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Summary

Leaf day respiration (Rd) strongly influences carbon-use efficiencies of whole plants and the

global terrestrial biosphere. It has long been thought thatRd is slower than respiration in the dark

at a given temperature, butmeasuringRd by gas exchange remains a challenge because leaves in

the light are also photosynthesizing. The Kok method and the Laisk method are widely used to

estimate Rd. We highlight theoretical limitations of these popular methods, and recent progress

toward their improvement by using additional information from chlorophyll fluorescence and by

accounting for the photosynthetic reassimilation of respired CO2. The latest evidence for

daytime CO2 and energy release from the oxidative pentose phosphate pathway in chloroplasts

appears to be important to understanding Rd.

I. Introduction

Plant respiratory CO2 efflux accounts for 30–60% of gross
photosynthetic carbon assimilation (Amthor, 2010) and thus is an
important determinant of carbon budgets and carbon-use efficiencies
at scales from whole plants to the entire globe (Amthor, 2000;
Tcherkez et al., 2017). Leaf respiration accounts for a large fraction of
whole-plant respiration (e.g. Lavigne et al., 1997). Leaf day respiration
(Rd) refers to theCO2 release by processes other than photorespiration

(Farquhar et al., 1980) and differs from the respiration rate in the dark
(Rdk) at a given temperature (Crous et al., 2012). Quantifying Rd
relative to Rdk therefore is important to understanding plant
ecophysiology (e.g. Ayub et al., 2011; Way et al., 2019).

It is difficult to directly measure Rd by gas exchange because
illuminated green cells are simultaneously photosynthesizing and
respiring. Direct measurement of Rd relies on measurements of
differences in the time courses of carbon isotope labelling
of photosynthetic, photorespiratory, and respiratory intermediates
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with specialized equipment (reviewed by Tcherkez et al., 2017).
These methods can rely on somewhat uncertain assumptions, for
example with regard to chloroplastic decarboxylation reactions
(Tcherkez et al., 2017). Estimating Rd together with other
parameters of the C3 photosynthesis model of Farquhar
et al. (1980) by fitting data to full photosynthetic CO2- and/or
light-response curves measured by conventional gas exchange (e.g.
Gregory et al., 2021) is not recommended because Rd can be
confounded by other parameters due to overfitting. The most
common approaches to estimating Rd are the empirical Kok
method (Kok, 1948) and the Laisk method (Laisk, 1977) that each
use the low portion of photosynthetic light- or CO2-response
curves to constrain Rd. Here, we outline theoretical limitations of
thesemethods, summarize how they can be improved, and consider
implications of recent findings for previously unrecognized
metabolic origins of Rd on its estimation.

II. The Kok method and the Laisk method

TheKokmethod exploits theKok effect – the abrupt decrease in the
linear slope of the relationship between net photosynthetic rate (A)
at low but increasing incident photosynthetic photon flux density
(Iinc; Fig. 1a). The Kok effect is apparent when A is measured as leaf
CO2-exchange (e.g. Buckley et al., 2017) or O2 production
(Gauthier et al., 2018). The decreasing slopewith increasing Iinc has
been interpreted as light inhibition of respiration, with the lower-
slope extrapolation to zero Iinc yielding�Rd, which is smaller (less
negative) than Rdk (Fig. 1a). Due to its simplicity, the Kok method
is still used to estimate Rd (e.g.Way et al., 2019; Faber et al., 2022).

The Laiskmethod analyses linear responses ofA to low intercellular
CO2 concentration (Ci) at multiple Iinc to find the common Ci at
which the rate of photorespiratory CO2 release equals the rate of CO2

fixation. At this Ci, CO2-release rate should equal Rd, which is the
intersection point of A-Ci lines at two or more Iinc values (Fig. 2a;
Supporting Information Methods S1, S2 give calculation methods
that ensure a common-Ci solution). The Laisk method assumes that
Rd is independent of Iinc and Ci within the ranges used. It has been
criticized because measurements must be made at low CO2 levels that
are far from normal conditions (Tcherkez et al., 2017) and an effect of
CO2 level onRd has been reported (such an effectmay, however, be an
artifact of gas exchange system leaks, Amthor et al., 2001). Since the
Kok method underestimates Rd (to be described later), the Laisk
method is often used (e.g. Atkin et al., 2000; Crous et al., 2013; Way
et al., 2019), even for nonsteady-state conditions (Schmiege
et al., 2023).

