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ABSTRACT

Tropical seasonal forests make up 40% of the globally avail-
able forest stock and play an essential role in regulating the
variability in the global carbon cycle. Therefore, there is a
strong need to persistently monitor seasonal forest changes
to understand the forest carbon fluctuation and to better con-
serve biodiversity and enforce laws. In this regard, the advent
of the European Space Agency (ESA) Copernicus program
avails a dense time-series of both Synthetic Aperture Radar
(SAR) and optical images, globally and free of charge, that
enables the exploitation of these images for near real-time
forest monitoring. Detecting seasonal forest changes in dense
time-series, however, is complicated by fluctuation in the
detected signal that is induced by forest phenology change.
Therefore, forest disturbance detection methods should ac-
count for these seasonal fluctuations to make an accurate
inference about forest disturbances. In this regard, deep
learning approaches designed for sequential data such as
Transformers can be used to implicitly learn the natural forest
seasonality pattern in the signal to detect forest disturbances.
This abstract demonstrates the efficacy of Transformers to
detect seasonal forest disturbance in a seasonal dry-forest
region in Bolivia.

Index Terms— Sentinel-1, Sentinel-2, Deep Learning,
Transformers

1. INTRODUCTION

The advent of temporally dense optical and SAR images,
such as Sentinel-1 SAR and Sentinel-2 optical images with
global coverage has been important for timely detection of
forest disturbances. However, the exploitation of these im-
ages for seasonal forest disturbance detection is complicated
by the presence of seasonal signal variations in the time-series
images [1].

Traditionally, to detect seasonal forest disturbance, desea-
sonalization is applied to the time series first to remove the
seasonal forest component [1] before forest disturbance al-
gorithms are applied. The seasonal component is usually
assumed to follow a sinusoidal pattern, therefore a harmonic
model is fitted to the data to remove the seasonal component.
However, to fit a robust model a dense image timeseries is
required which can be challenging for optical images due to
missing data because of cloud cover. Furthermore, seasonal
shifts (e.g. due to climate change) introduce imperfections
in the fitted model introducing errors in disturbance detection.

Deep learning approaches designed for sequential data promise
to mitigate the effect of seasonality by implicitly learning the
seasonality patterns to make forest disturbance predictions.
In this regard, recurrent neural networks are deep learning
methods that are suited for time series data with the long
short term memory (LSTM) and gated recurrent unit (GRU)
being notable variants [2] [3].

Recent attention based time series deep learning methods
such as Transformers [4] have become popular in natural
language processing (NLP) domain because of its ability to
learn semantics by understanding the relationship between
words in a sentence. This concept can be transferred to the
image time series domain to understand the relationship be-
tween images in the series that defines the natural dynamics
of seasonal forests.

Therefore, in this manuscript, we demonstrate a Transformer
based deep learning approach that predicts seasonal forest dis-
turbance from both Sentinel-1 and Sentinel-2 time series im-
ages in a seasonal forest setting.

2. METHODOLOGY

2.1. Architecture

We use a Siamese Transformer architecture (Figure 1) to train
a model that can detect seasonal forest disturbance. We se-
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Fig. 1. The proposed architecture.

lected to use a Siamese approach because of the difference in
the severity of seasonality in the optical and SAR data. We ap-
ply the same transformer encoder architecture to both streams
and fusion is implemented at the decision level. Therefore,
the deep learning objective can be formulated as:

argmin
θ

∑
L(fθ([S1, S2]), R). (1)

Here, [S1, S2] are the input Sentinel-1 and Sentinel-2 image
time series, R is the binary forest non-forest maps we will
use as reference data and fθ is the deep learning network pa-
rameterized by the learned parameters θ. The Loss function
(L) in (1) is a binary cross-entropy loss function.

The network consists of positional embedding layer and two
transformer encoder blocks each consisting of layer normal-
ization, Multi-head attention blocks and multi-layer percep-
trons (MLP) in both the Sentinel-1 and 2 branches. Finally
a decision fusion module combines the probability from each
data stream in an AND condition to derive inference probabil-
ities. The architecture used in this manuscript is implemented
using the TensorFlow deep learning framework in a Python
3.9 environment and trained on Google Colab platform using
a Tesla T4 GPU.

