (y-axis) within and surrounding different chromatin 

states in liver 30 dpf. Chromatin states: E1:  Strongly active promoter, E2: Flanking active TSS 

without ATAC, E3: Transcribed gene (TSS-proximal transcribed regions), E4: Weak 

transcribed gene, E5: Transcribed region without ATAC. E6: Strong active enhancer, E7: 

Medium enhancer with ATAC, E8: Weak active enhancer, E9: Active enhancer without ATAC, 

E10: Poised enhancer, E11: ATAC Island. (Results for other tissues are available in Data S1). 

b. Distribution of methylation levels within and surrounding different repeat types and families 

in small intestine at the newborn developmental stage. Methylation levels ranging from 0 

(unmethylated) to 1 (fully methylated) are shown on the y-axis. (Results for other tissues at 

developmental stages are available in Data S2). c. Distribution of methylation levels within and 

surrounding L1  d. Distribution of methylation levels within and surrounding ERV1 repeats 

(Results for other repeats are available in Data S3). Colours represent different samples.   
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Methylation levels across gene expression classes during development 

In order to investigate how DNA methylation changes relate to gene expression, we used 

transcriptome data collected from the same tissues and timepoints. As expected, we observe 

a negative correlation between TSS methylation levels and gene expression (Fig. 3, brain at 

newborn stage as an example). At higher levels of gene expression (TPM > 10) the methylation 

levels fall below 20% around the TSS. Unexpressed or very lowly expressed genes (0-1 TPM) 

showed a much higher methylation level around the TSS (~60%). We also observe lower 

methylation levels upstream and downstream (up to 2000 bp) of the gene body for highly 

expressed genes (TPM >= 75) with levels fluctuating around 20-30%. We observe high levels 

of methylation within the gene-body for all categories of gene expression.  

 

 

 

 

 

 

 

 

Fig. 3 Distribution of methylation levels upstream, downstream, and within the gene-body. 

Methylation levels ranging from 0 (unmethylated) to 1 (fully methylated) are shown on the y-

axis. Categories of gene expression levels ranging from unexpressed and lowly expressed or 

very highly expressed genes are plotted in different colours. Y-axis shows the TSS as the first 

horizontal dotted line from the left, followed by the gene-body and  downstream of the gene.  

 

Dynamics of DNA methylation during developmental and maturation phases in 

seven pig tissues 

Regulatory landscape during  embryonic development  

We used the detection of unmethylated and lowly-methylated regions (UMR/LMR) in WGBS 

data to identify regulatory elements like promoters and enhancers. As described in the 
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methods section; a UMR has a methylation level between 0-50% and is CpG-rich  (indicative 

for promoter regions) while an LMR is defined as regions with 10-50% methylation levels and 

being CpG-poor indicative for enhancer regions [13]. Given these parameters we identified 

between 10,822-14,680 UMR and 35,073-75,477 LMR in the various tissues at different 

developmental stages (Fig. 4b, c). General statistics of the length per region across tissues 

and time-points, as well as the number of promoter regions associated per region are shown 

in Table S2. Tables of regions and associated genes can be found in Data S4 (UMR) and S5 

(LMR). 

Close proximity of UMR and LMR to TSSs suggests overlap with potential cis-regulatory 

elements (Fig. 4a). UMR are found to be in closer proximity to TSSs compared to LMR which 

are more enriched further upstream of TSSs. This supports UMR and LMR as indicative for 

promoters and enhancers, respectively. We investigated the dynamic nature of the methylome, 

specifically changes in UMR and LMR during development using brain and liver as illustrative 

examples with interesting patterns (Fig. 5). Results for the remaining tissues are presented in 

Fig. S4. 

In brain (Fig. 5a) a large proportion of fully methylated regions (FMR) transition to LMR, while 

a smaller proportion transition to UMR. Additionally, a small proportion of the LMR transition 

to FMR and UMR, respectively. During the transition from 70 dpf to newborn, a substantial 

proportion of LMR remains as LMR, while a small proportion transitions to FMR and UMR. 

Only a limited number of UMR transition to FMR and LMR, with the majority remaining in an 

UMR state. Notably, a large proportion of FMR transitions to both UMR and LMR. 
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Fig. 4 a. Descriptions of UMR and LMR from WGBS data of lung at 30 dpf. Density plot 

showing the distribution of the UMR (yellow) and LMR (blue-green) from TSSs. Y-axis shows 

the densities of the regions (UMR and LMR) and x-axis is the log distance of the regions to the 

TSS. b. Number of UMR per tissue and developmental stage with small intestine abbreviated 

as SI c. Number of LMR per tissue at the developmental stages.  

 

In contrast, in liver (Fig. 5b), the number of LMR is smaller compared to brain, with a significant 

proportion of LMR remaining unchanged during the first transition. FMR in the liver tend to 

transition to UMR and LMR over the course of development. Table S3 provides information on 

the number of transitions and the associated promoter regions for each tissue and tables of all 

regions transitioning together with associated genes are shown in the Data S6. 
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Fig. 5 Time-point specific changes occurring in a. Brain and b. Liver. Developmental stages 

are annotated in different colours, with orange showing FMR, red showing LMR and green 

showing UMR.  For clarity, it should be noted that any FMR that did not exhibit changes across 

all developmental stages were excluded from this plot, focusing solely on conservation and 

dynamic changes of UMR and LMR.  

 

Differential methylation analysis during developmental and maturation phases 

An additional approach that sheds light on the time-point specific changes that occur during 

development, is differential methylation (DM) analysis. For DM analyses the transition from 30 

dpf to 70 dpf is classified as the developmental transition, while the transition from 70 dpf to 

the newborn stage is considered the maturation transition. We performed DM analyses on a 

per site level (DMS) using RRBS data (3 samples per tissue per time-point) and on a region 

level (DMR) using WGBS data (1 sample per tissue per time-point).  

For all tissues, except liver, more DMS are observed in the developmental transition compared 

to the maturation transition (Table 1). Likewise, the number of DMS in promoter regions is also 

higher for all tissues, except liver, in the development transition compared to the maturation 

transition. Both DMS and DMR analyses revealed intriguing patterns in the liver, characterized 

by a remarkable increase (~6 fold for DMS and ~40 fold for DMR) in the number of regions. At 

a.           b. 
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the developmental transition, the liver exhibited the lowest number of both DMS and DMR, but 

this changed to the highest number of DMS and DMR at the maturation transition. Conversely, 

during the developmental transition, muscle displayed the largest number of DMR, which 

notably decreased in the maturation transition, mirroring the trends observed in DMS. Tables 

of all DMR and DMS together with associated promoter of genes are shown in Data S7 (DMS) 

and S8 (DMR). 

Table 1 Counts of DM analyses from both RRBS and WGBS data of pig tissues with 25% 

difference and q-value <0.01. DM was done in a linear fashion, with developmental transition 

indicating differences between 30 dpf to 70 dpf and maturation transition indicating differences 

between 70 dpf to newborn developmental stage, respectively. 

 

For further understanding of the methylation dynamics during development, we defined hypo-

methylated regions as DMR with a decrease in methylation levels (<25%), and hyper-

methylated regions as DMR with an increase in methylation levels (>25%). Fig. 6a shows the 

distribution of hyper- and hypo- DMR for the tissues during development, with liver showing 

the highest number of hyper-methylated regions at the maturation stage. During the 

developmental transition, muscle tissue exhibits a notable abundance of hyper-methylated 

regions, particularly in intergenic regions and within the gene-body (Fig. 6b). Brain tissue 

shows more hypo-methylated regions in comparison to hyper-methylated regions during both 

developmental transitions, which is a common trend observed in most tissues.  

DMS provides valuable insights into the promoter specifically as RRBS is enriched in CpG 

regions, whereas DMR predominantly covers regions within the gene body and intergenic 

regions. Liver shows a remarkable number of hyper-methylated DMS at the maturation 

transition (Fig. S5), which is similar to DMR patterns in the liver (Fig. 6a). Furthermore, the 

RRBS (DMS) WGBS (DMR) 

Tissue 

Developmental 

transition 

(Dev) 

Maturation 

transition 

(Mat) 

Promoter of 

genes 

Developmental 

transition 

(Dev) 

Maturation 

transition 

(Mat) 

Promoter of 

genes 

Dev Mat Dev Mat 

Skin 20,042 6,680 868 262 246,864 214,496 3,215 2,624 

Brain 32,334 19,843 1,022 608 207,490 214,798 2,488 2,376 

Muscle 30,975 6,848 1,330 245 335,293 105,979 4,343 1,350 

Kidney 22,711 2,039 838 79 93,401 111,248 1,317 1,333 

Liver 8,023 50,303 428 1,543 23,088 975,926 383 9,880 

Lung 16,697 2,880 710 125 106,805 119,430 1,600 1,455 

Small 

intestine 

16,112 8,709 814 379 129,262 155,656 1,875 2,070 
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brain shows a large number of hyper-methylated DMS at the developmental transition, which 

changes to a larger number of hypo-methylated DMS at the maturation transition, with only a 

small proportion of hyper-methylated DMS (Fig. S5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Distribution of DMR identified using WGBS data. SI=small intestine. a. Number (y-axis) 

of hypo and hyper methylated regions per tissue (top x-axis), for each developmental transition. 

Dev is defined as developmental transition (30 dpf to 70 dpf) and Mat is defined as maturation 

transition (70 dpf to newborn). Hyper and hypo methylation are shown in green and red as 

stacked bars. b. Annotation of the hyper and hypo methylated regions. Dev and Mat  are as 

defined in a. Features are defined as follows: Intergenic is 1000 bp upstream of TSS until next 

TSS. Genes are defined as the gene body. Core promoter is 500 bp upstream of the TSS. 

Promoter_gene are regions which overlap both core promoter and gene body.   

 

Tissue specific DMR, DMS & genes 

We identified both tissue specific DMR and DMS, and subsequently combined them with gene 

promoter regions. Table 2 shows the number of DMS and DMR with the corresponding 

promoter region for each tissue. We observe the highest number of tissue-specific DMR and 

DMS for liver while the lowest number of unique DMR is observed for kidney. No significant 

enrichment of GO terms were identified for the DMR tissue specific genes, while GO terms 

enriched for DMS tissue specific genes are shown in Table S6. This showed an enrichment of 

the biological process supramolecular fiber organization in skin specific DMS and extracellular 

space in liver specific DMS.  

a.             b. 
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Table 2 Tissue specific differentially methylated regions and sites, with the corresponding 

genes 

Tissue DMS DMS Gene DMR DMR gene 

Kidney 211 158 834 617 

Liver 710 528 13,304 7,427 

Lung 161 147 1,120 802 

Brain 400 289 1,838 1,198 

Muscle 392 262 3,149 2,191 

Skin 227 189 2,785 1,928 

Small intestine 304 208 1,261 845 

 

We conducted a gene-level investigation of selected genes known for their roles in embryonic 

development, tissue differentiation, and organogenesis, to gain further insights into the 

methylome dynamics at a tissue specific level. A few genes identified for tissue specific DMS 

include the FGF21 gene in muscle, CDX4, HOXD12, HOXB5 in small intestine, HOXA5 in skin, 

and HOXC8, HOXD8, HOXA11, HOXC5 in muscle.  

Furthermore, for tissue specific DMR we identified PAX3, HOXC5 in muscle, HOXC11 in 

kidney, HOXD4, HOX2A, HOXC10, and HOXC9 in the small intestine, FGF1 in brain, and 

CDX1, CDX4 in liver. Tables of tissue specific DMR and DMS together with associated gene 

promoters are shown in the Data S9 (DMS) and S10 (DMR). 

DM-associated differential expressed genes (DMEG) involved in functional 

enrichments related to development and tissue specificity 

Lastly, the regulatory effects of DNA methylation were investigated by integrating differentially 

expressed genes (DEG) with both DMR and DMS, respectively. Approximately 2-20% of DEG 

identified in the various tissues at the developmental transition and 5-50% of DEG identified at 

the maturation transition were associated with corresponding DMR at the promoter sites. 

Additionally, approximately 1-8% of DEG identified for the various tissues were associated with 

the corresponding DMS (Data S11, Table S7). In this section, we focus primarily on the DMR 

integrated with differentially expressed genes, referred to as DMEG (Fig. 7a).  

We observed the largest number of DMEG at the developmental transition in muscle and skin 

and the lowest number in liver tissue (135) and kidney (389) (Fig. 7a). For most tissues the 

number of DMEG either decreased slightly in the maturation transition, like in skin and muscle 

or changed very slightly like in brain, small intestine, lung and kidney.  For liver, a large increase 

in DMEG was observed in the maturation transition with more than 3,000 observed DMEG. 
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We distinguished between up-regulated and down-regulated genes (based on expression fold 

change) with hypo or hyper-methylated (DMEG) associated promoters in brain tissue during 

the maturation transition (Fig. 7b). For up and down-regulated genes with hypo or hyper-

methylation the results showed the largest number of DMEG which are hypo-methylated and 

up-regulated (hypo-up), a smaller number of hyper-down and hypo-down genes, and the 

smallest number of genes in the hyper-up category (Fig. 7b).  

Subsequently, we first investigated the identified genes using functional enrichment analysis 

within the up-regulated (combined hyper- and hypo-methylated) and down-regulated 

(combined hyper- and hypo-methylated) categories. The overrepresentation gene ontology 

(GO) analyses of up- and down-regulated categories of DMEG (Fig. 7c, d) provides insight 

into the biological systems involved during development at the two transitions and within the 

different tissues. Tables of DMEG are available in Data S11, together with the heatmaps of 

promoter regions of DMEG (Data S12). Below we present the most interesting global findings 

of the GO analyses for genes upregulated (switched on) and downregulated (switched off) 

during the two transitions for DMEG. 

Up-regulated genes (switched ‘on’) 

Most notable is the variation of significantly enriched terms per tissue, with tissues like liver 

and lung showing no significantly enriched terms at the developmental transition while several 

terms are observed at the maturation transition for biological processes (Fig. S6a). Regulatory 

processes are observed as up regulated during the developmental process in kidney, muscle, 

skin and small intestine (Fig. S6a). Defence, immune and response to stimuli processes are 

enriched for kidney, liver, lung, skin, and small intestine at the developmental as well as 

maturation transition (Fig. 7c, Fig. S6a). Epithelial migration is notable during developmental 

transition in skin, however it is not enriched in small intestine which is not as expected. Tissue 

specific cellular component terms such as contractile fiber, myofibril, myosin complex, 

sarcomere, Z disc and I band are observed during developmental transition in muscle, with 

mitochondrial terms and muscle specific terms observed during the maturation transition in 

muscle (Fig. 7d).  

On an individual gene level, we investigated genes that are known to play crucial roles in 

embryonic development, organogenesis, and germ layer formation. WNT16, WNT5b, and 

WNT9B genes are up regulated in lung, small intestine, and skin, respectively, during the 

developmental transition. MSTN (myostatin), is up-regulated in brain, muscle and small 

intestine during the developmental transition. IGF1 is up-regulated in the brain during the 

developmental transition. A few examples of HOX genes identified include HOXB5 in skin, 

HOXD13, HOXD11, in small intestine and HOXA11, HOXD11 in kidney are up-regulated 
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during the developmental transition. Similar results are observed for DMS associated with 

differential expressed genes (Data S11). 

Down-regulated genes (switched ‘off’ ) 

Similarly, for down-regulated genes there are many biological process terms enriched for liver 

at the maturation transition and none at developmental transition. Liver is also the only tissue 

with significant GO enrichment for biological process of down regulated genes during the 

maturation transition (Fig. S6b). Interestingly, in many tissues significant biological process 

terms are general developmental terms such as limb development and embryonic 

morphogenesis. Lastly, down-regulated enrichment analyses provide insight into processes 

which are ‘switched off’ at various stages of development. Most notable are biological 

processes such as vasculature development, tube morphogenesis, tissue development, 

regulation of developmental processes, immune system processes, embryonic 

morphogenesis, embryo development, angiogenesis, and circulatory system development 

enriched in muscle, skin, and small intestine (Fig. S6a). Kidney shows one notable term 

enriched in biological process and cellular component ontologies namely A-band (Fig. S6 c, 

d).  

Furthermore, we investigated the presence of a few key genes involved in embryonic 

development, tissue differentiation, and growth. Noteworthy observations include the down-

regulation of PAX3, in both muscle and brain at the developmental and maturation transitions 

respectively. The small intestine shows down regulation during the developmental transition 

for WNT5a gene. Additionally, MYOD and MSTN (myostatin), show down regulation in the liver 

and small intestine, respectively, at the developmental transition. During the developmental 

transition in brain tissue, the CDX1 gene is down-regulated. This succinctly highlights a subset 

of identified genes, and the results for DMEG and DMS associated with differentially expressed 

genes can be found in Data S11. 
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Fig. 7  Integration of DMEG on a temporal level for the various tissues. a. Number of 

differentially methylated expressed genes (DMEG) for the developmental and maturation 

transition (x-axis) with the number of genes shown on the y-axis. Tissues are shown in different 

colours. b. Scatter plot of the methylation fold change (y-axis) and the log expression fold 

change (x-axis) for brain tissue at the maturation transition. Each point represents a DMR-

DEG pair. Genes classified as Hyper-Up, Hypo-Up, Hyper-Down and Hypo-Down have an 

expression log(FC) with a cut-off at 1.5. The remaining genes are shown in white, with a 

log(FC) between 1.5 and -1.5. All methylated regions have a minimum difference of 25%. c. 
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Biological processes gene ontology (GO) terms for small intestine up-regulated genes which 

are both hypo and hyper methylated. d. Cellular component GO terms for muscle up-regulated 

genes. All terms are filtered for an FDR<0.05. Genes are filtered as follows for classifications: 

up-regulated log(FC) >1.5, and down-regulated log(FC)< -1.5. All methylated regions have a 

minimum difference of 25%. GO enrichment analyses of other tissues can be found in Fig.S6. 

 

Discussion 

Development is a highly dynamic process with many changes in gene expression and the 

epigenome. DNA methylation is an epigenetic mechanism which has a well-established link to 

development and differentiation of tissues [6,14–16]. Here we investigated the dynamic nature 

of the DNA methylome during development of seven tissues in pigs. The nature of this data 

enabled the identification of developmental specific changes occurring within the methylome 

of different tissues. Although the DNA methylome has been studied in model organisms such 

as mouse, this is the first study investigating development of various tissues representative of 

the three germ layers in a farm animal. Research on human fetal development is limited. 

Hence, research into DNA methylation regulating fetal development in a biomedical model 

species such as the pig holds potential for understanding fetal diseases, as well as fetal 

development in mammals. Our work provides the first DNA methylome map in seven key 

tissues of the pig during fetal development from 30 dpf until newborn piglets.  