III. Exploiting chlorophyll fluorescence data to
estimate Rd

Both Kok and Laisk methods are theoretically consistent with the
electron transport-limited form of the C3-photosynthesis model
developed later by Farquhar et al. (1980):

A ¼ C c�Γ�ð ÞJ
4 C c þ 2Γ�ð Þ�Rd Eqn 1

where Cc is the CO2 level in the chloroplast, Γ* is the CO2-
photocompensation point in the absence of Rd, and J is the
photosynthetic linear electron transport rate, which depends on
Iinc. If Cc is constant while J varies proportionally with Iinc within
the limiting-Iinc range, Eqn 1 indicates that the intercept of the
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Fig. 1 Kok method and the Yin method. (a) Illustration of the Kok effect – a
two-phase response of net CO2 assimilation (A) to low incident photo-
synthetic photon flux density (Iinc) with the transitionmostly occurring at Iinc
around the light compensation point (i.e. Iinc corresponding to A= 0;
redrawn from Yin et al., 2020a). This effect was interpreted as an abrupt
cessation of light suppression of respiration (see Yin et al., 2020a; also as
shown in the inset), resulting in the Kok method to estimate day respiration
(Rd) with�Rd as the intercept of the linear regression on the data above the
transition or breakpoint (light-blue symbols). The intercept of the line below
the transition point (dark-blue symbols) is close to the actual CO2 exchange
rate at zero Iinc – respiration rate in the dark (Rdk). (b) Illustration of the Yin
method for estimation of Rd that accounts for the decline of Photosystem II
(PSII) electron transport efficiency (Φ2) with increasing Iinc (inset). The x-axis
is changed from Iinc in the Kokmethod (panel a) to IincΦ2/4, whereΦ2 can be
determined from chlorophyll fluorescence concurrently with gas exchange
(error bars represent SEs). The intercept is �Rd. Further explanation of this
figure can be found in Supporting Information Notes S1.
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linear A-Iinc plot quantifies �Rd, similarly to the Kok method
(Fig. 1a), and light progressively suppresses respiration only below
the Kok-break point (Fig. 1a inset). Within the low CO2-
concentration range where A-Cc response curves are linear, Eqn 1
indicates that photosynthetic CO2-response lines at two or more

Iinc values meet at a common CO2 level, that is Γ*, and the point
along the A-axis corresponding to Γ* reflects �Rd, commensurate
with the Laisk method (Fig. 2a).

The proportionality between A and Iinc assumed in the Kok
method would mean that the photochemical efficiency of both
photosystems (PS) is constant in the range of Iinc used. However,
the quantum efficiency of PSII electron transport, Φ2, as revealed
by chlorophyll fluorescence, decreases with increasing Iinc (Fig. 1b
inset). Since J can be replaced byΦ2ρ2βIinc (where β is absorptance
by photosynthetic pigments and ρ2 is the fraction of βIinc associated
with PSII), the Kok plot can be modified by plotting A against
Φ2Iinc/4 (Yin et al., 2009; Yin et al., 2011). The intercept of this
plot, which gives an estimate of �Rd (Fig. 1b), has been called the
Yin method (Tcherkez et al., 2017; Schmiege et al., 2023). Yin
method estimates of Rd are c. 20% higher than Kok method
estimates and are comparable with Laisk method values (Yin
et al., 2011).