2.2. Dataset

The proposed Transformers architecture is trained and tested
using an analysis ready Sentinel-1 SAR ground range de-
tected (GRD) time series in both the VV and VH polarizations
[5] and Sentinel-2 normalized burn ratio (NBR) vegetation
index time series synthesized in the dry Chaco eco region in
Bolivia that is characterized by a multi-layer deciduous dry
forest structure that typically consists of a canopy, shrub and
herbaceous layer, at a nominal ground sampling distance of
10m. We opted to use NBR instead of the original Sentinel-2
multi-spectral bands because of the NBR’s sensitivity to low
reflectance pixels. We have derived surface reflectance values

Fig. 2. Cumulative seasonal forest disturbance inferred from
the proposed method for the year 2020 over the study area.

prior to estimating NBR values. we have also applied cloud
and shadow masking to the Sentinel-2 timeseries prior to
model training. The study area’s upper left coordinates are
−63.1660 lon, −17.7920 lat and the lower right coordinates
are −61.1660 lon, −19.7920 lat. The datasets were acquired
from January 2019 to December 31, 2020. The Sentinel-1
SAR sensor acquires data in C band for both the VV and VH
polarizations, whereas the Sentinel-2 images are acquired
in the visible, near infrared and short wave infrared ranges.
We synthesized the reference data by taking the intersection
between the globally available Hansen forest loss dataset and
the Landsat based GLAD alerts [6] [7].

2.3. Network training

The input data to the network was prepared by random sam-
pling of timeseries pixels from the training area for both the
Sentinel-1 SAR image in both VV and VH polarization and
the NBR time series derived from Sentinel-2 images. We split
the sampled data into 90% training, 10% validation and 10%
testing data.

The network was trained using Adam optimization method.
We initialized the parameters randomly using the improved
Xavier initialization. Batch normalization was used for ev-
ery dense layer outside the Transformer encoder layer layer
except the prediction layer. To minimize training and vali-
dation errors, we applied hyper-parameter tuning using the
Keras tuner package [8] using Hyperband method to select
the optimal number of neurons for the embedding dimension,
number of heads in the self attention module and the optimal
learning rate. The training data consisted of 2784 randomly
selected labeled timeseries pixels. During training a mini-
batches of 16 samples and a weight decay factor of 5× 10−4

was used.
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3. RESULTS

The optimally trained model contained 320 units in the dense
layers within the MLP, an embedding dimension of 224 and a
learning rate of 0.01. To evaluate the performance of the pro-
posed Transformer architecture, we synthesized a Sentinel-1
SAR image in both VV and VH polarization and a Sentinel-2
NBR timeseries for the year 2020 to derive the cumulative
disturbance for the selected area (Figure 2). This testing data
was prepared from an area that was disjointed from where the
training data was synthesized. We qualitatively compared the
results of cumulative disturbance prediction with a high res-
olution Planet scope image. We also performed quantitative
assessment by deriving the precision, recall and F-1 score of
the model on the independent test data. The proposed method
achieved high accuracy with a precision of 99%± 1%, recall
of 83% ± 6% and an F-1 score of 89% ± 4% for forest dis-
turbances (Table 1). This indicated the proposed approach is
able to detect seasonal forest disturbances with a high accu-
racy. This was also confirmed when comparing the predicted
disturbance map with that of a high resolution Planet scope
images (Figure 2).

Table 1: The precision, recall and F-1 score of the proposed
method on independent test data.

Class Precision Recall F-1 score
Disturbance 0.99± 0.01 0.83± 0.06 0.89± 0.04

Overall, the proposed architecture provided promising results
in detecting disturbances from seasonal forests at the cost
of computational complexity. However, the limited dataset
used in the experiments and missing data from the Sentinel-2
timeseries due to cloud cover and shadows posed a challenge
to the overall efficacy of the model.

4. CONCLUSIONS

In this abstract, we demonstrated the use of a Transformer
based architecture for the detection of seasonal forest dis-
turbance. We used a Siamese transformer architecture to
implicitly learn the seasonality pattern, which distinctly did-
not rely on traditional manual deseasonalization approaches.

In future work, we will further improve the efficacy of the
method by minimizing overfitting by using a diverse set of
training dataset. Furthermore, we will improve the gener-
alization capability of the model and address the effect of
missing data in the Sentinel-2 time-series by using different
gap estimation and filling approaches. Finally, we’ll explore
different fusion approaches to further improve the robustness
of the proposed method.
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