Global methylation patterns across tissues at the different developmental phases provides 

insight into general methylation patterns occurring across the genome. Liver has lower global 

methylation levels, especially during the first two stages of fetal development, in comparison 

with the other tissues investigated in this study. Thus, during earlier stages of development 

accessed in this study (30-70 dpf) there are less fully methylated sites in liver, and during the 

transition from early development to newborn there are considerable methylation events 

occurring. Patterns of lower global methylation and a bias towards demethylation events in the 

liver is also observed in mouse and human (in-vitro) during development [17–19]. Higher global 

methylation levels across tissues such as fetal hindbrain, kidney, lung, and intestine during 

development are also observed in the mouse [19,20]. In a study conducted by Yang et al., [21] 

investigating DNA methylation patterns during skeletal muscle development in mouse from 

embryo day 30 until 180 days post-natal, similar findings were observed regarding global 

methylation levels in muscle tissue.  
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Clustering at different time-points based on similar global methylation patterns (WGBS) for 

muscle, skin, small intestine, lung, and kidney, show similar patterns of DNA methylation at 30 

dpf. Tissue specific segregation within these tissues start to occur at 70 dpf and newborn. The 

lung and small intestine are from the endoderm germ layer [22] and these tissues show similar 

patterns of regulation by DNA methylation. Brain and liver already show distinct tissue specific 

DNA methylation patterns from the first developmental time-point and both tissues cluster 

separately from the remaining tissues. This pattern is not supported by the RRBS clustering, 

suggesting that CpG rich regions (RRBS) may have distinct changes in methylation compared 

to global methylation (WGBS) during development of these two tissues.  

We inferred potential cis-regulatory elements based on the methylation level and density of 

CpG sites and found that these regions varied across tissues and time-points. In the brain and 

skin an increase in number of UMR from early development to newborn indicates an increase 

in the number of active promoters. This shows a de-methylation occurring in these tissues from 

early development to newborn. Typically, methylation is observed from early development to 

newborn in the tissues such as kidney, liver, lung, muscle, and small intestine. This is the 

expected mechanism occurring during development where many de-methylation and re-

methylation events are observed, with many regions being re-methylated within newborn and 

adult tissues [21]. By integrating methylation classes (UMR, LMR, FMR) and differential 

methylation on a spatio-temporal scale, we demonstrated the dynamic nature of the 

methylome, as well as the dynamic repurposing of promoter and enhancer elements. The 

inference of developmental enhancers by using the DNA methylome has also been 

implemented in zebrafish [23]. In the liver most regions become re-methylated from fetal 

development to the newborn stage, which has a possible link to enhancer and promoter 

elements, as most sites are found within intergenic and promoter regions. Muscle shows a 

high degree of re-methylation during the developmental transition, with most of these changes 

occurring in intergenic and gene-body regions. This is in agreement with earlier findings in 

porcine skeletal muscle during fetal development where most DMR are found in cis-regulatory 

elements such as enhancers [21].  

Liver shows quite different patterns of methylation in comparison to other tissues. Research 

examining DNA methylation and gene expression changes in human liver during the transition 

from fetal to adult stages has revealed an increase in methylation levels. Surprisingly, these 

changes do not appear to play a regulatory role for gene expression nor show the expected 

decrease in gene expression, pointing towards distinct DNA methylation dynamics during fetal 

and adult liver development [24]. In contrast, recent research in mice [19] have shown a 

noteworthy pattern in the liver, where methylation levels are significantly higher (~0.75) during 

early developmental stages, then decline during early and late organogenesis (~0.6), and 
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subsequently rise as the organism progresses to the newborn (~0.7) and adult stages (~0.8) 

of development. These patterns align with our study's findings. Notably, while this pronounced 

shift is not reflected in the number of differentially expressed genes, this suggest an alternative 

regulatory role such as alternative splicing, in the fetal liver. 

During early development in the pig, basic primordial organs such as the liver, spleen, lung 

buds, and primordial intestine can be distinguished at 18-20 dpf [25]. By 35 dpf, the liver 

completes its main organogenesis, making it a key tissue in the embryo. This is most likely 

linked to the process of haematopoiesis, which starts in the yolk sac, but becomes non-

functional at 24-27 dpf [25,26]. Subsequently, hematopoietic activity transitions to the fetal liver 

from 20 dpf and eventually progresses to the bone marrow. These observations suggest that 

the liver plays an important functional role in haematopoiesis from 30 dpf, a process which 

gradually decreases until birth. Notably, in mice, the liver's distinct methylation profile coincides 

with fetal liver haematopoiesis [25,26]. 

Integration of transcriptomic and methylation data provides insight into their complex 

relationship, especially since DNA methylation in general is considered an epigenetic 

repressor of gene expression. Typically, hypo-methylation in the promoter and enhancer 

regions is associated with upregulation of genes while hyper-methylation is associated with 

downregulation. The association of promoter hypo-methylation with gene expression is also 

supported in this study where we observe global decreased promoter methylation related to 

gene expression (Fig. 6). However, we also found associations between hyper-methylation 

and gene up-regulation as well as hypo-methylation and gene down-regulation in all tissues 

across development. Thus, our results show that the association between gene expression 

and DNA methylation is variable and complex, similar to recent observations in Anastasiadi et 

al., [27].  

The GO enrichment analyses provided some interesting observations with muscle showing 

many muscle related functions and components which are present at the early developmental 

stage, while at the later stage of development, elements related to energy (mitochondria) are 

observed. The muscle fiber is a complex design of myofibrils, mitochondria, and nuclei, 

encapsulated by the sarcolemma. The sarcomere is the most basic unit of the myofibrils which 

are composed of actin and myosin (thick and thin filaments). These components are arranged 

as follows: I-band contains thin actin filaments, the A-band contains mainly myosin thick 

filaments and actin thin filaments on the edges, and the Z-line indicates the border of each 

sarcomere. These components of the muscle fibre work together in a complex fashion to 

contract and relax [28–30]. We identified the basic components of the muscle fiber such as 

sarcomere, contractile fiber, Z-disc and I-band during earlier developmental transition, thus 
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from 30 dpf to 70 dpf, followed by development of components such as mitochondria, A-band 

and sarcoplasm at 70 dpf to newborn. Similar observations have been made for skeletal 

muscle development in pig and other mammals such as human, cattle, and sheep, where 

embryonic morphogenesis occurs first, followed by muscle tissue development, and thereafter 

glucose metabolism [21,29,31–34].  

Kidney and muscle develop from the mesoderm layer [35], and the observed down-regulation 

of the A-band pathway (muscle fibre component) in kidney during developmental transition in 

our results is notable. It shows the germ layer specificity present within this tissue at 30 dpf 

which becomes tissue specific from 70 dpf onwards. Similarly, many general developmental 

processes are ‘switched off’ from 30 dpf to 70 dpf in muscle, skin, and small intestine. Lastly, 

the gastro-intestinal tract, which includes the small intestine, plays a role in providing passive 

immunity to newborn mammals from colostrum ingested shortly after birth (within the first 24 

hours of birth). This process is crucial for long term survivability and establishment of intestinal 

microbiota, which is important for maturation of the intestinal immune system [36,37]. 

Interestingly we observe immunity GO terms enriched at the maturation transition for up-

regulated genes in the small intestine, which confirms the development of the intestinal 

microbiota and intestinal immune system in the pig.   

Genes (e.g. HOX, PAX, WNT) previously identified for their role in embryonic development, 

tissue differentiation, and growth are identified across multiple tissue types. This shows the 

importance of these genes in shaping the developmental trajectory of different tissues within 

our dataset. Interestingly, the MSTN (myostatin) gene, plays a crucial regulatory role in muscle 

development and is highly conserved in mammals [38,39]. Genetic variations within the MSTN 

gene have been linked to the double muscling phenotype observed in several species, 

including cattle, sheep, dogs, and humans [40].  

This is the first research to investigate the dynamics of DNA methylation in fetal development 

in pig in different tissues representing the three embryonic germ layers. The pig is used 

frequently as a biomedical model for humans [41–45], and in this research area there have 

been very few studies performed in human. Implications of a better understanding of fetal 

development can be utilised in future mammalian research, pharmaceutical assessments 

during pregnancy, and studies of human fetal diseases such as e.g. intrauterine growth 

retardation and polycystic ovary syndrome and preeclampsia which naturally occurs in both 

pigs and humans [45,46].  

Conclusion 

We investigated the development of seven tissues in the pig, from early fetal development until 

newborn piglets. Through a variety of analyses the complex dynamics of the DNA-methylome 
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at a spatio-temporal level was assessed. Differentially methylated sites and regions were 

identified, together with categories of methylation, which were combined for insight into the 

developmental methylation dynamics. Differentially expressed genes were integrated with the 

methylation status, which added an additional layer of insight into the complex relationship 

between this regulatory mechanism and gene expression. We identified tissue specific 

changes, and we conclude that liver shows remarkably different differentiating patterns in 

comparison to other tissues. Lung, muscle, kidney, skin, and small intestine have germ layer 

specific methylation characteristics at early development (30 dpf), which then transitions to 

tissue specific methylation from 70 dpf until newborn stages. 

Material and Methods 

Experimental model and tissue collection 

This study investigated seven different tissues namely brain (hindbrain at 30 dpf , cerebellum 

in 70 dpf and newborn), liver, kidney, skin, muscle (hindlimb muscle at 30 dpf and 70 dpf, 

Gluteus Medius in newborn), lung, and small intestine (ileum in newborn) in pig. The samples 

of these tissues were collected at 30 dpf, 70 dpf and at newborn piglet stage. Pooling and 

sampling strategies of samples at 30 dpf are described in more detail on the FAANG DCC. In 

brief, after dissection the fetuses were sexed using a standard PCR procedure. Pooling was 

performed to obtain two pools of females and two pools of males, exact combinations of fetus 

in each pool are described in the standard operating protocol (SOP). Once pools were 

established, the tissues corresponding to each sampling pool were cut up and distributed into 

four tubes and stored at -80 C̊. Samples collected at 70 dpf are described in full detail in the 

SOP available on the FAANG DCC. In summary, animal dissection was performed after the 

uterus of the slaughtered sow was removed and the fetuses were removed as quickly as 

possible. Tissues were removed from the fetuses in a predetermined order and each tissue 

was placed into the plate which has the tissue name and animal number. Tissues were then 

processed and cut into small cubes and stored in a cryotube. Thereafter samples were snap 

frozen in liquid nitrogen and after transportation (dry ice) to the laboratory, were cryofrozen. 

These samples were also sexed using the afore mentioned PCR procedure. Lastly the 

newborn samples were collected by stunning and slaughtering the piglet, and at dissection the 

tissues were removed. Each tissue was placed on a petri dish which were pre-labelled with the 

animal number and tissue name. Each tissue sample was then cut into cubes, washed in PBS 

and stored in an empty cryotube (each tube contains six aliquots). Freezing and conservation 

process of the samples were as described at 70 dpf. The full description of the procedure is 

described in the SOP on FAANG DCC. 
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Sample processing and bisulfite sequencing (RRBS and WGBS) 

DNA extraction was performed on each tissue sample at each developmental stage as 

described on the FAANG DCC SOP. Firstly, a preparation step was needed where each tissue 

was weighed and excised. Thereafter each piece of tissue was placed into a centrifuge tube 

to complete a homogenization step. Genomic DNA was purified using the Qiagen Allprep kit, 

and quantification was performed to assess the quality of the DNA and thereafter stored. Sexes 

selected for methylation sequencing were as follows, RRBS: 30 dpf – pooled sample, 70 dpf - 

male, newborn – male; and WGBS: 30 dpf – pooled, 70 dpf - male, newborn - female. 

RRBS and WGBS library preparation is described in the SOP available on the FAANG DCC. 

In brief the RRBS library was constructed with the Ovation RRBS Methyl-Seq kit from Tecan 

and sequenced on the Illumina NovaSeq 6000. The isolated DNA was cut with MspI enzyme 

and fragments were selected at 50-500 bp. After sequencing the bcl2fastq v2.17.1.14 

conversion software was used to generate and demultiplex fastq files from pooled samples. 

WGBS library construction and sequencing was performed using the Illumina NovaSeq 6000 

at Novogene, with the bisulfite conversion performed using the EZ DNA Methylation Gold Kit 

(Zymo Research) and fragments selected and quantified using the KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems). Library was then sequenced with a PE150 strategy.  

Data processing & clustering analysis 

Raw RRBS FASTQ files were first trimmed using the NuGEN Technologies’ diversity trimming 

scripts, for removal of any additional sequences added by the diversity adaptors. Subsequently 

reads were filtered for only reads which begin with the expected YGG trinucleotide sequence. 

On average 38 million reads were produced for each library of RRBS (21,7 – 46 million) and 

an average of 426 million reads for WGBS (range of 390 – 475 million). Coverage of all reads 

was investigated and an average of 19X for RRBS and 25X for WGBS data was calculated. 

Quality statistics of both data sets, per tissue-time-point is shown in Tables S4 (WGBS) and 

S5 (RRBS). We determined the bisulfite conversion rate (~99.5%) for samples by calculating 

the ratio of unmethylated to total number of reads for covered cytosines on the mitochondrial 

genome for RRBS data sets. This is used as a quality metric to determine the efficiency of the 

bisulfite conversion. Diversity trimmed reads of RRBS samples (single end) and raw WGBS 

FASTQ files (paired end) were processed using the GSM-pipeline [47], v1.0 used for RRBS 

and v2.0 for WGBS, with Sus Scrofa 11.1 reference genome assembly. Reads were first 

trimmed with TrimGalore tool [48] using default options. Read alignment was performed within 

the pipeline using Bismark aligner with default options, and for RRBS the parameter --rrbs was 

specified. WGBS data was first processed per sample, time-point per lane. Thereafter the bam 
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files were merged to have data per tissue time-point and then processed using the pipeline 

with the --bam parameter. Binary alignment files were converted to CGmap files using 

CGmapTools within the pipeline, and reports of methylation rates for all covered CpGs are 

reported in the CGmap file, as well as in an extensive bismark methylation report. The pipeline 

reports on global methylation rates per sample. The CGmap file is converted to CpG report 

text files and processed using methylKit within the pipeline, which provides methylation 

distributions per sample. Correlations and clustering were calculated between various tissues 

at the three developmental stages, as well as correlations between tissues from the same 

germ layer, and developmental stage. The results were achieved by implementing the 

generated CpG text report files into MethylKit v1.18.0 for PCA clustering, correlation, and 

hierarchical clustering (Ward.D2 cluster method). Clustering of the three RRBS biological 

samples (Fig. S3), indicates the consistency of the biological sampling 

Methylome segmentation 

First, we filtered the CGmap files from WGBS to include only CpGs with a coverage of at least 

10 reads within a sample. This data was then utilized to identify unmethylated and lowly 

methylated regions (UMR and LMR) using the MethylSeekR v 1.32.0 package in R. The 

following criteria were specified for segmentation of the methylome as described in [13]: (1) 

FDR < 5% for regions, (2) DNA methylation levels of 0 – 50 % for UMR and 10 -50 % for LMR, 

and (3) >5 CGs per region. An additional distinction between UMR and LMR are the density of 

CG sites within the region, with UMR having very dense number of CGs (>30 CGs) close 

together within a region and LMR having lower densities of CGs (<30 CGs) more distributed 

throughout a region. Genomic relevance of cis-regulatory elements was investigated by 

calculating the distance of the UMR and LMR to the TSS of genes and thereafter plotting the 

inverse log2 of the distance to the TSS in R. We further identified FMRs using custom scripts, 

with the following requirements: (1) CG sites with methylation levels >0.75, (2) regions of 1000 

bp with > 10 CG sites, (3) remove redundant regions repeated in UMR/LMR. The dynamics of 

the methylome were analysed using the 'intersect' function in Bedtools v2.30.0, ensuring that 

only regions with a minimum of 10% overlap were considered. FMR that remain unchanged 

throughout all stages of development were purposefully excluded, as the goal of this analysis 

was to highlight the dynamic nature of low and unmethylated regions. The resulting regions 

are plotted in R and the associated promoters of genes identified. This information is available 

in Data S6.  
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Differential methylation analysis  

Both the RRBS and WGBS CGmap report text files generated from the pipeline were filtered 

to remove any CpG sites with less than 10 reads in a sample, and bases/regions having a 

higher coverage than the 99.5 percentile are also filtered. Thereafter we normalized read 

coverage distributions between samples (normalizeCoverage) using MethylKit (R) package 

v1.18.0 (Akalin et al., 2012).  Finally reads on both strands of a CpG nucleotide are merged, 

which provides better counts of the cytosines at a specific CpG site. Regions in WGBS were 

calculated using a sliding window approach with a window size of 500 bp and a step size of 

250 bp. A pairwise comparison using an F-test together with basic correction for overdispersion 

(MN) [49,50] was implemented to calculate the methylation differences between development 

stages for each respective tissue. Pairs were defined as follows: 30 dpf to 70 dpf is the 

developmental transition, and 70 dpf to newborn is the maturation transition. Methylation 

differences are calculated on a per site level for RRBS data, whereas for WGBS data this is 

calculated on a region level. CpG sites/regions were considered as significantly differentially 

methylated if there was >25% difference in methylation rate for each transition (e.g. 30 dpf and 

70 dpf) and having a corresponding q-value <0.01. Lastly, hyper- (increased methylation 

levels) and hypo-methylated (decreased methylation levels) sites/regions were identified per 

tissue for the two defined transitions. The promoter/enhancer regions overlapping with DMR/S 

were defined as the transcription start site (TSS) of the gene with an additional 1500 bp 

upstream and 200 bp downstream from the TSS, taking the strand into consideration for all 

genes. 

Significantly differentially methylated sites and regions (DMS/DMR) were annotated with the 

Ensembl Sus Scrofa 11.1 - release 102, where core promoter is defined as: TSS +500 bp 

upstream and 200 bp downstream (strand was considered for all genes). Intergenic regions 

are defined as a starting point 1000 bp upstream of TSS until next TSS. Hypo- and hyper- 

DMR are annotated using these custom regions files with bedtools intersect.  

Identifying tissue specific promoters 

Tissue specific promoters were defined in the following way. First, the Ensembl Sus Scrofa 

11.1 - release 102 annotation was used to define promoters. Promoters from this annotation 

are calculated as follows: 1500 bp upstream of the TSS and 200 bp downstream of the TSS, 

we also accounted for strandedness in this calculation. This region is larger in comparison with 

the ‘core promoter’ region, as the aim is to identify potential enhancers close to promoters and 

in this way defining a larger region. We overlayed the promoter regions with both the DMR and 

DMS respectively, for each tissue at the developing transition. Thereafter all DMR/ DMS for a 
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tissue were determined (thus all methylation changes occurring in both transitions). DMR/DMS 

which were specific to each tissue across all transitions were identified using bedtools intersect 

with the -v flag (e.g. bedtools intersect -v -a Tissue1_all_transitions -b all_other_tissues). 

Unique genes were extracted per tissue specific DMR/DMS and investigated for significant 

enrichment in GO terms using ShinyGO v0.77 [51].  

Visualisation of methylation levels across genomic features 

Relationship of methylation levels and various genomic regions were investigated using 

ViewBS 0.1.11 [52], where the methylation reports created from bismark were implemented 

together with custom region files. Distribution of methylation levels over promoter, gene-body 

and transcription termination sites were achieved by creating a region file using the Sus Scrofa 

11.1 version 102 annotation file. Genes were classified based on their expression levels (TPM) 

as follows: (i) ≥0 to <1, (ii) ≥1 to <10, (iii) ≥10 to <30, (iv) ≥30 to >75, (v) ≥75. The plot was 

generated using the MethOverregion functionality within ViewBS.  

