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Chapter 1 

General introduction  



 

1.1 Bile acids as signaling molecules 
Bile acids are the major functional components of bile, and have been known to serve as emulsifiers of 

dietary lipids and lipid-soluble vitamins for a long time (Hofmann, 1961). Bile acids are found 

throughout the whole body, but mainly in the liver, gall bladder and intestine (Jantti et al., 2014; 

Monteiro-Cardoso et al., 2021). Besides their role as emulsifiers in the intestinal lumen, bile acids are 

increasingly recognized as important hormone-like signaling molecules regulating lipid, glucose and 

energy metabolism and innate and adaptive immune functions in the whole body (Jia et al., 2023; 

Hylemon et al., 2009). Bile acids exert these signaling functions via binding to numerous nuclear 

receptors, such as the farnesoid X receptor (FXR, NR1H4), the G protein-coupled bile acid receptor 

(TGR5, GPBAR1), vitamin D receptor (VDR, NR1I1) and pregnane X receptor (PXR, NR1I2) (Guo et al., 

2003; Makishima et al., 2002; Anstee et al., 2013). Two major pathways include those regulated via 

FXR and TGR5 (Fiorucci et al., 2009). FXR is highly expressed in the gastrointestinal tract (Chiang and 

Ferrell, 2022). FXR tightly controls bile acid homeostasis by regulation the expression of genes related 

to bile acid synthesis, secretion and absorption. FXR also acts as a metabolic sensor in glucose 

metabolism, lipid and energy metabolism (Chiang, 2017), and regulates cell proliferation and 

inflammation (Fiorucci et al., 2011). Furthermore, FXR-deficient mice were shown to have increased 

colon cell proliferation rates and subsequent tumorigenesis compared to wildtype mice, indicating 

that FXR has anti-tumorigenic properties (Maran et al., 2009). TGR5 is not only expressed throughout 

the intestinal epithelium, but also in monocytes and macrophages, liver sinusoidal endothelial cells 

and Kupffer cells, but not in hepatocytes (Chiang and Ferrell, 2022). TGR5 regulates amongst others 

energy homeostasis, intestinal integrity, insulin secretion, cell proliferation and inflammation (Ticho et 

al., 2019; Guo et al., 2016).  

Bile acids are involved in the crosstalk between the host and the gut microbiome in the 

intestinal lumen. The gut microbiome is a dynamic ecosystem that plays a pivotal role in shaping 

various aspects of human physiology and heath (Visconti et al., 2019). Comprising more than 100 

trillion microorganisms, the microbiome forms a symbiotic relationship with the host, influencing 

essential functions ranging from digestion to immune response modulation (Comess and Abad-Jorge, 

2023). Several microbial species in the microbiome possess the ability to modify bile acid structures. 

These modifications result in different bile acid species with different kinetic and signaling properties. 

For example, the first bacterial modification step is deconjugation of bile acids. Deconjugation 

improves membrane-permeability and thereby intestinal reuptake of bile acids (Fuchs and Trauner, 

2022). Furthermore, the affinity for the nuclear receptors depends on the type of bile acid formed, 

since some types of bile acids are more potent ligands for nuclear receptors than others (Zhang et al., 

2023; Jia et al., 2018). Combined, the gut microbiome has a substantial effect on the fate and type of 

bile acids formed and thereby on the downstream targets of the nuclear receptors targeted by bile 

acids. In turn, bile acids prevent bacterial overgrowth in the intestine due to their antimicrobial 

capacities (Wigg et al., 2001). The multitude of physiological processes controlled by bile acid signaling 

along the gut-liver axis and beyond highlight the crucial role of bile acids and bile acid homeostasis for 

host health.   
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1.2 Enterohepatic circulation of bile acids  
Bile acids undergo enterohepatic recycling via bile acid secretion from the liver, transport to the 

intestine, intestinal reabsorption and return to the liver (Jia et al., 2018). The enterohepatic circulation 

of bile acids and the transporters involved are schematically depicted in Figure 1. Primary bile acids, 

including cholic acid (CA) and chenodeoxycholic acid (CDCA), are de novo synthesized in the liver via 

cytochrome P (CYP) 450-mediated oxidation of cholesterol (Schwarz, 2004)(Figure 2). Bile acid 

synthesis occurs via two biosynthetic pathways, namely the “classical” and “alternative” pathway. The 

largest quantity of bile acids is produced through the classical pathway in which CYP7A1 is the rate-

limiting enzyme (Duane and Javitt, 1999; Chiang and Ferrell, 2020). The primary bile acids that are 

formed depend on the species. CA and CDCA are the major primary bile acids found in humans, while 

rodents additionally synthesize α-muricholic acid (α-MCA) and β-muricholic acid (β-MCA) (Garcia-

Canaveras et al., 2012). Subsequently, CA and CDCA are conjugated with glycine or taurine, leading to 

the formation of glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA) 

and taurochenodeoxycholic acid (TCDCA). Importantly, conjugation impairs the ability of bile acids to 

cross the membranes passively, and therefore carriers are needed to facilitate bile acid transport over 

the cellular membranes in the liver and intestine (Fuchs and Trauner, 2022). The conjugated bile acids 

are secreted from the hepatocyte into the bile canaliculus via the canalicular bile salt export pump 

(BSEP, ABCB11). Some bile acids are sulfated or glucuronidated in the liver via sulfotransferases 

(SULTs) and UDP-glucuronosyltransferases (UGTs) (Kirkpatrick et al., 1988). Subsequently, they are 

conjugated with taurine or glycine and secreted into the bile via multidrug resistance-associated 

protein 2 (MRP2, ABCC2) (Meier and Stieger, 2002). Alternatively, bile acids can be secreted to the 

systemic (blood) circulation through basolateral export systems that are mediated by members of the 

multidrug resistance protein (MRP3/4, ABCC3/4) and the organic solute transporter subunit alpha 

(OSTα)-OSTβ complex. Basolateral efflux plays a minor role under healthy conditions, but under 

certain pathological conditions basolateral efflux is increased as a compensatory mechanism to 

counteract intrahepatic bile acid accumulation (i.e. cholestasis) (Vinken et al., 2013). 
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FFiigguurree  11 Enterohepatic circulation of bile acids. BSEP=bile salt export pump, ASBT=apical sodium-dependent bile 
acid transporter, OSTα/β=organic solute transporter α/β, NTCP=sodium/taurocholate cotransporting 
polypeptide, OATP1B1= organic anion transporting polypeptide 1B1, MRP3/4=multidrug resistance protein 3/4. 
Figure created with BioRender.com 

In humans, around half of the bile acids that are secreted into the bile duct are stored in the gall 

bladder, while the remaining bile acids are directly transported to the intestinal duodenum (Hofmann, 

1999). The gallbladder contracts in response to a meal and bile acids are released into the intestinal 

lumen. Here, around 95% of bile acids are reabsorbed and transported back to the liver via the portal 

vein (Chiang, 2009). Bile acid reabsorption predominantly occurs through the activity of the apical 

sodium-dependent bile acid transporter (ASBT, SLC10A2) in the distal ileum. Bile acids that escape ileal 

reabsorption are deconjugated by microbial bile salt hydrolases (BSH) and then transformed by the 

gut microbiome to secondary bile acids. CDCA and CA are converted to lithocholic acid (LCA) and 

deoxycholic acid (DCA) through 7α-dehydroxylation (Chiang, 2009). Alternatively, CDCA can be 

converted to ursodeoxycholic acid (UDCA) through an epimerization reaction. The majority of CA, 

CDCA, DCA, and to some extent UDCA, are then reabsorbed in the intestine and transported back to 

the liver, whereas most of the LCA is excreted in feces (Chiang, 2009; Hofmann, 1994). Reabsorbed 

bile acids are transported via the portal vein to the liver, where their uptake is facilitated mainly by 

sodium/taurocholate cotransporting polypeptide (NTCP, SLC10A1) and to a lesser extent by the 

members of the organic anion transporting polypeptide (OATP) family. A small amount of circulating 

bile acids is secreted via the kidneys through urinary excretion (Humbert et al., 2012). 
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FFiigguurree  22 Bile acid metabolism in humans. In the liver, bile acid metabolism mainly produces two primary bile 
acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Before secretion, bile acids are conjugated with glycine 
or taurine. Secondary bile acids are generated through microbial modifications in the intestine, including 
deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA).  

1.3 (Drug-induced) disruption of the bile acid homeostasis 
Next to their physiological functions, bile acids can be cytotoxic with pathological consequences. Their 

detergent properties can disturb cell membranes by solubilizing membrane lipids (Perez and Briz, 

2009). These potential adverse health outcomes illustrate why bile acid concentrations need to be 

tightly regulated. Aside from direct effects on cellular components, changes in the bile acid 

homeostasis can alter nuclear receptor-mediated signaling and the microbiome’s composition and 

functionality. A disruption of the bile acid homeostasis and signaling has been related to various 

diseases, such as cholestasis, inflammatory bowel disease and metabolic diseases including obesity, 

diabetes and metabolic-associated fatty liver disease (MAFLD) (Arab et al., 2017; Fuchs and Trauner, 

2022). Various risk factors can contribute to the onset of these diseases, including genetics, diet, 

infectious diseases, but also exposure to drugs or other chemicals (Vilas-Boas et al., 2019; Jansen and 

Sturm, 2003; Gijbels et al., 2019; Younossi et al., 2018; Sobczak et al., 2014; Ghouri et al., 2020). 

Cholestasis refers to impaired hepatic bile acid secretion and subsequent hepatic bile acid 

accumulation and increased bile acid levels in the systemic blood circulation. Symptoms of cholestasis 

include jaundice, pruritus and fever (Sundaram and Bjornsson, 2017). It is well known that some drugs 

can induce cholestasis. An analysis of 1100 adverse drug reactions in Danish persons revealed that 

about 16% of all reported hepatic adverse drug reactions were classified as cholestasis responses (Friis 

and Andreasen, 1992). Where the liver is the main organ involved in cholestasis pathology, the 

pathology of metabolic diseases is multifaceted and involves a combination of metabolic disturbances 
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and proinflammatory events in multiple organs (Rodriguez-Duque et al., 2023). A disruption of bile 

acid homeostasis is one of the many physiological functions that are disturbed in these pathologies. 

MAFLD, previously known as non-alcoholic fatty liver disease, is becoming the most common chronic 

liver disorder in the world (Eslam et al., 2020). Several studies have reported an increase of total 

serum and fecal bile acids in patients with MAFLD (Ferslew et al., 2015; Mouzaki et al., 2016; Jiao et 

al., 2018). Compositional changes in the bile acid pool have been linked to disease progression. With 

the disease progression of MAFLD, the ratios of primary to secondary and conjugated to unconjugated 

bile acids increase (Jahn and Geier, 2018; Puri et al., 2018). Notably, increased concentrations of 

conjugated CA species in serum is associated with liver fibrosis (Puri et al., 2018). This gradual shift 

from predominantly conjugated CDCA species to CA species in serum might result in a less potent 

activation of FXR, because CA is a weaker FXR agonist than CDCA (Cai et al., 2022). Through a reduced 

FXR activity, alterations in lipid and glucose metabolism and inflammation might occur, which are all 

involved in MAFLD pathology. The exact mechanism of MAFLD pathology remains to be elucidated, 

but it is well established that a disruption of bile acid homeostasis is involved in MAFLD pathology.  

It is well understood that certain drugs can contribute to the onset and progression of diseases 

in which a disturbed bile acid homeostasis plays a role, such as cholestasis or MAFLD. Not only drugs, 

but also environmental contaminants have been associated with an altered bile acid homeostasis. 

Trichloroethylene (TCE) is an example of an environmental contaminant which was shown to alter bile 

acid levels in humans. Non-targeted metabolomics analysis revealed that 80 workers exposed to TCE 

had lower levels of certain plasma bile acids than 95 unexposed controls (Walker et al., 2016). TCE is a 

widely used industrial solvent and common organic contaminant in groundwater. TCE is classified as 

carcinogenic to humans by the International Agency for Research on Cancer (IARC, 2014) and as both 

a carcinogenic and non-carcinogenic health hazard by the US Environmental Protection Agency (EPA) 

(Chiu et al., 2013). Besides kidney and liver cancer (Charbotel et al., 2006), TCE exposure has been 

linked to immune dysfunction (Cooper et al., 2009), renal and liver toxicity (Bruning and Bolt, 2000; 

Brautbar and Williams, 2002). The role of a disturbed bile acid homeostasis in TCE-induced toxicity 

remains to be established, but this example indicates that alterations to bile acid homeostasis are 

probably involved in several, not fully understood pathologies. A disruption of bile acid homeostasis 

may thus be a valuable indicator of certain adverse health outcomes. Upon gaining a better 

understanding of the relationship between specific disruptions in bile acid homeostasis and adverse 

health outcomes, measurements of the bile acid concentration and composition might complement 

the currently available methods used within the toxicological risk assessment.  

At the current state-of-the-art such toxicological risk assessments still heavily rely on animal 

testing. Over the last decades, controversy has arisen about the use of data derived from animal-

based strategies, because of ethical, economical and legislative issues. Furthermore, experimental 

animals do not adequately represent human physiology and may not cover human pathologies. Large 

differences in bile acid pool composition and the hydrophobicity of species specific bile acids between 

experimental animal species and humans have been observed (Sangaraju et al., 2022; Garcia-

Canaveras et al., 2012). Also anatomical differences, such as the absence of a gallbladder in rats, 

hamper the translation of findings in preclinical animals to the human situation (Higashiyama et al., 

2018). Therefore, the human relevance of laboratory animal study related data on chemical-induced 
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bile acid homeostasis perturbations (or the absence thereof) might be limited. This drives the need for 

alternative testing strategies to replace, reduce and refine (3Rs) the use of experimental animals 

(Russell and Burch, 1959). These alternative testing strategies are referred to as New Approach 

Methodologies (NAMs). Within this context, in vitro cell based assays are of use to obtain 

concentration-response curves for several endpoints, such as cytotoxicity or transporter-inhibition. 

Yet, for a toxicological risk assessment, in vivo dose-response curves are required. Here, 

physiologically-based kinetic (PBK) modeling provides a useful tool to bridge the gap between in vitro 

concentration-response or potency information and in vivo dose-response data (Louisse et al., 2017). 

A PBK model is a set of mathematical equations that predicts the behavior of drugs or chemicals 

within the human body. These models are designed to simulate how a chemical is absorbed, 

distributed, metabolized, and excreted (ADME) in various organs over time. PBK models are valuable 

tools for assessing the potential toxicity or risk associated with exposure to a chemical at a certain 

external dose level, as they allow researchers to estimate the concentration of a chemical in different 

organs. 

 

1.4 Aim of the thesis 
The aim of the current thesis was to develop and apply reliable human cell based in vitro models and 

physiologically based kinetic (PBK) models to better understand and predict drug-induced disruption 

of bile acid homeostasis with an emphasis on cholestasis. Upon gaining a better understanding of the 

relationship between specific disruptions in bile acid homeostasis and adverse outcomes, 

measurement of these disruptions in vitro can serve as an indicator of toxicity or potency for selected 

adverse outcomes. PBK modeling is needed to translate in vitro toxicity or potency to in vivo risk. A 

proof-of-principle was provided focusing on the endpoint cholestasis and data-rich chemicals (drugs).  

 

1.5 The role of BSEP-inhibition in the development of cholestasis 
Bile acids are very efficiently recycled through the body, with only around 5% of the bile acids that are 

secreted from the liver into the intestine leaving the body via the feces (Chiang, 2009). For this reason, 

(carrier-mediated) transport processes are a crucial part of bile acid homeostasis and they were 

extensively studied in this PhD dissertation. The ATP-binding cassette (ABC) carrier BSEP actively 

mediates the efflux of bile acids from hepatocytes into bile canaliculi (Boyer, 2013). BSEP plays a 

central role in maintaining bile acid homeostasis and preventing the accumulation of cytotoxic bile 

acids within hepatocytes. Disruption of BSEP-functionality hampers hepatic bile acid efflux. To 

(partially) counteract toxic bile acid accumulation in hepatocytes, these cells undergo adaptive 

changes in transporter expression under the tight regulation of FXR upon increased intracellular bile 

acid concentrations. Expression of the bile acid uptake transporter NTCP is reduced, and the 

expression of basolateral efflux transporters MRP3/4 are increased. When the adaptive response is 

not sufficient, bile acids accumulate in hepatocytes to toxic levels and cause cholestasis (Vinken et al., 

2013). Illustratively, individuals with genetic disorders like progressive familial intrahepatic cholestasis 

2 (PFIC2) or benign recurrent intrahepatic cholestasis 2 (BRIC2) face an increased susceptibility to 

develop cholestasis. Both PFIC2 and BRIC2 are caused by polymorphisms of the BSEP-coding gene 
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which leads to a malfunctioning BSEP protein. PFIC2 and BRIC2 are estimated to occur in about 1 per 

50,000 to 1 per 100,000 childbirths (Geethalakshmi and Mageshkumar, 2014). Notably, BRIC2-carriers 

generally retain a basal BSEP functionality, whereas the BSEP transporter in PFIC2 carriers is typically 

not detected or appears abnormal using immunostaining (Jansen et al., 1999; Strautnieks et al., 2008; 

Evason et al., 2011). The severity of PFIC2 often necessitates liver transplantation due to the 

emergence of cholestasis, progressive hepatic fibrosis, cirrhosis, and end-stage liver disease 

(Srivastava, 2014). These polymorphisms clearly illustrate that a proper BSEP functionality is crucial for 

maintaining healthy (hepatic) bile acid levels.  

Certain drugs have the ability to (non-)competitively inhibit BSEP-mediated hepatic bile acid 
efflux. Drugs with a BSEP-inhibitory potency pose an increased risk to development of cholestasis 

(Morgan et al., 2013). Therefore, the European Medicines Agency (EMA) recommends that new drugs 

that are cleared from the body by the liver should be investigated for their potential to inhibit BSEP 

(EMA Committee for Human Medicinal Products, 2012). In the USA, the Federal Drug Administration 
(FDA) guidance also recommends the consideration of BSEP inhibition studies when appropriate (FDA, 

2022). 

 

1.6 Adverse outcome pathway of cholestasis 
In recent years, lots of efforts have been placed on the development of Adverse Outcome Pathways 

(AOPs) as a conceptual framework to support the construction of non-animal based testing 

approaches for chemical safety assessment. AOPs consist of a molecular initiating event (MIE), one or 

more key event(s) (KEs) and an adverse outcome (AO), which represent responses at different levels of 

biological organization. The general principle of AOPs is that a limited set of KEs can sufficiently 

describe and predict a toxicological response. The identified KEs can be studied using in vitro or in 

silico approaches, thus allowing for a mechanistically-based non-animal toxicological risk assessment 

(De Vries et al., 2021). BSEP-inhibition has been recognized as a MIE in the AOP of cholestasis (Vinken 

et al., 2013) (Figure 3). BSEP-inhibition, but also MIEs like tight junction disruption, altered membrane 

fluidity, compromised cytoskeleton and/or disturbed vesicle transport lead to bile acid accumulation 

in the hepatocyte. This triggers two types of cellular effects: a) cellular effects related to deteriorative 

processes, such as inflammation, oxidative stress and cell death (yellow box) and b) adaptive 

responses aiming to eliminate bile acids from the hepatocyte and prevent further accumulation (pink 

box). The adaptive responses are tightly regulated by FXR, PXR and the constitutive androstane 

receptor (CAR, NR1I3) and compromises upregulation of basolateral efflux transporters (MRP3/4), 

reduced expression of the uptake transporters NTCP and OATP1B1 and a reduced synthesis of bile 

acids by CYP7A1. The high hepatic bile acid levels result in increased serum concentrations of alkaline 

phosphatase (ALP), 5’-nucleotidase (5’-NT), gamma-glutamyl transferase (GGT), alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST), because of bile acid induced membrane 

damage to hepatocytes (Padda et al., 2011; Hofmann, 2009). The major components of bile are 

bilirubin and bile acids. Due to the reduced bile flow, bilirubin accumulates in the hepatocytes (Shah 

and John, 2018). Too high serum bilirubin concentrations (hyperbilirubinemia) are related to jaundice, 

while too high serum bile acid concentrations are thought to lead to pruritus (Padda et al., 2011; Kuntz 

and Kuntz, 2008). Ultimately, all these processes lead to the AO cholestasis. It should be taken into 
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account that alternative mechanisms than those presented in the AOP presented in Figure 3 can also 

lead to cholestasis; the AOP does not fully cover all aspects involved in human physiology (Leist et al., 

2017).  

 

 

 
FFiigguurree  33 Adverse outcome pathway for cholestatic liver injury induced by inhibition of Bile Salt Export Pump. 
Figure obtained from: https://aopwiki.org/aops/27 

1.7 Health consequences of ASBT-inhibition  
Bile acid absorption from the intestinal lumen is a crucial process of the enterohepatic circulation. The 

majority of the bile acid absorption is mediated by ASBT in the distal ileum. Unconjugated bile acids 

with high pKa can be transported via passive diffusion into the enterocytes, but this represents only a 

small quantity of the total bile acids taken up (Alrefai and Gill, 2007). ASBT-mediated transport is 

coupled with the co-transport of sodium ions. Once inside the enterocytes, the bile acids are 

transported across the cells by binding to ileal bile acid binding protein (I-BABP) and via OSTα/β 

secreted into the portal vein (Lu et al., 2022). OSTα/β is independent of sodium and not sensitive to 

pH, kalium, chlorine or ATP depletion, which indicates that the bile acid efflux from enterocytes is 

facilitated diffusion (Soroka et al., 2010).  

Drugs that inhibit ASBT are interesting leads within drug discovery, as there is a need to develop 

drugs that mitigate elevated systemic concentrations of bile acids, as is the case in cholestasis. The 

selective ASBT inhibitor odevixibat has been approved for treatment of the before mentioned genetic 

disorder PFIC (see section 1.5) (Deeks, 2021). Individuals with PFIC typically have high levels of 
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circulating bile acids, and for them a reduced intestinal absorption can be beneficial. However, a 

reduction or inhibition of ASBT-mediated transport can have adverse health effects for otherwise 

healthy individuals. Also in preclinical and clinical studies on inflammatory bowel disease, reduced bile 

acid uptake was observed, which was typically accompanied by decreased ASBT expression (Fitzpatrick 

and Jenabzadeh, 2020). Reduced ASBT expression or activity can have several causes, such as 

inflammatory cytokine induced repression of the ASBT promoter and/or exposure to certain drugs or 

chemicals, such as odevixibat or the foodborne mycotoxin deoxynivalenol (Wang et al., 2022; Graffner 

et al., 2016). Through a reduction of (ASBT-mediated) bile acid uptake, the bile acid concentrations in 

the lumen increase (Graffner et al., 2016). It has been shown that high levels of DCA reduced intestinal 

integrity in pig colonic crypts (Leschelle et al., 2002) and in rabbit small intestine (Fasano et al., 1990). 

A reduced intestinal integrity is related to diarrhea, inflammatory bowel disease and MAFLD (Miele et 

al., 2009; Marasco et al., 2022). When intestinal integrity is reduced, bacterial products translocate 

more easily to the liver where they can trigger local inflammatory and stress responses (Duan et al., 

2022; Sabino et al., 2016). This provides another plausible mechanism involving bile acid mediated 

signaling in the pathology of MAFLD. 

 

1.8 Antibiotic-induced effects on bile acid homeostasis  
Antibiotics are a powerful class of drugs used to treat bacterial infections. Beyond their targeted 

antimicrobial effects, antibiotics can also induce unintended consequences on various physiological 

processes within the human body. Antibiotics can alter the diversity of the gut microbiota due to their 

antimicrobial properties. Several studies report changes in the gut microbiome’s composition and the 

fecal and plasma bile acid pool in rats upon antibiotic administration (Behr et al., 2018; Murali et al., 

2021; de Bruijn et al., 2020). In a single blinded randomized controlled trial, 20 obese men with 

metabolic syndrome were administered the antibiotic vancomycin for 7 days. Vancomycin treatment 

was shown to decrease the gut microbiome diversity and the bile acid concentration and composition 

in plasma and feces (Vrieze et al., 2014). In another study strong correlations were found between 

antibiotic-induced changes in the microbiome and fecal bile acid alterations (Murali et al., 2021). Yet, 

changes in the microbiome’s composition and related bile acid metabolism cannot fully explain the 

changes observed in the plasma bile acid levels. Therefore, it was speculated that also other 

mechanisms are involved in the alterations in plasma bile acid levels, for example changes in intestinal 

bile acid (re)uptake. This hypothesis is supported by the fact that pretreatment of Caco-2 cells with 

the antibiotic tobramycin inhibited TCA transport across a Caco-2 cell layer (Zhang et al., 2022). In this 

thesis, further investigations were performed to evaluate the effects of oral antibiotic exposure on 

host bile acid homeostasis via effects on intestinal bile acid deconjugation and reuptake.  

 

1.9 New approach methodologies to study bile acid homeostasis  
In recent years, significant advances have been made to evaluate both the toxicokinetic and 

toxicodynamic effects of exposure to chemicals or drugs via nonanimal experimentation. In the 

current thesis the drug-induced effects on bile acid homeostasis were studied using NAMs. Given that 

carrier-mediated processes are pivotal in the whole-body bile acid homeostasis, first some background 
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about the kinetics of carrier-mediated transport will be provided. Next, in vitro techniques to study 

inhibition of ASBT- and BSEP-mediated bile acid transport will be introduced.  

 

11..99..11..  TThhee  kkiinneettiiccss  ooff  ccaarrrriieerr--mmeeddiiaatteedd  ttrraannssppoorrtt  

Carriers for chemicals are present in virtually all cell membranes and can be divided in two major 
superfamilies: the ATP-binding cassette (ABC) transporters and the solute carrier (SLC) transporters 

(Keogh, 2012). The earlier introduced bile acid transporters BSEP and ASBT are examples of an ABC-

transporter and SLC-transporter, respectively. ABC transporters are multimembrane-spanning 

proteins, which use ATP hydrolysis to drive the transport of their substrates against an electrochemical 
gradient (Tarling et al., 2013). SLC transporters are integrated into the membrane and either facilitate 

the transport along the electrochemical gradient, or, as is the case for ASBT, the transporter uses the 

electrochemical gradient of another solute (i.e. sodium) for cotransport (Lu et al., 2021). 

Carrier-mediated transport can be described by the same mathematical equation as enzyme 
kinetics, namely the Michaelis Menten equation (van Ginneken and Russel, 1989). The transport rate 

increases with increasing concentrations, until the carrier is saturated and the maximal transport rate 

is achieved (Vmax). The affinity or the Michaelis-Menten constant (Km) refers to the substrate 

concentration needed to achieve half maximal transport rate. The following equation can be used to 
describe the transport rate (Eq.1)(Runge et al., 2006; Cornish-Bowden, 2013): 

𝑣𝑣 𝑣 𝑉𝑉��� × [𝑆𝑆𝑆
𝐾𝐾� + [𝑆𝑆𝑆  

Eq.1  

Where v is the transport rate, Vmax the maximal transport rate, [S] the substrate concentration 
and Km the Michaelis Menten constant. V and Vmax are expressed in the same unit, typically 

pmoles/min, and Km and [S] are expressed in the same unit, typically µM. The units depend on the 

experimental conditions.  

Chemicals or drugs can inhibit transport processes by competitively binding to the carrier 
and/or reducing the carrier’s expression/activity (non-competitive inhibition). Several in vitro assays 

have been developed to study the potential interaction of drugs or chemicals and transporters. These 

systems provide estimates of the half-maximal inhibitory concentration (IC50) or the inhibitory 

constant (Ki). Ki can be incorporated in the Michaelis-Menten equation to describe the transport rate 
in the presence of a certain concentration of the inhibitor. For a competitive inhibitor, this leads to the 

following equation (Cornish-Bowden, 2013) (Eq. 2): 

𝑣𝑣 𝑣 𝑉𝑉��� × [𝑆𝑆𝑆
𝐾𝐾� × (1 + [𝐼𝐼𝑆

𝐾𝐾�
)  + [𝑆𝑆𝑆

 
Eq. 2 

 Where v is the transport rate, Vmax the maximal transport rate, [S] the substrate 

concentration and Km the Michaelis Menten constant, [I] the inhibitor concentration and Ki the 
inhibitory constant. V and Vmax are expressed in the same unit, typically pmoles/min, and Km, [S], Ki and 

[I] are expressed in the same unit, typically µM. The units depend on the experimental conditions.  

 

11..99..22..  IInn  vviittrroo  mmooddeellss  ttoo  ssttuuddyy  ddrruugg--iinndduucceedd  iinnhhiibbiittiioonn  ooff  AASSBBTT--mmeeddiiaatteedd  ttrraannssppoorrtt  

The available in vitro assays to study drug-transporter interactions range from relatively simple models 

to more complex and physiologically relevant models (Cheng et al., 2016). Cells transfected with a 

1

GENERAL INTRODUCTION 17



 

transporter are a relatively simple model. Physiologically relevant systems are able to perform several 

metabolic and transporter processes, depending on the organ that the cells represent. Transfected 
cells provide a well-controlled environment with high stability and reproducibility to study solely the 

transporter of interest, and therefore a “clean” estimate of the kinetic parameters. A physiologically 

relevant system provides an overall or apparent estimate of the kinetic parameters. In vitro models for 

intestine and liver are discussed in the following section and section 1.9.3, respectively. The 
consequences of the chosen in vitro system for the in vitro to in vivo extrapolation will be discussed in 

section 1.9.5. 

Several types of cells are suitable for transfection with transporter cDNA to ultimately express 

the transporters on the membranes. Typically, insect cells from Spodoptera frugiperda (Sf9 or Sf21) 
are transfected with transporter cDNA, but also several mammalian cells are suitable for transfection, 

such as Chinese Hamster Ovary (CHO), Madin-Darby canine kidney cells (MDCK) and Human 

Embryonic Kidney (HEK) 293 cells (Notenboom et al., 2018; De Bruyn et al., 2014). When interested in 

an uptake transporter, such as ASBT, the transfected cells are cultured in a monolayer and after 
incubation with selected concentrations of the substrate (and inhibitor), the cells are carefully washed 

and lysed in order to determine the amount of substrate that was taken up (Balakrishnan et al., 2006).  

Caco-2 cells encompass a more physiologically relevant model to study intestinal transport. 
Caco-2 cells are derived from a human colon carcinoma and commonly cultured on permeable filters 

(“transwells”) to study transepithelial transport of chemicals or drugs (Pinto et al., 1983). Comparative 

studies revealed that Caco-2 transport assays are able to model the passive and transcellular drug 

transport in vivo (Lennernäs et al., 1996; Amidon et al., 1995; Artursson et al., 2001). Accurate 
estimates of drug transport are important to predict its bioavailability and the systemic 

concentrations. A proteome study identified 327 proteins that are involved in absorption, distribution, 

metabolism and excretion in Caco-2 cells, including 112 SLC transporters and 20 ABC transporters 

(Olander et al., 2016). Even though ASBT protein expression in Caco-2 cells is not conclusively shown, 
Caco-2 cells are known to transport bile acids in a sodium-dependent way (Bruck et al., 2017; Olander 

et al., 2016; van der Mark et al., 2014; Chandler et al., 1993). Given that ASBT is a sodium-symporter, 

this provides strong evidence that ASBT is indeed functionally present in Caco-2 cells. The 

interpretation of the results obtained using a Caco-2 transport assay can be more complicated than 
the results from an ASBT-transfected cell system, because the overall transport, and not specifically 

the ASBT-mediated transport, is measured. The overall transport also incorporates intracellular and 

basolateral transport. It can be argued that the estimate of overall transport rate rather than an ASBT-

specific rate actually improves the accuracy to predict in vivo transport, because the overall transport 
is more relevant to the human in vivo situation.  

 

11..99..33..  IInn  vviittrroo  mmooddeellss  ttoo  ssttuuddyy  ddrruugg--iinndduucceedd  iinnhhiibbiittiioonn  ooff  BBSSEEPP--mmeeddiiaatteedd  ttrraannssppoorrtt  

As previously indicated, inhibition of BSEP is the MIE in the AOP of cholestasis. Therefore, lots of 

efforts have been placed on the development of in vitro models to study BSEP-mediated hepatic bile 
acid efflux. The most simple system includes BSEP-membrane vesicles (Kis et al., 2009). BSEP-

membrane vesicles are generated from cells transfected with BSEP. When interested in an efflux 

transporter, membrane vesicles are often generated to avoid the need to also transfect the cells with 
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an uptake transporter. Membrane vesicles have an inside-out orientation, allowing substrates to be 

transported from the incubation fluid into the vesicle. To generate membrane vesicles, transfected 
cells are disrupted and centrifuged to remove cellular components. The resulting membrane fraction 

is isolated through ultracentrifugation and suspended in a buffer (Tabas and Dantzig, 2002). To 

analyze transporter kinetics, vesicles are separated from the incubation fluid, washed and lysed, after 

which the substrate concentration in the vesicles is quantified using analytical methods (Cheng et al., 
2016). Several Sf9 and HEK-derived membrane vesicles are commercially available. The use of 

membrane vesicles gives a “clean” estimate of solely BSEP-mediated transport.  

Several models with increased biological complexity and physiological relevance to study 

hepatic bile acid transport kinetics are available. With a physiologically relevant hepatocyte(-like) 
system the net hepatic bile acid efflux is measured. The net efflux provides a holistic estimate of apical 

bile acid uptake, de novo synthesis and basolateral and canalicular efflux. An important characteristic 

of these models is their ability to perform in situ metabolism. In situ metabolism is crucial when the 

metabolite and not the parent compound is the active transport-inhibitor. In some cases, such as 
troglitazone, the metabolite inhibits BSEP-mediated TCA transport more potently than the parent 

compound (Funk et al., 2001). Several BSEP-inhibitors are known to also inhibit hepatic uptake 

transporters. Troglitazone, for example, inhibits BSEP-mediated TCA transport (Funk et al., 2001), but 
also transport mediated by NTCP (Marion et al., 2007), MRP3 and MRP4 (Morgan et al., 2013). The 

reduction of net bile acid efflux from physiologically relevant cells can thus not be solely attributed to 

BSEP-inhibition. In the following paragraphs, three hepatic in vitro models with high physiological 

relevance are introduced. The three models introduced are primary human hepatocytes, HepaRG cells 
and hepatocyte-like intrahepatic cholangiocyte organoids (ICO-hep). The difference in functionality 

between these cell models is mainly related to the origin of the cells, i.e. a liver biopsy, hepatic 

carcinoma cells or adult stem cells from a liver biopsy.  

Primary human hepatocytes are the gold standard in vitro model to study liver cell function for 
drug development and toxicity testing. Primary human hepatocytes are typically isolated from liver 

tissue with a two-step collagenase perfusion technique (Hengstler et al., 2000; LeCluyse and 

Alexandre, 2010). Primary human hepatocytes can be cultured short-term in a suspension, but this is 

accompanied by rapid dedifferentiation. When cultured in a sandwich configuration, i.e. between two 
layers of extracellular matrix, primary hepatocytes maintain their polarized phenotype for a longer 

period (Gijbels and Vinken, 2019). Fresh primary human hepatocytes are not readily available, but to 

overcome this limitation, cryopreserved primary hepatocytes can be obtained commercially. Primary 

hepatocytes, cultured either in sandwich or suspension, have been successfully used to study drug-
mediated inhibition of bile acid transport (Zhang et al., 2016; Oorts et al., 2021). 

Alternatively, the hepatic hepatoma cell line HepaRG has been established as a useful 

surrogate for human hepatocytes for drug metabolism, transport and toxicity studies (Andersson et 

al., 2012; Guillouzo et al., 2007; Lübberstedt et al., 2011). HepaRG cells were also shown to perform 
saturable TCA uptake (Le Vee et al., 2013). A recent study showed that HepaRG cells exposed to the 

prototypical cholestatic drugs bosentan, cyclosporin A, glibenclamide or troglitazone had a reduced 

basolateral and canalicular TCA efflux compared to HepaRG cells exposed to the noncholestatic 
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compounds salicylic acid or flumazenil (Le Vee et al., 2022). HepaRG cells are derived from one donor, 

so the data are reproducible and robust due to the absence of interdonor differences.  
Organoid models provide solutions to some of the drawbacks of primary human hepatocytes 

and HepaRG cells. ICO-heps are of non-cancerous nature and have unlimited availability and indefinite 

proliferation, which makes them a useful alternative to HepaRG cells or primary human hepatocytes. 

ICO-heps are derived from liver-derived adult stem cells and differentiated towards a hepatocyte-like 
phenotype. Upon differentiation, ICO-heps show an increased expression of hepatic markers, such as 

albumin, CYP enzymes and transporters (Huch et al., 2015). Their ability to emulate human liver 

functionality to synthesize and secrete bile acids was compared to the ability of HepaRG cells and 

primary human hepatocytes in this thesis.  
  

11..99..44..  PPhhyyssiioollooggiiccaallllyy--bbaasseedd  kkiinneettiicc  ((PPBBKK))  mmooddeelliinngg  

PBK modeling simulates the kinetics of a compound in different organs using mathematical equations. 

PBK modeling predicts internal concentrations in the tissue of interest after exposure to a defined 

external dose level. In the current thesis, a drug’s inhibitory constant to inhibit ASBT- or BSEP-

mediated transport is determined using various in vitro assays depending on the research question. To 

predict the effects of external drug exposure on in vivo whole-body bile acid homeostasis, PBK 

modeling is applied. The first step towards developing a PBK model is defining its basic structure using 

a conceptual model. An exemplary conceptual model for the enterohepatic bile acid circulation is 

displayed in Figure 4. In PBK modeling, the body is assumed to consist of several compartments. Each 

compartment (represented as boxes in Figure 4) represents an organ or a single region of the body 

with homogenous concentrations throughout. Typically, organs are specifically depicted if they either 

strongly influence the kinetics of the compound of interest or when they are the target organ of 

toxicity. The remaining organs are lumped into “rapidly perfused tissue” and “slowly perfused tissue” 

(Rietjens et al., 2011). The liver, intestine and gallbladder are crucial for the enterohepatic circulation 

of bile acids, and therefore, these are specifically depicted in the bile acid PBK model. Input 

parameters include physiological, physico-chemical and biochemical parameters. Physiological 

parameters include e.g. organ volumes and blood flows to organs. These data are available from 

literature. Physico-chemical parameters include lipophilicity, pKa, molecular weight and the fraction 

unbound for plasma protein binding. Physico-chemical data can be obtained experimentally or by in 

silico methods. Physico-chemical parameters are used to predict the partitioning between the tissues 

and blood or plasma using computer-based (in silico) predictions (Rodgers and Rowland, 2006; 

Berezhkovskiy, 2004). The last type of parameters needed are kinetic parameters describing e.g. 

clearance or intestinal uptake. Primary hepatocytes can be used for clearance measurements and 

Caco-2 cells are frequently used to assess kinetics of intestinal uptake. Recently, a machine learning 

approach has become available which is able to predict chemical-specific physico-chemical or kinetic 

parameters (Pires et al., 2015). Upon gaining sufficient trust in these models for a wide domain of 

structurally diverse chemicals or a clearly defined applicability domain, in silico predictions could 

replace experimentally determined physicochemical and kinetic parameters. The adequacy of PBK 

model predictions is generally evaluated against in vivo plasma, blood or urinary data. Generally, it is 
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assumed that when the blood or plasma levels are predicted accurately, the concentrations within 

organs are also accurately predicted.  

 
FFiigguurree  44 Conceptual model of an exemplary bile acid PBK model 

11..99..55..  IInn  vviittrroo  ttoo  iinn  vviivvoo  ssccaalliinngg  ooff  ccaarrrriieerr--mmeeddiiaatteedd  ttrraannssppoorrtt  kkiinneettiiccss  

In order to incorporate  kinetic parameters obtained using an in vitro model in a PBK model, 
parameter needs to be expressed in the same unit as the other processes of the model. For example, 

a Vmax describing hepatic uptake should have the unit µmoles per entire liver per hour, while the in 

vitro Vmax is typically obtained in another unit, e.g. pmoles per a million hepatocytes per minute or 

pmoles per mg protein per minute. Different approaches exist to derive the scaling factor for in vitro 
to in vivo scaling of carrier-mediated transport.  

Firstly, the in vitro kinetic parameters can be scaled empirically by comparing the predicted and 

observed concentration-time profile in plasma or blood and finding the scaling factor that results in 

the best fit. Even though this approach is not mechanistically sound, it is the most straight-forward 
way to correct for differences between the in vitro and in vivo situation, especially when the nature of 

these differences is not fully understood. Many factors can contribute to differences between the in 

vitro and in vivo transport rate, for example, differences in membrane potential or additional transport 

mechanisms that are present in vivo but not in the in vitro system, e.g. an additional carrier 
(Noorlander et al., 2021). 

A physiological scaling factor can be used to obtain a scaling factor with a mechanistic and/or 

theoretical basis. A physiological scaling factor includes the number of cells in the tissue of interest or 

the membrane/total protein content of the tissue of interest. This approach is common for scaling 
metabolic clearance data obtained using e.g. microsomes or S9 fractions, and is also applied for 

metabolic clearance obtained using primary hepatocytes (Pelkonen and Turpeinen, 2007). The 

underlying assumption of the physiological scaling approach is that transporter abundance and activity 

in vitro and in vivo are equal. When this assumption is not valid, a relative expression factor (REF) or 
relative activity factor (RAF) can be used to correct for differences in expression or activity, 

respectively. For the REF approach, gene expression or transporter abundance is measured in the in 
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vitro model and in primary tissue samples. Next, the REF is determined as a quotient that corrects for 

these differences in gene expression or transporter abundance. Some authors measure gene 
expression, but abundance measurements are preferrable, because expression does not mean that 

the protein is transcribed. With the increasing popularity of quantitative targeted proteomics (Prasad 

et al., 2019), measuring transporter abundances has become more attainable over the last years and 

the REF approach has been increasingly applied (Nozaki and Izumi, 2020; Deng et al., 2021; Sachar et 
al., 2020; Vildhede et al., 2016). An alternative approach is the establishment of a relative activity 

factor (RAF). In order to determine a RAF, the transport rates of a probe substrate in vitro and in vivo 

are obtained and used as a quotient that corrects for these differences in activity.  

 

1.10 Outline of the thesis  
CChhaapptteerr  11  gives an introduction on the potential health consequences of (drug-induced) disruption of 

bile acid homeostasis, techniques to study BSEP- or ASBT-mediated transport inhibition in vitro and 

translation of these findings to the in vivo situation and formulates the aim of the thesis: to develop 

reliable human cell based in vitro models and physiologically based kinetic (PBK) models to better 

understand and predict drug-induced disruption of bile acid homeostasis with emphasis on 

cholestasis. 

 

CChhaapptteerr  22  compares the capacity of three different hepatic in vitro systems to emulate human liver 

functionality to synthesize and secrete bile acids. Bile acid synthesis rates and profiles, responsiveness 

to selected BSEP-inhibitors and selected target genes were analyzed for: hepatocyte-like intrahepatic 

cholangiocyte organoids (ICO-heps), sandwich cultured human hepatocytes (SCHH) and HepaRG cells 

(HepaRGs). To this end, basal bile acid production of sandwich cultured human hepatocytes (SCHHs), 

HepaRG cells and hepatocyte-like intrahepatic cholangiocyte organoids (ICO-heps) were analyzed, and 

the effect of the known BSEP-inhibitors bosentan and lopinavir on bile acid disposition in SCHHs and 

HepaRG cells was quantified. RT-qPCR of selected target genes involved in maturation status, 

synthesis, transport and conjugation of bile acids was performed to mechanistically underpin the 

observed differences in bile acid homeostasis. 

 

CChhaapptteerr  33 develops a PBK model that provides a tool to predict dose-dependent bile acid 

accumulation in humans upon treatment with the BSEP inhibitor bosentan. To this end, three PBK 

submodels were developed, consisting of a PBK model for a) bosentan, b) RO 47-8634 (the active 

metabolite of bosentan) and c) bile acids. The bile acid PBK model was developed using 

glycochenodeoxycholic acid (GCDCA) as an exemplary bile acid. The bosentan and RO 47-8634 PBK 

models were used to predict their concentrations at the target organ for BSEP inhibition, i.e. the liver. 

The PBK model kinetic parameters for BSEP-mediated transport were obtained from a literature study 

reporting BSEP-mediated GCDCA uptake in membrane vesicles. The scaling factor required to convert 

the in vitro kinetic data to the in vivo situation was based on the relative BSEP expression in the 

membrane vesicles and in vivo tissue (REF approach). The effects of in vivo variabilities in transporter 

abundance and bile acid pool size on plasma and liver bile acids were also simulated. 
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CChhaapptteerr  44 simulates the effects of ASBT-inhibition on systemic plasma levels. The model from the 

previous chapter was extended to describe not only GCDCA, but also GCA and GDCA and a generic 

unconjugated bile acid. Hepatic bile acid uptake was described as a permeability-limited, NTCP-

mediated process. The kinetic parameters and scaling factor for in vitro to in vivo scaling of NTCP-

mediated transport were obtained from literature and based on a transfected cell system combined 

with the REF approach for scaling. The kinetic parameters for ASBT-mediated transport were obtained 

experimentally using Caco-2 cells. Empirical in vitro to in vivo extrapolation was applied for ASBT-

mediated transport. Odevixibat, a reversible ASBT-inhibitor, was used as a model compound.  

 

CChhaapptteerr  55  applies the newly developed PBK model to investigate the effect of the antibiotic 

tobramycin on bile acid homeostasis. Inhibition of intestinal transport was measured using Caco-2 

cells. Inhibition of intestinal deconjugation was based on previous studies using fecal static batch 

incubations.  

 

CChhaapptteerr  66  applies the newly developed PBK model to predict the drug-induced hepatic bile acid 

accumulation and cholestasis for 15 drugs. These drugs are known to inhibit hepatic bile acid efflux 

and causally linked to the development of drug-induced liver injury, but classified as common, rare or 

no cholestatic liver injury. First, generic PBK models were built to predict the hepatic concentrations of 

these drugs. Next, the PBK model predicted hepatic concentrations were used to predict their 

inhibitory effect on BSEP-mediated efflux as well as their effects on hepatic bile acid accumulation as a 

measure for cholestatic potency. The inhibitory constants were obtained from a literature study that 

used primary hepatocytes in suspension. Predictions were made for different dose levels and also for 

average as well as sensitive individuals.  

 

CChhaapptteerr  77 gives an overview of the main findings in this thesis and provides a general discussion on 

points beyond the scope of the individual chapters. The chapter further discusses the use of PBK 

models for drug metabolism and bile acids, in vitro and in silico tools to define PBK input parameters, 

converting in vitro data to the in vivo situation, the cholestasis adverse outcome pathway and the 

relevance of bile acids for adverse outcomes other than cholestasis. To finalize, a discussion is 

provided about the paradigm shift towards an animal-free risk assessment for cholestasis. 
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Abstract 
Reliable hepatic in vitro systems are crucial for the safety assessment of xenobiotics. Certain 

xenobiotics decrease the hepatic bile efflux, which can ultimately result in cholestasis. Preclinical 

animal models and the currently available in vitro systems poorly predict a xenobiotic’s cholestatic 

potential. Here, we compared the phenotype and capacity of three liver derived in vitro systems to 

emulate human functionality to synthesize and secrete bile acids (BAs).  

To this end, basal BA production of sandwich cultured human hepatocytes (SCHHs), HepaRG cells 

(HepaRGs) and hepatocyte-like intrahepatic cholangiocyte organoids (ICO-heps) were analyzed, and 

the effect of the known BSEP (Bile Salt Export Pump)-inhibitors bosentan and lopinavir on BA 

disposition in SCHHs and HepaRGs was quantified. RT-qPCR of selected target genes involved in 

maturation status, synthesis, transport and conjugation of BAs was performed to mechanistically 

underpin the observed differences in BA homeostasis.  

ICO-heps produced a (very) low amount of BAs. SCHHs are a powerful tool in cholestasis-testing due to 

their high basal BA production and high transporter expression compared to the other models tested. 

HepaRGs were responsive to both selected BSEP-inhibitors and produced a BA profile that is most 

similar to the human in vivo situation, making them a suitable and practical candidate for cholestasis-

testing. 

 

KKeeyywwoorrddss::  Bile acids and salts  ●●  Cholestasis  ●●  New approach methodologies  

 
LLiisstt  ooff  aabbbbrreevviiaattiioonnss: AOP, Adverse Outcome Pathway; BA, bile acid; DILI, drug-induced liver injury; 

ICO-heps, hepatocyte-like intrahepatic cholangiocyte organoids; KE, key event; KER, key event 

relationship; LOD, limit of detection, LOQ, limit of quantification; MIE, molecular initiating event; 
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2.1 Introduction  
Drug-induced liver injury (DILI) is one of the foremost reasons for drug-withdrawal, and has thus large 

financial consequences for the pharmaceutical industry (van Tonder et al., 2013). Drug-induced 

cholestasis is a subgroup of DILI and refers to impeded bile flow leading to the accumulation of bile 

acids (BAs) in the liver and subsequent spillage to the systemic circulation (Noor, 2015). Not only 

drugs, but also the phytotoxins like pyrrolizidine alkaloids, food additives, and biocides can cause 

cholestasis (Lu et al., 2021; Vilas-Boas et al., 2019, 2020). Causes of cholestasis range from changes in 

transporters to hepatocellular or bile canalicular changes as described in an Adverse Outcome 

Pathway (AOP) (Gijbels et al., 2020). Currently, hepatic safety testing of drugs is performed 

predominantly by in vivo screening. However, animal studies can only predict 50% of human drug 

induced liver injury, including cholestasis (Olson et al., 2000). Due to the poor predictivity as well as 

the ethical constraints of animal testing, new approach methodologies (NAMs) to assess the 

cholestatic potential of xenobiotics are being developed (Deferm et al., 2019). Presently available in 

vitro models detect hardly half of the clinical DILI events (Laverty et al., 2010), hence research is 

ongoing to design in vitro models with higher predictivity. Next, the optimal in vitro model would be 

suitable for long-term culture and not require fresh liver tissue (Ramli et al., 2020; Vinken, 2018).  

BAs are the major functional components of bile, and have been known to serve as emulsifiers 

of dietary lipids and lipid-soluble vitamins in the intestine for a long time. Additionally, BAs are 

increasingly recognized as important signaling molecules between the gut microbes and the host. BAs 

are synthesized in the liver via cytochrome P450 (CYP)-mediated oxidation of cholesterol. The classical 

pathway of BA synthesis is initiated by CYP7A1 and the alternative pathway is initiated by CYP27A1 

(Axelson et al., 2000). Via various liver enzymatic reactions, ultimately the primary BAs cholic acid (CA) 

and chenodeoxycholic acid (CDCA) are formed in humans. In the liver, these primary BAs are 

conjugated with taurine or glycine, resulting in tauro- or glycocholic acid (TCA, GCA) and tauro- or 

glycochenodeoxycholic acid (TCDCA, GCDCA). Subsequently, BAs are secreted from the liver into the 

bile canaliculus via the canalicular bile salt export pump (BSEP, ABCB11) (Jia et al., 2018). Inhibition of 

BSEP is a common cause of cholestasis, although inhibition does not necessarily lead to cholestasis 

and vice versa as cholestasis is not always linked with BSEP-inhibition (Gijbels et al., 2019). Recently, an 

AOP network was established for human hepatotoxicity (Arnesdotter et al., 2021), connecting 14 

linear AOPs related to human hepatotoxicity. This network visualizes the complex interaction between 

biological processes involved in hepatotoxicity and elucidates multiple molecular initiating events 

(MIE), which rely on a sequence of key events (KEs) linked by key event relationships (KERs), that 

eventually could lead to hepatotoxicity, or cholestasis more specifically. In the current work, the effect 

of the known BSEP-inhibitors bosentan and lopinavir on the BA homeostasis was assessed in three 

different in vitro models. Bosentan inhibits BSEP in a non-competitive nature (Fattinger et al., 2001), 

while lopinavir leads to transcriptional repression of BSEP via interaction with farnesoid X receptor 

(FXR) (Garzel et al., 2014). 

Upon secretion to the bile duct, BAs are transported to the intestine, where the gut microbes 

metabolize BAs to a wide array of primary and secondary BAs (Chiang, 2017; Jia et al., 2018). The BAs 

are reabsorbed into enterocytes and via the portal vein transported back to the liver. This cyclic 

process of BA secretion into the intestine, reabsorption and return to the liver is called enterohepatic 
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recycling. Every day, around 90–95% of the intestinal BAs is recycled between the gut and the liver 

(Chiang, 2009; Dawson et al., 2009). Accordingly, a disturbance of the hepatic BA homeostasis will not 

only result in a local adverse effect on the liver, but will also distort the gut-liver axis.  

Different cell-based systems emulate many liver functions involved in the development of drug-

mediated hepatoxicity and are therefore potential powerful in vitro models to study cholestasis. 

Various hepatic in vitro systems are available, ranging from simple monolayers to more advanced 3D 

cultures, using immortalized, primary, or stem cell derived cell sources. Culturing cells in a 3D spheroid 

configuration provides several benefits over monolayers, such as improved cell viability and 

phenotypic stability (Bell et al., 2018). Primary human hepatocytes cultured in a spheroid 

configuration maintain typical hepatocyte functions such as albumin and urea production and 

glycogen storage over a period of at least 5 weeks (Bell et al., 2016; Messner et al., 2018), and have 

shown promising for detecting DILI with a predictivity of 69% (Vorrink et al., 2018).  

In the current work we compare three different hepatic in vitro systems, i.e. sandwich cultured 

human hepatocytes (SCHHs), HepaRG cells in a monolayer configuration (HepaRGs) and hepatocyte-

like intrahepatic cholangiocyte organoids in a 3D configuration (ICO-heps). Primary human 

hepatocytes are typically isolated from resected liver tissue with a two-step collagenase perfusion 

technique (Hengstler et al., 2000; LeCluyse and Alexandre, 2010). To overcome the limited availability 

of fresh liver tissue, cryopreserved hepatocytes are commercially available (Hengstler et al., 2000). 

Upon seeding, primary hepatocytes rapidly lose their typical in vivo morphology and differentiation 

status. When cultured in a sandwich configuration (sandwich cultured human hepatocytes, SCHH), i.e. 

between two layers of extracellular matrix, primary hepatocytes maintain their polarized phenotype 

for a longer period (Gijbels et al., 2019). The hepatic hepatoma cell line HepaRG is another commonly 

used in vitro tool to study cholestasis. HepaRG cultures consist of two cell populations, one resembling 

hepatocytes and one resembling cholangiocytes (Kanebratt and Andersson, 2008). Next, organoid 

models could provide a solution for some of the drawbacks of primary hepatocytes or hepatoma-

derived cells. Here, we used intrahepatic cholangiocyte organoids (ICOs) isolated from human 

biopsies. These are bipotential cells able to differentiate towards the hepatic and cholangiocytic 

lineage (Marsee et al., 2021). ICOs can be differentiated towards hepatocyte-like cells (ICO-hep) when 

cultured in differentiation medium, which is deprived of inducers of proliferation such as Rspondin-1 

and forskolin (Huch et al., 2015; Schneeberger et al., 2020; Verstegen et al., 2020).  

The aim of the current work was to compare three hepatic in vitro systems for their ability to 

emulate human liver functionality to synthesize and secrete BAs. To this end, basal production of 18 

BAs by SCHHs, HepaRGs and ICO-heps was measured using LC-MS/MS. qPCR of selected target genes 

involved in maturation status, BA synthesis, transport and conjugation was performed to 

mechanistically underpin the observed differences in BA homeostasis. We selected typical hepatocyte 

markers, i.e. albumin (ALB) and CYP3A4, to evaluate the hepatic lineage of the in vitro models (Marsee 

et al., 2021), and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) as a stemness 

marker (Verstegen et al., 2020). The transporters selected were all part of the AOP for cholestasis, and 

FXR was included due to its central role in the regulation of BA homeostasis (Chiang and Ferrell, 2022; 

Gijbels et al., 2020). CYP7A1 was selected as it is the rate limiting enzyme in the classical BA synthesis 

pathway, CYP27A1 for its crucial role in the alternative BA synthesis pathway and bile acid coenzyme 
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A:aminoacid N-acyltransferase enzyme (BAAT) to explain the differences observed in the conjugation 

state of the BAs produced by the SCHHs, HepaRGs and ICO-heps (Axelson et al., 2000; Chiang, 2013; 

Russell, 2003).  

  

2.2 Materials and methods 
CChheemmiiccaallss    

Lopinavir (CAS 192725–17–0) and bosentan hydrate (CAS 157212–55–0) were purchased from Sigma-

Aldrich (Zwijndrecht, the Netherlands). These compounds were dissolved in dimethyl sulfoxide 

(DMSO) (CAS 67–68–5). DMSO was purchased from Acros Organics (Geel, Belgium). For all cell 

cultures, we used HBSS, purchased from Gibco (Thermo Fisher Scientific, Paisley, UK) and trypsin-EDTA 

(trypsin 0.025%/EDTA 0.01%), purchased from Invitrogen (Thermo Fisher Scientific, Breda, the 

Netherlands).  

 

CCeellll  ccuullttuurree    

Cryopreserved primary human hepatocytes (4 × lot HU8317 from one donor, 1 × lot HPP2380204 

pooled from 5 donors), plating and cell maintenance supplement pack, FCS were purchased from 

Thermo Fisher Scientific (Landsmeer, the Netherlands). The plating and maintenance media were 

prepared in William’s E culture medium (Thermo Fisher Scientific). Human hepatocyte thawing 

medium was obtained from Sigma-Aldrich. Lot HU8317 was obtained from a Caucasian 59-year old 

male, HPP2380204 contains hepatocytes from 4 females and 1 male, aged 52–69, all Caucasians. 

