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Propositions

1 | The primary consideration in undertaking water balance analysis
is the rationale behind the selection of data sources.
(this thesis)

2 | Analysing groundwater storage has to consider the aquifer’s
stratification.
(this thesis)

3 | Developing methods to work in data-scarce areas inadvertently
exacerbates the issue of data scarcity.

4 | Stereotyping represents an adequate statistical concept for
understanding probability distributions.

5 | Promoting inclusivity leads to, paradoxically, non-inclusive
environments.

6 | Working from home is as tragic as living in the office.
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Summary

Groundwater serves 95% of the total non-frozen freshwater in, on, and above the earth.

With the increasing water demand due to population growth, abstracting groundwater is

an unavoidable need for society. Understanding the groundwater system’s response in flow,

head, table, and storage to anthropogenic activities is, therefore, crucial for developing

sustainable groundwater management, policies, and strategies.

In recent decades, groundwater flow modeling has been a major contributor to advancing

the understanding of groundwater resources. However, many obstacles persist in developing

and implementing groundwater flow modeling; data scarcity being one among many. Due

to this issue, maximizing the groundwater flow model’s capability to unravel subsurface

processes and mechanisms in data-scarce areas remains challenging to this day.

The situation is also particularly applicable to the Bandung groundwater basin, Indonesia.

Only a few groundwater-related research were conducted in the area. Several factors,

primarily data availability, have hindered further progress in understanding the groundwater

system. As a result, the quantification of groundwater-related variables in this area lacks

the depth found in data-sufficient areas. For that reason, the main aim of this study is

to deepen the quantitative understanding of the groundwater system in the Bandung

groundwater basin, Indonesia. In achieving the primary goal, four topics are covered:

(1) estimating water balance components, (2) developing a one-way coupled hydrological

and groundwater flow model, (3) model evaluation using (ancillary) environmental water

tracers data, and (4) projecting future groundwater availability.

This thesis begins with an introduction in Chapter 1, briefly describing groundwater

in general, and laying out the basic idea and principles of groundwater flow modeling.

It is also complemented by other fundamental materials, such as aquifers, groundwater

abstraction, and the link between hydrological and groundwater flow simulation. All the

academic journal articles resulting from this thesis share a common study area of the

Bandung groundwater basin. Thus, most of the essential details of the study area are

elaborated in Chapter 2. These include location overview, hydrological and hydrogeological

settings, anthropogenic footprint, and data availability, including those collected during

the field campaign conducted in 2020.
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Chapter 3 explores the estimation of the Bandung groundwater basin’s water balance and

investigates the associated uncertainty bounds. Using a series of estimates for each water

balance component, it is aimed that the definitive conclusion on the basin’s current water

storage change status could be derived. Multiple water balance components’ estimates

are collated from ground measurements, interpolated gauge-based datasets, and remote-

sensing products, to hydrological model-based estimates. Further, their uncertainties are

quantified by applying the Extended Triple Collocation technique. The analysis leads to

the conclusion that the integration of a dedicated groundwater flow model is imperative

for mitigating the uncertainty surrounding the estimates of water balance components,

particularly when conducting assessments of basin water storage changes.

In Chapter 4, a one-way coupled hydrological and groundwater flow model is constructed

and calibrated. The hydrological model is based on the Wflow sbm model, following up

the model-based estimates discussed in Chapter 3. In the model setup, we incorporate one

additional parameter, MaxLeakage, to estimate groundwater recharge. Using information

obtained from field campaigns and collaborations with several government and private

sectors, a parsimonious groundwater flow model is developed using the MODFLOW model.

The simulation output is evaluated by comparing a number of variables: (1) the river

discharge simulated by the hydrological model with discharge observation data, (2) the

groundwater head simulated by the groundwater flow model with observed groundwater

head, and (3) the basin’s water storage changes simulated by the one-way coupled model

with gravimetric satellite estimates of GRACE. All designated evaluations produce satis-

factory metrics: KGE (Kling-Gupta Efficiency) of 0.46, r2 (coefficient of determination)

of 0.895, and cross-correlation coefficient of 0.502, to name a few. It is concluded in this

chapter that gravimetric satellite data of GRACE could be used as a supplementary model

evaluation tool, even in basin-scale models. Having said that, the local features of the

basin and the GRACE’s footprint due to the potential spatial coverage differences are of

substantial importance to be considered.

Chapter 5 further explores the details of the one-way coupled model simulation results.

To increase confidence in the model results, the model is evaluated, qualitatively, by

comparing the pattern produced by the one-way coupled model with the ones derived from

environmental water tracer data analysis. The collated environmental water tracer data

include major ion elements, groundwater age estimates, and stable isotope data. Agreement

was met between the two approaches from the perspective of groundwater recharge spatial

distribution, regional groundwater flow direction, groundwater age estimates, and aquifer

interaction identification. The previously hypothesized aquifer interaction induced by

multi-layer groundwater abstraction then becomes quantifiable using the model simulation

output. Within this chapter, the understanding of the groundwater system is further

deepened: the parsimonious groundwater flow model is able to simulate the groundwater

flow processes from the unconfined aquifer and mountainous area which compensates for

the volume of groundwater abstracted from the confined aquifer.
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In Chapter 6, the now-established one-way coupled model is used to project future

groundwater availability. The projected climate forcings are taken from the Coupled

Model Intercomparison Project Phase 6 (CMIP6), under two greenhouse gas concentration

trajectory scenarios: RCP (Representative Concentration Pathway) 4.5 and 8.5. Before

being forced into the Wflow sbm model to obtain the projected groundwater recharge,

the climate forcing projections are first bias-corrected using the method tailored to the

Inter-Sectoral Impact Model Intercomparison Project phase 3b (ISIMIP3b). Further, the

computed groundwater recharge drives the groundwater flow simulation, set up under

multiple groundwater abstraction scenarios. The scenarios are developed across a range,

including scenarios of increasing and decreasing groundwater abstraction. It considers

a wide range of potential future possibilities, including the very tangible capital city

relocation plan of Indonesia. This implementation reveals that anthropogenic activities

exert dominant control over regulating the groundwater regime in the study area, even

when compared with the influence of climatic factors.

Chapter 7 provides a comprehensive synthesis of the findings from the four fundamental

chapters in this thesis. First, it highlights the importance of a devoted groundwater flow

model to narrow the uncertainty associated with water balance components’ estimation,

especially in evaluating a basin’s water storage changes. Second, incorporating multiple

sources of data provides significant support in evaluating hydrological and groundwater

flow models. This is shown by the assimilation of GRACE and environmental water

tracer data, which helps in understanding the groundwater flow system in the study area.

Third, the study reveals that the management of groundwater abstraction is of paramount

importance for ensuring future groundwater availability in the Bandung groundwater

basin. Additionally, Chapter 7 addresses each research question arising from the specific

objectives and offers a comprehensive discussion of lessons learned, including the study’s

limitations, uncertainties, challenges, and potential future opportunities.





Samenvatting

Grondwater is goed voor 95% van de totale niet-bevroren zoetwatervoorraad onder, op

en boven het aardoppervlak. Door de toenemende vraag naar water als gevolg van de

bevolkingsgroei is het onttrekken van grondwater een onvermijdelijke maatschappelijke

behoefte. Inzicht in de impact van menselijke activiteiten op het grondwatersysteem in

stroming, stijghoogte, grondwaterstand, en opslag is daarom cruciaal voor de ontwikkeling

van beleid en strategieën voor een duurzaam grondwaterbeheer.

In de afgelopen decennia heeft het modelleren van grondwaterstromingen veel bijgedragen

aan een beter begrip van grondwatervoorraden. Er bestaan echter veel obstakels bij het

ontwikkelen en implementeren van grondwaterstromingsmodellering; gegevensschaarste is

er daar één van. Vanwege dit probleem blijft het maximaliseren van het vermogen van het

grondwaterstromingsmodel om ondergrondse processen en mechanismen in gebieden met

weinig gegevens te ontrafelen tot op de dag van vandaag een uitdaging.

De situatie is ook in het bijzonder van toepassing op het grondwaterbekken van Bandung,

Indonesië. Er is slechts weinig grondwatergerelateerd onderzoek uitgevoerd in het gebied.

Verschillende factoren, voornamelijk de beschikbaarheid van gegevens, hebben verdere

vooruitgang in het begrijpen van het grondwatersysteem belemmerd. Het gevolg is dat de

kwantificering van grondwatergerelateerde variabelen in dit gebied niet de diepgang heeft

die wel beschikbaar is in gebieden met voldoende gegevens. Daarom is het hoofddoel van

deze studie het verdiepen van het kwantitatieve begrip van het grondwatersysteem in het

Bandung grondwaterbekken, Indonesië. Om dit doel te bereiken, worden vier onderwerpen

behandeld: (1) het schatten van waterbalanscomponenten, (2) het ontwikkelen van een

eenzijdig gekoppeld hydrologisch en grondwaterstromingsmodel, (3) modelevaluatie met

behulp van (aanvullende) gegevens van omgevingswatertracers, en (4) het voorspellen van

de toekomstige beschikbaarheid van grondwater.

Dit proefschrift begint met een inleiding in hoofdstuk 1, waarin grondwater in het algemeen

wordt beschreven en het basisidee en de principes van grondwaterstromingsmodellering

worden uiteengezet. Hoofdstuk 1 wordt aangevuld met ander fundamenteel materiaal, zoals

watervoerende lagen, grondwateronttrekking en het verband tussen hydrologische simulatie

en simulatie van grondwaterstromen. Alle in academische tijdschriften gepubliceerde

artikelen die uit dit proefschrift voortkomen, hebben als gemeenschappelijk studiegebied
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het Bandung grondwaterbekken. Daarom worden de meeste essentiële details van het

studiegebied in hoofdstuk 2 uitgewerkt. Deze omvatten een overzicht van de locatie, hy-

drologische en hydrogeologische settings, de antropogene voetafdruk en de beschikbaarheid

van gegevens, inclusief de gegevens die zijn verzameld tijdens de veldcampagne die in 2020

is uitgevoerd.

Hoofdstuk 3 behandelt de schatting van de waterbalans van het Bandung grondwater-

bekken en de bijbehorende onzekerheidsgrenzen. Met behulp van een reeks schattingen

voor elke waterbalanscomponent wordt geprobeerd om een definitieve conclusie te trekken

over de huidige mate van verandering in de watervoorraad van het stroomgebied. De schat-

tingen van meerdere waterbalanscomponenten worden samengevoegd, van grondmetingen,

gëınterpoleerde meetgegevens en teledetectieproducten tot schattingen op basis van hydrol-

ogische modellen. Verder worden de onzekerheden gekwantificeerd door de Extended Triple

Collocation techniek toe te passen. De analyse leidt tot de conclusie dat de integratie

van een specifiek grondwaterstromingsmodel noodzakelijk is om de onzekerheid rond de

schattingen van waterbalanscomponenten te verminderen, met name bij het uitvoeren van

beoordelingen van veranderingen in de wateropslag in het stroomgebied.

In hoofdstuk 4 wordt een eenzijdig gekoppeld hydrologisch en grondwaterstromingsmodel

geconstrueerd en gekalibreerd. Het hydrologische model is gebaseerd op het Wflow sbm

model, voortbouwend op de modelgebaseerde schattingen die in hoofdstuk 3 zijn be-

sproken. In de modelopzet nemen we een extra parameter op, MaxLeakage, om de

grondwateraanvulling te schatten. Met behulp van informatie verkregen uit veldcampagnes

en samenwerkingsverbanden met verschillende overheids- en particuliere sectoren wordt

een eenvoudig grondwaterstromingsmodel ontwikkeld met behulp van het MODFLOW

model. De simulatieresultaten worden geëvalueerd door een aantal variabelen te vergeli-

jken: (1) De door het hydrologische model gesimuleerde rivierafvoer met waargenomen

afvoerdata, (2) de door het grondwaterstromingsmodel gesimuleerde grondwaterstand

met de waargenomen grondwaterstand, en (3) de door het eenzijdig gekoppelde model

gesimuleerde veranderingen in de wateropslag in het stroomgebied met gravimetrische

satellietschattingen van GRACE. Alle toegewezen evaluaties leveren bevredigende me-

trieken op: Een KGE (Kling-Gupta Efficiëntie) van 0,46, r2 (determinatiecoëfficiënt) van

0,895 en kruiscorrelatiecoëfficiënt van 0,502, om er een paar te noemen. In dit hoofdstuk

wordt geconcludeerd dat gravimetrische satellietgegevens van GRACE kunnen worden

gebruikt als een aanvullend instrument voor modelevaluatie, zelfs in modellen op schaal

van het rivierbekkenniveau. Dit gezegd hebbende, is het van groot belang om rekening

te houden met de lokale kenmerken van het rivier bekken en de voetafdruk van GRACE

vanwege de mogelijke ruimtelijke dekkingsverschillen.

Hoofdstuk 5 gaat verder in op de simulatieresultaten van het eenzijdig gekoppelde model.

Om de betrouwbaarheid van de modelresultaten te vergroten, wordt het model kwalitatief

geëvalueerd door het patroon dat door het eenzijdig gekoppelde model wordt geproduceerd
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te vergelijken met de patronen die zijn afgeleid uit de analyse van omgevingswatertracer-

data. Dit zijn onder meer elementen van belangrijke ionen, grondwater-leeftijdsisotopen

en stabiele isotopengegevens. Er was overeenstemming tussen de twee benaderingen wat

betreft de ruimtelijke verdeling van de grondwateraanvulling, de richting van de regionale

grondwaterstroming, de schatting van de grondwaterleeftijd en de identificatie van de inter-

actie tussen watervoerende pakketten. De eerder genoemde aquiferinteractie veroorzaakt

door meerlagige grondwateronttrekking wordt vervolgens kwantificeerbaar met behulp van

de modelsimulatie-uitvoer. In dit hoofdstuk wordt het begrip van het grondwatersysteem

verder verdiept: het grondwaterstromingsmodel is in staat om de grondwaterstromingspro-

cessen uit de niet-gesloten watervoerende laag en het bergachtige gebied te simuleren,

waardoor het volume grondwater dat wordt onttrokken uit de ingesloten watervoerende

laag wordt gecompenseerd.

In hoofdstuk 6 wordt het nu ontwikkelde eenzijdig gekoppelde model gebruikt om de

toekomstige beschikbaarheid van grondwater te simuleren. De voorspelde klimaatsce-

nario’s zijn afkomstig van het Coupled Model Intercomparison Project Phase 6 (CMIP6),

onder twee scenario’s voor broeikasgasconcentraties: RCP (Representative Concentration

Pathway) 4.5 en 8.5. Voordat het hydrologische Wflow sbm model hiermee geforceerd

wordt om de geprojecteerde grondwateraanvulling te krijgen, worden de klimaatprojecties

eerst gecorrigeerd met behulp van de methode die ook gebruikt is in het Inter-Sectoral

Impact Model Intercomparison Project fase 3b (ISIMIP3b). Verder stuurt de berekende

grondwateraanvulling de simulatie van de grondwaterstroming aan, welke zijn opgezet

onder meerdere grondwateronttrekkingsscenario’s. Verschillende scenario’s zijn ontwikkeld,

inclusief scenario’s van toenemende en afnemende grondwateronttrekking. Er wordt reken-

ing gehouden met een breed scala aan toekomstige mogelijkheden, waaronder het zeer

concrete plan voor de verplaatsing van de hoofdstad van Indonesië. De simulaties laten

zien dat antropogene activiteiten een dominante invloed hebben op de regulering van het

grondwaterregime in het studiegebied, zelfs in vergelijking met de invloed van veranderde

klimatologisch factoren.

Hoofdstuk 7 geeft een synthese van de bevindingen uit de vier fundamentele hoofdstukken

in dit proefschrift. Ten eerste benadrukt het het belang van een toegewijd grondwaterstro-

mingsmodel om de onzekerheid in verband met de schatting van waterbalanscomponenten

te beperken, vooral bij de evaluatie van de veranderingen in de wateropslag in een rivier-

bekken. Ten tweede biedt de integratie van meerdere gegevensbronnen een belangrijke

ondersteuning bij de evaluatie van hydrologische en grondwaterstromingsmodellen. Dit

getoond door het gebruik van GRACE en watertracerdata, wat helpt bij het begrijpen

van het grondwaterstromingssysteem in het studiegebied. Ten derde toont het onderzoek

aan dat het beheer van grondwateronttrekking van het grootste belang is om de toekom-

stige beschikbaarheid van grondwater in het Bandung grondwaterbekken te garanderen.

Hoofdstuk 7 gaat in op elke onderzoeksvraag die voortvloeit uit de specifieke doelstellin-
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gen en biedt een uitgebreide bespreking van de geleerde lessen, inclusief de beperkingen,

onzekerheden, uitdagingen en mogelijke toekomstige kansen van het onderzoek.







Introduction

Chapter 1



2 Introduction

1.1 Groundwater in essence

The water cycle concept is often used to introduce hydrology-related science. While

enveloping many processes from atmospheric, hydrologic, to geologic layer, one supplemen-

tary information that would benefit from its frequent sharing is the proportion of water

volume involved within each process. From the book Water in Crisis: A Guide to the

World’s Fresh Water Resources (Thomas, 1994) (see Figure 1.1), it is known that only

2.5% of the total water volume on, in, and above the planet Earth is non-saline water.

Without taking into account the frozen glaciers and ice caps, there is less than 40% of the

already small proportion of non-saline water available in a liquid state. Within such a tiny

fraction remains the 11.1 million km3 of freshwater that humans strive to manage.

It is a lot of water. In fact, it is so much water, that if the freshwater is spread all over the

Earth’s land surface area, the whole planet would be inundated by more than 21 meters

of water columns. Unfortunately, not all of the freshwater on the planet Earth is easily

accessible. Over 10.5 million km3, equivalent to roughly 95%, of the available non-frozen

freshwater is accumulated under the surface, between the tiny open spaces between rock

and sand, soil, and gravel, known as the groundwater (Schneider et al., 2011).

1.1.1 Innate natural attributes of groundwater system

In many ways, groundwater and surface water share many fundamentally common features.

Physically, both groundwater and surface water travel from locations with higher energy to

those with lower energy. When they are still, they are both storable, although each storage

of groundwater and surface water has its own inflow and outflow budget within the water

cycle conceptual framework. On the other hand, they also have key differences within

their flow and storage systems, regulated by different mechanisms and processes.

Analogous to reservoirs and/or water bodies for surface water, groundwater is deposited in

aquifers. It is defined as subsurface geological formations with the capability of storing

and transmitting groundwater. Each aquifer has its own properties, such as porosity,

permeability, storage capacity, thickness, soil stratigraphy, etc. These properties are

molded and shaped by unique (hydro)geological processes: weathering, erosion, deposition,

compaction, burial, and so forth. Often, aquifer properties are found to be heterogeneous

(varying among locations) and anisotropic (varying among directions).

When groundwater flows, many physical attributes are involved in driving such a motion,

contributed dominantly by aquifer properties: available pore spaces among soil particles,

rock size distribution, retention capacity, and so on. Another key component, that is often

disregarded, is the properties of the flowing fluid: density, viscosity, etc. Encompassing all

controlling factors of groundwater flow, hydraulic conductivity represents the easiness

of certain fluid, in most cases the groundwater, to flow through porous media.
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Figure 1.1: Water distribution across the globe, taken from the United States Geological

Survey (USGS).

In addition to aquifer/soil control, groundwater movement is also regulated, naturally, by

surface water. Water bodies such as rivers, lakes, and/or even oceans frequently act

as boundary conditions for the water exchange between groundwater and surface water,

displayed in Figure 1.2. These interactions also propagate from higher to lower energy.

Therefore, in an area where the groundwater level is higher compared to the surface water

elevation, groundwater seeps as river baseflow (Figure 1.2 [top]). Otherwise, the water

bodies are losing water (Figure 1.2 [bottom]) by infiltrating into the soil and filling the

groundwater storage.

1.1.2 Society’s role on groundwater

As the largest freshwater storage on earth, groundwater has never been and could not be

detached from society. In many ways, the regime of groundwater is partly regulated by

anthropogenic activities, besides its natural control described in the section above. For

that reason, the correlation between societal roles and groundwater management is an

interesting and important topic in itself (Scholz et al., 2000; Mitchell et al., 2012). Changes

in land use and land cover, for example, alter the amount and pattern of groundwater
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Figure 1.2: Schematics of groundwater and surface water interaction where the river gains

water [top figure] and loses water [bottom figure], taken from Alley et al. (1999).

recharge, which is the main inflow into a groundwater system. Anthropogenic influence on

surface water also indirectly affects groundwater, as surface water control on groundwater

is briefly mentioned above. However, among many human interventions, one activity with

the most direct impact is groundwater abstraction, carried out by physically pumping

groundwater out from an aquifer.

Human civilization has been abstracting groundwater to meet its water demand since

the prehistorical age (Angelakis et al., 2016; Voudouris et al., 2018). Water requirements

for irrigation, domestic uses, and industrial needs are some examples of pivotal usage

of groundwater. Globally, the spatial distribution of groundwater abstraction is highly

non-uniform. Despite global average annual groundwater abstraction estimates (de Graaf

et al., 2014) being lower than global average annual groundwater recharge estimates (de

Graaf et al., 2016), many places on regional and catchment scales have been experiencing

the opposite. When inflow to a system (in this case, groundwater recharge) is lower than

outflow from the system (in this case, groundwater abstraction), considering also the

net flow of other budgets (for example, river baseflow, head boundary conditions, etc),

groundwater storage depletes.
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Such a situation can be found all across the world, starting from Asia in northern India

(Chatterjee et al., 2018), Bangladesh (Shahid et al., 2015), northwest China (Hu et al.,

2019; Lili et al., 2020), Jordan (Al-Zyoud et al., 2015), Europe in Spain (Closas et al.,

2017) and its archipelago (Custodio et al., 2016), Denmark (Henriksen et al., 2008), Africa

in Algeria (Khezzani and Bouchemal, 2018), Ghana (Yidana et al., 2019), South Africa

(Sorensen et al., 2021), to the American continent in northeast Brazil (Luna et al., 2017),

Mexico (Ochoa-González et al., 2018), and California, United States of America (Holland

et al., 2022). Many issues arise as consequences of groundwater storage depletion: land

subsidence (Shen and Xu, 2011; Figueroa-Miranda et al., 2018), saltwater intrusion (Kim

and Yang, 2018; Mabrouk et al., 2018), surface water level decrease (Lin et al., 2018; Wu

et al., 2018), etc. Therefore, the aftermath of groundwater abstraction and its impact on

groundwater table and storage is important to be understood and quantified as inputs

and benchmarks for groundwater management, policies, and strategies.