The repeat annotation was obtained from Warr et al., (2020) [53]. Methylation patters in 

different repeat classes were visualized using the MethOverregion function. The epigenomic 

states from the associated tissue were obtained from Pan et al., (2021) [9], visualization was 

performed using the MethOverregion functionality.  

Integrative analysis of expression and methylation 

Gene expression data was curated within the project (available on the FAANG DCC) and TPM 

expression values per tissue, time-point in four replicates were available. DEG were also 

calculated over time, as for differential methylation, thus DEG were available per tissue for 

each transition in development. Promoter DMR and DMS as described above were overlayed 

with the corresponding DEG using bedtools intersect with the flag  -wo to retain information 

regarding DEG and DMR/DMS. The DMEG were then categorized based on the methylation 

and expression changes: Up-regulated: log(FC)>1.5, down-regulated: log(FC)<1.5, Hyper-

methylated: methylation FC>25, and hypo-methylation: methylation FC<25. All differentially 

methylated expressed genes with the specified categories, and all remaining were plotted in 

R. A GO (ShinyGO; [51]) analysis was performed for all genes per tissue at the developing 

transitions, terms were classified as significantly enriched for an FDR<0.05. Top pathways 

were obtained, and all plotted together. Lastly the GO analysis was performed as stated above 

for the up-regulated and down regulated categories.  

Supplementary information 



 

 
137 

 

4 DNA methylome in the developing pig  

Supplementary tables 

Download: https://osf.io/kry5d/?view_only=c02a5c808a9749b8bfc26ce236f52ddf 

(Supplementary_tables_pig.xls) 

Supplementary data files 

Download: https://osf.io/kry5d/?view_only=c02a5c808a9749b8bfc26ce236f52ddf 

S1: Methylation over chromatin states per tissue time point. Notated as 

SS_tissue_timepoint_CG_MethOveRegion.pdf 

S2: Methylation levels over repeat elements per tissue time point. Notated as 

SS_tissue_timepoint_CG_MethOveRegion.pdf  

S3: Methylation levels per repeat region for all tissues. Notated as 

repeat_name_MethOverRegion_CG.pdf 

S4: UMR region files. Notated as UMR_SS_tissue_timepoint.txt 

S5: LMR region files. Notated as LMR_SS_tissue_timepoint.txt 

S6: Tissue transition files and tissue transitions together with genes. Notated as                                               

tissue_transitions_f_bed.bed and genes_pos_tissue_transition.txt 

S7: Differentially methylated sites per tissue per transition files, hypo - and hyper methylated 

sites files and genes associated with DMS files. Notated as 

Diff25p_OD_Ftest_tissue_time_points.bed, 

Diff25p_Hyper/Hypo_OD_Ftest_tissue_time_points.bed, 

genes_TSS_1500_tissue_time_points.txt 

S8: Differentially methylated regions per tissue per transition files, hypo - and hyper 

methylated sites files and genes associated with DMS files. Notated as 

Diff25p_OD_Ftest_tissue_time_points.bed, 

Diff25p_Hyper/Hypo_OD_Ftest_tissue_time_points.bed, 

promoters_1500_Diff25p_OD_Ftest_tissue_time_points.txt 

S9: Tissue specific DMS. Notated as Tissue_DMS_all_trans.bed 

S10: Tissue specific DMR. Notated as Tissue_specific_dmr.bed 

S11: DM sites associated with DEG and DMEG files. Notated as 

tissue_time_points_DMS_DEG.bed and as tissue_time_points_DM_DEG.bed 
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S12: DMEG heatmaps 

Additional information: 

30 dpf pooling protocol: 

https://data.faang.org/api/fire_api/samples/INRA_SOP_GENESWITCH_D30_FETUS_POOLI

NG_20200221.pdf  

Sampling at 30 dpf protocol: 

https://data.faang.org/protocol/samples/INRA_SOP_GENESWITCH_D30_FETUS_SAMPLIN

G_20200221.pdf 

Sampling at 70 dpf protocol: 

https://data.faang.org/protocol/samples/INRA_SOP_GENESWITCH_D70_FETUS_SAMPLIN

G_20200221.pdf  

Sampling at newborn protocol: 

https://data.faang.org/protocol/samples/INRA_SOP_GENESWITCH_PIGLET_SAMPLING_2

0200221.pdf  

DNA extraction protocol: 

https://data.faang.org/api/fire_api/assays/INRA_SOP_GENESWITCH_WP1_PIG_EXTRACTI

ON_DNA_RNA_20201111.pdf  

RRBS library preparation protocol: 

https://data.faang.org/protocol/samples/WU_SOP_GENESWITCH_WP1_RRBS_library_prep

aration_20201201.pdf 

WGBS library preparation protocol: 

https://data.faang.org/api/fire_api/experiments/WU_SOP_GENESWITCH_WP1_WGBS_libra

ry_preparation_20210127.pdf  

NuGEN Technologies’ diversity trimming scripts: 

https://github.com/nugentechnologies/NuMetRRBS 

GSM-pipeline: https://github.com/FAANG/GSM-pipeline 

Reference genome: https://ftp.ensembl.org/pub/release-104/fasta/sus_scrofa/dna/  

Annotation: https://ftp.ensembl.org/pub/release-102/gtf/sus_scrofa/   
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 Supplementary figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1 Correlations between CpG methylation patterns from WGBS data. Correlations 

are grouped based on germ layer: a. Ectoderm, b. Endoderm, c. Mesoderm. 
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Figure S3 Clustering of all tissue samples at 3 developmental stages. Hierarchical cluster 

using Ward.D2 for RRBS data, with distances being measured from percent methylation per 

base (a). PCA clustering showing PC1 and PC2 with highest explained variance from RRBS 

data (b). 
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Figure S4 Dynamic changes for various tissues, with different colours depicting the 

methylation states (UMR, LMR and FMR). a. Kidney, b. Lung, c. Muscle, d. Skin, e. Small 

intestine. 
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Fig. S5 Distribution of DMS identified using RRBS data, showing the number (y-axis) of hypo 

and hyper methylated regions per tissue (on top x-axis), for each fetal transition (bottom x-

axis). Dev is defined as developmental transition and Mat defined as maturation transition. 

Hyper and hypo methylation are shown in orange and green as sacked bars. 
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Figure S6 Enrichment analysis of DMEGs in the developmental and maturation transition of 

up- and down-regulated gene groups. With a. Biological processes (BP) gene ontology (GO) 

terms for up-regulated genes which are both hypo and hyper methylated. b. Biological 

processes GO terms for down-regulated genes which are both hyper and hypo methylated. 

Cellular component (CC) GO terms for c. up-regulated genes and d. down regulated genes. 

All terms are filtered for an FDR<0.05. Genes are filtered as follows for classifications: up-

regulated log(FC) >1.5, and down-regulated log(FC)< -1.5. All methylated regions have a 

minimum difference of 25%.  
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development in chicken  
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Abstract 

Embryonic development is a dynamic process marked by germ layer differentiation into organs 

and tissues through organogenesis, which is regulated by intricate genomic and epigenomic 

interactions. In this study we used both reduced representation – and whole genome bisulfite 

sequencing data to unravel the role of DNA methylation in chicken development. We profiled 

the DNA methylomes from seven tissues (brain, kidney, liver, lung, muscle, skin, and small 

intestine) at three developmental stages, from embryo at 8 days, embryo at 15 days and at 

hatching. Methylome dynamics was investigated by 1. segmenting the whole methylome into 

classes based on the methylation levels and density of CpG sites, and 2. differential 

methylation analysis on both a per-site and region level. The number of differentially 

methylated sites across developmental stages within the various tissues ranged from 11,240 

to 50,114 at the developmental transition (embryo 8 days to embryo 15 days) and from 4,276 

to 25,661 at the maturation transition (embryo 15 days to hatch). Differentially methylated 

regions ranged from 29,848 to 263,44 at the developmental transition and from 50,993 to 

201,024 at the maturation transition. Using methylome segregation, we visualize the dynamic 

methylome, revealing that most tissues exhibit similar patterns of methylation state changes. 

However, the brain displays distinct patterns in comparison to other tissues. We further 

combined the epigenome (DNA methylation) with the transcriptome of the same seven tissues 

and developmental stages. Differentially methylated expressed genes were investigated using 

functional enrichment analysis. In tissues such as brain and muscle, terms related to general 

growth, such as embryonic morphogenesis and animal organ development, are significantly 

enriched in down-regulated genes during the developmental transition. An interesting example 

is the up regulated genes in skin during the developmental transition which show enrichment 

for terms such as collagen fibril organization, and extracellular matrix organization. This 

provides a first look into the dynamics of the DNA methylome during development in chicken. 
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Background 

Vertebrate development is a complex process that involves the coordinated activation and 

repression of numerous genes and signalling pathways [1]. Gastrulation is key during 

development in amniotes where the different germ layers are formed, namely the endoderm, 

mesoderm, and ectoderm [2]. These germ layers give rise to all the tissues and organs of the 

body through a series of cellular and molecular events, including morphogenesis, cell 

differentiation, and cell migration. The precise timing and regulation of these processes is 

critical for proper embryonic development, and even minor disruptions can lead to a wide range 

of congenital defects and developmental disorders. Development is orchestrated by gene 

expression, where alterations in gene expression levels at specific time points play a pivotal 

role in regulating tissue and cell differentiation [1,3,4]. Understanding the underlying molecular 

mechanisms of vertebrate development is therefore critical for a fundamental understanding 

of the evolution of development and for improving health and animal breeding.  

The functional regulatory genome refers to the regions of the genome responsible for 

regulating gene expression. The functional regulatory genome consists of various elements 

such as promoters, enhancers, silencers, insulators, and other regulatory elements that 

interact with each other to regulate gene expression [5–7]. Promoters are regions of DNA 

located adjacent to the transcriptional start site of a gene and are necessary for transcription 

initiation [5,6]. Enhancers and silencers are regions of DNA that can be located either 

upstream, downstream or inside of a gene and can increase or decrease gene expression, 

respectively [8,9]. Epigenomic modifications are chemical modifications of DNA and its 

associated proteins that affect gene expression without altering the underlying DNA sequence 

[10,11]. There are several types of epigenomic modification, including DNA methylation, 

histone modifications, and long non-coding RNA. DNA methylation involves the addition of a 

methyl group to a cytosine nucleotide in DNA, in vertebrates typically at a CpG dinucleotide, 

which can cause gene silencing [4,12–14]. These epigenomic modifications are important for 

regulating normal cellular processes, such as tissue differentiation and development. 

GENE-SWitCH is a project with the aim of investigating the functional regulatory genomes 

throughout embryonic development in the chicken and pig. Previous research investigating the 

dynamic nature of epigenomic modifications regulating the functional regulatory genome 

during fetal development have been conducted in mouse, and zebrafish [15–17]. However, 

similar studies in pig and chicken were limited in the number of tissues examined (e.g. only 

skeletal muscle) [18,19]. Our study contains data from seven key tissues in the chicken, 

representative of three embryological layers, and at three developmental stages namely 
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embryo at 8 days (early organogenesis), embryo at 15 days (late organogenesis) and at 

hatching. This is the first investigation into DNA methylation dynamics regulating gene 

expression during development in a wide variety of tissues in an avian species. Furthermore, 

we investigate the dynamics of development between a bird and a mammal by a comparative 

analysis between the chicken and pig.  

 

Results 

We investigated embryonic development and organogenesis by analysing seven different 

tissues from the three embryological germ layers, at different stages of development, embryo 

at day 8 (E8), embryo at day 15 (E15) and at hatching (HC). We generated 63 reduced 

representation bisulfite (RRBS) datasets (3 samples * 3 timepoints * 7 tissues) and 21 whole 

genome bisulfite (WGBS) datasets (1 sample * 3 timepoints * 7 tissues). By investigating the 

DNA methylome at these time-points we gain insight into the spatio-temporal dynamics of 

embryonic development.   

Methylome during development 

Based on WGBS data, global methylation levels ranged between 2-3%, CpG methylation 

between 59-71% and non-CpG levels between 0.2-0.4% (Table S1). Distribution of 

methylation levels (WGBS) across all tissues and time-points, is shown in Fig. S2. We 

observed a general pattern of methylation levels decreasing during development from E8 to 

E15 in all tissues, with brain showing the highest CpG methylation level at E8 (Fig. 1a). On a 

genome-wide level, brain showed a higher methylation level at E8, which decreased at E15, 

and then increased again at hatching (Fig. S8 and Data S12). Interestingly, in kidney, the 

methylation levels decreased from E15 to hatching, whereas in the six remaining tissues a 

slight increase in methylation levels from E15 to hatching is seen. 

A typical drop in methylation level (WGBS) at the promoter region is seen for all tissues at all 

stages of development (Fig. 1b). Lung at E15 had the lowest level of methylation at the 

promoter (~12%) while the highest level is observed for brain at E8 (~32%). Methylation levels 

within the gene body fluctuate between 50% and 70% for the different tissues at the three 

developmental stages. The level of methylation was also higher in the gene body compared to 

levels in intergenic regions (0-2000 bp downstream of the gene).  
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From the hierarchical clustering of WGBS samples (Fig. 1c), we observed two main clusters. 

The first main cluster divided further into two subclusters, one for kidney, liver, and skin  at 

hatching, while all three brain tissues and kidney E8 are in another subcluster. 

The second main cluster is divided into four subclusters. One subcluster contains lung, small 

intestine and muscle at hatching, with the latter forming a distinct branch within this subcluster. 

Interestingly, we also observed a subcluster of tissues derived from the endoderm germ layer, 

where liver at E15 and E8 group together and lung at E15 and E8 group together on separate 

branches within this subcluster. The remaining two subclusters show a separation of 

developmental stages E8 and E15, respectively. In the subcluster of E8, muscle and skin group 

on one branch, and small intestine on another. In the E15 subcluster, we found, as for E8, that 

muscle and skin group together and that small intestine now groups together with kidney on a 

separate branch with this E15 subcluster. 

The principal component analysis (PCA) of WGBS data (Fig. 1d) generally showed a similar 

cluster pattern as the hierarchical clustering. Liver samples at E8 exhibited slight separation 

from those at E15 and hatch, forming a distinctive cluster. Kidney at E8 and E15 clusters with 

small intestine of the corresponding developmental stages.  

Hierarchical clustering (Fig. S1a) and PCA clustering (Fig. S1b) for reduced representation 

bisulfite sequencing (RRBS) are presented in Fig. S1. Interestingly from these results the PCA 

showed a different pattern compared to the hierarchical clustering (Fig. S1a). In the PCA, brain 

samples cluster together at E8 and hatch, while E15 samples form a separate cluster along 

PC1 (Fig. S1b). In contrast, for the hierarchical clustering, brain and liver cluster on two distinct 

branches for liver and brain, respectively at all developmental stages. 
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Fig. 1 Methylation patterns and distribution from WGBS data of the tissues at different 

developmental stages. a. CpG methylation across seven tissues per developmental stage. 

Developmental stages are shown as different colours, with orange indicating E8, purple E15 

and green hatching (HC). b. Methylation levels across genes for each tissue per developmental 

stage from 2000 bp upstream of the transcription start site (TSS), in gene body and 2000 bp 

downstream of the gene. c. Hierarchical clustering of all tissue samples at three developmental 

stages in chicken. d. Principal component analysis (PCA) clustering showing PC1 and PC2. 

SI is small intestine.  
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Methylation levels across genomic regions during development 

Methylation levels across genes in different classes of gene expression 

To investigate the relationship between DNA methylation and gene expression, we examined 

transcriptome data obtained from the same tissues and timepoints, and we show an example 

of liver at hatching (Fig. 2). Our analysis revealed a negative correlation between the 

methylation levels at the transcription start site (TSS) and the corresponding gene expression 

levels. Genes with higher expression (TPM > 10) showed a decline in methylation levels to 

below 20% around the TSS. Conversely, unexpressed, or minimally expressed genes (0-1 

TPM) exhibited significantly higher methylation levels (~50%) around the TSS. All categories 

of expressed genes demonstrated elevated levels of methylation within the gene-body. 

 

 

 

 

 

 

 

Fig. 2 Distribution of methylation levels across different regions relative to the gene-body in 

liver at hatching. The y-axis represents methylation levels, ranging from 0 (unmethylated) to 1 

(fully methylated), while gene expression categories, spanning from unexpressed to lowly 

expressed and highly expressed genes, are depicted in distinct colours. The TSS is indicated 

as the first horizontal dotted line from the left, followed by the gene-body and regions 

downstream of the gene. 

 

Dynamics of DNA methylation in regulatory and repeat elements 

We further examined the methylation profile of repetitive elements and the methylation pattern 

associated with chromatin states as defined by Pan et al. [36]. Chromatin states show distinct 

patterns of methylation as shown for lung at E15 in Fig. 3a. The chromatin state with the lowest 
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methylation levels was E1, corresponding to actively transcribed TSS. Subsequent lowest 

methylation levels are observed in E3, E4, and E12, representing regions transcribed at genes, 

weakly transcribed at genes, and poised TSS, respectively. All four states showed a clear drop 

in methylation level compared to up- and downstream regions. Following these states, we 

observed E6 and E7, corresponding to strong active enhancers and medium enhancers with 

ATAC (assay for transposase-accessible chromatin) have a minor decrease in methylation 

compared to flanking regions. The E5 state, corresponding to transcribed regions without 

ATAC, and E2, representing flanking active TSS without ATAC showed a clear increase in 

methylation compared to up- and downstream regions. The four states with highest 

methylation levels are three enhancer states (E8, E9, E10) and ATAC islands (E11). Notably, 

the state with the highest methylation levels was E8, representing weak active enhancers. E12, 

corresponding to poised TSS, exhibited more varied methylation levels, likely due to the limited 

number of annotated regions in the genome for this state. Thus, the results showed that active 

and medium active enhancers are strongly methylated, while only strongly active enhancers 

showed a slight decline in methylation levels. This intriguing trend sheds light on the dynamic 

interplay between chromatin states and DNA methylation in gene regulation. (Fig. 3a). 

Methylation levels for chromatin states of other tissues are shown in Data S1. 

LINE repeats are generally highly methylated compared to up-and downstream regions while 

other repeat families including LTR ERV1 elements showed a slight decline in methylation 

levels (Fig. 3b, c and Data S2). Interestingly, (hind)brain at E8 exhibited markedly higher 

methylation levels at repeat elements (Fig. 3b), while lung at hatching showed significantly 

lower methylation levels (Fig. 3b), most prominently at LINE CR1 repeats. Methylation levels 

across other DNA repeats are shown in Data S2. 
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Fig. 3 a. Distribution of methylation levels within and surrounding different chromatin states in 

lung E15. Methylation levels are shown on the y-axis, and chromatin states are denoted as 

follows: E1: Actively transcribed TSS, E2: Flanking active TSS without ATAC, E3: Transcribed 

gene, E4: Weakly transcribed gene, E5: Transcribed region without ATAC, E6: Strong active 

enhancer, E7: Medium enhancer with ATAC, E8: Weak active enhancer, E9: Active enhancer 

without ATAC, E10: Poised enhancer, E11: ATAC Island, E12: Poised TSS. b. Methylation 

levels at LINE_CR1 and c. LTR_ERV1 repeats across samples. In all plots methylation levels 

ranging from 0 (unmethylated) to 1 (fully methylated) are shown on the y-axis 

 

Dynamics of DNA methylation during developmental and maturation 

phases in 7 tissues 

Methylome segregation 

We identified unmethylated and lowly-methylated regions (UMR and LMR, respectively), which 

can be indicative of cis-regulatory elements, such as promoters and enhancers (see methods 

for details and criteria used to call UMR and LMR). The total number of UMR identified ranged 

from 3,285 to 13,780 (Table S2), with the lowest numbers of UMR found in brain at E8 and 

hatch, and the most found in lung at hatch. More LMR than UMR were identified, and the 

number ranged from 8,699 to 259,020 (Table S2), with the highest numbers of regions 

identified for small intestine at hatch and E15, and the lowest number of LMR identified in brain 

at hatch. Average lengths and number of regions overlapping genes are indicated in Table S2. 