IV. Considering reassimilation of respiratory CO2

Both Kok and Yin methods use linear regression to estimate Rd,
implicitly assuming thatCc is constant across light levels.Actually,Cc

varieswithin the low range of Iinc used, even if the ambient-CO2 level
is constant (Farquhar&Busch, 2017), because the rapidCO2flux of
respiration, relative to photosynthesis, at low Iinc drives
CO2 accumulation in the leaf against nonzero stomatal and
mesophyll resistances. Using anatomical data combined with 2-D
modelling accounting for CO2 diffusion and reactions inside a leaf,
Berghuijs et al. (2019) estimated Rd from gas exchange and
chlorophyll fluorescence data and found that applying the Kok or
Yin methods to photorespiratory conditions underestimated Rd.
(Typical photorespiratory conditions are associated with ambient or
subambient CO2 levels and ambient O2 level for C3 species;
nonphotorespiratory conditions can be obtained with high CO2

and/or lowO2.) Theoretically, both Kok and Yin methods work for
photorespiratory conditions only ifCc is constant across Iinc, which is
difficult to achieve experimentally because stomatal conductance (gs)
and mesophyll conductance (gm) are unknown beforehand. In fact,
gm-estimating methods can require Rd as input (Harley et al., 1992).

If the 2-D reaction–diffusion modelling can estimate Rd
(Berghuijs et al., 2019), a simpler method, that is Eqn 1 coupled
with a gm-model, can also estimate Rd by fitting it to gas exchange
and chlorophyll fluorescence data under photorespiratory condi-
tions. CO2 gradients along the bulk diffusional pathways are
commonly described as:

C c ¼ C i�A=gm ¼ C a�A
1

gm
þ 1

g s

� �
Eqn 2

where Ca is the ambient CO2 level outside the leaf. Combining
Eqns 1, 2 gives a nonrectangular hyperbolic model describing CO2

assimilation (NRH-A):

A ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c

p

2
Eqn 3
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Fig. 2 Laisk method and the use of the nonrectangular hyperbolic equation
for net CO2 assimilation (the NRH-Amethod) to re-analyze data of the Laisk
plot. (a) Illustration of the Laisk method to estimate day respiration (Rd) in
which net CO2-assimilation rates (A) are measured at low intercellular CO2

levels (Ci) at two or more (typically three) incident photosynthetic photon
flux densities (indicated by the numbers to the right of each line, in μmol
m�2 s�1; redrawn fromwheat leaf measurements at 25°C; Yin et al., 2011).
The estimated Rd was 0.97 μmol m�2 s�1 from the simultaneous fitting
procedure of Yin et al. (2011); see Supporting Information Methods S1, S2
for this procedure). (b) Using the NRH-Amethod, Eqn 3, to re-fit the data of
the Laiskplot to estimateRd (gas exchangedata are fromPanel a). Curves are
drawn from the fitted values of parameters of Eqn 3 giving
Rd= 1.21 μmol m�2 s�1 and gm= 0.34mol m�2 s�1 (seeMethods S3, S4 for
the fitting scripts). Note that the Laisk plots are no longer linear. Further
explanation of this figure can be found in Notes S2.
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with b ¼ x1�Rd þ gm C i þ x2ð Þ

c ¼ gm x1 C i�Γ�ð Þ�Rd C i þ x2ð Þ½ �

where x1= J/4 and x2= 2Γ* (von Caemmerer, 2000). Based on
this model, Farquhar & Busch (2017) showed that under
photorespiratory conditions Cc sharply increased with decreasing
Iinc (also see Fig. S1), meaning that respiration makes CO2

substrate available for photosynthesis. Yin& Struik (2009) showed
that this nonlinear NRH-Amodel, with J derived from chlorophyll
fluorescence measurements on Φ2 (Fig. 1b), can estimate gm more
reliably than the variable Jmethod of Harley et al. (1992). Both the
variable Jmethod and the NRH-A method rely on accounting for
the reassimilation of photorespired CO2 to estimate gm (Yin
et al., 2020b). The fraction of (photo)respired CO2 being
reassimilated can be calculated from stomatal and mesophyll
resistance terms (Tholen et al., 2012; Yin et al., 2020b; Notes S3).
Additionally, CO2 released by (photo)respiration within a
photosynthesizing cell decreases the chance of assimilating CO2

from the ambient air. It is this net CO2 reassimilation within a cell
that the NRH-A model accounts for (Yin et al., 2021).