1.1.3 Multi-layer groundwater abstraction

As the subsurface is shaped by varying geological processes, often there are, vertically,

multiple layers of aquifers with distinct characteristics. For example, some aquifers could

hold and/or release more groundwater, some are more permeable, some are thicker in

depth, and so forth. Based on their confining condition, there are two categorizations

of aquifers: (1) unconfined aquifer, and (2) confined aquifer, which deliver different

responses to groundwater abstraction. The (simplified) physical differences between the

two types of aquifers are visually shown in Figure 1.3.

An unconfined aquifer has a free water table on its upper facet to regulate its change

in energy. The free water table is defined as the dividing line between vadose zones

(unsaturated soil moisture) and fully saturated soil. It is usually found near surface

elevation and sometimes has direct proximity to surface water. Treating an unconfined

aquifer as a hydrological bucket, its typical water budget is classified as inflow (recharge,

surface water - groundwater interaction), outflow (groundwater abstraction from shallow

wells, baseflow contribution), and storage change (fluctuating groundwater table).

When groundwater is pumped out from an unconfined aquifer, the groundwater level in

the abstraction well dwindles as a result of water leaving the pores and spaces between the

soil. Depending on the soil/aquifer properties, groundwater around a point of abstraction

will eventually flow into the abstraction well. This occurs as the hydraulic head in the

abstraction well, represented by the groundwater table, is lower than its surroundings.

Flowing at relatively low velocities, the groundwater table profile around an abstraction well

is generally manifested in curvy instead of straight lines. The area where the groundwater

table profile is impacted by groundwater abstraction is known as the cone of depression.

In short, an unconfined aquifer response to groundwater abstraction is reflected entirely

through groundwater table decrease.
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Figure 1.3: Confining conditions of unconfined and confined aquifers, taken from Land (2020).

On the other hand, a confined aquifer is bounded by a relatively impermeable layer on

its upper facet, causing the layer to be practically under pressure. Because of the

pressurized system, often the water level in a well penetrating into such an aquifer rises

above the top of the confined layer. Additionally, due to the less permeable layer on its

top, a confined aquifer rarely has direct contact with groundwater recharge, thus making it

more difficult to replenish. It is generally not in touch with surface water, too, as a confined

aquifer is mostly found at a relatively deeper depth than an unconfined aquifer.

When groundwater is pumped out from a confined aquifer, pores and spaces between soil

are depressurized instead of drained, as the ecosystem within the layer being abstracted

is fully saturated. Decreasing water pressure provides less support to the overbearing

geological formation above, paving the way for the overlaying geological formation to

potentially compact and subside. Generally, a confined aquifer’s response to groundwater

abstraction is observable through a change in the hydraulic head (piezometric head) at a

much widespread distance from the abstraction well.

Under an equilibrium state, the groundwater table of an unconfined aquifer and the

piezometric head of a confined aquifer in the same location, but at different depths,

are expected to be in balance. However, changes in groundwater’s hydraulic head are

unavoidable when groundwater abstraction is in place. With discrepancies in responses to

groundwater abstraction, hydraulic heads’ changes in unconfined and confined aquifers

also often diverge. Further, this stimulates groundwater flow among the vertical layers of

aquifers. Extensively discussed in previous studies (Russo and Lall, 2017; Wang et al.,

2019), the so-called aquifer interaction is also explored later in this study.
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1.2 Quantification of groundwater flow

To understand and analyze the groundwater system, such as flow rate, groundwater head,

and storage changes, along with other parameters and variables, it becomes more and more

popular to develop and implement groundwater modeling through a numerical approach.

One of the reasons for its growing recognition and demand is the reliability of numerical

groundwater model simulation results to be translated into management practices (Singh,

2014; Yeh, 2015). Therefore, this section is dedicated to discussing the current status of

groundwater modeling; its relationship with hydrological modeling, typical conceptual

framework, data requirement, assessed output, and involved uncertainties.

1.2.1 Role of hydrological simulation: groundwater recharge estimates

Groundwater flow is primarily driven by groundwater recharge. However, groundwater

recharge is not available as observation data in most cases. Instead, it is often estimated

by hydrological modeling (Armanuos et al., 2016; Melati et al., 2019; Nolte et al., 2021).

Therefore, simulating groundwater flow, more often than not, is closely linked with

hydrological modeling, which also serves a considerable part of this thesis.

In hydrological modeling, often the conventional ’hydrological buckets’ concept consti-

tutes the water cycle (Staudinger et al., 2021; Turek et al., 2022). Within a particular

catchment area as the simulated domain over a certain period, and considering the law of

mass conservation, precipitation (P) typically serves as the main input, evapotranspiration

(ET ) and volumetric river discharge (Q) as the output, and change of volumes in water

bodies, soil moisture, and subsurface bucket as the storage changes (∆S) of a hydrological

system. The classic and simple correlation among the inflow, outflow, and storage changes

is expressed in Equation 1.1. Typically, to evaluate and validate the quality and accuracy of

a hydrological simulation, each of the elements in Equation 1.1, ideally, is either determined

by or compared with observation data and/or estimates.

I = O +∆S ⇐⇒ P = ET +Q+∆S (1.1)

The precipitation component in hydrological modeling, in a majority of instances, is a

’known variable’, despite its inherited uncertainties (Bárdossy et al., 2022). In recent

decades, multiple approaches have been developed in observing/estimating precipitation:

rain gauges, remote-sensing, numerical modeling, re-analysis products, etc (Tapiador et al.,

2012; Sun et al., 2018). Each method offers unique advantages (and drawbacks) in spatial

and temporal coverage, spatial and temporal resolution, involved bias and uncertainties,

and so on. As the input variable into a hydrological simulation, and considering the

multiple options for precipitation estimates, the center of precipitation-related matter in

hydrological modeling generally focuses on the selection and/or blending method of the

available products (Mazzoleni et al., 2019; Yin et al., 2021; Hafizi and Sorman, 2022).
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From the output side of hydrological modeling, at the moment, the most common variable

used as the benchmark of simulation reliability is river discharge (Jian et al., 2017; Pandi

et al., 2021; Westerberg et al., 2022). Similar to precipitation, there are also multiple

methods to estimating river discharge: field measurements, and even reanalysis (Alfieri

et al., 2020; Harrigan et al., 2020) as well as remote sensing-based approach (Bjerklie

et al., 2005; Li et al., 2018). Inevitably, there are also uncertainties within each method.

Generally, hydrological modeling of river discharge is compared with river discharge

observation/estimates for model calibration, validation, and/or evaluation.

Besides its primary input and output comparison, a hydrological simulation could also

be evaluated by assessing its ’inner process’ component (Bouaziz et al., 2021). It is,

admittedly, not a common procedure. For example, comparing simulated groundwater

recharge with groundwater recharge field measurement involves large uncertainties as

the latter is difficult to conduct. It is also controlled by many spatially non-uniform

variables in different layers: rainfall, land cover and land use, topography, soil type, and

more. However, in a data-scarce area, assessing hydrological simulation components using

variables other than rainfall or river discharge, to complement model validation, should be

considered in the effort to increase confidence in the modeling’s dependability.

As an inner process component in a hydrological simulation, groundwater recharge plays a

very crucial role in groundwater flow modeling (Sanford, 2002). Analogous to hydrological

simulation, groundwater recharge serves the same purpose as precipitation: the main

inflow to the simulated system. Therefore, establishing a hydrological simulation to

produce reliable estimates of groundwater recharge is the first step toward a reliable

groundwater model.

1.2.2 Groundwater flow modeling framework

In addition to reliable groundwater recharge estimates, other essential prerequisites for a

robust numerical groundwater flow model are the model construction and parameterization.

A groundwater flow model is always unique from one to another; each system is governed by

distinct hydro(geo)logical boundaries. Within its development, a numerical groundwater

flow model is an evolution from a conceptual groundwater flow model. Typically, it

involves an interpretation of the actual physical configuration of the target system; the

aquifer geometry, hydrodynamic and hydrogeologic properties, and water exchange fluxes

(Izady et al., 2014). A reliable conceptual model is important to be well-established before,

subsequently, a numerical groundwater flow is constructed based upon it.

In constructing and parameterizing a numerical groundwater flow model, a modeler

translates the variables of the settled conceptualization into numerical values and expres-

sions (Mary P. Anderson and Hunt, 2015). For example, an abstraction well is conceptually

represented as the removal of a certain volume of groundwater (sink). Numerically, it is

translated to values of a specified rate, applied at a specified time, to a specified location
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and depth. Another example is groundwater recharge, which is conceptually represented

as an addition of water (source). Numerically, groundwater recharge is also manifested

in a specified rate, applied at a specified time, to a specified location and depth. Similar

’numerical translations’ are applied for other head boundary conditions (surface water

level, subsurface head control, etc) and flow boundary conditions (losing river, water

transfer, etc). Besides the ’fluxes’, the ’pools’ of groundwater flow are also required to

be parameterized (Mary P. Anderson and Hunt, 2015). Certain parameters are ingrained

in each of the physical ’pool’ representations, referred to as soil/aquifer properties in

the previous section. A cell of soil/aquifer, for example, has its own value for storage

coefficient, hydraulic conductivity, anisotropy, etc, that regulates the flow of groundwater

into and out from the cell itself.

A groundwater flow model simulation is capable of producing several types of output;

groundwater table, groundwater storage, water budgets, intercell flow, groundwater and

surface water interaction, and more. The selected variables to be assessed depend on the

aim and the focus of the modeling practice itself; whether it is to understand subsurface

processes, to estimate changes in groundwater table and groundwater storage, to assist

in deriving groundwater policies and management strategies, or other goals. Similar to a

hydrological model, a good groundwater flow model needs to be calibrated. Analogous to

river discharge variables in hydrological modeling, groundwater head (groundwater table

for unconfined aquifer and piezometric head for confined aquifer) is typically used as the

benchmark for groundwater flow model evaluation, quantified by the agreement between

simulation results and observations.

1.2.3 Data acquisition strategy

From the description of a typical groundwater flow model framework, it is shown that a nu-

merical groundwater flow model requires a lot of data input, starting from soil stratigraphy,

soil/aquifer properties, and boundary conditions’ parameterization, to groundwater head

observation data. The first three types of data mentioned are useful for conceptualizing

the actual groundwater flow system, constructing the groundwater flow model structure,

and quantifying model parameters. The latter-mentioned groundwater head observation

data, meanwhile, is key to ensuring an adequate confidence level in using the groundwater

flow model simulation results. Considering their all-encompassing function and role within

the groundwater flow modeling framework, both data quantity and data quality hold

a crucially important role in producing a sound numerical groundwater flow model.

There are a number of approaches to collecting data for groundwater flow model pa-

rameterization. For soil/aquifer properties, a regional geological map commonly is the

very first step of information available to a modeler. For a smaller/local spatial scale,

field tests could be performed to gather auxiliary data and/or to validate larger-scale

information. Series of laboratory tests are often also feasible for small-scale explorations.
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Soil investigation reports are traditionally dependable and resourceful in understanding

geological formations in the vertical direction, too. Accumulation of numerous reports, dis-

tributed spatially within a domain, could provide valuable insight into soil/aquifer’s spatial

variability. Through these data sources, however, it is not unusual to find discrepancies

among datasets. After all, each type of information has different measurement methods,

spatial scales, spatial coverages, and data time frames. Therefore, to reduce the width

of uncertainties, known as the uncertainty bounds, it is important to take into account

multiple data sources in parameterizing a numerical groundwater flow model.

Improving groundwater model quality is intrinsically intertwined with better groundwater

observation data quality (Rajabi et al., 2018; Condon et al., 2021). In selecting observation

wells’ data, it is important to consider numerous aspects, such as the wells’ location and

network design, the available metadata, etc. Well-designed observation wells network could

minimize uncertainty and exploration cost and was extensively discussed in previous studies

(Pesti et al., 1994; Chen et al., 2003). Similar to the discussed topic of the hydrological

model evaluation, in data-scarce areas where groundwater calibration data are limited,

additional methods in the effort to evaluate a groundwater flow model and to increase

confidence in the model’s dependability are necessary.

1.2.4 Limitation and uncertainties

Akin to every other environmental science and modeling subject, the effort to understand

and imitate real-world processes under numerical environments is confined by many

factors: finite knowledge, sparse and/or scarce field measurements, inadequate data

availability, insufficient computational power, and imminent uncertainties. Real-world

systems are so complicated that it is impossible to capture the entire sub-processes in detail.

Even if it was possible, accurate and precise estimates of the variables in focus would not

be available, both in quantity and quality. Systematic bias and error are ingrained in

many measurement techniques, too. Uncertainties also come from multiple stages in a

modeling study: measured parameters and forcings, model structure, and calibration data.

Therefore, within this study, in order to produce dependable model results, the inherently

prevailing uncertainties and the strategies to respond to and minimize their influence in

arriving at conclusions and suggestions are addressed in every chapter.

One notable source of uncertainty comes from the innate nature of the involved prop-

erties’ spatial and temporal variability and coverage. On this subject, each vari-

able/property embodies its own details. Take, for example, groundwater table observation

data as an illustration. Two nearby observation wells might record two different point-data

values. This could occur due to, for instance, variation in topography within the very

spatial grid that covers both observation wells, hence two different observed groundwater

tables. Two different observations could also happen between two instances that mea-

sured groundwater tables before and after a rainfall event that is covered within a single
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timestep. On the other hand, a numerical groundwater flow model simulation represents a

grid-averaged value at an aggregated time. In such a scenario, it is entirely possible to

have multiple (and different) values which all are correct, but do represent separate cir-

cumstances. The inconsistency, for such an instance, is materialized due to the uncertainty

of model structure; which in this case is the model’s spatial and temporal resolution. In

larger-scale simulation, it is sometimes not feasible to inspect such a case-by-case event, as

it could also happen to all other variables: soil/aquifer properties, surface water parameters,

groundwater recharge estimates, and many more. Therefore, data pre-processing and

screening play an important role in reducing misinterpretation and uncertainties.

Encountering a situation where typical data availability is scarce and/or sparse is also

widely plausible. Fortunately, there are plenty of remote-sensing products that could

be used as a source of estimates, especially those of surface water cycle components.

Secondary data from literature reviews, investigation reports, and collaboration with

government agencies are also very useful in collating valuable information. Considering

the broad scope of the current science, insights from inter- and multi-disciplinary data

might reveal unexpected yet beneficial perspectives. Especially in data-scarce areas,

it is recommended to consider multiple sources of information and associated data in

constructing and evaluating a numerical groundwater flow model.

1.3 Research framework

In previous sections, the general concept of groundwater flow controlling factors and

the effort to quantify its system through groundwater modeling have been described.

The distinctive nature of groundwater flow in different areas, with unique properties

and boundary conditions, has also been explored, together with the extended risks of

groundwater abstraction from multiple depths of aquifers. In addition to that, challenges

that might arise due to data scarcity-related issues are briefly mentioned. Therefore, this

section attempts to put together and implement the knowledge, as well as to formulate

the objective and research questions of this study under a systematic thought process for

a specific study area.

1.3.1 Objectives and research questions

The primary goal of this thesis, as suggested by the book title, is to deepen, in detail,

the quantitative understanding of a groundwater system in data-scarce areas. The

study focuses on the Bandung groundwater basin in Indonesia. In achieving the primary

objective, four specific objectives are defined, accompanied by research questions that

form the structure of this thesis, described below. The overall structure of the study is

visually represented in Figure 1.4.
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Estimating water balance components and their uncertainty bounds. Within

this objective, the status of water storage change within the Bandung groundwater basin

is determined. Each component of the water cycle is quantified, taking into account the

uncertainty bounds attached to each estimate. Further, the assessment of the water storage

status is calculated using the simple Equation 1.1. To fulfill the first research objective,

several research questions arise as follows:

• To what extent do different datasets and products differ in estimating water balance

components in the Bandung groundwater basin?

• How well does a hydrological simulation using the Wflow sbm model perform in

comparison with other estimation methods?

• Considering the uncertainty bounds in each of the surface water balance components,

to what extent the definitive basin water storage change status can be determined?

Constructing a one-way coupled hydrological and groundwater flow model.

In this objective, the previously established Wflow sbm hydrological model and a MOD-

FLOW groundwater flow model are one-way coupled. Using the data collated from field

measurements, government agencies’ collaboration, and literature reviews, a parsimonious

groundwater flow model is constructed. Given the limited availability of hydraulic head

calibration data, the model evaluation is complemented with the utilization of open-source

gravimetric satellite data of GRACE. This approach takes into consideration spatial

scaling and resolution differences. The research questions that emerge in the attempt to

accomplish the second research objective are as follows:

• How can the recharge estimates from the Wflow sbm hydrological model be incorpo-

rated into groundwater flow simulation?

• To what extent can a parsimonious, yet reliable, groundwater flow model in the

study area be constructed, considering the limited hydrogeological data availability?

• What factors need to be considered in utilizing and, more importantly, contextualizing

open-source remote-sensing-based global estimates of terrestrial water storage change

(GRACE) in basin-scale model evaluation?

Quantifying aquifer interaction induced by multi-layer groundwater abstraction.

Following the established one-way coupled model, the impact of multi-layer groundwater

abstraction on internal groundwater flow among aquifers, termed ’aquifer interaction’, is

delved deeper. A number of environmental water tracers (EWT) data that were previously

measured are utilized to investigate the groundwater flow patterns within and among the

subsurface layers. The assimilated EWT data include major ion elements, groundwater

age estimates, and stable isotopes. The research questions developed within the process of

answering this particular specific objective are as follows:

• To what extent can the result of a parsimonious groundwater flow model, built on

limited hydrogeological data availability, be explored?
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• To what extent can EWT data analysis be incorporated in evaluating a groundwater

flow model?

• What is the impact of simultaneously abstracting groundwater from multiple depths

and aquifers on groundwater head, storage, and aquifers’ internal processes?

Projecting future groundwater status. With increasing confidence in the one-way

coupled model’s reliability through multiple model evaluation, the model is used to project

future groundwater availability under multiple climatic and anthropogenic scenarios. The

climatic factors are explored through changes in rainfall and potential evapotranspiration.

Meanwhile, the anthropogenic factors are developed through changes in groundwater

abstraction rate and spatial distribution. For the fourth specific objective, the emerged

research questions are as follows:

• How do the projected changes in climate variables in the Bandung groundwater

basin influence groundwater recharge?

• What are the possibilities of groundwater abstraction changes in the Bandung

groundwater basin, considering the capital city relocation plan of Indonesia?

• To what extent do the changes in climatic forcing and anthropogenic activities, both

each and combined, influence the future groundwater availability in the study area?

1.3.2 Thesis outline

In the current section of the Introduction, general information about groundwater, basic

principles of groundwater flow modeling, and its typical challenges are laid out. It is

supplemented by rudimentary materials related to aquifer properties, groundwater flow

driving factors, groundwater abstraction, and hydrological simulation role as well as data

collection strategy in constructing a groundwater flow model. The research’s overall and

specific objectives are also displayed in Figure 1.4, along with the flow of the research

framework, written from chapter to chapter.

For all the academic journal articles resulting from this thesis, there is one common study

area, which could be referred to either as the Upper Citarum River basin or the Bandung

groundwater basin. To avoid repetitive information on the basic features of the study

area, Chapter 2 elaborates on most of the essential details of the Bandung groundwater

basin, such as location overview, hydrological and hydrogeological settings, anthropogenic

footprint, and data availability as well as field campaign conducted in 2020.

In Chapter 3, a quantitative review of the water balance in the study area is presented.

It is accomplished by collating multiple water balance components’ estimates and their

uncertainty bounds. Ground-based measurements, interpolated gauge-based datasets,

remote-sensing products, and hydrological model-based estimates are all considered. The

water storage change status is also determined considering the wide range of available

estimates, therefore achieving the first specific objective.
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A one-way coupled hydrological and groundwater flow model is constructed, evaluated, and

established in the following two subsequent chapters, while also answering the second and

third specific objectives. Groundwater flow model evaluation using limited calibration data

is accompanied by the model assessment on groundwater storage changes using GRACE

data in Chapter 4. Chapter 5 provides a qualitative perspective on groundwater flow

model evaluation using environmental tracer data analysis, while also quantifying aquifer

interaction induced by multi-layer groundwater abstraction.

In Chapter 6, the fourth specific objective is accomplished by using the established one-way

coupled model to project future groundwater availability. It is initiated by hydrological

simulation under projected climatic forcings that result in projected groundwater recharge.

Further, the projected groundwater recharge drives the groundwater flow simulation,

which is set up under multiple and diverging abstraction scenarios, resulting in projected

hydraulic head and groundwater storage.

Last but not least, the synthesis of the research is presented in Chapter 7. The final chapter

also addresses the primary objective of the research as well as discusses the limitations,

uncertainties, challenges, and future opportunities.





The Bandung Groundwater Basin

Chapter 2
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This chapter introduces the area to which all the studies within this thesis are applied.

Having said that, there are two non-identical names used to refer to the site: the Upper

Citarum River Basin (UCRB) and the Bandung groundwater basin (BGB). Pragmatically,

they cover very comparable, although not equal, areas of interest. However, they are

conceptually defined by two distinct parameters. The UCRB is delineated on the basis of

the surface topography, while the BGB is of the subsurface lithology. In this chapter, the

study area features and characteristics, from its natural attributes of climatic, hydrological,

and hydrogeological setting, to its anthropogenic influence of groundwater abstraction, as

well as our fieldwork campaign, are thoroughly described.

2.1 Physical characteristics

The study area is located in the West Java Province, Indonesia. Estimated from the Multi-

Error-Removed-Improved-Terrain Digital Elevation Model (MERIT-DEM) (Yamazaki

et al., 2017), the UCRB, whose boundaries are portrayed by the red dashed lines in

Figure 2.1, covers an area of 1,823 km2. Geographically, it is located between 6°43’S
107°22’E and 7°15’S 107°57’E, with its outlet at 6°56’S 107°30’E. Administratively, it

covers two cities, Bandung and Cimahi, and three other smaller regencies of Bandung,

West Bandung, and Sumedang. According to the West Java Central Bureau of Statistics,

the UCRB was populated by no less than 9.6 million people in 2017. Situated in varying

elevated terrains, the UCRB is surrounded by mountainous areas around its periphery

with the highest elevation of 2,586 m above sea level (ASL). Its outlet elevation is at 640

m ASL. Figure 2.1 also shows the topographical distribution of the UCRB, with a vast

and relatively flat landscape distributed primarily in the middle part of the basin, where

urban and industrial areas have mostly developed.

While the UCRB is the domain of analysis in Chapter 3, the rest of the analysis from

Chapter 4 to Chapter 6 focuses on the BGB area (see Figure 2.1). BGB’s boundary is

delineated on the basis of subsurface lithology, and legally regulated under the Indonesian

law of the Office of Mineral and Energy Resources Ministerial Regulation number 2,

2017 (Indonesia, 2017). According to the information mentioned in the regulation, it is

determined by considering the hydrogeological, geological, and groundwater hydraulics

properties data. As we cannot find any access to the cited data, we refine the border of

the regulated basin delineation by evaluating its consonance with the surface topography

profile from MERIT-DEM data (Yamazaki et al., 2017). Figure 2.1 portrays the final

domain of our study. Although separated from the surface catchment boundary, BGB’s

coverage area of 1,700 km2 is relatively similar to that of the UCRB. The most visible

difference between the UCRB and the BGB, conceivably, is the northern part of the area.