Mean length of a UMR across all tissues was 3,216 bp (ranging from 2,371 to 4,717 bp) and 

640 bp for LMR (ranging from 301 to 1,120 bp). Additionally, on average 5,568 (ranging from 

2,425 to 9,462) and 2,860 (ranging from 368 to 6,557) genes are associated with UMR and 

LMR, respectively. Brain E8 and at hatching have the least number of genes associated with 

UMR and LMR. Lung E15 has the highest number of genes associated with UMR, while small 

intestine E15 has the highest number of genes associated with LMR. Regions and associated 

genes for UMR and LMR are shown in Table S2 and Data S3, and S4, respectively.  

Distance of UMR and LMR to the TSS was calculated and plotted for brain tissue at hatching 

(Fig. S3). We observed a relative similar proximity of UMR and LMR to TSSs, with the average 

UMR distance to TSSs being slightly shorter compared to LMR. The large similarity in the 

distribution of the distance of UMR and LMR to TSSs suggest an abundance of potential 

overlap of cis-regulatory elements (Fig. S3). 
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The dynamic nature of the DNA methylome, both at a temporal and spatial level, was revealed 

by observed transitional changes between UMR, LMR and fully methylated regions (FMR) 

during development, i.e. changes between E8 and E15 and between E15 and hatching. (Fig. 

4, Fig. S4).  

Fig. 4 depicts the proportions of transitional changes of UMR, LMR, and FMR in lung (a) and 

muscle (b). A substantial fraction of UMR remains unchanged from E8 to E15. A small portion 

of the UMR at E8 transitioned to LMR at E15, and only a small fraction shifted to FMR at E15. 

Similarly, LMR at E8 predominantly remained LMR at E15, with a smaller proportion 

transitioning to UMR, and an even smaller fraction transitioning to FMR at E15.  

Notably, more than half of the FMR at E8 transitioned to LMR at E15, and most of the remaining 

staying unchanged, while a small fraction transitioning to UMR. Transitioning from E15 to 

hatching, a noteworthy trend emerged, where most of the FMR changed to LMR, with a small 

fraction changing to UMR. Moreover, the majority of LMR at E15 remained LMR at hatching, 

with the remaining fractions transitioning to FMR and UMR, respectively.  

Interestingly, the largest proportion of UMR at E15 remained UMR at hatching, with a smaller 

fraction shifting to LMR, and an even smaller portion changing to FMR. These patterns are 

consistent for both lung and muscle tissues, with the main difference being that a smaller 

proportion of UMR changed to LMR at E15 to hatching in muscle compared to lung. 

Additionally, a larger proportion of LMR transitioned to FMR at E15 to hatching in muscle 

compared to lung, and a higher number of UMR transitioned to LMR from E8 to E15 in lung 

compared to muscle. 

Transitions between methylation states of other tissues are shown in Fig. S4. Overall, the 

results revealed similar general patterns of methylation state transitions during development 

across different tissues. Some intriguing distinctions are observed in brain (Fig. S4a), where a 

substantial fraction of FMR transition to LMR from E8 to E15, and a prominent shift of FMR to 

LMR is seen from E15 to hatching. This suggests tissue-specific (distinct) epigenetic 

regulations in brain during chicken development. The number of genes found associated with 

transitioning regions are shown in Table S3.  

Notable genes linked to tissue development include MYLK4, PDIA5 and HDAC2 in muscle 

transitioning from FMR at E8 and E15 to LMR at hatching. Similarly, the genes HOXB1, GDF6, 

and MYB transitioned from FMR at E8 and E15 to LMR at hatching in the small intestine. 

Results for transitions of all tissues during development are available in Data S5. 
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Fig. 4 Methylation transitions occurring in lung (a) and muscle (b). Orange indicates FMR, red 

indicates LMR, and green indicates UMR over the different developmental stages. LMR and 

UMR were selected to show the dynamic nature of the methylome. FMR is only displayed in 

this figure if changing to LMR or UMR in at least one developmental stage. FMR that stay 

unchanged during the three stages of development are excluded from these plots. 

 

Differential methylation analysis 

To get a more detailed overview of the changes in methylation during chicken development, 

we performed per-site (RRBS, three samples per tissue per time-point) and region (WGBS, 

one sample per tissue per time-point) differential methylation (DM) analyses. Number of DM 

sites (DMS) and DM regions (DMR), together with associated genes are shown in Table 1. For 

these and subsequent analyses the E8 to E15 transition was defined as developmental 

transition and transition from E15 and hatching as maturation transition.   

Kidney and muscle exhibited the lowest numbers of DMS during the developmental and 

maturation transitions. In contrast, the brain and small intestine showed the highest numbers 

of DMS at the developmental and maturation transitions. The number of DMS increased during 

the transition from development to maturation in the kidney and small intestine, while a 

decrease was observed in the skin, brain, muscle, liver, and lung. 

For DMR, the brain exhibited the highest number of DMR during the developmental transition, 

while the kidney had the lowest. During the maturation transition, the small intestine displayed 

the highest number of DMR, and the lung had the lowest. Similarly to DMS, the number of 

a.              b.  
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DMR decreased during the transition from development to maturation in the skin, brain, and 

muscle, while an increase is seen in the kidney, liver, lung, and small intestine.  

We further divided both DMR and DMS into hyper and hypo-methylated changing regions 

based on the directional changes in the methylation, where hypo-methylation changes 

indicates a decrease in methylation level from one developmental stage to the next, and hyper-

methylation changes indicates an increase (Fig. 5).  

 

Table 1 Counts of DMS and DMR between developmental stages (E8 to E15 = Developmental 

transition (Dev); E15 to HC = Maturation (Mat) transition) for tissues. Thresholds of 15% 

difference and q-value <0.01 were applied.  

 

The largest numbers of hypo-methylated changing regions (WGBS) are observed in brain, 

muscle and skin at the developmental transition and in the small intestine at the maturation 

transition (Fig. 5a). DMS showed similar patterns in the number of hyper- and hypo-methylated 

changing sites for muscle, small intestine, and skin (Fig. 5b) compared to DMR patterns. 

Interestingly, the brain showed a larger proportion of hyper-methylated changing sites to hypo-

methylated sites (Fig.5b), whereas for DMR a larger proportion of hypo-methylated changing 

regions to hyper-methylated regions is observed. Similarly, the lung has a higher proportion of 

hyper-methylated changing sites compared to the number of hyper-methylated changing 

regions. Tables of all DMR and DMS together with associated promoter of genes are shown 

in Data S6 (DMS) and S7 (DMR). 

 

 

 

RRBS (DMS) WGBS (DMR) 

Tissue 
Developmental 

transition 

Maturation 

transition 

Promoter of 

genes 
Developmental 

transition 

Maturation 

transition 

Promoter of 

genes 

Dev Mat Dev Mat 

Skin 
22,696 6,771 1,375 601 198,794 86,679 3,890 1,682 

 

Brain 59,114 13,956 2,556 903 263,444 121,528 5,157 2,131 

Muscle 24,394   4,276 1,370 479 212,851 79,900 4,138 1,468 

Kidney 11,240 12,826 893 860 29,848 118,081 593 2,229 

Liver 12,099 5,756 1,002 552 63,274 109,216 1,147 2,088 

Lung 18,732 18,844 1,180 1,318 30,227 50,993 676 1,101 

Small 

intestine 

19,642 25,661 1,344 1,738 116,920 

 

201,024 2,316 4,086 
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Fig. 5 Distribution of a. DMR (WGBS data) and b. DMS (RRBS data), showing the number (y-

axis) of hypo- and hyper-methylated changing regions per tissue (on top x-axis), for each 

embryonic transition (bottom x-axis). Dev is defined as developmental transition and Mat 

defined as maturation transition. Hyper- and hypo-methylation are shown in orange and green 

stacked bars, respectively. SI indicates small intestine.  

 

Tissue specific methylation 

Tissue specific DMR and DMS (Fig. 6a), together with the associated gene promoter regions, 

were identified for each tissue (Data S8, and S9, respectively). The brain and small intestine 

showed the highest number of tissue specific DMR and DMS. The lowest number of tissue 

specific DMR is identified for lung, followed by liver and kidney. Lung had a high number of 

tissue specific DMS in comparison to DMR. Generally, there were more DMS than DMR in the 

brain, kidney, liver, lung, and small intestine.  
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Fig. 6 a. Number of tissue specific DMR (WGBS) and DMS (RRBS) for each tissue. b. 

Significant enrichment of biological process terms (FDR<0.05) for genes associated with tissue 

specific DMR. Enrichment of cellular component terms for tissue specific DMR/S genes are 

shown in Fig. S6 and Table S6, respectively.  

 

Enrichment analysis of the genes associated with tissue specific DMR, showed significant 

enrichment of biological process terms in brain such as neuron projection development, 

neurogenesis, neuron differentiation, and tissue development while for kidney tube 

development is significantly enriched (Fig. 6b). Furthermore, various general growth and 

molecular GO biological process terms, such as regionalization, DNA-templated, animal organ 

development, and pattern specific processes, are enriched in multiple tissues (brain, kidney, 

liver, skin, and small intestine).  

On an individual gene level, we investigated genes known for their roles in embryonic 

development, tissue differentiation, and organogenesis. For tissue specific DMS the following 

interesting genes are observed, PAX3, PAX5, PAX6 and PAX7 in brain, and PAX3, PAX1, 

PAX7 in muscle. Furthermore, for tissue specific DMR, HOXD11 and HOXD3 were identified 

in kidney and skin, respectively.  

a.      b. 

Tissue 
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Assessing functional enrichment from DM-associated differential 

expressed genes (DMEG) during development  

Additional insight into the regulation of gene expression was gained by combining both 

differentially methylated regions and sites with differentially expressed genes, respectively. In 

this section, we focus primarily on the DMR integrated with differentially expressed genes 

(DMEG) (Fig. 7a). We observed the largest number of DMEG at the developmental transition 

in brain, and skin and the lowest number in kidney and lung (Fig. 7a).  Additionally, we 

combined DMS with differentially expressed genes and the results for DMEG and DMS 

associated with differentially expressed genes can be found in Data S10 and S11.  

Fig. 7b shows DMEG in skin at the developmental transition with corresponding expression 

and methylation change. We observed more hypo-up and hypo-down genes in comparison to 

the hypermethylation categories (hyper-down, hyper-up). We then used functional enrichment 

analysis to investigate the up-regulated (combined hyper- and hypo-methylated) and down-

regulated (combined hyper- and hypo-methylated) categories based on gene expression 

(TPM) for the identified genes. Results for skin are shown in Fig. 7c,d and significant results 

for other tissues are shown in Fig. S7. Biological processes such as collagen fibril organization, 

regulation of cell adhesion, positive regulation of response to stimulus were significantly 

enriched in the upregulated DMEG group (Fig. 7c.). Secondly, for down-regulated DMEG, we 

observed significant enrichment of cellular component GO terms such as neuron projection 

(Fig. 7d). Interestingly, brain, liver, muscle, and small intestine showed down-regulation of 

many general developmental processes (Fig. S7b), including embryonic morphogenesis, 

embryo development, embryonic organ morphogenesis, anatomical structure morphogenesis, 

and animal organ morphogenesis mainly during the developmental transition. In the kidney 

during the developmental transition, we observed an enrichment of the A-band cellular 

component GO term in up-regulated genes (Fig. S7a).  

On an individual gene level, we investigated genes that are known to play crucial roles in 

embryonic development, organogenesis, and germ layer formation. GDF6, and GDF8 showed 

up-regulation in muscle, lung, and skin during the developmental transition, respectively. 

WNT3A is down-regulated in brain tissue during the developmental transition. Fibroblast 

Growth Factor (FGF) genes are down-regulated during the developmental transition in the 

small intestine (FGF3) and down-regulated during the maturation transition in lung, muscle, 

and the small intestine (FGF6). Among the identified HOX genes, HOXD10 was down-

regulated in muscle, HOXA4 in skin, and HOXA2 in lung and skin during the developmental 
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transition. Additionally, BMP4 and BMP11, showed up-regulation in muscle and skin during 

the developmental transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 a. Number of DMEG in chicken, shown per transition in the context of development. 

Various tissues are shown in corresponding colours. b. Scatterplot showing the relationship 

between expression and methylation in the skin at the developmental transition (E8 to E15), 
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b.           c. 
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with the expression fold change (FC) on the y-axis and methylation change (MC) on the x-axis. 

Categories of methylation change i.e. hypo/hyper and expression change (up- or down-

regulated) are shown in different colours. DMEG category represents all differentially 

methylated expressed genes, which have an expression FC between -1.5 and 1.5 (filtered out). 

Further categories are defined as: up-regulated has FC>1.5 and down-regulated has FC<-1.5. 

Hyper-methylation: MC => 15% and hypo-methylation: MC<= -15%. c. Biological processes 

gene ontology (GO) terms for up-regulated genes (FC>1.5) in skin at the developmental 

transition. d. Cellular components (CC) GO terms for down-regulated genes (FC< -1.5) in skin 

at the developmental transition  

 

Comparative analysis between pig and chicken 

The dynamics of the methylome during fetal development in pig is reported in Chapter 4 of this 

thesis. Since the stages of development examined in pig (chapter 4) and chicken (this chapter) 

were chosen to represent similar stages of development, results of these two studies can be 

used for comparative analysis to gain some preliminary insight into similarities and differences 

in the methylome during vertebrate development. We first investigated the level of DNA 

conservation in DNA methylation defined regulatory elements (UMR and LMR) . The UMR and 

LMR for the two species were compared to human by aligning the regions to the human 

reference sequence (Fig. 8a). We observe a high DNA sequence conservation for UMR 

(~90%) and LMR (~80%) between pig and human (Fig 8a). The DNA sequence conservation 

for UMR between chicken and human is moderate ranging from 50 to 65% (Fig. 8a), with the 

UMR in brain showing the highest sequence conservation. LMR sequences have low 

conservation between chicken and human, between 10 and 30%, with cerebellum showing the 

highest LMR conservation (~30%).  

The conserved DNA-sequences between human-pig and human-chicken were used to 

compare the number of DNA methylation regions conserved between pig and chicken in the 

context of UMR and LMR.  The conserved UMR and LMR between chicken and pig were then 

associated with genes (TSS + 1500 bp upstream) and the number of associated genes is 

shown in Fig. 8b. The highest variation among tissues and development stages was observed 

for LMR. For example, we observed no LMR-genes conserved between pig and chicken in 

liver at the third developmental stage. Generally, more LMR-genes are identified as conserved 

between pig and chicken at the second and third developmental stage, specifically for the skin, 

small intestine and brain. The number of UMR-genes is lower in comparison to the number of 

LMR-genes conserved across all tissues and developmental stages. Recent studies have 
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highlighted the association of LMR in both birds and mammals with transcription factor binding 

sites, suggesting its potential significance in epigenetic programming. Given these 

implications, the level of conservation of LMR between pig and chicken could indicate its 

conserved functional importance across species.  

 

 

 

 

 

 

 

 

 

 

Fig. 8 Comparative analysis of UMR and LMR between pig and chicken. a. Alignment 

percentage of pig and chicken methylome segments (UMR and LMR) to human sequences. 

Tissue and time-point are shown as a label at the top and on the right y-axis, and on the x-axis 

the percentage of sequence aligning between each species and human is shown. b. Number 

of genes associated with the conserved UMR and LMR regions between pig and chicken. 

 

Discussion 

DNA methylation plays a role in the regulation of gene expression, and changes dynamically 

during development and during cell, and tissue differentiation. In this study, we investigated 

the spatio-temporal dynamics of the DNA methylome during chicken fetal development. Using 

key tissues at three developmental stages representing early and late organogenesis and 

hatching, we provided the first insight into the methylome's role in regulating avian fetal 

development and tissue differentiation. Similar studies have been performed in mouse [16] and 

pig (Chapter 4), both representatives of the mammalian clade, which provides the opportunity 

for insights into similarities and differences between species during vertebrate development. 

The pig methylation data are from the same tissues and sampled at comparable developmental 

a.             b. 
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stages. The comparable stages between chicken and pig, respectively are E8 and 30 dpf (days 

post fertilization) representing early organogenesis, E15 and 70 dpf representing late 

organogenesis, and lastly hatching and new-born.  

On a global methylation scale we observed similar levels as previously described in adult 

chicken [20], during development of skeletal muscle in chicken [19], and in adult great tit 

[21,22]. In contrast, we observe lower global methylation levels in liver and muscle in 

comparison to a study in chicken embryos (day 2 until 21 days) [23]. CpG methylation levels 

are similar between the different tissues at the same developmental stage, and there is a 

general trend in decreased levels of methylation from early stages of development (E8) to 

hatching stage, which is similar to observations during Great tit development [24]. Global CpG 

methylation levels across all tissues and time-points are lower in comparison to the 

observations in pig (Chapter 4) and mouse [16].   

Methylation levels at the promoter and TSS show the expected drop, followed by  increased 

methylation in the gene-body (GB) as previously observed in birds such as chicken and great 

tit, and mammals such as pig, mouse and human [16,20–22,25]. However, methylation levels 

within the gene-body are lower in chicken (~0.6) compared to pig (~0.8). This is in concordance 

with previous studies, where avian methylation levels are lower and frequencies of fully 

methylated sites are lower compared to mammals in similar tissues during development and 

in adult stages [16,21,23,25]. The higher methylation levels within the gene-body in both 

mammalian and avian species suggest this as a likely mechanism which is conserved among 

species. However, the differences in the high level of methylation in the gene-body of mammals 

and birds have been suggested to be due to transposable elements whose activity is 

suppressed by methylation and thereby inhibiting transposable element insertions, which can 

disrupt the genome. Mammals have a higher amount of transposable elements than birds, and 

thus more methylation is required within the gene bodies [26–29]. 

In our study both UMR and LMR, are found in close proximity to the TSS. These findings 

contrast with previous results in pig (Chapter 4) and human [20], as well as the common 

assumption that UMR are indicative of promoters and LMR of enhancers. This could be due 

to the method of methylome segregation [21], and assumptions which are based on the 

mammalian genome, while here we are investigating a bird genome. Furthermore, the chicken 

genome is more gene dense, and smaller in size in comparison to mammalian genomes which 

could explain the closer proximity of both UMR and LMR to TSS in chicken. 