Primary human hepatocytes were thawed and plated according to the supplier’s protocol. The seeding 

density was 400,000 cells per well in a 24-wells plate. The hepatocytes were allowed to form a 

monolayer for 6 h, and then the hepatocytes were overlayed with Matrigel (Corning, New York, NY, 

USA). The Matrigel was allowed to settle overnight. Hereafter, the cells were washed twice with HBSS 

and the medium was replaced with hepatocyte maintenance medium containing a solvent control, 50 

μM bosentan or 50 μM lopinavir (final DMSO concentration, 0.5% (v/v)). Previous research showed 

that 24 h exposure to 50 μM of bosentan and lopinavir did not reduce cell viability but decreased 

endogenous BA accumulation in HepaRGs and sandwich cultured rat hepatocytes, respectively 

(Burbank et al., 2017; Griffin et al., 2013). 50 μM bosentan did not result in cytotoxicity in sandwich 

cultured rat hepatocytes (Susukida et al., 2015). We performed a resazurin assay confirming that 24 h 

exposure to 50 μM lopinavir did not affect HepaRG cell viability, see supplementary material for 

experimental details and results. The HepaRG cell line was purchased from Biopredic International 

(Rennes, France). Passages 17–20 were used. The growth medium (GM) was composed of 500 mL 

William’s E culture medium, completed with 5 mL penicillin-streptomycin solution (P/S) and 5 mL L-

glutamine, all were purchased from Thermo Fisher Scientific, 0.25 mL 0.05% human insulin (5 μg/mL), 

50 mL 10% fetal calf serum (FCS) and 5 mL hydrocortisone-21-hemisuccinate (HCC) (10 mg/mL) were 

purchased from Sigma-Aldrich. The differentiation medium (DM) was composed of GM with 1.7% (v/v) 

DMSO. Undifferentiated HepaRG cells were seeded at a density of 200,000 cells per well in a 6-wells 

plate and differentiated according to the supplier’s protocol. Following the differentiation, medium 

was replaced by serum free medium, to deplete the cells from bovine BAs present in FCS. After 24 h, 

the cells were washed twice with HBSS and the medium was replaced with serum free medium 
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containing a solvent control, 50 μM bosentan or 50 μM lopinavir (final DMSO concentration, 0.5% 

(v/v)). For the establishment of intrahepatic cholangiocytes organoids (ICOs), human liver biopsies 

were acquired from transplantation residual tissues that were used to ascertain if the liver tissue was 

healthy prior to transplantation at the Erasmus Medical Center Rotterdam approved by the Medical 

Ethical Council (MEC 2014–060). Establishment of ICO cultures was performed as follows: Liver 

biopsies were cut into small pieces and enzymatic dissociation was performed by incubation with type 

II collagenase (0.125 mg/mL; Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and dispase (0.125 

mg/mL; Gibco) in DMEM GlutaMAX (Gibco) containing 0.1 mg/mL DNase I (Roche, Basel, Switzerland), 

1% (v/v) FCS (Gibco) and 1% (v/v) P/S (Gibco) at 37 ℃ in a water bath incubator. The supernatant of 

digested liver biopsies was collected and replaced with fresh enzyme-supplemented medium. 

Collection of supernatant and replacement with fresh medium was repeated three times. Single cells 

were collected and washed in cold DMEM GlutaMAX medium containing 1% (v/v) FCS and 1% (v/v) P/S 

and centrifuged at 400 g for 5 min. The single cells were mixed with cold Matrigel (Corning) and 

seeded in droplets (50 μL) in a 24 well plate. After Matrigel gelation, expansion medium (EM) was 

added and cells were incubated at 37 ℃ with 5% CO2 (v/v). The expansion medium was Advanced 

DMEM/F12 medium (Gibco) supplemented with 1% (v/v) HEPES (10 mM; Gibco), 1% (v/v) P/S, 1% (v/v) 

GlutaMax (Gibco), 10% (v/v) Rspondin-1 conditioned medium (the Rspon1-Fc-expressing cell line was 

a kind gift from Calvin J. Kuo), 2% (v/v) B27 supplement without vitamin A (Invitrogen, Carlsbad, CA, 

USA), 1% (v/v) N2 supplement (Invitrogen), Nicotinamide (10 mM; Sigma-Aldrich, St. Louis, MO, USA), 

N-acetylcysteine (1.25 mM; Sigma-Aldrich), fibroblast growth factor 10 (100 ng/mL; FGF10; Peprotech, 

Rocky Hill, NJ, USA), recombinant human (Leu15)-gastrin I (10 nM; GAS; Tocris Bioscience, Bristol, UK), 

10 μM forskolin (Tocris Bioscience), epidermal growth factor (50 ng/mL; EGF; Peprotech), hepatocyte 

growth factor (25 ng/ mL; HGF; Peprotech) and A8301 (5 μM; transforming growth factor b inhibitor; 

Tocris Bioscience). Organoids were passaged every 7–10 days at ratio of 1:3–1:4 and medium was 

refreshed every 2–3 days. For the differentiation of ICOs to hepatocyte-like cells (ICO-heps), the BMP7 

(25 ng/mL; Peprotech) was added in EM to prime differentiation for 3 days prior to shifting the cells to 

differentiation medium (DM). The DM was based on Advanced DMEM/F12 containing 1% (v/v) HEPES, 

1% (v/v) P/S, 1% (v/v) GlutaMAX, 2% (v/v) B27 supplement without vitamin A, 1% (v/v) N2 supplement, 

1.25 mM N-acetylcysteine, 10 nM GAS, 50 ng/mL EGF, 25 ng/mL HGF, 500 nM A8301, fibroblast 

growth factor 19 (100 ng/mL; FGF19; Peprotech), BMP-7 (25 ng/mL; Peprotech), dexamethasone (30 

μM; Sigma-Aldrich) and DAPT (10 μM; Selleckchem, Houston, TX, USA). Organoids were kept in DM for 

7 days and medium was refreshed every 2–3 days.  

 

TTiimmee--ddeeppeennddeenntt  BBAA  ssyynntthheessiiss  aanndd  sseeccrreettiioonn    

Medium and cells were collected to quantify BA content in the different in vitro models at different 

time points. The cost-effectiveness of HepaRGs allowed us to test more different timepoints (0, 4, 24, 

48 and 72 h) than was possible for the SCHHs or ICO-heps (0, 24, 48 h). No fresh medium was supplied 

between the time points in order to avoid a disturbance of the effect of BAs on their own synthesis 

and secretion. To sample the cells for subsequent analysis, trypsin was used to detach the cells from 

the plates. Firstly, cells were counted to be used for the normalization of the BA synthesis rate. Next, 

the cell suspensions were centrifuged for 5 min at 100 g at 4 °C, the supernatant was discarded and 
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MilliQ was added to lyse the cells in order to measure intracellular BA content. Cell and medium 

samples were kept for at least 15 min at 4°C and subsequently transferred to -80 °C. If all BA 

concentrations in the cell or medium samples were below the Limit of Detection (LOD), the samples 

were lyophilized in a Christ Alpha 1–2 LD plus freeze-dryer and redissolved in methanol. If BA 

concentrations were sufficiently high and no lyophilization was needed, the samples were mixed with 

ACN (50:50 v/v). Samples were centrifuged for 15 min at 15,000g and the supernatant was transferred 

to LC-MS/MS vials with inserts, and the BA content in the samples was analysed using LC-MS/MS. For 

HepaRGs and SCHHs, triplicate measurements were performed in 3 independent experiments. For the 

SCHHs, we used 2 × one donor and 1 × 5 pooled donors. All 3 measurements were given the same 

weight in the data analysis, as we did not observe prominent interdonor differences based on the two 

batches of cells used in the analysis (Supplementary Fig. S2). For the ICO-heps duplicate 

measurements were performed for 4 different donors. 

 

BBiillee  aacciidd  pprrooffiilliinngg  bbyy  LLCC--MMSS//MMSS  

BA analysis was performed on a triple quadrupole LC-MS/MS system, model LCMS-8050 (Shimadzu 

Corporation, Japan), which was able to measure 18 BAs: UDCA, HDCA, CDCA, DCA, HCA, CA, GLCA, 

GUDCA, GDCA, GCDCA, GCA, TUDCA, THDCA, TCDCA, TDCA, TCA, TLCA and LCA. BAs in samples and 

standards were separated on an Kinetex C18 column (1.7 µm × 100 A × 50 mm × 2.1 mm, 

Phenomenex 00B-4475AN) using an ultra-high performance liquid chromatography (UHPLC) system 

(Shimadzu) with gradient elution using MilliQ water (0.01% formic acid) and methanol/acetonitrile 

(50%v/50%v) as mobile phase A and B, respectively. In order to enhance chromatographic 

performance, a C18 2.1 mm security guard (Phenomenex AJ0–8782) precolumn was used. Samples 

were injected (2 µL) onto the column equilibrated in 30% B at a flow rate of 0.4 mL/min. Initially, the 

mobile phase composition was 30% of B, followed by a linear ramp to 70% of B until 10.0 min. A linear 

change to 98% of B was executed until 11.0 min, which was held for another 7 min before returning to 

30% of B at 19.0 min and remained until 25 min. The column temperature was set at 40 ℃ and the 

sample tray temperature was set at 4 ℃. The mass spectrometer (MS) used electrospray ionization 

(ESI) in negative ion mode. The ESI parameters were as below: Nebulizing gas flow, 3 L/minutes; drying 

gas flow and heating gas flow, 10 L/minutes; Interface temperature, 300 ℃; Desolvation temperature, 

526 ℃; heat block temperature, 400 ℃. Selective ion monitoring (SIM) and multiple reaction 

monitoring (MRM) were used for the detection of the BAs. The LOD was determined as the lowest 

measurable concentration with a signal-to-noise-ratio larger than 3; limit of quantification (LOQ) was 

set at the lowest measurable concentration with a signal-to-noise-ratio largen than 10. LODs and LOQs 

were determined in methanol. Any BA concentration below the LOQ was set to 0 for further analysis. 

As we observed a matrix effect on the sensitivity of our analytical method, standards for the 

calibration curve were prepared in the same matrix as the samples. Data were collected and 

processed using the LabSolutions software (Shimadzu). The MS parameters, LODs, LOQs and an 

exemplary chromatogram are provided in Supplementary Table S1 and Fig. S1. 
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RRTT--qqPPCCRR    

RNA from HepaRGs, SCHHs and ICOs was isolated, in addition RNA was isolated from three liver 

biopsies from healthy tissues. The RNA from the three liver biopsies was pooled and used as a 

reference. RNA from the HepaRGs and ICOs was isolated both after expansion and differentiation. 

HepaRG RNA was isolated after 14 days of maintenance in GM (HepaRG-GM), and after 14 days 

maintenance in GM followed by 14 days of differentiation in DM (HepaRG-DM). For the organoids, 

RNA was isolated after a period of growth in EM (ICOs), and after 7 days of differentiation in DM (ICO-

heps). SCHHs RNA was isolated 30–32 h after the Matrigel overlay. RNA was isolated using RNeasy 

Mini Kit (Qiagen; Hilden, Germany) following the manufacturer’s instructions. cDNA synthesis was 

performed using the iScriptTM cDNA synthesis kit according to the manufacturer’s instructions (Bio-

Rad, Veenendaal, the Netherlands). RT-qPCR was used to measure the relative gene expression using 

validated primers (Table B.2) following the SYBR method (Bio-Rad). Normalization was done using the 

reference genes hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1), hydroxymethylbilane 

synthase (HMBS) and ribosomal protein L19 (RPL19). Lastly, relative mRNA levels were calculated and 

the levels in liver tissue were set to 1. For the organoids, samples from 5 donors were analysed, for 

HepaRG, 3 independent experiments were performed the cells originate from 1 donor, for SCHH we 

performed 4 independent experiments (1 donor HU8317). 

 

DDaattaa  aannaallyyssiiss  

The R package tidyverse version 1.3 was used for data exploration and visualization (Wickham, 2019). 

Statistical significance was determined by a one-way ANOVA with a Dunnett/Bonferroni correction for 

multiple tests. Results were considered statistically significant when p < .05. Hierarchical clustering 

analysis was done in R using the heatmap.2 function from the R package gplots. Ward’s clustering 

method with Euclidean as distance measure was used to compute the dendrograms. All analyses were 

performed in R version 4.0.2 (R Core Team, 2020). For all in vitro models de novo BA synthesis rate 

was calculated as (BAmedium,t48+BAcells,t48-BAmedium,t0-BAcells,t0)/48. BA synthesis rate was expressed in 

pmoles/106 hepatocytes/h. For the HepaRGs, it was assumed that 50% of the cell population consisted 

of hepatocytes and 50% of cholangiocytes (Cerec et al., 2007). As a reference, the daily BA synthesis 

rate of a human liver was calculated based on a synthesis rate of 0.35 mg/g liver/day (Ellis et al., 

1998), a hepatocellularity of 139 × 106 hepatocytes/g liver (Sohlenius-Sternbeck, 2006) and 1500 g of 

liver (Barter et al., 2007). This corresponds to about 240 pmoles/106 hepatocytes/h. 

 

2.3 Results 
HHeeppaaRRGG  cceellllss  sseeccrreettee  ccoonnjjuuggaatteedd  pprriimmaarryy  bbiillee  aacciiddss  

HepaRGs secreted the conjugated primary BAs GCA, TCA, GCDCA and TCDCA (Fig. 1A). The 

concentrations of the remaining 14 BAs were below the LOQ (See Supplementary Table B.1 for the 

LOQs of all individual BAs). CDCA conjugates were more abundantly secreted than CA conjugates, with 

GCDCA being the most abundant BA in the cell culture medium. No unconjugated or secondary BAs 

were detected in the cells or medium. The amount of intracellular BAs did not change significantly 

over time, while the total BA pool (cells with medium) significantly increased after 72 h indicating de 

novo BA synthesis (Fig. 1B). Upon 4 h or 24 h treatment with 50 µM lopinavir or 50 µM bosentan, no 
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statistically significant alterations were observed in the medium or total BA pool, although a slight but 

not significant decrease in the medium BA content was observed after 24 h of treatment. The total 

intracellular BA content, as well as intracellular GCDCA and TCDCA specifically, decreased significantly 

upon 24 h treatment with bosentan or lopinavir compared to the control (Fig. 2). After both 4 h and 

24 h treatment with lopinavir, but not in the control or bosentan-treated cells, a small amount of 

CDCA was detected in both cells and the medium, however, the respective amount could not be 

quantified (below LOQ, data not shown). 

 

 
FFiigguurree  11 Bile acid content upon incubation of differentiated HepaRG cells in serum-free cell culture medium 

between 0 and 72h without medium renewal. A) Medium B) Intracellular and medium. Values represent the 

mean+SD of triplicate measurements in 3 independent experiments. Significance was assessed with a one way 

ANOVA followed by post hoc tests using Bonferroni’s correction. Statistically significant altered bile acid contents 

are indicated with *. n.d. = not detected (< LOD). T/GCA=tauro/glycocholic acid, 

T/GCDCA=tauro/glycochenodeoxcholic acid 
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FFiigguurree  22  Bile acid content of differentiated HepaRG cells incubated in serum-free cell culture medium upon 

incubation with a solvent control, 50 µM bosentan or 50 µM lopinavir for 4 or 24 hours. Values represent the 

mean+SD of triplicate measurements in 3 independent experiments. Significance was assessed with a one way 

ANOVA followed by post hoc tests using Dunnett’s correction.  

Statistically significant altered bile acid contents are indicated with *. T/GCA=tauro/glycocholic acid, 

T/GCDCA=tauro/glycochenodeoxcholic acid.  

 

SSCCHHHHss  sseeccrreettee  mmaaiinnllyy  ggllyycciinnee  ccoonnjjuuggaatteedd  pprriimmaarryy  bbiillee  aacciiddss  

Sandwich cultured human hepatocytes (SCHHs) secreted all four conjugated primary BAs known to be 

present in humans. Glycineconjugates were secreted more abundantly to the medium than taurine-

conjugates, with GCA being the most abundant BA in the medium (Fig. 3A). Intracellular BAs did not 

change over time, but the total BA pool significantly increased after 48 h compared to t = 0 h (Fig. 3B). 

The bosentan or lopinavir treatment did not induce any significant changes in the total or intracellular 

BA pool, however, the GCDCA content in the medium was significantly decreased upon lopinavir 

treatment and TCDCA was detected in the cells in the control, but not after lopinavir or bosentan 

treatment (Fig. 4). Small amounts of GDCA, TDCA and TCA were detected in the medium after 

bosentan and lopinavir treatment, however, these amounts could not be quantified (<LOQ, data not 

shown). TDCA and GDCA were not detected in the control medium (<LOD, data not shown). 
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FFiigguurree  33 Bile acid content upon incubation of sandwich cultured human hepatocytes in serum-free cell culture 

medium between 0 and 48h without medium renewal. A) Medium B) Intracellular and medium. Values represent 

the mean+SD of triplicate measurements in 3 independent experiments. In total 6 different donors were 

assessed (2x one donor, 1x pooled 5 donors). Significance was assessed with a one way ANOVA followed by post 

hoc tests using Dunnett’s correction. Statistically significant altered bile acid contents are indicated with *. 

T/GCA=tauro/glycocholic acid, T/GCDCA=tauro/glycochenodeoxcholic acid. n.d. = not detected (< LOD)  

 

 
FFiigguurree  44 Bile acid content of sandwich cultured human hepatocytes upon 24h incubation with a solvent control, 

50 µM bosentan or 50 µM lopinavir. Values represent the mean+SD of triplicate measurements in 3 independent 

experiments. In total 6 different donors were assessed (2x one donor, 1x pooled 5 donors). Significance was 

assessed with a one way ANOVA followed by post hoc tests using Dunnett’s correction. Statistically significant 

altered bile acid contents are indicated with *. T/CA=tauro/glycocholic acid, 

T/GCDCA=tauro/glycochenodeoxcholic acid. 
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IICCOO--hheeppss  pprroodduuccee  aa  lliimmiitteedd  aammoouunntt  ooff  bbiillee  aacciiddss  

ICO-heps synthesized and secreted (very) low amounts of BAs. Up 

until 48 h after medium renewal, all BAs in the medium of ICO-heps were below the LOD (data not 

shown). After 48 h of incubation, CA and GCA comprised the majority of the secreted BAs. Four 

different liver biopsy donors were tested, and this resulted in similar BA secretion profiles after 48 h 

(no statistical differences in the levels of individual BAs between the different donors), see Fig. 5A. 

Therefore, the results from these different donors were averaged and compared with the other 

hepatic in vitro systems. Intracellular BA content was below the LOD at all of the tested time points 

(data not shown). 

 

 

CC  

 

FFiigguurree  55  [see next page for caption]  
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FFiigguurree  55A Bile acid secretion to serum-free cell culture medium by hepatocyte-like intrahepatic cholangiocyte 

organoids (ICO-hep) after 48h without medium renewal. Values represent the mean+SD of duplicate 

measurements of 4 different donors. B) Comparison of bile acid synthesis rates of sandwich cultured human 

hepatocytes (SCHH), HepaRGs and ICO-heps. Data presented come from cells originating from 6, 1 and 4 

different donors, respectively. Synthesis rates were corrected for intracellular bile acids present at t=0h, see 

Material & Methods. Significance was assessed with a one way ANOVA followed by post hoc tests using 

Bonferroni’s correction. Statistically significant alterations are indicated with *. C) Hierarchical clustering analysis 

of bile acid profiles of ICO-heps, SCHH, HepaRG, bile or liver tissue. For the in vitro models (ICO-heps, SCHH, 

HepaRG) bile acid content was quantified in the medium. Bile acid content in bile and liver tissue were derived 

from literature, as reviewed by Rodrigues (2014). Bile acids were calculated as percentage of the entire pool in 

the respective tissue/fluid. Only bile acids that were >1% of the total pool were included. 

(T/G)CA=(tauro/glyco)cholic acid, T/GCDCA=tauro/glycochenodeoxcholic acid, T/GDCA=tauro/glycodeoxycholic 

acid, GUDCA=glycoursodeoxycholic acid 

 

CCoommppaarriissoonn  ooff  bbiillee  aacciidd  pprrooffiilleess  aanndd  ssyynntthheessiiss  rraatteess  

The de novo synthesis rate was the highest in SCHHs, followed by HepaRGs and lastly ICO-heps (Fig. 

5B). As the BA levels produced by ICO-heps were so low, bosentan’s and lopinavir’s effect on the BA 

pool were not assessed. Next, the BA profile secreted by the different hepatic in vitro systems were 

visualized and compared with human in vivo BA profiles in liver tissue and bile using hierarchical 

clustering analysis (HCA) (Fig. 5C). The human in vivo data were obtained from literature (Rodrigues et 

al., 2014). The HCA revealed a large similarity between the BA profile in bile and liver tissue in vivo. 

The HepaRGs clustered more closely with the in vivo bile and liver data than SCHHs and ICO-heps. 

 

EExxpprreessssiioonn  ooff  BBAA  ttrraannssppoorrtteerrss  iiss  tthhee  hhiigghheesstt  iinn  SSCCHHHHss  

Differential gene expression of the non-treated in vitro models was analyzed by RT-qPCR of samples 

from organoids, HepaRG and SCHHs. Organoids and HepaRG were analyzed under expansion/growth 

conditions (ICOs, HepaRG-GM) and differentiation conditions (ICO-heps, HepaRG-DM). The analysis 

revealed many differences in mRNA levels between the cell types. mRNA levels of enzymes 

responsible for BA synthesis (CYP7A1 and CYP27A1) were comparable across ICO-heps, HepaRGs and 

SCHHs. Bile acid-CoA:amino acid N-acyltransferase (BAAT) mRNA levels were the highest in SCHHs 

followed by HepaRGs. ICOs and ICO-heps showed the lowest BAAT mRNA levels of the models studied 

(Fig. 6A). Interestingly, mRNA levels of most BA transporters were significantly higher in the SCHHs 

than in the differentiated HepaRGs and ICOheps, i.e. mRNA levels of ATP-binding cassette, sub-family 

B member 11 (ABCB11, Bile Salt Export Pump (BSEP)), ATP binding cassette subfamily C member 2 

(ABCC2, multidrug resistance-associated protein 2 (MRP2)), solute carrier family 10 member 1 

(SLC10A1, Na+-taurocholate cotransporting polypeptide (NTCP)), solute carrier organic anion 

transporter family member 1B1 (SLCO1B1, organic anion transporting polypeptide 1B1 (OATP1B1)) 

and solute carrier family 51 subunit alpha (SLC51A, organic solute transporter α (OSTα), but not its 

subunit OSTβ (SLC51B) (Fig. 6B). Stemness of the ICOs before differentiation was indicated by the 

presence of LGR5. Hepatic markers ALB and CYP3A4 were slightly increased after differentiation (ICO-

hep), indicating differentiation towards the hepatocyte lineage (Fig. 6C).  
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FFiigguurree  66 mRNA levels of target genes in organoids under expansion or differentiation conditions (ICO, ICO-hep), 

HepaRGs under growth or differentiation conditions (HepaRG-GM, HepaRG-DM) and sandwich cultured human 

hepatocytes (SCHH). mRNA levels in a pooled liver biopsy sample were set to 1 (n=1) as a reference. Data 

represent mean+SD. Organoids: 5 donors, HepaRG: 3 independent experiments, SCHH: 4 independent 

experiments, donor HU8317. For details about the target genes, see Table B.1. Groups that share the same letter 

(a or b) are not statistically significantly different. Significance was assessed with a one way ANOVA followed by 

post hoc tests using Bonferroni correction. A) enzymes involved in BA synthesis and conjugation, B) BA 

transporters, C) stem cell/hepatocyte markers 

46 CHAPTER 2



 

  

 

 

FFiigguurree  77 Correlation of mRNA levels of selected target genes between organoids under expansion or 

differentiation conditions (ICO, ICO-hep), HepaRGs under growth or differentiation conditions (HepaRG-GM, 

HepaRG-DM) and sandwich cultured human hepatocytes (SCHH). Organoids: 5 donors, HepaRG: 3 independent 

experiments, SCHH: 4 independent experiments, donor HU8317. For details about the target genes, see Table 

S1. A) Linear correlation between the in vitro models and liver biopsy. Pearson’s correlation coefficient was 

calculated and shown in the plot if significantly different from 0. B) Hierarchical clustering analysis. Values were 

normalized to a pooled liver biopsy sample. Missing values are colored white. 

  

TThhee  mmRRNNAA  pprrooffiilleess  ooff  SSCCHHHHss  aanndd  HHeeppaaRRGGss  aarree  tthhee  mmoosstt  ssiimmiillaarr  ttoo  aa  lliivveerr  bbiiooppssyy  

HepaRG and SCHH mRNA levels show a strong correlation with those obtained for a liver biopsy 

(Pearson’s r > 0.96), while there was no statistically significant correlation found between the mRNA 

levels of the selected target genes in ICOs/ICO-heps and the liver biopsy (Fig. 7A). HCA shows that 

SCHHs cluster the closest with the liver biopsy, followed by HepaRG-GM/HepaRG-DM, and in line with 

the correlation analysis, the ICOs/ICO-heps mRNA levels are the most distinctive from the liver biopsy 

(Fig. 7B). 

  

A B
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TTaabbllee  11 Practical considerations and applicability domain of explored in vitro models 

 Cell type of origin Intended cell type(s) 
after differentiation 

Pros Cons 

HepaRG cells Hepatocellular 
carcinoma 

Hepatocytes and 
cholangiocytes  
(~ 50/50) 

• Easy in vitro 
proliferation, 
maintenance and 
storage 
• Suitable for long 
term exposure 
• Reproducible 
• Robust 

• Tumorigenic 
phenotype 
 

Hepatocyte-like 
intrahepatic 
cholangiocyte 
organoids  
(ICO-hep) 

Intrahepatic 
cholangiocyte 

Hepatocytes  • Unlimited 
availability and 
indefinite 
proliferation 
• Allows to study 
differences 
between donors 

• Low isolation and 
purification rate 

Sandwich 
cultured human 
hepatocytes 
(SCHH) 

Hepatocyte - • Golden standard 
 • Allows to study 
differences 
between donors 

• Donor material 
needed for every 
experiment 
 

 

 

2.4 Discussion 
The current study compares the capacity of three different hepatic in vitro systems to emulate human 

liver functionality to synthesize and secrete BAs. BA synthesis rates and profiles, responsiveness to 

selected BSEP-inhibitors and selected target genes were analysed for: hepatocyte-like intrahepatic 

cholangiocyte organoids (ICO-heps), sandwich cultured human hepatocytes (SCHH) and HepaRG cells 

(HepaRGs). The data reveal that differentiated HepaRGs and SCHHs correlate the closest to human 

liver in vivo data at the selected endpoints.  

In the current study, we employed organoids derived from biopsies of healthy human liver, and 

uniquely studied the BA synthesis and secretion capacity. Intrahepatic cholangiocyte organoids were 

isolated from liver biopsies and differentiated towards hepatocyte-like cells (ICO-heps) (Huch et al., 

2015; Schneeberger et al., 2020). An advantage of tissue derived organoids, compared to induced 

pluripotent stem cells (iPSCs), is that they display high levels of genetic stability and are devoted to 

their tissue of origin (Prior et al., 2019). As the liver consists of multiple cell types, we evaluated the 

hepatocyte fate and maturation of the ICO-heps by assessing mRNA levels of stem cell and hepatocyte 

markers. Significant downregulation of the stem cell marker LGR5 and increased hepatocyte markers 

upon differentiation suggests that the ICO-heps were differentiated towards the hepatic lineage. 

Typical liver functionalities, such as BA synthesis, glycogen storage, phase I and phase II drug 

metabolism and ammonia detoxification, have previously been identified in ICO-heps (Huch et al., 

2015). However, single cell analysis of the human liver revealed a large diversity in cell (sub)types in 

the biliary tract, including cholangiocytes that express hepatocyte markers, such as ALB, SERPINA1 and 

CYP3A4 (Aizarani et al., 2019). Hence, it remains to be determined whether the ICO-heps used in the 
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current study had truly differentiated towards a hepatocyte-phenotype, or whether they were 

cholangiocytes that upregulated some hepatocyte markers and perform BA synthesis.  

A major advantage of ICO-heps over HepaRGs is their non-cancerous nature, and ICO-heps 

require drastically less fresh liver tissue than SCHHs because of their indefinite proliferation capacity in 

vitro (Table 1). Currently, ICOs are explored to be used for mechanistic disease modeling (Nguyen et 

al., 2021), personalized medicine and drug screening (Broutier et al., 2017), and tissue transplantation 

(Huch et al., 2015; Reza et al., 2021).  

From the three hepatic in vitro models tested, the de novo BA synthesis rate was the highest in 

SCHHs (31 ± 7 pmoles/106 hepatocytes/ h), which is higher than the range reported in literature (7–19 

pmoles/ 106 hepatocytes/h (Ellis et al., 1998; Sharanek et al., 2015)), but still 7-fold lower than the in 

vivo de novo synthesis rate by the human liver (Ellis et al., 1998; Sohlenius-Sternbeck, 2006). The BA de 

novo synthesis rate and BA profile produced by HepaRGs are consistent with literature (Sharanek et 

al., 2015). Both HepaRGs and SCHHs secrete, in line with previous reported data, conjugated primary 

BAs (Behr et al., 2020; Ellis et al., 1998; Sharanek et al., 2015). The most striking difference between 

the HepaRGs and SCHHs is the predominance of glycine-conjugated BAs secreted by SCHHs (96%), 

whereas HepaRGs also secrete a substantial amount of tauro-conjugates (42%). This discrepancy 

between these two models has been previously attributed to the tumour origin of HepaRGs (Sharanek 

et al., 2015). Compared to the in vivo situation the formation of tauro-conjugates by HepaRGs results 

in a BA profile more similar to the profile in liver and bile than the SCHHs, given that ~30% of BAs in 

human bile are tauro-conjugates (Rodrigues et al., 2014). The conjugation state of a BA depends on 

the substrate availability (glycine or L-cysteine, taurine’s precursor) (Starokozhko et al., 2017). 

HepaRGs and SCHHs were both cultivated in William’s E medium, hence differences in substrate 

availability cannot explain this differences in BA composition. The ICO-heps showed the lowest BA 

synthesis rate and the most distinct BA profile compared to human bile and liver tissue profiles. mRNA 

levels of CYP7A1, the rate limiting enzyme in BA synthesis, were comparable across all three in vitro 

models, but the BAAT mRNA levels were significantly lower in the ICO-heps. This provides a plausible 

explanation for the incomplete BA conjugation by ICO-heps and the subsequent abundancy of CA. We 

found high CYP3A4 levels and similar ALB and FXR levels in HepaRGs compared to SCHHs. Similar 

results were reported in literature for HepaRGs compared to primary human hepatocytes cultured in 

suspension (Kanebratt and Andersson, 2008). CYP3A4 and BSEP mRNA levels were low in SCHHs 

compared to the pooled liver sample (fold change <0.1). A recent study showed that mRNA levels of a 

number of key hepatocyte genes, including CYP3A4 and BSEP, were drastically reduced in SCHHs on 

day 2 of culture due to dedifferentiation. The SCHHs can redifferentiate after prolonged culturing 

(Yang and Li, 2021). Our analysis was performed on day 1, but dedifferentiation provides a plausible 

explanation for the low CYP3A4 and BSEP RNA levels in the SCHHs compared to the pooled liver 

sample. mRNA levels of ALB, CYP7A1 and CYP27A1, BAAT and the remaining BA transporters, except 

OSTβ, had a fold expression of > 0.5 compared to the pooled liver sample, indicating that the SCHHs 

had not fully dedifferentiated. Even though BSEP mRNA levels were low in SCHHs, we found that 

mRNA levels of all selected BA transporters, but not OSTβ, were significantly lower in HepaRGs than in 

SCHHs, which is in line with previous results (Susukida, Sekine et al., 2016). Irrespective of the low 

mRNA levels it has been shown that both HepaRGs and SCHHs have functional BA transporters and are 
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suitable for BA transport studies (Bachour-El Azzi, Sharanek et al., 2015; De Bruyn et al., 2013; 

Guguen-Guillouzo and Guillouzo, 2019; Sharanek et al., 2015).  

We next studied the responsiveness of the cell systems to a FXR-mediated transcriptional 

repression of BSEP by lopinavir (Garzel et al., 2014) and direct BSEP inhibition by bosentan (Fattinger 

et al., 2001) on the BA content in medium and cells. Bosentan exposure did not affect the amount of 

BAs secreted to the medium by HepaRGs, but resulted in a decrease of intracellular BA content in 

HepaRGs, confirming previous results (Burbank et al., 2017). The results point towards the presence of 

a compensatory mechanism to counteract or prevent intrahepatic BA accumulation. This adaptive 

response is visualized and described in the AOP for cholestasis, and indicates that through activation 

of the nuclear receptors Farnesoid X receptor (FXR), Pregnane X receptor (PXR) and constitutive 

androstane receptor (CAR), sinusoidal BA efflux is increased by the upregulation of several ABC-

transporters, such as ABBC3 (MRP3) and ABCC2 (MRP2), and hepatic BA influx is reduced by a 

downregulation of SLC10A1 (NTCP). These mechanisms have been verified for HepaRGs treated with 

bosentan using qPCR for various BA transporters and immunolabeling of MRP3 (Burbank et al., 2017). 

Lopinavir treatment resulted in similar changes in BA disposition in HepaRGs as bosentan. Lopinavir’s 

agonistic effect on FXR-activation is expected to repress not only BSEP transcription, but also increase 

the sinusoidal BA efflux and reduce BA uptake. The observed similar alterations in the BA pool upon 

exposure of HepaRGs to lopinavir and bosentan, i.e. an intracellular BA reduction but no effects on BA 

secretion to the medium, suggest an at least partially shared mechanism of action between lopinavir 

and bosentan treatment. In the SCHHs, we have found a decrease in GCDCA medium content upon 

lopinavir-treatment, which was also found in a study with primary rat hepatocytes (Griffin et al., 2013). 

Previously, a decrease in GCA and GCDCA content in the cell lysate, and a decrease GCA in the culture 

medium, have been reported upon 24 h bosentan-treatment with concentrations ranging from 10 to 

100 μM in SCHHs (Lepist et al., 2014; Oorts, Van Brantegem et al., 2021), but we could not confirm 

this. No adverse effect of 24 h treatment with 50 μM bosentan (Burbank et al., 2017) or lopinavir on 

HepaRG cell viability was observed (current study). An 192 h (8 day) exposure to 50 μM bosentan 

reduced the viability of spheroid cultures primary human hepatocytes (Hendriks et al., 2016), while 24 

h exposure to 50 μM lopinavir or bosentan did not affect the cell viability of sandwich-cultured 

primary rat hepatocytes (Griffin et al., 2013; Susukida et al., 2015). Therefore, a reduction of cell 

viability of the human SCHHs following bosentan or lopinavir treatment cannot be fully excluded as a 

possible explanation for the observed differences in BA disposition in the SCHHs. As ICO-heps showed 

a low BA production, the applicability of this model to predict the effects of reduced BSEP activity was 

not assessed. 

Collectively, the data reveal important differences in phenotype and BA homeostasis between 

the three human hepatic in vitro systems tested. The BA synthesis rate of SCHHs and HepaRGs is (still) 

superior to ICO-heps, and also their BA profiles and the mRNA levels of the selected target genes 

cluster closer together with the human in vivo situation than the ICO-heps. While SCHHs have the 

highest BA synthesis rate and BA transporter expression from the models tested, HepaRGs showed the 

most in vivo like BA profile and responsiveness to the selected BSEP-inhibitory or repressing 

compounds. By that, HepaRGs provide a powerful and practical in vitro model for cholestasis testing. 
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2.5 Supplementary information 
CCeellll  vviiaabbiilliittyy The effect of lopinavir on the cell viability of the HepaRG cells was determined via the Resazurin 

assay. Resazurin sodium salt (CAS 62758–13–8) was purchased from Merck (Darmstadt, Germany). 560 μM 

resazurin was dissolved in PBS, sterilized and stored in the dark at 4 °C. 96 wells plates with fully differentiated 

HepaRGs were exposed to 0–150 μM lopinavir for 24 h. Next, 10% v/v resazurin was added to the HepaRG cells. 

The plates were incubated at 37 °C for 4 h, protected from direct light. Fluorescence was measured using the 

SpectraMax® iD3 from Molecular Devices. The excitation wavelength was set on 560 nm and the emission 

wavelength on 590 nm. 

 
FFiigg..  SS11..  Cell viability of HepaRGs upon 24 h treatment with different concentrations of lopinavir assessed using 

the resazurin assay. Values represent the mean±SD of triplicate measurements in 3 independent experiments. 

 

 
FFiigguurree  SS22  Bile acid content upon incubation of sandwich cultured human hepatocytes in serum-free cell culture 

medium between 0 and 48h without medium renewal. Each row represents the mean+sd of one biological 

replicate, measured in triplicate.    
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TTaabbllee  SS11 MS parameters, limit of detection (LOD) and limit of quantification (LOQ) of the BAs studied. 

    Mode Q1 Q3 

Retention 

time (min) 

LOD (nM) in 

MeOH 

LOQ (nM) in 

MeOH 

Lithocholic acid (LCA) SIM 
 

375.3 12.75 10 20 

Ursodeoxycholic acid (UDCA)  SIM 
 

391.3 8.398 40 50 

Hyodeoxycholic acid (HDCA)  SIM 
 

391.3 8.889 40 50 

Chenodeoxycholic acid 

(CDCA)  SIM 
 

391.3 10.81 30 

50 

Deoxycholic acid (DCA)  SIM 
 

391.3 11.07 5 10 

Hyocholic acid (HCA)  SIM 
 

407.3 8.145 20 30 

Cholic acid (CA)  SIM 
 

407.3 8.942 5 10 

Glycolithocholic acid (GLCA) MRM 432.3 74 11.09 5 5 

Glycoursodeoxycholic acid 

(GUDCA)  MRM 448.3 74 6.590 5 

5 

Glycochenodeoxycholic acid 

(GCDCA)  MRM 448.3 74 9.051 5 

5 

Glycodeoxycholic acid (GDCA)  MRM 448.3 74 9.452 10 20 

Glycocholic acid (GCA)  MRM 464.3 74 7.310 5 5 

Taurolithocholic acid (TLCA) SIM 482.3 11.08 5 10 

Tauroursodeoxycholic acid 

(TUDCA)  SIM 
 

498.4 6.189 5 

10 

Taurohyodeoxycholic acid 

(THDCA)  SIM 
 

498.4 6.530 5 

10 

Taurochenodeoxycholic acid 

(TCDCA)  SIM 
 

498.4 8.825 5 

10 

Taurodeoxycholic acid (TDCA)  SIM 
 

498.4 9.283 10 20 

Taurocholic acid (TCA) SIM 
 

514.4 7.001 5 5 

SIM: Single Ion Monitoring; MRM: Multiple Reaction Monitoring; Q1: first stage MS, Q3: second stage MS; LOD: 
limit of detection; LOQ: limit of quantification 
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TTaabbllee  SS22 List of Primers used in RT-qPCR analysis 

PPrrootteeiinn  nnaammee  SSyymmbbooll  GGeennee  
ssyymmbbooll  FFoorrwwaarrdd  pprriimmeerr  RReevveerrssee  pprriimmeerr  

Bile Salt Export Pump BSEP ABCB11  GTCATCTTGTGCTTCTTCCC  
TCATTTGTAATCTGTCCCACC
A  

Multidrug Resistance-
associated Protein 2 MRP2 ABCC2 

GCCAACTTGTGGCTGTGAT
AGG 

ATCCAGGACTGCTGTGGGAC
AT 

Albumin ALB ALB 
GTTCGTTACACCAAGAAAG
TACC 

GACCACGGATAGATAGTCTTC
TG 

Bile acid-CoA:amino acid N-
acyltransferase BAAT BAAT GAGGCTGCCAACTTTCTCCT AGTACCGTGGCTGTGACTTG 

Cytochrome P450 27A1 CYP27A1 CYP27A1 
AGGCCAAGTACGGTCCAAT
G GTACCAGTGGTGTCCTTCCG 

Cytochrome P450 3A4 CYP3A4 CYP3A4 
TTTTGTCCTACCATAAGGGC
TTT CACAGGCTGTTGACCATCAT 

Cytochrome P450 7A1 CYP7A1 CYP7A1 
TAAGGTGTTGTGCCACGGA
A TCCATCCATCGGGTCAATGC 

Hydroxymethylbilane 
synthase HMBS HMBS GGCAATGCGGCTGCAA GGGTACCCACGCGAATCAC 
Hypoxanthine 
phosphoribosyltransferase 1 HPRT1 HPRT1 

TATTGTAATGACCAGTCAAC
AG GGTCCTTTTCACCAGCAAG 

Leucine rich repeat 
containing G protein-
coupled receptor 5 LGR5 LGR5 GCAGTGTTCACCTTCCC GGTCCACACTCCAATTCTG 

Farnesoid X receptor FXR NR1H4 
AGGTAGCAGAGATGCCTGT
AACAA CACAGCTCATCCCCTTTGATC 

Ribosomal protein L19 RPL19 RPL19 
ATGAGTATGCTCAGGCTTC
AG GATCAGCCCATCTTTGATGAG 

Na+-taurocholate 
cotransporting polypeptide NTCP SLC10A1 GATATCACTGGTGGTTCTC ATCATCCCTCCCTTGATGAC 
Organic solute transporter- 
α subunit OSTα SLC51A TTGTTCGCCTCCCTATTCC TTGTGGTCTTTCCTTCGGT 
Organic solute transporter- 
β subunit OSTβ SLC51B 

TGTGGTGGTCATTATAAGC
ATGG 

TCTTAGGTTGTTTAGGCTGTT
GTG 

Organic anion transporting 
polypeptide 1B1 OATP1B1 SLCO1B1 

GAGCAACAGTATGGTCAGC
CT GGCAATTCCAACGGTGTTCA 
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FFiigg..  SS33 Chromatograms of LC-MS/MS run. 1 µM of a mixture of 18 BAs in MeOH. Abbreviations, MS parameters 

and LOD are present

(min) 
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Abstract 
Bile acids (BA) fulfill a wide range of physiological functions, but are also involved in pathologies, such 

as cholestasis. Cholestasis is characterized by an intrahepatic accumulation of BAs and subsequent 

spillage to the systemic circulation. The aim of the present study was to develop physiologically based 

kinetic (PBK) models that would provide a tool to predict dose-dependent BA accumulation in humans 

upon treatment with a Bile Salt Export Pump (BSEP) inhibitor. We developed a PBK model describing 

the BA homeostasis using glycochenodeoxycholic acid as an exemplary BA. Population wide 

distributions of BSEP abundances were incorporated in the PBK model using Markov Chain Monte 

Carlo simulations, and alternatively the total amount of BAs was scaled empirically to describe 

interindividual diferences in plasma BA levels. Next, the effects of the BSEP inhibitor bosentan on the 

BA levels were simulated. The PBK model developed adequately predicted the in vivo BA dynamics. 

Both the Markov Chain Monte Carlo simulations based on a distribution of BSEP abundances and 

empirical scaling of the total BA pool readily described the variations within and between data in 

human volunteers. Bosentan treatment disproportionally increased the maximum BA concentration in 

individuals with a large total BA pool or low BSEP abundance. Especially individuals having a large total 

BA pool size and a low BSEP abundance were predicted to be at risk for rapid saturation of BSEP and 

subsequent intrahepatic BA accumulation. This model provides a first estimate of personalized safe 

therapeutic external dose levels of compounds with BSEP-inhibitory properties. 

 

KKeeyywwoorrddss::  Bile acids and salts  ●●  Cholestasis  ●●  New approach methodologies  

 
LLiisstt  ooff  aabbbbrreevviiaattiioonnss: AOP, Adverse Outcome Pathway; BA, bile acid; BSEP, bile salt export pump, Cmax, 

maximum concentration in plasma; DILI, drug-induced liver injury; GCDCA, glycochenodeoxycholic 

acid; Hct, hematocrit; IQR, interquartile range; KE, key event; PBK, physiologically-based kinetic 

modeling, MRP2/3/4, multidrug resistance protein 2/3/4; MIE, molecular initiating event; OSTα/β, 

organic solute transporter alpha/beta 
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3.1 Introduction 
The main physiological role of bile acids (BAs) has long been recognized to be the emulsification of 

dietary lipids and lipid-soluble vitamins. Additionally, BAs are important signaling molecules between 

the gut microbes and the host and can regulate lipid, glucose and energy metabolism (Hylemon et al. 

2009). Primary BAs are de novo synthesized in the liver via cytochrome P450 (CYP)-mediated oxidation 

of cholesterol. Subsequently, they are conjugated with taurine or glycine and either secreted into the 

common bile duct or into the liver sinusoids. The latter transport processes are mediated by several 

transporters in the liver, e.g., bile salt export pump (BSEP) and multidrug resistance protein 2 (MRP2) 

for BA secretion to the bile canaliculi and MRP3/4 for transport to the liver sinusoids. Via the bile, BAs 

are subsequently transported to the intestinal lumen, where secondary BAs are formed by microbial 

conversions. About 95% of the intestinal BAs are reabsorbed into the portal circulation and 

transported to the liver. This recycling process is called enterohepatic circulation (Farooqui and 

Elhence 2021; Jia et al. 2018). A disturbance in the BA homeostasis can distort the gut–liver axis and is 

associated with various pathologies, such as cholestasis. Cholestasis refers to a disrupted bile flow 

leading to the accumulation of BAs in the liver and subsequent spillage to the systemic circulation 

(Noor 2015). Cholestasis is among the most commonly observed adverse reactions in patients 

suffering from drug-induced liver injury (DILI) (Nunes et al. 2021). Currently available preclinical in vivo 

and in vitro screening methods are insufficiently able to predict DILI, or cholestasis more specifically 

(Olson et al. 2000; Vinken 2018; Xu et al. 2008). Previously, inhibition of the hepatic BSEP has been 

identified as a risk factor involved in the development of cholestasis (Morgan et al. 2013). The 

importance of hepatic BSEP inhibition for cholestasis development is underlined by its recognition as a 

molecular initiation event (MIE) in the Cholestasis Adverse Outcome Pathway (AOP) (Vinken et al. 

2013). Recently, an AOP network was established, visualizing the complexity of biological processes 

involved in the onset and development of human hepatotoxicity (Arnesdotter et al. 2021). The AOP 

network shows that BSEP inhibition is related to the key event (KE) bile acid accumulation, which in 

turn causes the release of pro-inflammatory mediators, activation of nuclear receptors/transcriptional 

change, and/or increased reactive oxygen species production. These KEs can lead directly or via 

multiple KEs to cholestasis. There are several compensatory mechanisms in the human liver to 

counteract hepatic BA accumulation involving the upregulation of other efflux transporters, e.g., 

OSTα/β and MRP3/4 (Gijbels et al. 2020; Jackson et al. 2016). Even though BSEP inhibition does not 

necessarily lead to cholestasis, it has been shown that integrating an export assay that measures the 

inhibition of BA export improves hepatotoxicity predictions compared to a cytotoxicity test in primary 

hepatocytes alone (Brecklinghaus et al. 2022). Given the number of physiological processes involved in 

BA homeostasis, obtaining mechanistic insights in the synthesis, circulation and excretion of BAs is 

relevant to understand and predict BA-associated diseases, such as cholestasis. Computational 

physiologically based kinetic (PBK) modeling can be used to translate in vitro data to in vivo data 

(Louisse et al. 2017) and it provides a tool that can contribute to a mechanistic understanding of a 

xenobiotic’s distribution within the human body (Jones et al. 2015). In the current work we employ 

PBK modeling to elucidate interindividual differences that might determine susceptibility towards 

BSEP inhibition-mediated cholestasis. Bosentan, a drug used to treat pulmonary artery hypertension, 

has been shown to inhibit BSEP in a non-competitive nature in vitro and to cause DILI in 2–18% of the 
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patients (Fattinger et al. 2001; Mano et al. 2007). Given the potential of BSEP inhibitors to cause 

cholestasis and DILI, the aim of the present study was to develop a physiologically based kinetic (PBK) 

modeling facilitated approach linked with Markov Chain Monte Carlo simulations, that would provide 

a tool to predict dose-dependent BA accumulation in humans upon treatment with a BSEP inhibitor. A 

first proof-of-principle was developed using bosentan as the model BSEP inhibitor and 

glycochenodeoxycholic acid (GCDCA) as an exemplary BA. 

 

3.2 Methods 
CCoonncceeppttuuaall  mmooddeell    

Three PBK submodels were constructed: (A) a bile acid (BA) model, (B) a model to describe the kinetics 

of the active bosentan metabolite RO 47-8634 responsible for inhibition of BSEP and (C) a bosentan 

model (Fig. 1). Submodel A describes the synthesis, circulation and excretion of an exemplary BA, 

GCDCA, in a healthy reference individual. Submodels B and C were used to predict the free 

intrahepatic concentrations of bosentan and its active metabolite RO 47-8634. The intrahepatic 

concentrations were next used to predict the bosentan-induced inhibitory effects on BSEP-mediated 

efflux of BAs. For modeling purposes, a lumped BA pool consisting of only GCDCA was assumed, 

supported by the fact that GCDCA is the most abundant BA in human serum (Bathena et al. 2013). 

Using a grouped BA pool enables us to keep the model complexity to a minimum, making the model 

easier to interpret and minimizing the risk of overfitting. The model consisted of separate 

compartments for liver, gall bladder, intestine, blood, rapidly perfused tissue, slowly perfused tissue 

and adipose tissue. The enterohepatic circulation was included by a circulation of GCDCA between the 

liver, gall bladder and intestine. GCDCA was de novo synthesized in the liver and excreted via the 

feces. The major metabolite of bosentan, RO 48-5033, is formed by hydroxylation at the t-butyl group 

of bosentan. Moreover, RO 47-8634 is generated by O-demethylation of the phenolic methyl ester of 

bosentan, and RO 64-1056 is generated by, respectively, O-demethylation and hydroxylation of the 

two mentioned bosentan metabolites, see Fig. 2. The major pathway of elimination of bosentan and 

its metabolites is hepatic metabolism followed by biliary excretion (Weber et al. 1999). Both bosentan 

and RO 47-8634 are able to inhibit BSEP-mediated transport of taurocholic acid in a non-competitive 

manner, while RO 48-5033 and RO 64-1056 had only limited effects on BSEP transport and are 

therefore not explicitly considered in a separate submodel (Fattinger et al. 2001). The PBK models for 

bosentan and RO 47-8634 consisted out of separate compartments for blood, rapidly perfused tissue, 

slowly perfused tissue, adipose tissue and liver. 
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FFiigguurree  11 Schematic diagram of the PBK model for bile acids, bosentan and its active metabolite RO 47-8634. 

Submodels B and C were used to predict the intrahepatic free concentrations of bosentan and RO 47-8634 upon 

oral bosentan administration; these concentrations were subsequently used to predict the bosentan-induced 

effect on the bile acid concentrations using submodel A. 

 

PPhhyyssiioollooggiiccaallllyy  bbaasseedd  kkiinneettiicc  mmooddeell  ooff  bbiillee  aacciidd  mmeettaabboolliissmm  

Partition coefficients are important input parameters for PBK models and describe the relative 

distribution of a chemical between tissues and plasma at equilibrium within the organism. 

Tissue:plasma partition coefficients for GCDCA were calculated by a quantitative property–property 

relationship method described in literature (Rodgers and Rowland 2006) and obtained via the QIVIVE 

toolbox (Punt et al. 2020). The input parameters are summarized in Table 1. The total BA pool size in 

the reference individual was 3079 µmol. De novo synthesis in the liver was set to 46.8 µmol/h (Kullak-

Ublick et al. 2004). To maintain the mass balance, fecal excretion of GCDCA was set equal to its de 

novo synthesis. GCDCA was actively transported from the liver to the common bile duct by BSEP 

following Michaelis–Menten kinetics. The BSEP-mediated efflux of GCDCA was described by the 

following equation (Eq. 1): 

 

𝐸𝐸 𝐸 𝑉𝑉�������� × [𝐶𝐶𝑉𝑉𝐶𝐶]
𝐾𝐾������ + [𝐶𝐶𝑉𝑉𝐶𝐶]  

Eq. 1  

 

where E is the BSEP-mediated efflux in μmol/h, Vmax is the maximum efflux rate of GCDCA in 

blood in μmol/entire liver/hour, [CVL] the free concentration of BAs in μmol/L and Km,BSEP the 

Michaelis–Menten constant in μmol/L for BSEP-mediated BA efflux. 

The Vmax and Km for BSEP-mediated transport of GCDCA were obtained from a vesicular 

transport assay in a baculovirus-infected Sf9 system (Kis et al. 2009). The authors showed that the Vmax 

values in the vesicular transport assay increased upon the addition of physiological levels of 

cholesterol, hence, these values were used in the current PBK model. The values were reported in 

μmol/min/mg BSEP. In order to scale the experimental value for Vmax expressed in in μmol/min/mg 
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BSEP to a value for the entire liver, an in vitro-in vivo extrapolation method was used based on 

absolute BSEP abundances. To this end, a scaling factor was calculated, as described in Eq. 2. 

 

𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆 𝑆 𝑆𝑆�� Eq. 2  
 

where SF is the scaling factor in mg BSEP/entire liver, aBSEP is the BSEP abundance in pmol per 

106 hepatocytes, MWBSEP is the molecular weight of BSEP in g/mol, Hep is the hepatocellularity in 106 

cells/g liver, WL is the weight of liver in g, 60 is the number of minutes in an hour and 10–9 is used to 

convert pg to mg. As BSEP is a 140 kDa protein, a molecular weight of 140,000 g/mol was used. 

 It was assumed that half of the BAs in the common bile duct was secreted into the intestinal 

lumen, and the remaining half was stored in the gall bladder (Hofmann 1999). Gall bladder 

contractions were simulated three times per day, i.e., at 8:00, 12:00 and 16:00, assuming a meal 

consumption every four hours during daytime. Upon a gall bladder contraction, the entire gall bladder 

content was emptied in the intestinal lumen. GCDCA absorption from the intestine was assumed to 

follow first-order kinetics. The ka value was obtained by fitting to in vivo data attained from Hepner 

and Demers (1977) and Ponz de Leon et al. (1978), which were scaled as described previously (Baier et 

al. 2019). Briefly, a percentage scaling factor was calculated from literature for scaling all datasets to 

the fraction of summed conjugated cholic, chenodeoxycholic and deoxycholic acid. Subsequently, the 

experimental data were multiplied by this scaling factor. Both datasets described plasma postprandial 

BA levels upon three subsequent meals in healthy subjects (in total 11 males and 3 females). Since the 

PBK model predicts whole blood concentrations and the in vivo data present plasma concentrations, 

the predicted whole blood concentrations were converted to plasma concentrations by dividing them 

by the blood:plasma ratio. The blood:plasma ratio of GCDCA was assumed to be 0.55 (1-hematocrit), 

which is a common assumption for acidic compounds when experimental data are lacking (Cubitt et al. 

2009; Table 1). The fasting level of BAs in plasma was set to 2.4 μM (García-Cañaveras et al. 2012). 
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FFiigguurree  22 Metabolism of bosentan 

  

TTaabbllee  11 Physicochemical properties used to calculate the blood:tissue partition coefficients 

GCDCA   Reference 
pKa 3.77 Law et al. (2014) 
logP 2.12 Roda et al. (1990) 
MW 449.62  
Fraction unbound 0.01 Roda et al. (1982) 
Blood:plasma ratio  0.55 Assumption (1-Hct), Cubitt et al. (2009) 
Bosentan   
pKa 5.46 EMA (2004), Meyer (1996) 
logP 3.1 EMA (2004), Meyer (1996) 
MW 551.6  EMA (2004), Meyer (1996) 
Fraction unbound 0.02 EMA (2004), Meyer (1996) 
Blood:plasma ratio 0.6 EMA (2004), Meyer (1996) 
RO 47-8634   
pKa 5.46 ALOGPS toolbox (Tetko et al. 2005) 
logP 3.1 ALOGPS toolbox (Tetko et al. 2005) 
MW 551.6  
Fraction unbound 0.02 Calculated, Lobell and Sivarajah (2003) 
Blood:plasma ratio 0.55 Assumption (1-Hct), Cubitt et al. (2009) 
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SSeennssiittiivviittyy  aannaallyyssiiss  

To assess the influence of the parameters on the model outcome, a sensitivity analysis was performed 

for the Cmax of BAs, bosentan and RO 47-8634. The BA submodel was assessed independently from the 

submodels for bosentan and metabolite RO 47-8634. Based on the method reported by Evans and 

Andersen (2000), the sensitivity coefficients (SCs) for the model parameters were calculated as 

follows: 

 

𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆� − 𝑆𝑆
𝑃𝑃� − 𝑃𝑃  × 𝑃𝑃𝑃𝑆𝑆 

Eq. 3 

 

where C indicates the initial value of the model output, C′ indicates the modified value of the 

model output resulting from an increase in the parameter value. P indicates the initial parameter 

value and P′ indicates the modified parameter value after a 5% increase of its value, keeping all other 

parameters at their original value. 

 

TTwwoo  aapppprrooaacchheess  ttoowwaarrddss  ddeessccrriibbiinngg  iinntteerriinnddiivviidduuaall  ddiiffffeerreenncceess  iinn  tthhee  BBAA  ppooooll 

Two scenarios were applied to describe the variability in the systemic BA plasma levels in the reported 

in vivo data. In the first approach, the sensitivity analysis was used to identify parameters that have a 

strong influence on the Cmax BA values and these parameters were multiplied with an empirical scaling 

factor “sens”. The identified parameters included parameters describing the total amount of BAs 

present, i.e., the amount of BA in a full gall bladder and the systemic fasting BA concentration in 

plasma. Therefore, we empirically scaled all the parameters contributing to the total BA pool size, i.e., 

dose in a full gall bladder, fasting concentration and de novo synthesis. As the fecal excretion was 

assumed to equal de novo synthesis to maintain the mass balance, this parameter was altered 

accordingly. In the second approach, the variation that could occur in hepatic BSEP abundance in a 

Caucasian population was simulated using Markov Chain Monte Carlo simulations. Differences in BSEP 

abundance will result in an altered scaling factor (Eq. 2) and subsequently an altered Vmax, BSEP. For the 

Markov Chain Monte Carlo simulations, a total of 10,000 simulations were performed, where in each 

simulation BSEP abundance was randomly taken from a log-normal distribution derived from a meta-

analysis of transporter abundances in liver tissue of healthy Caucasians (Burt et al. 2016). The 

distribution was truncated at ± 3 SD (Punt et al. 2016), excluding individuals with BSEP abundances 

three times higher or lower than the geometric mean. The mean, μw and standard deviation, σw 

describing the log-normal distribution of BSEP abundance were derived using Eqs. 4 and 5 (Ning et al. 