In that area, lies a geological fault named Lembang, known as ”Sesar Lembang” in the

Indonesian language. The Lembang Fault acts as a barrier for the groundwater flow from

the northern more elevated area of the UCRB to the areas covered by BGB (Delinom,



Ch
ap

te
r 

2

2.2 Hydrological situation 19

 

UCRB

UCRB outlet

Rainfall stations

Upper Citarum River & its tributaries

BGB

Observation wells

Surface elevation (meters ASL)
 

INDONESIA

Java island

Figure 2.1: Overview of the Bandung Groundwater Basin (BGB). The upper right locator

map shows the location of the study area relative to Indonesia. The main panel shows the

geographical location, river system, and topographical distribution of the BGB based on

the Multi-Error-Removed-Improved-Terrain Digital Elevation Model (Yamazaki et al., 2017).

The Upper Citarum River Basin (UCRB) delineation is shown by the dashed red line in the

background. Important data points of rainfall stations and observation wells are also pointed.

2009), physically separating the UCRB and BGB boundaries, and therefore represented as

the Neumann no-flow boundary condition in the numerical model of this thesis. Other

slight differences in the UCRB and the BGB spatial coverages occur due to the slope

variability between the surface elevation and the subsurface geological layer.

2.2 Hydrological situation

There are eleven rainfall stations spatially distributed within and around the UCRB

(blue circles in Figure 2.1). Based on these rainfall stations’ data between 2005 and

2015, provided by the Indonesian National Meteorology, Climatology, and Geophysical

Agency (BMKG), the Thiessen polygon-interpolated average annual rainfall in the UCRB

is 1,971 mm. These measurements, however, involve huge uncertainties and errors as there

exist notable periods when potentially missing data were not properly gauged. There is

also relatively significant spatial variability of rainfall measured by these rainfall stations.
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The potential of incorporating rainfall estimates from remote sensing and/or reanalysis

products in UCRB is comprehensively discussed in Chapter 3. The rainfall seasonal pattern

is divided into dry and rainy seasons, occurring annually from April to September and

October to March, respectively. As the UCRB is located in a tropical region, rainfall is

dominantly the only source of precipitation throughout the year.

The UCRB is the upstream part of a bigger watershed system, the Citarum River basin,

whose main river flows to the Java Sea. Three cascading dams are constructed along the

main river: Saguling, Cirata, and Jatiluhur dams. Saguling reservoir, the most upstream

among the three, is located just downstream of the Nanjung discharge measurement station.

Pinpointed as the UCRB outlet in Figure 2.1, Nanjung station monitors the river discharge

flowing through the Upper Citarum River. The streamflow data are made available by the

Indonesia Research Center for Water Resources (PUSAIR). Between 2005 and 2018, the

minimum and maximum recorded daily discharge in Nanjung station were 4.08 m3/s and

469.29 m3/s respectively, with an average of 73.86 m3/s. Peak flows are frequently found,

with events of daily discharge surpassing 450 m3/s (approximately the 95th percentile)

occurring 6 times during the mentioned period.

The climate in the UCRB is a tropical monsoon climate, with relatively constant tempera-

tures. According to the BMKG climatology data between 2005 and 2014, the mean annual

temperature in the URCB is measured at 23.4°C, with a very narrow range of average

monthly temperatures between 22.5°C and 24.8°C. The temperature is even more varied

spatially than temporally, with an average of 15.3°C around the mountainous area. Similar

to other typical tropical climate regions, the UCRB has high potential evapotranspiration,

estimated at 1,560 mm annually (Siswanto and Francés, 2019).

2.3 Hydrogeological setting

The hydrogeological data of the BGB is available through previous studies (Hutasoit, 2009;

Taufiq et al., 2017), especially one from Rahiem (2020). The latter collated field data from

189 geological boreholes, although they are non-uniformly distributed across the BGB.

The data are, to a large extent, concentrated only at the flat and lower elevated terrain

towards the UCRB outlet. Figure 2.2 shows the location of the boreholes that are located

within the BGB boundaries. Despite more than half of the data being incomplete and

some are even located outside the BGB domain, the project provides substantially useful

insights into the BGB’s lithological and geological profile.

Further, Figure 2.3 shows the graphical representation of the hydrogeological setting in

the BGB’s north-south cross-section, adapted from Hutasoit (2009) and Rusli et al. (2021).

The subsurface is comprised of a three-layer geological structure: a thick sandy, breccia,

and tuff-mixed aquifer, interspersed with layers of clayey aquitard, sitting on a volcanic

rock basement formation. The primary aquifer’s lithological structure, the Cibeureum
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Figure 2.2: Map view for borehole and slug test data point, as well as the estimates of

domestic and industrial groundwater abstraction area. The borehole data is collated from

Rahiem (2020), the slug test data from our field campaign, and the groundwater abstraction

area is described in Section 2.4.

formation, is formed by partially consolidated volcanic deposits from the late Pleistocene

– Holocene age (Hutasoit, 2009). In many locations, it is interspersed by layers of clay

from the Kosambi formation, which is dominated by the lake deposits of consolidated

clay from the Holocene age. These interspersions separate the aquifer into two layers: the

shallow unconfined upper aquifer and the deep confined lower aquifer. The Cikapundung

formation, with a high degree of compacted volcanic deposits, forms the basement of the

basin below the lower aquifer of the Cibeureum formation. On average, the thickness of

the upper aquifer and the scattered interspersing aquitard layers are 75 meters and 30

meters, respectively. The rock basement elevation is assumed constant at the elevation of

300 meters above sea level, according to the lowest borehole point data.

This is, naturally, a simplification of the actual more complex hydrogeological setting.

However, we believe that our approach to interpreting the available groundwater basin’s

actual geophysical condition into a simplified aquifer system diagram is the appropriate

strategy considering the (lack of) data availability. Further complexification would be

an effort that cannot be justified by data or observations, as the lithological data in the

mountainous and highly elevated areas are plainly not available.
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Figure 2.3: Graphical interpretation of the BGB hydrogeological setting through the north-

south cross-section, modified from Hutasoit (2009). The north part (left in the picture) of the

basin acts, presumably, as recharge zones (green box), while groundwater is mainly abstracted

in the middle part of the basin (purple box) from both unconfined aquifers by the domestic

sector and confined aquifers by the industrial sector (annotated by blue arrows). The red,

yellow, and green layers represent a layer-cake type of rock formation in the UCRB/BGB.

2.4 Anthropogenic footprint

With the rising pressure of the expanding population, groundwater resources in the BGB

have been necessarily abstracted to fulfill the increasing water demands. As the most

upstream part of the Citarum watershed system, the groundwater resources’ demand for

irrigation in the UCRB is, fortunately, negligible. Still, groundwater over-exploitation has

been long known as a threatening problem in the BGB (Gumilar et al., 2015; Tirtomihardjo,

2016), with the domestic sector pumping from shallow aquifers and the industrial sector

from deep aquifers. Previous studies have quantified the consequences of the current

groundwater abstraction rate, for example, land subsidence rate between 8 cm/year

(Abidin et al., 2012) and 18.7 cm/year (Rygus et al., 2023) on average, and even up to 2

meters in several industrial zones (Gumilar et al., 2015).

There is no monitoring initiative, unfortunately, for the domestic groundwater abstraction

in the BGB. According to the local regulations, it is entirely legal to pump shallow

groundwater for household needs. In this study, the domestic groundwater abstraction

volume is therefore estimated from the population number (data from the West Java

Central Bureau of Statistics), the population growth estimate (Tarigan et al., 2016), the

average daily water consumption per person, and the water supply coverage from Municipal

Drinking Water Company (PDAM) (Moersidik et al., 2015) (see Table 2.1). Under such

circumstances, between 2005 and 2018, the average domestic groundwater abstraction

volume is calculated at 122 million m3 per year, equivalent to 0.18 mm/day.
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Table 2.1: Estimated domestic-only groundwater abstraction volume in the UCRB

Year
Basin population

Average water

consumption

Total domestic

water demand

Government water

supply

Domestic

groundwater

abstraction

people liter/person/day Mm3/year Mm3/year Mm3/year

2005 6,269,003

120

274.58 178.48 96.10

2006 6,496,376 284.54 184.95 99.59

2007 6,731,996 294.86 191.66 103.20

2008 6,976,162 305.56 198.61 106.94

2009 7,229,183 316.64 205.81 110.82

2010 7,491,382 328.12 213.28 114.84

2011 7,763,090 340.02 221.02 119.01

2012 8,044,653 352.36 229.03 123.32

2013 8,336,428 365.14 237.34 127.80

2014 8,638,785 378.38 245.95 132.43

2015 8,952,109 392.10 254.87 137.24

2016 9,276,797 406.32 264.11 142.21

2017 9,613,261 421.06 273.69 147.37

2018 9,949,726 435.80 283.27 152.53

Average volumes of the annual domestic groundwater abstraction 122.39

Regarding the industrial sector groundwater abstraction, the existing regulation theoreti-

cally imposes strict rules on deep aquifer groundwater abstraction. Unfortunately, there

has been a lack of focus on enforcing water-related regulations in Indonesia (Braadbaart

and Braadbaart, 1997; Listiyani and Said, 2018). Regarding groundwater institutional

management, the Office of Mineral and Energy Resources (ESDM) of the West Java

Province is the responsible organization for deriving, implementing, and evaluating ground-

water abstraction-related policies. Currently, the groundwater abstraction volumes from

the industrial sector’s registered deep wells have been known to be partly monitored by

ESDM since 2017.

In 2017, there were 377 deep wells operated by the industries, with a total annual

groundwater abstraction volume of 6.8 million m3 reported to ESDM within the BGB.

However, such numbers are believed to be significantly higher in reality. In his study,

Tirtomihardjo (2016) reported the annual industrial sector’s groundwater abstraction

estimate of 47.6 million m3 in 2008. Further, Taufiq et al. (2017) estimated the actual

industries’ groundwater abstraction between 2010 and 2015 to be 14 times higher than

the reported volumes (see Figure 2.4 [bottom]). Having said that, Figure 2.4 [bottom]

shows a positive trend of industrial groundwater abstraction decrease since 2005. The

trend is agreed by gravimetric satellite data of GRACE in the study area (Figure 2.4

[top]); a remote-sensing-based product estimating the terrestrial water storage change

(TWSC). The indicated trend of positive water storage changes is a logical agreement

when compared with the decreasing industrial groundwater abstraction rate. Yet, it is

in contrast with the result of some studies (Gumilar et al., 2015; Tirtomihardjo, 2016)

that presented dwindling groundwater tables. At length, from field observation to direct

interviews with site officers, the average annual industry-driven groundwater pumping

values in this study are estimated at 255 million m3, equivalent to 0.38 mm/day.
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Figure 2.4: Correlation between GRACE estimates on the terrestrial water storage change

(top) and annual reported and estimated actual groundwater pumping volumes by the industrial

sector in the BGB (adapted from Taufiq et al., 2017) (bottom). GRACE estimates show an

increasing trend of terrestrial storage change, agreed by a decreasing trend of groundwater

abstraction during the same period. There was an organizational management shuffle of

groundwater monitoring policies in the UCRB after 2015 and data were missing for some years.

The data were made available again in 2017, only to show significantly further drops in the

reported - not the actual - groundwater abstraction volumes.

Besides the estimation of the groundwater abstraction volume, its spatial distribution is also

important to be approximated. The Indonesia geospatial database is utilized to determine

the location of the domestic groundwater abstraction. Parts of the BGB with land use

of residential, building, and high-rise buildings are merged into the domestic abstraction

area (see Figure 2.2). For the industrial abstraction, available location information from

previous research that focused on the industrial activities in the UCRB is used (Ginkel,

2016), validated by the data from the groundwater abstraction report from the industries

to ESDM in 2017 (again, see Figure 2.2).

In summary, the UCRB/BGB is a highly groundwater-dependent region as the majority

of its water demand is fulfilled by abstracting water from the sub-surface. From the

above description of domestic and industrial demand, approximately 370 million m3 of

groundwater, equivalent to 0.57 mm/day, is believed to be abstracted annually. With

such a massive abstraction volume, it is hypothesized that groundwater abstraction has a

significant influence on other components of the basin water cycle and possibly impacts

its total water storage negatively.
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2.5 Groundwater-related data availability

2.5.1 Field campaign and laboratory measurement

To discern the soil properties in the study area, twenty-five locations within and around

the BGB domain were selected for in-situ measurements during a field campaign in 2020

(Figure 2.2). Horizontal hydraulic conductivities from the shallow soil layers between 5 and

10 meters below the ground surface were measured using slug test. At each testing point,

soil samples were taken for laboratory measurements of vertical hydraulic conductivities

(flow-through test and grain-size analysis). The spatial distribution of the field campaign

data points is designed to be more outspread compared to other data to get a better sense

of the soil spatial variability.

The in-situ measurements (slug test) result in varying horizontal hydraulic conductivity

values (Kh), ranging between 0.15 and 0.35 m/day depending on the location. Meanwhile,

the laboratory measurements (flow-through test) appraise the vertical hydraulic conduc-

tivity values (Kv) between 3×10−4 and 6×10−4 m/day. These numbers indicate moderate

to low heterogeneity of the upper soil of the BGB, shown by the lowest and the highest

Kh and Kv values, which are measured at the same degree of magnitude. In general, the

northeast area of the BGB is observed to be the less permeable area, while slightly more

porous soil is found more frequently in the southwest part of the study area.

2.5.2 Observation wells data

There are only twenty-six observation wells being consistently monitored within the

BGB domain, although not regularly enough (low-frequency monitoring). Most of these

observation wells suffer from several issues: short data periods, observation frequency,

and/or data reliability. Twelve observation wells are situated very close to surrounding

abstraction wells. This causes the observed groundwater level to be largely influenced by

local drawdowns, especially those measuring the piezometric head from the deep aquifers

considering the higher industrial abstraction intensity compared to the domestic ones.

Most of the observation wells’ locations are also concentrated in the lower elevated part

of the BGB. Despite these concerns, the observation wells data are used to assess the

groundwater flow model simulation results considering the lack of options.

Figure 2.1 shows the location of the observation wells in which data were used. Primarily,

we use the measurement data in 2004 from the observation wells with depths of less than

the interpolated upper aquifer thickness. The groundwater table depth data from these

observation wells ranged between 8 and 25 meters from the surface. We also use the data

of the observation wells that measure the piezometric head of the deep aquifers, whose

values are, generally, lower than the phreatic groundwater level. Hypothetically, this is

caused by more spatially intense and higher volumes of groundwater abstraction from the

confined aquifer.
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2.5.3 Environmental water tracers data

With limited groundwater table data for model calibration, auxiliary groundwater-related

documentation is highly welcomed. In this study, once-at-a-time (OAT) measurement of

environmental water tracers (EWT) data in the BGB is available. They were collected

in more than 20 different projects pre-2008, before being collated into one integrated

open-source groundwater database, funded by the Directorate General of Higher Education

and Ministry of Research of Indonesia in 2016. The data include major ion elements

(Na+/K+, Ca2+, Mg2+, Cl−, HCO3
−, and SO4

2−), groundwater age estimates derived from

radiocarbon (14C) content, and stable isotopes of deuterium (δ2H or δD) and oxygen-18

(δ18O). All the EWT data analyzed in this study are freely available and developed in an

open repository QGIS-cloud platform (Irawan et al., 2016). These datasets, unfortunately,

are not measured continuously, thus time-series analysis is not feasible. Having said that,

in this study, they are all combined with the additional EWT data that was later measured

for prior studies (Taufiq et al., 2017) to assist in making qualitative interpretations and

evaluating the numerical model simulation.

The samples for OAT major ion elements measurement are spread in 65 locations; 30

points for the deep aquifer, 19 for the shallow aquifer, 3 for water springs, and 13 for the

surface water (river). There are also 72 points of OAT stable isotope measurements of

deuterium (δ2H or δD) and oxygen-18 (δ18O); 36 samples are from the deep aquifer, 19

from the shallow aquifer, 14 from the river water, and 3 from the rainfall. Most of these

points are located near the major ion elements measurement location. The radiocarbon

(14C) contents were also OAT measured in 22 locations to estimate the groundwater

age, including their uncertainties, all from the deep aquifer. The handling, usage, and

contribution of these EWT data to our study are fully described in Chapter 5.

2.5.4 Secondary data from ESDM

Data availability of this study is also supported by the Office of Mineral and Energy

Resources (ESDM) of West Java Province. They provide secondary data, where field

measurements and reports were conducted previously. Twenty-three pumping test reports

are made available to us. Later in this study, these data are used to estimate the specific

storage parameter and the hydraulic conductivity of the deep aquifer.
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Abstract

Study Region: Upper region of the Citarum basin in Indonesia.

Study focus: Assessing water balance components in data-scarce regions using different

approaches could result in different outcomes. In the upper reaches of the Citarum River in

West Java, Indonesia, for example, many previous studies found the groundwater storage

to be depleting, while GRACE identifies a contrasting trend of increasing terrestrial water

storage change (TWSC). Therefore, in this study, we aim to improve the accuracy of

water balance component estimates in the Upper Citarum River Basin (UCRB). Firstly,

we estimate groundwater abstraction volumes based on population size and a review of

literature. Estimates of the other water balance components, namely the rainfall, actual

evaporation, discharge, and groundwater storage change are derived from various global

datasets and available measurements. We also use a distributed hydrological model,

Wflow sbm, to yield additional estimates of discharge and actual evaporation. We compare

each basin water balance estimate and quantify the uncertainty of some components using

the Extended Triple Collocation (ETC) method.

New hydrological insights for the region: ETC application on four different rainfall

estimates suggests a preference of using CHIRPS product in the study area as it delivers r2

of 0.56 and RMSE of 6.52 mm/day, compared to estimates from rainfall station (r2 = 0.39,

RMSE = 8.57 mm/day), SACA&D (r2 = 0.29, RMSE = 10.46 mm/day), and TRMM

(r2 = 0.56, RMSE = 8.61 mm/day). With CHIRPS rainfall forcing, Wflow sbm model

estimates of average daily actual evaporation and discharge are obtained. The results for

actual evaporation (2.67 mm/day) are plausible with a narrow difference of less than 0.50

mm/day among other estimates. The simulated discharge results in a daily average of

5.38 mm/day, estimated between observation data (3.65 mm/day) and GloFAS-ERA5

product (6.12 mm/day). Combining precipitation, actual evaporation, and discharge with

a groundwater abstraction estimate of 0.57 mm/day, the Wflow sbm-based groundwater

storage change is estimated at a daily storage depletion of 0.82 mm/day. Using GLEAM

actual evaporation estimates (3.13 mm/day) and observed daily discharge, on the other

hand, results in surplus water of 0.45 mm/day for groundwater storage change. These

results demonstrate the high uncertainty in capturing subsurface hydrological processes,

although the groundwater storage change estimates are found close to the TWSC estimates

based upon GRACE gravimetric satellite data of 0.25 mm/day, with a variance of 1.57

mm/day. To aid in estimating current and future basin-scale groundwater level changes

to support operational water management and policy in the Citarum basin, considering

the massive groundwater abstraction, a focus on subsurface hydrological components

quantification is of great importance for future research.
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3.1 Introduction

Groundwater has been used for water supply purposes since prehistorical ages (Angelakis

et al., 2016; Voudouris et al., 2018). Since then, its exertion has developed from fulfilling

life’s basic needs to meeting various demands from domestic, industrial, and agricultural

sectors. However, groundwater resources are increasingly over-exploited globally (de Graaf

et al., 2016) from Central Asia (Chatterjee et al., 2018; Hu et al., 2019), the Middle

East (Al-Zyoud et al., 2015), South Europe (Closas et al., 2017), Africa (Khezzani and

Bouchemal, 2018; Mokadem et al., 2018), to Central America (Ochoa-González et al.,

2018). Groundwater over-abstraction leads to dwindling groundwater tables and often to

deteriorating water quality. In many ways, it also poses threats to the security of water

resources on a scale of the water cycle as a whole when the regulatory role of groundwater

flow to other hydrological fluxes is considered (Chambel, 2015).

Groundwater table fluctuation generally influences other water balance internal processes.

For example, changes in groundwater recharge-discharge pattern affect surface water

system (Earman and Dettinger, 2011), groundwater flow pattern (Pétré et al., 2019a),

runoff generation process (Abe et al., 2020), and rate of evapotranspiration (Lurtz et al.,

2020). More consequences unavoidably occur once more factors are involved, such as

groundwater quality, anthropogenic influence (Zhu et al., 2019a; Lin et al., 2020), climate

change (Zhu et al., 2020b), and land cover and land use (LULC) development (Lamichhane

and Shakya, 2019; Shawul et al., 2019).

Additionally, interactions among hydrological cycle, groundwater resources, and human

interference are also mutually influential as changes in water balance internal processes

have a chain-reaction effect in increasing groundwater abstraction from both unconfined

and confined aquifers (Ali et al., 2012). Change in precipitation pattern has been found

to have a strong relationship with groundwater abstraction volume, too (Asoka et al.,

2017). It is clearly shown that groundwater is very closely connected with basin water

cycle processes, although it flows on a spatially and temporally different scale.

Unfortunately, in determining water balance components with good accuracy, the required

hydrological and hydrogeological information is often unavailable, particularly in developing

countries. The usage of global open-source datasets, as well as remote sensing techniques

(Rodell et al., 2009; Vorobevskii et al., 2020), provides the opportunity to cope with

the challenge of data scarcity. However, water balance estimates determined using freely

available, often open-source, tools should be accompanied by the awareness of each

method’s uncertainties, assumptions, and embedded errors.

The Upper Citarum River Basin (UCRB), located in West Java, Indonesia is an example

of a region that is data-scarce as well as highly groundwater dependent. At least 50 million

cubic meters of groundwater was estimated to be abstracted in 1990, and it grows to 300

million cubic meters in 2006 (Tirtomihardjo, 2016). Added to this fact, other studies also
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indicate groundwater storage depletion in the basin (Gumilar et al., 2015). Such a massive

volume and impact of groundwater abstraction, unfortunately, is not well-managed and

monitored. Groundwater abstraction data are hardly available, accessible, and reliable for

public information.