MYLK4, PDIA5 and HDAC2 genes are identified in muscle transitioning from FMR at E8 and 

E15 to LMR at hatching. The MYLK4 [30] and HDAC2 [31] have specific roles in muscle 
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development, with the latter identified in skeletal muscle development in chickens. HOXB1, 

transition from FMR at E8 and E15 to LMR at hatching in the small intestine. HOXB1 is 

important in morphogenesis, and has been identified in intestinal epithelial cells, as well as in 

the mesoderm and gut endoderm [32,33].  

Remarkable differences in methylation patterns are evident in the number of hyper- and hypo-

methylated regions across different tissues and developmental transitions in both pig and 

chicken. Notably, at the developmental transition, pig liver has only a few hyper- and hypo-

methylated regions. However, during the maturation transition, a considerable number of 

hyper-methylated regions are identified in pig liver. In contrast, the liver tissue in chicken does 

not show any remarkable differences compared to other tissues. Differences between the 

methylation dynamics of liver during fetal development between the pig and chicken can be 

due to differences in tissues differentiation between mammals and birds during organogenesis. 

In eutherian mammals the yolk sac is smaller, and nutrients are primarily received from the 

mother through the placenta. In contrast, the yolk sac in birds is much larger and nutrients are 

primarily stored and utilised here [34]. During early developmental stages the yolk sac has a 

hematopoietic function, which is replaced by the liver during the fetal development stages in 

eutherian mammals, explaining why the liver is one of the first organs to develop fully [1,3,34]. 

In contrast, birds have a different embryonic development pattern where the liver develops 

simultaneously with other organs and tissues. 

Brain development in chickens (birds) displays more changes in the methylome during fetal 

development than in pigs (mammals). Specifically, a larger proportion of hypo-methylated 

regions are identified in the chicken methylome during the developmental transition, in 

comparison to pigs. Functional enrichment analyses show no brain-specific GO terms for 

tissue-specific DMR in pigs, whereas in chickens, tissue-specific terms such as neurogenesis 

and neuron development are identified. 

In skin, tissue specific functions start developing from late organogenesis (E15) onwards, e.g. 

enrichment of extracellular matrix organization and collagen fibril organization in upregulated 

genes during the developmental transition. Skin has 3 layers, namely the epidermis (top layer), 

dermis (middle layer) and subcutaneous tissue. Collagen and keratinocytes are found in the 

epidermis layer of the skin, and the extracellular matrix is found in the connective tissue of the 

subcutaneous layer [35]. Skin and brain develop from the ectoderm germ layer, and the 

downregulation of neuron projection from late organogenesis (E15) shows the differentiation 

of these tissues from late organogenesis stage. This observation is seen in other tissues 

(muscle, small intestine) and is also seen in the pig during development in kidney and muscle 

[1].  
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The identification of well-known genes (e.g. HOX, PAX, WNT), that play a crucial role in 

embryonic development, tissue differentiation, and growth across multiple tissue types shows 

the importance of these genes in shaping the developmental trajectory of these tissues in both 

chicken and pig. Furthermore, our observations of the differential expression and methylation 

of these genes together with their developmental roles further accentuate their significance in 

regulating tissue development. 

Conclusion 

Our study provides, to our knowledge, the most comprehensive analysis of the DNA 

methylation dynamics during development of seven tissues in chicken, expanding on previous 

research on adult tissues and a single embryonic tissue [19,36]. We reveal methylome 

dynamics by segmenting the methylome, and performing differential methylation analyses, 

which show sites and regions changing during development. The regulatory function of 

methylation for gene expression is shown by combining our results with gene expression data. 

Remarkable differences in the methylome patterns between chickens and pigs are observed, 

with the most notable differences found in the liver tissue during development. Liver is fully 

developed at an early stage of development in pig in comparison to chicken, which is due to 

the hematopoietic function of the liver in mammals during development in comparison to birds. 

The spatio-temporal epigenomic data sets described here, are an invaluable resource for 

addressing fundamental questions about gene regulation during chicken tissue and organ 

development. 

 

Methods 

Experimental model and tissue collection 

Tissues, including the brain (hindbrain at E8, and cerebellum at E15 and hatching), liver, 

kidney, skin, muscle (hindlimb muscle at E8 and E15 and Gluteus Medius at hatching), lung, 

and small intestine (small intestine at E8 and E15 and ileum at hatching), were sampled at 

dissected to remove and dissect the organs. Tissues were processed using a standard 

procedure of cleaving the organ and then each organ was stored individually. The embryo was 

sexed using a standard PCR procedure. Hatching samples were collected from fertilized eggs 

incubated for 21 days, using a standard procedure and the hatched chick was euthanized. 

Thereafter the organs were dissected and, small pieces were stored for DNA and RNA 

extraction.  
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DNA and RNA were extracted from the stored samples following a standard protocol which is 

available on the FAANG DCC. DNA was extracted following the protocol from AllPrep 

DNA/RNA/miRNA from Qiagen. The protocol was the same for all tissues and developmental 

stages, except for kidney where optimizations were necessary and those are explained in more 

detail in the protocol. Sexes selected for methylation sequencing were as follows, RRBS: E8 

– pooled sample, E15 – female, male, male, hatching – female, male, male; and WGBS: E8 – 

pooled, E15 - female, hatching - female. 

Bisulfite sequencing (RRBS and WGBS) 

RRBS (three samples x tissue x developmental stage) and WGBS (one sample x tissue x 

developmental stage) library preparations are described in the protocol available on the 

FAANG DCC. In brief, the Tecan Ovation RRBS Methyl-Seq kit and the Illumina NovaSeq 

6000 were used to construct and sequence the RRBS libraries. MspI enzyme was used to 

cleave the isolated DNA, and fragments between 50 and 500 bp were selected. The bcl2fastq 

v2.17.1.14 conversion software was used to generate and demultiplex fastq files following the 

sequencing of all samples. Illumina NovaSeq 6000 at Novogene, was used for the creation 

and sequencing of the WGBS libraries, furthermore EZ DNA Methylation Gold Kit was used 

for bisulfite conversion and fragments were selected and quantified using the KAPA HiFi 

HotStart ReadyMix. The libraries were then sequenced with a PE150 strategy.  

Raw data analysis & clustering analysis 

NuGEN Technologies’ diversity trimming scripts were used for initial trimming of the raw RRBS 

FASTQ files to remove extra sequences added by the diversity adaptors. Afterward, reads 

were filtered to include only those beginning with the expected YGG trinucleotide sequence. 

The resulting dataset averaged 38 million reads for each library of RRBS (ranging from 28.5 

million to 49 million) and 154 million reads for WGBS data (ranging from 114 million to 193 

million). The coverage of all reads was investigated, yielding an average of 46X and 22X for 

RRBS and WGBS data, respectively. Quality statistics can be found in Tables S4 (WGBS) and 

S5 (RRBS). Additionally, we determined the bisulfite conversion rate (~99.5%) of samples by 

calculating the ratio of unmethylated to the total number of reads for covered cytosines on the 

mitochondrial genome for RRBS datasets. This rate was used as a quality metric to determine 

the efficiency of bisulfite conversion. Bisulfite conversion rate for WGBS datasets (~99.5%) 

were provided by sequence provider. The datasets were processed using the GSM-pipeline 

v1.0 used for RRBS and v2.0 for WGBS, on the Gallus gallus GRCg6a reference genome 

assembly (https://ftp.ensembl.org/pub/release-104/fasta/gallus_gallus/dna/). The reads were 

initially processed using the TrimGalore tool [37] with default settings for trimming. Bismark 

aligner was used within the pipeline, with the parameter --rrbs or --bam specified for RRBS 
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and WGBS data, respectively. The pipeline subsequently converts binary alignment files to 

CGmap files, where reports of methylation rates for all covered CpGs are provided. The 

information is also provided in extensive bismark methylation reports. Additionally, global 

methylation rates per sample were reported. The CGmap file was converted to CpG report text 

files, providing methylation distributions per sample, including correlations and clustering 

between various tissues at the three time points, correlations between tissues from the same 

germ layer, and developmental stage. PCA and hierarchical (Ward.D2 cluster method) 

clustering and correlations were performed using the generated CpG text report files in 

MethylKit v1.18.0 [38]. 

Methylome segmentation 

Firstly, CGmap files from WGBS data were filtered to only include CpGs with a coverage of at 

least 10 reads per sample. UMR and LMR were identified by using the filtered CGmap files as 

input into the MethylSeekR v1.32.0 package in R [39]. The segmentation criteria for the 

methylome involved (1) a false discovery rate (FDR) of less than 5% for regions, (2) DNA 

methylation levels ranging from 0-50% for UMR and 10-50% for LMR, and (3) more than 5 

CpGs per region. Further distinction between UMR and LMR was made based on the CpG site 

density within the regions. UMR were found to be CpG-rich (>30 CpG sites per region) whereas 

LMR were CpG-poor (<30 CpG sites per region) [39]. FMR were further identified using custom 

scripts, with the following requirements: (1) CpG sites with methylation levels >0.75, (2) regions 

of 1000 bp with more than 10 CpG sites, and (3) removal of redundant regions repeated in 

UMR/LMR. Methylome dynamics were determined using the intersect function in bedtools 

v2.30.0 [40] and regions were required to have at least 10% overlap. FMR at all stages of 

development were excluded, and the results were plotted in R. Scripts are available on request.  

Differential methylation analysis  

The CGmap report text files generated from the RRBS and WGBS data were filtered to exclude 

CpG sites with less than 10 reads and bases/regions with a higher coverage than the 99.5 

percentile. The read coverage distributions between samples were normalized using the 

MethylKit (R) package v1.18.0 [38]. Reads on both strands of a CpG nucleotide were merged 

to obtain better counts of cytosines at a specific CpG site. Regions in WGBS were calculated 

using a sliding window approach with a window size of 500 bp and a step size of 250 bp. A 

methylation difference calculation between development phases for each tissue was 

performed using a pairwise comparison with an F-test, together with basic correction for 

overdispersion (MN) [38,41]. Pairs of E8 to E15 were defined as developmental transition, and 

E15 to hatching as maturation transition. Methylation differences for RRBS data were 
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calculated on a per site level, whereas for WGBS data, methylation differences were calculated 

on a regional level. CpG sites/regions were considered DM if there was >15% difference in 

methylation rate for each transition (e.g. E8 and E15) and having a corresponding q-value 

<0.01. Lastly, hyper- and hypo-methylated sites/regions were identified per tissue for the two 

defined transitions.  

DMS and DMR were annotated using the Ensembl Gallus gallus GRCg6a - release 104 

annotation (https://ftp.ensembl.org/pub/release-104/gtf/gallus_gallus/). The core promoter 

regions were defined as the transcription start site (TSS) of the gene with an additional 500 bp 

upstream and 200 bp downstream from the TSS, taking the strand into consideration for all 

genes. Intergenic regions were defined as starting 1000 bp upstream of the gene TSS, until 

the next TSS. We annotated the hypo- and hyper-DMR using the described custom region files 

with bedtools intersect. 

Identifying tissue specific promoters 

Tissue-specific promoters were identified by first using the Ensembl Gallus gallus GRCg6a - 

release 104 annotation to determine promoters. Promoters were defined as 1200 bp upstream 

and 200 bp downstream of the TSS with a consideration for strandedness. This region is larger 

in comparison with the ‘core promoter’ region, as the aim is to identify potential enhancers 

close to promoters and in this way defining a larger region. These promoter regions were then 

combined with associated DMR from WGBS and DMS from RRBS for each tissue during the 

developmental transition. Thereafter all DMR and DMS for a given tissue were determined 

(thus all methylation changes occurring in both transitions). Next, DMR/DMS that were specific 

to each tissue across all transitions were identified using bedtools intersect with the -v flag (e.g. 

bedtools intersect -v -a Tissue1_all_transitions -b all_other_tissues). Unique genes were 

extracted from each tissue-specific DMR and DMS and investigated for significant enrichment 

in gene ontology (GO) terms using ShinyGO v0.77 [42]. 

Visualisation of methylation levels and transposable elements 

Relationship of methylation levels and various genomic regions were investigated using 

ViewBS v0.1.11 [43], where the methylation reports created from bismark were implemented 

together with custom region files of repeats and chromatin states. Distribution of methylation 

levels over promoter, gene-body and transcription termination sites (TSS) were achieved by 

creating a region file using the GRCg6a version 104 annotation file. Genes were classified 

based on their expression levels (TPM) as follows: (i) ≥0 to <1, (ii) ≥1 to <10, (iii) ≥10 to <30, 

(iv) ≥30 to >75, (v) ≥75. The plot was generated using the MethOverregion functionality within 

ViewBS.  
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Methylation patters in different repeat classes were visualised using the MethOverregion 

function. The epigenomic states from the associated tissue were obtained from Pan, et al 

(2023) [36] and visualisation was performed using the MethOverregion functionality. The 

methylation level distribution was obtained using the ViewBS MethLevDist utility. Genome wide 

methylation patters were obtained using the ViewBs MethGeno utility.  

Integrative analysis of expression and methylation 

The relationship between gene expression and DNA methylation was investigated by using 

curated gene expression data (available on the FAANG DCC) in the context of TPM expression 

values per tissue and time-point in 4 replicates. Furthermore, differentially expressed genes 

were available per tissue for each transition in development, while promoter DMR and DMS 

were overlayed with the corresponding differentially expressed genes using bedtools intersect 

with the -wo flag to retain information regarding differentially expressed genes  and DMR/DMS. 

The categorization of DMEG were performed based on the methylation and expression 

changes, where DMEG were classified as up-regulated with a log(FC)>1.5, down-regulated 

with log(FC)<-1.5, hyper-methylated: methylation change>15%, and hypo-methylation if 

methylation change <15. Lastly, GO analysis was performed for all genes per tissue at the 

developing transitions and terms were significantly enriched with a FDR<0.05. Top pathways 

were obtained and plotted together, followed by GO (ShinyGO; [42]) analysis for the up-

regulated and down regulated categories as stated above. 

Comparative analysis of regulatory regions between species 

For alignments of methylome segments (UMR, LMR), we implemented a similar method as 

Roller et al. [44]. The regions were aligned using LastZ algorithm from Ensembl release 90 

(pig) and release 95 (chicken). Human was used as the reference species for alignment of 

UMR and LMR in the two species (pig, chicken). The aligned regions of corresponding tissue-

time points in human were then compared (bedtools) between pig and chicken for identification 

of conserved methylated regions involved in regulating development. Lastly the promoter 

regions of genes were associated with the conserved regions to determine the number of 

associated genes.  

Supplementary information 

Supplementary tables 

Download: https://osf.io/xn5vq/?view_only=bdf728b6c28546d693d4c65cab9a20a3  
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(Excel file – Supplementary_tables.xls) 

Supplementary data files 

Download: https://osf.io/xn5vq/?view_only=bdf728b6c28546d693d4c65cab9a20a3  

S1: Methylation over chromatin states per tissue time point. Notated as 

GG_tissue_timepoint_CG_MethOveRegion.pdf   

S2: Methylation levels over repeat elements per tissue time point and methylation levels per 

repeat region for all tissues. Notated as GG_tissue_timepoint_CG_MethOveRegion.pdf and 

repeat_name_MethOverRegion_CG.pdf 

S3: UMR region files. Notated as UMR_GG_tissue_timepoint.txt 

S4: LMR region files. Notated as LMR_GG_tissue_timepoint.txt 

S5: Tissue transition files. Notated as tissue_transitions.bed  

S6: Differentially methylated sites per tissue per transition files, hypo - and hyper methylated 

sites files and genes associated with DMS files. Notated as 

Diff15p_OD_Ftest_tissue_time_points.bed, 

Promoter_{Hyper/Hypo}_OD_Ftest_tissue_time_points.txt 

S7: Differentially methylated regions per tissue per transition files, hypo - and hyper methylated 

sites files and genes associated with DMS files. Notated as 

Diff15p_OD_Ftest_tissue_time_points.bed,  

Promoter_{Hyper/Hypo}_OD_Ftest_tissue_time_points.txt 

S8: Tissue specific DMS. Notated as Tissue_specific_dms.bed and 

genes_Tissue_specific_dms.bed 

S9: Tissue specific DMR together with genes. Notated as GENES_Tissue_specific_dmr.bed 

S10: DMEG files. Notated as tissue_time_points_DM_DEG.bed 
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S11: DM sites associated with DEG files. Notated as tissue_time_points_DM_DEG.bed 

S12: Methylation levels over the whole genome for each sample. Notated as 

tissue_Genome_Methylation_MethGeno_CG.pdf 

Additional information: 

E8 pooling protocol: 

https://data.faang.org/api/fire_api/samples/ROSLIN_SOP_GENESWITCH_E8_EMBRYO_P

OOLING_20200915.pdf 

Sampling at E8 protocol: 

https://data.faang.org/api/fire_api/samples/ROSLIN_SOP_GENESWITCH_E8_EMBRYO_SA

MPLING_20200915.pdf 

Sampling at E15 protocol: 

https://data.faang.org/api/fire_api/samples/ROSLIN_SOP_GENESWITCH_E15_EMBRYO_S

AMPLING_20200915.pdf 

Sampling at hatch protocol: 

https://data.faang.org/api/fire_api/samples/ROSLIN_SOP_GENESWITCH_HATCHED_CHIC

K_SAMPLING_20200915.pdf 

DNA extraction protocol: 

https://data.faang.org/api/fire_api/assays/ROSLIN_SOP_GENESWITCH_WP1_CHICK_EXT

RACTION_DNA_RNA_20201111.pdf 

RRBS library preparation protocol: 

https://data.faang.org/api/fire_api/experiments/WU_SOP_GENESWITCH_WP1_RRBS_librar

y_preparation_20201201.pdf 
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WGBS library preparation protocol: 

https://data.faang.org/api/fire_api/experiments/WU_SOP_GENESWITCH_WP1_WGBS_libra

ry_preparation_20210127.pdf   

NuGEN Technologies’ diversity trimming scripts: 

https://github.com/nugentechnologies/NuMetRRBS 

GSM-pipeline: https://github.com/FAANG/GSM-pipeline 

Reference genome: https://ftp.ensembl.org/pub/release-104/fasta/gallus_gallus/dna/  

Annotation: https://ftp.ensembl.org/pub/release-104/gtf/gallus_gallus/  
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Supplementary figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1 Clustering of all tissue samples at 3 developmental stages. Hierarchical cluster 

using Ward.D2 for RRBS data, with distances being measured from percent methylation per 

base (a). PCA clustering showing PC1 and PC2 with highest explained variance from WGBS 

data (b). 
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Figure S3 Density plot showing the distribution of the UMR (green) and LMR (blue) from the 

TSS in brain tissue at hatching. Y-axis shows the densities of the regions (UMR and LMR) and 

x-axis is the log distance of the regions to the TSS. 
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Figure S4 Dynamic changes for various tissues, with different colours depicting the 

methylation states (UMR, LMR and FMR). a. brain, b. kidney, c. skin, d. small intestine, e. liver. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5 Annotation of the hyper and hypo methylated regions from WGBS. Features are 

defined as follows, intergenic is 1000 bp upstream of TSS until next TSS. Genes are defined 

as the gene body. Promoter is the region 500 bp upstream of the TSS. Promoter_gene are 

regions which are found in both promoter and gene body.  
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Figure S6 Enrichment analysis of cellular componenet GO terms for tissue specific DMR 

genes.  
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Figure S7 Enrichment analysis of DMEG in the developmental and maturation transition of up- 

and down-regulated gene groups. With a. Biological processes (BP) gene ontology (GO) terms 

for up-regulated genes which are both hypo and hyper methylated. b. Biological processes GO 

terms for down-regulated genes which are both hyper and hypo methylated. Cellular 

component (CC) GO terms for c. up-regulated genes. All terms are filtered for an FDR<0.05. 