2019; Zhang et al. 2007). 

 

µ� 𝑆 ln µ�
�1 + 𝑆𝑆𝐶𝐶�� Eq. 4  

σ�� 𝑆 ln (1 + 𝑆𝑆𝐶𝐶��) Eq. 5 
 

where μx is the mean BSEP abundance and CVx is the coefficient of variation of BSEP abundance.  
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EExxppeerriimmeennttaall  ddaattaa  ffoorr  ppoossttpprraannddiiaall  bbiillee  aacciidd  lleevveellss   

The maximum postprandial systemic BA values were compared with values reported in literature (see 

for relevant references Table 2). All studies included postprandial plasma BA levels in healthy adult 

subjects. The reported studies measured different BA conjugates; hence, data were normalized with a 

percentage scaling factor as described previously (Baier et al. 2019). If necessary, data were extracted 

from graphs using TechDig version 2.0. The study subjects received multiple meals, and each peak in 

postprandial BAs was assigned to a meal when possible. 

 
TTaabbllee  22 Details of experimental studies used for model validation 

Gender Age Reference 
5 females 24-53 Angelin and Bjorkhem (1977) 
8 males, 6 females 22-56 Galeazzi et al. (1980) 
3 males, 2 females 25-58 Galman et al. (2005) 
5 males, 3 females 24 ± 5 (mean ± SD) Hepner and Demers (1977) 
7 males, 4 males 27-61 Salemans et al. (1993) 
6 males 24-39 Ponz de Leon et al. (1978) 

  

PPhhyyssiioollooggiiccaallllyy  bbaasseedd  kkiinneettiicc  mmooddeell  ooff  bboosseennttaann  aanndd  RROO  4477‑‑88663344  

PBK submodels B and C were constructed to derive the intrahepatic concentrations of bosentan and 

its active metabolite RO 47-8634. Eventually, these concentrations were used to simulate their 

inhibitory effect on BSEP-mediated efflux of BAs from the liver to the common bile duct. Both 

submodels B and C consisted of separate compartments for blood, rapidly perfused tissue, slowly 

perfused tissue, fat and liver, as shown in Fig. 2. A dosing regimen of 500 mg bosentan administered 

orally twice a day was selected, in line with available studies from which we extracted systemic in vivo 

plasma levels of bosentan and its active metabolite (Weber et al. 1999). Furthermore, systemic BA 

levels from volunteers following this dosing regimen were available (Fattinger et al. 2001). Bosentan 

administration was simulated at 8:00 and 20:00. The kinetic parameters for absorption of bosentan 

and biliary excretion of bosentan and RO 47-8634 were obtained by fitting to experimental plasma 

data obtained from Weber et al. (1999). The physicochemical properties of bosentan and RO 47-8634 

were used to calculate partition coefficients using the QIVIVE toolbox (Punt et al. 2020). As 

experimental data were lacking for the pKa and logP for RO 47-8634 these were predicted using the 

ALOGPS toolbox (Tetko et al. 2005). The fraction unbound of RO 47-8634 in plasma was calculated via 

the method described by Lobell and Sivarajah (2003) and obtained via the QIVIVE toolbox. The 

blood:plasma ratio of RO 47-8634 was assumed to be 0.55 (1-Hct) (Cubitt et al. 2009). The 

physicochemical properties of GCDCA, bosentan and RO 47-8634 are shown in Table 1.  

The kinetic parameters for the metabolism of bosentan were obtained from a study with 

human liver microsome incubations (Sato et al. 2018). The metabolism consisted of apart following 

Michaelis–Menten kinetics and non-saturable metabolic clearance, as described in Eq. 6.    

  

𝑣𝑣 𝑣 𝑣𝑣��� ×  [𝐶𝐶𝑣𝑣𝐶𝐶��������]
𝐾𝐾𝐾𝐾 𝐾 [𝐶𝐶𝑣𝑣𝐶𝐶��������] 𝐾 𝐶𝐶𝐶𝐶 × [𝐶𝐶𝑣𝑣𝐶𝐶��������] 

Eq. 6 
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where v is the velocity of metabolism in μmol/h, Vmax is the maximum velocity of metabolism in 

μmol/h, [CVLbosentan] is the free concentration of bosentan in liver in μmol/L, Km is the Michaelis–

Menten constant of metabolism in μmol/L and CL is the non-saturable metabolic clearance in L/h per 

106 cells. The reported kinetic parameters were expressed per mg microsomal protein and scaled to g 

liver, assuming 32 mg microsomal protein/g liver (Barter et al. 2007). The clearance was scaled from 

L/h per 106 cells to L/h per g liver using a hepatocellularity of 99 × 106 cells/g liver (Barter et al. 2007). 

To scale from g liver to entire liver, the kinetic parameters were multiplied by the liver weight. A liver 

weight of 20 × BW was used, i.e., 1400 g of liver for a 70 kg individual (Soars et al. 2002). 

  

IInnhhiibbiittiioonn  

Bosentan and RO 47-8634 inhibit BSEP-mediated BA efflux in a non-competitive nature (Fattinger et 

al. 2001). Hence, the Michaelis–Menten equation in the model that represents BSEP-mediated BA 

efflux from the liver was modified to include the non-competitive type of inhibition by the 

introduction of a modulation factor (1 + [CVLbosentan]/Ki,bosentan + [CVLRO 47-8634]/Ki,RO 47-8634). The resulting 

equation for BSEP-mediated BA efflux is then as follows:  

 

E = V���,����/(1 + [CVL��������]/K�,��������
+ [CVL�� �������]/K�,�� �������) × [CVL]/(Km����  +  [CVL]) 

Eq. 7 

 

where E is the BSEP-mediated efflux of BAs from the liver (μmol), Vmax,BSEP is the maximum rate 

of BSEP-mediated BA efflux from the liver in μmol/h, [CVLbosentan] is the free concentration of bosentan 

in μmol/L in the liver, Ki,bosentan is the inhibition constant for inhibition of the BSEP-mediated BA efflux 

by bosentan in μmol/L, [CVLRo 47-8634] the free concentration of RO 47-8634 in μmol/L in the liver, Ki,RO 

47–8634 is the inhibition constant for inhibition of the BSEP-mediated BA efflux by RO 47-8634 in μmol/L, 

[CVL] the free concentration of BAs in μmol/L in the liver and Km,BSEP is the Michaelis–Menten constant 

of BSEP-mediated BA efflux in μmol/L in the liver. Bosentan and RO 47-8634 inhibited BSEP-mediated 

transport of taurocholic acid with Ki values of 12 and 8.5 μmol/L, respectively (Fattinger et al. 2001). In 

the absence of data, it was assumed that the Ki values for the competition with GCDCA equalled those 

for taurocholic acid. The differential model equations were encoded and solved using Berkeley 

Madonna 10.2.8 (UC Berkeley, CA, USA) using the auto-step size algorithm. The full model code is 

presented in Supplementary file II. Pre- and post-treatment BA levels were compared with a Wilcoxon 

signed-rank test using R version 4.0.2 (R Core Team 2020). A p value < 0.05 was considered statistically 

significant.  

 

3.3 Results 
A computational model describing the synthesis, circulation and excretion of bile acids (BAs) was 

developed for a healthy reference individual (Fig. 3). In the simulations subjects fasted overnight and 

meals were simulated at 8:00, 12:00 and 16:00. Upon meal ingestion, the gall bladder was contracted, 

resulting in a peak in the systemic BA levels. The prediction was compared with two experimental data 

sets available in the literature showing postprandial BA levels (Hepner and Demers 1977; Ponz de Leon 

et al. 1978) (Fig. 3). The predicted systemic maximum BA concentration in plasma (Cmax) value was 4.4 
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μM, which is in line with the in vivo data reported by Hepner and Demers (1977). The Cmax reported by 

Ponz de Leon et al. (1978) is more than twofold higher (Fig. 3). The established PBK model was utilized 

to explore mechanistic explanations for these differences in the in vivo data. For this, a sensitivity 

analysis was performed to identify parameters that have a strong influence on the model outcome, 

i.e., the systemic plasma BA concentration. The sensitivity analysis (Fig. 4) revealed that parameters 

determining the amount of BA present in the body at the start of the simulations, i.e., the amount of 

BAs in a full gall bladder (Gdose) and systemic fasting concentration (CBfs) showed a strong positive 

influence on the model outcome (Cmax). Parameters determining the scaled maximum rate of BSEP-

mediated BA efflux had a strong negative influence on the Cmax.    

  

  
FFiigguurree  33 Predicted and observed plasma BA levels in human subjects. Subjects fasted overnight and meals were 
simulated at 8:00, 12:00 and 16:00. In vivo data were retrieved from Hepner and Demers (1977) (blue circles) 
and Ponz de Leon et al. (1978) (black triangles). The simulation is visualized in red.  

 

MMaarrkkoovv  CChhaaiinn  MMoonnttee  CCaarrlloo  ssiimmuullaattiioonnss  ffoorr  BBSSEEPP  aabbuunnddaanncceess  

To describe the interindividual variability in the systemic BA levels observed in vivo, we employed two 

scenarios. In the first approach, the BSEP abundances were randomly drawn from a log-normal 

distribution to simulate its variability in a virtual population using Markov Chain Monte Carlo 

simulations. In the second scenario, we scaled the total BA pool size with an empirical scaling factor 

informed by the results from the sensitivity analysis (Fig. 4). To study the effect of interindividual 

differences in absolute BSEP abundances on the BA homeostasis, a set of 10,000 Markov Chain Monte 

Carlo simulations were performed. In these simulations, BSEP abundances were randomly sampled 

from a log-normal distribution and used for in-vitro-to-in-vivo scaling of the experimentally obtained 

Vmax for BSEP-mediated efflux of BAs. The predicted Cmax values were compared with observed Cmax 

values (Fig. 5a). The predicted and observed data for healthy individuals gave comparable median 

values. Figure 5b displays that individuals with a low BSEP abundance have very high Cmax values, while 

the probability of an individual having such a low BSEP abundance is simulated to be small (Fig. 5c). 
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FFiigguurree  44 Sensitivity analysis of the influence of the PBK model parameters on the predicted maximal systemic BA 

concentration in plasma. Only parameters with an absolute normalized sensitivity coefficient > 0.1 are shown. 

Gdose = dose in a full gallbladder, CBfs = systemic plasma concentration in fasting state, KmBSEP = Michaelis–

Menten constant for BSEP-mediated BA efflux from the liver, QIb = fraction of bile flow transported directly from 

liver to intestinal lumen via common bile duct reference, BP = blood:plasma ratio, aBSEP = BSEP protein 

abundance, VmaxBSEPc = maximal BSEPmediated BA efflux rate, Hep = hepatocellularity, MWBSEP = molecular 

weight of BSEP, BW = body weight 

 

 
FFiigguurree  55 aa  Predicted and observed BA concentrations in plasma. BSEP abundances were drawn randomly from a 

log-normal distribution using Markov Chain Monte Carlo simulations. The details for the distribution were 

obtained from Burt et al. (2016). 10,000 iterations were performed, 18 iterations were excluded because BSEP 

abundances exceeded ± 3 SD. For details about the in vivo data set, see “Methods”.  bb Relationship between 

simulated Cmax and BSEP abundance. cc  Density plot of BSEP abundances used for the Markov Chain Monte Carlo 

simulations 
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EEmmppiirriiccaall  ssccaalliinngg  ooff  tthhee  ttoottaall  bbiillee  aacciidd  ppooooll  ssiizzee  

The sensitivity analysis revealed that the amount of BAs in a full gall bladder (Gdose) and the systemic 

fasting concentration (CBfs) had a large influence on the systemic BA peak concentrations. Therefore, 

we altered the total BA pool size with an empirical scaling factor “sens” (sensitivity). The total BA pool 

size is governed by the amount of BAs in a full gall bladder, the systemic fasting concentration and the 

de novo synthesis. These parameters were multiplied with a certain value sens (0.5, 1 or 1.5). As the 

fecal excretion was assumed to equal de novo synthesis in order to maintain the mass balance, this 

parameter was altered accordingly. The total BA pool size in the reference individual was 3079 μmol. 

Using the respective empirical scaling factors sens this value amounted to 1540, 3079 and 4619 μmol. 

In Fig. 6, the effect of the empirical scaling factor sens on the systemic plasma BA concentrations is 

visualized and compared with available in vivo data for the Cmax after each meal. Each of the factors for 

sens resulted in predictions within the boundaries of the reported in vivo data. A sens value of 1 gives 

a prediction within the interquartile range (IQR) of the in vivo data; a sens values of 1.5 provides a 

prediction above the IQR; a sens value of 0.5 predicted systemic BA plasma concentrations below the 

IQR after meal 1 and at the lower end of the IQR after meal 2 and 3. Furthermore, the increases in the 

amount of BAs in each of the organs upon introduction of the empirical scaling factors were evaluated 

(Table 3). With a sens value of 1.5, the intrahepatic BAs showed the largest increase relative to the 

reference individual (sens value 1) compared to the other organs.  

 

 
FFiigguurree  66 The effect of the empirical scaling factor sens on predicted plasma BA levels in human subjects. Subjects 

fasted overnight and meals were simulated at 8:00, 12:00 and 16:00. The dose in a full gall bladder, the systemic 

fasting concentration, the de novo synthesis and the fecal excretion were multiplied with a certain sens value 

(0.5, 1 or 1.5) to model the effects of different total BA pool size. The total pool size in the reference individual 

(sens value = 1) was 3079 μmol. The boxplots and points represent observed peak plasma BA concentrations 

after three meals reported in literature (see “Methods”). Blue = sens value 0.5, red = sens value 1, black = sens 

value 1.5 
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TTaabbllee  33 Fold change in the amount of BAs in compartments of the PBK model upon empirical scaling of the total 

BA pool relative to a reference individual (sens value = 1). The total amount of BAs was multiplied with a factor 

0.5 or 1.5 (sens value = 0.5 or 1.5, respectively) 

 Fold change 
 Sens value 0.5 Sens value 1.5 

Adipose tissue 0.4 1.8 
Blood 0.4 1.8 
Gall bladder 0.5 1.5 
Intestinal lumen 0.5 1.5 
Intestinal tissue 0.4 1.8 
Liver 0.4 2.1 
Rapidly perfused tissue 0.4 1.8 
Slowly perfused tissue 0.4 1.8 

  

SSuubbmmooddeellss  bboosseennttaann  aanndd  mmeettaabboolliittee  RROO  4477‑‑88663344  

After the establishment of the PBK model for BAs, the submodels describing the distribution of the 

cholestatic drug bosentan and its metabolite RO 47-8634 upon oral administration of 500 mg were 

developed. The results of the simulation for the systemic levels (solid lines) and the experimental data 

(dots and triangles) (Weber et al. 1999) are displayed in Fig. 7. The experimental plasma data 

were 1.7-fold higher than the simulations for both bosentan and RO 47-8634. These PBK submodels 

were used to predict the free intrahepatic concentrations of bosentan and RO 47-8634 (dashed lines), 

and subsequently used to predict the inhibitory effect on BSEP-mediated BA efflux from the liver. The 

sensitivity analysis revealed that the fraction absorbed (Fa) and oral dose of bosentan (ODOSEmg) had 

the strongest positive influence on the Cmax. The strongest negative influence on the model outcome 

was observed for the fraction of liver tissue (VLc). The normalized sensitivity coefficients are displayed 

in Supplementary Figure S1.  

 

 
FFiigguurree  77 Predicted and observed concentrations of bosentan and RO 47-8634 upon oral administration of 500 

mg bosentan. Circles and triangles represent experimental data in plasma obtained from Weber et al. (1999), the 

solid lines represent the predictions in plasma and the dashed lines the prediction of free concentration in the 

liver. Red = bosentan, blue = RO 47-8634 
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The effect of repeated bosentan administration on systemic BA levels was simulated for a reference 

individual, as well as for a virtual population using the Markov Chain Monte Carlo simulations for BSEP 

abundances (Fig. 8) and with the empirical scaling factor sens (Fig. 9). Fattinger et al. (2001) reported 

the highest DILI incidence upon a dosing regimen of 500 mg bosentan twice per day, thus the same 

dosing regimen was used in the simulations. Bosentan was simulated to be administered orally at 8:00 

and 20:00, the first dose being administered along with breakfast. The model predicted that the 

systemic Cmax values of bosentan and RO 47-8634 reached stable levels after three days of repeated 

bosentan dosing, respectively. Therefore, postprandial kinetics of BA levels during three days of oral 

bosentan administration appeared sufficient to obtain insight in the effect of repeated bosentan 

dosing on BA kinetics. Figure 8 shows the simulated and observed effect of bosentan treatment on the 

BA plasma concentrations in a virtual population with different BSEP transporter abundances, and a 

population of healthy individuals who developed liver injury during the clinical trial using bosentan 

(18% of the participants) (Fattinger et al. 2001), respectively. The pre- and posttreatment BA levels 

were reported in the clinical trial; likewise, we report healthy controls and post-treatment levels. Both 

the observed and simulated data displayed a significant increase in systemic BA concentrations upon 

repeated bosentan administration. Bosentan treatment increased the maximum postprandial BA level 

for the reference individual, as well as for the simulations with sens values of 0.5 and 1.5 (Fig. 9). The 

largest increase was observed with a sens value of 1.5. Maximum concentrations of BA in the liver are 

reported in Table 4; the largest increase was observed with a sens value of 1.5. 

 

 
FFiigguurree  88 Predicted and observed BA concentrations in the plasma of controls and individuals administered with 

bosentan 500 mg twice a day. BSEP abundances were drawn randomly from a log-normal distribution using 

Markov Chain Monte Carlo simulations. 18 and 15 simulations were discarded because BSEP abundances 

exceeded ± 3 SD for controls and bosentan-treated individuals, respectively. Gray fill: in vivo data and statistical 

results retrieved from Fattinger et al. (2001); white fill: simulated data 

 

3

DEVELOPING A BILE ACID PBK MODEL  75



 

 
FFiigguurree  99 The effects of oral bosentan administration (500 mg twice per day) on systemic BA plasma values. 

Subjects fasted overnight and meals were simulated at 8:00, 12:00 and 16:00. The dose in a full gall bladder, the 

systemic fasting concentration, the de novo synthesis and the fecal excretion were multiplied with a certain sens 

value (0.5, 1 or 1.5) to model the effects of different total BA pool size. The total pool size in the reference 

individual (sens value = 1) was 3079 μmol. Dashed line = no bosentan; solid line = bosentan administration. Blue 

= sens value 0.5, red = sens value 1, black = sens value 1.5 

  
TTaabbllee  44 Maximal simulated hepatic BA concentrations in healthy controls and bosentan-administered Individuals 

(500 mg twice per day) 

Sens 
value 

Maximal hepatic BA 
concentration (nmoles/g tissue) 

 0.5 1 1.5 
Control 0.2 0.5 1.1 

Bosentan 0.3 0.8 1.8 
 

3.4 Discussion 
The current study presents a PBK model describing the synthesis, circulation and excretion of bile 

acids (BAs), using GCDCA as the model BA, in healthy and bosentan-treated individuals. Bosentan is 

known to inhibit the efflux of BAs from the liver to the common bile duct by noncompetitive inhibition 

of the hepatic BSEP transporter, which can lead to intrahepatic accumulation of BAs and their 

subsequent spillage to the systemic circulation (Fattinger et al. 2001; Mano et al. 2007). The current 

study showed that especially a large total BA pool size and a low BSEP abundance increase an 

individual’s susceptibility towards BSEP inhibition-mediated toxicity.  

Postprandial plasma BA levels were simulated and compared with in vivo data reported in 

literature. The reported in vivo data show a ninefold variation between individuals (Angelin and 

Björkhem 1977; Galeazzi et al. 1980; Gälman et al. 2005; Hepner and Demers 1977; Ponz de Leon et 

al. 1978; Salemans et al. 1993). Our simulations predicted BA levels that were well within the reported 

range and followed a similar peak pattern as reported in literature (Hepner and Demers 1977; Ponz de 

Leon et al. 1978). Next, we employed two scenarios to identify plausible causes of the interindividual 
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differences, and identify risk factors for the development of cholestasis. In the first approach, we 

incorporated physiologically relevant BSEP abundances in our PBK model for quantitative in vitro-to-in-

vivo extrapolations of Vmax,BSEP. The abundances were randomly drawn from a log-normal distribution 

(Burt et al. 2016) using Markov Chain Monte Carlo simulations. Our results revealed that the BA Cmax 

values in the plasma of individuals with low BSEP abundances reach very high levels (Fig. 5b); 0.9% of 

our simulated population has abnormal systemic BA values of over 15 μM. As we identified low BSEP 

abundances as a risk factor for the development of cholestasis, it is important for future safety 

assessments of BSEP-inhibitory pharmaceuticals to get an accurate estimate of the prevalence of low 

abundances. Not only low transporter abundance, but also low transporter functionality as a result of 

inborn mutations should be considered as a cause for increased hepatic BA concentrations and 

susceptibility towards BSEP inhibition-mediated toxicity. Carriers of progressive familial intrahepatic 

cholestasis 2 (PFIC2) or benign recurrent intrahepatic cholestasis 2 (BRIC2) have a higher risk of 

developing cholestasis during their lifetime. Both PFIC2 and BRIC2 are caused by polymorphisms of the 

BSEP-coding gene which leads to a dysfunctional BSEP protein. PFIC2 and BRIC2 are estimated to 

occur in about 1 per 50,000 to 1 per 100,000 childbirths (Geethalakshmi and Mageshkumar 2014). In 

BRIC2 carriers, usually, a basal functionality of BSEP remains, while PFIC2 is more severe and patients 

ultimately need liver transplantation as they develop cholestasis, progressive liver fibrosis, cirrhosis 

and end-stage liver disease (Srivastava 2014). With accurate kinetic data for the BA transport 

remaining in BRIC2 or PFIC2 carriers, the current model could be used to set safe external dose levels 

of xenobiotics for these individuals.  

The sensitivity analysis revealed that the BA levels in a full gall bladder and the fasting 

concentration of BAs contributed strongly to the predicted systemic BA levels, and thus could be a 

major determinant of the interindividual variability. Based on these results, we introduced an 

empirical scaling factor that modified the total amount of predicted BAs present in the body. We 

found that relatively small factors of 0.5 and 1.5 could predict the lower and upper range of the 

reported in vivo data. Our reference individual has a total BA pool of 3079 μmol; which is slightly 

below reported values (3672–9374 μmol (Beuers et al. 1992; Koopman et al. 1988), see 

supplementary file I Table S1 for the conversion to model units). This discrepancy can be explained 

because the BA concentration in the liver, intestine, fat, slowly and rapidly perfused tissue were set to 

0 at the beginning of the simulations, while in vivo BAs circulate through these tissues. This could be 

overcome by carefully defining the initial state in the relevant organs, although this is challenging as 

experimental data are sparse for some compartments of the human body that are inaccessible. The 

empirical scaling factor 1.5 resulted in a total pool size well within the physiological range, while the 

maximal hepatic BA levels were below the physiological range (16–67 nmoles/g tissue (Aranha et al. 

2008; García-Cañaveras et al. 2012)). This indicates that in our predictions a (too) large fraction was 

secreted from the liver or a (too) small fraction of the Bas was absorbed from the intestinal lumen, 

causing low predictions hepatic BA levels. Refining the PBK model with more mechanistic insights in 

intestinal and hepatic BA uptake might improve the predictions for intrahepatic BA levels. 

Interestingly, a 1.5-fold increase in the amount of BAs present in the body led to a 2.1-fold and 1.8-

fold increase in the hepatic and systemic blood BA concentrations, respectively (Table 3). Along with 

the relatively small increase in BA levels observed in the intestinal lumen, this indicates saturation of 
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the BSEP-mediated efflux of BAs from the liver to the common bile duct. Via diffusion the BAs deposit 

from the liver to the remaining organs and the systemic circulation, resulting in elevated systemic 

concentrations. Hence, a large BA pool can lead to saturation of BSEP and is thereby a risk factor for 

the development of drug-induced cholestasis.  

The next step in our study was to establish a PBK model for bosentan and its metabolite RO 47-

8634 to estimate their intrahepatic concentrations, and subsequently their inhibitory effect on BSEP-

mediated BA transport. Our PBK model gave a good prediction of the bosentan and RO 47–8634 

concentrations in plasma (Fig. 7), given that the simulated Cmax was within the twofold cut-off value 

that is commonly requested within a regulatory context (Peters and Dolgos 2019). Therefore, the 

bosentan model was considered fit for purpose to predict to intrahepatic bosentan and RO 47-8634 

levels and use these as input in the BA PBK model. Upon the introduction of bosentan’s inhibitory 

effect on BSEP-mediated transport in the BA model, the systemic BA levels increased, as was also 

reported in vivo (Fattinger et al. 2001). It should be noted that the in vivo study only measured pre- 

and post-treatment BA levels in individuals who developed DILI, whereas the simulated population 

was a healthy population. However, as the experimental and simulated pre-treatment BA levels were 

comparable, we assume that the individuals who developed liver injury throughout the bosentan 

treatment did not have a specific predisposition towards developing DILI. In line with the in vivo data, 

very high BA levels of up to 42 μM were observed in the simulations upon bosentan treatment. 

Interestingly, the simulations with the empirical scaling factor of 1.5 showed a larger increase in 

systemic BA levels than what was predicted for the reference individual upon bosentan treatment (Fig. 

9). This larger increase further supports that BSEP-mediated BA efflux is more rapidly saturated in the 

individuals with a 1.5-fold scaled and thus higher total BA pool. Furthermore, plasma Cmax values were 

strongly increased in individuals with low BSEP abundances. Hence, either a large total BA pool size or 

a low BSEP abundance can result in an overloaded BSEP transport, which in turn results in excessively 

high hepatic and potentially toxic BA levels, especially when a BSEP-inhibiting drug is administered.  

The current PBK model condensed a complex biological system to a relatively simple set of 

equations, with proved to adequately predict physiological responses. The BA pool was considered as 

a lumped pool, with GCDCA as an exemplary BA, although in vivo the BA pool consists of various BAs, 

with each different kinetics and physicochemical properties. Computational models describing 

different BA species in the human body have been established recently (Sips et al. 2018; Voronova et 

al. 2020). However in contrast to these studies, in the current PBK model all but one parameters were 

derived experimentally. We consider this as a major strength of the current model which could only be 

accomplished by reducing the model complexity. We limited the number of BAs included in the model, 

as experimental kinetic data are simply not available for all BAs. The current model can be easily 

extended towards individual BAs as soon as relevant kinetic data become available. Furthermore, in 

the current approach basolateral transport was assumed to be completely diffusion-mediated and 

active transport of BAs by MRP3, MRP4 or OSTα/β was not yet considered. The expression of these 

transporters is low under normal conditions (Beaudoin et al. 2020; Vinken et al. 2013), and hence, 

incorporation of these transporters is expected to not have a substantial effect on the intrahepatic or 

systemic BA levels of healthy individuals. Nevertheless, under cholestatic conditions, MRP3/4 and 

OSTα/β are upregulated (Gijbels et al. 2020; Vinken et al. 2013), by that counteracting the intrahepatic 

78 CHAPTER 3



 

accumulation of BAs. Experimental data regarding basolateral transporter affinity and regulation of its 

expression are lacking to date, but would improve the accuracy of the simulations of cholestatic 

individuals.  

In conclusion, the current PBK model provided novel mechanistic insight into BA homeostasis 

and the consequences of BSEP inhibition and helps to, e.g., identify rate-limiting processes or risk 

factors towards developing BA related liver disease. With this, the PBK modeling approach serves as a 

vigorous instrument to understand the BA homeostasis without the need for animal testing. We 

identified that individuals with low functional BSEP abundances or a large BA pool are susceptible to 

BSEP-mediated cholestasis. In these individuals, BSEP-mediated hepatic BA efflux is rapidly saturated 

upon BSEP inhibition, causing elevated and potentially hepatotoxic BA concentrations. Since the 

current PBK model is data-driven (i.e., most input parameters  are derived experimentally), it is  

suitable to extrapolate to other situations or individuals. A powerful application of the coupled 

bosentan–BA model is the potential to predict dose-relationships for specific individuals, e.g., PFIC2 or 

BRIC2 carriers, or to estimate safe therapeutic doses for an entire population, including the most 

sensitive individuals. The approach developed can easily be extended to other pharmaceuticals, for 

which the needed model input parameters are typically known.  
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3.5 Supplementary file I 
 

TTaabbllee  SS11 Total BA pool sizes; scaled to presence of conjugates of CA, CDCA and DCA and to a 70 kg individual.  

Koopman, 1988      
CA (µmol/kg bw) CDCA (µmol/kg bw) total (µmol/kg bw) total (µmol/70 kg)  scaled (µmol/70 kg) 

11.1 19.8 30.9 2163 4023 

18.4 9.8 28.2 1974 3672 

36.5 35.5 72 5040 9374 

42.5 25.1 67.6 4732 8802 

19.2 20.5 39.7 2779 5169 

14.3 24.9 39.2 2744 5104 

26.8 25.7 52.5 3675 6836 

      
Beuers, 1992      
DCA (µmol/kg bw) CDCA (µmol/kg bw) total (µmol/kg bw) total (µmol/70 kg)  scaled (µmol/70 kg) 

16.3 22.4 38.7 2709 3684 

42.1 18.9 61 4270 5807 

30.2 13.6 43.8 3066 4170 

42.2 24.9 67.1 4697 6388 

 

  

FFiigguurree  SS11 Sensitivity analysis of the PBK-model parameters on the predicted maximal bosentan and RO 47-8634 
plasma concentrations. Black bars indicate bosentan, grey bars RO 47-8634. Only parameters with an absolute 
normalized sensitivity coefficient > 0.1 are shown. Fa= fraction absorbed, ODOSEmg= oral administered dose, 
VmaxDESc= maximal rate of RO 47-8634 formation, KmOH=Michaelis Menten constant of RO 48-5033 
formation, MPPGL= microsomal protein per gram of liver, Rbos=blood:plasma ratio bosentan, KmDES=Michaelis 
Menten constant of RO 47-8634 formation, PFbos=fat/blood partition coefficent of bosentan, 
VmaxOHc=maximal rate of 48-5033 formation, PLbos= liver/blood partition coefficient of bosentan, VLc=fraction 
of liver tissue.  
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3.6 Supplementary file II PBK model code 
; Date: June 2022 

; Purpose: General PBK Model GCDCA, built with in vitro and in silico derived parameter values 

; Species: Human 

; Compiled by: Véronique de Bruijn 

; Organisation: Wageningen University 

;================================================================ 

;Physiological parameters 

;================================================================ 

; tissue volumes 

BW = 70 {Kg} ; body weight human (variable, dependent on study) 

VFc = 0.214  ; fraction of fat tissue   reference: Brown et al. (1997) 

VLc = 0.026     ; fraction of liver tissue   reference: Brown et al. (1997) 

VRc = 0.054 ; fraction of richly perfused tissue  reference: Brown et al. (1997) 

VSc= 0.6033 ; fraction of slowly perfused tissue reference: Brown et al. (1997) 

VBc = 0.079 ; fraction of blood   reference: Brown et al. (1997)  

VIc = 0.009 ; fraction of intestinal tissue  reference: Brown et al. (1997) 

VGc= 0.0007 ; fraction of gallbladder tissue  reference: Van Erpecum et al. (1992) 

VLuc=0.014 ; fraction of intestinal lumen  reference: Brown et al. (1997) 

 

VF = VFc*BW  {L or Kg} ; volume of fat tissue (calculated) 

VL = VLc*BW  {L or Kg} ; volume of liver tissue (calculated) 

VR = VRc* BW  {L or Kg} ; volume of  richly perfused tissue (calculated) 

VS = VSc*BW  {L or Kg} ; volume of  slowly perfused tissue (calculated) 

VB = VBc* BW  {L or Kg} ; volume of  blood (calculated) 

VI = VIc*BW  {L or Kg} ; volume of intestinal tissue (calculated) 

VG= VGc*BW  {L or Kg} ; volume of gall bladder tissue (calculated) 

VLu=VLuc*BW  {L or Kg} ; volume of intestinal lumen (calculated) 

;--------------------------------------------------------------------------------------------------------------------  

;blood flow rates 

QC = 15*BW^0.74 {L/hr} ; cardiac output reference: Brown et al. (1997) 

QFc = 0.052 ; fraction of blood flow to fat tissue  reference: Brown et al. (1997) 

QLc = 0.046 ; fraction of blood flow to liver (excluding portal vein)  reference: Brown et al. (1997) 

QSc = 0.248 ; fraction of blood flow to slowly perfused tissue reference: Brown et al. (1997) 

QRc=0.473      ; fraction of blood flow to richly perfused tissue reference: Brown et al. (1997)  

QIc = 0.181 ; fraction of blood flow to intestines  reference: Brown et al. (1997) 

    

QF = QFc*QC  {L/hr} ; blood flow to fat tissue (calculated) 

QL = QLc*QC  {L/hr} ; blood flow to liver tissue (calculated) 

QS = QSc*QC   {L/hr} ; blood flow to  slowly perfused tissue (calculated) 

QR = QRc*QC   {L/hr} ; blood flow to richly perfused tissue (calculated) 

QI = QIc*QC  {L/hr} ; blood flow to intestines (calculated) 

;================================================================ 

;Physicochemical parameters 

;================================================================ 
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;partition coefficients 

logP =2.21  ; Roda 1990 

RGCDCA=0.55; blood:plasma ratio, 1-Hct, assumption 

PF =0.05/RGCDCA  ; fat/blood partition coefficient calculated using QPPR of Rodgers & Rowland 

2006 

PL = 0.09/RGCDCA; liver/blood partition coefficient calculated using QPPR of Rodgers & Rowland 2006 

PR = 0.125/RGCDCA ; richly perfused tissue/blood partition coefficient calculated using QPPR Rodgers 

& Rowland 2006 

PS = 0.19/RGCDCA ; richly perfused tissue/blood partition coefficient calculated using QPPR Rodgers 

& Rowland 2006 

PG=0.16/RGCDCA  ; gut/blood partition coefficient  calculated using QPPR of Rodgers & 

Rowland 2006 

 

;================================================================ 

;Kinetic parameters  

;================================================================ 

ka =1.047 {/hr}   ;absorption rate constant from intestinal lumen to liver, fitted to experimental data 

Hepner (1977) and De Leon (1978)  

 

;de novo synthesis in liver.  

Ks=0.78*60*sens {umol/h/entire organ}  ; reference: Kullak-Ublick (2004) 

 

;Faecal excretion 

Kf=Ks {umol/h}     ; Faecal excretion equals the de novo synthesis  

 

;biliary excretion from liver to bile canaliculi 

VmaxBSEPc=5.848{umol/min/mg BSEP}  ; reference: GCDCA from Kis (2009) 

KmBSEP = 4.3 {umol/L}    ; reference: Kis (2009) 

 

MC=1    ; switch for Monte Carlo  

aBSEPc=IF MC =1 THEN init(exp(NORMAL(-0.26, 0.403))) ELSE 0.839; BSEP protein abundance in pmoles/10^6 

hepatocytes, reference Burt (2016) 

aBSEP= IF aBSEPc  > 0.23 AND aBSEPc < 2.58  THEN aBSEPc ELSE 0.00000001 

 

MWBSEP=140000    ; BSEP is a 140 kDa protein, 140 000 g/mol 

Hep=99  {10^6 hepatocytes/g liver} ; reference Barter (2007) 

WL=20*BW {g}    ; reference Soars (2002) 

SF=aBSEP*MWBSEP*Hep*WL*60*10^-9 {mg BSEP/entire lever}; scaling factor, calculated  

VmaxBSEP=VmaxBSEPc*SF{umol/h/entire liver}   

 

;uncompetitive BSEP inhibition by bosentan and its metabolite desmethyl bosentan (RO 47-8634) 

Kibos=12 {umol/L}   ; reference: Fattinger (2001) 

KiDES=8.5 {umol/L}   ; reference: Fattinger (2001) 

VmaxBSEPapp=VmaxBSEP/(1+CVLbos/Kibos+CVLDES/KiDES)  
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;distribution of bile flow excreted from liver in the bile canaliculae  

QIb = 0.5   ; fraction of bile flow transported directly from liver to intestinal lumen via 

common bile duct reference:  Molino (1986) 

QGb = 1- QIb   ; fraction of bile flow from liver stored in gall bladder, calculated 

 

;systemic plasma concentration in fasting state 

CBfs=2.4*sens {umol/L} ; reference: García-Cañaveras (2001) 

 

;sensitivity individual 

sens=1 

;================================================================ 

;Run settings 

;================================================================ 

Gdose =3020*sens{umol} ; dose in full gallbladder, Sips (2018)  

 

dosingperiod =if time < 20 OR time > 32 AND time <44  OR time >56 AND time <68 THEN  1 else 0 ; stop 

gallbladder contractions during the night 

 

;time 

Starttime =8 ; in hr 

Stoptime = 80; in hr   

DTMIN=1E-6 

DTMAX=1E-4 

DTOUT=0.01 

TOLERANCE=1E-12 

Method Auto 

;================================================================ 

;Model calculations 

;================================================================ 

; gall bladder compartment  

;AG = amount in the gallbladder, umol  

;AG’ = Change in amount in the gallbladder, umol/hr 

AG'=-pulse(AG,0, 4)*dosingperiod + VmaxBSEPapp*CVL/(KmBSEP+ CVL)*QGb   

Init AG = Gdose      

;------------------------------------------------------------------------------------------------------- 

; liver compartment 

;AL = Amount in liver tissue, umol 

;AL' = Change in amount in liver tissue in time,  umol/hr 

AL' =QL*(CB-CVL)-VmaxBSEPapp*CVL/(KmBSEP+ CVL) + Ks + ka*ALu 

 CL = AL/VL 

 CVL = CL/PL 

Init AL=0 

;---------------------------------------------------------------------------------------------------------------- 

; intestine compartment 

;ALu= amount in intestinal lumen, umol 
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ALu'=pulse(AG,0, 4)*dosingperiod+VmaxBSEPapp*CVL/(KmBSEP+ CVL)*QIb-Kf-ka*ALu 

CLu=ALu/VLu 

Init ALu=0 

 

;AI’ = amount GCDCA in the intestinal tissue remaining, umol 

AI' = QI*(CB-CVI) 

Init AI = 0 

CI=AI/VI 

CVI=CI/PG 

;------------------------------------------------------------------------------------------------------------------- 

;fat compartment 

;AF = Amount GCDCA in fat tissue, umol 

        AF' = QF*(CB-CVF)  

Init AF = 0 

CF = AF/VF 

       CVF = CF/PF 

;--------------------------------------------------------------------------------------------------------------------  

;tissue compartment richly perfused tissue 

;AR = Amount GCDCA in richly perfused tissue, umol 

       AR' = QR*(CB-CVR)  

       Init AR = 0 

       CR = AR/VR 

       CVR = CR/PR 

;--------------------------------------------------------------------------------------------------------------------  

;tissue compartment slowly perfused tissue 

;AS = Amount GCDCA in slowly perfused tissue, umol 

       AS' = QS*(CB-CVS)  

       Init AS = 0 

       CS = AS/VS 

       CVS = CS/PS 

;--------------------------------------------------------------------------------------------------------------------  

; blood compartment       

 

;AB = Amount GCDCA in blood (umol) 

      AB' = QF*CVF + QL*CVL + QS*CVS + QR*CVR +QI*CVI - (QF+QL+QS+QR+QI)*CB 

      Init AB =0  

      CB = AB/VB 

      CBtot=CB/RGCDCA+CBfs ; concentration GCDCA in plasma, umol/L 

;-------------------------------------------------------------------------------------------------------------------- 

; Mass balance calculations 

Total =Gdose+Ks 

Calculated = AL+ AS+ AR + AB + AG + AF + AI +Kf + ALu 

 

ERROR=((Total-Calculated)/Total+1E-30)*100 

MASSBBAL=Total-Calculated + 1 
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;Submodel bosentan and its metabolite desmethyl bosentan (RO 47-8634) 

;===================================================================== 

;Physiological parameters 

;===================================================================== 

VRcbos =(VRc+VIc)  ; fraction of richly perfused tissue  

VScbos=(VSc+VGc+VLuc) ; fraction of slowly perfused tissue  

 

VRbos=VRcbos*BW  ; volume of  richly perfused tissue (calculated) 

VSbos=VScbos*BW  ; volume of  slowly perfused tissue (calculated) 

;--------------------------------------------------------------------------------------------------------------------  

;blood flow rates 

QRcbos = (QRc+QIc)  ; fraction of blood flow to richly perfused tissue 

QRbos=(QRcbos*QC) {L/hr}  ; blood flow to richly perfused tissue (calculated) 

 

;===================================================================== 

;Physicochemical parameters 

;===================================================================== 

;partition coefficients 

 

;bosentan 

Rbos= 0.6  ; blood:plasma ratio (EMA 2004, Meyer 1996) 

PFbos = 0.05/Rbos ; fat/blood partition coefficient                         calculated using QPPR of Rodgers & 

Rowland 2006 

PLbos = 0.11/Rbos ; liver/blood partition coefficient  calculated using QPPR of Rodgers & 

Rowland 2006 

PRbos = 0.14/Rbos ; richly perfused tissue/blood partition coefficient calculated using QPPR Rodgers 

& Rowland 2006 

PSbos = 0.21/Rbos  ; richly perfused tissue/blood partition coefficient calculated using QPPR 

Rodgers & Rowland 2006 

 

;metabolite RO 47-8634 (desmethyl bosentan) 

RDES=0.55  ; blood:plasma ratio, assumption (1-Hct) 

PFDES= 0.06/RDES ; fat/blood partition coefficient                         calculated using QPPR of Rodgers & 

Rowland 2006 

PLDES= 0.15/RDES ; liver/blood partition coefficient                         calculated using QPPR of Rodgers & 

Rowland 2006 

PRDES = 0.18 /RDES ; rapidly perfused/blood partition coefficient calculated using QPPR of Rodgers & 

Rowland 2006 

PSDES = 0.30 /RDES ; slowly perfused/blood partition coefficient  calculated using QPPR of Rodgers & 

Rowland 2006 

 

;===================================================================== 

;Kinetic parameters  

;===================================================================== 
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;Absorption from GI-tract to liver 

kabos  =0.130   ; absorption {/hr}, fitted to in vivo data (Weber, 1999) 

kbilebos= 23.660 ; biliary excretion bosentan {/hr}, fitted to in vivo data (Weber, 1999) 

kbileDES=133.924 ; biliary excretion desmethyl bosentan {/hr}, fitted to in vivo data (Weber, 1999) 

Fa=0.5   ; fraction absorbed, reference: Weber (1996) 

;--------------------------------------------------------------------------------------------------------------------  

;Metabolism liver 

MPPGL = 32 {mg/g} ; microsomal protein per gram of liver, Barter (2007) 

 

;based on metabolite formation of bosentan, scaled maximum rate of metapulism  

;VmaxOH=maximum rate of hydroxyl bosentan formation 

VmaxOHc = 16.4 {pmol/min/mg microsomal protein}   ; reference Sato (2008) 

VmaxOH=VmaxOHc*MPPGL*WL*60*10^-6 {umol/h/entire liver}  ; calculated 

 

; maximum rate of desmethyl bosentan formation 

VmaxDESc= 7.53{pmol/min/mg microsomal protein}  ; reference Sato (2008) 

VmaxDES=VmaxDESc*MPPGL*WL*60*10^-6 {umol/h/entire liver} ; calculated 

 

;metabolites of bosentan, affinity constants (umol/L) 

KmOH= 6.4{umol/L}       ; reference Sato (2008) 

KmDES=4.8  {umol/L}       ; reference Sato (2008) 

 

;non-saturable clearance 

CLOHc = 0.158 {uL/min/mg microsomal protein}   ; reference Sato (2018) 

CLDESc = 0.273 {uL/min/mg microsomal protein}   ; reference Sato (2018) 

CLOH=CLOHc*MPPGL*WL*60*10^-6 {L/h/entire liver}   ; calculated 

CLDES=CLDESc* MPPGL*WL*60*10^-6 {L/h/entire liver}  ; calculated 

 

;===================================================================== 

;Run settings 

;===================================================================== 

 

;Molecular weight 

MWbos = 551.6 ; Molecular weight bosentan 

MWDES=543.6 ; Molecular weight desmethyl bosentan 

    

;oral dose of bosentan  

ODOSEmg =500 {mg }      ; given oral dose in mg 

ODOSEumol = ODOSEmg*1E-3/MWbos*1E6  {umol}  ; given oral dose recalculated to umol  

 

;===================================================================== 

;Model calculations 

;===================================================================== 

; stomach compartment 

;Ast = Amount bosentan remaining in stomach, umol         
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Ast'=pulse(ODOSEumol*Fa,-4,12)-kabos*Ast  

Init Ast=0 

 

;Ast'=-kabos*Ast 

;Init Ast=ODOSEumol*Fa 

 

;--------------------------------------------------------------------------------------------------------------------  

;liver compartment 

;ALbos = Amount bosentan  in liver tissue, umol 

ALbos' =  kabos*Ast + QL*(CBbos - CVLbos)-AMOH'-AMDES'-Abilebos'  

Init ALbos = 0 

CLbos = ALbos/VL 

CVLbos = CLbos/PLbos 

 

;AMOH= amount metabolized to metabolite RO48-5033 (hydroxyl bosentan), umol  

AMOH'= VmaxOH*CVLbos/(KmOH + CVLbos) + CLOH*CVLbos 

Init AMOH=0 

 

;AMDES = amount metabolized to metabolite RO 47-8634 (desmethyl bosentan), umol 

        AMDES' = VmaxDES*CVLbos/(KmDES + CVLbos)+CLDES*CVLbos 

        init AMDES = 0 

 

;Abilebos= biliary excretion of bosentan 

Abilebos' = kbilebos*ALbos 

Init Abilebos=0 

 

;--------------------------------------------------------------------------------------------------------------------  

;fat compartment 

 

;AFbos = Amount bosentan in fat tissue (umol) 

       AFbos' = QF*(CBbos-CVFbos)  

       Init AFbos = 0 

       CFbos = AFbos/VF 

       CVFbos = CFbos/PFbos 

 

;--------------------------------------------------------------------------------------------------------------------  

;tissue compartment richly perfused tissue 

 

;ARbos = Amount bosentan in richly perfused tissue (umol) 

       ARbos' = QRbos*(CBbos-CVRbos)  

       Init ARbos = 0 

       CRbos = ARbos/VRbos 

       CVRbos = CRbos/PRbos 

 

;--------------------------------------------------------------------------------------------------------------------  
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;tissue compartment slowly perfused tissue 

 

;ASbos = Amount bosentan in slowly perfused tissue (umol) 

       ASbos' = QS*(CBbos-CVSbos)  

       Init ASbos = 0 

       CSbos = ASbos/VSbos 

       CVSbos = CSbos/PSbos 

 

;--------------------------------------------------------------------------------------------------------------------  

; blood compartment       

 

;ABbos = Amount bosentan in blood (umol) 

      ABbos' = QL*CVLbos + QF*CVFbos+ QS*CVSbos + QRbos*CVRbos - (QL+QF+QS+QRbos)*CBbos  

      Init ABbos = 0 

      CBbos = ABbos/VB 

      AUCbos' = CBbos 

      Init AUCbos = 0 

 

CBbosp_umol=CBbos/Rbos {umol/L}   ; concentration bosentan in plasma, umol/L 

CBbosp_ug=CBbosp_umol*MWbos {ug/L}  ; concentration bosentan in plasma, ug/L  

;===================================================================== 

;Mass balance calculations 

;===================================================================== 

Totalbos' = pulse(ODOSEumol *Fa, -4, 12) 

Init Totalbos = 1E-50 

Calculatedbos = Ast + AFbos + ASbos + ARbos  + ABbos + ALbos +AMOH + AMDES+Abilebos 

 

ERRORbos=((Totalbos-Calculatedbos)/Totalbos+1E-30)*100 

MASSBBALbos=Totalbos-Calculatedbos + 1 

;===================================================================== 

;desmethyl bosentan (RO 47-8634) 

;===================================================================== 

;ALDES = amount remaining in liver of metabolite RO 47-8634 (desmethyl bosentan) (umol) 

ALDES'=QL*(CBDES-CVLDES)+AMDES'-AbileDES'  

Init ALDES=0 

CLDES=ALDES/VL 

CVLDES=CLDES/PLDES 

 

;AbileDES=amount desmethyl bosentan excrted via bile, umol 

AbileDES'=kbileDES*ALDES 

Init AbileDES=0 

;--------------------------------------------------------------------------------------------------------------------  

;fat compartment 

 

;AFDES = Amount Desmethyl bosentan in fat tissue (umol) 
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       AFDES' = QF*(CBDES-CVFDES)  

       Init AFDES = 0 

       CFDES = AFDES/VF 

       CVFDES = CFDES/PFDES 

 

;--------------------------------------------------------------------------------------------------------------------  

;tissue compartment richly perfused tissue 

 

;ARDES = Amount Desmethyl bosentan in richly perfused tissue (umol) 

       ARDES' = QRbos*(CBDES-CVRDES)  

       Init ARDES = 0 

       CRDES = ARDES/VRbos 

       CVRDES = CRDES/PRDES 

 

;--------------------------------------------------------------------------------------------------------------------  

;tissue compartment slowly perfused tissue 

 

;ASDES = Amount Desmethyl bosentan in slowly perfused tissue (umol) 

       ASDES' = QS*(CBDES-CVSDES)  

       Init ASDES = 0 

       CSDES = ASDES/VSbos 

       CVSDES = CSDES/PSDES 

 

;--------------------------------------------------------------------------------------------------------------------  

; blood compartment       

 

;ABDES = Amount Desmethyl bosentan in blood (umol) 

ABDES' = QL*CVLDES + QF*CVFDES+ QS*CVSDES + QRbos*CVRDES - (QL+QF+QS+QRbos)*CBDES 

    Init ABDES = 0 

       CBDES = ABDES/VB 

       AUCDES' = CBDES 

       Init AUCDES = 0 

 

CBDESp_umol=CBDES/RDES {umol/L}  ; concentration  desmethyl  bosentan in plasma, umol/L 

CBDESp_ug=CBDESp_umol*MWDES {ug/L} ; concentration  desmethyl bosentan in plasma, ug/L  

 

;===================================================================== 

;Mass balance calculations 

;===================================================================== 

TotalDES'=AMDES' 

Init TotalDES=1e-50 

CalculatedDES=AFDES+ARDES+ABDES+ALDES+ASDES+AbileDES 

 

ERRORDES=((TotalDES-CalculatedDES)/TotalDES+1E-30)*100 

MASSBBALDES=TotalDES-CalculatedDES + 1 
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Abstract 
Purpose · Bile acid homeostasis is vital for numerous metabolic and immune functions in humans. The 
enterohepatic circulation of bile acids is extremely efficient, with ~95% of the intestinal bile acids 
being reabsorbed. Disturbing intestinal bile acid uptake is expected to substantially affect intestinal 
and systemic bile acid levels. Here, we aimed to predict the effects of apical sodium-dependent bile 
acid transporter (ASBT)-inhibition on systemic plasma levels. For this, we combined the in vitro Caco-2 
cell transport assays with physiologically based (PBK) modeling. For this proof-of-principle study we 
used the selective ASBT-inhibitor odevixibat (ODE) as a model compound.  
Approach · Caco-2 cells grown on culture inserts were used to obtain transport kinetic parameters of 
glycocholic acid (GCA). The apparent Michaelis Menten constant (Km,app), apparent maximal intestinal 
transport rate (Vmax,app) and ODE’s inhibitory constant (Ki) were determined for GCA. These kinetic 
parameters were incorporated in a PBK model and used to predict the ASBT inhibition effects on 
plasma bile acid levels.  
Main findings · GCA is transported over Caco-2 cells in an active and sodium-dependent manner, 
indicating the presence of functional ASBT. ODE inhibited GCA transport dose-dependently. The PBK 
model predicted that oral doses of ODE reduced conjugated bile acid levels in plasma. Our simulations 
match in vivo data and provide a first proof-of-principle for the incorporation of active intestinal bile 
acid uptake in a bile acid PBK model. This approach could in future be of use to predict the effects of 
other ASBT-inhibitors on plasma and intestinal bile acid levels.  

 

KKeeyy  wwoorrddss::  Bile Acids and Salts ●●  Caco-2 ●●  Apical sodium dependent bile acid transporter (ASBT) ●● 

Odevixibat ●● quantitative-in-vitro-to-in-vivo extrapolation (QIVIVE) 

 

LLiisstt  ooff  aabbbbrreevviiaattiioonnss::   AOP, adverse outcome pathway; ASBT, apical sodium-dependent bile acid 

transporter; ABL, aqueous boundary layer; BA, bile acid; BABP, bile acid binding protein; BSEP, bile salt 

export pump; Cmax, maximal concentration in plasma; DCA, deoxycholic acid; GCA, glycocholic acid; 

GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; LOD, limit of detection; LOQ, limit 

of quantification; NAFLD, non-alcoholic fatty liver disease; NTCP, Na+-taurocholate cotransporting 

polypeptide; OATP: organic anion transporting polypeptide; ODE: odevixibat; OST α/β, organic solute 

transporter α/β; PBK, physiologically based kinetic; TEER, transepithelial electrical resistance; TCA, 

taurocholic acid; Tmax, time it takes to reach Cmax; uBA, unconjugated bile acid 
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4.1 Introduction 
Bile acids (BAs) have emerged as critical signalling molecules for energy, glucose and lipid metabolism, 
cell proliferation as well as regulation of the immune system (Jia et al., 2018; Fuchs and Trauner, 
2022). BA homeostasis is primarily regulated by the gut-liver axis, where primary BAs are produced in 
the liver, metabolized to more hydrophobic secondary BAs by the intestinal microbiome and taken up 
via the intestinal epithelium into the portal vein to be recirculated to the liver. The BA pool shapes the 
microbiome community by acting on bacterial cell membranes, but also reduces intestinal membrane 
integrity by affecting the epithelial cells (Begley et al., 2005). High amounts of the secondary BA 
deoxycholic acid (DCA) reduced intestinal integrity in pig colonic crypts (Leschelle et al., 2002) and in 
rabbit small intestine (Fasano et al., 1990). Reduced intestinal integrity is related to diarrhoea, 
bacterial overgrowth and inflammatory bowel disease (Marasco et al., 2022; Miele et al., 2009). 
Furthermore, bacterial products are more likely to translocate to the liver and trigger an inflammatory 
response in case of reduced membrane integrity. Intestinal inflammation may then translocate to the 
liver, ultimately resulting in liver inflammation and stress responses (Duan et al., 2022; Sabino et al., 
2016). Disturbances of the BA pool predisposes an individual to the development of liver disease, e.g. 
cholestasis (Gijbels and Vinken, 2019), Non-Alcoholic Fatty Liver Disease (NAFLD) (Mouzaki et al., 
2016) and gastrointestinal carcinogenesis (Li et al., 2022). It has been shown that fecal concentrations 
of DCA and its conjugates increased with disease activity and fibrosis stage, an important hallmark of 
NAFLD (Smirnova et al., 2022). Hence, a well-balanced BA pool is essential for gut-liver axis 
homeostasis and human health.  

BAs are de novo synthesized in the liver from cholesterol. Upon conjugation with glycine or 
taurine, BAs are actively secreted via the Bile Salt Export Pump (BSEP) to the bile canaliculi (Lin et al., 
2023). Via the bile canaliculi, the conjugated BAs enter the intestinal lumen where they can be 
deconjugated and where ~95% of intestinal BAs is reabsorbed via both active and passive processes 
(Kullak-Ublick et al., 2004). Unconjugated BAs are passively absorbed along the whole length of the 
small intestine, while the majority of both conjugated and unconjugated BAs is actively reabsorbed 
from the ileum (Martinez-Augustin and Sanchez de Medina, 2008; Krag and Phillips, 1974; Li et al., 
2018). The most effective reabsorption of BAs takes place in the terminal ileum and is mediated by the 
apical sodium-dependent bile acid transporter (ASBT), a member of the solute carrier (SLC) super-
family encoded by the SLC10A2 gene (Dawson, 2011; Lin et al., 2023). Via ASBT, BAs are taken up in 
the enterocytes where they bind to the Bile Acid Binding Protein (BABP) and are excreted to the 
basolateral side in the portal blood via the organic solute transporter (OST) α/β (Lu et al., 2022). Via 
the portal vein the BAs are transported to the liver where they are taken up by Na+-taurocholate 
cotransporting polypeptide (NTCP) and transporters from the organic anion transporting polypeptide 
(OATP) family (Chiang and Ferrell, 2022). BAs that escape ileal reabsorption are metabolized by the gut 
microbiome into a wide array of secondary BAs, followed by either absorption from the colon or fecal 
excretion (Jia et al., 2018). The remarkably efficient uptake of BAs from the intestinal lumen implies 
that this process is of crucial importance for BA homeostasis, and alterations in intestinal BA uptake 
potentially affect the onset and development of different types of liver disease (Duan et al., 2022; 
Yang et al., 2020). Consequently, ASBT has been an attractive target for drug development since its 
discovery. For instance, odevixibat (ODE) has recently been approved for the treatment of progressive 
familial intrahepatic cholestasis, and trials for the treatment of other cholestatic diseases are still 
ongoing (Deeks, 2021). ODE is a selective and reversible ASBT-inhibitor, and the drug reduces the BA 
levels in plasma/serum by reducing the reuptake of BAs in the ileum, while the fecal BA levels are 
increased (Graffner et al., 2016). Individuals with progressive familial intrahepatic cholestasis typically 
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have increased plasma BA levels, and a reduction is considered beneficial in these specific cases. 
Reduced bile acid absorption was observed in preclinical and clinical studies of inflammatory bowel 
disease, and was typically accompanied by decreased ASBT levels (Fitzpatrick and Jenabzadeh, 2020). 
This indicates that even though a reduction of ASBT-mediated BA absorption is beneficial for 
individuals suffering from cholestatic diseases, it might have an adverse effect on otherwise healthy 
individuals. Several xenobiotics, e.g. the mycotoxin deoxynivalenol and the antibiotic tobramycin, are 
known to reduce intestinal BA uptake in vitro (Wang et al., 2022; Zhang et al., 2022). For an accurate 
human hazard assessment of chemicals it is crucial to understand how xenobiotics alter BA 
homeostasis and could potentially affect host health.  