Fang et al. (2022) showed that this NRH-A model can reliably
estimate Rd and gm simultaneously for photorespiratory condi-
tions (see Methods S3, S4 for calculation methods) by exploring
data across a range of low Iinc as in the Kok and Yin methods and
that a NRH-A method with variable-gm gave similar Rd estimates.
They found that for wheat leaves under photorespiratory
conditions, the Kok method underestimated Rd by c. 35%,
whereas the Yin method underestimated Rd by c. 20%, indicating
that in that case c. 20% of CO2 released by respiration was
reassimilated.

The NRH-A method for estimating Rd is analogous to applying
the modified Kok method procedure of Kirschbaum & Farqu-
har (1987) to iteratively correct for the decrease in Cc with
increasing Iinc (Ayub et al., 2011; Crous et al., 2012), but the
NRH-A method is easier to implement and considers the Φ2

dependence on Iinc. It is also analogous to the 2-D modelling of
Berghuijs et al. (2019) that accounts for the reassimilation of
(photo)respired CO2, but with the benefit that the NRH-A model
is considerably simpler than the 2-D model. The Kok and Yin
methods are most accurate for nonphotorespiratory conditions
because CO2 reassimilation is then typically small (Yin et al.,
2020b; Notes S3).

We find that the NRH-A method can also be applied to
analyzing Laisk plot data to simultaneously estimate Rd and gm
(Fig. 2b) if chlorophyll fluorescence data are also measured. Using
the data in Fig. 2(a) combined with concurrently measured
chlorophyll fluorescence data, the NRH-A method gave an
estimate of Rd of 1.21 μmol m�2 s�1 (Fig. 2b), c. 25% higher
than the value from the original Laisk method, indicating that the
linear Laisk plot does not properly account for CO2 reassimilation.
This agrees with simulation results of Farquhar & Busch (2017)
for underestimation of Rd by the Laisk method, and is compatible
with the experimental estimate for reassimilation% (Busch
et al., 2013).

However, the percentage of reassimilation varies with conditions
and species (Busch et al., 2013; Yin et al., 2020b), for which gm also
varies. The underestimation of Rd by Kok, Yin, and Laisk methods
for photorespiratory conditions may vary with diffusional
conductance (Fig. S1), and with the magnitude of Rd itself and
other parameters.

V. Theeffectofmetabolicoriginsofday respirationon
its estimation

The above discussion indicates that real light inhibition of Rd is
smaller than that estimated from the Kok method. However, real
inhibition still appears to increase with increasing rates of
photorespiration (Box 1), which calls for better insights about the
metabolic origins of Rd and their dynamics.

Wepresent variousmetabolic origins ofRd vsRdk in Fig. 3,which
highlights reactions/pathways that may differ between day and
night and therefore regulate effects of light on respiration both
quantitatively (rates of CO2 production and substrate oxidation)
and qualitatively (which substrates are converted to which
products). Of various reactions, those occurring in chloroplasts
are particularly relevant to estimating Rd, as the daytime CO2

Box 1 Explaining the Kok effect, and the need to better elucidate
respiratory CO2 origins

The Kok method (Fig. 1a) attributes the Kok effect entirely to an
inhibition of respiration by light. Other mechanisms co-contribute to
the Kok effect (Tcherkez et al., 2017; Gauthier et al., 2020; Yin
et al., 2020a), including (1) the decline ofΦ2 and (2) the decrease of
Cc (associated with CO2-reassimilation) with increasing light
intensity. Does light inhibition of respiration occur in the absence of
these effects?