Based on the rainfall stations’ measurement, the average daily rainfall in the UCRB

between 2005 and 2015 is of 5.40 mm/day (1971.77 mm/year), with a variance of 7.03

mm/day (617.91 mm/year). Meanwhile, according to ERA5 reanalysis products (Hersbach

et al., 2020), the average daily actual evaporation is estimated at 2.82 mm/day (1028.88

mm/year) with a variance of 0.55 mm/day (36.03 mm/year). The remaining water from

the precipitation and the actual evaporation estimates suggests a lower average potential

daily inflow of 2.58 mm/day compared to the observed average daily outflow of 3.65

mm/day, barring more water is still lost due to groundwater abstraction. However, this

seems to be in contrast with the Gravity Recovery and Climatic Experiment (GRACE)

estimate that shows increasing terrestrial water storage change (TWSC) in the last 15

years. The absence of reliable hydrology and hydrogeology data makes it difficult to

accurately capture the hydrological behavior of the UCRB and verify the true status of the

groundwater storage change. It further stipulates the importance of more comprehensive

and accurate estimates of the water balance components in the UCRB.

Therefore, the primary focus of this research is to provide improved estimates of the water

balance components in a groundwater-dependent and data-scarce region of the UCRB,

in particular the rainfall, actual evaporation, discharge, groundwater abstraction, and

groundwater storage change. Each component is estimated based not only on ground

measurement but also on various approaches and sources: open-source global datasets,

remote-sensing-based estimates, and hydrological simulation using Wflow sbm model

(Schellekens et al., 2020). Uncertainty bounds of each water balance component are also

quantified, more importantly, to appraise the accuracy of each estimate using the Extended

Triple Collocation (ETC) method (McColl et al., 2014).

3.2 Methods

3.2.1 Data sources and availability

The UCRB is a data-scarce region with limited information and access to local observations

and measurements. Therefore, we explore various sources of literature, site survey, and

global datasets. A major portion of secondary data is provided by government organizations

previously mentioned: ESDM, BMKG, and PUSAIR. Several numbers of available global

datasets are taken into account to provide additional information on unmeasured water

budget variables and to validate the uncertainty of each estimate. In summary, Table 3.1

lists the major data sources used in this study.
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Table 3.1: Major data sources list

Data Source

Precipitation

BMKG rainfall station (2000 - 2015)

Interpolated gauge-based SACA&D (1981 - 2018)

Satellite products of CHIRPS (1981 - 2018)

Tropical Rainfall Measuring Mission (TRMM) (1998 - 2018)

Potential evapotranspiration ECMWF Re-Analysis product of ERA5

Actual evaporation

Global Land Evaporation Amsterdam Model (GLEAM)

ECMWF Re-Analysis product of ERA5

Hydrological model-based estimate (Wflow sbm)

Discharge

Automatic Water Level Recorder measurement by PUSAIR

Hydrological model-based estimate (Wflow sbm)

Global Flood Awareness System (GloFAS)-ERA5

Groundwater abstraction
Official reports and previous research results

Population data-based estimate

Groundwater storage estimate Gravity Recovery and Climate Experiment (GRACE)

Topography data MERIT-DEM

There are four sources of rainfall estimates considered in this study. The first two rainfall

datasets, BMKG and SACA&D, are sourced and derived from rainfall-station-based

measurements. BMKG rainfall station data are available from eleven stations shown in

Figure 2.1. SACA&D (Besselaar et al., 2017) are interpolated gauge-based precipitation

products applied in the South East Asia region by using an optimum interpolation

method (Hofstra et al., 2008) implemented in European Climate Assessment and Dataset

(ECA&D) project (Haylock et al., 2008). The other two data sources are satellite-based

data, TRMM3B43 (further referred to as ’TRMM’) and CHIRPS (Funk et al., 2015); both

are gauge-based corrected estimates. TRMM products have been widely used in Indonesia

(Prasetia et al., 2012; As-syakur et al., 2013) as well as CHIRPS (Setiawan et al., 2017;

Narulita and Ningrum, 2018). Additionally, both datasets were also found superior to

drive the hydrological model of SWAT to produce satisfying simulation results even when

compared with rain gauge data (Luo et al., 2019).

There are three sources of daily actual evaporation estimates: GLEAMv3.3a (further

referred to as ’GLEAM’) (Miralles et al., 2011; Martens et al., 2017), ERA5 (Hersbach

et al., 2020), and Wflow sbm model simulation results. Particularly for Indonesia, GLEAM

estimates have been tested and deliver good performance in the western part of Java

Island (Wati et al., 2018), with a spatial resolution of 0.250×0.250. ERA5 data, meanwhile,

is available in a finer spatial resolution of 0.10×0.10. Wflow sbm model calculates daily

actual evaporation using the potential evaporation estimated based on downscaled ERA5

temperature and global radiation, a method suggested by Bruin et al., 2016.

Observed daily discharge data are provided by PUSAIR. Additionally, two more discharge

estimates from Wflow sbm model simulation and the Global Flood Awareness System

(GloFAS)-ERA5 are used. Wflow sbm model and its parameterization are based upon

the method of (pedo)transfer function (Imhoff et al., 2020) described in Section 3.2.3.

GloFAS-ERA5 is a global river discharge reanalysis product, whose accuracy, unfortunately,



32 Water balance components and their uncertainty bounds

decreases as the catchment size becomes smaller (Harrigan et al., 2020), to the accuracy

of average KGE of 0.21 for catchment size between 500 and 2,500 km2, a range suitable to

the UCRB. Therefore, GloFAS-ERA5 estimates are used more as a comparison tool rather

than an applicable estimate in this study.

Groundwater abstraction is estimated from the population data (Table 2.1) and litera-

ture reviews of industrial pumping. Further, the discrepancy between the basin inflow

(precipitation) and outflow (evaporation, river discharge, and groundwater abstraction)

determines groundwater storage change. As an additional benchmark, the terrestrial

water storage change (TWSC) is also estimated from the GRACE dataset of gridded

monthly global water storage (NASA/JPL, 2019). Since GRACE is measured in 10×10

resolution, it is necessary to reconcile the spatial resolution difference between GRACE

and catchment size (Landerer and Swenson, 2012). In fact, the GRACE estimates have

been used mostly in large basins, and their application on local-scale groundwater basins

has been limited due to their inherent uncertainties (Sun, 2013). However, considering the

uniformly distributed hydrological characteristics of rainfall patterns, population density,

and urban development in the area surrounding the UCRB, we currently assume that

the footprint of these remainder areas captured by GRACE is a good representation of

the study area itself. The detail of such scaling uncertainties is discussed in Chapter 4.

Moreover, using GRACE data as a verification tool still has its merit as Humphrey et al.

(2016) demonstrated GRACE meaningful hydrological signal in high frequency (monthly)

temporal variability, which is what we use in this study. GRACE has also been used as a

terrestrial water storage reference in Indonesia (Han et al., 2017).

3.2.2 Extended Triple Collocation (ETC method)

Uncertainty of each water balance component estimate is quantified using the extended

triple collocation (ETC) technique (McColl et al., 2014), the improved uncertainty esti-

mation method from the standard triple collocation (TC) (Stoffelen, 1998). Practically,

both TC and ETC methods have been applied to many geophysical parameters, such as

soil moisture data (Gruber et al., 2016; Chen et al., 2018a), sea surface temperature data

(Saha et al., 2020), and ice concentration data (Scott, 2020). It is important to realize that

ETC does not reduce uncertainty. Instead, it quantifies uncertainties to assist in selecting

the least uncertain product among the numbers of estimates.

In principle, the ETC method evaluates uncertainty by deriving the correlation coefficient

of each measurement system with respect to an unknown target variable (McColl et al.,

2014) and is expressed through RMSE and r2 parameter (Wu et al., 2019). It assumes the

existence of a linear relationship between independent dataset Xi and hypothetical ‘true

value’ T , with Equation 3.1:

Xi = αi + βiT + ϵi (3.1)
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where αi and βi are calibration parameters and ϵi is the corresponding random error.

Further, covariances between different measurements, used to directly determine the

designated objective function of RMSE and r2, are calculated using Equation 3.2:

Qi,j = cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) (3.2)

where Qi,j represents covariance between two datasets, Xi and Xj. As the ETC method

requires three unique datasets for each analysis (i, j = 1, 2, 3), there are six different

covariance values based on three dataset permutations (Q11, Q12, Q13, Q22, Q23, and Q33).

These covariances are used to calculate two objective functions:

RMSE2 =




Q11 − Q12Q13
Q23

Q22 − Q12Q23
Q13

Q33 − Q13Q23
Q12




(3.3)

r2 =




Q12Q13
Q11Q23

Q12Q23
Q22Q13

Q13Q23
Q33Q12




(3.4)

where each element in each matrix represents the subsequent objective function value

of each dataset. It is widely known that the closer RMSE and r2 values to 0 and 1,

respectively, the better the simulation performs.

3.2.3 Wflow sbm model and its parameterization

Wflow sbm model (Schellekens et al., 2020), modification of the previous topog sbm model

(Vertessy and Elsenbeer, 1999), is used to simulate the hydrological cycle in the UCRB.

It is built on PCRaster (Karssenberg et al., 2010) and Python language. Figure 3.1

displays an overview of the simulated processes and fluxes within the model framework.

One of the Wflow sbm primary strengths is the model parameters that mostly represent

physical characteristics, making it easier to interpret and correlate their values with

physical catchment properties (Vertessy and Elsenbeer, 1999). It has been used in broad

applications on hydrological modeling, delivering good performance, too (López et al.,

2016; Hassaballah et al., 2017; Gebremicael et al., 2019; Wannasin et al., 2021b).

We use a similar setup as Imhoff et al. (2020) for model parameterization. The high-

resolution model is parameterized based on point-scale (pedo)transfer functions (PTFs),

followed by scaling to model resolution. This method has been applied to other tropical

catchments with good results (Wannasin et al., 2021a). Soil-related parameters are

estimated based on soil types from the SoilGrids database (Hengl et al., 2017). Monthly
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Figure 3.1: Overview of processes and fluxes in Wflow sbm model framework (Schellekens

et al., 2020)

Leaf Area Index (LAI) climatology is used for calculating daily interception using the

model of Gash (1979) and derived from MODIS. For river network, slope, and river

slope, we use Eilander et al. (2020) method based on MERIT-DEM dataset (Yamazaki

et al., 2017). For deriving parameter values coupled to land use, we use the vito land use

map (Buchhorn et al., 2020). The parameter controlling recharge to deep groundwater

(MaxLeakage) is set to zero. To limit computing time, we use one day timestamp with

fixed sub-timesteps for kinematic wave iterations; 900 seconds for river cells and 3,600

seconds for land cells.

The model is forced with CHIRPS rainfall data (spatial resolution of 0.1°× 0.1°) and PET

derived from ERA5 reanalysis (Bruin et al., 2016). For spatial downscaling of ERA5 2m

temperature to the model grid, we use a fixed lapse rate of 0.65°/100m. For the period

of simulation, we simulate the hydrological cycle between 2005 and 2018 where all the

hydrological components data are available or have been created.
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3.2.4 Groundwater storage change estimate

As there is no snow-formed precipitation and notable reservoir/lake/water bodies within

the basin spatial domain, the UCRB storage involves only subsurface storage, both in soil

moisture storage (vadose zones) and/or groundwater storage (saturated zones), referred

to as ’groundwater storage’ in this chapter. Change in the groundwater storage (∆S) is

therefore determined by all the abovementioned water balance components of precipitation

(P ) as the inflow, and actual evaporation (AE), river discharge (Qr), and groundwater

abstraction (Qa) as the outflow, calculated using Equation 3.5.

∆S = I −O = P − (AE +Qr +Qa) (3.5)

On the other hand, recharge is a very important flux to consider in groundwater storage

change assessment. However, from a whole catchment perspective, recharge is an internal

process within the water cycle, not a water balance component that flows into (like

precipitation) or out from (like actual evaporation, river discharge, and groundwater

abstraction) a catchment directly itself and therefore not included in Equation 3.5. In

this study, we report the average daily recharge estimates based on the Wflow sbm model

simulation. It is important to note that these estimates vary in space and time.

3.2.5 Uncertainty bounds experimental setup

Using two rainfall-station-based and two satellite-based measurements, the uncertainty of

each rainfall dataset is evaluated based on each value and measurement technique. The

spatial resolution of the rainfall data is selected on the same resolution of 0.250×0.250.

As the four rainfall data sources have different temporal coverages (see Table 3.1), the

overlapping data availability period between 2000 and 2015 is selected. The calculated

objective functions, RMSE and r2, are averaged within grids bounding the UCRB.

ETC method requires data grouping of three different datasets to be evaluated, while there

are four different rainfall data sources listed in Table 3.1. Therefore, four ETC dataset

groups are constructed to utilize all available data, while at the same time conforming

to ETC input requirements, named ETC 1, ETC 2, ETC 3, and ETC 4. ETC 1 consists

of rainfall station data, SACA&D, and CHIRPS. ETC 2 consists of rainfall station data,

SACA&D, and TRMM. ETC 3 consists of rainfall station data, CHIRPS, and TRMM.

Lastly, ETC 4 consists of SACA&D, CHIRPS, and TRMM. The rainfall estimate with

the highest r2 and the lowest RMSE is used to drive the Wflow sbm model.

Furthermore, with various estimates obtained from numerous approaches, we derive

uncertainty bounds of each water balance component by calculating some statistical

distribution of the inter-annual estimates during the simulated period between 2005 and

2018, namely the mean, 1st, and 3rd quartile. For rainfall estimates, we put our main

focus on the best estimates according to the ETC application following the rainfall data
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screening. For actual evaporation and river discharge estimates, we define two sets of

estimates: ETC-based and Wflow sbm-based estimates. ETC-based estimates consist

of the rainfall, actual evaporation, and discharge estimates with the highest r2 and the

lowest RMSE based on ETC application on each component, added with the estimated

groundwater abstraction, which leads to the groundwater storage change estimate. The

Wflow sbm-based estimates, on the other hand, consist of an identical set of estimates,

except the actual evaporation and discharge estimates are obtained from the Wflow sbm

hydrological model simulation.

3.3 Results

3.3.1 Data quality screening

Two observed data that are mainly checked and screened prior to further estimates are the

observed rainfall and discharge. We examine the number of non-rainy days in all rainfall

estimates to inspect their reliability regarding potentially missing measurements. For

discharge data, we compare the rising and falling pattern of daily discharge observation

with CHIRPS rainfall and qualitatively derive judgment based on their agreement.

Between 2005 and 2015 when all rainfall station data are available, each rainfall station

has on average 233 non-rainy days each year. The station with the most non-zero data

available, Cisondari rainfall station, has on average 208 non-rainy days annually, while

other stations have 257 non-rainy days at most. This number does not correspond

well with rainfall characteristics in a tropical region (in this instance the UCRB) where

there are only two seasons during a year, rainy and dry, with roughly similar temporal

lengths. In contrast, SACA&D, CHIRPS, and TRMM rainfall estimates, respectively,

have significantly fewer non-rainy days of only 161, 133, and 170. This fact shows the

unreliability of the rainfall station data, specifically in the UCRB, as these non-rainy days

might not actually have happened. Instead, there were rainfall occurrences unrecorded

during actual precipitation. Moreover, the amount of non-rainy days is not related to

missing data in certain prolonged periods as well, since the longest consecutive non-rainy

day in the Cisondari rainfall station is found at 22 days, reflecting the absence of a dry

season. With such ambiguous observation, considering and further utilizing other rainfall

estimates is unavoidable, hence the application of the ETC technique to the rainfall

estimates becomes even more important.

In response to the dubious rainfall data quality, the discharge data screening is performed

by comparing the observed discharge, not to the observed rainfall but to CHIRPS rainfall

estimates. Figure 3.2 shows the rising and falling pattern of the observed discharge

due to the stimuli of CHIRPS rainfall estimates from 2005 to 2015. We can see the

seasonal pattern from both data: a trend of higher rainfall and discharge that starts during

September/October and ends during June/July. The rainfall plot presents little variance
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Figure 3.2: Plot between CHIRPS rainfall estimate (red bar - right axis) and observed

discharge (blue line - left axis). The disagreement of the rising and falling pattern between the

two fluxes is shown in several periods and taken into account in the succeeding analysis.

between wet and dry years, although it is still visible. For example, 2011 was a relatively

dry year with less rainfall than the average, while 2013 was much wetter. The pattern is,

however, dissimilar to the observed discharge. The basin response is sometimes inconsistent

with the rainfall pattern. In 2012, for instance, the continuous rainfall early during the

year was not followed by a rising discharge, instead, it shows a series of consistent low

flows. Thus, in subsequent analysis, the calculation of average discharge does not consider

data from 2012.

3.3.2 Rainfall estimates

Figure 3.3a shows a comparison between various estimates of annual rainfall in the UCRB.

It suggests that satellite-based measurements of CHIRPS and TRMM result in an estimate

of precipitation that is higher (2,872 mm/year and 2,863 mm/year respectively) than that

of station-based measurements (1,972 mm/year for rainfall station and 2,426 mm/year

for SACA&D). This is agreed by the data screening which shows numerous potentially

missing data in the rainfall station record. Secondly, Figure 3.3b reports the result of ETC

application to the daily rainfall estimates. The left- and right-side y-axis show the r2 and

RMSE values, respectively.
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Figure 3.3: The rainfall estimates analysis. Figure (a) shows the statistical distribution of

each annual rainfall estimate. Figure (b) shows the results of the ETC application on the

rainfall forcing data. Two results on the left part show the combination of two rainfall station

data with one satellite-based measurement (ETC 1 and ETC 2), while the other two results

on the right part show the combination of one rainfall station data with two satellite-based

measurements (ETC 3 and ETC 4) (Section 3.2.5).

Figure 3.3a in combination with r2 metric in Figure 3.3b show that rainfall estimates

sourced from more similar measurement techniques tend to be in a better agreement

compared to estimates from different approaches. r2 of both rainfall station and SACA&D

data are higher than the satellite-based measurements in ETC 1 and ETC 2, while similar

patterns are found in r2 of CHIRPS and TRMM in ETC 3 and ETC 4. Furthermore,

while the satellite estimates have low r2 in ETC 1 and ETC 2 (0.18 for each estimate),

their values in ETC 3 and ETC 4 improve to 0.52. Similar improvements are also found

for the rainfall-station-based measurement, but they occur at a much lower rate. The r2

of rainfall station and SACA&D data in ETC 3 and ETC 4 of 0.12 and 0.09, respectively,

have improved only to 0.37 and 0.27 on average. Based on the evaluation of r2 and rainfall

data screening in Section 3.3.1, the satellite-based rainfall estimates are preferable to be

used than the rainfall-station-based estimates.

To select the satellite data with the least uncertainty, the calculated RMSEs are considered.

ETC application shows distinct and obvious results in this regard. Comparing the two

satellite-based rainfall measurements, all ETC datasets agree that CHIRPS estimates have

less uncertainties compared to TRMM. From ETC 1 and ETC 2, the RMSE of CHIRPS

(8.84 mm/day) is lower than those of TRMM (11.73 mm/day), which is in agreement with

ETC 3 and ETC 4 results.

In conclusion, according to the ETC application to the four rainfall estimates using the r2,

similar measurement techniques produce estimates that are in better agreement with those

estimated using different measurement techniques. Furthermore, based on the evaluation of
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Figure 3.4: Comparison of actual evaporation values from three estimates: GLEAM (red

line), ERA5 (blue line), and Wflow sbm model (black line). The simulation period is between

2005 - 2018.

RMSE, CHIRPS rainfall estimates have the lowest RMSE among the considered estimates.

Therefore, the rainfall input for the Wflow sbm model simulation in this study is based on

CHIRPS forcing.

3.3.3 Actual evaporation estimates

Based upon the Wflow sbm simulation that uses CHIRPS rainfall estimates as the model

input, the Wflow sbm-based actual evaporation estimates are shown in Figure 3.4, com-

pared with GLEAM and ERA5 estimates. We can see notable periods when the Wflow sbm

model produces lower estimates than the other two actual evaporation products, mostly

during dry season periods in the latter part of each year. The water-height-equivalents

of average daily actual evaporation, however, are not largely diverse as GLEAM, ERA5,

and Wflow sbm estimates are 3.13, 2.82, and 2.67 mm/day respectively. The contrast in

the temporal fluctuation of these estimates is quantified by the variance, with the highest

variability shown by GLEAM and Wflow sbm simulation, estimated at approximately 0.73

mm/day. However, the Wflow sbm simulation has lower estimates ranging between 0.11

and 4.54 mm/day, while GLEAM has the same variables on higher notes between 0.53 and

5.23 mm/day. The ERA5 actual evaporation estimates stand in between, ranging from

0.70 to 4.90 mm/day.
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Figure 3.5: Actual evaporation estimates analysis. Figure (a) shows the statistical distribution

of each estimate. Figure (b) shows the results of extended triple collocation application on

actual evaporation estimates.

Furthermore, Figure 3.5a shows a boxplot comparison of daily actual evaporation estimates.

It supports the Figure 3.4 interpretation of actual evaporation estimate distribution that

shows higher values of GLEAM, and lower values of Wflow sbm simulation, with ERA5

values placed in between. The results of ETC application on actual evaporation estimates

are shown in Figure 3.5b, indicating GLEAM estimates to have the highest r2 of 0.82 and

the lowest RMSE of 0.31 mm/day. ERA5 and Wflow sbm estimates have comparable

results, with r2 values of 0.65 and 0.70, and RMSE of 0.32 and 0.38 mm/day, respectively.

Uncertainty quantification suggests a justifiable approximation of actual evaporation,

ranging between 2.67 and 3.13 mm/day.

3.3.4 River discharge estimates

Three river discharge estimates of observed data, Wflow sbm simulation, and GloFAS-

ERA5, are plotted in Figure 3.6. GloFAS-ERA5 and observation data are directly available,

while Wflow sbm-based estimates are simulated through the setup described in Section 3.2.3.

Visually, the oscillation pattern of discharge in the UCRB is quite distinct in Figure 3.6.

From all discharge estimates, dry periods are found in the latter part of each year after

June, while wet periods start around late October until early May. Additionally, there is

no significant time lag noticed among the estimates. However, peak extreme values are

not in agreement, for example during early and late 2016. Low flows during dry periods,

on the other hand, are mostly in agreement among estimates.

Figure 3.6 also shows that GloFAS-ERA5 has the highest discharge estimate, followed by

Wflow sbm simulation and observation data. The water-height-equivalent average discharge

of GloFAS-ERA5 estimates is 6.12 mm/day, while Wflow sbm and observation estimates
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Figure 3.6: Three different river discharge estimates in the UCRB. The blue line represents

observed river discharge data, the red lines GloFAS-ERA5 river discharge estimates, and the

black lines Wflow sbm model simulation results. The simulation period is between 2005 - 2018.

are 5.38 and 3.65 mm/day respectively. Although the rising and falling discharge pattern

is mostly in agreement, there are periods where certain estimate delivers significantly

higher values than others. Specifically, GloFAS-ERA5 and Wflow sbm over-reactions

to precipitation are quantitatively shown by high statistical variances of 5.38 and 4.82

mm/day respectively, while the same metric on discharge observation is calculated at only

3.36 mm/day.