Genes are filtered as follows for classifications: up-regulated log(FC) >1.5, and down-regulated 

log(FC)< -1.5. All methylated regions have a minimum difference of 15%. 

 

 

 

 

 

 

 

Fig. S8 Methylation distribution per chromosome in the brain during development. Results for 

all tissues are shown in Data S12. 
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6 General discussion  

Outline 

Gene expression is regulated by a combination of epigenomic modifications acting at 

(genomic) functional regulatory elements. However, our understanding of the dynamic nature 

of gene expression regulation, especially during embryonic development, remains limited. 

Embryonic development is a complex and dynamic process that is essential in the formation 

of all multicellular organisms.  

In this thesis, I investigated gene expression regulation through an exploration of the functional 

regulatory genome and epigenome. Specifically, I investigated gene regulation in two distinct 

ways: first, by a molecular characterization of two functionally relevant cell lines from pig and 

chicken, and second, by focusing on the role of DNA methylation in regulating fetal 

development in pig and chicken, utilizing innovative combinations of well-established 

methodologies. 

In the first part of my thesis, I characterized the functional regulatory genome and epigenome 

of two cell lines in pig and chicken (Chapter 2), and in this discussion I will provide insight into 

the opportunities and limitations of utilising cell lines and organoids in future research, 

specifically for animal research.  

I will then discuss the challenges in research to ensure analytical reproducibility, and the 

challenges to create and maintain pipelines ensuring reproducibility. Reproducibility of results 

is important in research, and it is often difficult to replicate analyses as described in literature. 

As we focussed on DNA methylation data, we describe our contributions to a pipeline for the 

analysis of methylation data, and the implementation thereof for the analysis of data used in 

this thesis (Chapter 3).  

To understand the role of the epigenome and the functional regulatory genome during 

development, I investigated the methylome dynamics of seven key tissues in both pig (Chapter 

4) and chicken (Chapter 5) during fetal development. By integrating RNA-seq expression data 

with methylation data, I gained further insight into the dynamic nature of the methylome during 

fetal development. 

Subsequently, I will explore the potential of implementing functional genome data, such as the 

methylome maps generated in this thesis, for fine mapping QTL. I also discuss the integration 

of various data types for identification of regulatory genome and epigenomic modifications. 

This includes histone modifications, open chromatin, DNA methylation, and gene expression, 

which are utilised to identify epigenomic states and gain further insights into the developmental 

processes. Furthermore, I examine the potential of creating a reference of epigenomic states 
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and regulatory elements for each tissue, as well as the application of functional genomic data 

in applied breeding and genomic prediction models. Finally, I consider advancements in 

technologies like single-cell sequencing, long-read sequencing, and their relevance in projects 

like FAANG and future animal breeding (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Research questions, achievements, and prospects of this thesis. The left panel 

illustrates the aims of the thesis with corresponding chapters. Chapter 2 involves the molecular 

characterization of two cell lines in pig and chicken, utilizing various assays shown in yellow 

boxes. Chapter 3 presents the development of a bioinformatics pipeline for DNA methylation 

data. Chapters 4 and 5 explore the dynamics of the DNA methylome during pig and chicken 

fetal development in seven tissues. The right panel depicts future potential due to technological 

developments such as long-read sequencing with Oxford nanopore (1), epigenome-editing (2) 

and single cell sequencing (3). (Created with BioRender.com) 
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6.1 Cell lines in research: A cautionary tale and future 

considerations 

In Chapter 2 we provided a comprehensive analysis of the genome architecture of two cell 

lines commonly used in animal research (pig IPECJ2 and chicken SL-29). This integrative 

omics approach was a novel endeavour that aimed to deepen our understanding of the 

(epi)genetic makeup of cell lines and shed light on their usability as models for in vivo research. 

Advantages of cell lines include the ability to produce large quantities of cells for experiments 

and ease of manipulation (Verma, 2014; Verma et al., 2020). Importantly, cell lines provide an 

ethical alternative for experimental animals in research.  

In human research, cell lines have been extensively utilized to investigate various diseases 

such as cancer (Chatterjee et al., 2018; Izquierdo-Torres et al., 2019) and rheumatoid arthritis 

(Kolarz and Majdan, 2017; Nakano et al., 2013), drug development (Belter et al., 2020; 

Chiappinelli et al., 2016; Heerboth et al., 2014; Pfister and Ashworth, 2017; Ruoß et al., 2019; 

Tomaselli et al., 2020) and exposure to toxins such as atrazine, a popular herbicide in the U.S 

(Ataei and Abdollahi, 2022; Lopez-Suarez et al., 2022; Sánchez et al., 2020). Primate cell lines 

have been instrumental in studying epigenomic patterns, evolution (García-Pérez et al., 2021; 

Mitalipov, 2006), and serving as a biomedical model for investigating diseases and their 

treatments (Juan et al., 2023; Rodriguez-Polo and Behr, 2022).  

However, in farm animal research in species such as pig, chicken, cattle, and sheep, there 

have been a limited focus on utilizing cell lines for studying epigenomic alterations in response 

to environmental changes. Most studies using livestock cell lines focussed on disease 

susceptibility (Meekins et al., 2020), immune response (Laude and Gelfi, 1979; Leighton et al., 

2015; Su et al., 2013), nutrition (Lallès, 2016) and biomedical modelling (Roura et al., 2016). 

In our research we utilised the pig IPECJ2 cell line: an intestinal epithelium cell line used for 

e.g. digestibility research, and the chicken SL-29 cell line: a fibroblast cell line which can be 

used for research related to immunity. 

During the characterization of the pig IPECJ2 and chicken SL-29 cell lines, one of the main 

results we encountered is the aneuploidy of some chromosomes, despite these being 

untransformed cells. From this research (Chapter 2), it remains unclear whether the specific 

chromosomes are aneuploid from the establishment of the cell line or if aneuploidy has 

occurred after a certain number of passages. In a mice fibroblast cell line no aneuploidy is 

observed after three passages, however by passage seven this cell line exhibits a proliferation 

defect (Sheltzer and Amon, 2011). Through further investigation into the aneuploidy in the 
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IPECJ2 cell line (Appendix A), we observed that the IPECJ2 cell line exhibited aneuploidy in 

specific chromosomes and changes in aneuploidy related to number of passages. 

Chromosome 17 was found to be triploid from earlier passages (67 passages), while 

chromosome 16 was diploid at earlier passages (67 passages) and transitioned to triploid after 

prolonged culture (87-91 passages). Thus, the number of passages contributes to the rise of 

aneuploidy, as observed in mouse, and since the IPECJ2 cells in the Appendix A study were 

purchased and grown independently in different laboratories, it is likely that chromosome 17 is 

aneuploid from the cell stock.  

An important distinction should be made between whole-organismal aneuploidy and somatic 

aneuploidy. Whole-organismal aneuploidy is a condition where the entire organism has an 

abnormal number of chromosomes. In such cases, every cell in the organism carries the same 

chromosomal abnormality, resulting in an overall imbalance of genetic material throughout the 

body. In contrast somatic aneuploidy is a condition where some cells in the organism have an 

abnormal number of chromosomes. Somatic aneuploidy has been found at low levels in 

healthy human tissues such as skin, brain, liver (Li and Zhu, 2022). This could provide a 

possible explanation for the observed aneuploidy in the cell lines investigated in Chapter 2.  

On one hand, aneuploidy may provide a fitness advantage to cells due to alterations in gene 

dosage, resulting in changes in gene expression and protein levels. This could lead to a 

selective advantage, allowing cells to adapt better to their environment and proliferate more 

rapidly (Rosenkrantz and Carbone, 2017; Sheltzer and Amon, 2011). In the developing brain 

and embryonic neural cells, the percentage of aneuploidy is high and declines in the adult 

brain; this leads to the formation of neuronal networks and brain plasticity (Rosenkrantz and 

Carbone, 2017). On the other hand, aneuploidy can be detrimental to cell fitness by disrupting 

gene expression balance, interfering with critical cellular processes, and causing cell cycle 

defects or cell death (Ben-David and Amon, 2020; Rosenkrantz and Carbone, 2017; Sheltzer 

and Amon, 2011). In contrast, a study implementing single cell sequencing showed aneuploidy 

to be a rare occurrence in somatic tissues of mammals, and to have negative impacts on cell 

fitness (Knouse et al., 2014). However, their experiments involved a remarkably limited number 

of analysed cells, with as few as nine cells per experiment. 

These findings serve as a cautionary tale when working with cell lines, as aneuploidy can 

introduce variability and affect the reproducibility of experimental results particularly for 

genome editing of genes located on aneuploidy chromosomes. Therefore, careful 

characterization and monitoring of cell lines are essential to ensure their genetic stability and 
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reliability for research purposes (Hynds et al., 2018; Sheltzer and Amon, 2011; Vcelar et al., 

2018).  

In addition to cell lines, organoids have emerged as a promising avenue of investigation. 

Organoids offer both functional and structural similarities to tissues and organs, surpassing the 

limitations of traditional cell lines (Clevers, 2016; Lancaster and Knoblich, 2014; van der Hee 

et al., 2020). There is an expectation that organoids will advance research, in particular 

biomedical and clinical research, providing a bridge between cell lines and in vivo studies 

(Silva-Pedrosa et al., 2023). Organoids provide new opportunities for studying fundamental 

cellular and gene activities. They also hold significant potential for translational research in 

areas such as diseases, toxicology, and cancer (Clevers, 2016), and in animal science (Kar et 

al., 2021). However there are still some limitations associated with organoid models, including  

incomplete differentiation, the inability to grow beyond a certain size and the cell organization 

remaining basic (Bhaduri et al., 2020; Yin et al., 2021; Zhao et al., 2022). Lastly, new 

technologies such as single cell sequencing will provide insights into cell heterogeneity and 

identify the compositions of cell populations. I will discuss this in further detail in section 6.6a. 

Despite these limitations of cell lines and organoids, the advantages they offer are substantial. 

They provide a more ethical method for conducting research on animals and offer solutions to 

dilemmas such as small sample sizes in animal studies. 

6.2 Ensuring reproducibility in research 

In recent years the reproducibility of scientific research has been a topic of much debate 

(Allison et al., 2018; Botvinik-Nezer et al., 2020; Fanelli, 2018; Shiffrin et al., 2018; Stodden et 

al., 2018). A survey published in Nature revealed that 52% of researchers believe there is a 

‘significant crisis of reproducibility’ (Baker, 2016). Surprising results were reported by Stodden 

et al. (2018) where corresponding authors of computational articles were emailed requesting 

data and code associated with the articles. The most intriguing responses obtained were as 

follows: 11% Contact another person, 11% Asked for a reason for providing code, 7% Refused 

to share code, 36% Shared code, 26% No responses. To address the reproducibility challenge 

problem, I propose the implementation of computational pipelines, and publicly available data 

as a possible solution. As part of the GENE-SWitCH project, we have implemented pipelines 

for all bioinformatic analyses. Furthermore, we have aimed to adhere to the FAIR principles 

(Findable, Accessible, Interoperable, and Reusable) for both code and data produced. All data 

is openly accessible on the FAANG data portal under the Toronto agreement, which ensures 

that obtained datasets are published by the data owners before public dissemination. 
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A computational pipeline refers to a series of interconnected tasks or processes executed in a 

specific order to achieve a particular objective. By utilizing well-documented pipelines, such as 

the GSM-pipeline described in Chapter 3, the versions of software, tools, and parameters used 

can be transparently referenced (Grüning et al., 2018; Mangul et al., 2019; Wratten et al., 

2021). The pipeline we developed in Chapter 3 employs a workflow manager called nextflow 

(Di Tommaso et al., 2017), which uses domain-specific language (DSL). Additionally, the 

software used is containerized  in Docker (Silver, 2017), ensuring that the versions of tools 

remain consistent and stable.  

However, pipelines also present challenges, such as the need for updates to programming 

languages like DSL, Python, and R. If pipelines are not properly maintained, they can quickly 

become outdated. This necessitates researchers dedicated to both creating new pipelines and 

maintaining established ones, which in itself poses a challenge. Another challenge is the 

constant development of new tools and software. As an example, the bio.tools registry 

reports a staggering 17,000 entries of life science tools in 2020 (Marx, 2020). Therefore, it is 

important to consider whether pipelines should be continually developed and how to deal with 

the challenges associated with this (Cohen-Boulakia et al., 2017). Therefore, I conclude, 

pipelines offer utilities in providing data analysis reproducibility, however the time involved in 

development and maintenance thereof is a constraint. In cases where adherence to stringent 

pipeline standards and extensive review are required, pipelines might not yield substantial 

benefits due to prolonged timelines. However, for pipeline development within organizations 

lacking stringent requirements, simplified maintenance and quick development are feasible. 

Based on this thesis and previous research, I propose several solutions to address the 

reproducibility problem. Firstly, journal policies should require structured and transparent 

documentation of methods and data (Allison et al., 2018; Baker, 2016; Christian et al., 2020). 

An example of a journal policy that promotes transparency is STAR methods (Tonzani and 

Fiorani, 2021). In conjunction with revised journal policies, the publication of all code used in 

research papers should be implemented. Secondly, while the utilization of pipelines offers a 

promising solution, it is essential to carefully consider the complexity and effort required for 

their creation and maintenance. Developing pipelines can be time-consuming, and some 

pipelines may become outdated quickly. Additionally, users need a comprehensive 

understanding of all steps involved in the pipeline for data processing to ensure correct data 

interpretation, effective problem-solving, and quality control. While concerns about 

development remain, pipelines present a promising solution to address the issue of 

reproducibility. 
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6.3 Epigenomic regulation of tissue differentiation during fetal 

development 

6.3.1 The dynamic methylome in mammals and birds 

The primary focus of this thesis is to characterise the DNA methylome of tissues related to 

complex traits such as meat production, feed efficiency, and egg production in two monogastric 

species, namely pig (Chapter 4) and chicken (Chapter 5). These species have been identified 

as the primary sources of meat worldwide according to a report by OECD-FAO in 2022 

(OECD/FAO, 2022).  

Our investigation began by exploring the dynamics of DNA methylation during fetal 

development in pig. DNA methylation has been studied extensively in mouse tissue 

development (He et al., 2020; Yizhar-Barnea et al., 2018) and in adult tissues of pig (Pan et 

al., 2021; Schachtschneider et al., 2015; Yang et al., 2021), cattle (Huang et al., 2014), mouse 

(Hon et al., 2013; H. Liu et al., 2021; Orozco et al., 2015), human (Brunner et al., 2009; Nakano 

et al., 2013; Schultz et al., 2015) and other primates (Blake et al., 2020).  

Additionally, we explored the dynamics of the methylome in chickens during development. 

However, the available studies in birds, especially during development are limited (Derks et 

al., 2016; Laine et al., 2016; Li et al., 2011; Lindner et al., 2021; Pan et al., 2023; Ran et al., 

2021; Watson et al., 2019). Several studies have investigated the mechanisms of DNA 

methylation and other epigenomic modifications in zebrafish, shedding light on their influence 

during various stages of development (Balasubramanian et al., 2019; Goll and Halpern, 2011).  

This thesis is the first research characterizing the methylome in different tissues during fetal 

development in non-model species such as pig and chicken. The results have multiple 

important applications: (1) comparative analysis offering the possibility to gain insights into the 

genetic background of human development through biomedical models such as pig and 

chicken, (2) contributing to well-annotated reference genomes for FAANG and animal science 

research, and (3) enhancing the efficacy of genomic selection in the pig and poultry sectors. 

a. Methylome of tissues 

The liver exhibited intriguing differentiation patterns for methylation level in pigs compared to 

chicken, indicating differences in organogenesis between the two species. In pigs, the liver 

develops rapidly due to its role in early haematopoiesis caused by the short transient function 
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of the mammalian yolk sac in haematopoiesis (Ross and Boroviak, 2020). This is in contrast 

to birds, where the yolk sac maintains its hematopoietic function until hatching (Guedes et al., 

2014; Wong and Uni, 2021). The developmental differences in the liver between these species 

may be attributed to the distinct amniotic environment in eutherian mammals, where the liver 

undergoes multiple waves of haematopoiesis before this role is eventually transferred to the 

bone marrow just before birth (Brunner et al., 2009; Farlik et al., 2016; Huse et al., 2015; Lewis 

et al., 2021; Ross and Boroviak, 2020; Waterland et al., 2009). From these results I have come 

to the conclusion that the liver matures later in birds (Guedes et al., 2014) compared to the 

development in the pig, human (Bonder et al., 2014; Huse et al., 2015) and mouse (He et al., 

2020). 

In terms of non-CpG methylation levels in brain, our study reports lower levels compared to 

previous research on adult stages in vertebrates (~0.2-8%) (de Mendoza et al., 2021; Derks 

et al., 2016; Guo et al., 2014, 2014; Jang et al., 2017; Lee et al., 2017; J.-H. Lee et al., 2020; 

H. Liu et al., 2021). This pattern is similar to fetal brain tissue in humans and mice, where non-

CpG methylation levels is negligible, and an accumulation is observed during adulthood (Lister 

et al., 2013). The low non-CpG methylation levels observed in our study may reflect the 

developmental stages and section of the brain tissue analysed. Postnatal environmental stimuli 

and synaptic development contribute to brain maturation and plasticity during early adult 

stages in vertebrates (Bonfanti and Charvet, 2021, 2021; Coelho-Santos and Shih, 2020; Lister 

et al., 2013; Nakafuku and del Águila, 2020; Pizzorusso and Tognini, 2020). These findings 

shed light on the complex dynamics of brain development, specifically the role of CpG 

methylation during embryological development in brain and the assumed role of non-CpG 

methylation after birth.  

Another tissue of interest is the small intestine, which exhibited dynamic methylation changes 

during both developmental transitions in pig (Chapter 4). In eutherian mammals like pig, new-

borns receive passive immunity via IgG from the colostrum of the immune competent mother. 

This transfer of intestinal macromolecules is prominent during the first 1-2 days after birth, 

followed by a decline in transfer (Weström et al., 2020). This environmental cue contributes to 

changes in methylation patterns in the intestine of pig (mammals) (Pinho and Maga, 2021; 

Rakoff-Nahoum et al., 2015; Yu et al., 2015). In contrast, non-mammalian vertebrates such as 

birds receive maternal macromolecule immunity from the yolk sac, which plays a crucial role 

in supplying passive immunity to the developing chick (Wong and Uni, 2021; Zhang and Wong, 

2019).  
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Overall, the methylome profiles observed in this study provide insights into the regulation of 

tissue-specific differentiation and development. The distinct methylation dynamics in various 

tissues highlight their roles in orchestrating precise timing and the development of organs. 