With optimally managed sunflower plants, Yin et al. (2020a) used
Eqn 3 to disentangle Kok plots obtained at various levels of O2, CO2,
and temperatureand found thatdecreasingΦ2 andCcwith increasing
light intensity explained c. 12% and c. 25%, respectively, of the Kok
effect. The remaining c. 63%was attributed to real light inhibition of
Rd. Usingwheat plants grown under various temperatures andwater
regimes, Fang et al. (2022) found that Rd estimated by Kok, Yin, and
NRH-A (see text) methods was c. 60%, c. 72%, and c. 90% of Rdk,
respectively, for normal photorespiratory conditions. Hence, the
actual light inhibition of respiration was only c. 10%, agreeing with
the estimate by Sun et al. (2023),whoquantified the inhibition based
on the same considerations as Fang et al. (2022) but relying on a
separatemethod to pre-setRd for estimatingmesophyll conductance
(gm) first (see text). Differences among these studies quantifying
actual inhibition of respiration could be due to different species or
growth and measurement conditions.

Importantly, actual respiratory inhibition increaseswith increasing
photorespiration rate (Yin et al., 2020a; Fang et al., 2022), implying
changes in metabolic origins of Rd with changes in photorespiration.
As such, simultaneous CO2-release and O2-uptake measurements
(Hurry et al., 2005; Posch et al., 2022) and isotopic labelling of
metabolites (e.g. Gauthier et al., 2020; Wieloch, 2022) may be
needed to identify changes in daytime respiratory substrates and
reactions.
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released in chloroplasts can bemore readily refixed by Rubisco than
CO2 released in mitochondria and cytosol. Also, daytime 2-
oxoglutarate use in support of glutamate production in chloroplasts
for photorespiratory-NH4 recovery (along with general NO3

assimilation) may account for increased light inhibition of
respiration with increasing photorespiration (Fig. 3). Perhaps
more importantly, the chloroplast-localized oxidative pentose
phosphate pathway (PPP) not only carries an anaplerotic carbon
flux into, but provides NADPH (thus electrons) to, the Calvin–
Benson–Bassham cycle (Wieloch, 2022).

To account for effective electron supply changes from the usual
J to (J + 4Ra,p), where Ra,p is CO2-release rate by chloroplastic
oxidative PPP, Wieloch et al. (2023) revised Eqn 1 to:

A ¼ C c�Γ�ð Þ J þ 4R a,p

� �
4 C c þ 2Γ�ð Þ �R a,p�Rx Eqn 4

where Rx is day respiration other than Ra,p, including all other
daytime respiratory components of Fig. 3 (i.e. Ra,p+ Rx= Rd).

If Ra,p is a significant fraction of Rd, current Rd-estimating
methods should be re-assessed. Eqn 4 indicates that Ra,p alters
slopes of curves in the Laisk plot, but if Ra,p does not vary with CO2

or Iinc (see cautions later), the common intercept of the Laisk plot
still gives an estimate of�(Ra,p + Rx), that is�Rd, althoughRa,p and
Rx cannot be separated in this method.

Rewriting Eqn 4 as:

A ¼ C c�Γ�ð Þ
C c þ 2Γ�ð Þ

J

4
� 1� C c�Γ�

C c þ 2Γ�

� �
Ra,p þ Rx

� �
Eqn 5

indicates that the intercepts of neither the Kok plot nor the Yin plot
are�(Ra,p + Rx), and one can hardly use these methods to estimate
Rd. Nonetheless, for nonphotorespiratory conditions (e.g. 2%O2),
where (Cc� Γ*)/(Cc+ 2Γ*) approaches unity, Eqn 5 becomes:
A = J/4� Rx, and then the Kok and Yin methods can be applied,
but the intercept estimate �Rx.