GloFAS-ERA5 overestimation on discharge observation compared to Wflow sbm simulation

is also agreed by three objective functions of Kling-Gupta Efficiency (KGE) (Gupta et al.,

2009), Nash-Sutcliffe (NSE) (Nash and Sutcliffe, 1970), and Root Mean Square Error

(RMSE), calculated using hydroeval Python package (Hallouin, 2019). It is important

to consider that these metrics are calculated accordingly to the observed discharge, in

which the accountability and accuracy have been discussed in Section 3.3.1. Instead of

entirely relying on the numbers, qualitative interpretations of discharge estimates are no

less important than the KGEs, NSEs, and RMSEs. Nevertheless, results show that the

objective functions of GloFAS-ERA5 estimates are worse than the ones of the Wflow sbm

simulation. While the KGE for Wflow sbm simulation to river discharge observation is

calculated at 0.18, the one for GloFAS-ERA5 is -0.03. The same goes with NSE, as one

from Wflow sbm (-0.76) is higher than one from GloFAS-ERA5 (-1.17). Last but not least,
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Table 3.2: Average daily water balance components estimates in the UCRB (mm/day)

Data Average Variance

Precipitation

Rainfall station 5.40 7.03

SACA&D 6.47 12.25

TRMM 7.50 11.73

CHIRPS 7.80 9.33

Actual evaporation

GLEAM 3.13 0.73

ERA5 2.82 0.55

Wflow sbm model-based estimate 2.67 0.73

Discharge

Observation 3.65 3.36

GloFAS-ERA5 6.12 5.38

Wflow sbm model-based estimate 5.38 4.82

Groundwater abstraction
Domestic estimate 0.18 0.03

Industrial estimate 0.38 0.06

Change in groundwater storage

ETC-based estimate +0.45 8.64

Wflow sbm-based estimate -0.82 7.31

GRACE 0.25 1.57

Table 3.3: The UCRB water balance estimate summary (mm/day)

Flux Source Estimate range

Inflow Precipitation 7.80

Outflow

Actual evaporation 2.67 - 3.13

Discharge 3.65 - 5.38

Groundwater abstraction 0.57

Groundwater storage change ETC- and Wflow sbm-based estimate -0.82 - +0.45

the RMSE of Wflow sbm and GloFAS-ERA5 are calculated at 94.15 and 104.53 m3/s,

respectively. Considering the values from three discharge estimates, the calculated metrics,

and GloFAS-ERA5’s tendency to decrease in accuracy in smaller catchments (Harrigan

et al., 2020), the water-height-equivalent average daily discharge component is estimated

between 3.65 and 5.38 mm/day.

3.3.5 Groundwater storage change estimates

As discussed in Section 3.2.4, the ’groundwater storage’ change estimates are calculated

based on the discrepancy between the basin inflow (precipitation) and outflow (actual

evaporation, river discharge, and groundwater abstraction). Each water balance component,

however, has multiple estimates that vary in magnitude. Therefore, we categorize two

groups of estimates: ’ETC-based’ and ’Wflow sbm-based’ estimates (Section 3.2.5). In

order to assist the calculation, Table 3.2 elaborates the statistical distribution of all

mentioned water balance components estimates and Table 3.3 additionally synthesizes

them to total inflow and outflow, along with groundwater storage change estimate in

the UCRB. The average daily recharge calculated by the Wflow sbm model, meanwhile,

results in an estimate of 2.63 mm/day. It is important to take into account that great

parts of the recharge flow horizontally in the soil moisture layer and subsequently become

a part of river discharge as baseflow, and only the rest of it permeates vertically into the

saturated zones and fills the groundwater storage.
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Based on the ETC-based estimates, there is an indication of a positive recharging trend to

the UCRB groundwater storage of 0.45 mm/day, despite the state of massive groundwater

abstraction. On the other hand, the Wflow sbm-based estimates result in an opposite

groundwater storage change status of negative 0.82 mm/day, indicating water deficits in

the groundwater storage are further aggravated by groundwater abstraction. Although the

estimates range is in agreement with GRACE measures of, on average, 0.25 mm/day with a

variance of 1.57 mm/day, the contrast between the two estimates demonstrates notable un-

certainty in groundwater storage change estimate despite considering numerous approaches

from measurements to modeling techniques on the water balance components.

3.3.6 The uncertainty bounds of the UCRB water balance estimate

To summarize all the above estimates, we plot the inter-annual time-series of average daily

estimates of rainfall, actual evaporation, discharge, and groundwater storage change in

Figure 3.7 for the Wflow sbm-based and in Figure 3.8 for the ETC-based estimate. We

also plot the first and third quartiles of the inter-annual estimates to show the width of the

inter-annual variance of each estimate. Additionally, we plot the average monthly values

for each component to show the consistency between daily and monthly estimates.

From Figure 3.7 and Figure 3.8, we can see a narrow variance in evaporation and discharge

estimates. More importantly, there are good correlations among these estimates, with

a correlation value of 0.76 between the Wflow sbm simulation and GLEAM estimates

of actual evaporation, and 0.56 between the discharge observed and simulated by the

Wflow sbm model. Consistent patterns between daily and monthly averages are also visible

in these two components from both estimates. The Wflow sbm-based discharge shows

a little disruption during September as there are some years when rainy seasons started

earlier compared to the average, resulting in an inter-annual outlier of discharge whose

values skew the average.

In contrast, the groundwater storage change estimates show different features. A broad

range of estimates from -0.82 mm/day to +0.45 mm/day can be interpreted either

way as long-term recharging or discharging process from or to the groundwater storage.

Although such estimates are found in the range that is in agreement with GRACE

measures, the uncertainty bounds are too wide to enable us to derive a strong conclusion

on the groundwater storage status in the UCRB. The relatively higher variances of the

groundwater storage change estimates compared to the other water balance components

shown in Table 3.2 further support our interpretation. Moreover, the pattern of the

inter-annual average monthly estimates of GRACE is relatively dissimilar with both the

ETC-based and Wflow sbm-based estimates and dominantly found in different sides of

positive and negative values. All these facts underpin the absence of accurate estimates

of groundwater storage change despite the ability to accurately estimate the other water

balance components of rainfall, actual evaporation, and river discharge.
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3.4 Discussion

3.4.1 Alternative of forcing estimates and data sources

In this study, the results of ETC application to four rainfall estimates favor the use

of satellite-based forcing data compared to rainfall-station-based data. This is further

supported by the concerning rainfall station data quality where suspiciously numerous

missing data exist due to an under-expected number of annual non-rainy days. It is also

noted from the ETC application on rainfall estimates, supporting previous studies by

Boluwade (2020), that similar measurement techniques have higher agreements between

their products in comparison to data measured by different methods.

The considered rainfall data in this study are sourced only from rainfall-station-based and

satellite-based measurements. Therefore, it is possible for future research to also observe

the accuracy of other measurement techniques, for example, radar (Sauvageot, 1994),

crowd-sourcing personal weather stations (Vos et al., 2017), or commercial microwave

link networks (Overeem et al., 2011). Similar opportunities apply to other water balance

components’ estimates.

3.4.2 Results interpretation to the field situation

The results summarized in Table 3.2 show notable discrepancies among the estimated

water balance components. It is important to consider, nevertheless, that the UCRB is a

data-scarce area, from both aspects of quantity and quality. Although the ETC technique

is applied to quantify the estimates’ uncertainty, the true values of the hydrological forcing

remain unknown. In this case, ETC applications do not reduce the uncertainty of the

estimates. Instead, it quantifies the confidence level of each estimate, supporting the

decision-making in selecting the best estimate for each water balance component.

In comparison to previous studies in the Citarum basin, our estimates of each water

balance component are reliably verified. The average daily rainfall estimates between 5.40

and 7.80 mm/day in the UCRB is in agreement with the previous approximation by Jaya

et al. (2020) with 6.30 mm/day and Salim et al. (2019) with a range between 5.38 and 7.12

mm/day. In the same study, Salim et al. (2019) estimated an average discharge equivalent

to 4.49 mm/day, which is well within the estimated range of this study between 3.65 and

5.38 mm/day. Average discharge during dry and wet periods simulated by Julian et al.

(2019) at 3.40 mm/day is also closely approximated within our uncertainty bounds.

However, earlier studies did not consider potential changes in groundwater storage. In

this study, the groundwater storage change is estimated using three approaches - ETC-

based estimate, Wflow sbm-based estimate, and remote sensing-based gravimetric satellite

estimates of GRACE - dependent on the water balance components estimates of rainfall,

actual evaporation, discharge, and groundwater abstraction. These estimates result in
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diverging trends from -0.82 to +0.45 mm/day, suggesting a high variance and uncertainties

in the estimates of the water balance components, which eventually lead to a pending

groundwater storage change status.

Considering the positive ETC-based estimate of groundwater storage change, increases in

such components would coincide with rising groundwater tables, which unfortunately are

not reinforced by the results of previous studies as they showed dwindling groundwater

tables (Gumilar et al., 2015; Tirtomihardjo, 2016). Gumilar et al. (2015) found trends

of groundwater table decline in eleven wells within the BGB. However, those wells are

located in industrial zones and are used to abstract the groundwater. Thus, the observed

groundwater tables in those wells would certainly involve biases in their measurements.

The same findings by Tirtomihardjo (2016) also contain similar issues as the direct quotes

from the study were ’groundwater levels in industrial areas are on the decline’. To capture

the overview of the groundwater table fluctuation, groundwater table data with less bias

regarding groundwater abstraction need to be collected and analyzed.

While groundwater table data are point-based and often involve biases, groundwater

storage change estimate is an integrated metric of a whole basin. Comparing the results

from previous studies of dwindling groundwater tables that are in conflict with two of our

estimates, ETC-based and GRACE, points to a possibility of spatially varying states of

groundwater storage change. There could be zones with dwindling groundwater tables,

while the basin’s overall groundwater storage is indeed increasing, and vice versa. A

more comprehensive study on the UCRB subsurface processes could unravel the spatial

distribution of groundwater storage changes and map as well as separate recharging and

discharging area of groundwater storage.

Furthermore, by comparing the decreasing groundwater abstraction rate (Figure 2.4) with

the uncertain groundwater storage change estimates, changing trends in the groundwater

storage status could be plausible. Therefore, temporally fluctuating trends of groundwater

storage state are necessary to be further explored. Time-series simulations of subsurface

internal processes need to be performed in the future, taking into account groundwater

flow and groundwater-related data reliability as the gap of knowledge in the UCRB.

3.4.3 The opportunities for future research

Despite involving some errors and uncertainties, surface water balance components in

the UCRB (rainfall and discharge) are in principle directly observable. In contrast,

groundwater abstraction, instead of being directly measured, is roughly estimated using

population data and modeling results from other research. The credibility of the available

industrial groundwater abstraction report is also questionable since the reported values are

significantly lower than previous estimates (Taufiq et al., 2017). Hence, the groundwater

storage change estimate as a result of all other estimates is highly uncertain.
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Moreover, there are still issues to consider such as water balance spatial distribution,

temporal variance, and groundwater flow system. To improve the accuracy and narrow

the range of subsurface water balance estimates, the internal subsurface hydrological

processes involving hydrogeological characteristics, soil parameters, etc, should be explored,

simulated, and validated. Currently, the continuation of this study is being conducted by

collating groundwater-related data from the UCRB.

3.5 Conclusions

In this paper, we improve the accuracy of the water balance components’ estimates and their

uncertainty bounds in a highly groundwater-dependent and data-scarce region of the UCRB

between 2005 and 2018. The analysis starts from hydrological data collection to hydrological

simulation using the Wflow sbm model, which allows uncertainty quantification of water

balance components as estimated from these data.

The rainfall data are sourced from rainfall-station-based (rainfall station and SACA&D)

and satellite-based (TRMM and CHIRPS) measurements. The uncertainty analysis using

the ETC method indicates a preference towards satellite data, which is supported by initial

rainfall data screening that shows many potentially missing data recorded by the rainfall

stations. In subsequent analysis, CHIRPS rainfall data, with an average daily rainfall

estimate of 7.80 mm/day, are used to drive the Wflow sbm model.

Hydrological simulation using the Wflow sbm model results in two water balance compo-

nents’ estimates: actual evaporation and discharge. The actual evaporation is compared

to the other two remote sensing estimates: GLEAM and ERA5. All the estimates result

in very similar values, with ETC application on actual evaporation in favor of GLEAM.

The simulated discharge of 5.38 mm/day is compared to both observation data and the

GloFAS-ERA5 estimate, with observed data of 3.65 mm/day endorsed by the ETC.

We developed two scenarios in estimating groundwater storage change: ETC-based and

Wflow sbm model-based estimate. Both scenarios involve CHIRPS rainfall estimates and

groundwater abstraction estimates based on population data and industrial abstraction

literature. The ETC-based estimates consist of GLEAM actual evaporation and observed

discharge, resulting in an average daily groundwater storage change of +0.45 mm/day.

The Wflow sbm model-based estimates, on the other hand, consist of evaporation and

discharge estimates produced by Wflow sbm simulation, delivering a result of -0.82 mm/day.

Additionally, GRACE satellite observation estimates a similar metric of +0.25 mm/day,

with a variance of 1.57 mm/day. Such a wide range of groundwater storage change

estimates reflects substantial uncertainties and knowledge gaps on subsurface hydrological

behavior in the UCRB. Further, it leads to a need for the next research step to simulate

subsurface hydrological processes and to validate that with the available groundwater head

measurements, which are currently being developed.
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Figure 3.7: Plot of inter-annual average daily estimates of [from top to bottom] rainfall, actual

evaporation, discharge, and groundwater storage change based on the Wflow sbm simulation.

The light red areas represent the width between the first and third quartiles of each component

estimate.
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Figure 3.8: Plot of inter-annual average daily estimates of [from top to bottom] rainfall,

actual evaporation, discharge, and groundwater storage change based on the ETC application.

The light red areas represent the width between the first and third quartiles of each component

estimate.
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Abstract

Assessing basin-scale groundwater storage changes is often difficult when groundwater

table data are scarce. In this study, we quantify the groundwater storage changes by using

the Wflow sbm hydrological model coupled with the MODLOW groundwater model in the

data-scarce area of the Bandung Groundwater Basin (BGB), Indonesia. The soil moisture

storage change calculated by Wflow sbm plus the groundwater storage change calculated

by MODFLOW is compared to the water storage change estimated by the GRACE satellite

between 2005 and 2015. The calculated cross-correlation coefficient is 0.502, and 62.1% of

the simulated water storage change falls within GRACE’s estimated uncertainty bounds.

The important context in the water storage comparison are GRACE temporally local

time-lags, data gaps in GRACE datasets, and differences in model seasonal performance

and analyzed domain characteristics. The two latter factors highlight the importance

of considering local groundwater-related information over large-scale global datasets in

basin-scale groundwater storage change assessment. Based on the groundwater flow model,

the current predicament of groundwater abstraction in the Bandung groundwater basin is

highly unsustainable for future groundwater uses. On average, the groundwater storage

in the study area is dwindling at the rate of 87 million m3/year between 2005 and 2018,

dominantly a consequence of groundwater abstraction, whose effect is rippled to further

impact the whole groundwater flow regime. Agreed by the situation shown by the limited

data, the simulated groundwater table drawdown, spatially, is found to be locally and non-

uniformly distributed. The capability of a one-way coupled hydrological and groundwater

model to investigate basin-scale groundwater storage change, with comparable estimates

to the GRACE dataset, unravel the opportunity of using such methods to estimate the

behavior of future groundwater storage dynamics under the changing anthropogenic and

climatic factors in catchment-scale studies.
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4.1 Introduction

Groundwater is the world’s most abundant freshwater resource, on which nearly half of the

total world’s population depends as the source for drinking water supply and industrial

uses (Oki and Kanae, 2006). However, human dependencies on groundwater have vastly

impacted the subsurface water tables and aquifer storage. Between 1960 and 2010, for

example, global groundwater depletion is estimated at no less than 7 trillion m3 due to

various factors (de Graaf et al., 2016). Among those are anthropogenic activities, which

frequently act as the primary cause of storage depletion (Döll et al., 2012; Huo et al.,

2016). In many places, practices of unsustainable groundwater use, where groundwater

abstraction exceeds its sustainable yield, are constantly happening and difficult to control

(Chinnasamy and Agoramoorthy, 2015; Wang et al., 2019; Dangar et al., 2021).

While the influence of anthropogenic factors on groundwater is strong, the natural hydro-

logical cycle also holds a key role in regulating aquifer status. Even without abstraction,

groundwater storage anomalies would still naturally occur due to the changing precipita-

tion and soil moisture (Asoka and Mishra, 2020). The impact of climate change on the

alteration of groundwater recharge has also been shown (Meixner et al., 2016; Tillman

et al., 2016; Smerdon, 2017). Currently, although precipitation intensity is generally

increasing (Trenberth, 2011; Li et al., 2019), the recharge to the groundwater is often

found at a decreasing rate (Serrat-Capdevila et al., 2007; Holman et al., 2009; Dams et al.,

2012), with numerous factors involved in the process.

The impact of both anthropogenic and climatic factors on groundwater storage is commonly

monitored via groundwater table measurements. In recent times, gravimetric satellite

data from the Gravity Recovery and Climate Experiment (GRACE) mission are often

used to observe the terrestrial water storage change. Its derived groundwater storage

proportion is then commonly validated by available in-situ measurements (Shen et al.,

2015; Chen et al., 2016; Du et al., 2018). GRACE data, however, are measured on a

spatial resolution of a few hundred kilometers (Frappart and Ramillien, 2018) (specifically

at 1°×1°), although resampled data are available on a higher resolution of 0.5°×0.5°. To
investigate groundwater storage change in basins whose total area is significantly smaller

than those of GRACE spatial resolution (a grid size of 1°×1° is equivalent to approximately

12,000 km2 along the equator), another method is needed.

In the Bandung groundwater basin (BGB), Indonesia, whose total area of 1,699 km2 is a

lot smaller than one GRACE grid, estimating the water storage change through various

modeling approaches results in uncertain outcomes (Rusli et al., 2021). Although GRACE

estimates are found in agreement with the values determined from several methods, the

status of the BGB storage change and its subsurface hydrological components remains

unknown (Rusli et al., 2021). In addition, using time-series groundwater level observation

data to understand the trend, dynamics, and magnitude of groundwater storage change
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is hardly possible as the observation wells are neither designed spatially as part of a

network, nor they are temporally monitored frequently and regularly enough. The spatial

distribution of the data is not uniform across the basin; most of the boreholes and measured

groundwater table data are concentrated in the lower elevated area and hardly available in

the mountainous area. Besides, most of the data also have either incomplete information

(for example the lack of well construction details) or missing periods of observation.

Therefore, to assess the groundwater storage status in the BGB, a solution is required to

tackle the data scarcity and spatial coverage challenges.

One approach is to use numerical modeling. A groundwater model is capable of simulat-

ing groundwater storage dynamics, with groundwater recharge as the surface boundary

condition provided by hydrological modeling. Therefore, in this study, our objective is

to simulate the water storage change in the data-scarce area of the BGB by applying

a one-way model coupling between Wflow sbm hydrological model (Schellekens et al.,

2020) and MODFLOW groundwater model. We validate our one-way coupled model by

comparing its output in terms of water storage change to GRACE estimates. Additionally,

we also investigate the current state of groundwater storage in the study area considering

the changing climatic and anthropogenic situation.

4.2 Methods

4.2.1 GRACE estimates: products and application

The GRACE mission is a remote-sensing satellite-based mission that estimates the ter-

restrial water storage change (TWSC) dynamic based on the measurements of gravity

anomalies (Frappart and Ramillien, 2018). Practically, TWSC is a quantity of vertical

water mass changes, consisting of snow, surface water, soil moisture, and groundwater

storage in a unit of GRACE measurement grid of 1°×1°. Due to its large measurement

grid area, GRACE-related applied studies have been mostly conducted in large basins

with reliable data, such as the Amazon (Pokhrel et al., 2013), the Colorado (Rahaman

et al., 2019), the Upper Nile (Shamsudduha et al., 2017), and the Heihe basins (Cao et al.,

2012). In these studies, GRACE-derived groundwater storage changes are compared to

in-situ water table measurements with a relatively similar spatial scale.

In small basin applications, the GRACE estimates’ spatial scaling uncertainty inflates

a concern. To tackle the issue, there have been numerous efforts to downscale GRACE

products to basin-scale estimates (Miro and Famiglietti, 2018; Yin et al., 2018; Chen et al.,

2019; Verma and Katpatal, 2020). GRACE dataset statistical downscaling (Yin et al.,

2018) was applied in areas where the relationship between GRACE-derived groundwater

storage and evapotranspiration is strong. In a highly groundwater-dependent area like

the BGB, the groundwater storage change is influenced not only by evapotranspiration

but also mostly by groundwater abstraction. Another method (Miro and Famiglietti,
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2018) downscales GRACE to the resolution of 0.25°×0.25°, however, it requires a lot

of machine learning processing of numerous hydrological variables, whose data are not

available in the study area. In this study, we incorporate GRACE estimate’ uncertainty

bounds (NASA/JPL, 2019) as one approach to tackle the spatial scale uncertainty and

validate our model simulation results.

With various GRACE products available, the used version in this study is the JPL GRACE

and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height Coastal

Resolution Improvement (CRI) filtered release 06 version 02 (NASA/JPL, 2019). It is

selected as it, importantly, incorporates the CRI algorithm. The GRACE grid that covers

the study area has a long coastal line of the Indian Ocean along its southern border,

making the CRI algorithm application relevant. With the absence of snow and negligible

surface water components in the study area, the GRACE estimates of water storage change

in the BGB should consist only of soil moisture and groundwater storage components

(Equation 4.1). The groundwater storage component consists of the specific yield (Sy) and

specific storage (Ss) components from the unconfined and confined aquifers, respectively.

Therefore, in this study, the GRACE TWSC estimates are comparable with the sum of soil

moisture change, determined by the hydrological model of Wflow sbm, and groundwater

storage change, simulated using the groundwater model of MODFLOW.

∆water = ∆surfacewater(≈ 0) + ∆soilmoisture +∆groundwater(= ∆Ss +∆Sy) (4.1)

A change in basin water storage results from the discrepancy between inflow and outflow. In

the BGB, the only water inflow comes from rainfall and consequent groundwater recharge.

Therefore, we expect a strong consistency and correlation between the rainfall and the

water storage change estimated in the study area. In this study, we use the CHIRPS

dataset (Funk et al., 2015) for our rainfall estimate, and GRACE along with the one-way

coupled model simulation result, later on, as the estimate for water storage change.

By comparison with the GRACE dataset, the CHIRPS dataset is available in a much

higher spatial resolution of 0.05°×0.05°. Hence, it offers a more detailed representation

of rainfall across the study area. As the GRACE water storage change estimates cover

a larger spatial domain, its values are less sensitive to changes over smaller sub-areas.

Comparing both spatial coverages, the Upper Citarum River Basin (UCRB)/BGB, as the

most upstream part of a larger watershed system, has steeper slopes and higher elevation.