Quantitative knowledge of the synthesis, absorption, distribution, metabolism and excretion 
of BAs is paramount for understanding BA-associated pathologies. Here, physiologically based kinetic 
(PBK) modeling provides a powerful tool to integrate physicochemical and biological properties of BAs, 
and to predict the effects of drug interventions or xenobiotic exposure without the need for animal 
derived data. PBK modeling contributes thus to the 3R principle (Replacement, Reduction and 
Refinement) in chemical risk assessment. Several kinetic models describing the processes involved in 
BA homeostasis have been developed previously. Early work describes the metabolism and circulation 
of several major BAs in the gastrointestinal tract and circulatory system (Hofmann et al., 1983; Molino 
et al., 1986). Active transport processes are increasingly being recognized as important modulators in 
the BA homeostasis, but they were not included in this early work. For example, inhibition of BSEP can 
lead to a toxic BA accumulation inside hepatocytes and cause cholestasis. The relevance of hepatic 
BSEP inhibition for cholestasis development has been recognized in the Cholestasis Adverse Outcome 
Pathway (AOP) (Vinken et al., 2013). Active transport processes were included in more recent 
modeling work (Sips et al., 2018; Voronova et al., 2020; Baier et al., 2019). Advancements in 
computational power and biological understanding of the processes involved in BA homeostasis 
allowed for the development of more complex and dynamic models. The work of Voronova et al 
(2020), for example, described the autoregulation of BA synthesis by farnesoid receptor X (FXR) 
(Voronova et al., 2020), and Sips et al. (2018) modelled the intestinal transit of BAs in detail (Sips et al., 
2018). Increased complexity of mathematical models typically comes with an increased number of 
required input parameters – parameters that cannot always be derived experimentally and pose the 
risk of overfitting. Therefore, we previously developed a data-driven PBK model describing BA 
homeostasis, i.e. a PBK model with the vast majority of parameters derived experimentally. The model 
included active BSEP-mediated hepatic canalicular BA efflux (de Bruijn et al., 2022a), but did not yet 
include transporter-mediated hepatic sinusoidal BA uptake or ASBT-mediated ileal BA absorption. In 
the present study we aim to extend the PBK model to also include ASBT-mediated ileal BA absorption 
and NTCP-mediated hepatic uptake and predict the effects of ASBT-inhibition on systemic plasma 
levels. This provides mechanistic insights in the effects of ASBT and its inhibition on whole-body BA 
homeostasis, with a focus on the gut-liver axis. To this end, we employed PBK modeling and we 
evaluated the effect of ODE-mediated ASBT-inhibition on plasma BA levels. The required kinetic 
parameters for ileal absorption were derived from human Caco-2 cells grown in culture inserts. We 
focused on the glycine-conjugated forms of three major bile acids, i.e. glycocholic (GCA), 
glycochenodeoxycholic (GCDCA) and glycodeoxycholic acid (GDCA) and a generic unconjugated BA 
(uBA). The taurine-conjugates were not explicitly considered, as the BA pool in human serum consists 
of only ~15% taurine-conjugates, compared to ~45% glycine-conjugates and ~40% unconjugated BAs 
(Bathena et al., 2013). GCA and GDCA were selected, because their abundance in plasma showed the 
steepest decrease upon 7-day ODE-treatment in healthy individuals. GCDCA is the most abundant BA 
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in human plasma and was therefore also included. The model developed may serve as a quantitative 
tool to evaluate various potential mode-of-actions in the framework of BA-associated diseases upon 
exposure to xenobiotics.  

 

4.2 Material & Methods 
CCeellll  ccuullttuurree  

Human colon carcinoma Caco-2 cells were purchased from the American Type Culture Collection 
(Rockville, MD, USA. The Caco-2 cells (passage number 15–28) were grown at 37 °C with 5% CO2 in 
Modified Eagle’s Medium (MEM) GlutaMax™ supplemented with 20% (v/v) fetal calf serum, 0.86% 
(v/v) 50 mg/mL L-glutamine-Penicillin-Streptomycin solution and 0.86% (v/v) 100 mM pyruvate as 
culture medium (CM), all purchased at Gibco BRL (Breda, The Netherlands). Cells were subcultured 
twice a week at 50-60% confluence using 0.05% trypsin-EDTA (Gibco BRL).  
 
CCeellll  vviiaabbiilliittyy  aasssseessssmmeenntt  

Caco-2 cells were seeded at 40 000 cells/well in a 96-well plate, and allowed to attach to the plate for 
24 h. The effect of odevixibat (ODE) (99.85%, MedChemExpress, Monmoth Junction, NJ, USA) on the 
viability of Caco-2 cells 24h post-seeding was evaluated by using the WST-1 assay. Briefly, Caco-2 cells 
were exposed to 0–500 μM ODE for 24 h. ODE was dissolved in dimethylsulfoxide (DMSO) (Merck 
KGaA, Darmstadt, Germany) and 200× diluted in CM. 0.5 µM potassium dichromate was used as a 
positive control. Subsequently, the cells were incubated with WST-1 reagent 2-(2-methoxy-4-
nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (Sigma-Aldrich, St. Louis, MO, 
USA) at 37°C. For this, WST-1 was added at 5% of the medium volume and the absorbance was 
measured at 440 nm and 620 nm with a SpectraMax iD3 multi-mode microplate reader (Molecular 
Devices; San Jose, CA, USA) after 60 min. Data were obtained by subtracting the 620 nm signal from 
the 440 nm signal. The cell viability was expressed as percentage of the solvent control group. 
 
IInntteessttiinnaall  CCaaccoo--22  mmoonnoollaayyeerr  bbaarrrriieerr  iinntteeggrriittyy  aasssseessssmmeenntt  

Caco-2 cells were seeded at 180 000 cells/cm2 in 24-well polycarbonate membrane inserts with 0.4 µm 
pore size (Corning Costar, Schnelldorf, Germany) and maintained in culture for 19-21 days. The 
integrity of Caco-2 cells was assessed using transepithelial electrical resistance (TEER) and/or the 
lucifer yellow assay. The TEER was measured with MilliCell® ERS-2 Epithelial Volt-Ohm Meter 
(Millipore, Amsterdam, The Netherlands). The TEER was measured prior to and post transport 
experiments, and data obtained from inserts with TEER values > 300 Ω × cm2 were considered 
acceptable. For the lucifer yellow assay, the exposure medium was removed by rinsing the monolayers 
with Hank’s balanced salt solution (Gibco BRL) supplemented with 10 mM HEPES (transport buffer), at 
pH 7.4. After that 50 µM lucifer yellow (Sigma-Aldrich) in DMSO (0.5% v/v) in transport buffer was 
added to the apical side of the culture insert. After 60 min, samples were taken basolaterally and the 
fluorescence was measured at 485/535 nm excitation/emission with a SpectraMax iD3 multi-mode 
microplate reader (Molecular Devices). Apparent permeability values (Papp) were calculated according 
to the following equation: 

 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = ��
�� ×

�
��×��0 

Eq. 1  

 

Where Papp is expressed in cm/s, dQ/dt is the change in the basolateral lucifer yellow concentration 
(nmole/s), A is the surface of the culture insert (cm2) and C0 is the initial apical lucifer yellow 
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concentration (nmole/cm3 ). Lucifer yellow Papp values <0.4 × 10-6 cm/s were considered acceptable 
(Wang et al., 2008).  

 

TTrraannssppoorrtt  aassssaayyss 
For the transport assays, Caco-2 monolayers grown in culture inserts for 19-21 days were used. CM 
was removed and replaced with transport buffer. The cells were allowed to equilibrate for 30 mins. 
Next, transport buffer was removed, the test solution was added apically and samples were taken at 
the basolateral side after 0-180 min of incubation. The test solutions contained 0.5% DMSO (v/v). In 
the first set of experiments, the cells were incubated with 5 µM glycocholic acid hydrate (GCA) (Sigma-
Aldrich, ≥97%), deoxycholic acid (Sigma-Aldrich, ≥99%), glycochenodeoxycholic acid or 
glycodeoxcycholic acid (Avanti, Birmingham, AL, USA, ≥99%) and samples were taken after 0, 30, 60, 
90, 120, 150 and 180 min of incubation. These experiments were performed at 4°C and 37°C to 
distinguish between active and passive transport processes. After 180 minutes, samples were taken 
from the apical and basolateral chamber, and after washing twice with ice-cold PBS, the membrane 
was cut out of the culture insert and transferred to an Eppendorf tube containing 65% (v/v) MeOH in 
MilliQ. The samples were ultrasonicated for 15 mins (Bandelin Sonorex rk100), centrifuged for 15 mins 
at 15,000g and the supernatant was transferred to LC-MS/MS vials and stored at -20°C until analysis 
by LC-MS/MS. The amounts detected in the cells, apical and basolateral chamber were summed up to 
calculate the mass balance. Mass balances were considered acceptable when >80% of the initially 
added amount was recovered.  

In further experiments, GCA was used as model BA. Due to the similar physicochemical properties 
of the tested BAs, it was assumed that the inhibitor constant (Ki) was independent of the substrate 
used. As described in section 2.8, literature was used to translate the experimentally obtained kinetic 
parameters for GCA to kinetic parameters for GCDCA and GDCA. Cells were incubated at 37°C with 5 
µM GCA and an ODE concentration range (0.0005 – 5 nM) to determine the half inhibitory 
concentration (IC50) of ODE on GCA transport. Next, the cells were incubated under time-optimised 
conditions with a concentration range of GCA to determine its kinetic parameters (Vmax,app and Km,app). 
As sodium-binding drives the conformational changes in ASBT required for transport of its substrates 
(Al-Hilal et al., 2014), we performed transport assays in transport buffer without sodium to confirm 
the sodium-dependency of the transport and quantify the passive transport rate at different GCA 
concentrations. The active transport rate was determined by subtracting the passive transport rate 
from the total transport rate. The Ki was determined by incubating the cells with a concentration 
range of GCA in the presence of an ODE concentration close to the IC50. Albeit it is unlikely that ODE 
affected passive sodium-independent transport, this was not experimentally confirmed in the current 
work. We assumed that the passive transport rate was not altered by addition of ODE. All transport 
assays were performed in triplicate.  

 
RReeuussiinngg  ccuullttuurree  iinnsseerrttss  

To overcome the limited availability of culture inserts, they were reused up to one time based on the 
protocol by Kato et al. (2021). Briefly, the cells were removed from the culture inserts after 
performing a transport assay with 0.25% (v/v) trypsin-EDTA and kept sterile. Firstly, culture inserts 
were incubated with trypsin-EDTA for 1 h at 37°C. Trypsin-EDTA was aspirated and replaced with fresh 
trypsin-EDTA solution, both apical and basolateral. After 24 h, all trypsin-EDTA was removed and the 
culture inserts were washed twice with PBS, followed by two washes with sterile MilliQ water. Culture 
inserts were left to airdry and stored at 4°C until further use. We did not observe any significant 
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differences in TEER values between new and recycled culture inserts. WST-1 showed similar cell 
viability (Supplementary Material I Figure S1), and we did not detect any BAs in the basolateral 
chamber when we performed a blank transport assay without BAs added (Sharanek et al., 2015). 
 
BBiillee  aacciidd  pprrooffiilliinngg  uussiinngg  LLCC--MMSS//MMSS  

BA analysis was performed on a triple quadrupole LC-MS/MS system, model LCMS-8045 (Shimadzu 
Corporation, Japan) and based on our previous work (de Bruijn et al., 2022b; Zhang et al., 2022; Wang 
et al., 2022). GCA/GCDCA/GDCA/DCA were quantified. BAs in samples and standards were separated 
on a Kinetex C18 column (1.7 µm × 100 A × 50 mm × 2.1 mm, Phenomenex 00B-4475-AN, Utrecht, the 
Netherlands) using an ultra-high performance liquid chromatography (UHPLC) system (Shimadzu) with 
gradient elution using MilliQ water (0.01% formic acid) and methanol/acetonitrile (50% v/v) as mobile 
phase A and B, respectively. In order to enhance chromatographic performance, a C18 2.1 mm 
security guard (Phenomenex AJ0-8782) precolumn was used.  

Samples were injected (2 µL) onto the column equilibrated in 30% B at a flow rate of 0.4 mL/min. 
Initially, the mobile phase composition was 30% B, followed by a linear ramp to 70% B until 10.0 min. 
A linear change to 98% B was executed until 11.0 min, which was held for another 7 min before 
returning to 30% B at 19.0 min and remained until 25 min. The column temperature was set at 40℃ 
and the sample tray temperature was set at 4 ℃.  

The mass spectrometer (MS) used electrospray ionization (ESI) in negative ion mode. The ESI 
parameters were as follows: Nebulizing gas flow, 3L/minutes; drying gas flow and heating gas flow, 10 
L/minute; Interface temperature, 300 ℃; Desolvation temperature, 526 ℃; heat block temperature, 
400 ℃. Selective ion monitoring (SIM) and multiple reaction monitoring (MRM) were used for the 
detection of the bile acids.  

Limit of Detection (LOD) and Limit of Quantification (LOQ) of BA concentration in transport buffer 
were based on the signal-to-noise ratio. Signal-to-noise ratios of 3:1 and 10:1 were used as these are 
generally accepted for estimating LOD and LOQ, respectively (Shrivastava and Gupta, 2011). Here, LOD 
and LOQ were set to BA concentrations in transport buffer that resulted in a signal-to-noise ratio of at 
least 3:1 or 10:1, respectively. For subsequent calculations concentrations <LOD were set to 0 and 
concentrations ≥LOD and <LOQ were set to 0.5 × LOQ. As we observed a matrix effect on the 
sensitivity of our analytical method, standards for the calibration curve were prepared in transport 
buffer. Data were collected and processed using the LabSolutions software (Shimadzu). The MS 
parameters, LODs and LOQs are provided in Supplementary material I Table S1.  

 
DDaattaa  aannaallyyssiiss    

R version 4.1.0. was used for all data analysis and simulations (R Core Team, 2022). The R package 
tidyverse version 1.3.1 was used for data exploration and visualization (Wickham, 2019). Statistical 
significance was determined by a one-way ANOVA followed by Bonferroni’s correction for multiple 
tests. Results were considered statistically significant when p<0.05. The appropriate model to estimate 
the IC50 of ODE-mediated inhibition of GCA transport was selected by minimizing the logLikelihood. 
The best fit was achieved by the three-parameter log-logistic function using the package ‘drc’ version 
3.0.1 (Ritz et al., 2015). The lower and upper limit were constrained to 0 and 100 (%), respectively, and 
the Hill slope was variable. From the Lineweaver-Burk plot (Lineweaver and Burk, 1934), we derived 
that ODE inhibited GCA transport in a competitive nature. Previous research showed that in vitro 
permeability is affected by unstirred water layers in the vicinity of the culture insert and the culture 
insert itself, which is jointly referred to as the aqueous boundary layer (ABL). The ABL acts as a 
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permeability barrier in transport experiments and was previously shown to bias kinetic estimates 
(Balakrishnan et al., 2007). Therefore, taking into account the aqueous boundary layer (ABL) 
resistance, the transport rate could be described as (Balakrishnan et al., 2007) (Eq. 2): 

V��� =

𝑃𝑃��� ×  𝑉𝑉�������

𝐾𝐾����� �1 + [ODE] × F��𝐾𝐾�
� + [𝐺𝐺𝐺𝐺𝐺𝐺] × F��

 

𝑃𝑃��� + 𝑉𝑉�������

𝐾𝐾����� �1 + [ODE] × F��𝐾𝐾�
� + [𝐺𝐺𝐺𝐺𝐺𝐺] × F��

× [GCA] × F��  

Eq. 2 

Where Vapp is the active apparent GCA transport rate from the apical to basolateral chamber 
in nmoles min-1 cm-2, PABL the permeability across the ABL in cm/min, Vmax,app the maximal apparent 
active GCA transport rate nmoles min-1 cm-2, [GCA] the concentration of GCA in nmoles cm-3, Fub the 
fraction unbound in vitro, Km,app the apparent Michaelis-Menten constant in nmoles cm-3, [ODE] the 
concentration of ODE in nmole/L and Ki the inhibitor constant in nmole/L. PABL was set to 4.2 × 10-3 cm 
min-1 (Balakrishnan et al., 2007). Fraction unbound in vitro was set to 1, i.e. the nominal concentration 
equalled the free concentration. This was justified as the transport buffer did not contain any protein 
(Gilbert-Sandoval et al., 2020). The parameters were optimized using the ‘nls’ function in R (R Core 
Team, 2022).  

 
PPhhyyssiioollooggiiccaallllyy  bbaasseedd  kkiinneettiicc  ((PPBBKK))  mmooddeell  

To describe the synthesis, absorption, distribution, metabolism and excretion of BAs, four 
physiologically based kinetic (PBK) submodels were constructed; a glyochenodeoxycholic acid 
(GCDCA), a glycocholic acid (GCA), a glycodeoxycholic acid (GDCA) and an unconjugated BA (uBA) 
model. Combined these BAs represent ~85% of the BA pool in human serum (Bathena et al., 2013). 
The PBK submodels were based on our previous work (de Bruijn et al., 2022a). Modifications were 
made to expand the model to four BAs instead of one lumped BA pool, to describe intestinal transit 
and absorption in more detail and the liver as a permeability-limited model. Briefly, each submodel 
consisted of separate compartments representing gall bladder, intestine, blood, rapidly perfused 
tissue, slowly perfused tissue, adipose tissue and extra- and intracellular water in liver. Figure 1 
displays the conceptual model. In PBK models, organs are typically described using perfusion-limited 
models. This modeling approach assumes that compounds diffuse passively into the organ’s water and 
are instantly homogenously distributed throughout the organ (Rietjens et al., 2011). For transporter-
mediated uptake, however, permeability and not perfusion is the rate-limiting step. Therefore, 
perfusion-limited models cannot be used and a permeability-limited model should be used to simulate 
transporter-mediated uptake (Jamei et al., 2014). In these models, the respective organ is divided in 
an extracellular water and intracellular water compartment. In the present BA model the liver 
compartment was modelled in this way to enable description of the NTCP-mediated active transport 
from the extracellular to the intracellular liver water compartment and of the BSEP-mediated active 
transport from the intracellular water compartment to the bile. The extracellular water compartment 
is in instantaneous equilibrium with the blood in the vascular space and serves as a barrier 
compartment for entry into the intracellular tissue compartment. As sinusoidal efflux is low under 
normal physiological conditions (Dawson et al., 2009), this process was not included to limit model 
complexity. The extracellular water:plasma partition coefficients were calculated by a quantitative 
property-property relationship (Peyret et al., 2010). The BA fraction available for transport and 
metabolism in intracellular and extracellular water was set to 1, since transcellular trafficking of BAs is 
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highly efficient and effectively mediated by bile acid-binding proteins (BABPs) (Toke, 2022). 
Tissue:plasma partition coefficients for the BAs were calculated by a method described in literature 
(Rodgers and Rowland, 2006) and obtained via the QIVIVE toolbox (Punt et al., 2020). Recent work 
showed that the method of Lobell and Sivarajah (2003) to describe the fraction unbound resulted in 
the most accurate model predictions (Punt et al., 2022), hence this method was used here. As 
deoxycholic acid (DCA) is the most abundant uBA in human serum, DCA’s physicochemical properties 
were selected to describe uBAs. The physicochemical properties of the BAs used to calculate the 
tissue:plasma partition coefficients are described in Table 1. 

 

FFiigguurree  11  CCoonncceeppttuuaall  mmooddeell. cBA=conjugated BA, uBA=unconjugated BA, GCA=glycocholic acid, 
GCDCA=glycochenodeoxycholic acid, GDCA=glycodeoxcycholic acid, DCA=deoxycholic acid 

 

TTaabbllee  11  Physicochemical properties of the model BAs used to calculated the blood:tissue partition coefficients  
 GCDCA GCA GDCA DCA Ref. 

pKa 3.77 3.77 4.6 4.65 (Law et al., 2014), (Schwarz et al., 
1996) 

logP 2.12 1.65 2.25 3.5 (Roda et al., 1990) 

MW 449.62 465.6 449.62 392.57  

Fraction 
unbound 

0.061 0.088 0.055 0.02 Calculated, (Lobell and Sivarajah, 
2003) 

 
The enterohepatic circulation was included by a circulation of BA between the liver, gall bladder and 
intestine. BAs were de novo synthesized in the liver and excreted via the intestinal compartments into 
the feces. Hepatic BA efflux was simulated to be actively transported from the liver directly into the 
intestine or to the gallbladder by BSEP following Michaelis-Menten kinetics. The BSEP-mediated 
effluxes of BAs were described by the following equation (Eq. 3): 

𝑉𝑉���� =
𝑉𝑉�������� × [𝐶𝐶𝑉𝑉𝐶𝐶]
𝐾𝐾������ + [𝐶𝐶𝑉𝑉𝐶𝐶]  

Eq.3  

 
Where VBSEP is the BSEP-mediated efflux of BAs from the liver in µmole/h, Vmax,BSEP is the 

maximum rate of BSEP-mediated BA efflux from the liver µmole/entire liver/hour, [CVL] the free 
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concentration of BAs in the liver in µmole/L and Km,BSEP the Michaelis-Menten constant in µmole/L for 
BSEP-mediated BA efflux.  

The Vmax,app and Km,app for BSEP-mediated transport of GCDCA and GCA were taken from 
literature as obtained in a vesicular transport assay in a baculovirus-infected Sf9 system (Kis et al., 
2009) and scaled to the in vivo situation as described previously (de Bruijn et al., 2022a). The authors 
showed that the Vmax,app values in the vesicular transport assay increased upon the addition of 
physiological levels of cholesterol, hence, these values were used in the current PBK model. The 
literature study investigated GCA and GCDCA, but not GDCA (Kis et al., 2009). Therefore, the kinetic 
data for BSEP-mediated GDCA transport were extracted from a study with transfected HEK293 cells 
reported by Notenboom et al. (2018). The Vmax,app of BSEP-mediated transport as obtained by 
Notenboom et al. (2018) was initially measured in pmole/min/mg protein. To make the measurements 
consistent with GCA and GCDCA, the Vmax,app values for GDCA were converted to µmole/min/mg BSEP 
using GCDCA mediated transport, which was measured in both the study by Notenboom et al. (2018) 
and Kis et al. (2009), as a reference. Consequently, the GDCA simulations were performed with 
Vmax,app,GDCA= Vmax,app,GCDCA[Sf9 vesicles] / Vmax,app,GCDCA[HEK293 vesicles] × Vmax,app,GDCA[HEK293 vesicles]=8.4 µmole/min/mg 
BSEP. 

The intestine was divided in three compartments: 1) the upper intestines (duodenum + 
jejunum), where BAs are passively absorbed, 2) the lower intestine (ileum), where BAs are absorbed 
through an carrier-mediated process, and 3) the colon, where BAs are rapidly deconjugated and 
subsequently passively absorbed. Transit times were taken from the modified GI transit absorption 
(GITA) model introduced by Kimura and Higaki (2002), different transit times were used during fasting 
(17:30 – 8:00) and fed state. During day time, three meals and gall bladder contractions were 
simulated, i.e. at 8:00, 12:00 and 16:00. The parameters describing passive uptake were derived from 
perfusion studies (Krag and Phillips, 1974), and were assumed to be the same for jejunum and colon.  

Kinetic parameters for active GCA transport were derived from our Caco-2 study. For scaling 
to the in vivo situation, the experimentally derived Vmax,app was multiplied by the total surface of the 
ileum and an empirical scalar, which was calculated as follows (Eq. 4):  

 
𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆 𝑆 𝑆𝑆𝑆𝑆 Eq. 4 

Where S is the ileal surface in cm2, d is the diameter of the ileum (cm), l is the length of the ileum (cm) 
and p represent the mathematical constant of 3.14. A diameter and length of 5 and 300 cm were 
taken, respectively (Kararli, 1995). ES is an empirical scalar to better approximate the in vivo situation 
and was set to 2.8. ES accounts for inherent differences between Caco-2 cells and the human entire 
ileum, such as variations in ASBT expression or activity, tissue complexity and cellular interactions.  

Subsequently, the calculated GCA Vmax, in vivo was used to scale the relative Vmax, invitro of GCDCA 
and GDCA obtained from literature to the in vivo situation. These values were retrieved from an ASBT-
Madin-Darby canine kidney (MDCK) monolayer assay (Balakrishnan et al., 2006). The authors reported 
a large variation in ASBT expression levels between studies, therefore, they measured taurocholic acid 
flux to serve as a normalizing approach. In this way they obtained a Vmax relative to the TCA Vmax for 15 
different BAs. We used the following equation to scale the relative Vmax (Vmax,BA,rel) to the in vivo Vmax 

(Vmax,BA, in vivo):  
 

𝑉𝑉���������𝑆���� 𝑆 𝑉𝑉���������� 𝑆
𝑉𝑉����������𝑆����𝑆
𝑉𝑉����������� 𝑆 Eq. 5 
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Where Vmax,BA, in vivo is the in vivo maximal ASBT-mediated transport rate for the BA of interest, Vmax,BA,rel 
the maximal ASBT-mediated transport rate for the BA of interest relative to TCA, Vmax,GCA,invivo the 
maximal ASBT-mediated GCA transport rate obtained from our in vitro studies and scaled to the in vivo 
situation (Eq. 4) and Vmax,GCA,rel the maximal ASBT-mediated transport rate of GCA relative to TCA. For 
GDCA and GCDCA Km,app values from Balakrishnan et al. (2006) were incorporated in the PBK model 
without any further scaling. For GCA, we averaged our experimentally derived Km,app and the Km,app 

values from Balakrishnan et al. (2006). The effects of the different values for Km,app on the outcomes of 
the model calculations were also analyzed.  

BAs escaping ileal absorption enter the colon, where they are rapidly and instantly 
deconjugated by the gut microbiome (Zhang et al., 2022). Upon reabsorption and entering the liver, 
these uBAs are rapidly and instantly conjugated (Falany et al., 1994). This is supported by the fact that 
only 0.3% of hepatic BAs exist in its unconjugated form (Garcia-Canaveras et al., 2012). Consequently, 
the intestinal deconjugation and hepatic conjugation rates were set to 1000 hr-1. 

Hepatic uptake of conjugated BAs from the extracellular water into the intracellular water was 
simulated as a permeability limited NTCP-mediated process. uBAs are taken up via passive diffusion 
(Notenboom et al., 2018). In this study, it was assumed that the diffusion of uBAs from the 
extracellular water to the intracellular water occurs at a rate equivalent to the hepatic blood flow. The 
Km,app, Vmax,app and scaling factor for vitro-in vivo scaling for the NTCP-mediated transport were 
obtained from a study with NTCP-transfected HEK293 cells (Notenboom et al., 2018). These authors 
determined the scaling factor by comparing the NTCP abundance in NTCP-transfected HEK293 cells 
and human liver tissue. The hepatic BA uptake rate was described by the following equation (Eq. 6):  

 
𝑑𝑑
𝑑𝑑𝑑𝑑 𝐴𝐴𝐿𝐿������ =

𝑉𝑉�������� × [𝐶𝐶𝑉𝑉𝐿𝐿��]
𝐾𝐾������ + [CVL��]  

Eq.6  

 
Where d/dt ALiw,upt is the BA uptake rate into the intracellular water in µmole/entire 

liver/hour, CVLEW the effluent concentration of the extracellular water, Vmax,NTCP is the maximal NTCP-
mediated uptake rate in µmole/entire liver/hour, and Km,NTCP the Michaelis-Menten constant in 
µmole/L for NTCP-mediated uptake. The Vmax,NTCP in pmoles min-1 10-6 hepatocytes was extrapolated to 
units appropriate for the PBK model, i.e. µmoles hour-1 entire liver-1, by multiplying the Vmax,NTCP, with 
the hepatocellularity (106 hepatocytes/g liver) (Barter et al., 2007), weight of the liver (g) (Soars et al., 
2002), 60 to convert minutes to hours and 10-6 to convert pmoles to µmoles. OATP-transporters were 
not explicitly considered, because rat Ntcp was proven to be responsible for more than 80% of 
conjugated bile acids (TCA) uptake (Kouzuki et al., 1998) and we assumed a comparable ratio in 
human hepatocytes. Instead, Vmax,NTCP was divided by 0.8 to account for the additional effects of OATP-
mediated transport. As an up to 18-fold difference in GCDCA affinity for NTCP was reported in 
literature (Notenboom et al., 2018; Jani et al., 2018), GCDCA simulations were ran with the Km as 
reported by Notenboom et al., a 18-fold reduced Km and the average of these two values.  

Lastly, given that the inhibition of ASBT by ODE was shown to be competitive in nature, the 
effects of ODE on the plasma BA concentrations was simulated by adjusting the Km of ASBT-mediated 

uptake with a modulation factor of 1 + [����]×���
��  as described in Eq. 2. Where ODE is the total 

concentration of ODE in the ileum, Fub is the fraction unbound in the ileum in vivo and Ki the inhibitory 
constant as derived from our experiments. As ODE is poorly absorbed, no absorption was simulated 
and the full dose was assumed to be equally distributed over 9 L of gastrointestinal fluid (Deeks, 2021; 
Hendriksen et al., 2003). Fub in the ileum was set equal to the Fub in plasma, i.e. 0.3% (EMA, 2021).  
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The differential model equations were encoded and solved using the package ‘RxODE’ version 
1.1.5 (Fidler M, 2022). The model code and input parameters are available in the 4.6 Supplementary 
Material II.  

 
SSeennssiittiivviittyy  aannaallyyssiiss    

To assess the influence of the parameters on the model outcome, a local sensitivity analysis was 
performed for the Cmax of BAs using the package ‘FME’ version 1.3.6.2 (Soetaert and Petzoldt, 2010). 
The sensitivity analysis for Tmax was performed manually. Based on the method reported by Evans and 
Andersen (2000), the sensitivity coefficients (SCs) for the model parameters were calculated as 
follows: 

𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆� − 𝑆𝑆
𝑃𝑃� − 𝑃𝑃  × 𝑃𝑃𝑃𝑆𝑆 

Eq. 7 

where C indicates the initial value of the model output, C′ indicates the modified value of the 
model output resulting from an increase in the parameter value. P indicates the initial parameter 
value and P′ indicates the modified parameter value after a 5% increase of its value, keeping all other 
parameters at their original value.     

 

4.3 Results 
BBiillee  aacciiddss  ccrroossss  CCaaccoo--22  mmoonnoollaayyeerrss  vviiaa  ppaassssiivvee  aanndd  aaccttiivvee  ttrraannssppoorrtt    

19-21 day old Caco-2 monolayers grown in culture inserts were apically exposed to 500 pmoles of four 
BAs to optimize the incubation time for obtaining kinetic parameters and study the mode of transport. 
We observed apical-to-basolateral transport of glyochenodeoxycholic acid (GCDCA), glycocholic acid 
(GCA), glycodeoxycholic acid (GDCA) and deoxycholic acid (DCA). Transport of GCA was observed 
exclusively at 37°C (>300 pmoles), no transport was detected at 4°C. Comparable amounts GCDCA and 
GDCA were transported at 37°C, while for these two conjugated BAs limited transport at 4°C was 
observed especially at 180 min, albeit so low that it could not be quantified (<LOQ) (Figure 2). DCA 
transport was observed at both 4°C and 37°C without a significant effect of temperature on the total 
amount transported after 180 mins. For all four BAs a linear relationship between time and the 
amount of BAs transported was observed at 37°C (Pearson’s correlation coefficient 0.79-0.94, p<0.05).  
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FFiigguurree  22  BBiillee  aacciidd  ttrraannssppoorrtt  aaccrroossss  aa  CCaaccoo--22  mmoonnoollaayyeerr  mmeeaassuurreedd  dduurriinngg  118800  mmiinn  aatt  3377°°CC  ((oorraannggee  cciirrcclleess))  oorr  44°°CC  
((bblluuee  ttrriiaanngglleess)).. 500 pmoles of GCA/GCDCA/GDCA/DCA were added to the apical chamber at t=0, and samples 
were taken from the basolateral chamber at different timepoints. Data are expressed as mean ± SD, N=3. 
LOD/LOQ are reported in Supplementary Material I Table SI. GCA=glycocholic acid, 
GCDCA=glycochenodeoxycholic acid, GDCA=glycodeoxcycholic acid, DCA=deoxycholic acid. Significance 
compared to t=0 min was assessed with a one way ANOVA followed by post hoc tests using Bonferroni’s 
correction. Statistically significant differences in basolateral amount of bile acids compared to t=0 are indicated 
with *.  

 

OODDEE  iinnhhiibbiittss  GGCCAA  ttrraannssppoorrtt  ddoossee--ddeeppeennddeennttllyy  

To assess the effect of the known ASBT-inhibitor ODE on the GCA apical-to-basolateral transport over 
Caco-2 cells, 500 pmoles of GCA and a concentration range of ODE were added to the apical chamber 
of a culture insert with a confluent monolayer of Caco-2 cells and the basolateral GCA was measured. 
The results from the WST-1 assay confirmed that ODE concentrations up to 500 µM did not affect cell 
viability (4.5 Supplementary material I Figure S2A). Combined exposure to the increasing 
concentrations of ODE and 500 pmoles GCA did not have statistically significant effects on TEER values 
(4.5 Supplementary material I Figure S2B). We observed that ODE inhibited GCA apical-to-basolateral 
transport in a dose-dependent manner (Figure 3), and the IC50 value was estimated to be 0.04 nM 
ODE.  
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FFiigguurree  33  OOddeevviixxiibbaatt((OODDEE))--ddeeppeennddeenntt  iinnhhiibbiittiioonn  ooff  ggllyyccoocchhoolliicc  aacciidd  ((GGCCAA))  ttrraannssppoorrtt  aaccrroossss  CCaaccoo--22  
mmoonnoollaayyeerrss. Values are normalized to the control. N=3.  

OODDEE  iinnhhiibbiittss  GGCCAA  ttrraannssppoorrtt  iinn  aa  ccoommppeettiittiivvee  mmaannnneerr  

Finally, the Caco-2 transport assay was used to obtain kinetic parameters for the PBK model. Our 
results showed that the GCA transport rate saturated with increasing GCA concentrations. A relatively 
small amount of GCA (<16% of the total GCA transport) was transported in the absence of sodium, i.e. 
via passive processes. The active transport rate was determined by subtracting the passive transport 
rate from the total transport rate (Figure 4a). The nature of ODE inhibition of GCA transport was 
evaluated using a Lineweaver-Burk plot (Figure 4b). For this the reciprocal of the GCA concentration 
(1/GCA) was plotted versus the reciprocal of the reaction speed (1/V), either with or without 0.08nM 
ODE. ANOVA demonstrated that the slope, but not the intercept, was significantly different between 
the two curves. Hence, incubation with ODE increased the Km,app, but did not affect Vmax,app , indicating 
that ODE inhibits GCA transport in a competitive manner. Consequently, the following parameters 
were obtained for active GCA transport from Eq. 2: Vmax,app=71.5 pmoles min-1 cm-2, Km,app=22.5 µM, 
Ki=0.02 nM. 
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FFiigguurree  44  CCoonncceennttrraattiioonn--ddeeppeennddeenntt  ttrraannssppoorrtt  ooff  ggllyyccoocchhoolliicc  aacciidd  ((GGCCAA))  aaccrroossss  CCaaccoo--22  mmoonnoollaayyeerrss aanndd  
iinnhhiibbiittiioonn  bbyy  ooddeevviixxiibbaatt  ((OODDEE))  a) GCA transport rate after incubation with control buffer in the 
presence or absence of 0.08 nM ODE or with sodium-free buffer. The solid lines indicate the total 
transport; the dashed lines indicate active transport only, and were calculated by subtracting the 
transport rate in absence of sodium from the total transport rate. Values represent the mean ± SD, 
N=3. b) Lineweaver-Burk plot. Lines with and without ODE share the same intercept, but not slope 
(ANOVA).  

 

PPoossttpprraannddiiaall  bbiillee  aacciidd  kkiinneettiiccss  aarree  rreeaaddiillyy  ddeessccrriibbeedd  bbyy  tthhee  PPBBKK  mmooddeell  

The parameters for active GCA transport obtained using the Caco-2 transport assay were incorporated 
in the PBK model using the total ileal surface and an empirical scalar for in vitro-in vivo scaling, as 
described in Eq. 4. The PBK model describes the synthesis, absorption, distribution, metabolism and 
excretion of BAs for a healthy individual. For the first set of predictions, meals were simulated at 8:00, 
12:00 and 16:00. This meal regimen was in accordance with the regimen used in the study of Hepner 
and Demers (1977) of which the data were used to validate our predictions. A second in vivo dataset 
available for model evaluation describes the postprandial BA kinetics for 8 hours after one meal 
(Lamaziere et al., 2020). The observed and predicted plasma BA-time profiles are displayed in Figure 5. 
GCA and uBA postprandial kinetics were predicted within 2-fold of both in vivo data sets, GDCA was 
predicted within 2-fold of the data obtained by Hepner and Demers (1977), but the model 
overpredicted the other in vivo data set with 25-fold (Lamaziere et al, 2020), which also underlines the 
interstudy and/or interindividual differences. Three scenarios with different Km values for NTCP-
mediated GCDCA transport were simulated (Figure 6). Km values of 10, 0.6 and 5.3 µM, derived from 
Notenboom et al. (2018), Jani et al. (2018) and the average of these two studies, respectively, were 
used to run the simulations. The GCDCA Cmax decreased with a decreasing Km. The lowest Km value 
resulted in only a minor increase in plasma GCDCA levels compared to the fasting state. The best fit to 
the in vivo  data was obtained when the Km values of the two studies were averaged. For further 
simulations, the averaged Km value reported was used for GCDCA, given its better fit to the in vivo 
data. We used the average of our experimentally derived ABL-corrected Km,app and the Km,app reported 
in literature for ASBT-mediated GCA transport. The influence of different Km values on the 
postprandial GCA kinetics are depicted in 4.5 Supplementary Material I Figure S3.  
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FFiigguurree  55  OObbsseerrvveedd  aanndd  pprreeddiicctteedd  ppoossttpprraannddiiaall  bbiillee  aacciidd  kkiinneettiiccss.. Black solid line=prediction.. a) Meals were 
simulated at 8:00, 12:00 and 16:00. Orange circles=in vivo data obtained from Hepner and Demers (1977). b) A 
single meal was simulated at 8:00. Blue circles= in vivo data obtained from Lamaziere (2020). GCA=glycocholic 
acid, GDCA=glycodeoxycholic acid; uBA=unconjugated bile acids 
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FFiigguurree  66  OObbsseerrvveedd  aanndd  pprreeddiicctteedd  ppoossttpprraannddiiaall  GGCCDDCCAA  kkiinneettiiccss  uussiinngg  ddiiffffeerreenntt  kkiinneettiicc  ppaarraammeetteerrss  ffoorr  
NNTTCCPP  aaffffiinniittyy.. Black solid line=prediction.. Left column: Meals were simulated at 8:00, 12:00 and 16:00. 
Orange circles=in vivo data obtained from Hepner and Demers (1977). Right column: Meal was 
simulated at 8:00. Blue circles= in vivo data obtained from Lamaziere (2020). a) Km=10 µM 
(Notenboom et al. (2018), b) Km=5.3 µM (average Notenboom et al. (2018) and Jani et al. (2018) c) 
Km=0.568 µM (Jani et al. (2018)). GCDCA=glycochenodeoxycholic acid 

 

OODDEE  lloowweerrss  tthhee  ssiimmuullaatteedd  ppllaassmmaa  lleevveellss  ooff  ccoonnjjuuggaatteedd  bbiillee  aacciiddss  

The effects of ODE-administration on the plasma and colonic BA levels were simulated using the 
perfusion-limited liver model and the two different sets of kinetic parameters to describe BSEP-
mediated hepatic GDCA efflux. The simulated change in total plasma BAs was within the 95% 
confidence interval (CI) observed in a previous phase I clinical trial (Graffner et al., 2016). The current 
PBK model only simulated the concentrations of GCA, GCDCA, GDCA and uBA, while tauro-conjugates 
also circulate through the human body. Tauro-conjugates represent ~15% of the BAs in human plasma 
and to correct for the presence of tauro-conjugates, the predicted BA concentrations in Figure 7a/c 
were divided by 0.85 (black dashed line) to present a better estimate of the whole BA pool. The 
plasma levels of conjugated BAs (GCA, GCDCA and GDCA) were predicted by the PBK model to 
decrease ODE dose-dependently, while the uBA plasma levels showed a slight increase (Figure   7b). 
The uBA levels in the colon were predicted to increase with increasing ODE dosages (Figure 7c).  
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FFiigguurree  77    BBiillee  aacciidd  lleevveellss  iinn  iinnddiivviidduuaallss  rreecceeiivviinngg  tthhee  ppllaacceebboo  oorr  OODDEE  uussiinngg a) Predicted versus observed 
change in maximal total plasma bile acids compared to the placebo on day 1 of ODE treatment. Blue 
circles are in vivo data retrieved from Graffner (2016)(mean± 95% CI), black solid line is the prediction 
for the sum of GCA, GCDCA, GDCA and uBA, black dashed line is the prediction corrected for 
tauroconjugates b) Predicted BA Cmax for different BAs and c) Predicted maximal amounts of colonic 
BAs; note that in colon the amounts of the conjugated BAs (GCA, GCDCA and GDCA) were <0.6 
µmoles. GCA=glycocholic acid, GCDCA=glycochenodeoxycholic acid; GDCA=glycodeoxycholic acid; 
tBA=tauroconjugated bile acids; uBA=unconjugated bile acids 

 
SSeennssiittiivviittyy  aannaallyyssiiss    

To assess the influence of the parameters on the Cmax and Tmax, a local sensitivity analysis was 
performed. Figure 8a shows that parameters related to the active transport of GCA over the intestine 
and from extracellular to intracellular water and their scaling have a strong influence on the GCA Cmax 

(absolute normalized sensitivity coefficient >0.5). Not only the maximal ASBT-mediated intestinal 
uptake rate (VmaxASBTc_GCA), but also the kinetic parameters describing NTCP-mediated hepatic 
uptake (VmaxNTCPc_GCA and KmNTCP_GCA) strongly influence the model outcome. ES_all and 
surface_all are used for the scaling of VmaxASBTc_GCA, and Hep_all_GCA is included in the scaling of 
VmaxNTCP_GCA, but also in the BSEP-mediated hepatic efflux. Furthermore, the ileal transit time in 
the fed stad (kti_fed), blood:plasma (BP_all) ratio, body weight (BW_all) and the factor used 
incorporate OATP-mediated transport negatively (SF_OATP) negatively impact GCA Cmax. The portal 
blood flow (QPVc_all) has a positive influence on the GCA Cmax. The sensitivity analyses for GCA, 
GCDCA and GDCA are roughly similar (Supplementary Material I Figure S5), while uBA and GCDCA Cmax 
are not strongly influenced by transporter-mediated processes or their scaling factors when the low 
Km value for NTCP-mediated transport of GCDCA of 0.568 µM is used as a baseline. Even though 
parameters related to BSEP-mediated active hepatic efflux do not have a strong influence on plasma 
BA Cmax, they were shown to strongly influence the maximal intracellular concentrations of GCA, 
GCDCA and GDCA in the liver (Supplementary Material I Figure S5). Figure 8b shows that the gall 
bladder emptying time (get_all) and body weight (BW) have the strongest delaying influence on the 
GCA Tmax, while the cardiac output (QC_all), the fraction of the arterial blood flow to the liver 
(QAVc_all) and ileal transit time in fed state (kti_fed) have the strongest accelerating influence on GCA 
Tmax. The sensitivity analyses for the other BAs consistently identified intestinal transit time as an 
important parameter for Tmax (Supplementary Material I Figure S6). It should be noted that the 
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normalized sensitivity coefficients for Tmax are around one order of magnitude smaller than those for 
Cmax.    

 

FFiigguurree  88  SSeennssiittiivviittyy  aannaallyyssiiss  ooff  tthhee  iinnfflluueennccee  ooff  tthhee  PPBBKK  mmooddeell  ppaarraammeetteerrss  oonn  tthhee  pprreeddiicctteedd  oouuttccoommeess. 
a) Sensitivity analysis for maximal systemic GCA concentration in plasma (Cmax). Only parameters with 
an absolute normalized sensitivity coefficient (NSC) > 0.5 are shown. b) Sensitivity analysis for the time 
taken before reaching Cmax (Tmax). Only parameters with an absolute normalized sensitivity coefficient 
(NSC) > 0.03 are shown. KmNTCP=Michaelis–Menten constant for NTCP-mediated BA uptake in the 
liver, VmaxASBTc= maximal ASBT-mediated GCA absorption rate over the ileal epithelium, 
ES=empirical scalar for in vitro-in vivo extrapolation of Caco-2 derived kinetic parameters, 
surface=cylindrical surface of ileum, QPVc=fraction of blood flow through the portal vein, 
BP=blood:plasma ratio, Hep=hepatocellularity, SF_OATP=scaling factor to adjust hepatic uptake for 
OATP-mediated uptake, VmaxNTCPc= maximal NTCP-mediated GCA hepatic uptake rate, BW=body 
weight, get=gall bladder ejection time, kti_fed=ileal transit time in fed state, QAVc=fraction of blood 
flow to liver through the arterial vein. QC=cardiac output. _GCA indicates a parameter specifically for 
the GCA submodel, _all indicates a parameter that is shared for all BA submodels.  

 

4.4 Discussion 
For this work the aim was to predict the effects of ASBT-inhibition on systemic plasma levels and by 
that obtain mechanistic insights in whole-body BA homeostasis, with a focus on the gut-liver axis. To 
this end, we obtained kinetic parameters for the active intestinal glycocholic acid (GCA) transport 
across Caco-2 monolayers and incorporated these in a physiologically based kinetic (PBK) model 
describing the synthesis, absorption, distribution, metabolism and excretion of BAs. The current study 
shows that Caco-2 cells transported GCA in an active and sodium-dependent manner, indicating that 
apical sodium-dependent bile acid transporter (ASBT) functionality is maintained in Caco-2 cells. 
Subsequently, Caco-2 cells were applied to obtain kinetic parameters for ASBT-mediated GCA 
transport over the intestinal epithelium. These parameters were incorporated in the PBK model after 
in vitro to in vivo scaling. The integration of active intestinal uptake in the PBK model allowed us to 
incorporate dose-dependent BA transport inhibition induced by the selective and reversible ASBT 
inhibitor odevixibat (ODE). Our PBK model predicted that the plasma concentrations of conjugated 
BAs decrease upon ODE treatment, while unconjugated BA plasma concentrations are predicted to 
slightly increase. These predictions were in line with observations in the only available clinical phase I 
study reporting systemic plasma and fecal bile acids (Graffner et al., 2016). The sensitivity analysis 
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revealed that active transport processes strongly influence the maximal conjugated BA concentration 
in plasma (Cmax). The affinity of conjugated BAs for Na+-taurocholate cotransporting polypeptide 
(NTCP) as well as the maximal rate of ASBT-mediated ileal uptake (Vmax_ASBTc) and the parameters 
required for its scaling have a strong positive influence on the Cmax. Our results indicate that accurate 
estimates for active ileal and hepatic transport processes are key for high predictive power of a PBK 
model describing BA homeostasis. The developed BA PBK model is to our knowledge the first PBK 
model that includes experimentally derived data for NTCP-mediated hepatic BA uptake, BSEP-
mediated hepatic BA efflux and ASBT-mediated ileal BA uptake.  

In the current study it was shown that Caco-2 cells transport BAs via active transport and 
passive diffusion processes. Although no differences were observed in the total transport of GCA, 
glyochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA) and deoxycholic acid (DCA), 
notable differences in passive diffusion were observed between the BAs tested upon addition of 500 
pmoles BA to the apical chamber, especially between the conjugated and unconjugated BAs. DCA was 
translocated primarily via passive diffusion, while for the conjugated BAs GCDCA and GDCA a very 
small amount (<LOQ) and for GCA no detectable amount was transported via passive diffusion. In line 
with literature, the passive BA diffusion rate followed their lipophilicity: DCA > GCDCA ≈ GDCA > GCA 
(Aldini et al., 1996).  

Caco-2 cells are a robust intestinal cell model with apical brush borders, tight junctions and 
expression of several clinically relevant transporters, including transporters of the ATP binding 
cassette (ABC), multidrug resistance protein (MRP) and solute carrier (SLC) family (Olander et al., 
2016; Antunes et al., 2013). Our results confirm that the GCA transport over Caco-2 cells is active and 
sodium-dependent, indicating the presence of a functional SLC-transporter. We trust that the Caco-2 
cells performed ASBT-mediated BA transport, because a) GCA transport was completely inhibited 
upon addition of ≥0.5 nM of the selective ASBT inhibitor ODE at a low (5 µM) GCA concentration and 
b) our Km,app is within a 2-fold range of the Km,app value obtained from ASBT transfected MDCK cells 
reported in literature (Balakrishnan et al., 2006). Even though ASBT gene expression was confirmed for 
Caco-2 cells (Wang et al., 2022; van der Mark et al., 2014), ASBT protein expression was not 
conclusively demonstrated. ASBT protein expression could not be detected by LC-MS/MS (Bruck et al., 
2017; Olander et al., 2016), but Western blot analysis by van der Mark et al. (2014) revealed that ASBT 
expression is low in Caco-2 cells compared to the human ileum. Differences in the detection limit of 
the analytical techniques, Caco-2 cell clones and/or culture conditions provide plausible explanations 
for the inconsistent results for ASBT protein expression in Caco-2 cells (Sambuy et al., 2005). We 
consider the sodium-dependency and ODE-mediated inhibition of GCA transport strong indicators of 
the presence of functional ASBT in Caco-2 monolayers. In the current study, an empirical scalar of 2.8 
was employed to correct for differences between the in vitro and in vivo situation, such as differences 
in ASBT expression and/or activity and other chemical, physical or biological differences. However, for 
optimal scientific validity, a mechanistic justification for the scaling factor is desirable, enabling its 
application to other substances. The mechanistic justification of the scaling factor could be based on 
the establishment of a relative activity factor (RAF), in which transport of a probe substrate in vitro is 
compared against the in vivo situation. RAFs have been proven relatively successful for the prediction 
of metabolic conversions, but their applicability for transporter-mediated processes remains to be 
verified (Kumar et al., 2021). 

The Caco-2 cells were cultured in medium containing fetal calf serum (FCS). FCS contains an 
undefined cocktail of growth factors, hormones, vitamins and is typically used to ensure growth and 
proliferation in cell cultures. In order to contribute to the 3R (reduce, refine, replace) principles, 
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increasing attention goes to the development of animal-free chemically-defined alternatives for FCS. 
Several synthetic supplements have been tested, but did not allow various cell types to proliferate and 
differentiate properly (van der Valk et al., 2018). Human platelet lysate seems a promising substitute 
for FCS. Caco-2 cell viability was slightly enhanced in cells grown with this lysate compared to FCS, and 
the cells differentiated to cells of the enterocytic lineage (Wanes et al., 2021). Yet, functional similarity 
to the human intestinal epithelium remains to be demonstrated.  

The kinetic parameters obtained in the Caco-2 transport assay were incorporated in a PBK 
model describing the synthesis, distribution, metabolism and excretion of BAs. Our simulations for 
GCA, GDCA,   and uBA accurately predicted the at least one dataset of observed BA concentrations, 
that is, within 2-fold. GCDCA postprandial kinetics were simulated with three different Km values for 
NTCP-mediated transport, where the lowest value (0.6 µM, Jani et al., 2018) gave a close fit with the in 
vivo data, while the highest value (10 µM, Notenboom et al., 2018) resulted in a ~5-fold 
overprediction. The large discrepancy between the two experimental datasets can be attributed to 
intersystem (transfected CHO versus HEK293 cells), biological and/or chemical differences. Given its 
large influence on the postprandial kinetics, it is crucial to establish reliable kinetic parameters for 
NTCP-mediated transport and understand the reasons for these discrepancies. The predicted BA 
concentrations were still within the range of Cmax values reported in literature. Up to 22-fold 
differences in plasma BA Cmax between individuals have been reported, which could be due to 
biological interindividual differences (Baier et al., 2019; Lamaziere et al., 2020; Steiner et al., 2011; 
Fiamoncini et al., 2016), while interstudy differences between individuals may also be due to technical 
differences. Due to these differences a PBK model predicted Cmax may be more than 2-fold different 
from data reported for individual volunteers in literature.  

Our simulations reflect a consistently delayed time to reach Cmax (Tmax) compared to the in vivo 
datasets. The sensitivity analysis revealed that a prolonged gall bladder ejection time had the 
strongest delaying effect on Tmax. In the current model the gall bladder ejection time was set to 90 
minutes, which was derived from a study using scintigraphic measurements in healthy individuals. In 
this study, the volunteers were administered an isotope and the isotope amount in the gallbladder 
was quantified at selected timepoints using a gamma camera (Jazrawi et al., 1995). The accuracy of 
the predicted Tmax might be improved by describing gall bladder motility in more detail, for example by 
using a normalized Rayleigh function which shows a transient increase and subsequent decrease of 
gall bladder emptying rate over time (Sips et al., 2018). Given that the effect of gall bladder ejection 
time on Tmax was relatively small (NSC<0.1), this approach was not applied in the current work.  

The data from our transport assays indicated that ODE is a competitive inhibitor of GCA 
transport, with an estimated IC50 of 0.04 nM which is about 2-fold lower than literature (0.1 nM) 
(EMA, 2021). We predicted a decrease in plasma BAs, and especially the conjugated BAs (GCA, GCDCA 
and GDCA), upon treatment with a single oral dose of ODE. The decrease in total BAs was in line with 
literature. In vivo data in healthy individuals on day 7 of treatment with ODE showed a similar change 
in BA profile, i.e. a decrease in plasma conjugated BAs and a slight increase in the unconjugated BAs 
DCA and CDCA (Graffner et al., 2016). The authors also observed an increase in fecal unconjugated 
BAs on day 7 of ODE treatment. Likewise, we simulated an increased amount of colonic unconjugated 
BAs, which can be directly translated into increased fecal amounts due to reduced intestinal ASBT 
mediated uptake of these conjugated BAs. Treatment with 3 mg ODE is shown to significantly reduce 
plasma fibroblast growth factor 19 (FGF-19) levels in healthy individuals. This results in a reduced 
inhibition of hepatic BA synthesis, which is reflected by increased plasma levels of the BA precursor C4 
(Graffner et al., 2016). It is important to note that the PBK model developed included only a basic 
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adaptive response, which does not allow for dynamic changes in synthesis rate, microbiome’s 
composition or intestinal membrane integrity. Therefore, we only modeled the effects of ODE upon a 
single administration. Quantitatively capturing dynamic changes in a computational model requires 
many assumptions and fitting of parameters, which has been done previously (Voronova et al., 2020). 
A major strength of our PBK model is that the majority of input parameters is derived experimentally, 
but accordingly the adaptive response was not modelled in detail. Nevertheless, the current model is 
proven useful for the prediction of short-term effects in healthy individuals.  

In the current work, we report an apparent Michaelis Menten constant or Km,app, because the 
value relates to the overall process of transport across the Caco-2 monolayer including not only apical 
influx, but also intracellular transport by bile acid binding protein (BABP) and basolateral efflux by 
organic solute transporter (OST) α/β. The Km,app can differ between in vitro and in vivo test systems. For 
example, for taurocholic acid (TCA), the typical model BA for transport experiments, Km,app values for 
intestinal uptake ranging from 4.4 to 600 µM have been reported using transfected cell lines/oocytes, 
human precision cut intestinal slices and a human perfusion study in vivo (Balakrishnan et al., 2006; 
Zhu et al., 2021; Li et al., 2018; Krag and Phillips, 1974). Besides biological differences in e.g. OSTα/β or 
BABP activity, the physical hydrodynamic barrier between the bulk solution and the surface with the 
transporter differs depending on the test system used. In vitro the restricted liquid flow in the vicinity 
of a culture insert will create a zone where the diffusional movement of molecules exceeds the 
convection. The formed layer is referred to as the unstirred water layer or aqueous boundary layer 
(ABL). Besides, the culture insert itself will affect the compound’s permeability (Korjamo et al., 2009). 
Balakrishnan et al. (2007) studied the effect of the ABL in culture inserts and derived an equation that 
can be used to correct the affinity of influx transporters for the ABL. This equation was employed in 
this work (Eq. 2), and resulted in a Km,app of 23 µM, versus 39 µM when the resistance by the ABL was 
not considered. The intestinal peristaltic movements can be expected to drastically reduce the ABL in 
vivo resulting in lower Km,app values. It has been concluded previously that the ABL does not play a 
clinically significant role in the intestinal absorption of drugs in vivo and hence, Km,app values derived 
from static in vitro models should be corrected for the ABL before the values can be extrapolated to 
the in vivo situation (Korjamo et al., 2009). Where in vitro the ABL hampers a molecule’s transport to a 
culture insert, in vivo a molecule first has to migrate through the mucus layer before it reaches the 
intestinal epithelium. Caco-2 cells represent cells of the enterocytic lineage, and do not fully represent 
the cell types present in the human ileal epithelium. Especially the lack of mucin-producing Goblet 
cells and thus a mucus layer could affect the Km,app. The HT29-MTX cell line has emerged as a cell line 
that forms Goblet cells and can be used to complement Caco-2 cells. Co-culturing HT29-MTX cells with 
Caco-2 cells results in similar gene expression profiles to gastrointestinal tissue, and a mucus layer on 
top of the epithelium (Pontier et al., 2001). Yet, coculturing HT29-MTX and Caco-2 cells did not 
modulate permeability compared to Caco-2 cells alone, and ergo does not provide an improved Km,app 
that takes into account the mucus effects (McCright et al., 2022; Lock et al., 2018). Due to the absence 
of functional differences in permeability between the coculture and monoculture system, we have 
decided to use the well-characterized and robust Caco-2 monoculture system.  