These findings have implications for understanding species-specific physiological processes 

and may contribute to advancements in biomedical research, animal breeding, and genomic 

selection in the pig and poultry sectors. Conducting research in human development poses 

significant challenges due to ethical considerations and issues related to embryo quality, which 

limit the accuracy and scope of genome representation. Due to the abovementioned 

limitations, the results presented in this thesis hold valuable insights that could be extrapolated 

to humans. Moreover, given that certain complex traits are established during fetal 

development, the identification of genes and regulatory elements in animals holds promise for 

enhancing genomic selection in pig and chicken. Further details on this aspect are discussed 

in section 6.5. 

b. Methylome of embryological layers 

Gastrulation is a crucial stage of embryonic development during which three germ layers are 

formed, and subsequent organogenesis leads to the development of organs and tissues with 

specific functions (Kiecker et al., 2016; Muhr and Ackerman, 2023). In this study, our aim was 

to investigate the patterns of DNA methylation that distinguish tissues originating from the 

same embryological layer. While previous research in model organisms has identified genes 

involved in gastrulation, understanding of the epigenomic regulation still remains limited (He 

et al., 2020; Kiecker et al., 2016; Salehin et al., 2022; Xiang et al., 2020; Zorn and Wells, 2007). 

By utilizing gene enrichment analysis, we gained insights into the biological processes 

underlying the epigenomic regulation and gene expression of germ layers. 

We concluded that the germ layer was not completely segregated at early developmental 

stages between brain and skin in chicken, as well as between muscle and kidney in pig. Both 

the skin and brain originate from the ectoderm germ layer, while the muscle and kidney derive 

from the mesoderm germ layer (Kiecker et al., 2016). However, we did not observe this pattern 

in other tissues, suggesting that the development of certain organs, such as liver and lung in 

both pig and chicken, occurs earlier than the first development stages sampled in this research 

(30dpf in pig and E8 in chicken). Furthermore, the use of ‘bulk’ tissues may limit the detection 

of similarities between tissues originating from the same germ layer (discussed further in 

section 6.5 a).  
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c. Limitations and improvements of the study 

One limitation of our study is the absence of whole-genome DNA methylation results in post-

natal tissue samples. This prevented us from investigating the complete DNA methylome, 

specifically UMR and LMR, during the development of tissues like the brain and small intestine 

in response to post-natal environmental stimuli. While publicly available RRBS data for certain 

tissues, such as cerebellum, ileum, and liver in adult pig and chicken (Pan et al., 2023, 2021), 

is accessible, future studies should utilise this data to explore targeted promoter regions of the 

methylome.  

Additionally, it is important to note that our sample sizes for whole-genome bisulfite sequencing 

(WGBS) were small, with only one sample available, and for reduced representation bisulfite 

sequencing (RRBS), we had three samples. Smaller sample sizes decrease the statistical 

power of a study (Button et al., 2013; Hackshaw, 2008; Ioannidis, 2005; Lakens, 2022). 

However, increasing sample sizes in animal development and functional studies pose 

challenges due to the high costs of functional assays, and ethical concerns (Arifin and 

Zahiruddin, 2017; Bacchetti et al., 2005; Festing, 2018) regarding the number of animals 

sacrificed for research during fetal development (Bacchetti, 2013; Hackshaw, 2008). Efforts 

are being made to address these limitations, such as the European FAANG GEroNIMO project 

(https://www.geronimo-h2020.eu/project). This project utilizes a cost efficient method called 

GBS-MeDIP (Genotype by Sequencing – Methylated DNA Immunoprecipitation, Rezaei et al., 

2022) to investigate DNA methylation in large populations of pigs and chickens. Additionally, 

in the GEroNIMO project, sampling of sperm, muscle biopsy, and reuse of samples collected 

for other projects are used, avoiding the need for animal sacrifice. However, when studying 

development, alternative sampling strategies are required, and this remains a challenging 

limitation to address. 

Another limitation worth mentioning is the suboptimal gene annotations for both pig and 

chicken (Derks and Groenen, 2022), especially when compared to the well-established 

annotation for human. This may have contributed to the lack of significant enrichment findings 

and the limited identification of embryological germ layer similarities and changes between 

tissues (Chapters 4 & 5). Improving gene annotations in non-model species through projects 

like GENE-SWitCH significantly advances future studies in this field. ENSEMBL has 

incorporated tissue-specific developmental data from GENE-SWitCH for gene annotation of 

the pig and the three chicken genome assemblies (updated Red Jungle Fowl, new Broiler, and 

White Leghorn references) (Martin et al., 2023; https://projects.ensembl.org/gene-switch/).  
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Finally, our research utilized bulk tissue sequencing, which is a common method for 

investigating genome-wide methylation and transcriptomic variations. However, it should be 

noted that this approach provides an average methylation level across various cell types within 

a tissue, potentially obscuring the contribution of specific cell types with distinct functions. 

Single-cell sequencing is an emerging method that allows for the investigation of specific cell 

types, and its potential application is considered in a later section (6.6 a) of this thesis.  

6.3.2 Integrative analysis to understand epigenome dynamics 

during development  

The functional regulatory genome refers to the regions of the genome that contain regulatory 

elements that control gene expression. By integrating data from various functional assays that 

relate to regulation of gene expression, we can gain insights into the architecture of the 

functional regulatory genome and its associated epigenome. Studies conducted in human and 

mouse have demonstrated the potential of creating comprehensive epigenomic maps 

(Madhani et al., 2008; Roadmap Epigenomics Consortium et al., 2015; Satterlee et al., 2019; 

van der Velde et al., 2021; Yang et al., 2021).  

Projects like EpiMap (Boix et al., 2021) and the Roadmap Epigenomics Mapping Consortium 

(Bernstein et al., 2010) showcase the ability to annotate epigenomic maps across many 

tissues, cells and different developmental stages (embryonic to adult). These maps have been 

associated with specific diseases, organs, and cell types. In the context of animal breeding, 

the potential of having reference epigenomic maps across tissues related to important traits 

can be envisioned. This would enable a deeper understanding of the epigenomic basis of traits 

and facilitate targeted breeding strategies to improve desired traits in animals (discussed in 

further detail 6.5). 

Such epigenomic maps can provide valuable resources for researchers, allowing them to 

explore the regulatory landscape of the genome and investigate how specific epigenomic 

modifications are associated with gene expression and phenotype. These maps could 

potentially aid in identifying key regulatory elements, deciphering the mechanisms underlying 

gene regulation, and even predicting the effects of genetic and environmental factors on the 

epigenome and gene expression patterns. Examples for this have been shown in human 

(Roadmap Epigenomics Consortium et al., 2015; Satterlee et al., 2019; Wang et al., 2021), 

mouse (Orozco et al., 2015; van der Velde et al., 2021), pig (Kern et al., 2021; Pan et al., 2021; 

Yang et al., 2021) and chicken (Kern et al., 2021; Pan et al., 2023). 

a. Case study: Epigenome map in chicken SL-29 cell line 
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I explored the potential for creating an epigenomic map using omics data available from the 

chicken SL-29 cell line that I analysed in Chapter 2. I demonstrate how the incorporation of 

DNA methylation data can be used to identify regions and sites of repression and activation, 

when combined with ChIP-seq data for histone modifications (H3K4me1, H3K4me3, H3K27ac, 

H3K27me3) to pinpoint promoters, enhancers, and gene silencers. Methylation classes were 

defined by MethylSeekR (Burger et al., 2013) as described in Chapters 4 & 5. In Figure 2 I 

present a method for integrating various functional omics data and annotating epigenomic 

maps within the genome. 

 

Figure 2 Schematic representation for integrating different functional data sets such as ChIP-

seq and ATAC-seq together with DNA methylation, expression data and CTCF. In this diagram 

I suggest using the ChromHMM tool (2) (Ernst and Kellis, 2017), which implements a hidden 

Markov model to (a) detect the presence or absence of marks and (b) prove a level of the 

presence of marks. From this analysis a region file (3) is provided from which regions in the 

genome are annotated as e.g. a poised enhancer, active transcription start site (TSS). 

Investigating the dynamic nature of development or similar tissues can be achieved by using 

an alluvial plot for showing changes in epigenomic states (4).  (Created with BioRender.com) 
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I applied the aforementioned method (Figure 2) to the functional assays we generated (ATAC-

seq, WGBS, CTCF, RNA-seq and ChIP-seq of four histone marks: H3K4me1, H3K4me3, 

H3K27ac, H3K27me3) for the chicken SL-29 cell line (Chapter 2).  This allowed me to define 

15 epigenomic states, which are shown in Figure 3. It is important to note that the defined 

epigenomic states in this study build upon previous annotations from different resources, such 

as Gorkin et al., (2020), Roadmap Epigenomics Consortium et al., (2015), and van der Velde 

et al., (2021).  

The defined model consisted of nine active states and six repressive states that showed 

distinct levels of DNA methylation, DNA accessibility, and regulatory binding. The active states 

(associated with expressed genes) consist of a flanking active TSS, open chromatin and 

enhancer states. Repressive states (associated with unexpressed genes) include weak 

repressive, quiescent and the unique poised/bivalent and repressive by polycomb states. For 

example, the active TSS state has an enrichment (dark blue) of ATAC-seq, H3K27ac, 

H3K4me3, and lower enrichment of H3K4me1 (Figure 3a). Additionally, there is a strong 

enrichment of expressed genes and exons, UMR, LMR, and CpG islands for this state (Figure 

3b). UMR is typically indicating promoter regions and LMR enhancer regions. By incorporating 

the methylation states into the model, we gain an additional layer of information that contributes 

to the annotation of the epigenome (Figure 3b). Furthermore, as previously shown (Chapters 

a.             b. 
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4 and 5), methylation has an inhibitory effect on gene expression. Therefore, FMR is indicative 

of repressed genes and UMR/LMR indicative of expressed genes (Figure 3b). 

 

Figure 3 Fifteen epigenomic states identified by ChromHMM implementing functional omics 

data from the chicken SL-29 cell line. a. Histone mark probabilities for each epigenomic state. 

b. Genome coverage and enrichment of the categories in overlapping genomic features such 

as expressed, repressed within the gene-body and 2 kb upstream of the TSS, expressed and 

repressed exons, CTCF, classes of methylation (FMR, LMR, UMR) and CpG islands.  

The integration of multiple omics datasets will enhance our understanding of the complex 

interplay between epigenomic modifications and gene regulation in the chicken genome. By 

understanding the epigenomic states associated with specific histone marks, DNA methylation 

patterns, and regulatory elements, researchers can gain a deeper understanding of the 

functional genomic architecture and the regulatory mechanisms underlying gene expression 

in this cell line.  

6.4 Implementation of functional regulatory genome maps for fine 

mapping 

From the 1990’s the potential of integrating genomic information with phenotypic records for 

improved breeding strategies began to emerge (Meuwissen et al., 2016). Genome-wide 

association studies (GWAS) have gained popularity in livestock breeding for mapping 

quantitative trait loci (QTL) associated with economically important traits such as muscle 

composition, growth, and methane emissions (Sharma et al., 2015). The Animal QTL database 

(https://www.animalgenome.org/cgi-bin/QTLdb/index) serves as comprehensive resource 

capturing trait mapping information in livestock species, with the largest number of QTL 

identified for cattle (193,898), chicken (18,411) and pig (48,844) (accessed May 2023). 

However, a major challenge lies in the fact that the majority (>90%) of identified QTL are 

located in non-coding regions of the genome, making it difficult to decipher the underlying 

mechanisms regulating gene expression and their influence on traits (Orozco, 2022; Schaid et 

al., 2018; Weikard et al., 2017). To address this, fine mapping approaches implementing 

functional genomics data provide a way to unravel the mechanisms underlying important traits 

(Cano-Gamez and Trynka, 2020; Orozco, 2022; Weikard et al., 2017). Expression QTL studies 

can be used to investigate the regulation of gene expression and has been one of the first 

methods to investigate gene regulation. In human studies, the incorporation of functional data 
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such as open chromatin information (caQTL) and histone modifications (hQTL) alongside QTL 

has been reported by Orozco, 2022. This directly incorporates regulatory elements for 

investigating the relationship between gene regulation and traits. 

Functional maps generated by the GENE-SWitCH project, and the methylome maps presented 

in this thesis offer valuable resources for fine mapping QTL identified through GWAS. By 

utilizing this functional data, valuable insights can be gained into the regulation of gene 

expression that influences specific traits. For instance, QTL located in enhancer, promoter, or 

open chromatin regions play a critical role in regulating genes.  

6.5 Implementing functional genomics into applied animal 

breeding  

The integration of genomic information with phenotypic records has proven valuable for 

improving animal breeding (Meuwissen et al., 2016), but the full potential of functional maps  

in this context is still being explored. Currently, QTL are incorporated into genomic breeding 

models, and researchers are currently investigating how functional maps can enhance animal 

breeding outcomes (Derks and Groenen, 2022; Ernst and Steibel, 2013; Johnsson, 2023). 

Ongoing investigations study the integration of functional layers, such as the DNA methylation 

changes identified in this thesis. A first example of using these DNA methylation changes 

showed only marginal improvements in genomic prediction accuracy (Mollandin, 2022).  

Another strategy within the GENE-SWitCH project, explored predicting gene expression levels 

from genome sequence and methylation data using a genomic prediction model. (B. Perez, 

2023, personal communication). Ten genes were chosen based on their association with 

tissues as identified in an eQTL study based on whole-genome sequence data, and gene 

expression in liver, duodenum, and muscle tissue from 300 slaughter pigs (100 Duroc, 100 

Landrace and 100 Large White) (Crespo-Piazuelo et al., 2022). A set of 65,486 single 

nucleotide polymorphisms (SNPs) were pre-selected within regulatory regions (2 Kb upstream 

and 0.2 Kb downstream of these ten genes TSS). Corresponding methylation states at 30 dpf 

and NB (Chapter 4) in the liver, duodenum and muscle were used to differentially weigh SNPs 

in constructing the genomic relationship matrix. This was used in GBLUP (Genomic best linear 

unbiased prediction) either including the methylation scores or without it. Sites in FMR were 

given a weight of 0 as these were assumed not to contribute to the expression of genes. 

Preliminary results of this study are shown in Figure 4. The first analysis involved investigating 

the accuracy of predicted gene expression in muscle within a breed (Figure 4a). We observed 

higher accuracy with methylation data from muscle than other tissues, and this increase in 
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accuracy differed between the ten genes. This indicates the benefit of methylation in the 

prediction models to be highly tissue and gene dependent. Interestingly, a few genes exhibited 

lower genomic prediction for methylation scores compared to unweighted models.  

A second analysis involved the predictive accuracy of gene expression from SNPs across 

different breeds. In this instance (Figure 4b), the Duroc and Landrace breeds were used as 

the reference population and the validation was conducted in the Large White breed. Notably, 

these results show a range of patterns across the tissues and various genes. Across all three 

tissues, certain genes show a negative accuracy in the genomic prediction of gene expression. 

These results suggest a benefit, albeit small, of methylation scores to genomic prediction, more 

specifically within a breed in comparison to across breed.  

Drawing insights from these findings, the following considerations emerge. These examples 

employed a single layer of functional annotation, namely methylation, which also displays a 

degree of tissue specificity in genomic prediction. Consequently, this prompts a subsequent 

question regarding the potential advantages of incorporating multiple layers of functional 

annotation, such as ChIP-seq data on histone modifications, chromatin states, and 

subsequently integrating these multiple functional layers into a comprehensive scoring system. 

Finally, it may be that tissue and or breed specific functional layers must be made before they 

are suitable to be used in genomic prediction.  

Combined Annotation-Dependent Depletion (CADD) is an integrative annotation that combines 

layers of genomic annotation information from various sources, such as evolutionary 

constraints and gene model annotations, to score and rank variants (Kircher et al., 2014; 

Rentzsch et al., 2019). CADD has been developed for several livestock species including pig 

(pCADD), and their utility for trait variant classification has been demonstrated (Derks et al., 

2021). Bink et al., 2022 found that scoring SNPs based on CADD scores resulted in slightly 

higher genomic prediction accuracy for three traits in layer chickens. Likewise, another related 

method, Functional-And-Evolutionary Trait Heritability (FAETH), has shown promise in 

improving genomic prediction accuracy in cattle, (Xiang et al., 2019).  
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 Figure 4 Utilization of methylation data to improve prediction of gene expression for ten 

selected genes in two different scenarios. a. Accuracy of genomic prediction of gene 

expression in ten genes in liver with the methylation included as a score within a breed. 

Standard error bars are included. b. Accuracy of genomic prediction of gene expression in ten 

genes in liver, muscle and duodenum. This method investigates prediction accuracy across 

breeds with the Duroc and landrace used in the reference population and Large White used 

as the validation. (B. Perez, 2023, personal communication).  

 

Interpreting functional data in the context of genomic models remains a challenge due to its 

complexity. Ideally functional maps would be updated regularly, and scores such as CADD or 

FAETH updated based on additional functional data. The most significant variants identified 

by these methods could then be incorporated into genomic prediction models. These 

developments in utilizing functional data for applied animal breeding present exciting 

opportunities. 

 

a. 

 

 

 

 

 

 

b.  
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6.6 Future potential 

During the last 20 years the field of genomics has seen many technological developments, and 

exciting opportunities for new research have arisen such as long-read sequencing 

(Amarasinghe et al., 2020; Pollard et al., 2018), single cell sequencing (Nawy, 2014), 

implementation of pan-genomes (Golicz et al., 2020), and (epi)genome editing (Kungulovski 

and Jeltsch, 2016; Nakamura et al., 2021). Since the FAANG project was established in 2014 

(Andersson et al., 2015), there have been subsequent projects with the aim of improving our 

knowledge of the functional regulatory annotation in different livestock species, such as cattle 

(Moreira et al., 2022), chicken and pig (Acloque et al., 2022) and in aquaculture (Baudement 

et al., 2022). The first goal of the FAANG consortium was to use high-depth functional assays 

on an individual level, as described in this thesis for pig and chicken. Due to recent 

advancements in genomics, a promising new era of research for FAANG has emerged (Clark 

et al., 2020) and in this section I will discuss the impact of new technologies on the findings 

presented in this thesis and propose potential improvements to address its limitations.   

a. Single cell sequencing  

In 2013, a cutting edge molecular biology technique called single cell sequencing was 

developed (Nawy, 2014). This technique allows researchers to investigate genetic information 

of individual cells and provides a high-resolution view of the cellular heterogeneity. It facilitates 

the study of different cell types that constitute a tissue or organ (Schwartzman and Tanay, 

2015).  

Traditional methods of genomic and transcriptomic sequencing involve measuring a mixture 

of cells (called a “bulk”) comprising a tissue or organ. “Bulk” sequencing analyses, as employed 

in this thesis, enable the measurement of the average methylation levels in a population of 

cells. For example, RNA-sequencing of muscle tissue (Rubenstein et al., 2020) produces 

transcripts from various types of cells such as smooth muscle cells, myeloid cells, satellite 

cells, and endothelial cells, which are analysed together.  