Meanwhile, the larger spatial domain covered by the GRACE grid partly also covers the

lower elevated and more flat area downstream of the basin. This results in discrepancies

in the hydrological response to rainfall. For example, the smaller and steeper area of the

UCRB requires a shorter time to generate surface runoff compared to ones of the GRACE

grid spatial domain. The same things apply in the required time to adjust the BGB’s

water storage. For that reason, occasional lags in the timing of the GRACE water storage

change signal compared to the timing of the CHIRPS rainfall estimates are expected.
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Besides the expected difference in detecting changes using the two datasets, we note some

missing values in the GRACE dataset. In the earlier period of our simulation between

2005 and 2015, as low as 9.8% of the data is missing. The unavailable values, fortunately,

do not appear in a prolonged continuous period. However, between 2016 and 2018, it

increases to 52.8%, which we judge as too poor of temporal coverage to be used as the

benchmark for our simulation. To tackle this issue, we do not take into account the latter

periods of the GRACE dataset when assessing the quality of our simulation.

4.2.2 Hydrological Wflow sbm model setup and recharge estimates

Both river discharge and groundwater recharge are outputs of the hydrological model

Wflow sbm (Schellekens et al., 2020) that is set up and described in Chapter 3. A high-

resolution model is first parameterized based upon point-scale (pedo)transfer functions

(Imhoff et al., 2020) before being scaled to the designated model resolution. The model

assigned elevation is derived from the MERIT-DEM dataset (Yamazaki et al., 2017). The

soil-related parameters, daily interception calculation, river network delineation, and land

use-related parameters are set in a similar fashion to the previous studies (Rusli et al.,

2021). The same goes for model timestamps and kinematic wave iterations’ sub-timesteps.

The model is forced with CHIRPS rainfall (Funk et al., 2015) and ERA5-derived potential

evapotranspiration (Bruin et al., 2016). The simulation period is set from 2005 to 2018,

with the actual simulation period being extended to one year before the designated period

in order to diminish the effect of the initial condition uncertainty, commonly known as the

’model warm-up’ period (Yu et al., 2019).

The Wflow sbm parameter that is directly related to the amount of water recharging

the upper aquifer in the MODFLOW model is MaxLeakage. Numerically, it acts as the

maximum threshold of water leaving the subsurface’s unsaturated to the saturated zones.

A higher MaxLeakage parameter increases the recharge and decreases the surface water

discharge. By applying the MaxLeakage parameter to our previously built model (Rusli

et al., 2021), we simultaneously are able to compare two variables. First, the calculated

discharge with the observation data. Secondly, the simulated groundwater table from the

groundwater model, forced with the calculated recharge, with the observed groundwater

table. According to previous studies focussing on the groundwater recharge quantification

in the study area, the annual recharge in the Bandung groundwater basin is estimated

between 300 and 450 mm (Hutasoit, 2009; Tirtomihardjo, 2016).

4.2.3 Groundwater model setup

We use the MODFLOW python package developed by Bakker et al. (2016) to build our

groundwater model. MODFLOW is an open-source groundwater flow model distributed

by the U.S. Geological Survey (USGS) and written using a modular object-oriented design

(Hughes et al., 2017). These modular objects are packages assignable to the main model
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and simulations, with applications that are independently unique from one case to another.

In this study, we use MODFLOW6, which solves the Darcy three-dimensional groundwater

flow equation (Equation 4.2) using the control-volume finite-difference (CVFD) method

(Langevin et al., 2017).

∂
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)
+

∂

∂y

(
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∂h
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+

∂
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∂z

)
+Qs = SS

∂h

∂t
(4.2)

where K is the hydraulic conductivity in corresponding directions, Qs is the volumetric flux

per unit volume representing sources and sinks, and SS represents the storage parameters

of the porous material.

We discretize the study domain of the BGB, vertically, into a 3-layer model, with each

layer representing the upper aquifer, the aquitard layer, and the bottom aquifer that lies

on the bedrock basement. The horizontal grid size is set to 100m × 100m, generating 481

rows and 646 columns within the model domain. The assigned surface elevation is derived

from the MERIT-DEM dataset (Yamazaki et al., 2017), identical to the Wflow sbm model.

The initial Kh for the upper aquifer are spatially interpolated from slug test data, ranging

between 0.15 and 0.35 m/day depending on the location. The Kv are interpolated from

the lab tests where soil samples were taken during the slug tests, varying between 3×10−4

and 6×10−4 m/day. For the aquitard layer, we assign a multiplication factor of 0.1 to both

the Kh and Kv of the first layer. For the bottom aquifer, the Kh and Kv are interpolated

from 23 pumping test reports, ranging between 0.18 and 0.58 m/day. As both the first and

third model layer are actually formed by the same geological formation, the similarities

between the initial Kh are, in fact, encouraging.

The groundwater recharge is calculated from the Wflow sbm simulation at a daily time

step and then forced to the groundwater flow model. The controls on the uptake and

release from the elastic and water table storage, the specific yield (Sy) and the specific

storage (Ss) respectively, are only applied during the transient simulation. In Equation 4.2,

the Sy takes over the Ss when the calculated groundwater table is lower than the cell top

elevation. While the sieve analysis indicates very sandy soil and a low Sy of 0.05, we initiate

the Sy at 0.2 to ease the model convergence. The Ss values are averaged from the pumping

test reports documented by ESDM, resulting in a value of 8.7×10−3 m−1. The river paths

are delineated using the ArcGIS hydrology toolset and parameterized using groundwater

level observations data along the river. The river depth is derived from the difference

between the surface water level and the groundwater level observations. We do not directly

input the actual river depth as the grid size of 100m × 100m is generally wider than the

river itself. The riverbed hydraulic conductance is determined via model calibration. The

groundwater abstraction is set according to estimates from our previous study (Rusli et al.,

2021), increasing annually. The spatial distribution of the abstraction wells, as mentioned

previously, is assigned based on the land-use map of the study area.
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We use the groundwater flow simulation setup whose steps have been proven successful

in a previous study (Karimi et al., 2019). First, steady-state simulation is performed to

obtain the initial condition for the period as early as 1990. Second, we used transient

model spin-up until 2004 to achieve dynamic steady-state conditions. The dynamic steady-

state condition is achieved when the groundwater state is relatively stable. The model is

simultaneously calibrated by comparing the simulated groundwater table elevation with

the observation data. We finally run the final simulation between 2005 and 2018 using

the calculated head in 2004 as the initial condition using the calibrated parameters. The

model parameterization during the final simulation is set constant throughout the model

run, as adjusting model parameters in a shorter period to improve model output does not

imply more reliable simulations (Rusli et al., 2015).

We believe that our approach to translating the interpretation of the groundwater basin’s

actual geophysical condition into the numerical groundwater flow model is the best strategy

considering the (lack of) data availability. Further model complexification would be an

effort that cannot be justified by data or observations. This parsimonious modeling

philosophy has been applied in other studies (Voss and Soliman, 2013; Kumar et al.,

2019; Liu and Rahman, 2022), where all implementations have been conducted under

data scarcity conditions, similar to the situation in our study area. A previous study has

also proved that the GRACE dataset is better compared to the ’simple’ aquifer system

(Katpatal et al., 2018), which is represented by our approach.

4.2.4 Coupling of Wflow sbm and MODFLOW model

One-way coupling between a hydrological and a groundwater flow model has been applied

in many studies (Yuanyuan et al., 2013; Jing et al., 2018; Elliott et al., 2022). In such a

scheme, two different simulations are run in separate software packages instead of being

integrated into one fully coupled simulation (Haque et al., 2021). In this study, while the

two models are coupled via the recharge variable, the Wflow sbm model is simulated in a

separate environment from the MODFLOWmodel. Each model is independently calibrated

and validated. The discharge simulated by the Wflow sbm model is compared with the

observed discharge, while the groundwater model is calibrated using the groundwater level

observation data in 2004 using dynamic steady-state simulation. The transient simulation

of groundwater flow is calibrated by comparing the total water storage change, which

includes the groundwater storage change component, with the GRACE estimates.

In calculating the total water storage change based on the one-way coupled model sim-

ulation, we sum the soil moisture change calculated from the hydrological simulation

and the groundwater storage change calculated from the groundwater flow simulation.

The soil moisture calculation in the Wflow sbm model involves two main partitions: the

unsaturated and the saturated stores of the shallow soil. The unsaturated store includes

the soil layer close to the root zone, while the saturated store is the fluctuating shallow or
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perched groundwater table (the Sy part of the groundwater flow model). Both of the results

are also temporally resampled from daily to monthly. The groundwater storage change

of the MODFLOW simulation is on monthly timesteps, although calculated in half-daily

sub-timesteps. The phreatic water table storage from the MODFLOW simulation is still

considered, as the saturated zones in the Wflow sbm model only involve the first 2 meters

of depth of soil. Figure 4.1 summarizes the full methodologies used in this study.

4.2.5 Model calibration

Following up the Wflow sbm model setup, we calibrate the MaxLeakage parameter by

optimizing the KGE metric (Kling et al., 2012), calculated based upon the simulated

discharge compared to the discharge observation data. Additionally, we also evaluate the

quality of our simulation under the current setup to our previous results (Rusli et al.,

2021), by looking at the improvement of three metrics, the Kling-Gupta efficiency (KGE)

(Gupta et al., 2009; Kling et al., 2012), the Nash-Sutcliffe efficiency (NSE) (Nash and

Sutcliffe, 1970), and the Root Mean Square Error (RMSE), as well as the average discharge

value between the observation and the simulation.

For the MODFLOW model calibration, we manually adjust the spatially varying hydraulic

conductivity parameter, which we evaluate using the determination coefficient (r2) cal-

culated based upon the simulated water table elevation under the dynamic steady-state

condition and the observed groundwater table data. We also assess the transient simulation,

by taking into account the simulated groundwater storage change in the total water storage

change estimates and comparing it to the GRACE estimates.

Pearson correlation coefficient is used to evaluate our one-way coupled model simulation

results, by comparing the simulated water storage change estimates with the GRACE

estimates. Spatial assessment metrics are not preferred as the spatial resolution of the

two compared samples are hardly similar; there are 163,337 grid cells in our one-way

coupled model, while there are only 4 GRACE grids covering the same domain. To

tackle the Pearson correlation coefficient’s high sensitivity to outliers, we also assess both

estimates visually to avoid such issues. In addition to that, to take into account the

GRACE measurement uncertainties, we also quantify the percentage of feasible simulated

water storage change estimates. In this study, the feasible simulated water storage change

estimates are defined as the simulated water storage change results that fall within the

range of GRACE uncertainty bounds, provided alongside the GRACE water storage change

estimates data (NASA/JPL, 2019). The percentage is calculated by fractionating the

number of feasible simulated water storage change estimates with the total number of

available estimates during the simulation period.
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Figure 4.2: Simplified conceptualization of groundwater fluxes within the groundwater model.

4.2.6 GRACE dataset screening

Regarding GRACE applicability to be used as the point of reference to our one-way

coupled model simulation, we first evaluate the correlation between the CHIRPS rainfall

and the GRACE TWSC estimates. The evaluation is done by calculating the Pearson

correlation coefficient between the two variables. To take into account the limitations and

uncertainties of GRACE estimates described in Section 4.2.1, we apply two independent

adjustments. On the subject of the expected lags of the GRACE signals’ timing, we use

the cross-correlation coefficient as the evaluation metric. Previous hydrological studies

have attested to the use of such metric as it considers the time lag of the interaction among

hydrological variables (Seo et al., 2019; Wang et al., 2021b). Regarding the occasionally

missing GRACE dataset, we calculate both the r and cross-correlation coefficient during

only the period where the data are mostly complete, e.g. between 2005 and 2015. In this

way, we ensure that we put sufficient consideration to the context of spatial resolution,

scaling, and data quality and availability in comparing our water storage change simulation

results to the GRACE estimates.

4.2.7 Groundwater storage change assessment

Using the calibrated MODFLOW model, we assess the groundwater storage change in

the BGB. Three fluxes influence the groundwater storage ’bucket’ in the study area:

groundwater recharge, groundwater abstraction, and the interaction between surface water

and groundwater (Figure 4.2). The latter water flux is strongly controlled by the two former

most important budgets: the groundwater recharge as the inflow and the groundwater

abstraction as the outflow. The trends of these two key components, together with the

groundwater storage, are analyzed and quantified.
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We also assess the groundwater storage change by plotting the groundwater table and the

piezometric head fluctuation for the upper and the bottom aquifer respectively. As the

changes for both variables are spatially distributed, we assess two values - the average and

the largest changes - for each layer of the aquifers. By analyzing the spatial distribution of

the changes, we can determine the impact of groundwater abstraction on the groundwater

table profile, and identify the occurrence of local drawdown.

4.3 Results

4.3.1 Hydrology model Wflow sbm calibration and output

In calibrating the Wflow sbm model, the KGE values vary between 0.35 and 0.48 when

the MaxLeakage parameter is set between 0.0 and 1.5 mm/day. There is, however, less

than a 1% difference between the lowest and the highest KGE under the MaxLeakage

range of 0.9 and 2.0 mm/day. As all the calculated KGE satisfy the suggested minimum

value of -0.41 (Knoben et al., 2019), we set the MaxLeakage parameter at 0.9 mm/day,

taking into consideration the results of recharge estimates from previous studies (Hutasoit,

2009; Tirtomihardjo, 2016), resulting in an average annual recharge of 317 mm.

Figure 4.3 plots the simulated discharge and the observation data. Compared to our

previous study, incorporating theMaxLeakage parameter in the Wflow sbm model visually

improves its performance. It is quantitatively confirmed by the improved KGE, NSE,

and RMSE metrics, calculated using the hydroeval package (Hallouin, 2019). The KGE

increases from previously 0.35 to currently 0.46, the NSE improves from -0.76 to -0.58,

and the RMSE decreases from 94.15 m3/s to 90.78 m3/s. The average observed discharge

of 83.16 m3/s that was previously simulated at 113.57 m3/s, now is more accurately

simulated at 96.48 m3/s. We further use the calculated recharge under these current sets

of parameters as the driving force to the groundwater model simulation.

Besides the groundwater recharge, another result from the Wflow sbm model is the soil

moisture. It is calculated in a daily time step and aggregated to a monthly time step before

the changes are calculated. The calculated daily soil moisture is shown in Figure 4.4, with

the dynamic that is in agreement with the rainfall input.

4.3.2 Groundwater model calibration

Figure 4.5a shows the comparison between the observed and the simulated groundwater

table elevation based on the calibrated groundwater model, with an r2 of 0.895. The

calibrated Kh in the upper and bottom aquifers are within a range between 0.15 and 0.35

m/day, and between 0.14 and 0.46 m/day, respectively. These values are very similar

to the values measured from the fieldwork. The optimum Kh for the aquitard layer is

between 0.017 and 0.039 m/day. For the vertical properties, the optimum Kv in the upper



Ch
ap

te
r 

4

4.3 Results 61

2005 2006 2007 2008 2009 2010 2011 2012

0

200

400

600

800

1000

d
i
s
c
h
a
r
g
e
 
(
m

3

/
s
)

Simulation Observation

(a)

2012 2013 2014 2015 2016 2017 2018 2019

0

200

400

600

800

1000

d
i
s
c
h
a
r
g
e
 
(
m

3

/
s
)

Simulation Observation

(b)

Figure 4.3: The comparison between the observed and the simulated discharge during (a)

the first half (2005 to 2011) and (b) the second half (2012 to 2018) of the simulation period.

aquifer is between 3×10−3 and 6×10−3 m/day, which is one degree of magnitude higher

than the values of the soil samples’ Kv measured in the laboratory. The anisotropy factor

of 0.1 and 1.0, respectively, are the most optimum for the aquitard and bottom aquifer.

The riverbed hydraulic conductance is at its optimum at 75 m2/day. The river base

elevation is also calibrated and normalized to its respective grids. The calibrated river

base elevation parameter of 23.5 meters below the surface is validated by groundwater

level elevations located near river streams. Through the calibration phase, the model led

to groundwater level distribution shown in Figure 4.5b. It clearly reflects the influence of

surface topography on the basin’s groundwater flow direction. The high groundwater table

is higher along the basin’s outside perimeter, which is the location of mountainous areas

on the surface, and drops off towards the vast flat terrain in the center of the basin.

4.3.3 Screening result of the GRACE data

Figure 4.6 presents the time-series plot between CHIRPS monthly rainfall estimates and

two water storage change estimates. The latter is represented by two independent products:

(1) the one-way coupled model-based water storage change simulated in the spatial domain
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Figure 4.4: The simulated soil moisture under the Wflow sbm model setup, plotted side by

side with the CHIRPS rainfall data, during (a) the first half (2005 to 2011) and (b) the second

half (2012 to 2018) of the simulation period. The model response based on the seasonal change

is clearly indicated by the increasing soil moisture during the rainy season and the decreasing

soil moisture during the dry season.

of the BGB, and (2) the GRACE water storage change estimated for the spatial domain of

the GRACE grid surrounding (and including) the study area, plus its uncertainty bounds.

As CHIRPS rainfall estimates are available in a higher resolution than GRACE, the rainfall

estimates cover the same domain as the model-based estimates; and a smaller domain

than the GRACE-based estimates at the same time.

Visually, the fluctuations of the rainfall estimates are predominantly in agreement with

both water storage change estimates’ dynamics, although several discrepancies remain. The

seasonal patterns are well-captured. During the dry season between April and September,

the values of both rainfall quantity and water storage changes generally fall. In contrast,

during the rainy season between October and March, all of the variables’ values appear

to rise, although the two water storage estimates often increase to different extents. The

discrepancies between the variables’ dynamics become more apparent after 2015. During

this period, as mentioned in Section 4.2.1, the GRACE dataset contains several missing

values. With more detailed observation, we can also see the expected small time-lags of

GRACE signal to the rainfall input compared to the simulated water storage change.
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Figure 4.5: The groundwater model calibration results. Figure (a) shows the plot comparing

the observed and simulated groundwater head in wells located in the flat terrain of the Bandung

groundwater basin, with r2 value of 0.895. Figure (b) shows the distribution and contour of

the calculated groundwater head based on the calibrated parameters, indicating the influence

of the surface topography on the groundwater table elevation.

The Pearson correlation coefficient between the input rainfall and GRACE estimates is

calculated at 0.537. Meanwhile, the cross-correlation coefficient is calculated at 0.601,

with an optimum temporal shift of one time-step. This means that on average, the

GRACE-based water storage change estimates are lagging by a month compared to the

rainfall. The Pearson correlation coefficient between the rainfall data and the simulated

total water storage change, on the other hand, is higher compared to those with GRACE

estimates, calculated at 0.706.

4.3.4 Water storage change estimates

The GRACE TWSC estimates including its uncertainty bounds and the one-way coupled

model-based simulated water storage change are also shown in Figure 4.6. The simulated

water storage change is equal to the sum of the soil moisture storage changes calculated

by the Wflow sbm and the groundwater storage changes calculated by the MODFLOW.

Parallel to the rainfall visual assessment, the two water storage change estimates show

similar dynamics, especially during the earlier period of the simulation between 2005 and

2015. Likewise, the timing between the two signals also seems to differ. The GRACE

estimates tend to rise or fall one month behind the simulation. This is agreed by the

previous cross-correlation analysis between the rainfall and the GRACE estimates. The

peak magnitude, on the other hand, is arguably less consistent. During some peak water

storage changes, the one-way coupled model simulation generates higher values compared

to the GRACE estimates. A more comprehensive discussion on the matter is presented in
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Figure 4.6: Time-series comparison between two water storage change estimates and the

monthly CHIRPS rainfall data in the BGB. The two water storage change estimates are the

model-based water storage change simulated under the spatial domain of specifically the BGB

(red lines), and the GRACE-based water storage change estimated under the spatial domain of

the GRACE grid surrounding (and including) the study area (black lines), plus its uncertainty

bounds (grey-hatched area).

Section 4.4.2. On the whole, focusing on the period between 2005 and 2015 and considering

the uncertainty bounds due to different spatial scales of the analyzed/measured domain,

62.1% of the simulated water storage change is calculated within GRACE estimates

uncertainty bounds, with the Pearson correlation coefficient of 0.502.

4.3.5 Groundwater storage change simulation

Focusing on the governing budgets over the groundwater flow regime, as mentioned

in Section 4.2.7, Figure 4.7 shows the simulated dynamic budgets of the groundwater

recharge, groundwater abstraction, and groundwater storage changes in the BGB. Using

the calculated values, we are able to determine the overall status of certain groundwater

budget trends during the simulation period. The groundwater storage change is calculated

at -0.14 mm/day on average, and its long-term trend clearly indicates a sustained decline.

Our results also suggest that the groundwater storage of the BGB is depleting at an

average rate of 87 million m3/year.

Groundwater storage depletion is reflected through dwindling groundwater tables. Fig-

ure 4.8 shows the time series of the average and largest groundwater head changes in both

the unconfined and confined aquifers. In the unconfined aquifer, the water table elevation

along the smaller upstreams locally rises as much as 5 cm/year on average, seemingly by

gaining water from the river baseflow (orange line). In other locations, especially the flat

terrain area of the basin, the water table elevation is slowly and steadily falling (yellow

line). The maximum water table drawdown (pink line) is found near the center of the
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Figure 4.7: The time-series plot of the groundwater storage change simulation result, including

its governing budgets of groundwater recharge and groundwater abstraction. The trend lines

show that despite a relatively constant recharge average, groundwater storage in the BGB

is depleting at an even faster rate than the groundwater abstraction increase, indicating the

domino effect of groundwater abstraction on the dwindling groundwater table.

basin, in the intersection between the domestic and industrial abstraction areas. Although

a total water table decrease of 2.7 meters does not seem significant, it represents the whole

grid size of 100 m x 100 m. The local drawdown around the associated abstraction well is

theoretically much higher than the grid-representative groundwater head decrease. On

the other hand, in the confined aquifer where there is more concentrated and intense

groundwater abstraction, the groundwater head drawdown is found more profound than

those in the unconfined layer. There is a stark difference between the average and the

maximum groundwater head drawdown in the unconfined aquifer (purple line). The fact

that the maximum groundwater head drawdown is located under the industrial abstraction

area indicates the severe effect of local drawdown in the confined aquifer. However, the

average groundwater head changes of the confined aquifer are relatively similar to those of

the unconfined aquifer, discussed in Section 4.4.4.

4.4 Discussion

4.4.1 Assumptions and limitations of the simulations

Uncertainties and limitations are always present in hydrological research, albeit from the

quality of the input data, measurements and calibration variables, model structure and

parameterization, etc (Liu and Gupta, 2007; Ahmadi and Nasseri, 2020; Moges et al.,

2021). The fact that the BGB is a data-scarce area and several assumptions have to be

made throughout the research propagates the uncertainties to the research outcome.
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Figure 4.8: The time-series simulation of the average and maximum groundwater head

changes in both the unconfined and confined aquifers. The ’ average’ variables are taken from

the spatial mean values, while the ’ max’ values are found at the center of the basin under the

intersection between the domestic and industrial abstraction area for the unconfined layer, and

the north-west periphery section for the confined layer.