The current results underline the importance of active ileal and hepatic transport processes 
for accurate predictions of systemic plasma BA levels. We demonstrate that Caco-2 cells can be used 
to quantitatively study ODE’s inhibitory effects on GCA transport. By incorporating the obtained kinetic 
parameters in a PBK model we were able to accurately predict the changes in plasma BA levels upon a 
single oral dose of ODE. The current model can serve as a quantitative tool to predict alterations in 
plasma BA levels upon xenobiotic-exposure.  
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4.5 Supplementary material I 

A 
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FFiigguurree  SS11.. Membrane integrity and cell viability in new cell culture inserts (N=5) vs recycled cell culture inserts 

(N=50). A) Mean TEER values+SD 12 days after seeding B) WST-1 assay. Mean relative absorbances+SD 17 days 

after seeding. Ns=no significant differences (unpaired T-test). 

 

AA   

 

BB  

 
 

FFiigguurree  SS22..  TThhee  eeffffeecctt  ooff  OOddeevviixxiibbaatt  oonn  CCaaccoo--22  cceellllss.. A) The effect of 24h exposure to Odevixibat on cell viability of 
undifferentiated Caco-2 cells assessed using the WST-1 assay. Absorbance is normalized to the solvent control. 
Values represent the mean±SD of triplicate measurements in 3 independent experiments. Significance was 
assessed with a one way ANOVA followed by post hoc tests using Bonferroni’s correction. Statistically significant 
differences in cell viability are indicated with * . POS=positive control (0.5 µM potassium dichromate). B) The 
effects of 3h co-exposure to 5 µM of GCA and an ODE concentration range on TEER values of Caco-2 cells 
cultured on culture inserts on day 19-21. Values represent the mean±SD, N=3.    
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TTaabbllee  SS11.. MS parameters and limit of detection (LOD) and limit of quantification (LOQ) of the BAs studied  

  Mode Q1 Q3 

Retention 
time 
(min) LOD (nM) 

 
LOQ (nM) 

Deoxycholic acid (DCA) SIM  391.3 11.073 100 150 
Glycochenodeoxycholic acid 
(GCDCA) MRM 448.3 74 9.051 40 

60 

Glycodeoxycholic acid 
(GDCA) MRM 448.3 74 9.452 190 

200 

Glycocholic acid (GCA) MRM 464.3 74 7.310 122 140 
 

 

 
FFiigguurree  SS33..  OObbsseerrvveedd  aanndd  pprreeddiicctteedd  ppoossttpprraannddiiaall  GGCCAA  kkiinneettiiccss  uussiinngg  ddiiffffeerreenntt  vvaalluueess  ffoorr  KKmm--vvaalluueess  ffoorr  aaccttiivvee  
iinntteessttiinnaall  uuppttaakkee.. Black solid line=prediction.. Left column: Meals were simulated at 8:00, 12:00 and 16:00. 
Orange circles=in vivo data obtained from Hepner and Demers (1977). Right column: Meal was simulated at 
8:00. Blue circles= in vivo data obtained from Lamaziere (2020). a) Km=39 µM (experimentally derived, no 
correction for the aqueous boundary layer), b) Km=22.5 µM (experimentally derived, corrected for the aqueous 
boundary layer), c) Km=16.8 µM (average of experimental ABL-corrected and literature), d) Km=11 µM 
(literature). GCA=glycocholic acid, GCDCA=glycochenodeoxycholic acid; GDCA=glycodeoxycholic acid; 
uBA=unconjugated bile acids 
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FFiigguurree  SS44..  SSeennssiittiivviittyy  aannaallyyssiiss  ooff  tthhee  iinnfflluueennccee  ooff  tthhee  PPBBKK  mmooddeell  ppaarraammeetteerrss  oonn  tthhee  pprreeddiicctteedd  mmaaxxiimmaall  ssyysstteemmiicc  
BBAA  ccoonncceennttrraattiioonn  iinn  ppllaassmmaa  ((CCmmaaxx)).. Only parameters with an absolute normalized sensitivity coefficient > 0.5 are 
shown. ka=first order rate absorption constant, Clint_PDc=passive diffusion intrinsic clearance, BP=blood:plasma 
ratio, KmNTCP=Michaelis–Menten constant for NTCP-mediated hepatic uptake, VmaxASBTc= maximal ASBT-
mediated GCA absorption rate over the ileal epithelium, ES=empirical scalar for in vitro-in vivo extrapolation of 
Caco-2 derived kinetic parameters, surface=cylindrical surface of ileum, QPVc=fraction of blood flow to liver 
through the portal vein, VmaxNTCPc=maximal NTCP-mediated hepatic BA uptake, Hep=hepatocellularity, 
SF_OATP= scaling factor to adjust hepatic uptake for OATP-mediated uptake, BW=body weight, get=gall bladder 
ejection time. _GCA, _GCDCA or _GDCA indicates a parameter specifically for the GCA, GCDCA or GDCA 
submodel, respectively, _all indicates a parameter that is shared for all BA submodels. 
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FFiigguurree  SS55..  SSeennssiittiivviittyy  aannaallyyssiiss  ooff  tthhee  iinnfflluueennccee  ooff  tthhee  PPBBKK  mmooddeell  ppaarraammeetteerrss  oonn  tthhee  pprreeddiicctteedd  mmaaxxiimmaall  bbiillee  aacciidd  
ccoonncceennttrraattiioonnss  iinn  tthhee  iinnttrraacceelllluullaarr  lliivveerr.. Only parameters with an absolute normalized sensitivity coefficient > 0.5 
are shown. ka= first order rate absorption constant, ge=first order rate constant for gall bladder ejection rate, 
kam=first order rate constant for amidation, BW=body weight, get=gall bladder emptying time, 
KmBSEP=Michaelis–Menten constant for BSEP-mediated BA efflux from the liver, VmaxASBTc= maximal ASBT-
mediated GCA absorption rate over the ileal epithelium, , VmaxBSEPc=maximal BSEP-mediated BA efflux rate, 
aBSEP= BSEP protein abundance, MWBSEP=molecular weight of BSEP, Hep=hepatocellularity, ES=empirical 
scalar for in vitro-in vivo extrapolation of Caco-2 derived kinetic parameters, surface=ileal surface, get=gall 
bladder ejection time, QIb= fraction of bile flow transported directly from liver to intestinal lumen via common 
bile duct. GCA, _GCDCA or _GDCA indicates a parameter specifically for the GCA, GCDCA or GDCA submodel, 
respectively, _all indicates a parameter that is shared for all BA submodels.  

 

  
FFiigguurree  SS66..  SSeennssiittiivviittyy  aannaallyyssiiss  ooff  tthhee  iinnfflluueennccee  ooff  tthhee  PPBBKK  mmooddeell  ppaarraammeetteerrss  oonn  tthhee  pprreeddiicctteedd  ttiimmee  iitt  ttaakkeess  ttoo  
rreeaacchh  mmaaxxiimmuumm  ppllaassmmaa  BBAA  ccoonncceennttrraattiioonn  ((TTmmaaxx)).. Only parameters with an absolute normalized sensitivity 
coefficient > 0.03 are shown. BW= body weight, kti_fed=ileal transit time in fed state, ktj_fed=jejunum transit 
time in fed state, QAVc=fraction of blood flow through the hepatic arterial vein, BP=blood:plasma ratio, get=gall 
bladder ejection time, QC=cardiac output, PS=slowly perfused tissue/plasma partition coefficient, VBc=fraction 
of blood (excluding portal vein), VSc=fraction of slowly perfused tissue, ka=first order rate constant for 
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absorption. GCA, _GCDCA or _GDCA indicates a parameter specifically for the GCA, GCDCA or GDCA submodel, 
respectively, _all indicates a parameter that is shared for all BA submodels. 

 

4.6 Supplementary material II 
#PBK model 4 bile acids 
#GCDCA, GCA, GDCA + DCA 
#species: human 
#author: Véronique de Bruijn 
#date: june 2023 
 
## The input parameters, as well as their units, explanation and a reference is described in the supplementary 
Excel file “parms_4BA_compLiver.xlsx”. Save this file in the working directory and load it in in step 1.   
 
#load required packages 
library(RxODE) 
library(tidyverse) 
library(readxl) 
library(data.table) 
library(pmxTools) 
 
#set working directory 
setwd() 
 
#Simulations 
amount.units="umol" #unit for the amount 
time.units="h"  #unit for time 
nbr.doses=1        #number of doses 
time.0=8          #time start dosing 
time.end=32       #time end of simulation 
time.frame=0.01    #time steps of simulation 
N=1           #Number of individuals 
 
###################################################### 
#step 1: read in parameters 
parms <- read_excel("parms_4BA_compLiver.xlsx") %>% 
  dplyr::select(1:6) 
 
parms_long <- melt(setDT(parms), id.vars=1, variable.name="parm") %>% 
  mutate(name=paste(parm, parm.1, sep="_"))%>% dplyr::select(3,4)%>% drop_na() 
 
my_names <- parms_long$name 
var <- parms_long$value 
 
parameters <- setNames(var, my_names) 
 
Gdose <- parms %>% filter(parm=="Gdose") 
 
###################################################### 
#step 2: initial values compartment 
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inits <- c(dose_GCDCA=Gdose$GCDCA, 
           ALEW_GCDCA=0, 
           ALIW_GCDCA=0, 
           ALu_GCDCA=0, 
           Aup_GCDCA=0, 
           Alow_GCDCA=0, 
           Acol_GCDCA=0, 
           AI_GCDCA=0,  
           AP_GCDCA=0, 
           AF_GCDCA=0, 
           AR_GCDCA=0, 
           AS_GCDCA=0, 
           AB_GCDCA=0, 
           dose_GDCA=Gdose$GDCA, 
           ALEW_GDCA=0, 
           ALIW_GDCA=0, 
           ALu_GDCA=0, 
           Aup_GDCA=0, 
           Alow_GDCA=0, 
           Acol_GDCA=0, 
           AP_GDCA=0, 
           AI_GDCA=0, 
           AF_GDCA=0, 
           AR_GDCA=0, 
           AS_GDCA=0, 
           AB_GDCA=0, 
           dose_GCA=Gdose$GCA, 
           ALEW_GCA=0, 
           ALIW_GCA=0, 
           ALu_GCA=0, 
           AP_GCA=0, 
           AI_GCA=0, 
           AF_GCA=0, 
           AR_GCA=0, 
           AS_GCA=0, 
           AB_GCA=0, 
           ALEW_DCA=0, 
           ALIW_DCA=0, 
           Acol_DCA=0,  
           AI_DCA=0, 
           AP_DCA=0, 
           AF_DCA=0, 
           AR_DCA=0, 
           AS_DCA=0, 
           AB_DCA=0) 
 
###################################################### 
#step 3: exposure 
qd <- eventTable(amount.units = amount.units, time.units = time.units) %>% 
  add.dosing(dose=0.00001, cmt="ALEW_GCDCA",nbr.doses = 1, do.sampling=FALSE) %>% 
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  et(seq(from = time.0, to = time.end, by = time.frame)) 
 
###################################################### 
#step 4: differential equations 
PBK <- RxODE({ 
   
  ##Physiological parameters 
  #Tissue volumes 
  VF = VFc_all*BW_all;   # {L or Kg} ; volume of fat tissue (calculated) 
VLIW = VLIWc_all*BW_all; # {L or Kg} ; volume of liver intracellular water (calculated) 
  VLEW = VLEWc_all*BW_all; # {L or Kg} ; volume of liver extracellular water (calculated) 
  VL=VLEW+VLIW;  
  VR = VRc_all*BW_all;   # {L or Kg} ; volume of richly perfused tissue (calculated) 
  VS = VSc_all*BW_all;   # {L or Kg} ; volume of slowly perfused tissue (calculated) 
  VB = VBc_all*BW_all;   # {L or Kg} ; volume of blood excluding portal vein (calculated) 
  VI = VIc_all*BW_all;   # {L or Kg} ; volume of intestinal tissue (calculated) 
  VG= VGc_all*BW_all;   # {L or Kg} ; volume of gall bladder tissue (calculated) 
  VLu=VLuc_all*BW_all;   # {L or Kg} ; volume of intestinal lumen (calculated) 
  VP=VBPc_all*BW_all;      #      {L or Kg} ; volume of portal blood 
   
  #Blood flow rates 
  QF = QFc_all*QC_all;   # {L/hr} ; blood flow to fat tissue (calculated) 
  QAV = QAVc_all*QC_all; # {L/hr} ; arterial blood flow to liver tissue (calculated) 
  QPV= QPVc_all*QC_all;   # {L/hr} ; portal blood flow to liver tissue (calculated) 
  QS = QSc_all*QC_all;    # {L/hr} ; blood flow to slowly perfused tissue (calculated) 
  QR = QRc_all*QC_all;    # {L/hr} ; blood flow to richly perfused tissue (calculated) 
  QI = QIc_all*QC_all;  # {L/hr} ; blood flow to intestines (calculated) 
   
  ## Scaling of maximal transport rate (Vmax) for BSEP, ASBT and NTCP mediated BA transport 
  WL=20*BW_all; #weight of liver, g 
  SF_BSEP=aBSEP_all*MWBSEP_all*Hep_all*WL*10^-9; # {mg BSEP/entire liver}; scaling factor for BSEP 
mediated hepatic efflux for GCA and GCDCA 
  SF_ASBT=surface_all*10^-6*SA_all; # {cm2/entire ileum}; fitted 
  SF_NTCP=Hep_all*SF_OATP_all*WL*10^-6; #{10^6 hepatocytes/entire liver}; scaling factor for hepatic 
transport 
   
  VmaxBSEP_GCDCA=VmaxBSEPc_GCDCA*SF_BSEP*60; # {umol/h/entire liver} maximum speed for BSEP-
mediated GCDCA efflux (calculated) 
  VmaxASBT_GCDCA=VmaxASBTc_GCDCA*SF_ASBT*60; #{umol/hr/ileum} : maximum speed for ASBT-mediated 
GCDCA uptake (calculated) 
  VmaxNTCP_GCDCA=VmaxNTCPc_GCDCA*SF_NTCP*60; #{umol/hr/entire liver}: maximum speed for hepatic 
GCDCA uptake (calculated) 
   
  VmaxBSEP_GCA=VmaxBSEPc_GCA*SF_BSEP*60; # {umol/h/entire liver} maximum speed for BSEP-mediated 
GCA efflux (calculated) 
  VmaxASBT_GCA=VmaxASBTc_GCA *SF_ASBT*60; # {umol/hr/ileum} : maximum speed for ASBT-mediated GCA 
uptake (calculated) 
  VmaxNTCP_GCA=VmaxNTCPc_GCA*SF_NTCP*60; #{umol/hr/entire liver}: maximum speed for hepatic GCDCA 
uptake (calculated) 
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  VmaxBSEP_GDCA=VmaxBSEPc_GDCA*SF_BSEP*60; # {umol/h/entire liver} maximum speed for BSEP-mediated 
GDCA efflux (calculated). 
  VmaxASBT_GDCA=VmaxASBTc_GDCA*SF_ASBT*60; #{umol/hr/ileum} : maximum speed for ASBT-mediated 
GDCA uptake (calculated) 
  VmaxNTCP_GDCA=VmaxNTCPc_GDCA*SF_NTCP*60; #{umol/hr/entire liver}: maximum speed for hepatic 
GCDCA uptake (calculated) 
  
  ## Fast/fed state  
  #ge=ifelse((ctime>8 & ctime<(8+get_all)), ge_all,0); #specifying the duration of gallbladder emptying (1 meal) 
  ge=ifelse(((ctime >8 & ctime<(8+get_all)) | (ctime>12 & ctime<(12+get_all)) | (ctime>16 & 
ctime<(16+get_all))), ge_all,0); # specifying the duration of gallbladder emptying (3 meals) 
  #(umol/hr/entire liver), calculated 
  ktj=ifelse(ctime>17.5 | ctime <8, ktj_fasted_all, ktj_fed_all); #specifying different jejunum transit rates for 
fast/fed state (1/hr) 
  kti=ifelse(ctime>17.5 | ctime <8, kti_fasted_all, kti_fed_all); #specifying different ileum transit rates for fast/fed 
state (1/hr) 
   
  QGb_all=1-QIb_all; #fraction of bile flow from liver stored in gall bladder, calculated 
   
  ## Competitive inhibition by ODE on ASBT-mediated BA transport  
  IDOSE=ODOSEmg_all/740.29/9*10^6*ODE_fub_all; #free ODE concentration in ileum, calculated (nM), 
MW=740.29, volume intestinal tract=9L  
  modf_Km=1+(IDOSE/0.02); #modulation factor for Km based on competitive inhibition, Ki=0.02 nM 
(experimental) 
  ODOSEmg_all=ODOSEmg_all; 
 
  ## Model calculations 
   

  ### GCDCA submodel ### 
  CLEW_GCDCA=ALEW_GCDCA/VLEW; # concentration in the extracellular water (liver) 
  CVLEW_GCDCA=CLEW_GCDCA/(PEWP_GCDCA*BP_all); #concentration leaving the extracellular water (liver) 
  CLIW_GCDCA=ALIW_GCDCA/VLIW; # concentration in intracellular water (liver) 
  CIl_GCDCA=Alow_GCDCA/VIl_all;       # concentration in the ileum (umol/L) 
  CI_GCDCA=AI_GCDCA/VI;           # concentration in the intestinal tissue (umol/L) 
  CVI_GCDCA=CI_GCDCA/(PG_GCDCA*BP_all);  # concentration in venous blood leaving the intestinal 
tissue(umol/L) 
  CF_GCDCA=AF_GCDCA/VF;           # concentration in the fat tissue (umol/L) 
  CVF_GCDCA=CF_GCDCA/(PF_GCDCA*BP_all);  # concentration in venous blood leaving the fat tissue 
(umol/L) 
  CR_GCDCA=AR_GCDCA/VR;          # concentration in the rapidly perfused tissue (umol/L) 
  CVR_GCDCA=CR_GCDCA/(PR_GCDCA*BP_all);  # concentration in venous blood leaving the rapidly 
perfused tissue (umol/L) 
  CS_GCDCA=AS_GCDCA/VS;           # concentration in the slowly perfused tissue (umol/L) 
  CVS_GCDCA=CS_GCDCA/(PS_GCDCA*BP_all);  # concentration in venous blood leaving slowly perfused 
tissue (umol/L) 
  CB_GCDCA=AB_GCDCA/VB;           # concentration in blood excluding portal vein (umol/L) 
  CP_GCDCA=AP_GCDCA/VP;                  # concentration in portal blood (umol/L) 
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  d/dt(dose_GCDCA) = -ge*dose_GCDCA+VmaxBSEP_GCDCA*CLIW_GCDCA/(KmBSEP_GCDCA + 
CLIW_GCDCA)*QGb_all  ;    #change in amount in the gall bladder, umol 
  d/dt(ALEW_GCDCA)=QAV *(CB_GCDCA -CVLEW_GCDCA)+QPV*(CP_GCDCA-CVLEW_GCDCA) -
VmaxNTCP_GCDCA * CVLEW_GCDCA/(KmNTCP_GCDCA + CVLEW_GCDCA);   # change in amount in 
extracellular water (liver), umol 
  d/dt(ALIW_GCDCA)= -VmaxBSEP_GCDCA *CLIW_GCDCA /(KmBSEP_GCDCA + 
CLIW_GCDCA)+VmaxNTCP_GCDCA * CVLEW_GCDCA/(KmNTCP_GCDCA + CVLEW_GCDCA) 
+kam_all*ALIW_DCA*Gdosel_GCDCA+Acol_DCA*0.05*Gdosel_GCDCA ; # change in amount in intracellular 
water (liver), umol 
  d/dt(Aup_GCDCA)= ge*dose_GCDCA +VmaxBSEP_GCDCA *CLIW_GCDCA /(KmBSEP_GCDCA + 
CLIW_GCDCA)*QIb_all-ka_GCDCA*Aup_GCDCA-ktj*Aup_GCDCA; # change in amount in upper intestinal lumen, 
umol 
  d/dt(Alow_GCDCA)=ktj*Aup_GCDCA-kti*Alow_GCDCA-VmaxASBT_GCDCA *CIl_GCDCA 
/(KmASBT_GCDCA*modf_Km + CIl_GCDCA);   # change in amount in ileum, umol 
  d/dt(Acol_GCDCA)=kti*Alow_GCDCA-ka_GCDCA*Acol_GCDCA-kdec_all*Acol_GCDCA;# change in amount in 
colon, umol 
  d/dt(AI_GCDCA)=QI*(CB_GCDCA -CVI_GCDCA);  # change in amount in intestinal tissue, umol 
  d/dt(AP_GCDCA)=ka_GCDCA*Aup_GCDCA+VmaxASBT_GCDCA *CIl_GCDCA /(KmASBT_GCDCA*modf_Km + 
CIl_GCDCA)+ka_GCDCA*Acol_GCDCA - QPV*CP_GCDCA; #amount in portal blood, umol  
  d/dt(AF_GCDCA)=QF*(CB_GCDCA -CVF_GCDCA) ;  # change in amount in fat tissue, umol 
  d/dt(AR_GCDCA)=QR*(CB_GCDCA -CVR_GCDCA) ;  # change in amount in rapidly perfused tissue, umol 
  d/dt(AS_GCDCA)= QS*(CB_GCDCA -CVS_GCDCA);  # change in amount in slowly perfused tissue, umol 
  d/dt(AB_GCDCA)=QF*CVF_GCDCA + (QAV+QPV)*CVLEW_GCDCA + QS*CVS_GCDCA + QR *CVR_GCDCA +QI 
*CVI_GCDCA -(QF+QAV+QS+QR+QI) *CB_GCDCA;  # change in amount in blood, umol 
   
  conc_plasma_GCDCA=(CB_GCDCA/BP_all)+CBfs_GCDCA; #concentration in **plasma**, umol 
   
  ### GCA submodel ### 
  CLEW_GCA=ALEW_GCA/VLEW;  # concentration in the extracellular water (liver) 
 CVLEW_GCA=CLEW_GCA/(PEWP_GCA*BP_all); #concentration in venous blood leaving the  
extracellular water (liver) 
  CLIW_GCA=ALIW_GCA/VLIW;   # concentration in intracellular water (liver) 
  CIl_GCA=Alow_GCA/VIl_all;       # concentration in the ileum (umol/L) 
  CI_GCA=AI_GCA/VI;           # concentration in the intestinal tissue (umol/L) 
  CVI_GCA=CI_GCA/(PG_GCA*BP_all);  # concentration in venous blood leaving the intestinal 
tissue(umol/L) 
  CF_GCA=AF_GCA/VF;           # concentration in the fat tissue (umol/L) 
  CVF_GCA=CF_GCA/(PF_GCA*BP_all);  # concentration in venous blood leaving the fat tissue (umol/L) 
  CR_GCA=AR_GCA/VR;          # concentration in the rapidly perfused tissue (umol/L) 
  CVR_GCA=CR_GCA/(PR_GCA*BP_all);  # concentration in venous blood leaving the rapidly perfused tissue 
(umol/L) 
  CS_GCA=AS_GCA/VS;           # concentration in the slowly perfused tissue (umol/L) 
  CVS_GCA=CS_GCA/(PS_GCA*BP_all);  # concentration in venous blood leaving slowly perfused tissue (umol/L) 
  CB_GCA=AB_GCA/VB;           # concentration in blood excluding portal vein (umol/L) 
  CP_GCA=AP_GCA/VP;                  # concentration in portal blood (umol/L) 
   
  d/dt(dose_GCA) = -ge*dose_GCA+VmaxBSEP_GCA*CLIW_GCA/(KmBSEP_GCA + CLIW_GCA)*QGb_all  ; # 
change in amount in the gall bladder, umol 
  d/dt(ALEW_GCA)=QAV *(CB_GCA -CVLEW_GCA)+QPV*(CP_GCA-CVLEW_GCA) -VmaxNTCP_GCA * 
CVLEW_GCA/(KmNTCP_GCA + CVLEW_GCA); # change in amount in extracellular water (liver), umol 
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  d/dt(ALIW_GCA)= -VmaxBSEP_GCA *CLIW_GCA /(KmBSEP_GCA + CLIW_GCA)+VmaxNTCP_GCA * 
CVLEW_GCA/(KmNTCP_GCA + CVLEW_GCA) +kam_all*ALIW_DCA *Gdosel_GCA+ Acol_DCA*0.05*Gdosel_GCA ; 
# change in amount in intracellular water (liver), umol 
  d/dt(Aup_GCA)= ge*dose_GCA +VmaxBSEP_GCA *CLIW_GCA /(KmBSEP_GCA + CLIW_GCA)*QIb_all-
ka_GCA*Aup_GCA-ktj*Aup_GCA; # change in amount in upper intestinal lumen, umol 
  d/dt(Alow_GCA)=ktj*Aup_GCA-kti*Alow_GCA-VmaxASBT_GCA *CIl_GCA /(KmASBT_GCA*modf_Km + CIl_GCA); 
# change in amount in ileum, umol 
  d/dt(Acol_GCA)=kti*Alow_GCA-ka_GCA*Acol_GCA-kdec_all*Acol_GCA;# change in amount in colon, umol 
  d/dt(AI_GCA)=QI*(CB_GCA -CVI_GCA);  # change in amount in intestinal tissue, umol 
  d/dt(AP_GCA)=ka_GCA*Aup_GCA+VmaxASBT_GCA *CIl_GCA /(KmASBT_GCA*modf_Km + 
CIl_GCA)+ka_GCA*Acol_GCA - QPV*CP_GCA;  #amount in portal blood, umol  
  d/dt(AF_GCA)=QF*(CB_GCA -CVF_GCA) ;  # change in amount in fat tissue, umol 
  d/dt(AR_GCA)=QR*(CB_GCA -CVR_GCA) ;  # change in amount in rapidly perfused tissue, umol 
  d/dt(AS_GCA)= QS*(CB_GCA -CVS_GCA);  # change in amount in slowly perfused tissue, umol 
  d/dt(AB_GCA)=QF*CVF_GCA + (QAV+QPV)*CVLEW_GCA + QS*CVS_GCA + QR *CVR_GCA +QI *CVI_GCA -
(QF+QAV+QS+QR+QI) *CB_GCA;  # change in amount in blood, umol 
   
  conc_plasma_GCA=(CB_GCA/BP_all)+CBfs_GCA; #concentration in **plasma**, umol 
   
  ### GDCA submodel ### 
  CLEW_GDCA=ALEW_GDCA/VLEW;  # concentration in the extracellular water (liver), (umol/L) 
  CVLEW_GDCA=CLEW_GDCA/(PEWP_GDCA*BP_all); #concentration in venous blood leaving the extracellular 
water (liver) (umol/) 
  CLIW_GDCA=ALIW_GDCA/VLIW;   # concentration in intracellular water (liver) 
  CIl_GDCA=Alow_GDCA/VIl_all;       # concentration in the ileum (umol/L) 
  CI_GDCA=AI_GDCA/VI;            # concentration in the intestinal tissue (umol/L) 
  CVI_GDCA=CI_GDCA/(PG_GDCA*BP_all);  # concentration in venous blood leaving the intestinal 
tissue(umol/L) 
  CF_GDCA=AF_GDCA/VF;            # concentration in the fat tissue (umol/L) 
  CVF_GDCA=CF_GDCA/(PF_GDCA*BP_all);  # concentration in venous blood leaving the fat tissue (umol/L) 
  CR_GDCA=AR_GDCA/VR;           # concentration in the rapidly perfused tissue (umol/L) 
 CVR_GDCA=CR_GDCA/(PR_GDCA*BP_all);  # concentration in venous blood leaving the rapidly perfused tissue 
(umol/L) 
  CS_GDCA=AS_GDCA/VS;            # concentration in the slowly perfused tissue (umol/L) 
  CVS_GDCA=CS_GDCA/(PS_GDCA*BP_all);  # concentration in venous blood leaving slowly perfused tissue 
(umol/L) 
CB_GDCA=AB_GDCA/VB;          # concentration in blood excluding portal vein (umol/L) 
  CP_GDCA=AP_GDCA/VP;                   # concentration in portal blood (umol/L) 
   
  d/dt(dose_GDCA) = -ge*dose_GDCA+VmaxBSEP_GDCA*CLIW_GDCA/(KmBSEP_GDCA + CLIW_GDCA)*QGb_all 
  ; # change in amount in the gall bladder, umol 
  d/dt(ALEW_GDCA)=QAV *(CB_GDCA -CVLEW_GDCA)+QPV*(CP_GDCA-CVLEW_GDCA) -VmaxNTCP_GDCA * 
CVLEW_GDCA/(KmNTCP_GDCA + CVLEW_GDCA); #change in amount in extracellular liver compartiment, umol  
  d/dt(ALIW_GDCA)= -VmaxBSEP_GDCA *CLIW_GDCA /(KmBSEP_GDCA + CLIW_GDCA)+VmaxNTCP_GDCA * 
CVLEW_GDCA/(KmNTCP_GDCA + 
CVLEW_GDCA)+kam_all*ALIW_DCA*Gdosel_GDCA+Acol_DCA*0.05*Gdosel_GDCA ; #change in amount in 
intracellular liver compartiment, umol  
  d/dt(Aup_GDCA)= ge*dose_GDCA +VmaxBSEP_GDCA *CLIW_GDCA /(KmBSEP_GDCA + CLIW_GDCA)*QIb_all-
ka_GDCA*Aup_GDCA-ktj*Aup_GDCA; # change in amount in upper intestinal lumen, umol 
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  d/dt(Alow_GDCA)=ktj*Aup_GDCA-kti*Alow_GDCA-VmaxASBT_GDCA *CIl_GDCA /(KmASBT_GDCA*modf_Km + 
CIl_GDCA); # change in amount in ileum, umol 
  d/dt(Acol_GDCA)=kti*Alow_GDCA-ka_GDCA*Acol_GDCA-kdec_all*Acol_GDCA;# amount in colon, umol 
  d/dt(AI_GDCA)=QI*(CB_GDCA -CVI_GDCA);  # change in amount in intestinal tissue, umol 
  d/dt(AP_GDCA)=ka_GDCA*Aup_GDCA+VmaxASBT_GDCA *CIl_GDCA /(KmASBT_GDCA*modf_Km + 
CIl_GDCA)+ka_GDCA*Acol_GDCA - QPV*CP_GDCA; #amount in portal blood, umol  
  d/dt(AF_GDCA)=QF*(CB_GDCA -CVF_GDCA) ;  # change in amount in fat tissue, umol 
  d/dt(AR_GDCA)=QR*(CB_GDCA -CVR_GDCA) ;  # change in amount in rapidly perfused tissue, umol 
  d/dt(AS_GDCA)= QS*(CB_GDCA -CVS_GDCA);  # change in amount in slowly perfused tissue, umol 
  d/dt(AB_GDCA)=QF*CVF_GDCA + (QAV+QPV)*CVLEW_GDCA + QS*CVS_GDCA + QR *CVR_GDCA +QI 
*CVI_GDCA -(QF+QAV+QS+QR+QI) *CB_GDCA;  # change in amount in blood, umol 
   
  conc_plasma_GDCA=(CB_GDCA/BP_all)+CBfs_GDCA;  #concentration in **plasma**, umol 
   
  ### DCA submodel ### 
  CLEW_DCA=ALEW_DCA/VLEW;            # concentration in the liver (umol/L) 
  CVLEW_DCA=CLEW_DCA/(PEWP_DCA*BP_all);   # concentration in venous blood leaving the liver (umol/L) 
  CLIW_DCA=ALIW_DCA/VLIW;     # concentration in intracellular water (liver) 
  CI_DCA=AI_DCA/VI;          # concentration in the intestinal tissue (umol/L) 
  CVI_DCA=CI_DCA/(PG_DCA*BP_all);   # concentration in venous blood leaving the intestinal 
tissue(umol/L) 
  CF_DCA=AF_DCA/VF;             # concentration in the fat tissue (umol/L) 
  CVF_DCA=CF_DCA/(PF_DCA*BP_all);   # concentration in venous blood leaving the fat tissue (umol/L) 
  CR_DCA=AR_DCA/VR;          # concentration in the rapidly perfused tissue (umol/L) 
  CVR_DCA=CR_DCA/(PR_DCA*BP_all);   # concentration in venous blood leaving the rapidly perfused tissue 
(umol/L) 
CS_DCA=AS_DCA/VS;          # concentration in the slowly perfused tissue (umol/L) 
  CVS_DCA=CS_DCA/(PS_DCA*BP_all);   # concentration in venous blood leaving slowly perfused tissue 
(umol/L) 
  CB_DCA=AB_DCA/VB;          # concentration in blood excluding portal vein (umol/L) 
  CP_DCA=AP_DCA/VP;      # concentration in portal vein (umol/L) 
  
  d/dt(ALEW_DCA)=QAV*(CB_DCA -CVLEW_DCA)+QPV*(CP_DCA-CVLEW_DCA)-Clint_PD_DCA*CVLEW_DCA; # 
change in amount in extracellular water liver, umol/hr 
  d/dt(ALIW_DCA)=Clint_PD_DCA*CVLEW_DCA-kam_all*ALIW_DCA; # change in amount in intracellular water 
liver, umol/hr 
  d/dt(Acol_DCA)=kdec_all*(Acol_GCDCA+Acol_GCA+Acol_GDCA)-ka_DCA*Acol_DCA-0.05*Acol_DCA; # change 
in amount in colon, umol/hr 
  d/dt(AI_DCA)=QI*(CB_DCA-CVI_DCA);      # change in amount in intestinal tissue, umol/hr 
  d/dt(AP_DCA)=ka_DCA*Acol_DCA - QPV*CP_DCA; # change in amount in portal vein tissue, umol/hr 
  d/dt(AF_DCA)=QF*(CB_DCA -CVF_DCA) ;      # change in amount in fat tissue, umol/hr 
  d/dt(AR_DCA)=QR*(CB_DCA -CVR_DCA) ;      # change in amount in rapidly perfused tissue, umol/hr 
  d/dt(AS_DCA)= QS*(CB_DCA -CVS_DCA);  # change in amount in slowly perfused tissue, umol/hr 
  d/dt(AB_DCA)=QF*CVF_DCA + (QAV+QPV)*CVLEW_DCA + QS*CVS_DCA + QR *CVR_DCA +QI *CVI_DCA - 
(QF+QS+QR+QI+QAV) *CB_DCA;     # change in amount in blood, umol/hr 
 
  conc_plasma_DCA=(CB_DCA/BP_all)+CBfs_DCA;#concentration in **plasma**, umol 
}) 
 
###################################################### 

134 CHAPTER 4



 

##Step 5: Solve the model 
qd$ctime <- qd$time 
print(PBK) 
 
solve.pbk<- as_tibble(solve(PBK, params=parameters, events = qd, inits=inits, cores=4, 
covs_interpolation="nocb")) 
 
## Mass balance calculations 
solve.pbk %>% 
mutate(OUT=dose_GCDCA+ALEW_GCDCA+ALIW_GCDCA+Aup_GCDCA+Alow_GCDCA+Acol_GCDCA+AI_GCDCA+
AP_GCDCA+AF_GCDCA+AR_GCDCA+AS_GCDCA+AB_GCDCA+ALEW_DCA+ALIW_DCA+Acol_DCA+AI_DCA+AP_DC
A+ AF_DCA+AR_DCA+AS_DCA+AB_DCA+dose_GCA+ALEW_GCA+ALIW_GCA+Aup_GCA+Alow_GCA +Acol_GCA+ 
AP_GCA +AI_GCA+AF_GCA +AR_GCA+AS_GCA+AB_GCA+ 
dose_GDCA+ALEW_GDCA+ALIW_GDCA+Aup_GDCA+Alow_GDCA+ Acol_GDCA+AI_GDCA+AP_GDCA + 
AF_GDCA+AR_GDCA+AS_GDCA+AB_GDCA, 
                     MB=Gdose$GCDCA+Gdose$GDCA+Gdose$GCA-OUT)  
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
    

4

INCORPORATING INTESTINAL TRANSPORT IN THE BILE ACID PBK MODEL 135



 

TTaabbllee  SS11 Input parameters similar for all bile acid submodels, or for respectively GCDCA, GCA, GDCA or DCA 
(model bile acid for uBA) 

 
[Table continues on next page] 

parm all GCDCA GCA GDCA DCA description unit ref
BW 70 body weight kg Brown (1997)
VFc 0.214 fraction of fat tissue Brown (1997)
VLc 0.026 fraction of liver tissue Brown (1997)
VLIWc 0.02171 fraction of liver intracellular water Brown (1997)
VLEWc 0.00429 fraction of liver extracellular water Brown (1997)
VRc 0.054 fraction of rapidly perfused tissue Brown (1997)
VSc 0.6033 fraction of slowly perfused tissue Brown (1997)

VBc 0.0726
fraction of blood (excluding portal 
vein) Brown (1997)

VBPc 0.0064 fraction of portal blood Brown (1997)
VIc 0.009 fraction of intestinal tissue Hofman (1983)
VGc 0.0007 fraction of gall bladder tissue Van Eprecum (1992)
VLuc 0.014 fraction of intestinal lumen Brown (1997)
QC 347.9075 cardiac output L/hr Brown (1997)
QFc 0.052 fraction of blood flow to fat tissue Brown (1997)

QAVc 0.046
fraction of blood flow to liver via 
arterial vein Brown (1997)

QPVc 0.181
fraction of blood flow to liver via 
portal vein Brown (1997)

QSc 0.248
fraction of blood flow to slowly 
perfused tissue Brown (1997)

QRc 0.292
fraction of blood flow to rapidly 
perfused tissue Brown (1997)

QIc 0.181
fraction of blood flow to intestinal 
tissue Brown (1997)

PF 0.05 0.06 0.05 0.05 fat/plasma partition coefficient Brown (1997)

PL 0.1 0.13 0.12 0.1 liver/plasma partition coefficient
calculated using QPPR of 
Rodgers & Rowland 2006

PR 0.136 0.172 0.156 0.13
richly perfused tissue/plasma partition 
coefficient

calculated using QPPR of 
Rodgers & Rowland 2006

PS 0.19 0.22 0.21 0.2
slowly perfused tissue/plasma 
partition coefficient

calculated using QPPR of 
Rodgers & Rowland 2006

PG 0.18 0.21 0.19 0.17 gut/plasma partitioncoefficient
calculated using QPPR of 
Rodgers & Rowland 2006

PEWP 0.31 0.31 0.31 0.31
extracellular water/plasma partition 
coefficient

calculated using QPPR of Peyret 
(2010)

PCEW 1 1 1 1
cell/extracellular water partition 
coefficient

calculated using QPPR of Peyret 
(2010)

BP 0.55 0.55 0.55 0.55 0.55 blood:plasma ratio 1-HCt, assumption

ka 0.09 0 0.09 0.01

absorption rate constant in upper 
intestines and colon, fitted to 
experimental data /hr Krag (1974), Voronova (2020)

aBSEP 0.839 BSEP protein abudance pmoles/10^6 hepatocytes Burt (2016)
MWBSEP 140000 molecular weight BSEP g/mole
Hep 99 hepatocellularity 10^6 hepatocytes per g liver Barter (2007)

VmaxNTCPc 510 561 600
maximal rate of bile acid uptake into 
HepaRG cells, unscaled

pmoles/10^6 
hepatocytes/min Notenboom (2018)

KmNTCP 5.284 9.2 8.4
maximal rate of bile acid uptake into 
HepaRG cells, unscaled µM

GCDCA: average of Notenboom 
(2018) and Jani (2018), GCA + 
GDCA: Notenboom (2018)

SF_OATP 1.25

NTCP-mediated transport is only 80% 
of transport; correction factor to 
correct for total hepatic transport

Clint_PDc 0 0 0 78.975 passive diffusion L/hr
For DCA: set equal to blood 
flow to liver

VmaxBSEPc 5.8 7 8.4
maximal rate of BSEP-mediated 
transport, unscaled umole/min/mg BSEP Kis (2009), Notenboom (2018)

KmBSEP 4.3 25.9 19
Michaelis-Menten constant for BSEP-
mediated transport umole/L Kis (2009), Notenboom (2018)

ktj_fasted 2.44
upper intestine transit rate in fasted 
state /hr Kimura (2002)

ktj_fed 2.155 upper intestine transit rate in fed state /hr Kimura (2002)
kti_fasted 2.76 ileum transit rate in fasted state /hr Kimura (2002)
kti_fed 1.2 ileum transit rate in fed state /hr Kimura (2002)

VmaxASBTc 203.2 71.5 211.2072
maximal rate of ASBT-mediated 
transport, unscaled pmoles/min/cm2

GCA experimental, GCDCA and 
GDCA from Balakrishnan (2006)
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surface 4712 cylindrical surface of ileum cm2
calculated from radius and 
length, input from Kararli (1995)

ES 2.8
empirical scalar for in vitro-in vivo 
extrapolation VmaxASBTc empirical

KmASBT 0.662 16.8 1.1
Michaelis-Menten constant for ASBT-
mediated transport umol/L Balakrishnan (2006)

QIb 0.5

fraction of bile flow transported 
directly from liver to intestinal lumen 
via common bile duct Molino (1986)

CBfs 0.45 0.085 0.1 0.32
systemic plasma concentration in 
fasting state umol/L García-Cañaveras (2001)

Gdosel 0.518 0.238 0.244
fraction of each BA produced in liver 
from DCA Rodrigues (2014)

Gdose 3020 1564.36 810.3385 419.7553 dose of BA produced in liver from DCA umol Sips 2018

VIl 5.9 volume ileum L
calculated from radius and 
length, input from Kararli (1995)

kam 1000 amidation rate constant /hr
assumption: immediate 
conjugation in liver

kdec 1000 deconjugation constant /hr
assumption: immediate 
deconjugation in colon

ge 1.2 gallbladder emptying rate /hr Molino (1986)
get 1.5 gallbladder ejection time hr Jazrawi (1995)
ODOSEmg 0 dose of ODE mg
ODE_fub 0.003 plasma

p
plasma equals Fub in caecum 4
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Abstract 
Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically 

based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal reuptake via 

the apical sodium dependent bile acid transporter (ASBT) was applied to predict the systemic plasma 

bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin 

was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile 

acid homeostasis upon oral exposure of rats. Kinetic parameters to define the effects of tobramycin 

on intestinal bile acid transport were determined in vitro using a Caco-2 cell layer transwell model for 

studying the intestinal translocation of 4 model bile acids including glycochenodeoxycholic acid 

(GCDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA) and deoxycholic acid (DCA) the latter as 

a model for unconjugated bile acids (uBA). Kinetic constants for the effect of tobramycin on intestinal 

microbial deconjugation were taken from previous in vitro studies using anaerobic fecal incubations. 

The PBK model simulations predicted that exposure to tobramycin at the dose level also used in the 

previous 28 day rat study would reduce human plasma Cmax levels of GCA, GCDCA, GDCA and uBA by 

42.4%, 27.7%, 16.9% and 75.8%. The reduction of conjugated bile acids is governed especially via an 

effect on ASBT mediated intestinal uptake, and not via the effect of tobramycin on intestinal 

deconjugation, likely because deconjugation happens to a large extent in the colon which has limited 

subsequent bile acid reuptake. The results reflect that oral exposure to xenobiotics that are not or 

poorly bioavailable can affect systemic bile acid homeostasis. Altogether, the PBK model appears to 

provide a 3R compliant tool to evaluate the effect of oral exposure to xenobiotics on host bile acid 

homeostasis via effects on intestinal bile acid deconjugation and reuptake.  

  

KKeeyy  wwoorrddss:: Bile acids ●● Caco-2 cells ●● apical sodium dependent bile acid transporter (ASBT) 

●●Physiologically based kinetic (PBK) model ●● tobramycin 

 

LLiisstt  ooff  aabbbbrreevviiaattiioonnss::  ASBT, apical sodium-dependent bile acid transporter; BSEP, bile salt export 

pump, BSH, bile salt hydrolase, CA, cholic acid; CDCA, chenodeoxycholic acid; Cmax, maximal 

concentration in plasma; DCA, deoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic 

acid; GDCA, glycodeoxycholic acid; NTCP, Na+-taurocholate cotransporting polypeptide; PBK, 

physiologically based kinetic; TEER, transepithelial electrical resistance; uBA, unconjugated bile acid 
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5.1 Introduction 
Cholesterol conversion to bile acids is an important metabolic pathway in humans (Di Ciaula et al., 

2018; Hofmann, 1999a). Bile acids play a key role in inducing bile flow and biliary lipid secretion, 

assimilating the dietary fat and lipid-soluble vitamins in the intestinal tract (Chiang, 1998). Two major 

primary bile acids are cholic acid (CA) and chenodeoxycholic acid (CDCA) which are synthetized from 

cholesterol in the liver (Russell and Setchell, 1992). Before secretion from liver into bile canaliculi, CA 

and CDCA are conjugated with taurine or glycine to form the corresponding taurine and glycine 

conjugated bile acid (Bahar and Stolz, 1999; Vlahcevic et al., 1999). Upon bile acid secretion through 

the bile duct into the gastrointestinal tract, about 95% of the bile acids are reabsorbed from ileum and 

colon via the portal vein back to the liver, with only a minor amount being excreted into feces 

(Hofmann, 1999b; Dowling, 1972; Dawson, 2018). This so-called enterohepatic circulation is a highly 

efficient process sustaining bile acid homeostasis. 

Many transporters participate in this enterohepatic circulation including the Na+ taurocholate 

co-transporting polypeptide (NTCP) and the bile salt export pump (BSEP) in the liver, and the apical 

sodium-dependent bile acid transporter (ASBT) and the organic solute transporter OST α/β in the 

intestine (Halilbasic et al., 2013; Stieger et al., 2007; Balakrishnan and Polli, 2006; Dawson et al., 2005). 

These bile acid transporters facilitate bile acid absorption and excretion within the body, and 

contribute to bile acid homeostasis under physiological conditions. Gut microbiota also participates in 

the bile acid metabolism. In the colon, efficient deconjugation of conjugated primary bile acids is 

catalyzed by bile salt hydrolases (BSH) present in a variety of gut microbiota such as Clostridium, 

Bacteroides, Lactobacillus and Enterococcus and others (Begley et al., 2005; Ridlon et al., 2006; Jones 

et al., 2008). 

Recently we developed a physiologically based kinetic (PBK) model to describe bile acid 

metabolism in humans (de Bruijn et al. 2022). This model included the activity of the bile salt export 

pump (BSEP) in the liver enabling modeling of the effect of the BSEP inhibitor bosentan on bile acid 

profiles in human plasma. In a subsequent study also the activity of the ASBT responsible for intestinal 

reuptake of bile acids was included in the PBK model enabling characterization of the effect of the 

ASBT inhibitor Odevixibat on human bile acid plasma levels (de Bruijn et al., 2023). The aim of the 

present study was to apply the model to investigate the effect of the antibiotic tobramycin on bile acid 

homeostasis. Tobramycin is an aminoglycoside antibiotic known to affect protein synthesis in bacterial 

as well as human cells thus leading to a reduction in normal functional protein formation (Wangen and 

Green, 2020; Neu, 1976). A previous 28 day study in young adult Wistar rats reported that oral 

exposure to tobramycin at dose levels affecting the intestinal microbiota but not causing systemic 

toxicity, substantially affected bile acid levels in host feces and plasma samples (Murali et al., 2023). 

Previous studies in an in vitro transwell intestinal transport model with Caco-2 cell layers revealed that 

pre-exposure of the Caco-2 cells to tobramycin significantly reduced the transport of 

taurochenodeoxycholic acid (TCDCA) and glycochenodeoxycholic acid (GCDCA) across the Caco-2 cell 

layer (Zhang et al., 2023). Given that both in vivo but also in Caco-2 cells the ASBT is responsible for 

the transport of conjugated bile acids across the intestinal cell layer (Balakrishnan and Polli, 2006; 

Balakrishnan et al., 2006; Dawson, 2011; Chen et al., 2012; Xiao and Pan, 2017), this effect of 

tobramycin is likely mediated via an effect on the expression level of ASBT. To predict the 
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consequences of this effect of tobramycin for bile acid plasma levels in human, the previously 

developed PBK model was used to predict the effects of tobramycin on plasma levels of three model 

conjugated bile acids including glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), and 

glycodeoxycholic acid (GDCA). Effects on deoxycholic acid (DCA) were also characterized, because DCA 

is known to be the most abundant unconjugated bile acid (uBA) in human plasma (Rodrigues et al., 

2014) and thus representative for the behavior of unconjugated bile acids (uBAs). To define the PBK 

model parameters, transport of a mixture of these bile acids across Caco-2 cell layers upon pre-

exposure and co-exposure of the Caco-2 cells with tobramycin was quantified. Kinetic data for the 

effect of tobramycin on deconjugation of conjugated bile acids were taken from a previous study with 

human fecal incubations (Zhang et al., 2023). Thus, data generated in vitro were used as input in the 

PBK model to predict the effects of tobramycin on in vivo plasma bile acid levels in humans. 

 

5.2 Materials and methods 
CChheemmiiccaallss  aanndd  rreeaaggeennttss  

Tobramycin was obtained from Sigma-Aldrich (Schnelldorf, Germany). Glycocholic acid (GCA), 

glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA) and deoxycholic acid (DCA) were 

purchased from Sigma-Aldrich (Schnelldorf, Germany). Phosphate buffered saline (PBS) was purchased 

from Gibco (Paisley, UK). Fetal Bovine Serum (FBS) was obtained from GE Healthcare Life Sciences 

Hyclone Laboratories (Logan, Utah, USA). 0.05% Trypsin-EDTA, minimum essential medium (MEM), 

penicillin-streptomycin-glutamine solution (PSG), sodium pyruvate, Hank’s balanced salt solution 

(HBSS) and HEPES buffer solution were purchased from Gibco (Paisley, UK). Corning Costar 24 well 

transwell plates were purchased from Corning Life Sciences (Schnelldorf, Germany). Acetonitrile (ACN) 

and methanol were obtained from Biosolve BV (Valkenswaard, Netherlands). Dimethyl sulfoxide 

(DMSO) was purchased from Sigma-Aldrich (Darmstadt, Germany). 

  

CCeellll  ccuullttuurree  

The human epithelial Caco-2 cell line (used in passage number 15-22) was purchased from the 

American Type Culture Collection (Rockville, MD, USA). Cells were cultivated in MEM with 20% FBS, 

1% sodium pyruvate and 1% PSG. The cells were grown in 75 cm2 flasks in an incubator at 37 ℃, 5% 

CO2 and 100% humidity. Cells were subcultured when reaching 50%-60% confluence with 0.05% 

trypsin-EDTA. 

  

IInn  vviittrroo  bbiillee  aacciidd  ttrraannssppoorrtt    

For the transport assay, 1.8 × 105 Caco-2 cells/cm2 in 100 µL medium were seeded at the apical side of 

the wells of a Corning 24 well transwell plate and 600 µL MEM medium was added to the basolateral 

side. Cells were cultivated for 18 days to form intestinal cell layers, with fresh medium provided every 

other day. In order to exclude effects of other antibiotics than tobramycin, MEM medium without PSG 

was used when cells were cultured in the 24 well transwell plates. Caco-2 cells were exposed to 45 

mM tobramycin or solvent control for 48 h after 18 days cultivation in the transwell plate. The 

concentration of tobramycin was based on the dose level that was shown in a reported in vivo rat 

bioassay to affect bile acid homeostasis (Murali et al., 2023), converting the dose of 1000 mg/kg 
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bw/day to a concentration of 45 mM as reported previously (Zhang et al., 2022). Integrity of the cell 

layers in the wells was checked by measurement of the transepithelial electrical resistance (TEER) 

values, before and after the pre-exposure or co-exposure of the cells to tobramycin or control in 

transport buffer, as well as at the end of the transport experiment. The TEER value was measured with 

a Millicell® ERS-2 Volt-Ohm Meter (Millipore, Amsterdam, Netherlands) and expressed Ω×cm2 and only 

cell layers with a TEER value above 500 Ω×cm2 were used for transport experiments.   

After pre-exposure with tobramycin or solvent control, the exposure medium was removed and 

the cell layers were cultured in transport medium (HBSS supplemented with 10 mM HEPES, pH 7.4) for 

30 min. Following this 30 min incubation in transport medium, 5 µM GCA, 5 µM GCDCA, 5 µM GDCA 

and 5 µM DCA as a mixture dissolved in transport medium, were added to the apical part of the 

transwell plate, and incubation was continued. Samples of 50 µL were taken and replenished from the 

basolateral compartment at 1h, 2h and 3h, following addition of the bile acid mixture, and analyzed by 

LC-MS/MS for bile acid levels. Co-exposure of the cells to a mixture of GCA, GCDCA, GDCA and DCA 

each at 5 µM and 45 mM tobramycin was performed in a similar way starting at day 20 of culture.  

  

BBiillee  aacciidd  pprrooffiilliinngg  bbyy  LLCC--MMSS//MMSS    

Bile acid profiling was performed using a triple quadrupole LCMS-8045 instrument (Shimadzu 

Corporation, Japan). The method applied was able to measure 20 different bile acids which were 

separated on a Kinetex C18 column (1.7 µm × 100 A × 50 mm × 2.1 mm, Phenomenex 00B-4475-AN). 

For the LC-MS/MS runs, mobile phase A (MilliQ water containing 0.01% formic acid) and mobile phase 

B (50% acetonitrile/ 50% methanol) were used. The injection volume was 1 µL and the flow rate 0.4 

mL/min. The gradient applied was as follows: 0-10 min 30-70% B, kept at 70% B for 1 min, changed 

from 70-98% B from 11-19 min, kept at 98% B for 1 min; and then changed from 98 to 30% B from 20-

25 min followed by 10 min equilibration at 30% B before the next injection. Electrospray ionization 

(ESI) was used in a negative ion mode within the mass spectrometer. The ESI parameters included 

Nebulizing gas flow 3 L/min; drying gas flow and heating gas flow 10 L/min; interface voltage 3 kV; 

interface current 0.9 uA; interface temperature 300 ℃; Desolvation temperature 526 ℃; DL 

temperature 250 ℃; heat block temperature 400 ℃; Conversion Dynode Voltage 10 kV; detector 

voltage 2.16 kV; IG Vacuum 1.8e-03 Pa; PG Vacuum 9.4e+01 Pa; CID Gas 230 kPa. Both selective ion 

monitoring (SIM) and multiple reaction monitoring (MRM) were used for the bile acid detection in 

order to obtain optimal sensitivity for each bile acid. Detailed bile acid identification and quantification 

was achieved using the characteristics previously described (Zhang et al., 2023; Zhang et al., 2022). 

  

PPhhyyssiioollooggiiccaallllyy  bbaasseedd  kkiinneettiicc  ((PPBBKK))  mmooddeell  ooff  bbiillee  aacciidd  hhoommeeoossttaassiiss  

PBK modeling was used to predict in vivo human plasma concentrations of GCA, GCDCA, GDCA and 

uBA with or without tobramycin treatment, using the PBK model previously described (de Bruijn et al., 

2023). uBA represents a lumped pool of unconjugated bile acids, including DCA, but also lithocholic, 

cholic and chenodeoxycholic acid. The unconjugated bile acids were lumped to reduce model 

complexity. DCA was used as a model bile acid to obtain kinetic rate constants and tissue:partition 

coefficients for the uBAs, because it is the most abundant secondary uBA in human serum (Rodrigues 

et al., 2014). GCA, GCDCA and GDCA deconjugation in the intestine to their corresponding uBAs was 
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assumed to be rapid and complete by setting the deconjugation rate to 1000 hr-1. After hepatic 

reuptake, uBAs were rapidly conjugated with a rate constant of 1000 hr-1. The fraction of GCA, GDCA 

and GCDCA formed in the liver was derived from the fraction of these bile acids present in human liver 

biopsies (Rodrigues et al., 2014). The Michaelis-Menten equation in the PBK model that represents 

ASBT-mediated bile acid transport across the intestine is as follows: 

 

Equation 1:                  𝑣𝑣 𝑣 ���������������
���������  

 

Where v is the velocity of transport in µmol/h, Vmax,ASBT is the maximum velocity of transport in 

µmol/h, Km,ASBT is the Michaelis-Menten constant of transport in µmol/L and S is the concentration of 

the respective bile acid expressed in µmol/L. Tobramycin pre-exposure of the Caco-2 cells inhibited 

bile acid transport most likely by downregulating the protein expression of the bile acid transporter 

ASBT. Co-exposure of the cells to tobramycin and the bile acids inhibited bile acid transport by direct 

interactions. The inhibition of the ASBT mediated transport was modelled by reducing the Vmax to 

include the effect of pre-exposure and by reducing the absorption rate constant ka to include the 

effect of co-exposure, with the level of reduction being derived from the data obtained in the in vitro 

Caco-2 model system to set the% of reduction of the Vmax or ka respectively. The model code is the 

same as the code applied in Chapter 4 and can be found in section 4.5 supplementary material II.   

 

DDaattaa  aannaallyyssiiss  aanndd  SSttaattiissttiiccss  

Bile acid profile data were analyzed using the Labsolutions software within the LC-MS/MS system. 

Graphical figures were drawn by using Graphpad Prism 5 (San Diego, USA) and R version 4.1.0. 

Statistical analysis was performed by Student’s t test. The effects were considered significant when 

P<0.05. All the data are presented as mean ± SD from at least three independent measurements. 

 

5.3 Results 
CCaaccoo--22  cceellll  llaayyeerr  iinntteeggrriittyy    

TEER values were detected before, during and after the bile acid transport assays in order to ensure 

that the barrier integrity of the cell layers was not affected by the pre-exposure with tobramycin or 

the co-exposure with tobramycin during the transport experiment. The TEER values of the cell layers 

confirmed that these cell layers were not affected by the pre-exposure and co-exposure for both 

control and tobramycin treatment conditions (supplementary information Figure S1 and S2). Also the 

presence of the bile acids did not affect the TEER value (supplementary information Figure S1 and S2). 
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TTrraannssppoorrtt  ooff  aa  mmiixxttuurree  ooff  bbiillee  aacciiddss  aaccrroossss  CCaaccoo--22  cceellll  llaayyeerrss  pprree--eexxppoosseedd  ttoo  ttoobbrraammyycciinn  

Figure 1 presents the time dependent transport of a mixture of the 4 bile acids (GCA, GCDCA, GDCA, 

and DCA as the model compound for the uBAs) across the Caco-2 cell layers without or with pre-

exposure of the cell layers to tobramycin. Table 2 presents the apparent permeability coefficients (Papp 

values) (expressed in cm/s) derived from the data at 1h incubation. Pre-exposure of the cells with 

tobramycin reduced the transport of GCA and GCDCA to a significant extent while reduction of the 

transport of GDCA was not significant and there was no effect on DCA transport. The data also reveal 

that transport of GCDCA, GDCA and DCA was comparable and at least 2-fold higher than that of GCA. 