Implementing single-cell sequencing allows the researcher to characterize individual cells, 

leading to an improved understanding of cellular functions and interactions. Additionally, this 

can enhance current research by facilitating a better comprehension of organ differentiation 

from germ layers, as seen in the reported examples in mice (Argelaguet et al., 2019; Chan et 

al., 2019; He et al., 2020; Liu et al., 2021), zebrafish (Farrell et al., 2018) and frog (Briggs et 

al., 2018). Clark et al. (2022) reported how DNA methylation dynamics in specific mice cells 
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can regulate embryogenesis, using single cell sequencing. These examples demonstrate the 

importance of utilising single-cell epigenomic sequencing for an improved functional annotation 

of developmental trajectories, germ layer differentiation and cell fates in pig and chicken as 

well. Clark et al. (2020) propose creating single-cell atlases for key tissues in livestock species, 

which is one of the future priorities of FAANG (5-10 years). In pig research utilising single cell 

transcriptomic analysis have included identification of different cell types for cerebral cortex 

and hypothalamus (Chen et al., 2023; Zhu et al., 2021), skeletal muscle development (Cai et 

al., 2023; Chen et al., 2023), and embryo implantation site (Tian et al., 2022), while for chicken 

it included limb patterning at embryonic development (Feregrino et al., 2019), and heart 

development (Mantri et al., 2021). Furthermore, this technology can be used to determine the 

cell composition of organoids, thus quantifying the similarity of organoid cells to primary tissue 

counterparts and reveal cell-specific reactions to environmental variables and disease 

conditions. The research reported in this thesis provides the foundation for future 

implementation of such technologies.  

b. Long-read sequencing 

Long-read sequencing technologies enable sequencing longer DNA fragments, making this 

useful for studying repetitive regions of the genome, resolving complex structural variations, 

improving de novo assemblies and identifying new transcripts (Amarasinghe et al., 2020). 

Short read sequencing technologies typically provide up to 300 - 800 bases (Sanger and 

Illumina sequencing technologies), whereas long-read sequences can generate reads more 

than 10 kb. An additional advantage of long-read sequencing is the ability to detect DNA 

methylation from the electrical readout of the instrument, and thus avoiding treatments with 

e.g. bisulfite (Gouil and Keniry, 2019; Y. Liu et al., 2021; Simpson et al., 2017). Better 

characterization of DNA methylation patterns will be provided, due to longer sequencing reads 

in comparison to short reads. This will create an opportunity to perform both methylation 

analysis and genomic analysis, which provides the opportunity to investigate different variants 

and modifications on the DNA.   

Haplotypes represent specific combinations of alleles located closely together on a 

chromosome, while allele-specific methylation refers to differential methylation of the two 

alleles. This phenomenon can potentially influence gene expression patterns and is often 

associated with genes exhibiting allele-specific expression (Zhang et al., 2009). Understanding 

haplotypes and allele-specific methylation play an important role in deciphering genetic 

variation, epigenomic regulation of biological processes and traits, and the inheritance of 

(un)favourable alleles from parents. Long-read sequencing facilitates the investigation of 
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haplotype-dependent allele-specific methylation (Akbari et al., 2022, 2021; Gigante et al., 

2019), enabling the identification of specific haplotypes associated with important traits and 

serving as molecular markers in breeding. This aspect of epigenomics contributes to our 

understanding of genetic regulation and its implementation to select desirable traits, ultimately 

leading to improved livestock and animal performance. (Triantaphyllopoulos et al., 2016). 

c. (Epi)genetic editing 

Gene editing, a well-established method, presents ethically complex considerations, 

particularly in the context of livestock breeding. In academic research, the implementation of 

gene editing poses fewer ethical concerns, especially when testing variations in cell lines or 

organoids. The emergence of (epi)genetic editing technologies, such as CRISPR-based 

(epi)genetic editors, has empowered researchers to selectively modify specific (epi)genetic 

marks at genomic loci (K. Lee et al., 2020). Kang et al., 2019 demonstrated the value of 

epigenome editing to confirm the effects of epigenomic mechanisms on gene expression in 

mice. Moreover, in the field of aquaculture, CRISPR-Cas9 gene editing has already proven 

successful in species like Atlantic salmon, finfish, and molluscs (Clark et al., 2020; Houston et 

al., 2020). 

Epigenome editing operates by modifying the chromatin state, without altering the DNA 

sequence (Kungulovski and Jeltsch, 2016). This technique specifically offers the advantage of 

modifying mechanisms that regulate gene expression, providing an enhanced understanding 

of the functional roles of epigenomic modifications through direct interrogation (Kungulovski 

and Jeltsch, 2016; Nakamura et al., 2021). The construction of functional maps, as 

demonstrated in this thesis, that depict the genome architecture of various tissues and cells 

can significantly improve the accuracy of epigenomic gene editing by accounting for potential 

pleiotropic effects. However, despite its potential, the implementation of this technology 

remains constrained by ethical considerations, challenges and unknown effects (Bishop and 

Van Eenennaam, 2020; K. Lee et al., 2020; Raza et al., 2022).  

d. Pan-genomes 

A pan-genome refers to the collective genomic diversity of a population or a species, 

encompassing more than just the reference genome, which is a single representation of a 

haplotype for that species. The emergence of the pan-genomes concept stems from the 

recognition that there is significant genetic variability among individuals of the same species 

(Golicz et al., 2020). Traditional genome sequencing methods primarily focus on generating a 
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single reference genome that represents a consensus or average genetic makeup of the 

species. However, this approach fails to capture the full extent of genetic diversity present in 

populations.  

More recently, the utilization of pan-genomes has gained momentum in various vertebrate 

species such as humans (Sherman et al., 2019; Sherman and Salzberg, 2020), and pigs 

(Derks et al., 2022). In the context of research presented in this thesis, the utilization of pan-

genomes as a ‘reference’ genome during analysis enhances the accuracy of short-read 

mapping as compared to using a single reference, enabling the detection of variants specific 

to different breeds which play a role in regulating traits established during development. As 

discussed in this thesis, a significant portion of phenotypic variation can be attributed to 

genomic regions outside of genes, implying that changes in gene regulation may underlie many 

crucial traits. Consequently, it can be postulated that, in the future, the adoption of a regulatory 

build for each pan-genome will become customary, facilitating more precise variant detection, 

and enabling a detailed elucidation of the underlying biological regulatory mechanisms. 
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Abstract 

Cell lines are useful for investigating traits of interest e.g. intestinal absorption, feed efficiency 

and immunity in farm animals. We earlier investigated an intestinal cell line in pig and a 

fibroblast cell line in chicken and found chromosomal abnormalities by whole genome 

sequence (WGS) data analysis. Results from RNA-seq allele-specific expression (ASE) 

analysis in 4 cell lines showed aneuploidy in some chromosomes. In this paper we show that 

RNA-seq can be used to detect whole/partial chromosomal abnormalities based on ASE 

analysis.  

Introduction  

Pig and chicken are the primary sources for meat production worldwide and are also important 

for use as biomedical models and to study embryonic development. Cell lines are a valuable 

tool for gaining insight into genomic architecture and regulatory regions of genomes. Cell lines 

are derived from specific tissues of a species and can either continue to divide endlessly or 

perish after a specific number of divisions (passages) (Verma et al., 2020). Immortalized cell 

lines (i.e., that can be grown indefinitely) often show aneuploidy (presence of an abnormal 

number of chromosomes in a cell) or heteroploidy which is most pronounced in cancer cell 

lines (Verma et al., 2020; Molina et al., 2021). Animal cell lines from pig or chicken have proven 

useful to obtain insight in e.g. intestinal transport and immune function (Nossol et al., 2015).  

The phenotype of an individual is determined by gene expression which is a process where 

information from genes, encoded within DNA, is translated into proteins through RNA (Hartwell 

et al., 2015). The phenomenon of unequal expression between alleles in diploid cells caused 

by either genetic variation or epigenetic regulation (cis-regulated gene expression) is known 

as ASE. Furthermore, non-haploid chromosomes show imbalances in gene transcriptional 

activity, implying that chromosomal abnormalities can influence gene expression of different 

alleles, resulting in ASE. Our aim was to investigate the usability of RNA-seq data to identify 

whole chromosomal abnormalities, with the pig IPEC-J2 and chicken SL-29 cell lines as model. 

Materials & Methods  

Cell lines.  The pig IPECJ67 cell line (IPECJ2 cells grown for 67 passages) and chicken SL-

29 cell line (grown for 4 passages) used were obtained from the cell repositories at DSMZ 

(https://www.dsmz.de/collection/catalogue/details/culture/ACC-701) and ATCC 

(https://www.lgcstandards-atcc.org/products/all/CRL-

1590.aspx?geo_country=nl#generalinformation) respectively. The pig cell line is derived from 

intestinal epithelial cells while the chicken cell line is derived from embryonic fibroblast cells.  
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Data analysis. Pig (Sus Scrofa 11.1) and chicken (Gallus gallus GRCg6a) reference 

genomes, together with ENSEMBL annotations (Sus Scrofa 11.1 - release 103 & Gallus gallus 

GRCg6a - release 94) were utilized for all data analyses of our study.  

Whole genome sequencing.  Whole genome sequences were trimmed using Sickle v1.33 

(https://github.com/najoshi/sickle) in paired end mode, followed by alignment (bwa mem 

v0.7.15 (Li., 2013)) of the trimmed reads, and removal of duplicates (Samblaster v0.1.26 (Faust 

& Hall, 2014)). Mate coordinates were added using samtools (v1.9, Li et al., 2009). Single 

nucleotide variants (SNVs) were called using FreeBayes (v1.3.1), thereafter the read support 

ratio was assessed for heterozygous variants within the VCF file. 

RNA sequencing. RNA-seq data (pig IPECJ67 and chicken SL-29) were trimmed for 

adapters, and minimum length using TrimGalore v0.6.4 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). FastQC v0.11.9 (Andrews 

et al., 2010) was implemented to evaluate the quality of the data. RSEM (Li and Dewey, 2011) 

was used for alignment of the trimmed reads, as well as gene quantification (STAR v2.7.3a as 

aligner) (Dobin et al., 2013). Average gene expression level per chromosome was calculated 

and plotted using a custom python script with the Seaborn package. Additional raw RNA-seq 

data from the PRJNA610529 project was downloaded from ENA. This data comprises a pig 

Jejunum organoid sample (12 weeks (SAMN14300021), a 5-week-old pig Jejunum tissue 

sample (SAMN14300018), cell lines IPECJ87, an IPECJ2 cell line grown for 87 passages 

(SAMN14300016), and IPECJ91 an IPECJ2 cell line grown for 91 passages 

(SAMN14299997). We trimmed, aligned, and completed gene quantification of this data 

following the same procedure as the above for the IPECJ67 cell line. These samples were 

used to compare the average gene expression levels per chromosome in the tissue, organoid, 

and cell lines to the IPECJ67 cell line. Initial ASE analysis was completed with variant calls 

from WGS data (FreeBayes, Garrison and Marth, 2012) and aligned reads from RNA-seq using 

GATK ASEReader (McKenna et al., 2010). Variant calling from RNA-seq alignments for SL-

29, IPECJ67, IPECJ87, and IPECJ91 was completed using FreeBayes and thereafter allele 

specific expression analysis was completed using GATK ASEReader implementing the bam 

and VCF files. Results from the ASE analysis was plotted using Seaborn package in python.  

Results  

Chromosomal abnormalities within the cell-line genomes. In a previous study of the cell 

lines IPECJ67 and SL-29 we analysed the structure of the genome in multiple aspects using 

whole genome sequence data (Chapter 2). In pig IPECJ67 we observed that chromosome 16 

is diploid and chromosome 17 is triploid based on the frequency of the alleles (data not shown). 
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Additionally, aneuploidy and structural variations were observed in many other chromosomes 

in the IPECJ67 cell line as well as chicken SL-29 (e.g. chromosome 20 is tetraploid).  

Allele specific expression. RNA-seq data provides insight into gene expression levels at a 

chromosome-wide level. We investigated the expression of genes and transcripts in the pig 

IPECJ67, IPECJ87, IPECJ91 cell lines, jejunum intestinal tissue and jejunum derived organoid 

sample (data not shown). We found elevated gene expression on chromosome 17 in the cell 

lines compared to organoid and tissue whereas for the diploid chromosomes 15 and 16 similar 

gene expression levels across tissue, organoids, and cell lines, with slightly higher expression 

levels in cell lines were observed. Investigating the allele specific expression of the IPECJ67 

cell line (figure 1) shows that the frequency of the allele expression displays a pattern that 

confirms chromosome 17 as triploid and chromosomes 15 and 16 as diploid.  

 

 

 

 

Figure 1. Allele specific expression of chromosomes 15(a), 16(b), 17(c) for the IPECJ67 cell 

line supports the ploidy level of the three chromosomes - allele expression of ~0.5 for diploids 

and allele expression of ~0.33 and ~0.7 for triploids, respectively.  

 

Further investigation of the ASE and chromosomal abnormalities of the IPECJ2 derived cell 

lines cultured for a longer time also showed triploidy for chromosome 17 (figure 2 c,f) in both 

cell cultures. Interestingly, chromosome 16 was observed as triploid (figure 2 b,e) for these cell 

cultures, which is different from IPECJ67 which was diploid for chromosome 16 (figure 1b).  

 

 

 

 

 

 

  a.                            b.                  c.  
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Figure 2 ASE for IPECJ2 derived cell lines cultured for a longer time (passages). IPECJ87 a. 

chromosome 15, b. chromosome 16, c. chromosome 17. IPECJ91 d. chromosome 15, e. 

chromsome16, f. chromosome17.  

 

Similar patterns of allele distribution for aneuploid chromosomes detected using ASE are 

observed on other chromosomes in pig IPECJ67 and in chicken SL-29 (Chapter 2). Lastly, we 

called the genome variation from the RNA-seq data and repeated the ASE analysis based on 

the RNA-seq called genome variation. This resulted in the same ASE results as using the 

variation called from the genome sequencing data (Chapter 2). Thus, genome sequencing is 

not required to detect genome aberrations based on ASE.  

Discussion  

Detecting chromosome abnormalities in e.g. cell lines is important as such abnormalities may 

influence the results obtained in cell line assays, especially if genes involved in the process 

studied show copy number variation as this will result in deviating expression (Figure 1c). 

Chromosome ploidy can be investigated by e.g. cytogenetic and whole genome sequencing 

methods, but these methods are generally not applied in standard cell-line research. As RNA-

seq is (becoming) the general method used for gene expression detection, also in cell-lines, 

we investigated the potential of implementing RNA-seq as a tool for detecting chromosomal 

abnormalities through variant calling, ASE analysis and plotting the allele ratios. We observed 

similar patterns of allele support ratios from WGS variant calling and RNA-seq allelic 

 

a.                                    b.                            c.  

 

 

 

 

 

d.               e.     f. 

 

 



Appendix A – Conference paper 

 

 
239 

 

expression variants. This suggests we do not need WGS data for detection of chromosomal 

abnormalities. We show that a larger number of passages of the IPECJ2 cell line results in an 

increased level of aneuploidy. Thus, our approach, using RNA-seq, is a sufficient and cost-

effective tool to detect aneuploidy, which we suggest to be regularly applied in cell line 

experiments.  
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‘Hope is being able to see that there 

is light despite all of the darkness’ 

Desmond Tutu 
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 Summary 

The genome provides the entire set of DNA instructions of an organism, while the epigenome 

involves modifications that do not alter the DNA sequence. Gene expression is regulated by 

the intricate interplay between the genome and epigenome. We can explore the epigenome 

and regulatory elements through functional assays such as bisulfite sequencing, ChIP-seq, 

and ATAC-seq. Cell lines provide a valuable model for studying the genomic architecture and 

the regulatory genome of species. In vivo experiments are often complex and cell lines offer 

ethical alternatives.  

Moreover, development is a dynamic and complex process which is regulated by gene 

expression. One epigenetic modification is DNA methylation, which plays an essential role in 

regulating development. The general dynamics of DNA methylation in the growing embryo and 

fetus, however, are still poorly understood. The aim of the research described in this thesis 

was two-fold, starting with understanding the (epi)genetic makeup of a pig and chicken cell 

line. The second aim was to disentangle the dynamic changes occurring within the epigenome, 

regulating gene expression during embryonic and fetal development in pig and chicken. 

To do so, we first investigated the molecular characteristics of a pig intestine epithelial cell line, 

and chicken fibroblast cell line, using an integrative omics approach (Chapter 2). Functional 

assays such as ChIP-seq of histone modifications associated with regulatory elements, ATAC-

seq indicative of open chromatin, reduced representation- and whole genome bisulfite 

sequencing (RRBS and WGBS) for DNA methylation, RNA-seq for transcriptome profiling and 

whole genome sequencing, were profiled both on an individual level as well as by integrating 

the various epigenetic modifications. This provided insights into the complex interactions 

between the genome and epigenetic modifications regulating the gene expression of these cell 

lines. Chromosomal abnormalities, copy-number variations, and aneuploidy, typical for a cell 

line, were identified for several chromosomes in both cell lines. Furthermore, higher gene 

expression for genes located on aneuploid chromosomes compared to diploid chromosomes 

was observed. Although these cell lines are described as nontumorigenic and untransformed, 

aneuploidy occurs not only due to the number of passages, but with each passage, the 
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probability of its occurrence within a cell increases. This can lead to the emergence of cells 

with a growth advantage, ultimately causing them to become the predominant cell type in the 

culture over time.  

It is important for future studies to take note of these cell lines’ features and it is recommended 

that researchers proceed cautiously when interpreting findings. Understanding the 

characteristics and (epi)genetic composition of these cell lines, help to improve our knowledge 

about their limitations and potential use as an in vivo research model.  

A DNA methylation pipeline, specifically focussed on processing bisulfite sequencing data is 

described in Chapter 3, which was developed to include methylation calling, and visualisation 

of various methylation statistics. To gain further insights into methylation levels across various 

genomic characteristics, the processed data produced by this pipeline may be easily imported 

into visualization tools. The aim of this pipeline was to ensure reproducibility of the results 

generated within this thesis, specifically for the GENE-SWitCH project. This pipeline was 

implemented and used to analyse both the RRBS and WGBS data described in Chapters 4 

and 5 to investigate the dynamics of the DNA methylome that regulate gene expression during 

development.  

Investigating this role of the epigenome and the functional regulatory genome was facilitated 

by identification of the methylome dynamics in seven tissues during embryonic and fetal 

development for both pig (Chapter 4) and chicken (Chapter 5). In both species we identified 

differentially methylated sites and regions, together with categories of methylation, which were 

combined for insight into the developmental methylation dynamics (Chapter 4 and Chapter 

5). By integrating transcriptomic data with methylation data, we gained further insight into the 

dynamic nature of the methylome during fetal development. We identified tissue specific 

changes, and in the pig at early development (30 dpf) germ layer specific methylation 

characteristics are evident in lung, muscle, kidney, skin, and small intestine, which then 

transition to tissue specific methylation from 70 dpf until newborn stages (Chapter 4). In the 
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 Summary 

chicken we found enrichment of processes indicating development of brain and skin function 

from an early developmental stage (E8) (Chapter 5).  

Remarkable differences in the methylome patterns between chicken and pig were observed, 

with the most notable differences found in the liver tissue during development. Liver is fully 

developed at an early stage of development in pig in comparison to chicken, which is due to 

the hematopoietic function of the liver in mammals during development in comparison to birds. 

This research provides fundamental insights into the methylome dynamics that regulate 

development and highlights key distinctions between avian and mammalian systems. 
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