In this study, groundwater recharge is a very important variable as it couples the Wflow sbm

to the MODFLOW model. Under a more ideal situation, the Wflow sbm model could be

better calibrated by comparing the simulation results with direct recharge measurement.

Previous studies have shown the benefit of using such an approach (Misstear et al., 2009;

Dong et al., 2021). However, since recharge measurement data are not available, we instead

calibrate the hydrological model on the basis of river discharge comparison. In addition to

that, for a catchment with relatively high annual rainfall like the BGB, the uncertainties

of the estimated recharge in terms of spread are found to be wider compared to ones

with lower rainfall (Zhu et al., 2020a). This is, however, unavoidable considering the data

availability.

There are also several assumptions made for the groundwater flow model parameterization.

The soil data, including the hydraulic conductivities, storage parameters, and lithology

profiles, are mostly concentrated in a few locations, while these properties in the more

elevated areas are largely unknown. For the global groundwater flow modeling, this might

not be an issue with the availability of global gridded hydrogeological datasets, such as

GLHYMPS (Gleeson et al., 2014) and its updated version of GLHYMPS2.0 (Huscroft

et al., 2018). For regional groundwater flow models, however, using these data is not

scale-wise fitting. Additional future field campaigns and in-situ measurements could

increase the dependability of the groundwater model parameterization. The groundwater

flow model is also calibrated in a steady-state simulation, as time series of groundwater

level measurements are not available. Should the groundwater monitoring management

has improved, calibrating the groundwater flow model on transient simulation would

strengthen the level of confidence and reliability of the simulation.
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The assumption of negligible surface water storage components from the GRACE estimates

could also be criticized (see Equation 4.1). Within the GRACE grid covering the BGB,

there are three concentrated surface water reservoirs. This could influence the GRACE

estimation of the TWSC, especially considering the nature of the non-uniform spatially

distributed surface water that plays an important role in GRACE accuracy over the

TWSC estimates (Longuevergne et al., 2013). In this study, the surface water component

is assumed negligible as they are located outside of the BGB (despite still falling within the

GRACE measurement grid). Their total surface area of less than 200 km2 is also assumed

relatively insignificant compared to the GRACE grid size of approximately 12,000 km2

along the equator. In future studies, nonetheless, there is an opportunity to incorporate

their effects into the GRACE water storage estimates analysis.

4.4.2 Model simulation and GRACE comparison in estimating TWSC

The hydrological simulation using Wflow sbm improves the results from previous study

(Rusli et al., 2021), shown by the closer estimates of average simulated discharge to the

observation and the improved KGE (Kling et al., 2012), NSE (Nash and Sutcliffe, 1970),

and RMSE. The groundwater flow simulation has an r2 of 0.895 between the simulated

and observed water table elevation during model calibration. The combination of two

well-grounded simulations increases the confidence in water storage change estimates

calculated by the one-way coupled models.

The visible time lags between the GRACE and model-simulated water storage change

estimates, where GRACE estimates are mostly found to lag, are not spotted for the first

time. This trend is also noticed in previous research (Zhong et al., 2019; Neves et al.,

2020; Salam et al., 2020). Some research found that the lag-time ranges between two

and four months (Hachborn et al., 2017; Rahimzadegan and Entezari, 2019; Fatolazadeh

and Göıta, 2021), and was spatially variable. Considering the seasonal pattern in the

BGB, the water storage change simulation tends to overestimate GRACE only during

the wet seasons (grey light-hatched zones, Figure 4.6), and gives better results in dry

seasons. While its performance to detect seasonal trends has been evaluated in a number

of studies (Getirana et al., 2020; Tangdamrongsub and Šprlák, 2021), research focusing

on GRACE accuracy varying between different seasons is very limited. Additionally, in

this study, the simulated water storage change is estimated in a basin where the slope

is steeper and the elevation is higher compared to the larger area measured by GRACE.

The behavior of different responses in the water storage change during the wet seasons

does make sense considering the respective associated basin characteristics. With all the

above-mentioned contexts involved, the r between the simulation and GRACE estimates

of 0.502 is considered acceptable, as it is comparable with other basin-scale research on

the same topic (Yirdaw and Snelgrove, 2011; Tang et al., 2017; Zhong et al., 2018; Liu

et al., 2020; Jyolsna et al., 2021).
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4.4.3 GRACE aptness to assess basin-scale groundwater storage change

The spatial scale difference between the GRACE measurements and the basin size, as

well as the local hydrological and hydrogeological properties, is one of the key reasons

behind the discrepancies between TWSCs in Figure 4.6. Although both lines represent

the estimated water storage change, they are measured/simulated under different (albeit

overlaying) domains. The results in this paper are fully agreed with previous studies which

show that despite having good agreement on water storage change estimates on a regional

scale, related local data/measurements are found to have higher variance in their values

compared to GRACE dataset whose estimates are based on larger spatial domain (Zhang

et al., 2019; Rzepecka and Birylo, 2020; Li et al., 2021). This highlights the importance of

considering the spatial scale and local/regional features when applying GRACE to assess

basin-scale groundwater storage changes.

In addition, it is also important to recognize the dominant water storage component. In

the BGB, the status of the soil moisture and the groundwater storage change, according to

the one-way coupled model simulation, are occasionally found in reverse; the soil moisture

storage often decreases at the same time the groundwater storage increases. This trend

is also supported in other research (Pokhrel et al., 2013). During periods when they are

identified under the same state, the water storage change is dominated by the change of

the soil moisture component, contributing up to 74.8% of the total water storage change.

Therefore, the signals captured by GRACE are contributed mostly by the water storage

change in the shallow soil layer instead of the deeper saturated zones. While both soil

moisture and groundwater storage are considered the subsurface component of the water

storage, the term ’subsurface’ includes numerous spatial coverages from the root zones,

shallow vadose zones, to the elastic and storage partitions of the groundwater system.

Nevertheless, in many basin-scale data-scarce areas where groundwater storage assessment

is limited by the availability of direct observation data, GRACE estimates are undeniably

valuable (Rodell et al., 2007). However, although it could be utilized as an alternative

tool to observe the groundwater storage general trend, even on a basin-scale domain

(Skaskevych et al., 2020), its spatial footprint should always be taken into account. It

covers the local contexts, for example, related to the existence of lakes, reservoirs, and

coastal lines, as well as the incorporated spatial characteristics variability (slope, elevation,

land use, land cover, etc) within the measurement domain. Indeed, general conclusions are

derivable from GRACE estimates in regional-scale basins (Abou Zaki et al., 2019), however,

the importance of local data, when available, should always be prioritized. The hydrological

attributes of the basin surrounding the measurement area could also impact the quality

of GRACE estimation. In this study, for example, the local impact of groundwater

abstraction has to be detected from groundwater table measurements in observation wells

near the abstraction wells. GRACE estimates, in comparison, measure the storage changes

on a much larger scale and are relatively insensitive to local groundwater table changes.
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In fact, it has been shown in previous studies that GRACE groundwater storage depletion

often underestimates global hydrologic model output in heavily exploited aquifers (Rateb

et al., 2020). While both GRACE and modeling methods could be well-quantified, putting

context and critical thinking in interpreting each estimate is indispensable.

4.4.4 Present status of the BGB groundwater storage

The result of groundwater storage simulation (Figure 4.7), indicates unsustainable ground-

water management, involving many aspects from groundwater recharge to groundwater

abstraction. Surprisingly, the groundwater recharge’s trend is shown not to be falling,

which is in contrast to some of the previous research results of decreasing groundwater

recharge under changing climates (Serrat-Capdevila et al., 2007; Holman et al., 2009;

Dams et al., 2012). However, despite the positive gradient of the recharge regression

line, it is visually apparent that the recharge generally gets lower towards the end of the

simulation period. The fact that 2010 was a significantly wet year with a high number of

rainy days induces the recharge to be constantly high throughout the year. By removing

the extreme wet year of 2010, the trend of the recharge would reverse to a declining

direction. On the other hand, the increasing groundwater abstraction is clearly indicated

by the red bottom lines. It constantly increases during the simulation period, starting

from an average equivalent of 0.48 mm/day in 2005 to 0.76 mm/day in 2018. In practice,

groundwater abstraction has been expanding not only in its volume but also in its flow rate

and its spatial distribution. In summary, the combination of the changing groundwater

recharge and groundwater abstraction drives groundwater storage depletion. Although

several methods in separating climatic and anthropogenic factors to the groundwater

storage changes have been developed (Wang et al., 2019; Zhong et al., 2019; Su et al.,

2022), our assessment clearly indicates the dominance of the human factor in the current

groundwater storage depletion. Given the water demand situation in the study area, such

groundwater exploitation might be unavoidable. However, active actions are still necessary

to be taken in response to the currently depleting groundwater storage.

Focusing on groundwater abstraction, it is important to recognize the potential effect of

multi-layer pumping. Not only do they dwindle groundwater table but also, to certain

extents, influence regional groundwater flow regime (Wang et al., 2019). Directly, spatially

concentrated abstractions create local cones of depression (Sun et al., 2011). Indirectly,

groundwater abstraction from deeper aquifers impacts the groundwater table in shallow

aquifers, as decreasing groundwater head in lower aquifers means increasing head gradient

between aquifers (Zimmermann et al., 2017). In the BGB, specifically, the interaction

between the shallow and the deep aquifer through vertical flow leakage was identified. Pre-

vious results on high dichlorodifluoromethane (CFC-12) tracing reveal young groundwater

from samples taken in the upper layer of the deeper aquifers (Taufiq et al., 2017). In our

study, such leakage is hypothesized through groundwater head changes of the confined

aquifer under the industrial abstraction area (Figure 4.8). Despite having spatially more
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concentrated and higher volumes of groundwater abstractions, the average groundwater

head decrease in the confined layer is relatively similar to one in the unconfined layer,

seemingly due to the potential leakage from the upper to the lower aquifer. The dwindling

groundwater tables from the upper aquifers also impact the flow characteristics exchanged

between the groundwater and surface waters, especially along rivers. The different gradient

of groundwater storage depletion compared to the gradient of increasing groundwater

abstraction (Figure 4.7) indicates that the groundwater storage change processes cannot

be explained solely by the dynamics of groundwater abstraction, as they involve numerous

feedback among variables associated in subsurface flows. This hypothesis is further tested

and analyzed in Chapter 5.

Alarmingly, based on the groundwater storage budget shown in Figure 4.7, the withering

groundwater storage rate is calculated at approximately 87 million m3/year. The long-term

average groundwater storage change in the BGB has been negative since the beginning of

the simulation. The fact that the groundwater storage depletion rate is simulated in a

comparable degree to both the groundwater abstraction increasing rate and the recharge

decreasing rate combined signals a warning. The combination of multiple groundwater

table drawdowns, as a consequence of human exploitation of groundwater, has causal

sequences on the groundwater flow regime in a bigger picture when it impacts the flow

between the groundwater, the river baseflow, and the constant head boundaries. Under the

currently increasing groundwater abstraction, the negative trend of groundwater storage

changes points out the unsustainable groundwater management policy in the BGB.

4.5 Conclusions

In this study, our objective is to quantify the basin-scale water storage change in the

BGB. We achieve this by one-way coupling of the hydrological model Wflow sbm to the

groundwater model MODFLOW, where groundwater recharge generated by the Wflow sbm

model simulation is used to drive the groundwater flow model. The simulation result is

compared to GRACE estimates, including its uncertainty bounds, with the simulation

period between 2005 and 2015.

The Wflow sbm model is forced with CHIRPS rainfall data and ERA5-derived potential

evapotranspiration. The groundwater flow model is parameterized using fieldwork-based

data. We simulate the groundwater flow under changing recharge (monthly) and abstraction

(annually) to assess the dynamics of the groundwater storage change. To ensure consistency

between the GRACE estimates and the rainfall data, we filter out the periods after 2015

where several GRACE estimates are missing. We also implement a cross-correlation

function in addition to the Pearson correlation coefficient to take into account the expected

signal time lag that occurred due to the spatial scale differences between the GRACE

measurement and the one-way coupled model domain. This led to a cross-correlation

coefficient of 0.601.
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The combination of soil moisture storage change from Wflow sbm and groundwater storage

change from MODFLOW is compared with the GRACE water storage change estimates.

Visual comparison suggests good agreement between the two estimates with a cross-

correlation coefficient of 0.502, and 62.1% of the simulated water storage change falls

within the GRACE estimates uncertainty bounds. Based on the groundwater flow model

simulations, the BGB storage is currently depleting at a rate of approximately 87 million

m3/year. Our model simulations expose the unsustainability of the current groundwater

management. Further research on aquifers’ response to groundwater abstraction, both

locally and regionally, and from both of the layers (upper and lower aquifers), could be

paramount in deriving suitable future groundwater management policy in the BGB and

other similar basins in data-scarce areas.
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Abstract

Study Region: Bandung Groundwater Basin (BGB), Indonesia.

Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous

depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head

distribution, including ones under vertical cross-sections. This generates groundwater flow

in the vertical direction, where groundwater flows within its storage from the shallow to the

underlying confined aquifers. In the BGB, previous studies have identified such processes,

but quantitative evaluations have never been conducted, with data scarcity mainly standing

as one of the major challenges. In this study, we utilize the collated (1) environmental

water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO4
2−,

HCO3
−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in

conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven

mainly by the multi-layer groundwater abstraction in the BGB, and demonstrate their

correspondence. In addition, we also use the model to quantify the impact of multi-layer

groundwater abstraction on the spatial distribution of the groundwater level changes.

New hydrological insights for the region: In response to the limited calibration data

availability, we expand the typical model calibration that makes use of the groundwater

level observations, with in-situ measurement and a novel qualitative approach using the

collated environmental water tracers (EWT) data for the model evaluation. The analysis

in the study area using EWT data and quantitative methods of numerical groundwater

flow modeling is found to collaborate with each other. Both methods show agreement

in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional

groundwater flow direction, (3) the groundwater age estimates, and (4) the identification

of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at

0.110 m/year, which stands out as a significant component compared to other groundwater

fluxes in the system. We also determine the unconfined aquifer storage volume decrease,

calculated from the change in the groundwater table, resulting in an average declining

rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling

at a rate disproportionate to its groundwater abstraction, hugely influenced by losses

to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the

total groundwater storage lost, despite representing only 32.3% of the total groundwater

abstraction. This study shows the possibility of quantification of aquifer interaction and

groundwater level change dynamics driven by multi-layer groundwater abstraction in a

multi-layer hydrogeological setting, even in a data-scarce environment. Applying such

methods can assist in deriving basin-scale groundwater policies and management strategies

under the changing anthropogenic and climatic factors, thereby ensuring sustainable

groundwater management.
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5.1 Introduction

The impact of anthropogenic factors on water storage depletion, especially through

groundwater abstraction, has been detected from catchment to global scales. In the Heihe

River basin, China, the human-induced footprint is quantified to cause a net negative to

the terrestrial water storage (TWS) change derived from the gravimetric satellite data of

Gravity Recovery and Climate Experiment (GRACE), despite the positive climate-driven

TWS anomalies simulated by land surface models of Global Land Data Assimilation

System (GLDAS) (Zhong et al., 2019). In the transboundary Aral Sea basin of the

Eurasian region, up to 75.24% of the basin TWS change is influenced by human activities

(Yang et al., 2021). In a global-scale analysis, the anthropogenic factor has been identified

as exerting dominant control over the continuous decline of TWS in major river basins

between 2002 and 2010 (Felfelani et al., 2017). These depleting groundwater storages

encompass changes on multiple hydrogeological partitions, including processes in both

shallow unconfined aquifers and deep confined aquifers (McNamara et al., 2011). As

groundwater abstraction is the direct factor in contact with these subsurface stratifications,

the ability to quantify its impact on the changes in groundwater storage and its flow

regime is highly important.

In areas whose hydrogeological profile consists of vertically diverse lithologies, groundwater

abstraction affects not only the groundwater storage dynamics but also the overall ground-

water system, both directly and indirectly (Wang et al., 2019). Directly, groundwater

abstraction depletes groundwater storage and dwindles the groundwater table or the piezo-

metric head of the respective aquifers it extracts from. Indirectly, the steeper groundwater

head gradient between overlying aquifers, resulting from groundwater abstraction across

multiple aquifer layers, stimulates inter-aquifer groundwater movement from upper to

lower aquifers (Russo and Lall, 2017). This flow is referred to as aquifer interaction.

As a result, the deep aquifers’ storage eventually gains water while the shallow aquifers’

storage, in contrast, loses water, without influencing the groundwater storage change as a

whole. The cumulative impact of the internal water movement leads to potentially severe

groundwater-related problems that could not be understated. In Beijing, China, land

subsidence is analyzed to be influenced by not only the groundwater abstraction but also

the subsurface hydrogeological layer structure (Li et al., 2017), which, as described above,

is the primary factor driving the aquifer interaction. In the Western part of the United

States, the confined groundwater storage loss due to aquifer compaction driven by ground-

water abstraction has caused soil stability perturbation that poses significant damages to

infrastructure (Smith and Majumdar, 2020). Therefore, in-depth storage partition-based

analysis with an emphasis on aquifer interaction, complementing the integrated groundwa-

ter storage change analysis, is crucially relevant to support the development of sustainable

groundwater management practices.
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To investigate subsurface water movement and groundwater flow, transport, and dynamics,

analysis using environmental water tracers’ (EWT) properties have been widely applied

(Turnadge and Smerdon, 2014; Chambers et al., 2019; Kurukulasuriya et al., 2022). EWT

has also been used to gain a conceptual understanding of a hydrogeological system behavior

(Cowie et al., 2014; Doveri and Mussi, 2014). However, it is often necessary to incorporate

other perspectives to enhance groundwater system assessment, as the EWT method

possesses numerous limitations from uncertainties (Larocque et al., 2009), measurement

bias (McCallum et al., 2014), to cost, time, and expertise (Kurukulasuriya et al., 2022),

and more importantly, it does not always come up with quantitative values in its output.

In data-scarce areas, additionally, EWT measurement data often suffer from low quality,

including incomplete variables, lack of metadata, basic descriptions, and inconsistent

measurements. In these types of data-restricted areas, unfortunately, other hydrogeological

data such as lithological profiles and groundwater table measurements are usually also in

short supply. Such a case appears in the data-scarce area of Bandung Groundwater Basin

(BGB), Indonesia. The situation of limited groundwater-related data availability in the

study area has been previously reported (Rusli et al., 2021; Rusli et al., 2023a). Regarding

aquifer interaction, a prior study in the BGB identified vertical groundwater leakage from

the shallow to the deep aquifer through high dichlorodifluoromethane (CFC-12) tracing

that reveals young groundwater in the upper layer of the deeper aquifers (Taufiq et al.,

2017). Such a proposition, however, is based on only a one-time sampling and measurement,

and was only qualitatively interpreted, but not quantitatively constrained.

Sustainable groundwater management and policy planning require accurate spatiotemporal

groundwater flow quantification, including ones among and within the aquifers. While

some EWT data are available in the BGB, it is challenging to translate the EWT-based

hypothesis to a tangible groundwater management policy without detailed quantification

of the internal fluxes among the aquifers. Although it is possible to take a quantitative

approach by constructing a site-specific numerical groundwater flow model, such an

approach has not been extensively explored. Primarily, this occurs due to the limited

availability of groundwater table data that are typically used as groundwater flow model

calibration data. Granted such data are available, however, their spatial and temporal

distribution and density could be deemed insufficient, leaving a gap within the groundwater

flow model evaluation. In this context, the integration of these two approaches could

emerge as the optimal alternative in regions with limited data availability. This concept of

combining EWT data and hydrological models has been demonstrated to offer valuable

insights in data-scarce environments. Therefore, in this study, we propose a framework to

utilize EWT data in conjunction with a numerical groundwater flow model to quantify

the aquifer interaction driven by multi-layer groundwater abstraction in the BGB. Using

our framework, we intend to in concert assess both the EWT measurements and the

numerical groundwater flow model. We compare and demonstrate their compatibility

to reinforce each method’s output. The EWT data-driven qualitative analysis is used
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to conceptually evaluate the numerical groundwater flow model simulation. Meanwhile,

the numerical model fills the quantitative and spatial information gap resulting from the

limited availability of EWT data. Using the groundwater flow model, we are also able

to quantify the impact of the aquifer interaction, driven by the multi-layer groundwater

abstraction, on the basin groundwater level changes. We expect that the outcome of this

research will greatly assist in deriving future groundwater regulation and management in

the BGB.

5.2 Material and methods

5.2.1 Environmental water tracers data

All the EWT data analyzed in this study are freely accessible and hosted on an open

repository QGIS-cloud platform (Irawan et al., 2016). They were collected in more than

20 different projects conducted between 2007 and 2009. Subsequently, these datasets were

collated into one integrated open-source groundwater database, funded by the Directorate

General of Higher Education and the Ministry of Research of Indonesia in 2016. It’s worth

noting that these datasets were not collected continuously, thus time-series analysis is

hardly feasible. Nevertheless, for the purposes of this study, they have been combined with

additional EWT data collected in 2015 (Taufiq et al., 2017). This combined dataset aids

in qualitative interpretations and in evaluating the numerical model simulations.

There are a total of 65 sampling locations for major ion element measurements, distributed

as follows: 30 points for the deep aquifer, 19 for the shallow aquifer, 3 for water springs,

and 13 for surface water (river). The measured chemical components include the cations

of Na+/K+, Ca2+, and Mg2+, and the anions of Cl−, HCO3
−, and SO4

2−. The data are,

unfortunately, spatially clustered dominantly in the northern part of the flat terrain of the

basin for the deep groundwater samples and the western part for the shallow groundwater

samples. There are also 72 points of stable isotope measurements of deuterium (δ2H or

δD) and oxygen-18 (δ18O). These measurements are distributed as follows: 36 samples

from the deep aquifer, 19 from the shallow aquifer, 14 from river water, and 3 from

rainfall. Most of these sampling points are located in proximity to the major ion element

measurement locations. The radiocarbon (14C) content was measured in 22 locations to

estimate groundwater age, along with their associated uncertainties. These measurements

were exclusively conducted in the deep aquifer. The locations and measurement data for

all these samples are depicted in Figure 5.1.