 

A   B 
  

C D 

  
FFiigguurree  11 Time dependent transport of a mixture of bile acids (GCA, GCDCA, GDCA and DCA) across the Caco-2 

cell layers upon pprree--eexxppoossuurree of the cell layers without (control) or with 45 mM tobramycin (*P< 0.05). Results 

are expressed as mean ± SD, n=3.  

 

TTaabbllee  11 Permeability constants (Papp values) for the transport of a mixture of bile acids (GCA, GCDCA, GDCA and 

DCA) across Caco-2 cell layers upon pprree--eexxppoossuurree of the cell layers without (control) or with 45 mM tobramycin 

(*P< 0.05). Results are expressed as mean ± SD, n=3.  

 Papp (in 10-5 cm/s)  
Bile acid Control Tobramycin Residual transport 

activity 
(% of control) 

GCA 1.0±0.1 0.5±0.1* 50.0 
GCDCA 2.1±0.2 1.4±0.1* 66.7 
GDCA 2.2±0.1 1.8±0.3 82.0 
DCA 2.9±0.7 3.3±0.3 113.8 
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From the results presented in table 1, it follows that the effect of pre-exposure of the Caco-2 

cells to tobramycin on bile acid transport is due to an effect on active transport. This follows from the 

observation that the transport of DCA which is known to be predominantly transported via passive 

diffusion (Dietschy, 1968) is not inhibited, while that of GCA, a bile acid that predominantly crosses the 

intestinal barrier via ASBT mediated active transport (Dawson et al., 2009) is inhibited to the largest 

extent. The residual transport activity followed the same order as the lipophilicity (DCA > GDCA ≈ 

GCDCA > GCA), indicating that active transport is reduced and passive transport contributes to a 

variable extent to the remaining transport, depending on the lipophilicity (Aldini et al., 1996; Roda et 

al., 1982).  

Based on these considerations the consequences of the effect of tobramycin on bile acid 

transport via an effect on the ASBT transporter expression levels was investigated by reducing the Vmax 

for ASBT mediated transport in the PBK model to reflect the% residual transport activity presented in 

table 1.  

  

TTrraannssppoorrtt  ooff  aa  mmiixxttuurree  ooff  bbiillee  aacciiddss  aaccrroossss  tthhee  CCaaccoo--22  cceellll  llaayyeerrss  uuppoonn  ccoo--eexxppoossuurree  wwiitthh  ttoobbrraammyycciinn  

Since tobramycin appeared also able to disturb bile acid transport via direct effects, bile acid transport 

upon co-exposure of a mixture of bile acids with tobramycin across the Caco-2 cell layers was 

quantified. Figure 2 and table 2 present the results obtained and demonstrate that tobramycin co-

exposure reduced the transport of GCDCA and DCA significantly, while it did not affect the transport of 

GCA, and the reduction in transport of GDCA was not significant. The Papp values for DCA, GCDCA, 

GDCA were again at least 2-fold higher than that of GCA. 
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FFiigguurree  22 [see next page for caption]  

GCDCA

Time(h)

C
on

ce
nt

ra
tio

n(
μμM

)

0 1 2 3
0.0

0.2

0.4

0.6

0.8
Control
Tobramycin

 *

 *

 *

GCA

Time (h)

C
on

ce
nt

ra
tio

n(
μ μM

)

0 1 2 3
0.0

0.2

0.4

0.6

0.8
Control
Tobramycin

GDCA

Time(h)

C
on

ce
nt

ra
tio

n(
μμM

)

0 1 2 3
0.0

0.2

0.4

0.6

0.8
Control
Tobramycin

 *

 *

DCA

Time(h)

Co
nc

en
tr

at
io

n(
μμM

)

0 1 2 3
0.0

0.2

0.4

0.6

0.8
Control
Tobramycin

 *

 *

146 CHAPTER 5



 

FFiigguurree  22 Time dependent transport of a mixture of bile acids (GCA, GCDCA, GDCA and DCA) across the Caco-2 

cell layers upon ccoo--eexxppoossuurree without (control) or with 45 mM tobramycin (*P< 0.05). Results are expressed as 

mean ± SD, n=3. 

 

TTaabbllee  22 Permeability constants (Papp values) for the transport of a mixture of bile acids (GCA, GCDCA, GDCA and 

DCA) across Caco-2 cell layers upon ccoo--eexxppoossuurree without (control) or with 45 mM tobramycin (*P< 0.05). Results 

are expressed as mean ± SD, n=3.  

 Papp (in 10-5 cm/s)  
Bile acid Control Tobramycin Residual transport activity 

(% of control) 
GCA 1.0±0.1 0.9±0.1 90.0 
GCDCA 2.2±0.2 1.3±0.1* 59.0 
GDCA 2.1±0.1 1.7±0.3 81.0 
DCA 3.0±0.6 0.8±0.1* 27.0 

 

The Papp values in table 2 reveal that inhibition of bile acid transport upon co-exposure of the 

Caco-2 cells to tobramycin and the bile acids most likely results from an effect on passive diffusion and 

not from an effect on the ASBT transporter. This follows from the fact that the reduction is most 

substantial for DCA, the most lipophilic bile acid, which is transported mainly by passive diffusion. The 

residual transport activity increased with decreasing lipophilicity. In line with this finding, the smallest 

effect was observed for GCA, which is the least lipophilic bile acid and is predominantly transported by 

active ASBT mediated transport. Thus, to investigate the consequences of this effect of tobramycin for 

the plasma bile acid levels, the absorption rate constants for intestinal uptake ( ka) in the PBK model 

were reduced to reflect the% residual transport activity presented in table 2. 

 

PPrreeddiiccttiioonn  ooff  tthhee  ccoonnsseeqquueenncceess  ooff  iinnhhiibbiittiioonn  ooff  bbiillee  aacciidd  rreeuuppttaakkee  bbyy  ttoobbrraammyycciinn  ffoorr  tthhee  iinn  vviivvoo  ppllaassmmaa  

bbiillee  aacciidd  ccoonncceennttrraattiioonnss  

Figure 3 presents the PBK model simulations for in vivo plasma GCA, GCDCA, GDCA and uBA 
concentrations with and without tobramycin treatment. The curves reflect the consequences of 3 
meals a day at 8:00, 12:00 and 16:00 respectively and are based on Vmax and ka values that are adapted 
in line with the results from table 1 and 2. The results obtained reveal that, in line with the in vitro bile 
acid transport results, systemic plasma levels of especially the 3 conjugated bile acids are reduced by 
effects of tobramycin on ASBT expression levels while plasma uBA levels are especially sensitive to 
effects of the co-exposure on passive diffusion and not affected by the effects on ASBT expression 
levels. Given that upon in vivo exposure to tobramycin both effects of pre- and co-exposure are likely 
to occur simultaneously, the purple lines in Figure 3 present the PBK model predictions where both 
the effect on Vmax and ka were taken into account. 

These data reveal that for all four bile acids tobramycin exposure at an oral dose level similar to 
what was applied in the 28 day rats studies is predicted to result in a substantial reduction of the 
plasma Cmax concentrations by 42.4%, 27.7%, 16.9% and 75.8% of the concentrations without 
tobramycin for GCA, GCDCA, GDCA and uBA respectively.   
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FFiigguurree  33 PBK model based predictions for the effects of an oral dose of 1000 mg/kg bw tobramycin on the 
systemic plasma levels of the bile acids (GCA, GCDCA, GDCA and uBA). The curves present simulations assuming 
3 meals (at 8:00, 12:00 and 16:00) per day. The curves present the predicted plasma levels without tobramycin 
(control; red solid lines), with the effect of tobramycin on ASBT expression levels (based on pre-exposure to 
tobramycin) (green dotted lines), with the direct effect on bile acid absorption (based on co-exposure to 
tobramycin) (blue dotted lines) and with taking both effects of tobramycin into account (based on pre-exposure 
and co-exposure to tobramycin) (purple solid lines). 
 
PPrreeddiiccttiioonn  ooff  tthhee  ccoonnsseeqquueenncceess  ooff  tthhee  eeffffeecctt  ooff  ttoobbrraammyycciinn  oonn  iinntteessttiinnaall  bbiillee  aacciidd  ddeeccoonnjjuuggaattiioonn  ffoorr  

tthhee  iinn  vviivvoo  ppllaassmmaa  bbiillee  aacciidd  ccoonncceennttrraattiioonnss    

Previously tobramycin was also shown to inhibit intestinal bile acid deconjugation by the 
microbiota(Zhang et al., 2023). To further elucidate the consequences of this effect of tobramycin on 
bile acid metabolism further PBK modeling was performed. In vitro anaerobic incubations with human 
fecal slurry and a mixture of bile acids demonstrated that tobramycin inhibited deconjugation of GCA 
and GCDCA resulting in 28.1% and 47.2% residual activity (Zhang et al., 2023). To include this effect in 
the PBK modeling the deconjugation constant for the model that predicted the effect of tobramycin 
treatment was assumed to decrease from 1000 hr-1 to 281 hr-1 for GCA and 472 hr-1 for GCDCA. This 
change appeared to influence the PBK model predictions for the plasma levels of uBA (Table 3), which 
residual Cmax reduced from 41.5% to 24.2% when considering intestinal microbial deconjugation. This 
outcome is in line with the in vitro anaerobic incubation results that revealed that tobramycin 
inhibited deconjugation of conjugated bile acids resulting in reduced uBA accumulation (Zhang et al., 
2023). 
  
TTaabbllee  33 PBK model based predicted residual Cmax of the bile acids (GCA, GCDCA, GDCA and uBA) in human plasma 
when simulated without and with the effects of tobramycin on intestinal microbial deconjugation while also 
including the effects of tobramycin on intestinal reuptake of the bile acids compared to control (without 
tobramycin). 
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 Residual Cmax (%) 
 GCA GCDCA GDCA uBA 
 

Without intestinal deconjugation 
 

57.6 
 

72.3 
 

83.1 
 

41.5 
 

With intestinal deconjugation 
 

57.6 
 

72.3 
 

83.1 
 

24.2 
 

IInntteerriinnddiivviidduuaall  vvaarriiaattiioonn  iinn  bbiillee  aacciidd  ppooooll  ssiizzee  

The total bile acid pool size is determined by the amount of bile acids in the gallbladder, the systemic 

fasting concentrations and the de novo synthesis. Previous PBK modeling results revealed that the 

amount of bile acids in a full bladder (Gdose) and systemic fasting concentrations (CBfs) have the 

largest impact on the systemic maximal bile acid concentrations Cmax (de Bruijn et al., 2022). To reflect 

differences in this total bile acid pool known to exist between individuals, the total bile acid pool size 

in the model can be adapted by the scaling factor sensitivity (sens). Setting the sens value at 0.5, 1 and 

1.5, results in PBK models that reflect individuals with different total bile acid pools. Figure 4 shows 

the effects of this change in the total bile acid pool on the consequences for the effect of tobramycin 

on the systemic bile acid concentrations. From this it follows that the effect of tobramycin on Cmax 

levels for each bile acid is predicted to be similar for all sens values, amounting to 56-59% residual Cmax 

for GCA, to 70-74% residual Cmax for GCDCA, to 82-87% residual Cmax for GDCA, and to 24-26% residual 

Cmax for uBA. 
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FFiigguurree  44 PBK model based predictions for the effect of tobramycin on the systemic plasma levels of the bile acids 

(GCA, GCDCA, GDCA, uBA) for individuals with different total bile acid pools. The curves present simulations 

assuming 3 meals (at 8:00, 12:00 and 16:00) per day. The curves present the plasma levels without tobramycin 

(control: solid lines) and with tobramycin (dotted lines) including both an effect on the Vmax for ASBT mediated 

transport (based on pre-exposure caco-2 cell experiments), and a direct effect on ka for intestinal reuptake 

(based on co-exposure Caco-2 cell experiments). The total bile acid pool size in the model was multiplied with a 

certain sens value (0.5, 1 or 1.5). Red=sens value 0.5, green=sens value 1, and blue=sens value 1.5. 
 

5.4 Discussion 
The antibiotic tobramycin was shown to inhibit intestinal deconjugation and reuptake of bile acids in 
previous studies (Zhang et al., 2022; Zhang et al., 2023). These in vitro results were in line with the 
observation of increased fecal bile acid levels and reduced plasma levels in an in vivo 28 day rat study 
(Murali et al., 2023). In the present study we used the PBK model previously developed to predict the 
effects on the systemic plasma bile acid levels in human induced by the ASBT inhibitor Odevixibat to 
study the effects of exposure to tobramycin on human plasma bile acid levels (de Bruijn et al., 2023). 
In previous in vitro studies using the Caco-2 cell layer transwell model, it was shown that the transport 
of the bile acids was mediated by active transport via the ASBT since the transport was substantially 
lower at 4oC as compared to 37oC (Zhang et al. submitted) and also in the absence of sodium (de 
Bruijn et al., 2023). In the present study, a PBK model that included microbial deconjugation and 
intestinal reuptake via the ASBT was applied to predict the systemic plasma bile acid concentrations in 
human upon treatment with the antibiotic tobramycin. Results obtained can be compared to results 
from the 28 day rat study showing effects of tobramycin on bile acid homeostasis (Murali et al., 2023) 
and results from a study in which the effects of the approved ASBT inhibitor drug Odevixibat on 
plasma and fecal bile acid levels in human volunteers were reported (Graffner et al., 2016). The 
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predicted plasma concentrations of conjugated bile acids (GCA, GCDCA, GDCA) decreased while that 
of the unconjugated bile acid (DCA) was not significantly increased upon Odevixibat treatment (de 
Bruijn et al., 2023). This is in line with the effects of Odevixibat on systemic plasma data in human 
reported in the literature (Graffner et al., 2016). Also, the relative amount of glycine conjugated bile 
acids in human serum was reported to be about 45% of the total bile acid pool, for unconjugated bile 
acids this values amounted to about 40% and for taurine conjugated bile acids it was about 15% 
(Bathena et al., 2013). Therefore, these bile acids were considered as the target bile acids in the PBK 
model.   

To obtain kinetic parameters to define the effects of tobramycin on intestinal bile acid 
transport, in vitro Caco-2 cell layer transwell experiments were performed to quantify the effect of 
tobramycin on the intestinal translocation of 4 model bile acids. After pre-incubation and co-
incubation of the Caco-2 cells to tobramycin and a mixture of GCA, GCDCA, GDCA and DCA, 
tobramycin was shown to inhibit the transport of these bile acids, and these effects were included in 
the model via reducing the Vmax and ka parameters. The PBK model simulated predictions for the time 
dependent plasma concentrations of the bile acids thus obtained show that tobramycin exposure was 
predicted to reduce the plasma levels of GCA, GCDCA and uBA significantly while the level of GDCA 
was affected to a lesser extent. The results of our PBK model predictions can also be compared to 
reported concentrations of GCDCA in human serum (control) which are about 5 fold higher than those 
of GCA (García-Cañaveras et al., 2012), while in our simulations GCDCA plasma concentrations were 
also predicted to be higher (2 fold) than those of GCA.  

Kinetic constants for the effect of tobramycin on intestinal deconjugation were taken from 
previous in vitro studies using anaerobic fecal incubations (Zhang et al., 2022; Zhang et al., 2023). 
Tobramycin is an aminoglycoside antibiotic, acting against gram-negative bacteria by performing 
bactericidal effects (Reyhanoglu and Reddivari, 2019; Brogden et al., 1976). In our previous studies, 
16S rRNA analysis revealed that tobramycin treatment changed gut microbiota composition 
significantly (Zhang et al., 2022; Murali et al., 2023); it also affected the deconjugation of fecal bile 
acids showing significant suppression of deconjugation of GCA and GCDCA in both rat and human fecal 
incubations (Zhang et al., 2022; Zhang et al., 2023). About 95% of bile acids are actively reabsorbed in 
the small intestine, while the remaining 5% of bile acids enters the colon where the majority is 
recaptured and only a minor amount is excreted in the feces (Chiang, 2009). The effect of tobramycin 
on intestinal deconjugation appeared not to affect plasma Cmax levels likely because deconjugation 
mainly occurs in the colon for only a limited portion of the total bile acid pool.  

The PBK model simulations of the present study revealed that oral exposure to tobramycin at 
the high dose level tested before in the 28 day rat study of 1000 mg/kg bw (Murali et al., 2023) is 
predicted to reduce human plasma Cmax levels of GCA, GCDCA, GDCA and uBA by 42.4%, 27.7%, 16.9% 
and 75.8%, so levels that were predicted to amount to about 0.58, 0.72, 0.83 and 0.24 times the 
control values. Human data to evaluate the PBK model predictions are not available but a comparison 
can be made to results from the 28 days in vivo rat study (Murali et al 2023). In this 28 day study rats 
were exposed to tobramycin at a dose level that was selected to affect the intestinal microbiome 
without causing systemic toxicity. In the rat study tobramycin exposure also resulted in a reduction of 
plasma levels of GCA, GCDCA, GDCA and uBA (Murali et al., 2023). In the rat study the reductions in 
bile acid levels were especially seen in female rats where exposure to tobramycin resulted in plasma 
levels of GCA, GCDCA, GDCA and DCA (uBA) that were reduced to 0.35, 0.38, 0.04 times the control 
animals and below the limit of detection, respectively (Murali et al., 2023). Thus, in the in vivo rat 
study the tobramycin induced reduction of bile acid plasma levels occurred in the order: uBA > GDCA > 
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GCA ≥ GCDCA. For human the PBK model predicted the tobramycin induced reduction in plasma bile 
acids in human to vary in the order: uBA > GCA > GCDCA > GDCA. This shows that the PBK model 
simulations for plasma bile acid levels for uBA, GCA and GCDCA, but not GDCA, are in line with the in 
vivo rat study. The less pronounced effect for GDCA in the PBK model predictions for human than in 
the rat in vivo study, may originate from a species difference in the (inhibition of ) the active 
transporters involved, being more pronounced in rat than in human.  

It is also important to note that tobramycin is poorly absorbed from the gastrointestinal tract 
thus showing poor bioavailability upon orally administration (Reyhanoglu and Reddivari, 2019). This 
implies that the current PBK simulations reflect the effects of an orally administered xenobiotic on 
systemic plasma levels without a need for systemic bioavailability of the xenobiotic itself. It is also 
relevant to note that the effects on human plasma levels of bile acids upon oral exposure to 
tobramycin predicted in the present study, do not reflect effects expected upon intravenous or 
intramuscular exposure when using tobramycin at lower dose levels as an antibiotic drug in human. 
The results of the present study rather reflect that oral exposure to xenobiotics that are not or poorly 
bioavailable can affect systemic bile acid homeostasis.  

Altogether, the PBK model appears to provide a 3R compliant tool to evaluate the effect of oral 
exposure to xenobiotics on host bile acid homeostasis via effects on intestinal bile acid deconjugation 
and reuptake.                                                                       
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FFiigguurree  SS11  TEER values before (MEM medium), during (HBSS medium) and after pre-exposure a mixture of bile 

acids (GCA, GCDCA, GDCA and DCA) transport without (control) and with tobramycin across Caco-2 cell layers. 

Results are shown as mean ± SD, n=3. 
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FFiigguurree  SS22  TEER values before (MEM medium), during (HBSS medium) and after co-exposure a mixture of bile 

acids (GCA, GCDCA, GDCA and DCA) transport without (control) and with tobramycin across Caco-2 cell layers. 

Results are shown as mean ± SD, n=3. 
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Abstract 
Background and Purpose: Bile acids are crucial for many metabolic and immune functions in humans 

and disturbance of bile acid homeostasis is known to be involved in pathologies, such as cholestasis. 

Drug-induced cholestasis is a sub-class of drug-induced liver injury (DILI) characterized by hepatic 

accumulation of bile acids and subsequent spillage to the systemic circulation. Clinical manifestation of 

cholestasis however only occurs in a small proportion of individuals exposed to the drug. The present 

study aims to develop a new approach methodology (NAM) to predict drug-induced cholestasis as a 

result of drug-induced hepatic bile acid efflux inhibition and the resulting bile acid accumulation. 

Experimental Approach: The internal hepatic concentrations of a panel of drugs predicted by a generic 

physiologically based kinetic (PBK) drug model and their effects on hepatic efflux of the abundant bile 

acid glycochenodeoxycholic acid were incorporated in a PBK model predicting hepatic bile acid 

accumulation. The predicted level of accumulation was used as a measure for cholestatic potency of 

the drug. The selected drugs were all known to inhibit hepatic bile acid efflux in an assay with primary 

suspension hepatocytes and classified as common, rare or no for cholestasis incidence. Common 

cholestasis drugs included in the study were atorvastatin, chlorpromazine, cyclosporine, glimepiride, 

ketoconazole and ritonavir. 

Key results: The cholestasis incidence of the drugs appeared not to be adequately predicted by their Ki 

for inhibition of hepatic bile acid efflux, but rather by the AUC of the PBK model predicted internal 

hepatic concentration of the drugs at therapeutic dose level above this Ki. People with slower 

clearance of the drug, a larger bile acid pool, reduced bile salt export pump (BSEP) abundance or given 

higher than therapeutic dose levels are predicted to be at higher risk to develop drug-induced 

cholestasis. 

Conclusion and Implications: The results provide a proof-of-principle of using an animal-free PBK-

based NAM for cholestasis risk assessment as a result of transporter inhibition. The current approach 

also provides mechanistic insights in risk factors towards drug-induced cholestasis.  

 

KKeeyywwoorrddss::  Bile acids and Salts ●● Physiologically based kinetic (PBK) modeling ●● Cholestasis ●●  Adverse 

Outcome Pathway 

 

LLiisstt  ooff  aabbbbrreevviiaattiioonnss::  ADR, adverse drug reaction; AO, adverse outcome; AOP, Adverse Outcome 

Pathway; AUC: area under the curve, BSEP: bile salt export pump; CLint, intrinsic clearance; Cmax, 

maximal concentration in plasma; CYP, cytochrome P450; DILI, drug-induced liver injury 

FDA, Food and Drug Administration; Fup, fraction unbound in plasma; GCDCA, glycochenodeoxycholic 

acid; MIE, Molecular Initiating Event; MRP, multidrug resistance protein; NAM, New Approach 

Methodology; OATP, organic anion transporter; PBK, physiologically-based kinetic; PON, paraoxonase 

QSAR, quantitative structure activity relationship; UGT, UDP-glucuronosyltransferases 
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6.1 Introduction 
Drug-Induced Liver injury (DILI) is the most frequent cause for drug development discontinuation and 

DILI  incidence is expected to increase, because of an increased dependency on drugs by the aging 

population (Walker et al., 2020). DILI is classified in a hepatocellular, cholestatic and a mixed type (Yu 

et al., 2017), where cholestatic DILI is characterized amongst others by a disrupted bile flow. While the 

DILI incidence is very low, with <1 in 1000 to 1 in 100 000 users (Kaplowitz, 2005; Fontana et al., 

2023), the clinical outcome to the individual is devasting. Cholestatic liver injury constitutes 20-40% of 

DILI cases (Sundaram and Bjornsson, 2017), which underscores the critical necessity for robust tools to 

identify potentially cholestatic drug candidates early in the drug-discovery phase and identification of 

sensitive individuals. The present study aims to develop a new approach methodology (NAM) to 

predict drug-induced cholestasis as a result of drug-induced hepatic bile acid efflux inhibition and the 

resulting bile acid accumulation. 

In recent years, substantial attention has been directed towards the development of Adverse 

Outcome Pathways (AOPs) as a conceptual framework for toxicological risk assessment. AOPs consist 

of a sequence that encompasses a Molecular Initiating Event (MIE), one or more Key Events (KEs), and 

an Adverse Outcome (AO), collectively representing responses spanning various tiers of biological 

complexity (Ankley et al., 2010). The fundamental principle underlying AOPs is that the MIE(s) 

combined with a select set of KEs can elucidate and forecast a toxicological response. Notably, these 

identified MIE(s) and KEs are amenable to exploration through NAMs, thereby facilitating a 

mechanism-centered, animal-free approach to assessing the safety of chemicals (Leist et al., 2017). 

Inhibition of the hepatic bile salt export pump (BSEP) is considered as MIE in the AOP of cholestasis. 

BSEP-inhibition leads to intrahepatic bile acid accumulation and subsequent toxicity (Vinken et al., 

2013). A recent case study elucidated that two azole fungicides (propiconazole and tebuconazole) 

inhibited BSEP-mediated bile acid transport and affected several nuclear receptors (Knebel et al., 

2022) which is in line with the AOP. Propiconazole and tebuconazole did not induce cholestasis in 

standard rodent in vivo bioassays (Heise et al., 2015; Schmidt et al., 2016; Nielsen et al., 2012), 

although for clinically used azole fungicides cholestasis has been reported in the European database of 

suspected adverse drug reaction (ADR) reports (www.adrreports.eu; accessed on the 21st of August 

2023). Knebel et al. explain the discrepancy between the outcomes of their in vitro testing strategy 

and the rodent assays by the fact that the intrahepatic propiconazole and tebuconazole 

concentrations in the in vivo bioassays were too low to induce BSEP-inhibition (Schmidt et al., 2016). 

Hence, the in vitro testing strategy probably successfully revealed use of propiconazole and 

tebuconazole as a hazard for cholestasis, but for a risk assessment it is important to consider organ 

concentrations. Organ concentrations can be derived from studies with laboratory animals or in an 

animal-free approach using physiologically-based kinetic (PBK) modeling.  

To predict drug-induced cholestasis, the drug PBK model predicted internal hepatic 

concentrations in humans of a series of selected drugs was incorporated in a bile acid PBK model 

describing the synthesis, circulation and excretion of the most abundant bile acid in human serum, 

glycochenodeoxycholic acid (GCDCA) (Bathena et al., 2013). Conjugated bile acids, like GCDCA, are 

typically transported by carrier-mediated transport, while unconjugated bile acids are mainly 

transported over the liver membranes via passive processes and thus unlikely to be affected by 
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transporter-inhibition (Notenboom et al., 2018). Simulating only one bile acid enabled us to keep the 

model complexity to a minimum, making the model easier to interpret and minimizing the risk of 

overfitting. The selected drugs are all known to inhibit hepatic bile acid efflux but are classified as 

common, rare or no for their incidence of inducing cholestasis. The time dependent drug-induced 

intrahepatic GCDCA accumulation was determined and compared to the inhibitory constant (Ki) of the 

drug for hepatic bile acid efflux inhibition as a measure for cholestatic potency. This newly defined 

approach also enabled prediction of the chances on developing cholestasis in people with slower 

clearance of the drug, a larger bile acid pool, reduced BSEP abundance or given higher than 

therapeutic dose levels. Thus, this modeling approach serves an animal-free proof-of-concept to 

predict drug-induced cholestasis.  

 

6.2 Methods 
SSeelleeccttiioonn  aanndd  ccllaassssiiffiiccaattiioonn  ooff  ddrruuggss  

The criteria for the inclusion of a drug in our panel were a) causally linked to the development of DILI by 

the U.S. Food and Drug Administration (FDA) (Chen et al., 2016), b) oral administration in clinical 

practice, c) able to inhibit bile acid efflux with the half inhibitory concentration (IC50) for bile acid efflux 

available from an assay with human suspension hepatocytes and the IC50 being <100 µM (Zhang et al., 

2016), d) the reported DILI being not immune-mediated and e) two or more in vivo pharmacokinetic 

studies available in literature to validate the drug PBK model based predictions for plasma 

concentrations. The maximal concentration used for the IC50 determination by Zhang et al. (2016) was 

100 µM. This resulted in a final inclusion of 18 drugs, i.e. atorvastatin, bicalutamide, bosentan, 

chlorpromazine, cyclosporine, deferasirox, fluoxetine, flutamide, glimepiride, haloperidol, lovastatin, 

ketoconazole, pioglitazone, ritonavir, rosiglitazone, saquinavir, trazodone and troglitazone. Flutamide, 

lovastatin and saquinavir were excluded from further simulations based on the results from the generic 

PBK model, as described in section 2.3. The drugs resulted in different types of DILI. The LiverTox® 

database classified chlorpromazine, cyclosporine and ritonavir as cholestatic DILI, the remaining drugs 

were classified as hepatocellular/mixed DILI (http://LiverTox.nih.gov; last accessed on the 24th of August 

2023). For atorvastatin the LiverTox® database reported two cases of mixed, one of cholestatic and one 

of hepatocellular DILI. Glimepiride and haloperidol were not present in the LiverTox® database. The 

cholestasis incidence of the 15 remaining drugs was evaluated based on the European database of 

suspected adverse drug reaction (ADR) reports (www.adrreports.eu; last accessed on the 24th of August 

2023). The following adverse reactions were considered cholestatic: cholestasis, cholestatic liver injury, 

cholestatic jaundice and cholestatic hepatitis. The incidence of cholestasis was classified by us, using the 

European ADR database as follows: common (>0.5% of ADR cholestatic), rare (0.3-0.5% of ADR 

cholestatic), and no (<0.3% of ADR cholestatic). The threshold for common incidence was set to 0.5% of 

ADR to ensure that the drugs chlorpromazine, cyclosporine and ritonavir, which were identified as 

cholestatic in the LiverTox® database, and were classified as common causes of cholestasis. The 0.3% 

threshold was set artificially to account for background cholestasis incidence. Additional drugs classified 

as common for induction of cholestasis according to our classification were: bosentan, ketoconazole, 

atorvastatin and glimepiride. Riede et al. (2017) reviewed cholestasis incidence of several drugs based 

on cohort and retrospective studies. In line with our classification, Riede et al. (2017) classified 
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cyclosporine cholestasis incidence as common and rosiglitazone as not cholestatic, but ketoconazole 

and atorvastatin cholestasis incidences were classified as rare in contrast to our classification system. 

No explanation was found for the discrepancy between atorvastatin and ketoconazole cholestasis 

incidence classification of these authors and that in the ADR database, hence, we used our classification 

system based on the European ADR database. Bosentan was classified as rare or common depending 

on the dose in the review of Riede et al. (2017). At therapeutic dose level, i.e. 125 mg twice a day, 

bosentan was considered a rare cause of cholestasis. Since the drugs were evaluated at their therapeutic 

dose level in the current study, bosentan-induced cholestasis incidence was classified as rare. 

Troglitazone was banned from the market and therefore not in the European ADR database, and also 

not in the review by Riede et al. (2017). A review of cohort studies indicated that troglitazone causes 

hepatocellular liver injury, with rare instances of mixed or cholestatic liver injury (Chojkier, 2005). 

Troglitazone cholestasis incidence was therefore classified as rare. Maximal prescribed daily dosage was 

used for simulations and obtained from the supplier’s prescription information.  

 

GGeenneerriicc  PPBBKK  mmooddeellss  ffoorr  ddrruuggss  

A generic PBK model was used to predict the hepatic concentrations of the selected drugs at 

therapeutic dose level and above. These concentrations were subsequently used to predict the 

inhibitory effect on hepatic bile acid efflux using a coupled bile acid PBK model (see section 2.3).  

The generic drug PBK models were adapted from Punt et al. (2022). Briefly, the PBK models 

consisted of compartments for lung, adipose, bone, brain, heart, intestine, liver, kidney, muscle, skin, 

spleen, arterial and venous blood. Different compared to Punt et al. (2022) a blood:plasma ratio of 

0.55 was used for acidic compounds (1-haematocrit), and 1 for neutral or basic compounds (Cubitt et 

al., 2009). Physicochemical properties (pKa, logP, logD, topological surface area, molecular weight) of 

the drugs were predicted using Chemicalize, https://chemicalize.com/ developed by ChemAxon 

(http://www.chemaxon.com). The physicochemical properties were subsequently used to predict 

tissue:plasma partition coefficients (Berezhkovskiy, 2004; Rodgers and Rowland, 2006), absorption 

rate constants and fractions absorbed (Hou et al., 2004).  

As part of this study, several in vitro and in silico methods were evaluated to derive the 

tissue:plasma partition coefficients, hepatic intrinsic clearance and fraction unbound in plasma (Fup) 

(Table 1). In more detail, for the tissue:plasma partition coefficients values derived using the in silico 

methods of Rodgers and Rowland (2006) and Berezhkovskiy (2004) were compared. For the fraction 

unbound (Fup) both the in silico method of Lobell and Sivarajah (2003) and in vitro rapid equilibrium 

dialysis data using human plasma were evaluated. Clearance data were derived from in vitro 

hepatocyte studies or the pkCSM in silico tool (Pires et al., 2015). It should be noted that in vitro the 

hepatic intrinsic clearance was measured, while pkCSM predicted the total clearance, i.e. a 

combination of hepatic and renal clearance. Where possible, in vitro intrinsic hepatic clearance (CLint) 

and Fup data were obtained from the high throughput toxicokinetic (httk) database (Pearce et al., 

2017), alternatively a literature search in Scopus was conducted to obtain the in vitro CLint (Table 2). 

Corrections for non-specific binding of the compounds to the hepatocytes in vitro were applied based 

on the calculation method of Kilford et al. (2008). The in vitro and in silico clearance data were scaled 
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to the in vivo situation based on a hepatocellularity of 117.5 × 106 hepatocytes per gram liver (Barter 

et al., 2007) and a liver weight of 1470 grams, or 70 kg body weight, respectively, see Eq. 1 and 2.  

𝐶𝐶𝐶𝐶���,��𝐻���� = 𝐶𝐶𝐶𝐶���,��𝐻�����𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝐻𝐻𝐻 × 𝐻𝐻�� Eq. 1 
𝐶𝐶𝐶𝐶���,��𝐻���� = 𝐶𝐶𝐶𝐶���,��𝐻������𝐻𝐻 × 𝐵𝐵𝐵𝐵𝐻 × 𝐻𝐻𝐻𝐻 × 𝐻𝐻�� Eq. 2 

 

Where in Eq. 1 CLint,in vivo is the intrinsic clearance in vivo in L min-1 entire liver-1, CLint,in vitro the 

hepatic intrinsic clearance in vitro in µL min-1 10-6 hepatocytes, Hep the hepatocellularity in 106 

hepatocytes/g liver and Vli the weight of the liver in grams. A factor of 10-6 L µL-1 and 60 min h-1 was 

applied to convert the CLint to units applicable to the PBK model. Eq. 2 describes the in silico to in vivo 

scaling of the total clearance (CLtot). CLtot,in vivo is the total clearance in vivo L min-1 entire liver-1, CLtot,in 

silico the total clearance as predicted by pkCSM in mL min-1 kg body weight-1, and BW the body weight in 

kg. Here,  factors of 10-3 L mL-1 and 60 min h-1 were applied to convert the CLtot to units applicable to 

the PBK model. 

A literature search was performed to compile a dataset on human in vivo drug plasma peak 

concentrations (Cmax) after a single oral dose of the selected drugs. The following key words were used 

for this literature study: (( TITLE ( “compound name” ) AND ALL ( bioavailability OR pharmacokinetics 

OR kinetics )) AND (( human OR man OR volunteer OR subject ) ) AND (Cmax OR “c max” OR “maximal 

concentration” OR “maximum concentration” OR “peak concentration” )). The studies that were 

identified for each compound were subsequently filtered to exclude 1) results obtained for specific 

patient groups like patients with renal impairment or gastric by-pass, 2) studies with children, and 3) 

studies using slow or extended-release formulations. The results of this meta-analysis including 

references can be found in the Github repository1 in the file “Invivo.xlsx”.  

The predicted plasma Cmax was compared with the observed plasma Cmax as obtained from the 

meta-analysis. The ratio predicted:observed Cmax was calculated for each study and/or dose. This 

resulted in a number of ratios per compound. The median of this ratio was calculated per compound, 

and for further simulations the combination of input parameters that gave a median ratio 

predicted:observed Cmax closest to 1 was selected. Only the drugs of with a median ratio 

predicted:observed Cmax within 10-fold were used for further analysis (n=15). An overview of the 

metabolizing enzymes or transporters involved in the kinetics of the drugs was made to find 

explanations for over- or underpredictions. The information about the involved enzymes and 

transporters was obtained from literature (Wishart et al., 2018; Elsby et al., 2012; Cockshott, 2004; 

Hebert, 1997; Klatt et al., 2011; Treiber et al., 2007).  

 

  

 
1 https://github.com/Veronique-de-Bruijn/PBK-model-cholestasis.git 
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TTaabbllee  11  Input parameters for the generic PBK model. Ka: absorption rate constant, Fa: fraction absorbed, Kpad, 
Kpbo, Kpbr, Kpgu, Kphe, Kpki, Kpli, Kplu, Kpmu, Kpsk, Kpsp are tissue:plasma partition coefficients for adipose 
tissue, bone, brain, gut, heart, kidney, liver, lung, muscle, skin and spleen, respectively. QSAR: quantitative 
structure activity relationship.  

Process Parameter(s) Method Number of 
drugs 

Reference 

Intestinal uptake  Ka, Fa QSAR based on 
the topological 
surface area 

18 Hou et al., 2004 

Physicochemical 
parameters 

pKa, logP, logD, 
topocological 
surface area, 
molecular 
weight 

Chemicalize (in 
silico) 

18 https://chemicalize.com/ 
developed by ChemAxon 

Tissue:plasma 
partition 
coefficients 

Kpad, Kpbo, 
Kpbr, Kpgu, 
Kphe, Kpki, Kpli, 
Kplu, Kpmu, 
Kpsk, Kpsp 

In silico 18 Rodgers & Rowlands, 
2006 

  In silico 18 Berezhkovskiy, 2004 

Hepatic intrinsic 
clearance 

CLint (Cryopreserved) 
primary human 
hepatocytes (in 
vitro) 

15 Data derived from the 
httk package (Pearce et 
al., 2017) or other 
publications (see Table 
2)  

Total clearance CLtot pkCSM (in silico) 18 Pires et al., 2015 

Fraction unbound 
plasma 

Fup Equilibrium 
dialysis (in vitro) 

18 Data derived from the 
httk package (Pearce et 
al., 2017), or other 
publications (Hahn et al., 
1973; Zaghloul et al., 
1987) 

  In silico 18 Lobell and Sivarajah, 
2003 

Blood:plasma ratio BP Acidic drugs: 
0.55 (1-
haematocrit) 

Neutral or basic 
drugs: 1 

18 Cubitt et al, 2009 
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TTaabbllee  22  Physicochemical properties, in vitro and in silico intrinsic clearance (CLint) for the 18 selected drugs 

Drug pKa1 pKa2 logP In vitro CLint 
(µL/min/106 
hepatocytes) 

Reference In silico CLint 
(mL/min/kg 
body weight) 

Reference 

Atorvastatin 4.31 
 

5 0 httk 2.673 pkCSM 
Bicalutamide 11.78 

 
2.52 0 httk 3.811 pkCSM 

Bosentan 5.8 1.28 5.53 2.34 httk 2.851 pkCSM 
Chlorpromazin
e 

9.2 
 

4.56 146 (Louisse et 
al., 2020) 

3.981 pkCSM 

Cyclosporine 11.82 
 

3.38 8.59 httk 3.656 pkCSM 
Deferasirox 4.51 -0.13 5.17 

  
3.664 pkCSM 

Fluoxetine 9.4 
 

4.19 36.7 (Chao et al., 
2009) 

4.786 pkCSM 

Flutamide 12.81 
 

3.4 30.4 httk 1.146 pkCSM 
Glimepiride 5.62 

 
2.93 3.67 (Hallifax et 

al., 2010) 
4.909 pkCSM 

Haloperidol 13.96 8.2 3.08 5.06 httk 12.79 pkCSM 
Ketoconazole 6.42 

 
4.28 55 httk 3.882 pkCSM 

Lovastatin 14.9 
 

3.47 0 httk 8.472 pkCSM 
Pioglitazone 7.32 5.63 3.1 

  
0.904 pkCSM 

Ritonavir 13.68 2.84 5.04 8.57 httk 3.540 pkCSM 
Rosiglitazone 7.37 6.4 2.86 

  
1.297 pkCSM 

Saquinavir 6.67 13.61 2.51 37.1 (Wood et 
al., 2018) 

1.854 pkCSM 

Trazodone 7.49 
 

3.132 7.40 httk 4.688 pkCSM 
Troglitazone 7.31 

 
4.87 21.9 httk 0.382 pkCSM 

  

GGllyyccoocchheennooddeeooxxyycchhoolliicc  aacciidd  PPBBKK  mmooddeell  

A PBK model describing synthesis, circulation and excretion of bile acids in healthy individuals was 

based on our previous work (de Bruijn et al., 2022; de Bruijn et al., 2023). The conceptual model is 

presented in Figure 1. The enterohepatic circulation was modelled as a circulation of GCDCA between 

the liver (extracellular and intracellular), gall bladder and intestine. The intestinal uptake and the 

hepatic uptake and efflux were described using carrier-mediated transport processes, i.e. ASBT, NTCP 

or BSEP-mediated, respectively. The NTCP-mediated hepatic uptake of GCDCA was modelled 

permeability-limited as described in our previous work (de Bruijn et al., 2023). The kinetic parameters 

for ASBT-mediated transport were obtained using Caco-2 cells cultured on permeable cell culture 

inserts and scaled from the in vitro to in vivo situation as described in our previous work (de Bruijn et 

al., 2023). GCDCA de novo synthesis in the liver was set equal to its excretion via the feces. GCDCA was 

actively transported from the liver to the common bile duct by BSEP following Michaelis–Menten 

kinetics. The BSEP-mediated efflux of GCDCA was described by the following equation (Eq. 1): 

𝐸𝐸 𝐸 𝑉𝑉��������  × [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
𝐾𝐾������ + [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]   

 

Eq. 1  

where E is the BSEP-mediated efflux in µmol/h, Vmax is the maximum efflux rate of GCDCA in blood in 

µmol/entire liver/hour, [Cliveriw] the free concentration of bile acids in intracellular water in liver in 
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µmol/L and Km,BSEP the Michaelis–Menten constant in µmol/L for BSEP-mediated GCDCA efflux. The 

Vmax and Km for BSEP-mediated transport of GCDCA were obtained from a vesicular transport assay in a 

baculovirus-infected Sf9 system (Kis et al., 2009).  

The differential model equations were encoded and solved using the deSolve package version 

1.32 in R version 4.1.0 (Soetaert and Petzoldt, 2010; R Core Team, 2022). The model code can be 

found in the Github repository1. 

 

IInnhhiibbiittoorryy  eeffffeecctt  ooff  ddrruuggss  oonn  hheeppaattiicc  bbiillee  aacciidd  eefffflluuxx    

The hepatic free concentration of the within 10-fold predicted drugs at the maximal prescribed daily 

therapeutic dosage was used to simulate their inhibitory effect on hepatic GCDCA efflux. The 

conceptual PBK model for the drugs was combined with the PBK model for GCDCA as displayed in 

Figure 1. The concentrations required to reduce hepatic bile acid efflux by 50% (IC50) were derived 

from a study using suspension-cultured primary human hepatocytes (PHHs) (Zhang et al., 2016) and 

corrected for in vitro non-specific binding (Kilford et al., 2008). The IC50 values obtained using PHHs 

were for all drugs except pioglitazone lower than the IC50 values obtained using BSEP-transfected 

membrane vesicles (Supplementary Table S1). Therefore, the results obtained from suspension-

cultured PHHs were used for further simulations as a worst-case estimate. Membrane vesicles and 

suspension-cultured PHHs provide different insights in hepatic bile acid efflux. PHHs are known to 

have a physiologically relevant expression of several transporters and metabolizing enzymes, rather 

than the exclusive BSEP expression in membrane vesicles. Hence, in contrast to membrane vesicles, 

the drug-induced inhibitory effect on bile acid efflux from primary suspension-cultured human 

hepatocytes is not necessarily caused by an exclusive inhibition of BSEP-mediated transport, but could 

also be caused by inhibition of the uptake, basolateral efflux by MRP3/4 or the conjugation process. 

Nevertheless, the net drug-induced bile acid efflux inhibition was incorporated in the equation for 

BSEP-mediated efflux. In the absence of specific data on the effects of all the selected drugs on bile 

acid efflux for GCDCA, glycocholic acid efflux was used as a surrogate for all drugs (Zhang et al., 2016). 

Glycocholic acid showed greater inhibition (lower IC50) in assays with PHHs than GCDCA and was 

considered as a worst-case estimate of GCDCA efflux (Chothe et al., 2021; Yucha et al., 2017). 

Competitive inhibition was assumed, as this is the typical mode of drug-transporter-inhibition (Kenna 

et al., 2018). The following formula to calculate Ki applies for competitive inhibitors like the drugs 

considered here (Eq. 3) (Yung-Chi and Prusoff, 1973): 

𝐾𝐾� =
𝐼𝐼𝐼𝐼��

1 + [𝑆𝑆]
𝐾𝐾�

 
Eq. 3 

 

Where Ki is the inhibitory constant in µM, IC50 the half maximum inhibitory concentration of 

the drug in µmol/L, [S] the substrate concentration in µM, and Km the Michaelis-Menten constant in 

µM.  

Subsequently, the inhibitory effect of the drugs on GCDCA efflux was incorporated in the PBK 

model equation describing BSEP-mediated efflux. In line with competitive inhibition, the Km,BSEP in the 
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corresponding Michaelis Menten reaction (Eq. 1) was modified to the apparent Km (Km,BSEP,app) as 

follows (Eq. 4):  

𝐾𝐾���������� = 𝐾𝐾������  (1 + [I]
K� 

) 
Eq. 4 

 

Where Km,BSEP,app is the apparent Michaelis-Menten constant in µM, [I] the unbound hepatic 

concentration of the inhibitor (=drug) in µM and Ki the inhibitory constant in µM.  

The dose-metric used to evaluate intracellular GCDCA accumulation was the area under the 

curve (AUC), because it has been acknowledged AUC is the most relevant for endpoints that are 

influenced by total dose over time resulting in an accumulation (Rietjens et al., 2019).  

 

 
FFiigguurree  11 Conceptual model for the PBK modeling of bile acid homeostasis and the influence on this homeostasis 
by drugs. Conceptual model for GCDCA PBK model was taken from de Bruijn et al. (2023), conceptual model for 
generic drugs PBK models was taken from Punt et al. (2022). CLint=intrinsic clearance, Fup=fraction unbound 
plasma, GCDCA=glycochenodeoxycholic acid, GFR=glomerular filtration rate 

SSiimmuullaattiinngg  sseennssiittiivvee  iinnddiivviidduuaallss  

The developed PBK approach was also employed to evaluate drug effects on intrahepatic GCDCA 

accumulation in sensitive individuals. For these studies cyclosporine was selected as the model drug, 

because the maximal prescribed daily therapeutic dose resulted in intrahepatic concentrations 

equivalent to the Ki for bile acid efflux inhibition, facilitating detection of changes in the bile acid 

accumulation. In our previous work, we established that an over 1.5-fold increased total bile acid pool 

size posed an individual at risk for intrahepatic bile acid accumulation as a result of BSEP-inhibition (de 

Bruijn et al., 2022). Furthermore, a low BSEP abundance was identified as a potential risk factor for the 

development of cholestasis. Therefore, as an example, the effects of cyclosporine on intrahepatic 

accumulation were simulated for a) a reference individual, b) an individual with a 1.5-fold increased 

total bile acid pool size compared to the reference individual, c) an individual with low hepatic BSEP 

abundance or d) an individual with an increased pool size and a low BSEP abundance. The low and 

reference BSEP abundances were derived from a meta-analysis of hepatic transporter abundances in 

healthy Caucasians (Burt et al., 2016). The in vitro to in vivo extrapolation of Vmax was based on the 
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BSEP abundance. A lower BSEP abundance thus resulted in a lower in vivo Vmax. The reference 

individual had a BSEP protein abundance of 0.84 pmoles BSEP protein per a million hepatocytes. Low 

BSEP abundance was set to the reported mean minus 3 times the standard deviation and amounted to 

0.23 pmoles BSEP protein per million hepatocytes.  

 

SSeennssiittiivviittyy  aannaallyyssiiss  

To assess the influence of the parameters on the model outcome, a sensitivity analysis was performed 

for the plasma Cmax of the drugs and the intrahepatic GCDCA levels. The Drug’s doses were set to 1 

mg/kg body weight. For plasma Cmax all potential combinations of input parameters were evaluated. 

The normalized sensitivity coefficients (NSC) for hepatic GCDCA levels were calculated using the 

combination of input parameters giving the Cmax in closest agreement with the in vivo data 

(Supplementary Material Table S2). Based on the method reported by Evans and Andersen (2000), the 

normalized sensitivity coefficients (NSCs) for the model parameters were calculated as follows: 

𝑆𝑆𝑆𝑆 𝑆 𝑆𝑆� − 𝑆𝑆
𝑃𝑃� − 𝑃𝑃  × 𝑃𝑃𝑃𝑆𝑆 

Eq. 4 

 

where C indicates the initial value of the model output, C′indicates the modified value of the model 

output resulting from an increase in the parameter value. P indicates the initial parameter value and P′ 

indicates the modified parameter value after a 5% increase of its value, keeping all other parameters 

at their original value. 

 

6.3 Results  
TTiissssuuee::ppllaassmmaa  ppaarrttiittiioonniinngg  hhaass  aa  mmaajjoorr  iimmppaacctt  oonn  CCmmaaxx  ffoorr  aacciiddiicc  ddrruuggss  

Figure 2 visualizes the effect of altering the method for obtaining the partition coefficients, the 

intrinsic clearance or Fup parameter, while keeping the methods for defining the other generic drug 

PBK model parameters unchanged. For 13 out of 18 drugs the Cmax predictions by the generic model 

were within 5-fold of the observed data for at least one combination of the drug PBK model input 

parameters. The predicted Cmax of atorvastatin and haloperidol were more than 5-fold but less than 

10-fold overpredicted. The Cmax of Saquinavir, flutamide and lovastatin were more than 10-fold 

overpredicted for all combinations of input parameters (Supplementary Material Figure S2). The 

largest effect on Cmax was observed for the method used to define the partition coefficients (Figure 

2A). For drugs with pKa<6, i.e. atorvastatin, bosentan, deferasirox and glimepiride, calculating the 

partition coefficients by the method of Berezhkovskiy resulted in an over 5-fold lower prediction for 

the Cmax as compared to the results obtained with the method of Rodgers and Rowland. The Fup and 

clearance methods had smaller effects on plasma Cmax. Intrinsic total clearance predicted by pkCSM 

resulted in slightly higher or similar Cmax values as intrinsic hepatic clearance determined using 

(cryopreserved) primary hepatocytes (Figure 2B). Supported by this close agreement between the two 

sets of Cmax predictions, pkCSM was employed to predict clearance for rosiglitazone, pioglitazone and 

deferasirox for which no in vitro clearance data were available. This approach resulted in Cmax 

predictions within 5-fold compared to the observed pharmacokinetic data.   
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The hepatic free concentration of the drugs was predicted using the combination of input 

parameters giving the Cmax in closest agreement with the in vivo data. Exemplary Figure 3 indicates 

which combination of input parameters gave the most accurate prediction for the Cmax of bosentan 

and glimepiride. The closest agreement with in vivo data was achieved for bosentan and glimepiride 

when the Cmax values were predicted using the method of Rodgers and Rowland for tissue partitioning 

and the method of Lobell and Sivarajah for calculation of Fup. Cmax was predicted best when 

determining the clearance by the in silico tool pkCSM and primary hepatocytes for bosentan and 

glimepiride, respectively. These comparisons were made for all 18 drugs and are displayed in 6.5 

Supplementary file Figure S1. In case two methods resulted in exactly the same median ratio 

predicted:observed, the in silico methods were chosen for intrinsic clearance and Fup. Supplementary 

Material Table S2 provides a tabular overview of the methods chosen for prediction of the parameters 

for further simulations. Flutamide, saquinavir and lovastatin were excluded from further predictions 

because of their >10-fold overprediction  
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FFiigguurree  22 Ratio predicted:observed Cmax for the 18 selected drugs using different methods to obtain the PBK 
model input parameters for a) partition coefficients, b) clearance and c) fraction unbound (Fup), while the other 
methods to obtain the input parameters where as indicated in the box above a, b and c). Green dashed line: 
ratio predicted:observed=1, lower and upper black dashed lines: ratio predicted:observed=0.2 or 5, respectively. 
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FFiigguurree  33  Ratio predicted:observed Cmax for bosentan and glimepiride using 8 different combinations of 
PBK model input parameters. The green box indicates that this combination of input parameters 
resulted in a median ratio predicted:observed closest to 1. The combination in green is used for 
further simulations. Clearance: hep=primary hepatocytes, pkCSM=in silico clearance, partition 
coefficients: Berezhkovskiy or Rodgers and Rowlands, fraction unbound in plasma: LS=Lobell Sivarajah, 
RED=rapid equilibrium dialysis. Green dashed line: ratio predicted:observed=1, lower and upper black 
dashed lines: ratio predicted:observed=0.1 or 10, respectively 

KKiinneettiicc  pprroocceesssseess  iinnvvoollvveedd  iinn  tthhee  kkiinneettiiccss  ooff  tthhee  ddrruuggss  

To facilitate evaluation of potential processes that may contribute to deviations in the predicted 

versus observed Cmax, an overview of the involved phase I, II or III processes in the kinetics of the 18 

drugs was created (Figure 4). The color of the bullets indicates the ratio predicted:observed Cmax. 

Interestingly, the Cmax values for the statins lovastatin and atorvastatin were >5-fold overpredicted. 

These drugs, along with deferasirox and haloperidol, undergo phase II metabolism by several UDP-

glucoronosyltransferase (UGT) enzymes. Haloperidol is also overpredicted, but deferasirox is 

underpredicted. Besides the UGT-enzymes, the cytochrome P450 (CYP) enzymes CYP2C8 and CYP3A4 

are involved in the metabolism of lovastatin and atorvastatin. Hepatic uptake of lovastatin and 

atorvastatin occurs through the organic anion transporter (OATP) 1B1. The highest overprediction was 

observed for lovastatin. All together the overview reveals that the over- or underprediction of the Cmax 

cannot be ascribed to a specific metabolic phase or enzyme since for all drugs, including the drugs 

with the highest level of deviation but also the drugs for which accurate predictions were obtained 

similar phase I, II and II metabolism and respective isoenzymes seem to be involved.  
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FFiigguurree  44  Phase I, II or III kinetic processes involved in the pharmacokinetics of the 18 selected drugs. To facilitate 
evaluation of potential parameters that may contribute to deviations in the predicted versus observed Cmax the 
color of the bullets indicates for the respective drug the logarithm of the median ratio predicted:observed Cmax. 
For the combination of input parameters used for the PBK predictions see Supplementary Material I Table S2 

DDrruugg  PPBBKK  mmooddeell  bbaasseedd  pprreeddiiccttiioonnss  ooff    ffrreeee  hheeppaattiicc  ccoonncceennttrraattiioonnss  aatt  tthheerraappeeuuttiicc  ddoossee  lleevveellss  aanndd  tthheeiirr  

ccoommppaarriissoonn  ttoo  tthhee  KKii  ffoorr  iinnhhiibbiittiioonn  ooff  bbiillee  aacciidd  eefffflluuxx  

Upon evaluation of the drug PBK model predictions for plasma Cmax values the PBK models were used 

to predict maximal free hepatic concentrations of the drugs (assumed to be equal to free 

concentrations of the drugs in venous blood leaving the liver) at therapeutic dose levels. In Table 3 

these predicted maximal free hepatic concentrations of the drugs are compared to the respective Ki 

values for drug-mediated inhibition of hepatic bile acid efflux by presenting the ratio between these 

two values. From these ratios it follows that not all drugs when dosed at their therapeutic level will 

result in maximal free hepatic concentrations able to reach the Ki (ratio equals at least 1) and thus will  

not result in effective inhibition of bile acid efflux. The PBK models can also be used to predict the 

dose levels required to reach maximal free hepatic concentrations of the drugs that reach the Ki, and 

these dose levels are also presented in Table 3. Comparison of these dose levels to the therapeutic 

dose levels corroborates that for some drugs therapeutic dose levels are high enough to induce 

maximal free hepatic concentrations in the range or above the Ki, resulting in inhibition of bile acid 

efflux, while for others higher than therapeutic dose levels would be needed. For cyclosporine for 

example, the ratio between the maximal free hepatic concentrations and the Ki amounts to 12.9 and 

the therapeutic dose level is 11-fold higher than what would be needed to reach the Ki while for 

others, like bosentan, this ratio amounts to 0.03, indicating that a 34-fold higher than therapeutic 

dose level would be needed to reach the Ki. 
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These results already explain why defining the Ki (or IC50) for bile acid efflux inhibition, defines 

the hazard but does not predict the risk on developing cholestasis. However, it is also important to 

consider that not only a comparison of the maximal free hepatic concentrations to the respective Ki 

values is relevant to obtain insight in chances on effects on bile acid efflux and accumulation, but also 

the duration of this situation where free hepatic concentrations are in the range of the Ki or above.  

To further study these aspects Figure 5 presents the drug PBK model based predictions for the 

free hepatic drug concentration over time at therapeutic dose levels including a comparison to the 

respective Ki values. From these results it follows that for some drugs the therapeutic dose will result 

in free hepatic drug concentrations over the whole 24h time frame (far) below the respective Ki in 

some cases not even reaching 10% of the Ki, the latter being a concentration at which for a 

competitive inhibitor less than 10% inhibition can be expected. The curves also reveal that for drugs 

for which at the therapeutic dose level the maximum free hepatic drug concentration will be reached 

or even exceed the Ki, the overall time frame during which concentrations in the range or above the Ki 

can be expected will depend on the rate of clearance. Comparison of the data for chlorpromazine and 

troglitazone for example, reveals that, although the ratio between the predicted maximum free 

hepatic concentration and the Ki is comparable for both drugs, amounting to 2.56 and 2.20 

respectively, the time frame during which for troglitazone the free hepatic concentrations are in the 

range of the Ki is substantially larger than for chlorpromazine, due to the far more efficient clearance 

of chlorpromazine. This indicates that for prediction of the risk of cholestasis not the ratio between 

the maximum free hepatic concentration of the drug at therapeutic dose level and the Ki, but rather 

the ratio between the AUC of the drug compared to the Ki is of importance. Therefore, Table 3 also 

presents the AUC/Ki ratios at therapeutic dose levels for the different drugs. 