For the NRH-A method, Eqn 3 is applicable if x1 is changed
from J/4 to (J + 4Ra,p)/4 and Rd is changed to (Ra,p+ Rx). As Rd is
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Fig. 3 Majormetabolic reactions associatedwithmature-leaf respiratoryCO2 release at night (left) andduring theday (right). Solid lines indicate single enzyme
(or enzyme complex) reactions or intracellular transport. Dashed lines indicate multi-enzyme sequences. Major pathways without all intermediate reactions
shown are indicated by green text in brackets (e.g. [glycolysis]). This scheme does not show ATP formation or NAD(P)+/NAD(P)H interconversion. CO2

exchanges associated with respiration, including CO2 (in the form HCO3
�) assimilation during conversion of PEP to OAA, are circled with solid lines. CO2

exchanges associatedwith photosynthesis, that is the CBB cycle, and photorespiration are circledwith dashed lines. On the right, respiration-related reactions
and pathways that may be slowed or halted in the light are shown in pink while CO2-releasing reactions and pathways that may be stimulated by light or
photosynthesis are shown in blue. 2-OG, 2-oxoglutarate; 6PG, 6-phosphogluconate; 6PGL, 6-phosphogluconolactone; CBB, Calvin-Benson-Bassham; G6P,
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nonoxidative reactions of the pentose phosphate pathway; OAA, oxaloacetate; PEP, phosphenolpyruvate; PGA, 3-phosphoglycerate; Ru5P, ribulose 5-
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figure can be found in Supporting Information Notes S4.
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then split into Ra,p and Rx, overfitting may occur, but if Rx is
simultaneously estimated from the Yin method applied to a
nonphotorespiratory condition (as mentioned in the previous
paragraph), then Ra,p can be estimated by the NRH-A method.
This assumes that photorespiration does not affect Rx or Ra,p. IfRa,p
relative to Rx varies with CO2 level (Wieloch, 2022) or with other
factors like Iinc (light may alter the chloroplastic oxidative PPP), it
will be difficult to estimate them from conventional gas exchange
measurements.

VI. Conclusions

Adding chlorophyll fluorescence measurements to gas exchange
data improves the estimation ofRd. Variation inRd estimates can be
due to: (1) photorespiratory vs nonphotorespiratory conditions, (2)
reassimilation of respired CO2, and (3) assumptions behind the
methods. When methods are appropriately applied (i.e. the NRH-
A method applied to photorespiratory conditions and the Yin
method to nonphotorespiratory conditions), different results will
likely reflect real differences in Rd between the two measurement
conditions. Underestimation of Rd with the Yin method applied to
photorespiratory conditions, relative to the NRH-A method,
should reflect reassimilation of respired CO2. As the Laisk method
intrinsically relies on highly photorespiratory measurement
conditions, it is inappropriate for estimating Rd in C4 species
(Yin et al., 2011) or in C3 species in low-photorespiration
situations, for example low temperatures (Way et al., 2019).
Underestimations of Rd by the Laisk method, relative to the NRH-
A method, can be due to underestimation of reassimilation of
respired CO2. The Kok method underestimates Rd to the greatest
extent, because it ignores both the Φ2 decline with increasing Iinc
and CO2 reassimilation.

The potentially diverse metabolic origins of Rd (Fig. 3)
indicate: (1) Rd may be dominated by nonmitochondrial
processes (and see Wieloch, 2022) and ‘mitochondrial respira-
tion in the light’ should be avoided as an alternative name for
day respiration; (2) while some key respiratory reactions can be
suppressed by light, others may be stimulated; (3) daytime
2-oxoglutarate use in support of photorespiratory-NH4 recovery
and general NO3 assimilation, which might reduce mitochon-
drial CO2 release, may be a major factor underlying light
inhibition of respiration in general and especially with
increasing photorespiration; and (4) Eqn 1 implies that Rd
and photosynthesis are independent, but they are interdepen-
dent and Rd must be partitioned into different components if
the chloroplast-based oxidative PPP accounts for a significant
part of Rd. Further research should identify: contributions of
various CO2-exchange processes to Rd, variation in those
contributions between species and environments/conditions, the
CO2-exchange processes most often inhibited or stimulated by
light, and whether Rd is affected differentially in low- and high-
light conditions.
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