 

TTaabbllee  33 Therapeutic dose, inhibitory constant (Ki) for inhibition of hepatic bile acid efflux, ratio 
between the drug PBK model predicted maximal free hepatic concentration at therapeutic dose level 
(assumed to be equal to free concentration in venous blood leaving the liver) and the Ki, ratio between 
the drug PBK model predicted area under the curve (AUC) free hepatic concentration at therapeutic 
dose level, the predicted dose required to obtain a maximal free hepatic concentration of the drug 
equal to Ki and the AUC above the Ki. 

Drug 

Therapeutic 
dose (mg/kg 
body 
weight)a 

 

 
 

Ki  (nM)b 

 

 

 

 

 
 

Ratio internal 
maximal liver 
concentration:
Ki  
 
  

Ratio 
internal 
liver AUC:Ki 
(h) 

Dose 
required to 
reach Ki 
(mg/kg 
body 
weight) 

AUC above 
the Ki 

(µmol/L x 
hr) 

Atorvastatin 1.143 112 0.15 1.26 8.0 0.00 
Bicalutamide 0.714 979 0.22 1.85 3.0 0.00 
Bosentan 3.571 493 0.03 0.77 123 0.00 
Chlorpromazine 28.57 460 2.56 2.20 11 0.36 
Cyclosporine 15.00 4.88 12.9 253 1.2 1.12 
Deferasirox 20.00 505 0.51 0.19 103 0.00 
Fluoxetine 0.635 320 0.34 0.41 2.0 0.00 
Glimepiride 0.086 603 0.03 0.31 2.6 0.00 
Haloperidol 0.214 1134 0.11 0.28 2.0 0.00 
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Ketoconazole 17.14 173 5.16 26.0 3.5 1.26 
Pioglitazone 0.643 631 0.91 14.8 0.7 0.00 
Ritonavir 17.14 28.0 4.88 38.3 3.5 0.44 
Rosiglitazone 0.114 8.18 0.47 10.8 0.3 0.00 
Trazodone 8.571 1919 1.28 9.88 6.5 0.20 
Troglitazone 11.43 64.0 2.20 12.4 5.0 0.12 

a Therapeutic dose is the maximal prescribed daily dose and obtained from the supplier’s information 

b Ki is the inhibitory constant of bile acid efflux inhibition induced by the drugs. The Ki was obtained by 

measuring from glycocholic acid efflux in an assay using primary hepatocytes in suspension (Zhang et al., 2016). 

 

 
FFiigguurree  55 Free hepatic drug concentration over time at therapeutic dose level. Blue dashed line=Ki, grey dashed 
line=10% of Ki 
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PPBBKK  mmooddeell  pprreeddiiccttiioonnss  ffoorr  ddrruugg  iinndduuccee  bbiillee  aacciidd  aaccccuummuullaattiioonn  

To provide insight in the consequences of the drug kinetic profiles for bile acid accumulation, PBK 

model predictions for drug induced bile acid accumulation were made by linking the drug PBK models 

to a PBK model for bile acid kinetics. Figure 6 presents the predicted GCDCA accumulation at both the 

therapeutic dose levels as well as at the dose levels at which the maximum free hepatic concentration 

was predicted to reach the Ki (Table 3). These results confirm that for several of the drugs therapeutic 

dose levels would not result in substantial bile acid accumulation in line with  the incidence report for 

cholestasis are not or rarely reported. When dose levels would be at dose levels where the free 

maximum hepatic concentrations would be at the Ki, bile acid accumulation would be always less than 

2-fold compared to the placebo and in some cases not observed at all. Of interest to note is also that 

only for some of the drugs for which cholestasis is observed commonly, especially cyclosporine, 

ritonavir and ketoconazole, bile acid accumulation at therapeutic dose levels is higher than what is 

predicted for the placebo (Figure 6a). Comparison to the bile acid accumulation predicted for these 

drugs at dose levels where the Ki is reached (Figure 6b) reveals that this higher bile acid accumulation 

at therapeutic dose levels can be ascribed to the fact that the therapeutic dose level is higher than the 

dose levels where the Ki is reached (Table 3). The results obtained also reflect that this PBK model 

based prediction accounts for the effects of the drug on the bile acid efflux during the whole 24h 

interval thus also taking into account differences in drug clearance. This is again illustrated by the 

differences between chlorpromazine and troglitazone for which the ratio between the predicted 

maximum free hepatic concentration at therapeutic dose level and the Ki is comparable (Table 3). At 

both simulated dose levels chlorpromazine, in spite of its ability to inhibit bile acid efflux, was 

predicted to not result in hepatic GCDCA accumulation while troglitazone, with less efficient clearance 

and a higher AUC, was predicted to result in increased hepatic bile acid levels (Figure 6). To further 

illustrate the importance of the size of the AUC as compared to the Ki for predicting whether bile acid 

accumulation is to be expected Figure 7a presents the PBK model predicted GCDCA accumulation 

(expressed as fold change in the AUC of GCDCA compared to the placebo) versus the ratio of the AUC 

of the drug versus the Ki, showing that the PBK modelling indeed adequately accounts for the effect of 

the varying concentration of the drug of bile acid accumulation overtime, while when using the ratio 

of the maximum free hepatic concentration of the drug and the Ki as the descriptive parameter no 

adequate prediction is obtained (Figure 7b). 
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FFiigguurree  66 PBK model predicted hepatic glycochenodeoxycholic acid (GCDCA) accumulation at a) the maximal 
therapeutic dose level or b) the dose at which the maximum free hepatic concentration reaches the Ki (see Table 
3). The dashed line indicates the placebo (set to 1). AUC=area under the curve.   

 
FFiigguurree  77  Hepatic glycochenodeoxycholic acid (GCDCA) area under the curve (AUC) relative to placebo versus a) 
the hepatic drug concentration AUC/Ki and b) maximal hepatic drug concentration/Ki. Simulations were done at 
therapeutic dose levels.   
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Finally, it is also of interest to note that the PBK model based predictions for bile acid homeostasis 

presented in Figure 6 do not in all cases reflect the frequency of occurrence of cholestasis at 

therapeutic doses of the drug. While for some compounds it is clear that therapeutic dose levels are 

high enough to cause bile acid accumulation, for others the therapeutic dose levels are too low to 

induce this effect. There are also drugs for which bile acid accumulation is predicted to occur while 

there is no or only rare reported incidence of cholestasis, while for some drugs for which occurrence 

of cholestasis is common bile acid accumulation at therapeutic dose level is limited or even absent. Of 

special interest is the apparent difference between the three thiazolidines troglitazone, rosiglitazone 

and pioglitazone. The kinetic profiles predicted for these compounds by the generic PBK model show 

substantial differences and especially a lack of effective clearance at prolonged time intervals for 

rosiglitazone and pioglitazone, resulting in potentially unrealistically high AUC levels for these drugs by 

the generic PBK model.  

This suggests that using the AUC above the Ki as a measure to predict the occurrence of 

cholestasis may be a better approach. Table 3 lists these predicted AUC above Ki values for the various 

drugs. This would predict only the following drugs of the series of 15 drugs studied to induce 

cholestasis at their therapeutic dose in the order: ketoconazole > cyclosporine >> ritonavir > 

chlorpromazine > trazodone > troglitazone. It is of interest to note that these first 4 compounds are all 

listed as commonly inducing cholestasis, while trazodone and troglitazone rarely induce cholestasis. 

This would suggest that the AUC above the Ki might be the best parameter to predict the risk of 

cholestasis. The fact that this AUC above the Ki would not identify the common occurrence of 

cholestasis for atorvastatin and glimepiride might be related to the fact that another mode of action 

than inhibition of bile acid efflux is underlying the effect, since at therapeutic dose levels these two 

drugs were predicted to never reach free hepatic concentrations that would cause efficient inhibition 

of bile acid efflux. 

 

IInnccrreeaasseedd  bbiillee  aacciidd  ppooooll  ssiizzee  aanndd  rreedduucceedd  BBSSEEPP  aabbuunnddaannccee  aarree  ppootteennttiiaall  ssyynneerrggiissttiicc  rriisskk  ffaaccttoorrss  ffoorr  

cchhoolleessttaassiiss    

The PBK modeling of drug induced bile acid accumulation presented so far did not yet take into 

account factors that may cause individuals to become sensitive towards bile acid accumulation. In 

subsequent PBK modeling studies it was investigated to what extent an augmented bile acid pool size 

and low BSEP abundance are potential risk factors for the development of cholestasis upon exposure 

to selected drugs. To this end, first the effects of cyclosporine administration for individuals with an 

increased total bile acid pool or decreased BSEP levels or both were simulated (Figure 8). Cyclosporine 

was selected for these studies because the free intrahepatic levels of this drug were shown to meet 

the Ki threshold upon therapeutic dose levels. For comparison also the effects of these interindividual 

modifications on the hepatic GCDCA levels upon placebo treatment were calculated and are 

presented in Figure 8 as well. The combination of both an increased pool size and low BSEP 

abundance resulted in intrahepatic GCDCA levels surpassing the cumulative effects of each factor in 

isolation. These observations suggest a potential synergistic impact for individuals in which both risk 

factors are present simultaneously.  
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FFiigguurree  88 Area under the curve (AUC) of GCDCA levels in liver intracellular water upon administration of the 
maximal prescribed daily dose of cyclosporine in different sensitive individuals. Yellow=placebo, 
blue=cyclosporine. Control=reference individual, pool size=1.5-fold increased GCDCA pool size compared to the 
reference, BSEP=low BSEP abundance, Pool+BSEP=individual with a 1.5-fold increased GCDCA pool low BSEP 
abundance. GCDCA=glycochenodeoxycholic acid 

SSeennssiittiivviittyy  aannaallyyssiiss  

The sensitivity analysis (Figure 9a) revealed that especially the fraction absorbed (Fa) and dose of the 

drug have strong positive influence on the plasma Cmax of the drugs, and that the blood:plasma ratio 

(BP) has a strong negative influence. Cardiac output (QC) and body weight (BW) could have a positive 

or negative influence on the plasma Cmax of the drugs, depending on which drug was simulated and 

the parametrization of the PBK model. Figure 9b revealed that the parameters related to the bile acid 

homeostasis typically had a stronger influence on the hepatic GCDCA AUC than drug-specific 

parameters. The most influential drug-specific parameters were Ki for hepatic efflux inhibition (Ki), 

fraction absorbed (Fa) and dose of the drug. Parameters related to the maximal rate of BSEP-mediated 

hepatic GCDCA efflux or its scaling had a strong influence on the hepatic GCDCA AUC. A boxplot was 

generated of the normalized sensitivity coefficients for all 15 drugs. Some NSC values were ±1.5× the 

interquartile range and thus considered an outlier. Normalized sensitivity coefficients for rosiglitazone 

were most often considered outliers followed by pioglitazone. 
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FFiigguurree  99 Sensitivity analysis for a) plasma Cmax of 18 drugs parameterized using different combinations of input 
parameters and b) hepatic glycochenodoxycholic acid (GCDCA) accumulation as indicated by the area under the 
curve (AUC) of hepatic GCDCA after administration of 15 selected reference drugs. Outliers are colored and 
shaped. Parameters are included when in a) 15 or more and in b) 10 or more normalized sensitivity coefficients 
(NSCs) were <-0.25 or >0.25. BP=blood:plasma ratio, QC=cardiac output, Kpgu=plasma:gut partition coefficient, 
CLint=clearance, SF=scaling factor for clearance, fup=fraction unbound in plasma, fuhep=fraction unbound to 
hepatocytes, BW=body weight, Ka=absorption rate constant of the drug, dose=dose, Fa=fraction absorbed, 
VmaxBSEPc=maximal rate of BSEP-mediated hepatic GCDCA efflux, MWBSEP=molecular weight of BSEP, 
WL=weight of liver, hep=hepatocellularity, aBSEP=BSEP abundance, Qgb=fraction of GCDCA going directly to the 
gallbladder, Ki=inhibitory constant of hepatic bile acid efflux, ge=gall bladder ejection rate, Gdose=amount of 
GCDCA in gall bladder at t=0, FVliw=fraction of intracellular water in liver, KmBSEP=Michaelis-Menten constant 
of BSEP-mediated hepatic GCDCA efflux. ■=chlorpromazine, ●=fluoxetine, ▲=pioglitazone, ♦=rosiglitazone. 

6.4 Discussion 
Accurate predictions of internal dosimetry are of paramount importance in driving the acceptance of 

advanced (animal-free) testing methodologies for drug safety evaluations. Internal dosimetry 

predictions are also instrumental in bridging the gap between in vitro toxicity and in vivo dose-

response relationships or drug potency data. The present study aims at development of a new 

approach methodology (NAM) to predict drug-induced cholestasis, as a result of hepatic efflux 

inhibition and subsequent bile acid accumulation. To this end, a generic PBK model was built to predict 

hepatic concentrations of 18 selected drugs. For 15 of these drugs, the predicted Cmax was within 10-

fold of the observed Cmax. The predicted internal hepatic dose level of these 15 drugs was incorporated 

in a bile acid PBK model describing the synthesis, circulation and excretion of the exemplary bile acid 

GCDCA. The intrahepatic GCDCA accumulation was determined as a measure for cholestatic potency.  

The generic PBK models were parameterized using different in vitro and in silico input parameters 

and the plasma Cmax predictions were validated with in vivo plasma Cmax. Different methods were 

applied to define the parameters required to model the drug kinetics by the generic PBK model. 
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Tissue-partitioning was predicted using the quantitative-property-property relationships as described 

by Berezhkovskiy (2004) or Rodgers and Rowland (2006). For acidic drugs, i.e. pKa<6, the method used 

for prediction of the tissue:partition coefficients had a major effect on predicted plasma Cmax. For 2 

out of 4 strongly acidic drug in our dataset, the predictions were closest to the in vivo data when the 

method of Rodgers and Rowlands was used, while for the remaining 2 strongly acidic drugs the closest 

fit was achieved with Berezhkovksiy’s method. These observations suggest that the most predictive 

approach to simulate plasma Cmax  cannot be determined by a drug’s physicochemical properties alone 

but that model parametrization should be evaluated on a case-by-case basis, and include drug-specific 

processes where necessary to enhance predictive accuracy. Another interesting finding was that the in 

silico tool pkCSM resulted in Cmax predictions similar to the predictions made with in vitro clearance 

data. If any differences were observed between the two different inputs, the pkCSM tool resulted in 

higher, i.e. more conservative, predictions than the in vitro clearance. These findings provide support 

for the use of the pkCSM tool also for pioglitazone, rosiglitazone and deferasirox for which no in vitro 

clearance data obtained from primary human hepatocytes (PHHs) were available. 

The complete set of evaluated drugs consisted of 18 drugs. For 13 drugs, the predictions made 

by the generic PBK model were within a 5-fold range, and for 7 drugs the predictions were within a 2-

fold range of the corresponding in vivo data. Typically, regulatory contexts demand predictions by a 

drug-specific PBK model within a 2-fold range of the in vivo data (Peters and Dolgos, 2019), however, 

given the large variability within reported human in vivo kinetic data this requirement might be 

excessively rigorous. Thus, deviations may in part be due to the variability within reported human in 

vivo biokinetic data. For saquinavir, for example, in vivo Cmax values ranging from 5.4 to 66.1 µg/L were 

observed at similar dose levels (Frohlich et al., 2004; Vella and Floridia, 1998) indicating variability in 

the available human in vivo data as a potential reason for the relatively large fold differences between 

predicted and reported Cmax values. Biological, technical and analytical interstudy differences could 

contribute to this variability, underpinning the need for harmonized in vivo biokinetic study protocols 

and the need to understand at least the main drivers of interindividual differences. Only 3 drugs (i.e. 

lovastatin, saquinavir and flutamide) were excluded from further analysis towards potential bile acid 

accumulation, because the generic PBK model overpredicted their plasma Cmax by >10-fold. Aside from 

the large differences in human in vivo data contributing to the discrepancies, saquinavir and flutamide 

are multidrug resistance protein (MRP)-1 substrates and it can be speculated that by incorporating 

MRP-1 mediated renal and/or biliary clearance in the PBK model, the predictions would be improved. 

Lovastatin Cmax is probably overestimated, because extrahepatic clearance is not (sufficiently) 

considered, resulting in an underprediction of total clearance. No in vitro lovastatin intrinsic clearance 

was measured using PHHs (Pearce et al., 2017), while the total in vivo lovastatin clearance was 

reported to be 451 L/hr (Zhou et al., 1995). pkCSM predicted a higher total clearance than was 

measured using PHHs, but the predicted clearance only amounted to 36 L/kg after extrapolation to 

the in vivo situation. pkCSM might not be suitable to accurately predict total clearance of drugs with 

substantial extrahepatic clearance. Lovastatin is metabolized through glucuronidation, lactonization 

and cytochrome P450-mediated oxidation which can take place outside the liver (Reig-Lopez et al., 

2021). Glucuronidation is catalyzed by UDP-glucuronosyltransferases (UGTs) and these are widely 

expressed in various tissues, including liver, kidney, lung and intestine (Tukey and Strassburg, 2000; 
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Naritomi et al., 2015). Lactonization can occur as a spontaneous process at pH < 6 or mediated by 

plasmatic paraoxonase (PON) at pH > 6 (Reig-Lopez et al., 2021). Underestimation of the clearance 

provides a conservative estimate of the Cmax. 

Upon gaining sufficient confidence in the PBK predictions for 15 out of 18 drugs, we employed 

the PBK models to predict free intrahepatic drug concentrations and incorporated these into the bile 

acid PBK model to predict the effects of the drugs on hepatic bile acid accumulation resulting from 

inhibition of bile acid efflux. Hepatic accumulation at therapeutic dose levels was simulated for the 

commonly cholestatic drugs cyclosporine, ritonavir and ketoconazole. Interestingly, no hepatic GCDCA 

accumulation was predicted at therapeutic dose levels of atorvastatin, chlorpromazine and 

glimepiride, even though these drugs were classified as common causes of cholestasis. It is 

hypothesized that these drugs cause cholestasis through mechanism(s) that cannot be fully captured 

by the short term (1h) assay with a suspension-cultured PHH assay. The PHH assay is most suitable to 

study short term competitive transporter-inhibition. According to the cholestasis AOP, the 

mechanism(s) or molecular initiating events (MIEs) could involve transporter, hepatocellular and bile 

canalicular changes (Vinken et al., 2013; Gijbels et al., 2020). Chlorpromazine probably induced 

cholestasis through hepatocellular changes that can be observed only after several hours of 

incubation. It was shown that HepaRG cells exposed to 50 µM of chlorpromazine for 4h lost ~50% of 

hepatocellular tight junctions (Morgan et al., 2019). Glimepiride induced intrahepatic bile canalicular 

dilatation in a human clinical case study (Omar et al., 2009), which can impossibly be captured in a 

system with suspension PHHs. Atorvastatin-induced cholestasis is not fully understood, but it is has 

been speculated that immune-allergic reactions or ROS formation are involved (Karahalil et al., 2017). 

Furthermore, the different DILI patterns (hepatocellular/cholestasis/mixed) reported after atorvastatin 

treatment suggest that its mode of action is multifaceted and that a battery of tests is required for a 

NAM-based risk assessment (Averbukh et al., 2022).  

In our previous study we observed a 60% increase in the liver GCDCA upon bosentan treatment, 

while in the current work no substantial increase was observed (de Bruijn et al., 2022). The 

discrepancy between the two studies can be attributed to variations in dosage and tissue partitioning, 

ultimately leading to a lower free intrahepatic bosentan concentration. In our earlier study, a clinical 

trial-like dosage of 500 mg twice a day was simulated (Fattinger et al., 2001), while in the current 

study the maximal prescribed daily dose of 250 mg once a day was used. Furthermore, in our previous 

investigation, an experimental logP value of 3.1 was employed (Meyer, 1996), while in the current 

study, a logP value of 5.5, predicted using Chemaxon, was used. This change, combined with a slightly 

higher pKa value (5.5 versus 5.8), led to a 10-fold increase in the liver:plasma partition coefficient, as 

calculated using the method of Rodgers and Rowlands. Besides, the in silico calculated fraction 

unbound decreased by 5-fold due to these changes in physicochemical parameters. Taking the 

influence of the physicochemical parameters and the dose together, this resulted in a decreased free 

hepatic bosentan concentration in the current manuscript compared to the previous study and thus a 

reduced effect on hepatic GCDCA levels. These findings stress the importance of accurate estimates of 

lipophilicity.  

Inhibition of hepatic bile acid efflux is a hazard for cholestasis risk, but the results of the present 

study clearly demonstrated that predicting the risk cannot be based on the IC50 or Ki for inhibition of 
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hepatic bile acid efflux alone. PBK modeling of the intracellular hepatic drug concentration time profile 

and its comparison to the Ki appeared to be the best way to predict the cholestatic potential with 

especially the AUC above the Ki providing a better prediction than the total AUC/Ki ratio or the Ki or 

IC50 as such. This indicates that one has to take into account not only the drug’s potency to inhibit the 

bile acid efflux, but also the external dose level and its kinetics. In addition, the individual’s 

susceptibilities were shown to influence the risk with people with a higher bile acid pool size and low 

BSEP abundance being more susceptible. The developed combined drug and bile acid PBK models 

incorporate all this information and predict drug-induced cholestasis as a result of hepatic transporter 

inhibition. For a complete risk assessment of cholestasis also MIEs focusing on hepatocellular and bile 

canalicular changes need to be included. Future research should focus on validation and 

standardization of these assays and quantitatively coupling the measured MIEs to cholestasis risk. The 

current results provide a proof-of-principle of an animal-free PBK model to bridge the gap between in 

vitro potency to inhibit hepatic bile acid efflux and in vivo cholestasis risk.  
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6.5 Supplementary material 

 
FFiigguurree  SS11 Ratio predicted:observed Cmax for the selected drugs for up to 8 different combinations of input 
parameters. Clearance: hep=primary hepatocytes, pkCSM=in silico clearance, partition coefficients: Berezkovskiy 
or Rodgers and Rowlands, fraction unbound in plasma: LS=Lobell Sivarajah, RED=rapid equilibrium dialysis. Red: 
the median is >10 fold over- or underpredicted, black: median is within 10-fold, green: the median with the 
smallest fold-difference. In case two methods resulted in exactly the same method, the in silico methods were 
chosen for further simulations. 
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TTaabbllee  SS11 IC50 for bile acid efflux inhibition in suspension hepatocytes or BSEP-transfected membrane vesicles.  

Drug IC50 SHH (µM) Reference IC50 MV (µM) Reference 
Atorvastatin 2.6 Zhang2016 13 (Morgan et al., 2013) 
Bicalutamide 22.4 Zhang2016 79.6 (Morgan et al., 2013) 
Bosentan 9.2 Zhang2016 23; 38.11 (Morgan et al., 2013; Dawson et al., 2012) 
Cyclosporine 0.1 Zhang2016 0.5; 0.51 (Morgan et al., 2013; Dawson et al., 2012) 
Deferasirox 11.9 Zhang2016 58.4 (Morgan et al., 2013) 
Ketoconazole 3 Zhang2016 3.4; 2.91 (Morgan et al., 2013; Dawson et al., 2012) 
Ritonavir 0.2 Zhang2016 1.74 (Morgan et al., 2013) 
Troglitazone 0.5 Zhang2016 3; 2.71 (Morgan et al., 2013; Dawson et al., 2012) 
Chlorpromazine 6.4 Zhang2016 >100 (Dawson et al., 2012) 
Fluoxetine 5.5 Zhang2016 >100 (Hafey et al., 2020) 
Glimepiride 14.1 Zhang2016 15.7 (Morgan et al., 2013) 
Haloperidol 25.3 Zhang2016 >100 (Kock et al., 2014) 
Pioglitazone 1.4 Zhang2016 0.3 (Dawson et al., 2012) 
Rosiglitazone 0.2 Zhang2016 2.8;6.41 (Morgan et al., 2013; Dawson et al., 2012) 
Trazodone 43 Zhang2016 >100 (Kostrubsky et al., 2006) 

1 Values from two different literature studies 

TTaabbllee  SS22 The combination of input parameters that gives an absolute median ratio predicted:observed Cmax with 
the smallest fold difference. >10-fold overpredictions are excluded from further simulations.  

Drug Clearance 
Partition 
coefficients Fraction unbound 

Median ratio 
predicted:observed 
Cmax 

Atorvastatin pkCSM Berezhkovskiy Equilibrium dialysis 9.7 
Bicalutamide pkCSM RodgersRowland LobellSivarajah 0.9 
Bosentan pkCSM RodgersRowland LobellSivarajah 0.7 
Cerivastatin Primary hepatocytes Berezhkovskiy LobellSivarajah 1.6 
Chlorpromazine Primary hepatocytes RodgersRowland LobellSivarajah 3.0 
Cyclosporine pkCSM Berezhkovskiy LobellSivarajah 0.2 
Deferasirox pkCSM Berezhkovskiy Equilibrium dialysis 0.2 
Fluoxetine Primary hepatocytes RodgersRowland Equilibrium dialysis 1.8 
Glimepiride Primary hepatocytes RodgersRowland in silico 0.9 
Haloperidol Primary hepatocytes RodgersRowland LobellSivarajah 8.2 
Ketoconazole pkCSM Berezhkovskiy LobellSivarajah 0.2 
Pioglitazone pkCSM RodgersRowland Equilibrium dialysis 0.9 
Ritonavir pkCSM Berezhkovskiy Equilibrium dialysis 0.2 
Rofecoxib pkCSM Berezhkovskiy LobellSivarajah 0.6 
Rosiglitazone pkCSM RodgersRowland Equilibrium dialysis 1.9 
Trazodone pkCSM Berezhkovskiy Equilibrium dialysis 0.5 
Troglitazone pkCSM Berezhkovskiy LobellSivarajah 1.0 
>10-fold overpredicted      
Flutamide Primary hepatocytes RodgersRowland LobellSivarajah 17 
Lovastatin pkCSM RodgersRowland LobellSivarajah 49 
Saquinavir Primary hepatocytes RodgersRowland LobellSivarajah 20 
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Chapter 7 

General discussion 
  



 

7.1 Overview of the results and main findings 
The role of bile acids in human physiology has gained increasing attention over the last years. 

Nowadays bile acids are widely recognized as crucial signaling molecules influencing energy, glucose, 

and lipid metabolism, cellular proliferation, and modulating the immune system (Jia et al., 2018; Fuchs 

and Trauner, 2022). The maintenance of bile acid homeostasis is tightly controlled by different nuclear 

receptors along the gut-liver axis (Chiang, 2009). Primary bile acids are generated in the liver, and 

from there secreted into the intestinal lumen. These secreted primary bile acids undergo 

transformation into more hydrophobic secondary bile acids through modifications by the intestinal 

microbiome. Subsequently, they are absorbed by the intestinal epithelium and transported into the 

portal vein for recirculation back to the liver (Zhang et al., 2023a). Chemicals to which humans can be 

exposed on a daily basis, like drugs, environmental contaminants or food constituents, can interfere 

with bile acid homeostasis, potentially resulting in a wide range of adverse health outcomes, such as 

cholestasis, metabolic-associated fatty liver disease (MAFLD) or inflammatory bowel disease (Fuchs 

and Trauner, 2022; Arab et al., 2017). The present PhD thesis encompasses five experimental chapters 

focused on investigating bile acid homeostasis and its implications in the context of chemical safety 

assessment, cholestasis and intestinal bile acid accumulation. Due to ethical considerations and the 

increased demand for the use of data from human-relevant models, animal-free methods (also called 

new approach methodologies (NAMs)) were developed and applied to study the aim of the current 

thesis. The aim was to develop and apply reliable human cell based in vitro models and physiologically 

based kinetic (PBK) models to better understand and predict drug-induced disruption of bile acid 

homeostasis with an emphasis on cholestasis. 

 

As the liver is a crucial organ in the biosynthesis and enterohepatic recycling of bile acids, CChhaapptteerr  22  

focused on the establishment of a hepatic in vitro model suitable to study drug-induced effects on 

hepatic bile acid synthesis and secretion. Three different liver-derived in vitro models were compared 

for their ability to emulate human bile acid synthesis and secretion, firstly, sandwich cultured human 

hepatocytes (SCHHs), secondly, HepaRG cells (HepaRGs), and lastly hepatocyte-like intrahepatic 

cholangiocyte organoids (ICO-heps). Gene expression of selected target genes involved in cellular 

maturation status and bile acid synthesis, transport and conjugation was measured to mechanistically 

underpin the observed differences in bile acid synthesis and secretion. The bile acid synthesis rate was 

observed to be different in each model, and decreased in the order SCHHs > HepaRGs > ICO-heps. The 

data revealed that of the studied genes, their expression within SCHHs correlated best with that 

observed within material obtained from a liver biopsy. In terms of the bile acid profile produced, the 

bile acid profile of HepaRGs had the highest resemblance with the in vivo liver bile acid profile. Due to 

the promising results for both HepaRGs and SCHHs, the effects of bosentan and lopinavir on bile acid 

synthesis and secretion were evaluated in these two in vitro models. These two drugs were selected 

because of their well-known ability to inhibit hepatic bile acid efflux by inhibiting the ATP binding 

cassette (ABC) transporter Bile Salt Export Pump (BSEP). Lopinavir and bosentan-treatment reduced 

instead of increased the intrahepatic bile acid concentrations in both in vitro models. These findings 

indicate that both the HepaRG and SCHHs had a strong adaptive response and were able to 

counteract bile acid accumulation induced by bosentan and lopinavir. Collectively, the data revealed 
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important differences in phenotype and bile acid homeostasis between the three models emulating 

human hepatic cell functionalities. It was concluded that SCHHs and HepaRGs are powerful models for 

studying the effects of chemicals on bile acid homeostasis, due to the in vivo relevance of their bile 

acid profiles, the in vivo relevance of their gene expression of selected target genes and their 

responsiveness to BSEP-inhibitors.  

 

In CChhaapptteerr  33,,  44,,  55  and  66 physiologically based kinetic (PBK) models were developed and applied to 

better understand and predict the effects of various drugs on bile acid homeostasis along the gut-liver 

axis. CChhaapptteerr  33  provided a first proof-of-principle of a PBK modeling approach able to predict the 

effects of the BSEP inhibitor bosentan on bile acid synthesis, circulation and excretion in both healthy 

and susceptible individuals. In the approach a PBK model for bosentan was linked to a PBK model for 

the bile acid glycochenodeoxycholic acid (GCDCA). In this bile acid PBK model a lumped bile acid pool 

consisting of only GCDCA was assumed, which was considered a fair simplification given that GCDCA is 

the most abundant bile acid in human serum (Bathena et al., 2013). The bile acid model consisted of 

separate compartments for liver, gall bladder, intestine, blood, rapidly perfused tissue, slowly 

perfused tissue and adipose tissue. Enterohepatic circulation was included allowing a circulation of the 

exemplary bile acid GCDCA between the liver, gall bladder and intestine. Given its importance in the 

development of cholestatic disease, BSEP-mediated transport was simulated as a process following 

Michaelis-Menten kinetics. The PBK model developed for bosentan was able to predict the 

intrahepatic concentration of bosentan upon oral administration. Subsequently, by linking the two 

models the consequences of the bosentan-induced inhibitory effect on BSEP for bile acid homeostasis 

could be predicted. In addition, variations in BSEP abundances across the population were integrated 

in the PBK model using Markov Chain Monte Carlo simulations, while differences in plasma bile acid 

levels among individuals were accounted for via empirical scaling of the total bile acid pool. Simulated 

high dose bosentan treatment disproportionally increased the maximum plasma bile acid 

concentration in individuals with a large total bile acid pool or low BSEP abundance. This PBK modeling 

approach, that combined bosentan and a bile acid model, provided a first proof-of-principle to 

estimate the safe therapeutic external dose levels of a drug with BSEP-inhibitory properties. 

 

In CChhaapptteerr  44  the focus shifted from the liver towards the role of the intestine in bile acid homeostasis. 

The aim was to predict the effects of inhibiting the activity of the apical sodium-dependent bile acid 

transporter (ASBT) on systemic bile acid plasma levels. For this, the in vitro Caco-2 cell transport model 

was used as a model for the human intestinal epithelium. Dedicated in vitro bile acid transport 

experiments were performed using the Caco-2 model to define the relevant PBK model parameters 

for intestinal bile acid reabsorption. The bile acid PBK model developed in CChhaapptteerr  33  was extended to 

also describe ASBT-mediated ileal bile acid transport and Na+-taurocholate cotransporting polypeptide 

(NTCP)-mediated hepatic uptake as transporter-mediated processes. The in vitro data and scaling 

factor for NTCP-mediated transport were obtained from a previously reported study (Notenboom et 

al., 2018). Furthermore, the PBK model was also extended to describe not only the biokinetics of 

GCDCA, but also that of glycocholic acid (GCA), glycodeoxycholic acid (GDCA) and a generic 

unconjugated bile acid (uBA). For this proof-of-principle study the selective ASBT-inhibitor odevixibat 
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was chosen as a model compound. GCA was shown to be transported over Caco-2 cells in a sodium-

dependent manner, indicating the presence of functional ASBT in Caco-2 cells. While the transport of 

GCA, GCDCA and GDCA over the Caco-2 cells was substantially higher at 37˚C than at 4˚C, the 

transport of deoxycholic acid (DCA), which was used as model bile acid for uBAs, was equally high at 

both 4˚C and 37˚C. These findings indicate that GCA, GCDCA and GDCA transport is an active and/or 

facilitated process, while DCA transport is a passive process. Odevixibat inhibited GCA transport over 

Caco-2 cells dose-dependently. The inhibitory potency (Ki) of odevixibat was derived using GCA as a 

model bile acid and assumed to be similar for all conjugated bile acids. No inhibition of uBA uptake 

was included due to the passive nature of the transport. Upon incorporation of these data in the PBK 

model, the model quantitatively predicted a reduction in conjugated bile acid levels in plasma upon 

administration of odevixibat. The simulations matched human in vivo data and provided a first proof-

of-principle for the incorporation of active ileal bile acid uptake in a bile acid PBK model.  

 

To extent the scope of the developed PBK approach to different drugs, the PBK model developed in 

CChhaapptteerr  44 was applied in CChhaapptteerr  55 to investigate the effects of the antibiotic tobramycin on bile acid 

homeostasis and gain mechanistic insights in the effects of tobramycin on bile acid homeostasis 

reported in an in vivo rat study (Murali et al., 2023). This rat study showed that oral tobramycin 

exposure resulted in alterations in the composition and levels of bile acids in plasma and feces. These 

changes cannot be fully explained by alterations in the gut microbiome’s metabolic capacity, hence, 

the effect of tobramycin on bile acid transport across Caco-2 cells and on intestinal bile acid 

deconjugation was investigated and the whole-body implications were simulated using the PBK model 

developed in CChhaapptteerr  44. The kinetic parameters, required to describe the effects of tobramycin on 

intestinal bile acid reuptake and metabolism by the intestinal microbiota   in the PBK model, were 

quantified in in vitro assays, using Caco-2 transport experiments and data from previously performed 

fecal static batch incubations (Zhang et al., 2022; Zhang et al., 2023b). Caco-2 cells were treated with 

tobramycin in pre- and co-exposure conditions. The pre- and co-exposure differently affected the 

transport of GCA, GCDCA, GDCA and DCA, the latter bile acid was again used as the model bile acid for 

uBA. Co-exposure affected bile acid transport in the following order: (from strongest to smallest 

effect) DCA > GCDCA > GDCA > GCA. For pre-exposure in the order GCA > GCDCA > GDCA > DCA. 

These differences can be attributed to differences in lipophilicity and thus passive transport rate of the 

bile acids. The lipophilicity of the bile acids can be ranked as follows: DCA >  GDCA ≈  GCDCA > GCA 

(Roda et al., 1982). It was speculated that co-exposure affected primarily passive transport, because 

the largest effect was observed on the transport of the most lipophilic bile acid and the tobramycin-

induced effect on bile acid transport decreased with decreasing lipophilicity of the bile acids. Pre-

exposure was hypothesized to primarily affect ASBT-mediated transport (the effect decreased with 

increasing lipophilicity of the bile acids). The tobramycin-induced effects on passive, ASBT-mediated 

transport and intestinal deconjugation were incorporated in the PBK model. According to the PBK 

model simulations, tobramycin exposure is expected to reduce human plasma Cmax levels of GCA, 

GCDCA, GDCA, and uBA by 42.4%, 27.7%, 16.9% and 75.8%, respectively. The reduction of conjugated 

bile acids is governed especially via an effect on ASBT-mediated intestinal uptake, and not via the 

effect of tobramycin on intestinal deconjugation, likely because deconjugation happens to a large 
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extent in the colon which has limited subsequent bile acid reuptake. The strong decrease on uBAs can 

be attributed to a reduction of passive transport and intestinal deconjugation rate. Overall, the PBK 

model proved to be a valuable tool for assessing the impact of oral exposure to xenobiotics on host 

bile acid homeostasis, particularly through its effects on intestinal microbial bile acid deconjugation 

and intestinal reuptake.  

 

In CChhaapptteerr  66  the PBK model was applied to a set of 15 reference drugs that are known to inhibit 

hepatic bile acid secretion in vitro. These drugs are causally linked to the development of drug-induced 

liver injury (DILI) by the U.S. Food and Drug Administration and are classified as common, rare or no 

for cholestasis incidence. This classification was based on the number of cholestatic adverse drug 

reactions reported in the European database of suspected adverse drug reaction (ADR) reports 

(www.adrreports.eu). The aim of this work was to develop a NAM to predict drug-induced cholestasis, 

as a result of hepatic bile acid efflux inhibition and bile acid accumulation. The bile acid PBK model as 

described in CChhaapptteerr  44  and 55 was used, with the only adaptation to again only focus on the conjugated 

bile acid GCDCA. Unconjugated bile acids are mainly transported via perfusion or diffusion and thus 

unlikely to accumulate in the liver as a result of hepatic transport-inhibitors. In addition a generic PBK 

model from literature (Punt et al., 2022) was used to describe the kinetic behavior of the selected 

therapeutics and predict their intrahepatic concentrations The result obtained revealed that 

cholestasis incidence was not adequately predicted by the inhibitory constant (Ki) for inhibition of 

hepatic bile acid efflux, but rather by the area under the curve (AUC) above this Ki for the PBK model 

predicted internal hepatic drug concentration at therapeutic dose level. The approach also provided 

mechanistic insights in risk factors towards drug-induced cholestasis. People with slower clearance of 

the drug, a larger bile acid pool, reduced BSEP abundance or given higher than therapeutic dose levels 

are predicted to be more likely to develop drug-induced cholestasis. Combined, the results of CChhaapptteerr  

33,,  44,,  55  aanndd  66 show that PBK modeling of bile acids is useful to gain mechanistic as well as quantitative 

insights in drug-induced effects on bile acid homeostasis and cholestasis. The PBK modeling approach 

can also be used to identify susceptible subgroups within a population or kinetic aspects of drugs that 

increase their cholestasis risk.  

 

The research presented in this PhD thesis extends the understanding of bile acid homeostasis and 

cholestasis in particular, while also several issues remain to be of interest for future studies on the 

prediction of drug or chemical-induced effects on bile acid levels throughout the body and their health 

consequences. These issues will be addressed in the following sections.  
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7.2 General discussion and future perspectives 
In this section, aspects beyond the scope of the individual chapters will be discussed. The topics 

discussed are:  

7.2.1. PBK models for drug metabolism or bile acid homeostasis. 
7.2.2. Use of in silico data to define PBK input parameters. 
7.2.3. Use of in vitro models to define PBK input parameters. 
7.2.4. Converting in vitro data to the in vivo situation.  
7.2.5. The cholestasis adverse outcome pathway (AOP). 
7.2.6. The relevance of bile acids for adverse outcomes other than cholestasis. 
7.2.7. Moving towards an animal-free risk assessment for cholestasis.  

 

7.2.1. PBK models for drug metabolism or bile acid homeostasis 
AA  cchheemmiiccaall--ssppeecciiffiicc,,  ccllaassss--ssppeecciiffiicc  oorr  ggeenneerriicc  PPBBKK  mmooddeell  ffoorr  ddrruugg  mmeettaabboolliissmm  
Physiologically based kinetic (PBK) modeling is used to simulate the kinetics of a compound in different 

organs using mathematical equations. In this thesis, drug PBK models were developed and used to 

predict the concentration of a drug in the liver after oral exposure to the drug. In a next step, the 

intrahepatic free concentration of the drug was used to predict its effect on hepatic bile acid efflux by 

coupling the drug PBK model to a bile acid PBK model (the bile acid PBK models are discussed in the 

next paragraph). The drug PBK models in the current work were a chemical-specific model for 

bosentan (Chapter 3) and generic PBK models for 15 selected reference drugs (Chapter 6). A chemical-

specific model is developed based on a mechanistic understanding of the absorption, distribution, 

metabolism and excretion (ADME) characteristics of the chemical of interest and can include several 

chemical-specific processes, such as renal or biliary excretion. A generic PBK model describes the 

kinetic aspects for all drugs in a similar way with a limited amount of input parameters. The decision to 

develop a chemical-specific or generic PBK model depends on the confidence needed in the 

predictions and the available data and resources. Chemical-specific PBK models often require 

experimental determination of especially the kinetic parameters for uptake, efflux and metabolism 

using appropriate in vitro assays. Generic PBK models require less parameters and are less time- and 

resource-consuming to develop. Therefore, generic PBK models may be used for first, quick estimates 

of the concentration-time profile of a chemical in several tissues. It has been indicated that it is 

unlikely that a single generic PBK model can fulfil regulatory requirements for use in safety 

assessments given the broad chemical space that needs to be covered (Najjar et al., 2022). The results 

in Chapter 6 corroborate that generic PBK models have a decent predictive performance, with the 

maximal plasma concentration (Cmax) for 13 out of 18 drugs predicted within 5-fold compared to the in 

vivo data, but also that the predictions need to be interpreted with caution, because the Cmax of 5 

drugs were >5-fold overpredicted. The Cmax for 3 drugs was even >10-fold overpredicted and these 

were excluded from further simulations, resulting in a final dataset of 15 drugs used to assess their 

effects on hepatic bile acid efflux and accumulation. As with chemical specific PBK models, when using 

generic PBK models, validation with in vivo data still remains necessary to obtain sufficient confidence 

in the PBK predictions. This presents a drawback when moving to an animal-free risk assessment. 

Chemical-specific models are more suitable to achieve high confidence in the predictions, which is e.g. 

required within the regulatory framework for use in safety assessment (Paini et al., 2021). 
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Alternatively, chemical class-specific PBK models with a well-defined chemical applicability domains 

appear to offer a more feasible approach than chemical-specific PBK models for the application of PBK 

models within the regulatory framework for use in safety assessments (Najjar et al., 2022). Class-

specific PBK models require experimental determination of kinetic parameters, but instead of 

establishing the parameter for each chemical within the class, the parameters can be assumed to be 

similar for all chemicals within that class, and read-across can be applied. The example presented in 

Chapter 6 of the thesis reveals that generic models with in silico and in vitro defined minimal 

parameter sets have reached a state-of-the art where they become of value in NAMs. It can be 

foreseen that with further development of class-specific models and further generation of proofs-of-

principle the impact of PBK modeling based approaches in modern risk and safety assessment of 

chemicals will become even more dominant. 

  

PPBBKK  mmooddeellss  ffoorr  bbiillee  aacciidd  hhoommeeoossttaassiiss  
The drug-induced effects on bile acid homeostasis were predicted by coupling the drug PBK models to 

bile acid PBK models (Chapter 3-6). In this section further improvements for the bile acid PBK models 

will be discussed. Developing a PBK model for an endogenous metabolite is even more challenging 

than developing a model for a drug or food-borne chemical. To reduce model complexity, the bile acid 

pool was lumped into one or four selected bile acids. This can be considered an oversimplification, 

because in vivo over 20 species of bile acids are known in humans (Garcia-Canaveras et al., 2012). 

Further extending the number of bile acids included in the PBK model might be necessary depending 

on the aim of the study. Conjugated bile acids are the most important to include when studying 

transporter-inhibition, as was done in the current thesis, because transport of these bile acids relies 

on carriers for their translocation over cell membranes (Aldini et al., 1996). When adverse effects of 

interest are related to secondary bile acids, the PBK models may need to include a more detailed 

description of secondary bile acid formation through microbial bile acid metabolism. A disbalance in 

the secondary bile acids may occur when chemicals affect the microbiome’s composition and 

functionality (Murali et al., 2023). Elevated colonic concentrations of bile acids can increase intestinal 

permeability, induce oxidative stress and related damage to DNA and enhance cell proliferation. 

Accordingly, a disbalance in secondary bile acids can promote (gastrointestinal) carcinogenesis (Jia et 

al., 2018). Reduced intestinal integrity is related to diarrhea, bacterial overgrowth and inflammatory 

bowel disease (Marasco et al., 2022; Miele et al., 2009). 

Another aspect to consider for further refinement of the currently developed PBK model for 

bile acid homeostasis is the regulation of  bile acid homeostasis by dynamic feedback loops mediated 

by several nuclear receptors, including the farnesoid-X-receptor (FXR). Inclusion of these dynamic 

processes would improve the physiological relevance of the bile acid homeostasis predictions. For 

example, when hepatic bile acid levels are increased due to a drug-induced inhibition of efflux 

transporters, the hepatocyte will adapt by upregulation of the basolateral efflux transporters 

multidrug resistance protein 3/4 (MRP3/4) and downregulation of bile acid synthesis (Chai et al., 

2012). Such an adaptation was also observed in the in vitro models used in Chapter 2 of the thesis 

where inhibition of BSEP mediated hepatic bile acid efflux from SCHHs and HepaRGs by bosentan and 

lopinavir resulted in reduced instead of increased cellular bile acid levels. Attempts have been made to 
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incorporate nuclear-receptor mediated processes in a bile acid PBK model, for example, FXR-mediated 

autoregulation of bile acid synthesis (Voronova et al., 2020). In this study some parameters, such as 

the bile acid concentration inducing 50% FXR activation, were estimated because these authors did 

not have experimental data for this parameter. In future research, FXR activation can be determined 

experimentally using a FXR luminescent reporter gene assay (Suzuki et al., 2006). In the PBK model the 

rate constants for bile acid synthesis may be adapted accordingly with a factor based on the reporter 

gene data and depending on the bile acid concentration in the tissue. Additional FXR-mediated 

processes, such as regulation of transporter expression in the intestine and liver, were not included 

(Voronova et al., 2020). These could be included by adapting the rate for hepatic bile acid efflux and 

intestinal absorption. Inclusion of these processes would improve the physiological relevance of a bile 

acid PBK model, but at the same time increase model complexity and introduce the need to fit more 

input parameters. Real-life physiological processes often involve multiple interacting pathways and 

variables, each of which may require its own parameterization. Extensive use of fitting to determine 

input parameters makes the PBK model less suitable for extrapolation to other scenarios. Finding the 

right balance between complexity of the model and representing physiological relevance remains 

challenging in the scope of a highly dynamic process such as bile acid homeostasis. Alternatively, 

advanced in vitro models based on microfluidics may offer a tool to study dynamic interactions 

between multiple organs. These models will be further discussed in 7.2.6.  

 

PPrroobbaabbiilliissttiicc  mmooddeelliinngg  
The current PBK models did not consider interindividual differences in drug metabolism and 

considered individual differences in bile acid kinetics only to a limited extent. Literature data, 

however, indicated large interindividual differences in the plasma bile acid and drug concentrations 

(Chapter 3-6). These differences could be explained by interindividual variabilities in ADME 

parameters or anatomy, but also by differences in study design and/or analytical methods between 

the studies. Probabilistic modeling can be used to incorporate variability in the (kinetic) parameters 

and thus the PBK model predictions (Maertens et al., 2022). Often, Markov Chain Monte Carlo 

sampling techniques are used for probabilistic PBK models and these were also applied in Chapter 3. 

Instead of using fixed parameter values, Markov Chain Monte Carlo simulations randomly sample 

parameter values from their respective probability distributions in each iteration of the simulation. By 

including relevant probability distributions for e.g. kinetic parameters or body weight, the variability in 

for example the response toward a drug within the human population will be described taking the 

interindividual differences into account and safe external dose levels for e.g. the 95th percentile of the 

population can be determined, thereby protecting the sensitive individuals.  

Several tools are available to incorporate anatomical variability in the PBK predictions. 

Software applications linked to population databases can generate anatomically correct virtual 

populations that can be used for the simulations. This option is available in commercial software such 

as PK-Sim®,2 and Simcyp™,3, but also in freely available software such as the web-based application 

PopGen (McNally et al., 2014; Willmann et al., 2007). Websites can be continuously updated and 

 
2 https://www.open-systems-pharmacology.org/ 
3 https://www.certara.com/software/simcyp-pbpk/ 
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improved, which can change the results when the simulations are repeated at another time point. 

Sometimes, freely available web-based servers are turned into commercial software later on. 

Commercial software is typically better documented, but the high costs hamper the wide use of these 

platforms in academia and smaller companies (Dulsat et al., 2023).  

The observed in vivo variation in plasma drug and bile acid levels can be attributed to 

variability in the kinetic parameters, but quantifying variability using in vitro derived kinetic 

parameters is laborious. The sensitivity analysis that is commonly used in evaluation the performance 

of PBK models should be used to identify the parameters that have a strong influence on the model 

outcome and guide decision-making as to variability in which parameter(s) should be studied into 

more detail. After identifying the most influential parameter(s), the interindividual variation in only 

these selected influential parameters needs to be quantified. For example, if hepatic bioactivation is 

an influential parameter, hepatic metabolism could be obtained using liver microsomes from different 

donors (Ning et al., 2019). A probability distribution for hepatic metabolism can be derived from these 

data and incorporated in the PBK model to simulate the kinetic behavior in a given population. These 

evaluations should be done on a case-by-case basis to allow for population-based PBK predictions.  

Underlying reasons for interindividual variability in bile acid kinetics were investigated into 

more detail in the current thesis. In the modeling studies of the present thesis the total bile acid pool 

size was scaled by a factor 0.5 or 1.5 (Chapter 3, 5 and 6). Given that the reported bile acid 

concentration in bile differed 2-fold between different studies (Sips et al., 2018), this scaling of the 

total bile acid pool is considered realistic. Yet, this factor does not include the distribution of the bile 

acid pool size in the population. In combination with other variables, a large bile acid pool may not in 

all cases result in increased susceptibility towards adverse health outcomes like cholestasis since other 

factors like for example BSEP abundance may turn out to be more dominant. Work described in this 

thesis showed the potential of PBK modeling to study the result of these interindividual differences on 

bile acid homeostasis. In Chapter 3, the effect of biological variabilities in kinetic parameters on an 

individual’s susceptibility towards hepatic bile acid accumulation was shown by using BSEP abundance 

randomly drawn from a log-normal distribution derived from a meta-analysis of transporter 

abundances in liver tissue of healthy Caucasians (Burt et al., 2016). The approach revealed that 

individuals with low BSEP abundance are at higher risk of drug-induced cholestasis development, 

because of saturation of BSEP-mediated transport. This provides a proof-of-principle of the application 

of Markov Chain Monte Carlo modeling for modeling bile acid homeostasis. Yet, it is preferable to 

further extend the probabilistic modeling to other variables within the PBK model in order to unravel 

their contribution to the observed highly variable plasma bile acid levels between individuals. For 

example, a common genetic variant of OATP1A2 was associated with a delayed postprandial increase 

in plasma bile acids after administration of standardized meals in 72 healthy subjects (Fiamoncini et 

al., 2017). It might be of interest to incorporate interindividual differences in abundance of OATP1A2 

or other transporters in the bile acid PBK model.  

 

7.2.2. Use of in silico models to define PBK input parameters 
In silico predictions are faster and cheaper compared to their in vitro counterparts. This section 

discusses computational in silico tools that can yield PBK input parameters without the need to 
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perform experiments. In Chapter 6 several in vitro and in silico approaches were compared for their 

predictive accuracy of the Cmax of 18 reference drugs showing that the in silico tools performed well. 

Several in silico tools to predict clearance are commercially available, such as the ADMET predictor®,4 

or Simcyp™,3, but the results of the present thesis corroborated that the free online tool pkCSM also 

provides good estimates (Pires et al., 2015). pkCSM is a freely available web-based server and relies on 

learning patterns between chemical structure, similarity and pharmacokinetic and safety properties to 

build predictive models that can be generalized to other compounds. pkCSM is trained using 18 000 

compounds for metabolism and is widely applicable to small molecules. In Chapter 6, clearance data 

obtained from primary hepatocytes and predicted by the pkCSM tool were compared and yielded 

similar PBK predictions for Cmax of the reference drugs. If any differences in the PBK predictions were 

observed, the in silico predicted clearance resulted in a higher Cmax prediction. A higher Cmax is less 

likely to present an underestimate of the in vivo Cmax and thereby can be considered more 

conservative. Similarly, PBK simulations for Cmax incorporating clearance obtained using primary 

hepatocytes or in silico predicted clearance by another in silico tool, i.e. the ADMET predictor®, 

resulted in comparable Cmax predictions, and if any differences were observed with the in vitro 

hepatocyte data also for the ADMET predictor the in silico predictions were more conservative (Punt 

et al., 2022). In Chapter 6, also in vitro and in silico methods for the quantification of the fraction 

unbound were compared and led only occasionally to different results. The calculation method of 

Lobell and Sivarajah (2003) was used for the in silico prediction of the fraction unbound.  

Despite the promising results obtained with the pkCSM tool and Lobell and Sivarajah’s 

calculation method, care needs to be taken when applying in silico methods. In silico predictions are 

useful for quick first estimates, but when high confidence in results is required or the PBK model 

output is sensitive to these parameters, the in silico predictions should be confirmed with 

experimental data to reduce the uncertainty (OECD and Magdalini, 2021). Another approach to 

reduce the uncertainty in the in silico predictions is to accompany in silico predictions with read-across 

approaches. When the in silico predicted clearance for a chemical is very similar to the in vitro 

observed clearance from a structurally similar compound, confidence in the accuracy of the in silico 

prediction is increased. The R package High-throughput toxicokinetics (httk) provides a clear and 

searchable database with in vitro hepatic clearances and physicochemical parameters for many 

different drugs and chemicals, thereby facilitating read-across (Pearce et al., 2017).  

 

7.2.3. Use of in vitro models to define PBK input parameters 
The drug PBK models in Chapter 3 and 6 used different in vitro models to obtain kinetic parameters for 

hepatic metabolism, i.e. human liver microsomes or primary hepatocytes, respectively. In the bile acid 

PBK models several in vitro models were used to determine the inhibitory effect of the drugs on the 

intestinal or hepatic bile acid transport. Intestinal bile acid transport is governed via both passive 

diffusion and ASBT (Chiang, 2009). Subsequently, the bile acids are transported to the liver via the 

portal vein. Bile acid uptake into hepatocytes over the sinusoidal membrane is mediated by NTCP, and 

to a more limited extent by members of the OATP family (Chiang and Ferrell, 2022; Kouzuki et al., 

 
4 https://www.simulations-plus.com/software/admetpredictor/ 
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1998). Subsequent secretion from the hepatocytes into the canalicular capillaries, feeding into the bile 

ducts, is mediated by BSEP (Jia et al., 2018). Alternatively, bile acids can be secreted to the systemic 

circulation by MRP3/4. MRP3/4 expression is low under healthy circumstances, but transporter 

expression is upregulated under cholestatic conditions (Chai et al., 2012). In this section, the available 

in vitro models to determine kinetic parameters for intestinal transport and hepatic metabolism and 

transport will be discussed. In vitro to in vivo scaling of the kinetic parameters will be discussed in 

section 7.2.4.  

 

IInn  vviittrroo  mmooddeellss  ffoorr  iinntteessttiinnaall  ttrraannssppoorrtt    
For intestinal bile acid transport, the in vitro kinetic model used in the present thesis consisted of 

Caco-2 cells cultured on transwells (Chapter 4). The Caco-2 model is well established and widely used 

for routine testing of drug absorption (Sambuy et al., 2005). As indicated in Chapter 1, Caco-2 cells 

possess several transporters among which 112 SLC and 20 ABC transporters were identified in a 

proteome analysis (Olander et al., 2016). Caco-2 cells typically present an overall estimate of transport 

rate, incorporating apical ASBT-mediated uptake, intracellular trafficking and basolateral efflux. Thus 

an overall or apparent Km was established in the current work, which is arguably more physiologically-

relevant than defining PBK model parameters for the transport mediated by ASBT alone. Although 

ASBT mRNA expression has been shown in Caco-2 cells (Wang et al., 2022a; van der Mark et al., 2014), 

ASBT protein expression in Caco-2 cells was reported to be very low or even undetectable (Olander et 

al., 2016; van der Mark et al., 2014). The current results corroborated that ASBT is functionally present 

(Chapter 4), but for future studies it would be of interest to consider a model with quantifiable ASBT 

protein expression to facilitate scaling to the in vivo situation, as will be discussed in section 7.2.5. 

 ASBT-transfected cell lines provide an alternative with quantifiable ASBT protein expression 

and activity (Balakrishnan et al., 2005), but are not commercially available and thus require (in-house) 

expertise in transfecting cells. Other alternatives to study ASBT-mediated transport are primary 

intestinal epithelial cells or induced pluripotent stem cells (iPSCs). Primary intestinal epithelial cells are 

hard to obtain and have low viability in culture, but mimic the human in vivo situation well (Kauffman 

et al., 2013). iPSCs are obtained by differentiating pluripotent stem cells to intestinal cell lineages. All 

major epithelial cell lineages are present within the iPSC-derived intestinal organoids, including 

enterocytes, goblet cells, Paneth cells and enteroendocrine cells (Hou et al., 2022). For several 

transporters in iPSC-derived intestinal organoids the mRNA levels are higher than those in the human 

adult intestine, but ASBT mRNA was lower than that in the human adult intestine (Onozato et al., 

2018). iPSCs are typically cultured in organoid formation, but this is unsuitable for transport studies 

when the organoids have an inside-out configuration (Schneeberger et al., 2020). An inside-out 

configuration means that the basolateral side is at the outside surface of an organoid. The chemical of 

interest thus has limited access to the apical surface inside the organoid. The iPSC-derived intestinal 

cells can be adapted to a transwell configuration to make the model suitable for transport studies 

(Kauffman et al., 2013; Grouls et al., 2022a). However, the intricate 3D structure of the organoids is 

largely lost when they are cultured on a transwell, and therefore, research has been conducted 

towards establishing organoids with an apical-out configuration (Kakni et al., 2022). The authors 

successfully showed that culturing iPSC-derived intestinal organoids in a suspension system rather 
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than the conventional way of imbedding in a hydrogel reversed the organoid polarity and achieved an 

apical-out configuration. In a later study, the authors showed that FITC-dextran and a fluorescent fatty 

acid analogue translocated from the culture medium to the lumen of the intestinal organoids, further 

supporting the suitability of this system for transport studies (Kakni et al., 2023).  

A major difference between the in vitro intestinal systems and the in vivo situation is the 

absence or limited presence of a mucus layer so that the model poorly represents this aspect of the 

human in vivo situation (Busch et al., 2023; Hilgendorf et al., 2000). The mucus layer covering the 

intestinal epithelium is an important extra layer that might hamper the transport and lower the 

apparent affinity (higher Km,app) for ASBT or any other transporter (Veider et al., 2023). In a study with 

Caco-2 cells this pitfall was alleviated by applying biosimilar mucus to the apical surface of the cells 

(Birch et al., 2018). The mucus layer reduced the permeation rate of hydrophobic drugs, while the 

permeation of hydrophilic drugs was largely unaffected. Alternatively, co-cultures containing Caco-2 

cells and mucus-producing HT29-MTX cells can be established to better emulate the human in vivo 

mucus layer (Lock et al., 2018; Grouls et al., 2022b). For iPSC-derived organoids protocols are being 

developed to stimulate the production of mucus using a physiological flow or physical motions 

(Sontheimer-Phelps et al., 2020; Shin and Kim, 2023). Further considerations about substrate binding 

to mucus or other endogenous components, its effects on apparent transporter affinity and a 

potential solution will be discussed in section 7.2.4.  

 

IInn  vviittrroo  mmooddeellss  ffoorr  hheeppaattiicc  ttrraannssppoorrtt  aanndd//oorr  mmeettaabboolliissmm  
Three types of in vitro models can be used to study hepatic transport and/or metabolism, i.e. 

transfected systems (cell lines, oocytes, vesicles, supersomes), whole cells such as primary 

hepatocytes or subcellular fractions such as microsomes or S9 (Zamek-Gliszczynski et al., 2013; Sodhi 

and Benet, 2021). Metabolism is commonly studied using primary human hepatocytes (Chapter 6) or 

subcellular fractions such as microsomes or S9 (Chapter 3). Microsomes and S9 are most often used 

for a low tier screen, because they are robust, easy to use and cheap compared to primary 

hepatocytes. Microsomes and S9 are not suitable for studying transport (inhibition). In the present 

thesis transfected cell lines or membrane vesicles generated from transfected cells were used to 

determine PBK model parameters describing BSEP- and NTCP-mediated bile acid transport kinetics 

(Chapter 3 - 6). Alternatively, primary human hepatocytes could have been used to get an estimate of 

the overall bile acid transport (uptake, de novo synthesis and efflux). Primary hepatocytes have a 

physiologically relevant enzyme and transporter expression (Hart et al., 2010), and can be used to 

study both hepatic metabolism and transport (Louisse et al., 2020; Yoshikado et al., 2021). It can be 

considered an advantage for transport studies that primary hepatocytes perform in situ metabolism. 

This is especially relevant for drugs where the metabolite, and not the parent compound, is the active 

inhibitor. It is of interest to note that an assay with primary human hepatocytes resulted in a more 

potent inhibition (lower IC50 and Ki) than BSEP-membrane vesicles (Chapter 6). This is probably 

because drugs that inhibit BSEP, often also inhibit other uptake or efflux transporters. For example, 

troglitazone and bosentan inhibit BSEP, but also NTCP and MRP3/4 (Funk et al., 2001; Fattinger et al., 

2001; Marion et al., 2007; Morgan et al., 2013). Thus, for transport inhibition studies, primary human 

hepatocytes are preferred over transfected cell lines, because they provide an all-inclusive estimate of 

202 CHAPTER 7



 

the inhibitory potency (Ki or IC50), while for the estimation of kinetic transport parameters (Vmax and 

Km) of a specific transporter, a simple transfected cell system is desirable because it gives results for a 

single transporter. 

 Several alternative whole cell models have been developed to overcome the limited 

availability of primary hepatocytes. The hepatocellular carcinoma cell line HepaRG provides a 

physiologically relevant alternative to primary human hepatocytes (Le Vee et al., 2013). A recent study 

showed that prototypical cholestatic drugs inhibit bile acid efflux from HepaRG cells (Le Vee et al., 

2022). Only two concentrations per drug were investigated in this study. Determination of a 

concentration-response curve will allow for the establishment of the potency and comparison to the 

potency found using primary hepatocytes.  

Monolayers of iPSC-derived hepatocytes have many resemblances to primary human 

hepatocytes in morphology and toxicity assays (Lu et al., 2015; Sirenko et al., 2014) and might provide 

another alternative. iPSC-derived hepatocyte-like cells were found to form functional bile canaliculi 

and are capable of transporting a fluorescent dye (carboxy-2′,7′-dichlorofluorescein) (Qosa et al., 

2021). Shortcomings of the iPSC-derived hepatocyte-like cells for measuring effects on hepatic bile 

acid efflux is the relatively low expression of BSEP compared to the level in primary hepatocytes (Sakai 

et al., 2019). 3D cultures are suggested as a potential solution to improve polarization and transporter 

expression of iPSC-derived hepatocytes (Sakai et al., 2019). Here, special attention should be paid to 

create outside-in configurations, which can be done using 3D scaffolds or a suspension-culture rather 

than embedding in a hydrogel (Fiorotto et al., 2023; Kakni et al., 2022). Furthermore, other steps in 

the differentiation protocol should be optimized to increase transporter expression and generate iPSC-

derived hepatocyte-like cells suitable for studies on drug-induced effects on bile acid efflux. 

 

7.2.4. Converting in vitro kinetic data to the in vivo situation  
SSccaalliinngg  ffaaccttoorrss  
To incorporate in vitro obtained kinetic data into a PBK model, scaling factors are needed for in vitro to 

in vivo extrapolation. The simplest method for in vitro to in vivo scaling of kinetic parameters is 

empirical scaling. The scaling factor that results in the closest fit to the in vivo data is determined by 

iterative PBK simulations with different values for the scaling factor (as was done for the rate constant 

for intestinal transport of GCA determined in a Caco-2 transport model in Chapter 4). However, for the 

use in NAMs and the development of human relevant models it is preferable to parametrize PBK 

models without the need for any in vivo data. Thus, a scaling factor based on mechanistic and/or 

theoretical considerations on the differences between the in vitro model and the in vivo situation is 

preferred. A physiological scaling factor is based on the number of cells or the membrane/total 

protein content in the relevant tissue enabling conversion of the data obtained using the respective 

cells or membrane/total protein content in vitro. Physiological scaling factors for conversion of in vitro 

Vmax obtained from liver S9 or microsomal incubations to a Vmax suitable for incorporation in a PBK 

model have been well-established (Pelkonen and Turpeinen, 2007). A physiological scaling factor 

based on mg protein/entire liver enables for the conversion of in vitro Vmax in pmoles/min/mg protein 

to in vivo Vmax expressed in µmoles/hr/entire liver. Similarly, a physiological scaling factor based on the 

total number of cells in the liver was proven successful for defining hepatic clearance in Chapter 6.  
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Clearly, this physiological scaling factor based on the number of cells or mg protein per tissue 

cannot be applied for kinetic transport data obtained with transfected cell lines, because their 

transporter expression differs substantially from the in vivo transporter expression, obviously causing 

differences in activity and corresponding Vmax values. Therefore, the relative expression factor (REF) 

and relative activity factor (RAF) have been introduced to correct for differences in gene 

expression/protein abundance or activity between the in vitro model and the in vivo situation (Jamei 

et al., 2014). REF and RAF can also be used to correct for a decreased expression and/or activity of 

transporters or metabolizing enzymes upon culturing cells in vitro, which is typically observed with 

primary hepatocytes (Elaut et al., 2006). The REF and RAF approach for in vitro to in vivo extrapolation 

of transport or metabolism kinetics has been increasingly applied (Chan et al., 2019; Zou et al., 2013; 

Kumar et al., 2021).  

The REF is based on relative expression or if possible, protein abundance in the cells of 

interest and in human primary tissue. It is preferable that these measurements are performed in the 

same lab to prevent technical study differences. Post-translational modifications may alter transport 

activity, but are not covered by a REF. The RAF offers a potential solution to this problem. For 

establishment of a RAF, not only in vitro activity but also in vivo activity is needed and the latter can be 

determined based on the quantification of the drug of interest in the organs in vivo, using e.g. positron 

emission tomography (PET) imaging of radiolabeled drugs (Storelli et al., 2022). PET imaging is 

expensive and not all drugs can be radiolabeled, so this cannot be routinely performed. PET imaging 

can be used to obtain a universal RAF based on a selected number of reference drugs. Primary 

hepatocytes are often used as a surrogate model for quantification of the kinetic parameters for in 

vivo transport and metabolism (Izumi et al., 2018; Mitra et al., 2018; Chan et al., 2019). Determination 

of the RAF value for conversion of the data obtained using a transfected model system to data in 

hepatocytes allows subsequent use of the physiological scaling factor to convert the data to the in vivo 

situation. To facilitate future use of these REF and RAF scaling factors more proofs-of-principle should 

be generated. The obtained in vitro kinetic parameters should be scaled to the in vivo situation based 

on the REF and/or RAF value, and the predicted and observed concentration-time profiles need to be 

compared. Upon gaining accurate predictions for sufficient chemicals and transporters, the REF 

and/or RAF can be used to predict concentration-time profiles for chemicals for which no in vivo data 

are available.  

 In the current work BSEP- and NTCP-mediated transport were scaled based on a REF value, 

but intestinal transport was scaled empirically (Chapter 4). Even though the plasma bile acid 

concentration-time profiles in plasma were accurately predicted, this does not necessarily mean that 

the application of the REF values gave accurate estimates of the in vivo transport. Any flaws might 

have been inherently corrected by empirical scaling of intestinal transport. An important underlying 

assumption in the scaling approaches applied in the present thesis is that the apparent affinity (Km,app) 

is identical in vitro and in vivo. This is however not always the case due to differences between the 

nominal and free concentration and this will be discussed in some more detail in the following section.  
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DDiiffffeerreenncceess  bbeettwweeeenn  nnoommiinnaall  aanndd  ffrreeee  ccoonncceennttrraattiioonn  
According to the “free drug hypothesis” only free, unbound drug is available to interact with biological 
targets. A drug or chemical bound to macromolecules is not available for transport, resulting in a 
lower apparent affinity (higher Km,app), since higher nominal concentrations will be required to reach 
saturation of the transporter or metabolic enzyme. The important role of protein binding is 
underscored by the finding that OATP-mediated hepatic uptake of rosuvastatin can be well predicted 
upon using transfected cells and a REF scaling factor, but only when plasma proteins were included in 
the in vitro studies (Kumar et al., 2021).  

Differences between the nominal and free concentration in vitro might be due to binding to 

medium constituents and/or cell culture materials (Kramer et al., 2015). Especially lipophilic drugs are 

likely to bind to the cell culture materials, thereby reducing the free concentration (Dimitrijevic et al., 

2022). Mass balance recovery tests should be routinely performed to investigate this. For example, 

when 500 pmoles of a chemical are added to the culture medium, at the end of the experiment, 500 

pmoles should be recovered from the culture medium and the cells combined. When a substantial 

(typically >20%) amount of the chemical is missing, this indicates that the chemical has bound to the 

culture material and corrections are necessary. Chemical distribution models provide computational 

tools to perform these corrections (Proenca et al., 2021). Yet, when the chemical does not bind to the 

plastic, this does not necessarily mean that the drug is available to the cell. Some drugs or chemicals 

bind non-specifically to the cell surface and/or their transport is hampered by a hydrodynamic barrier 

called the unstirred water layer. Computational methods to correct for these processes were applied 

in Chapter 4 and 6 (Kilford et al., 2008; Balakrishnan et al., 2007).  

It is especially challenging to determine the free concentration that reaches the enterocytes in 

vivo and this has sofar received limited research interest in PBK modeling. It is speculated that the 

large difference between the in vitro Km,app and in vivo Km,app of taurocholic acid transport in ASBT-

transfected oocytes, Caco-2 cells, ASBT-transfected cells and a human perfusion can be attributed to 

differences in the free concentration and/or passive transport (Krag and Phillips, 1974; Zhu et al., 

2021). Potentially, the in vivo Km,app was higher than the in vitro Km,app because of the presence of 

microbes, food components and/or the mucus layer in vivo but not in vitro. Chemicals have to diffuse 

over the mucus layer to reach the enterocyte. When the mucus layer tends to bind the chemical this 

process will increase the Km,app, as was also discussed in section 7.2.3.. To estimate the free 

concentration that reaches the enterocytes in vivo and delineate the true Km, the fraction unbound in 

caecum or other intestinal contents and the passive diffusion over the intestine in vivo, including the 

mucus layer, have to be determined. Precision cut intestinal slices can be used as a surrogate to study 

passive intestinal transport in vivo by performing experiments at 4˚C, although it is technically 

challenging to work with precision cut intestinal slices due to their limited availability and short life 

span. Human precision cut intestinal slices established a Km,app of 140 µM for taurocholic acid (Li et al., 

2018), which is already closer to the data obtained by in vivo perfusion studies (600 µM) than the in 

vitro values obtained from Caco-2 cells (22.4 µM) (Chapter 4). These findings indicate that the mucus 

layer and/or differences in cell membrane permeability are partially responsible for the discrepancies 

between in vivo and in vitro Km,app. Further discrepancies can be attributed to binding to components 

in the intestinal lumen and should be studied in the future. It is proposed that a better understanding 
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of the free available concentrations, both in vitro and in vivo, will improve the concordance between in 

vitro and in vivo Km,app.  

CChheemmiiccaall  ddiissttrriibbuuttiioonn  wwiitthhiinn  ttiissssuueess  
An important consideration in using PBK modeling to convert in vitro data to the in vivo situation is the 

chemical distribution over the liver and how that influences the concentration available for transport 

and metabolism. In PBK models, tissues/organs are generally represented as perfusion-limited, well-

stirred models. This means that it is assumed that the chemical is homogenously distributed over the 

tissues/organs (Rietjens et al., 2011). However, when a chemical is taken up by a carrier, the 

membrane permeability, and not the perfusion, is the rate-limiting factor. This implies that the 

conventional tissue:plasma partition coefficient is not suitable to describe transport and distribution 

to a permeability-limited organ and specific kinetic parameters for the transport should be 

determined. The guidance document of the Organisation for Economic Cooperation and Development 

(OECD) on the characterization, validation and reporting of Physiologically Based Kinetic (PBK) models 

for regulatory purposes states that it is necessary to use a permeability-limited organ structure to 

mechanistically account for the action of transporters in PBK models (OECD and Magdalini, 2021). In 

line with this recommendation, a permeability-limited model was constructed in order to be able to 

incorporate hepatic active uptake of bile acids in the PBK model (Chapter 4). To this end, the liver was 

divided in an extra- and intracellular compartment. The extracellular compartment is perfused, and 

carriers are responsible for the transport of the drug from the extracellular to the intracellular 

compartment (Jamei et al., 2014). Even more detailed compartmentalized liver models are available 

that might even better recapitulate the gradual decrease in tissue concentrations along the organ (e.g. 

from periportal to perivenous regions of the liver), such as the parallel tube model or a 5-

compartment liver model (Pang et al., 2019). Increasing model complexity is only favorable when it 

increases predictivity and does not introduce too many uncertainties.  

7.2.5. Cholestasis adverse outcome pathway (AOP) 
In recent years numerous adverse outcome pathways (AOPs) have been developed as a conceptual 

framework to support the construction of non-animal based testing approaches for chemical safety 

assessment. AOPs consist of a molecular initiating event (MIE), one or more key event(s) (KEs) and an 

adverse outcome (AO), which represent biological effects at different levels of biological organization. 

The general principle of AOPs is that a limited set of KEs and Key Event Relationships (KERs) can 

sufficiently describe and predict the interaction of a toxicant on the biological pathway resulting in an 

adverse outcome (Villeneuve et al., 2014).  

Cholestasis refers to an impairment of bile acid excretion causing accumulation of bile acids in 

the liver and/or the systemic circulation (Noor, 2015). At the molecular level, inhibition of BSEP-

mediated transport is considered the MIE of the AOP for cholestasis (Vinken et al., 2013). Several 

nuclear receptors, especially the constitutive androstane receptor (CAR), the pregnane-X-receptor 

(PXR), and the FXR are activated as an adaptive response to counteract bile acid accumulation (Vinken 

et al., 2013). At the same time, deteriorative responses such as mitochondrial dysfunction, oxidative 

stress and inflammation take place. These deteriorative responses lead to apoptosis, necrosis and 
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ultimately cholestasis. The cholestasis AOP was already described and visualized in Figure 3 of Chapter

1 of this thesis.

In Chapter 6, the aim was to predict cholestasis as a result of bile acid efflux inhibition by

therapeutic drugs. The kinetic data for inhibition of hepatic bile acid efflux were derived from

literature where the IC50 for inhibition of bile acid efflux was quantified in a short-term assay with
primary human hepatocytes (Zhang et al., 2016). The assay was not specific to BSEP-inhibition, but

transporter inhibition in general. This is in line with the more recent insights on cholestasis that also

inhibition of other transporters than BSEP can lead to cholestasis (Gijbels et al., 2020). Using generic

PBK models, the intrahepatic drug concentrations were derived. These were subsequently used to

predict the drug’s effect on hepatic bile acid efflux and bile acid accumulation. The PBK modeling

approach led to true positive predictions for cyclosporine, ritonavir and ketoconazole, but false

negative predictions for chlorpromazine, atorvastatin and glimepiride. A literature search indicated

that the latter compounds induce cholestasis through other mechanisms than inhibition of (BSEP-

mediated) hepatic bile acid efflux (see Chapter 6 for references). While the approach provided a

proof-of-principle of an animal-free PBK model to bridge the gap between in vitro potency to inhibit 

hepatic bile acid efflux and in vivo cholestasis risk, it also clearly indicated that other MIEs and/or KEs

need to be considered for a complete risk assessment of cholestasis. Here, these MIEs and NAMs to 

study them will be discussed in some more detail. These additional MIEs for AOPs leading to

cholestasis include hepatocellular changes and bile canalicular changes (Gijbels et al., 2019).

Cellular changes in response to chemical-exposure can be studied at mRNA levels using
sequencing. Sequencing aids the cholestasis hazard assessment when biomarker genes have been

identified. A recent study compared the transcriptomic profiles of HepG2 cells exposed to nine

cholestatic and nine non-cholestatic drugs. Using machine learning approaches, 13 genes were

identified that were up or downregulated under cholestatic conditions. Importantly, most of these

genes fulfill a biological function that overlaps with KEs that play a role in the development of

cholestasis. 9 Of these 13 genes were involved in one or more KEs, i.e. bile acid synthesis, bile flow

disruption, oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis. Two genes

related to the adaptive response to counteract hepatic bile acid accumulation were elevated (i.e. TSKU 

and ALAS1). The functionality of the remaining two genes is less well understood, but their putative

functions correlate with bile flow disruption and autophagy (Jiang et al., 2023). Transcriptomics

analysis is useful for qualitative hazard identification and elucidating which KEs are involved, but for 

risk assessment, the KEs, and especially the KE affected at the lowest dose levels, need to be

investigated in a quantitative way. In a weight-of-evidence approach, transcriptomic profiling can

inform the further steps as for what endpoint a quantitative in vitro concentration-response

experiment should be performed. A concentration-response curve can be used to determine the

benchmark dose (BMD or BMDL) as the point of departure (PoD) for risk assessments.
The MIE of hepatocellular changes leading to cholestasis can be quantified through various

relatively simple assays, such as lactate dehydrogenase (LDH) or glucose 6-phosphate dehydrogenase

(G6PD) assays. These assays provide no insight in the mode of action underlying the toxicity and are

late markers of toxicity. Therefore, the drug-induced cholestasis (DIC) assay has been proposed to test

the hepatocyte functionality in the presence of potentially cholestatic drugs. Briefly, primary human
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hepatocytes or HepaRG cells are exposed to test compounds in the absence or presence of a 

physiologically relevant mixture of bile acids. Urea secretion or cell viability is measured in co-

exposure (test compound and bile acids) and just the test compound. The ratio between cell viability 

or urea secretion under these two conditions is calculated. In case a cholestatic compound is present, 

bile acids from the medium will accumulate in the cells and this results in reduced urea secretion, and 
ultimately a reduction of cell viability. The ratio in cell viability or urea secretion in the test compound 

+ bile acids / test compound will thus decrease when a compound is cholestatic. A ratio below the cut-

off value of 0.78 can be used to flag for increased cholestasis risk. The cut-off value is chosen based on 

experimental data and has no mechanistic basis (Van Brantegem et al., 2020). After optimizing the cut-

off values, the assay using primary human hepatocytes resulted in 83% sensitivity and 67% specificity. 
The assay was initially developed for primary human hepatocytes (Hendriks et al., 2016; Oorts et al., 

2016) and has been recently adapted to HepaRG cells (Gijbels et al., 2020). In Chapter 2, HepaRG cells 

were shown to have human-relevant expression of genes related to bile acid homeostasis and 

synthesized and secreted a bile acid profile similar to the human situation. A major advantage of 

HepaRG cells over primary hepatocytes is that they are readily available and they have less batch-to-
batch variability, which makes the assay suitable for high-throughput studies.  

Bile canalicular changes represent another MIE in the cholestasis AOPs. Cholestatic drugs can 

either result in early constriction or dilation of the canalicular lumen. The techniques to study bile 

canalicular changes are less well defined than those for hepatocellular changes. Primary human 

hepatocytes cultured in a sandwich-configuration and HepaRG cells are suitable in vitro models, 
because they polarize and have functional bile canaliculi (Rowe et al., 2013; Le Vee et al., 2013). 

Alternatively, intrahepatic cholangiocyte organoids (ICO) can be used to study chemical-induced 

effects on the bile canaliculae. ICOs are derived from cholangiocytes from human liver biopsies and 

are considered bipotential (Huch et al., 2015). In Chapter 2, these ICOs were differentiated towards 

hepatocyte-like cells, but they can also be differentiated towards mature cholangiocyte-like cells 

(Chen et al., 2018). A recent study showed that ICOs can be cultured on hollow-fiber membranes to 
generate 3D bile duct structures. Here, they showed several key characteristics of cholangiocytes, 

such as P-glycoprotein mediated transport in a polarized fashion and FXR-dependent functions (Wang 

et al., 2022b). Microscopic time-lapse imaging can be used to assess morphological changes in the bile 

canaliculi (Burbank et al., 2016). Manually analyzing these data is laborious and prone to human 

errors. Automated algorithms able of identifying the canalicular space and quantifying its surface at 
different timepoints should be developed. Automated algorithms make the assessment of dynamic 

bile canalicular changes more attainable on a routine-basis.  

 

7.2.6. The relevance of bile acids for adverse outcomes other than cholestasis 
The current thesis focused primarily on cholestasis, which is a relatively well-understood pathology, as 
is illustrated by the availability of an AOP (aopwiki.org). Bile acids are involved in several physiological 

functions, including an altered nuclear receptor-mediated signaling, immune responses, intestinal 

integrity and/or microbiome’s composition and functionality (Jia et al., 2018). A disruption of bile acid 

homeostasis is implicated in various other pathologies, including liver diseases such as metabolic 

associated fatty liver disease (MAFLD) and hepatocellular and cholangiocellular carcinoma, but also 
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diseases that affect the intestine such as inflammatory bowel disease (Fuchs and Trauner, 2022). This 

section discusses the role of a disruption of bile acid homeostasis in adverse outcomes other than 

cholestasis, using MAFLD as an example, and potential models to study these adverse outcomes. 

MAFLD patients have a different plasma bile acid pool compared to healthy individuals (Puri et 

al., 2018) and several processes regulated by bile acids are disrupted in MAFLD (Rodriguez-Duque et 
al., 2023; Jia et al., 2018). The following paragraph will further explain what alterations to the bile acid 

pool are observed in MAFLD and how these changes relate to MAFLD pathology. MAFLD disease 

progression and fibrosis state is related to increased ratios of primary:secondary bile acids and 

conjugated:unconjugated bile acids in plasma (Puri et al., 2018; Jahn and Geier, 2018). Increased 

concentrations of conjugated cholic acid species and species derived from DCA in serum is associated 
with liver fibrosis (Puri et al., 2018). Given that the gut microbiome is responsible for the conversion of 

primary bile acids into secondary bile acids, such as DCA, it was hypothesized that the microbiome 

played a crucial role in MAFLD progression (Smirnova et al., 2022). In a follow-up study, the aim was to 

link the observed differences in bile acid profile associated with increasing MAFLD disease severity to 

the microbiome’s composition. 16S rRNA sequencing elucidated a decreased bacterial diversity with 
increasing disease severity. Specifically, Bacteroidetes and several genera of Lachnospiraceae family 

containing the ability to produce DCA increased with increasing disease severity, whereas the 

abundance of several potentially beneficial microbes decreased (Smirnova et al., 2022). So, patients 

with MAFLD exhibit an altered microbiome’s composition that can be linked to an altered 

microbiome’s functionality and bile acid profile. The aforementioned changes in the bile acid profile 
lead to a more hydrophobic bile acid pool, which is inversely related to FXR agonism (Cai et al., 2022). 

Through a reduced FXR activity, alterations in lipid and glucose metabolism and inflammation might 

occur, which are all involved in MAFLD pathology. Furthermore, the microbiome is implicated in 

regulating gut motility and gut permeability. Increased gut permeability enhances translocation of 

toxicants to the liver and is a risk factor for liver injury and MAFLD (Cani et al., 2007).  

To predict the development of MAFLD or other adverse outcomes related to a disturbed bile 
acid homeostasis upon chemical exposure, a system that captures the dynamic crosstalk between gut 

epithelium, gut microbiome and liver should be established (see also section 7.2.1.). In doing so AOPs 

may provide a useful approach to identify MIEs, KEs and KERs leading to the adverse outcome. Within 

this context, NAMs can provide useful tools to gain mechanistic insights in disease development and 

establishment of KEs. Advanced in vitro models are needed to capture the multidirectional 
interactions between intestinal epithelium, liver, and gut microbiome in a human relevant situation. 

Organ-on-chip (OoC) devices can be used to couple chambers with cells recapitulating different organs 

based on microfluidics. Several OoC platforms are available that allow the connection of two different 

organs, e.g. gut epithelium and liver (Yang et al., 2023). Given that the microbiome fulfils crucial 

dynamic processes in the bile acid homeostasis, the microbiome should be included in these 
investigations. Incorporating the microbiome in a OoC platform is challenging, because of the opposite 

needs of mammalian cells and the microbiome in terms of oxygen supply which requires advanced 

culturing techniques (Jalili-Firoozinezhad et al., 2019). Yet, in vitro microfluidic devices exist that 

connect the intestinal epithelium and the microbiome, e.g. the human-microbial crosstalk model 

(HuMiX) or Dynamic42 Biochip platform (Shah et al., 2016; Maurer et al., 2019). A recent study 



 

introduced neuronal cells in the HuMiX model and showed that this allowed for a co-culture of two 

types of mammalian cells and bacterial cells. The cell types are separated by semi-permeable 

membranes, but can still communicate with each other through soluble factors (Sedrani et al., 2023). 

These devices can then be used to unravel the complex interplay along the gut-liver axis in the onset 

of several diseases, establish causal KEs and generate AOPs. Future efforts should be directed towards 
incorporating the intestinal epithelium, gut microbiome and liver in the same microfluidics device, 

preferably also incorporating intestinal and hepatic immune cells (Lucchetti et al., 2021). Upon 

development of an AOP and elucidating the relevant dynamic processes, these dynamic processes 

could be incorporated in the bile acid PBK model to define a so-called physiologically based dynamic 

(PBD) model. To this end, a quantitative understanding of what magnitude and/or duration of change 

in the upstream KE is needed to evoke some magnitude of change in the downstream KE is required 

(OECD, 2017). A PBD model will aid to study the effects of chemicals on both kinetic and dynamic 

processes involved in bile acid homeostasis leading to e.g. MAFLD in a quantitative way.  

 

7.2.7. Moving towards an animal-free risk assessment for cholestasis 
As discussed in the previous sections a large number of NAM-based tools is available to study the MIEs 

and KEs involved in cholestasis. But how can we move from an animal-centered risk assessment 

towards a mechanistic human physiology NAM-based risk assessment for cholestasis? What do we 

need to gain sufficient trust in the predictive reliability of an animal-free risk assessment for 

cholestasis? Toxicologists often consider the lack of organismal complexity and toxicokinetic context 

as major limitations of a NAM-based risk assessment. The current thesis provides a proof-of-principle 

for the use of PBK modeling to incorporate toxicokinetic context into a NAM-based risk assessment for 

cholestasis that results from inhibition of hepatic bile acid transport and subsequent hepatic bile acid 

accumulation (Chapter 6). Data from an in vitro model alone defining the IC50 or Ki for inhibition of bile 

acid transport in an assay with primary hepatocytes was not able to adequately predict hepatic bile 

acid accumulation for the selected cholestatic compounds. Combining these data with outcomes of 
the PBK model resulted in the parameter AUC above the Ki that better predicted the cholestasis risk. 

Some drugs were identified as false-negative for cholestasis, but this can be explained as they cause 

cholestasis through other MIEs (hepatocellular or canalicular changes) and/or that the therapeutic 

dose levels are low enough to not result in intrahepatic concentrations that reach the Ki for inhibition 

of bile acid transport. These findings stress that a battery of in vitro tests combined with PBK modeling 
should be included to study the other dynamic MIEs/KEs. In order to predict a PoD for risk assessment 

it is important to establish a quantitative understanding between the MIEs/KEs leading to cholestasis. 

The focus should be on the human-relevance of the selected in vitro tests and ensuring that changes 

in the critical and most sensitive MIE/KE can be detected. The approach should gain enough 

information to confidently assess the likelihood of an adverse effect in humans rather than full 

coverage of the AOP (Schmeisser et al., 2023). It is crucial to realize that the default of animal data is 

also highly variable and not per se predictive of human toxicity (Pham et al., 2020; Olson et al., 2000). 

The research community, industry and risk assessors should strive to protect human health, not to 

predict animal toxicity.   
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7.3 Conclusion 
The current thesis combined human cell based in vitro models and PBK models to better understand 
and predict drug-induced disruption of bile acid homeostasis with emphasis on cholestasis. PBK 

models describing the synthesis, distribution and excretion of bile acids were developed. Given that 

carrier-mediated processes are crucial for bile acid homeostasis, these processes were incorporated in 

the PBK models. The PBK modeling approach, combining drug and bile acid PBK models, was shown to 

enable quantitative prediction of the alterations in bile acid homeostasis upon drug-exposure. 
Transporter inhibition is only one of the MIEs in the cholestasis AOP, and future research has to 

elucidate which other MIEs/KEs should be studied and what would be adequate assays to do so. 

HepaRGs and SCHHs were shown in the present thesis to provide suitable cell models to study 

MIEs/KEs in AOPs for cholestasis, because they were shown to be able to emulate the liver 

functionality to synthesize and secrete bile acids, and have functional bile canaliculi. Future efforts 
should be directed towards a better understanding of the drug-induced dynamic changes in bile acid 

homeostasis, their health consequences and the use of NAMs to study these processes aiming at 

replacement, reduction and refinement (3Rs) of animal experimentation.  
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Summary 
The significance of bile acids within human physiology has received substantial attention in recent 

years. Bile acids are now acknowledged as pivotal signaling molecules with profound implications for 

energy homeostasis, glucose regulation, lipid metabolism, cellular proliferation, and immune 

modulation. Primary bile acids are synthesized in the liver and secreted into the intestinal lumen, 

where they undergo modifications by the intestinal microbiome to evolve into more hydrophobic 

secondary bile acids. Subsequently, these intestinal bile acids are efficiently absorbed across the 

intestinal epithelium and transported via the portal vein for reuptake by the liver. Various xenobiotics 

encountered in everyday life, including pharmaceuticals, environmental pollutants, and dietary 

constituents, possess the capacity to perturb bile acid homeostasis. Such perturbations can give rise to 

an array of adverse health outcomes, encompassing cholestasis, metabolic-associated fatty liver 

disease (MAFLD), and inflammatory bowel disease. The aim of the present thesis was to develop and 

apply reliable human cell based in vitro models and physiologically based kinetic (PBK) models to 

better understand and predict drug-induced disruption of bile acid homeostasis with an emphasis on 

cholestasis. Upon gaining a better understanding of the relationship between specific disruptions in 

bile acid homeostasis and adverse outcomes, measurement of these disruptions in vitro and 

translation of these data to the in vivo situation using PBK modeling can serve as an indicator of 

toxicity or potency for selected adverse outcomes. In the thesis a proof-of-principle was provided 

focusing on the endpoint cholestasis and data-rich chemicals (drugs). Cholestasis refers to an impaired 

hepatic bile acid secretion and subsequent hepatic bile acid accumulation and increased bile acid 

levels in the systemic blood circulation. The symptoms include jaundice, pruritus and fever.  

 

CChhaapptteerr  11 introduces the physiological roles and enterohepatic circulation of bile acids, the role of 

inhibition of the hepatic bile salt export pump (BSEP) in the development of cholestasis and the health 

consequences of inhibition of the apical sodium-dependent bile acid transporter (ASBT). Furthermore, 

the effects of antibiotics and other drugs on bile acid homeostasis and New approach methodologies 

(NAMs) to study these effects are introduced, along with the aim and outline of the thesis.  

 

CChhaapptteerr  22  compares the capacity of three different hepatic in vitro systems to emulate human liver 

functionality to synthesize and secrete bile acids. Bile acid synthesis rates and profiles, responsiveness 

to selected BSEP-inhibitors and selected target genes were analyzed for hepatocyte-like intrahepatic 

cholangiocyte organoids (ICO-heps), sandwich cultured human hepatocytes (SCHH) and HepaRG cells 

(HepaRGs). To this end, basal bile acid production of SCHHs, HepaRG cells and ICO-heps were 

analyzed, and the effect of the known BSEP-inhibitors bosentan and lopinavir on bile acid disposition 

in SCHHs and HepaRG cells was quantified. RT-qPCR of selected target genes involved in maturation 

status, synthesis, transport and conjugation of bile acids was performed to mechanistically underpin 

the observed differences in bile acid homeostasis. The bile acid synthesis rate was observed to be 

different in each model, and decreased in the order SCHHs > HepaRGs > ICO-heps. Surprisingly, the 

bile acid levels in the HepaRG and SCHH lysates decreased upon treatment with bosentan and 

lopinavir, indicating that both treatments triggered strong adaptive responses to counteract 

intracellular bile acid accumulation. The data revealed that of the studied genes, their expression 
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within SCHHs correlated best with that observed within material obtained from a liver biopsy. In terms 

of the bile acid profile produced, the bile acid profile of HepaRGs had the highest resemblance with 

the in vivo liver bile acid profile. Collectively, the data revealed important differences in phenotype 

and bile acid homeostasis between the three human hepatic in vitro systems tested. 

 

CChhaapptteerr  33  develops a PBK model that provides a tool to predict dose-dependent bile acid 

accumulation in humans upon treatment with the BSEP-inhibitor bosentan. To this end, three 

mutually connected PBK models were developed, consisting of a PBK model for a) bosentan, b) RO 47-

8634 (the active metabolite of bosentan) and c) bile acids. The bile acid PBK model was developed 

using glycochenodeoxycholic acid (GCDCA) as an exemplary bile acid. The bosentan and RO 47-8634 

PBK models were used to predict their concentrations at the target organ for BSEP-inhibition, i.e. the 

liver. The PBK model kinetic parameters for BSEP-mediated transport were obtained from a literature 

study reporting BSEP-mediated GCDCA uptake in membrane vesicles. The scaling factor required to 

convert the in vitro kinetic data to the in vivo situation was based on the relative BSEP expression in 

the membrane vesicles and in vivo tissue. The effects of in vivo variabilities in transporter BSEP 

abundance and bile acid pool size on plasma and liver bile acid concentrations were also simulated. 

The PBK model developed adequately predicted the in vivo postprandial bile acid kinetics. Both the 

Markov Chain Monte Carlo simulations based on a distribution of BSEP abundances and empirical 

scaling of the total bile acid pool readily described the variations in plasma bile acid concentrations 

within and between human volunteers. Bosentan treatment disproportionally increased the maximum 

bile acid plasma concentration in individuals with a large total bile acid pool or low BSEP abundance. 

Especially individuals having a large total bile acid pool size and a low BSEP abundance were predicted 

to be at risk for rapid saturation of BSEP and subsequent intrahepatic bile acid accumulation. The PBK 

model provided a first proof-of-principle for coupling a drug and bile acid PBK model to predict drug-

induced effects on bile acid postprandial kinetics.  

 

CChhaapptteerr  44 simulates the effects of ileal ASBT-inhibition on intestinal and systemic plasma bile acid 

levels, because disturbing ileal bile acid uptake was expected to substantially affect intestinal and 

systemic bile acid levels. The model from the previous chapter was extended to describe not only 

GCDCA, but also glycocholic acid (GCA) and glycodeoxycholic acid (GDCA) and unconjugated bile acids. 

Caco-2 cells were used to gain insights in the underlying mechanisms of bile acid transport, and to 

obtain kinetic transport parameters for GCA. While the transport of GCA, GCDCA and GDCA over the 

Caco-2 cells was substantially higher at 37 ˚C than at 4 ˚C, the transport of deoxycholic acid (DCA), 

which was used as model bile acid for unconjugated bile acids, was equally high at both 4 ˚C and 37 ˚C. 

These findings indicate that GCA, GCDCA and GDCA transport is an active and/or facilitated process, 

while DCA transport is a passive process. The drug and selective ASBT-inhibitor odevixibat inhibited 

GCA transport dose-dependently. The inhibitory potency (Ki) of odevixibat was derived using GCA as a 

model bile acid and assumed to be similar for all conjugated bile acids. No inhibition of unconjugated 

bile acid uptake was included due to the passive nature of their transport. Upon incorporation of 

these data in the PBK model, the model quantitatively predicted a reduction in conjugated bile acid 

levels in plasma upon administration of odevixibat. The simulations matched human in vivo data and 
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provided a first proof-of-principle for the incorporation of ileal bile acid uptake in a bile acid PBK 

model.  

 

CChhaapptteerr  55  applies the newly developed PBK model to investigate the effect of the antibiotic 

tobramycin on bile acid homeostasis. Inhibition of intestinal bile acid transport was studied using 

Caco-2 cells. Inhibition of intestinal deconjugation was based on previous studies using fecal static 

batch incubations. Two exposure conditions, pre-exposure and co-exposure to tobramycin, revealed 

distinct effects on bile acid transport. Co-exposure primarily affected transport in the order of DCA > 

GCDCA > GDCA > GCA, while pre-exposure had the greatest impact on GCA followed by GCDCA, GDCA, 

and DCA. Based on the differences in lipophilicity and thus passive transport rate, it was speculated 

that co-exposure primarily affected passive transport, because it had the strongest effect on the most 

lipophilic bile acid, i.e. DCA. Conversely, pre-exposure was speculated to primarily impact ASBT-

mediated transport. These data were incorporated in the PBK model to predict tobramycin's impact 

on plasma bile acid levels, resulting in a predicted reduction in maximal plasma levels of GCA, GCDCA, 

GDCA and unconjugated bile acids by 42.4%, 27.7%, 16.9%, and 75.8%, respectively. The reduction in 

conjugated bile acids was primarily attributed to ASBT-mediated intestinal uptake, while the decrease 

in unconjugated bile acids was linked to reduced passive transport and intestinal deconjugation rates. 

In summary, the PBK model demonstrated its utility as a valuable tool for evaluating the influence of 

oral xenobiotic exposure on host bile acid homeostasis, with a specific focus on its effects on intestinal 

microbial bile acid deconjugation and transport processes. 

  

CChhaapptteerr  66  applies the newly developed PBK model to a set of 15 reference drugs. These drugs are 

known to inhibit hepatic bile acid efflux and are causally linked to development of drug-induced liver 

injury, but are classified as common, rare or no cholestasis incidence. The bile acid PBK model as 

described in Chapter 4 and 5 was used, with the only adaptation to again only focus on the conjugated 

bile acid GCDCA. Unconjugated bile acids are mainly transported via perfusion or diffusion and thus 

unlikely to accumulate in the liver as a result of hepatic transport-inhibitors. The intrahepatic drug 

concentrations were predicted with generic PBK models and incorporated in the bile acid PBK models 

along with their inhibitory effect on hepatic bile acid efflux, which was obtained from a literature study 

using a short-term incubation with primary hepatocytes. The result obtained revealed that cholestasis 

incidence was not adequately predicted by the inhibitory constant (Ki) for inhibition of hepatic bile 

acid efflux, but rather by the area under the curve (AUC) above this Ki for the PBK model predicted 

internal hepatic drug concentration at therapeutic dose level. The approach also provided mechanistic 

insights in risk factors towards drug-induced cholestasis. People with slower clearance of the drug, a 

larger bile acid pool, reduced BSEP abundance or given higher than therapeutic dose levels are 

predicted to be more likely to develop drug-induced cholestasis. 

  

CChhaapptteerr  77  gives an overview of the main findings in this thesis and provides a general discussion on 

points beyond the scope of the individual chapters. The chapter further discusses the PBK models for 

drug metabolism and bile acids, in vitro and in silico tools to define PBK input parameters, converting 

in vitro data to the in vivo situation, the cholestasis adverse outcome pathway and the relevance of 
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bile acids for adverse outcomes other than cholestasis. To finalize, a discussion is provided about the 

paradigm shift towards an animal-free risk assessment for cholestasis.  

 

Taken together, the present thesis integrated human cell-based in vitro models with PBK modeling to 

understand and predict drug-induced effects on bile acid homeostasis, focusing on cholestasis. It was 

shown that it is feasible to apply new approach methodologies (NAMs) to predict drug-induced 

cholestasis as a result of hepatic bile acid efflux inhibition and to predict the whole-body effects of 

inhibition of ileal bile acid absorption. Thereby, the current work contributes to the 3Rs (reduction, 

refinement, replacement) of experimental animal studies.  
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Samenvatting  
De afgelopen jaren heeft de rol van galzuren in de menselijke fysiologie aanzienlijke aandacht 

gekregen. Galzuren worden gezien als essentiële signaalmoleculen met belangrijke implicaties voor 

energiehomeostase, glucose en vetmetabolisme, cellulaire proliferatie en immuunmodulatie. Primaire 

galzuren worden in de lever gesynthetiseerd en uitgescheiden in de darm, waar ze door de 

darmmicrobiota worden omgezet tot beter wateroplosbare secundaire galzuren. Vervolgens worden 

deze galzuren efficiënt geabsorbeerd door het darmepitheel en via de poortader getransporteerd voor 

heropname door de lever. Diverse lichaamsvreemde stoffen waar we in het dagelijks leven mee in 

aanraking komen, waaronder geneesmiddelen, milieuverontreinigende stoffen en 

voedingsbestanddelen, kunnen de galzuurhomeostase verstoren. Dergelijke verstoringen kunnen 

leiden tot verschillende ziektebeelden, waaronder cholestase, metabool-geassocieerde vette 

leverziekte en inflammatoire darmaandoeningen. Het doel van dit proefschrift was het ontwikkelen en 

toepassen van betrouwbare in vitro modellen gebaseerd op menselijke cellen en fysiologisch 

gebaseerde kinetische (physiologically based kinetic) (PBK) modellen om de door geneesmiddelen 

veroorzaakte verstoring van galzuurhomeostase beter te begrijpen en te voorspellen, met de nadruk 

op cholestase. Een beter begrip van de relatie tussen specifieke verstoringen in de galzuurhomeostase 

en verschillende ziektebeelden maakt het mogelijk om deze verstoringen in vitro te meten en 

vervolgens de resultaten te vertalen naar de in vivo situatie met een PBK-model. Deze aanpak kan dan 

vervolgens dienen als een indicator van de toxische potentie van een bestaand of nieuw ontwikkeld 

geneesmiddel voor de inductie van de geselecteerde ziektebeelden. Dit proefschrift biedt een 

zogenoemde “proof-of-principle” gefocust op het eindpunt cholestase en chemicaliën waar veel data 

over beschikbaar zijn (geneesmiddelen). Cholestase is een ziektebeeld veroorzaakt door verstoring van 

de hepatische galzuuruitscheiding en opeenvolgende opstapeling van galzuren in de lever en de 

systemische bloed circulatie. De symptomen zijn geelzucht, jeuk en koorts. 

  

HHooooffddssttuukk  11 introduceert de fysiologische functies en enterohepatische circulatie van galzuren, de rol 

van remming van de hepatische galzout-exportpomp (bile salt export pump) (BSEP) in de ontwikkeling 

van cholestase en de gezondheidsgevolgen van remming van de apicale natriumafhankelijke 

galzuurtransporter (apical sodium-dependent bile acid transporter) (ASBT). Verder worden de effecten 

van antibiotica en andere geneesmiddelen op galzuurhomeostase en “New Approach Methodologies” 

(NAMs) om deze effecten te bestuderen geïntroduceerd samen met het doel en de opzet van het 

proefschrift. 

  

HHooooffddssttuukk  22 vergelijkt de capaciteit van drie verschillende in vitro systemen voor hepatocyten om de 

functionaliteit van de menselijke lever na te bootsen op het gebied van synthese en uitscheiding van 

galzuren. Galzuurproductie en -uitscheiding, respons op geselecteerde BSEP-remmers en 

geselecteerde doelgenen werden geanalyseerd voor leverorganoïden, primaire hepatocyten en cellen 

van de veelgebruikte cellijn HepaRG. De basale galzuurproductie door leverorganoïden, primaire 

hepatocyten en HepaRG-cellen werd geanalyseerd, en het effect van de bekende BSEP-remmers 

bosentan en lopinavir op galzuren in het medium en lysaat van primaire hepatocyten en HepaRG-

cellen werd gekwantificeerd. RT-qPCR van geselecteerde doelgenen die betrokken zijn bij de 
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celdifferentiatie, en bij synthese, transport en conjugatie van galzuren werd uitgevoerd om de 

waargenomen verschillen in galzuurhomeostase mechanistisch te onderbouwen. De 

galzuursynthesesnelheid bleek verschillend te zijn in elk model en nam af in de volgorde primaire 

hepatocyten > HepaRG-cellen > leverorganoïden. Onverwacht resulteerde behandeling van de cellen 

met de  BSEP-remmers bosentan en lopinavir in een daling in plaats van een stijging van de   

galzuurniveaus in de cellysaten van HepaRG en primaire hepatocyten. Dit geeft aan dat beide 

behandelingen sterke adaptieve reacties veroorzaakten om intracellulaire ophoping van galzuren 

tegen te gaan. De gegevens toonden aan dat van de bestudeerde genen de expressie in primaire 

hepatocyten het beste correleerde met die waargenomen in materiaal verkregen uit een leverbiopsie. 

Wat betreft het geproduceerde galzuurprofiel vertoonde het galzuurprofiel van HepaRG-cellen de 

grootste gelijkenis met het in vivo galzuurprofiel van de lever. Gezamenlijk toonden de gegevens 

belangrijke verschillen aan in fenotype en galzuurhomeostase tussen de drie geteste in vitro lever 

modellen.  

 

HHooooffddssttuukk  33 beschrijft de ontwikkeling van een PBK-model dat de dosisafhankelijke ophoping van 

galzuren in mensen kan voorspellen bij behandeling met de BSEP-remmer bosentan. Hiervoor werden 

drie onderling verbonden PBK-modellen ontwikkeld, bestaande uit een PBK-model voor a) bosentan, 

b) RO 47-8634 (actieve metaboliet van bosentan) en c) galzuren. Het PBK-model voor galzuren werd 

ontwikkeld voor glycochenodeoxygalzuur (glycochenodeoxycholic acid) (GCDCA) als model galzuur. De 

bosentan- en RO 47-8634 PBK-modellen werden gebruikt om hun concentraties te voorspellen in het 

doelorgaan voor BSEP-remming, namelijk de lever. De kinetische parameters voor BSEP-gemedieerd 

transport werden verkregen uit een literatuurstudie met geïsoleerde membraanblaasjes. De 

schalingsfactor die nodig was om de in vitro kinetische gegevens naar de in vivo situatie om te zetten 

was gebaseerd op de relatieve hoeveelheid BSEP-transportereiwit (BSEP-abundantie) in de 

membraanblaasjes ten opzichte van een leverbiopsie. Ook werden de effecten van in vivo variatie in 

BSEP-abundantie en in de omvang van de galzuurpool op plasma- en leverconcentraties van galzuren 

gesimuleerd. Het ontwikkelde PBK-model voorspelde de in vivo postprandiale kinetiek van galzuren  

adequaat. De variatie binnen en tussen de testpersonen werd goed voorspeld op basis van BSEP-

abundantie en empirische schaling van de omvang van de galzuurpool. Vooral individuen met een 

grote galzuurpool en een lage BSEP-abundantie werden voorspeld risico te lopen op saturatie van 

BSEP en daaropvolgend ophoping van galzuren in de lever. Het PBK-model leverde een eerste 

voorbeeld over het koppelen van een geneesmiddel- en galzuur-PBK-model om de effecten van 

geneesmiddelen op de postprandiale kinetiek van galzuren te voorspellen. 

  

HHooooffddssttuukk  44 voorspelt de effecten van remming van ASBT-gemedieerd galzuurtransport in de darm op 

de gehalten van galzuren in darm en  plasma, omdat werd verwacht dat verstoring van de 

galzuuropname in de darm aanzienlijke invloed zou hebben op galzuurgehaltes in zowel de darm  als 

het plasma. Het galzuur-PBK-model ontwikkeld in hoofdstuk 3 werd uitgebreid om niet alleen GCDCA, 

maar ook de gehalten van twee andere geconjugeerde galzuren, glycogalzuur (glycocholic acid) (GCA) 

en glycodeoxygalzuur (glycodeoxycholic acid) (GDCA), en van ongeconjugeerde galzuren te 

beschrijven. Caco-2 cellen werden gebruikt om inzicht te krijgen in het onderliggende mechanisme 
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van galzuurtransport en om kinetische transportparameters te verkrijgen voor GCA. Terwijl het 

transport van de geconjugeerde galzuren substantieel hoger was bij 37 ˚C dan bij 4 ˚C, was het 

transport van deoxygalzuur (deoxycholic acid) (DCA), wat als modelstof diende voor ongeconjugeerde 

galzuren, even hoog bij 37 ˚C en 4 ˚C. Deze resultaten duidden erop dat het transport van de geteste 

geconjugeerde galzuren een actief en/of gefaciliteerd proces is, terwijl het transport van DCA een 

passief proces is. Het geneesmiddel odevixibat is een selectieve ASBT-remmer en zorgde voor een 

dosis-afhankelijk remming van GCA-transport over de Caco-2 cellen. De remmingsconstante (Ki) van 

odevixibat werd bepaald voor de remming van het transport van GCA als model galzuur en er werd 

aangenomen dat deze remmingsconstante gelijk was voor alle geconjugeerde galzuren. Remming van 

het transport van ongeconjugeerde galzuren werd niet meegenomen, omdat dit een passief proces is. 

Nadat deze data in het galzuur-PBK-model waren opgenomen, voorspelde het model de reductie in 

geconjugeerde galzuurgehaltes in plasma na toediening van odevixibat kwantitatief. De simulaties 

waren in overeenstemming met humane in vivo data en toonden een eerste bewijs voor het feit dat 

het mogelijk is galzuuropname te beschrijven in een galzuur-PBK-model.  

  

HHooooffddssttuukk  55 past het nieuw ontwikkelde PBK-model toe om het effect van het antibioticum 

tobramycine op galzuurhomeostase te onderzoeken. De kinetische parameters voor remming van 

galzuurtransport in de darm door tobramycine werden bepaald met Caco-2 cellen. De remming van 

galzuurdeconjugatie door de darmmicrobiota werd beschreven  gebaseerd op een voorgaande studie 

waar gebruik werd gemaakt van een statische incubatie met humane feces. Twee 

blootstellingsscenario’s, namelijk blootstelling aan tobramycine vooraf of tijdens het transport van de 

galzuren, onthulden verschillende effecten op het galzuurtransport. Gelijktijdige blootstelling aan 

tobramycine en galzuren had voornamelijk effect op het transport in de volgorde DCA > GCDCA > 

GDCA > GCA, terwijl tobramycineblootstelling voorafgaand aan de galzuurblootstelling het grootste 

effect had op GCA gevolgd door GCDCA, GDCA en DCA. Gebaseerd op de verschillen in lipofiliciteit en 

daarmee de snelheid van passief transport, en het feit dat het effect het sterkst was voor het meest 

lipofiele galzuur, d.w.z. DCA, werd aangenomen dat gelijktijdige blootstelling vooral effect heeft op 

passief transport. Aan de andere kant heeft blootstelling van de Caco-2 cellen vooraf waarschijnlijk het 

meeste effect op ASBT-gemedieerd transport, omdat in dit geval transport van DCA het minst geremd 

werd. Deze data waren ingebouwd in het galzuur-PBK-model om het effect van tobramycine op 

plasma galzuurgehaltes te voorspellen. Dit resulteerde in een voorspelde reductie in de maximale 

galzuurgehaltes in plasma van GCA, GCDCA, GDCA en ongeconjugeerde galzuren met respectievelijk 

42.4%, 27.7%, 16.9%, and 75.8%. De reductie in de geconjugeerde galzuren werd voornamelijk 

toegeschreven aan ASBT-gemedieerd transport in de darm, terwijl de reductie in ongeconjugeerde 

galzuren was gelinkt aan een vermindering van het passieve transport en een reductie in deconjugatie 

door de darmmicrobiota. Alles bijeen laten de resultaten zien dat het galzuur-PBK-model een nuttig 

instrument is voor het verkrijgen van inzicht in de invloed van orale blootstelling aan lichaamsvreemde 

stoffen op galzuurhomeoastase, met een specifieke focus op de effecten veroorzaakt door 

veranderingen in de deconjugatie door de darmmicrobiota en transportprocessen.    
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HHooooffddssttuukk  66 past het nieuw ontwikkelde PBK-model toe op een set van 15 geselecteerde 

geneesmiddelen. Het was bekend dat deze geneesmiddelen hepatische galzuuruitscheiding remmen 

en dat deze geneesmiddelen causaal gelinkt zijn aan ontwikkeling van leverschade veroorzaakt door 

geneesmiddelen. Het galzuur-PBK-model zoals beschreven in hoofdstuk 4 en 5 werd gebruikt, met een 

focus op het geconjugeerde galzuur GCDCA. Ongeconjugeerde galzuren worden voornamelijk 

getransporteerd door perfusie of diffusie en opstapeling in de lever als resultaat van remming van 

hepatische galzuurefflux is dus onwaarschijnlijk. De leverconcentratie van de geneesmiddelen werd 

voorspeld aan de hand van een generiek PBK-model en gekoppeld aan het galzuur-PBK-model in 

combinatie met het remmende effect (Ki) op galzuuruitscheiding. Deze laatste parameter werd 

gekwantificeerd op basis van een literatuurstudie met primare hepatocyten. De PBK-uitkomsten 

onthulden dat cholestase-incidentie niet adequaat voorspeld kan worden op basis van de Ki voor 

remming van de hepatische galzuuruitscheiding, maar wel door het gebied onder de curve (de 

integraal) van de voorspelde interne leverconcentratie boven deze Ki bij een therapeutische dosering. 

De aanpak bood ook mechanistische inzichten in risicofactoren voor het ontwikkelen van door 

geneesmiddelen veroorzaakte cholestase. Individuen met een langzame klaring van het geneesmiddel, 

een grote totale galzuurpool, een verminderde BSEP-abundantie en/of die hoger dan therapeutische 

doseringen toegediend hebben gekregen hebben een grotere kans op het ontwikkelen van door 

geneesmiddelen veroorzaakte cholestase.  

 

HHooooffddssttuukk  77 geeft een overzicht van de belangrijkste bevindingen in dit proefschrift en een algemene 

discussie over punten die de inhoud van de afzonderlijke hoofdstukken overstijgen. Het hoofdstuk 

bediscussieert de PBK-modellen voor geneesmiddelen en galzuren, in vitro en in silico manieren om 

PBK-inputparameters te bepalen, het omzetten van in vitro data naar de in vivo situatie, de “Adverse 

Outcome Pathway” (AOP) voor cholestase en de relevantie van galzuren voor andere negatieve 

gezondheidseffecten dan cholestase. Als laatste wordt de paradigmaverschuiving naar dierproefvrije 

risicobeoordeling voor cholestase bediscussieerd.  

Kortom, dit proefschrift integreert in vitro modellen gebaseerd op menselijke cellen in PBK-modellen 

om de effecten van geneesmiddelen op galzuurhomeostase te begrijpen en te voorspellen, met de 

nadruk op cholestase. Er werd aangetoond dat het haalbaar is om deze NAMs toe te passen voor het 

voorspellen van door geneesmiddelen veroorzaakte cholestase die het resultaat is van remming van 

hepatische galzuuruitscheiding en om de effecten van remming van galzuuropname in de darm op 

galzuurconcentraties in de darm en het plasma te voorspellen. Daarmee draagt het huidige werk bij 

aan de 3 V’s (vermindering, verfijning en vervanging) van dierproeven. 
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