The groundwater flow model parameterization involves fieldwork and data collection in

the study area in 2020. These efforts produce estimates of the upper aquifer’s hydraulic

conductivities. Specifically, we conducted slug tests at 25 spatially distributed locations to

measure the horizontal hydraulic conductivities of the soil. Additionally, soil samples were

taken from these locations for grain size analysis, and flow-through tests in the laboratory
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Stable isotopes (only)

Major ion elements (only)

Groundwater age estimate (only)

Stable isotopes + major ion elements

Groundwater age estimate + stable isotope

Groundwater age estimate + major ion elements

Groundwater age estimate + stable isotope + major ion elements

Pumping test (23 points)

Slug test (25 points)

Groundwater table observation wells

Figure 5.1: Groundwater data location in the BGB. These data encompass stable isotopes,

major ion elements, and groundwater age estimates. Different types of measurements at each

location are indicated by distinct symbols: red circles for locations with only one type of

measurement available, green diamonds for locations with two types of measurements, and

blue triangles for locations with all three types of measurements. This spatial representation

helps visualize the distribution and coverage of groundwater data across the basin.

were conducted to measure vertical hydraulic conductivity. We gathered 23 validated

pumping test reports, conducted in 2019, to estimate the specific storage parameter and

the hydraulic conductivity of the deep aquifer. All of the data of the groundwater flow

model were also used in our previous studies (Rusli et al., 2023a), and their locations are

also shown in Figure 5.1. Given the limitations in terms of data depth and quantity, we

recalibrated the model parameters during the model spin-up phase. This recalibration

involved comparing the model’s groundwater head simulation results with observation

data. However, it’s important to mention that only a limited number of groundwater

observation wells are consistently monitored within the basin. We have addressed the

parameter calibration and data limitation comprehensively in our previous study (Rusli

et al., 2023a). To enhance the model prediction’s reliability, additional model evaluation

is necessary due to the differing purpose of the current study. Therefore, we assessed the

model’s simulation capability by utilizing the available EWT data.
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Groundwater flow model: setup and parameterizationMajor ion elements
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Groundwater flow model: setup and parameterizationMajor ion elements

Groundwater flow model setup:
Model-driven analysis

Environmental water tracers data collection:
Data-driven analysis

Groundwater ageIsotopes
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Aquifer interaction quantification

Groundwater recharge 
spatial distribution
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Regional groundwater 
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Conceptual agreement

Groundwater age 
estimates

Figure 5.2: The detailed flowchart of the research methodologies. The analysis is divided

into two main parts: the data-driven analysis based on hydrogeochemistry data on the left and

the model-driven analysis based on the groundwater flow model simulation on the right. After

the model evaluation, the assessment focuses on the quantification of inter-aquifer interaction

and its impact on groundwater level changes.

5.2.2 Experimental design

The research framework involves two initially independent processes: (1) a qualitative data-

driven analysis using the collated EWT data and (2) a quantitative model-driven approach

using the numerical groundwater flow model. Once each part has been established, they are

mutually assessed and evaluated in terms of the groundwater recharge spatial distribution,

regional groundwater flow direction, groundwater age estimates, and the identification of

aquifer interactions. Following this assessment, the numerical groundwater flow model

is employed for further analysis of the BGB. This analysis focuses on aquifer interaction

and changes in the groundwater table over the simulation period. The overall research

framework is depicted in Figure 5.2.

5.2.3 Environmental water tracer data analysis

In deriving the qualitative data-driven analysis, we focus on three different EWT data: (1)

the major ion elements data, (2) the groundwater age data, and (3) the stable isotope data.

Our analysis revolves around their spatial patterns, including their distribution across the

basin, variations in their values across different locations, and their potential relationships

with other pertinent information such as land use and land cover data or groundwater

abstraction zones. In some instances, we employ spatial interpolation techniques to assess

how these values are distributed in and around unmeasured locations.
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We assess the major ion element data by plotting the measured values in Stiff diagrams

(Stiff, 1951), categorizing the data according to the samples’ sources (rainfall, river, shallow,

and deep groundwater). The stiff diagram describes the chemical state of the water samples

by assembling the cations on the left side of the box, with sodium-potassium (Na+/K+)

at the top, calcium (Ca2+) at the middle and magnesium (Mg2+) at the bottom and

the anions on the right side (chlorine/Cl− at the top, sulfate/SO2−
4 in the middle, and

bicarbonate/HCO−
3 at the bottom). We visualize the spatial distribution of the major ion

element data by overlaying the Stiff diagrams on the BGB map. We also combine our

analysis with information that we have from other studies on major ion elements (Taufiq

et al., 2017), which include an additional 40 samples from shallow groundwater and 65

samples from deep groundwater.

The groundwater age estimates are calculated based on the radiocarbon (14C) content of 22

samples collected from confined aquifers with a screen depth of more than 100 meters. We

overlay this data with the BGB map and deep groundwater abstraction zones to explore

potential correlations between these variables. Due to the limited data points, we spatially

interpolate the point-based groundwater age estimates to rasterized area estimates based

on the inverse distance weighting (IDW) interpolation. Having said that, it’s crucial to

interpret these groundwater age profiles cautiously, as they are spatially poorly distributed.

Additionally, field conditions often hold more complexities and processes due to spatial

heterogeneities and transient effects (Post et al., 2013).

The stable isotope data are sourced from four water sample categories: rainfall, surface

water (river), shallow groundwater, and deep groundwater. Similar to the previous two

EWT data, we overlay the stable isotope data on the BGB map, categorized by the

samples’ sources, this time according to the δ18O value. We also plot the correlation

between the δ2H and δ18O and compare the calculated local meteoric water line (LMWL)

with the global meteoric water line (GMWL) to assess the processes of the water cycle,

starting from the precipitation as the input source (Wang et al., 2018; Chen et al., 2021).

To investigate the subsurface water processes and the pattern of how the stable isotope

composition alters over depth, we plot the correlation between the δ18O of the groundwater

sample and the depth at which the samples were taken from.

5.2.4 Groundwater flow model setup

The groundwater flow model setup in this study is the continuation of our previous version

(Rusli et al., 2023a), built using the MODFLOW python package flopy (Bakker et al., 2016).

MODFLOW is an open-source, spatially distributed, groundwater flow model developed by

the U.S. Geological Survey (USGS), written using a modular object-oriented design(Hughes

et al., 2017). These modular objects are expressed as packages in MODFLOW and are

assignable to the main model and simulations. Physically, these objects distinctly represent,

for example, rivers, abstraction wells, etc. Such a concept creates unique applications
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of the packages from one case to another, as any available modules can be attached or

detached from the model structure. In this study, we use the latest MODFLOW version 6

(MODFLOW6), which solves the three-dimensional groundwater flow equation described

by Darcy’s law (Equation 5.1) using control-volume finite-difference (CVFD) method

(Langevin et al., 2017).

∂

∂x

(
Kxx

∂h

∂x

)
+

∂

∂y

(
Kyy

∂h

∂y

)
+

∂

∂z

(
Kzz

∂h

∂z

)
+Qs = SS

∂h

∂t
(5.1)

where K is the hydraulic conductivity in corresponding directions, Qs is the volumetric

flux per unit volume representing sources and sinks, and SS represents the specific storage

component of the porous material.

In accordance with the simplified interpretation of the BGB’s hydrogeological setting

(Figure 2.3), the numerical groundwater flow model is spatially discretized into a vertically

3-layer model, with a horizontal grid size of 100m × 100m. The surface elevation is

determined based on MERIT-DEM data (Yamazaki et al., 2017). The thickness of

each layer is interpolated based on the available borehole data (Rahiem, 2020). The

hydraulic and aquifer properties, including the horizontal (Kh) and vertical (Kv) hydraulic

conductivities of each layer and the storage parameters of both specific yield (Sy) and the

specific storage (Ss), are taken from fieldwork data and official reports to the government

described in Chapter 2. The simulation is forced with the groundwater recharge calculated

by the previously established hydrological model wflow sbm (Rusli et al., 2023a), during

the period between 2005 and 2018. River boundaries are delineated using the hydrology

toolbox in ArcGIS. The MODFLOW well package is configured to simulate groundwater

abstraction from areas estimated based on land use data. Wells are assigned to each grid

cell that intersects with building-related land use from the national land use database.

Within this set of wells, domestic groundwater abstraction is applied to the upper aquifer

(unconfined) layer, with the abstraction rates’ distribution derived from the total estimated

groundwater withdrawal presented in Table 5.1 and the number of intersected cells. For

the confined layer, wells are assigned to each grid that intersects with the industrial area

and applied to the lower aquifer (confined) layer. The abstraction volume is implemented

transiently with an annual increase to account for changing abstraction rates over time,

estimated in our previous study (Rusli et al., 2021). A no-flow boundary is set up along the

basin’s perimeter, given its location in the uppermost part of the watershed system. The

higher elevated area in the northern part of the basin does not serve as a flow boundary

due to the presence of a geological fault named the Lembang fault, which separates the

groundwater flow system. A constant head boundary is applied at the downstream part of

the basin, following the water table in the downstream reservoir. Table 5.1 below lists all

the groundwater flow model parameters and setup used in this study. Further, Figure 5.3

shows the north-south and the west-east cross-section of the numerical groundwater flow

model. The red, blue, and green bars, respectively, scattered in the model cross-section,
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Table 5.1: Groundwater flow model parameter

Parameters and/or forcing data
Values (in range, optimized, and vary

spatially/temporally)

Grid size
horizontal direction 100m × 100m

vertical direction 3-layers, varying elevation

Initial condition (head)1
layer 1 627.5m to 1608.0m

layer 2 565.9 m to 1206.1m

layer 3 504.2m to 1344.2m

Groundwater recharge calculated via wflow sbm 317 mm/year (on average)

Hydraulic conductivities2

horizontal - upper aquifer (Kh1
) 0.15 to 0.35 m/day

vertical - upper aquifer (Kv1 ) 3×10−3 to 6×10−3 m/day

horizontal - aquitard (Kh2
) 0.0165 to 0.0385 m/day

vertical - aquitard (Kv2 ) 3.3×10−4 to 6.6×10−4 m/day

horizontal - lower aquifer (Kh3
) 0.144 to 0.464 m/day

vertical - lower aquifer (Kv3 ) 3×10−3 to 6×10−3 m/day

Storage parameters
specific yield (Sy) 0.2

specific storage (Ss) 8.7×10−3/m

River parameters
average river conductance 75 m2/day

average river depth 2 meters

Groundwater abstraction2 domestic abstraction 96.1 to 152.5 Mm3/year

industrial abstraction 202.9 to 322 Mm3/year
1 Calculated based upon dynamic steady-state model spinup
2 Optimized under steady-state simulation, interpolated spatially using Rbf (radial basis function) method
3 Increase in annual timestep

represent the groundwater abstraction, river, and no flow boundary conditions assigned

to the respective cells. The dark grey area at the left, right, and bottom part of the

cross-section represents the inactive cells with no flow boundary condition.

The groundwater flow simulation setup follows a proven procedure (Karimi et al., 2019),

involving a steady-state run, a transient model spin-up, and the final transient simulation.

The steady-state run is used to obtain the initial condition for the model spin-up, which is

further used to achieve the dynamic steady-state condition of the groundwater system.

We compare the dynamic steady-state groundwater level in 2004 with the observed data,

which have resulted in an r2 of 0.895 in our previous study (Rusli et al., 2023a). The final

transient simulation between 2005 and 2018 uses the simulated groundwater level under

the dynamic steady-state condition as the initial condition. The final transient simulation

is run under a monthly timesteps setup with quarter-daily sub-timesteps.

We have also developed an additional steady-state simulation that excludes the abstraction

boundaries. This scenario serves the specific purpose of conducting particle tracking

analysis using MODPATH (Pollock, 2016). MODPATH is a post-processing program

designed to work in conjunction with MODFLOW. It complements the groundwater age

analysis by allowing us to track the movement of particles in the groundwater system. By

assigning particles in the cell where the groundwater samples were taken for the 14C content

measurement, MODPATH is capable of conducting time-series backward particle-tracking

analysis. The results of this particle tracking analysis yield travel time estimates, which are

comparable to groundwater age estimates. This additional analysis helps us gain insights

into the movement and residence times of groundwater in the study area.



Ch
ap

te
r 

5

5.2 Material and methods 83

(a) North-south numerical groundwater flow model cross-section

(b) West-east numerical groundwater flow model cross-section

Figure 5.3: The cross-section of the numerical groundwater flow model of the BGB in

north-south and west-east directions. The red, blue, and green bars, respectively, scattered in

the model cross-section, represent the groundwater abstraction, river, and no flow boundary

conditions assigned to the respective cells. The dark grey area at the left, right, and bottom

part of the cross-section represents the inactive cells with no flow boundary condition.

5.2.5 Model evaluation

Considering the limited number of calibration data in the BGB, supplementary model

evaluation is necessary. GRACE-based additional evaluation on terrestrial water storage

change estimates has been described in our previous study (Rusli et al., 2023a). In

this study, we further evaluate the model performance by comparing the EWT data-

driven interpretations with the model-driven outcomes. The particular model evaluation

process serves as a crucial step to validate to an even greater extent the groundwater

flow model’s performance and, more importantly, its ability to capture the behavior of

the real-world groundwater processes in the BGB. It ensures that the model not only

reproduces groundwater levels and storage but also represents the broader behavior of the

groundwater system in response to various factors. The evaluation involves several points
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of view; (1) the groundwater recharge distribution, (2) the regional groundwater flow

direction, (3) groundwater age estimates, and (4) the identification of aquifer interaction,

as shown in Figure 5.2.

Following the one-way coupled model evaluation, we use the simulation results not only

to quantify the aquifer interaction but also to assess the groundwater level changes.

In quantifying the internal groundwater vertical movement, we put the intercell flow

simulation results together with the groundwater storage analysis of the groundwater flow

model itself. The aquifer interaction, while being an important part of the groundwater

storage, is not actually portrayed in such a value coherently as the ’groundwater storage

change’ is an aggregation of the processes that occurred in each layer of the upper, the

lower aquifer, and the aquitard. The direct implication of the groundwater level changes,

which is straightforwardly connected with the upper aquifer storage, has precisely a similar

attribute. While it is inherently attached to the groundwater storage, it does represent

just a partition and not the whole solitary hydrological compartment. Therefore, we also

analyze the groundwater level change; its magnitude, its spatial distribution pattern, and

its correlation with the groundwater abstraction zones.

5.3 Results

5.3.1 Major ion elements data analyis

Figure 5.4 displays the Stiff diagram overlaid on the BGB map, depicting the spatial

distribution of the water samples. Specifically, Figure 5.4a represents samples from

water springs and rivers, Figure 5.4b illustrates the shallow groundwater samples, and

Figure 5.4c showcases the deep groundwater samples. To avoid repetition in each plot,

we’ve standardized the north direction to point upwards in all figures.

The dominance of HCO−
3 anion elements in the springs and river water of the BGB suggests

the influence of volcanic rocks in the upper layer of the geological formation within the

study area (Meybeck, 2003). While major ion composition in water is also affected by

climatic, proximity to the ocean, and human factors, the major ion elements measured

in Figure 5.4a are primarily located in river upstream areas where non-lithologic factors

have minimal impact. However, a noticeable variation is evident in the center of the

basin, where one Stiff diagram exhibits a sudden increase in sodium concentration. This

variation corresponds to samples collected in the textile industrial area where groundwater

is abstracted from the deeper aquifer. Previous studies have confirmed that textile

wastewater can introduce bleaching agents, including sodium silicate (Wang et al., 2011;

Rashidi et al., 2021). Additionally, a relatively higher sodium concentration near the

basin outlet and along the main river, though lower compared to the industrial area,

indicates a distributed source of wastewater and underscores the potential for the river’s

self-restoration capacity.
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(a) Major ion elements; springs and rivers (b) Major ion elements; shallow groundwater

(c) Major ion elements; deep groundwater

Figure 5.4: The spatial distribution of Stiff diagrams plotted from water samples measured

from (a) surface water, (b) shallow groundwater, and (c) deep groundwater. From the bottom

left corner, in a clockwise direction, the Stiff diagrams represent the Mg2+, Ca2+, Na+/K+),

Cl−, SO2−
4 , and HCO−

3 .

The analysis of shallow groundwater samples reveals changing trends in major ion elements,

characterized by higher concentrations of Na+/K+, Ca2+, Mg2+, and Cl− compared to

the water from springs and rivers. When combined with data presented in Taufiq et al.

(2017), the increased sodium concentration highlights the impact of industrial wastewater,

particularly from areas located upstream in the basin, on the shallow groundwater. Addi-

tionally, the dominance and uniform spatial distribution of Ca2+ in the cation elements

suggest that shallow groundwater is recharged uniformly throughout the basin, despite

variations in topographical distribution. Previous studies have identified CaHCO3 as the

common major ion properties in groundwater recharge (Li et al., 2008; Mora et al., 2017).

Meanwhile, the increase in Cl− concentration is likely influenced lithologically and may be

attributed to sedimentary rock resulting from the lake deposits in the upper layer of the

flat terrain in the basin.
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Deep groundwater samples exhibit interestingly distinct features. While samples from the

northern part of the basin still show a dominance of CaHCO3 type water, this dominance

is not as pronounced as in the shallow groundwater samples. Furthermore, samples

from locations near the basin outlet and the upstream industrial area indicate sudden

decreases in Ca2+ and, in most cases, higher sodium concentrations compared to the shallow

groundwater samples. These abrupt reductions in Ca2+ levels suggest cation exchange

processes that can be interpreted in various ways. In a previous study, Eeman et al. (2017)

proposed that the horizontal component of water flow has minimal impact on chemical

composition changes in the vertical direction due to cation exchange. Therefore, we can

infer that the cation exchange process, reflected by the decrease in Ca2+ concentration, is

the result of vertical groundwater flow, or in other words, aquifer interaction.

5.3.2 Groundwater age data analysis

The plot in Figure 5.5 displays the groundwater age data points, their spatial interpolation,

and the estimated industrial area where deep groundwater abstraction takes place. Gen-

erally, the groundwater age profile around the basin’s periphery, especially in the higher

elevation areas to the east, exhibits younger ages and gradually matures as it approaches

the basin outlet. This pattern aligns with the topographical profile of the surface and

suggests the propagation of confined groundwater flow from the mountainous region to

the lower plains, as groundwater age has previously been employed to determine regional

groundwater flow direction (Tanachaichoksirikun and Seeboonruang, 2020).

However, deep groundwater abstraction in the BGB has introduced some local interference.

In the abstraction area toward the eastern part of the basin, for example, where samples are

collected from four locations, the ages of two middle samples indicate younger groundwater

age compared to the other two flanking them. This phenomenon can theoretically occur

only if those two middle samples are, in fact, groundwater leaking from the shallow

aquifer, which is expected to have a younger age. It also suggests the presence of vertical

cross-formational groundwater flow, influencing groundwater age mass dispersion alongside

horizontal advection along aquifers (Bethke and Johnson, 2002).

Another noteworthy observation is that only four data points have groundwater age

estimates exceeding 10,000 years. Using MODPATHV7.2, we later compare the younger

groundwater age estimates (with age estimates of less than 10,000 years) derived from 14C

content with the travel times obtained from backward particle tracking analysis.

5.3.3 Stable isotopes data analysis

The locations of the stable isotope samples are visualized in Figure 5.6a. Each data point

represents a geographical location and the δ18O value of the water sample, indicated by

the size of the data points. The δ18O values range between −10.5‰ (smallest circle) and

−2.5‰ (largest circle). Additionally, Figure 5.6b showcases the correlation between δ2H
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Figure 5.5: Groundwater age estimates (blue points) in confined aquifers from the BGB.

These estimates are overlaid with the industrial area marked in yellow. Additionally, the map

displays the interpolation of groundwater age estimates using the Inverse Distance Weighting

(IDW) method, represented by the red areas. While the overall pattern of groundwater age

distribution appears relatively consistent, some localized anomalies are evident, particularly in

close proximity to the industrial zones where groundwater is abstracted from the deep aquifer.

and δ18O values of the samples, categorized by the water samples’ sources. Furthermore,

Figure 5.6c and Figure 5.6d illustrate the relationship between the measured δ18O and

δ2H values of the samples and the depth at which these samples were obtained.

There are only three locations inside the BGB domain where rainfall samples are taken

for stable isotope measurements shown in Figure 5.6a. To increase the sample size, we use

four additional points outside the basin boundary to calculate the local meteoric water line

(LMWL) equation: δ2H = 7.76 δ18O + 12.67. The LMWL gradient of 7.76 is very close to

one of the global meteoric water line (GMWL) of 8, indicating the approaching equilibrium

processes of the local precipitation in the BGB, behaving similarly to the average global

spatial relationship between δ2H and δ18O in precipitation (Putman et al., 2019). However,

the intercept value of 12.67 in the LMWL equation, in contrast to the GMWL’s intercept

value of 10.00, raises the possibility of rainfall evaporation. This could be attributed to

the tropical climate in the basin. It’s important to note that this interpretation is based

on a limited dataset of less than 10 non-time series measurements. Therefore, it comes

with a significant degree of uncertainty and should be utilized in conjunction with other

investigative methods to obtain the most accurate understanding of the system (Kendall

and McDonnell, 1998; Coplen et al., 2000).
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Figure 5.6: The stable isotope measurements data, covering (a) the spatial distribution of

the measurements, (b) the local meteoric water line (LMWL), (c) the δ18O-depth profile, and

(d) the δ2H-depth profile. Figures (c) and (d) are overlaid with the average thickness of each

layer derived from the borehole data.

The meteoric water lines’ gradient, divided according to the samples’ sources, could also

provide insights into the local hydrological process. In the case of the rainfall, river,

shallow, and deep groundwater stable isotopes, the gradient values are 7.76, 6.17, 5.44, and

5.81, respectively. The notably distinct gradient between rainfall and river water samples

suggests that dominant evaporation processes are occurring in the BGB, corroborating

our previous study (Rusli et al., 2021). On the other hand, the small differences in

the gradient values among the river and groundwater samples indicate water recycling,

especially between the shallow and deep groundwater. The effect of local groundwater head

drawdown due to deep groundwater abstraction can also be observed from the d-excess

values. In the BGB, the deep groundwater’s d-excess values average around 12.98‰,

with a relatively low variability compared to values from other studies (Sreedevi et al.,
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2021; Al-Gburi et al., 2022). This suggests that the recharge water in the basin primarily

originates from specific sources, likely dominated by rainfall, with a minimal contribution

from streams and water bodies. To some extent, this may also reflect the low spatial

variability or heterogeneity of soil properties, which aligns with fieldwork measurements

and findings.

Figure 5.6a shows the δ18O of samples collected in close proximity. Many data points tend

to cluster within groups marked by similarly-sized circles. This clustering strengthens

the hypothesis of aquifer interaction, indicated by the consistent δ18O compositions in

neighboring samples, even though they are collected from various depths. Additionally,

there is a trend of lighter water compositions upstream transitioning to heavier compositions

downstream, which aligns with the regional groundwater flow direction estimated from

interpolated groundwater age data. This method of inferring flow direction based on δ18O

values has also been corroborated in another study (Zhu et al., 2019b).

Figure 5.6b displays the correlation between stable isotopes δ2H and δ18O, with nearly

every point situated above the Global Meteoric Water Line (GMWL). The Local Meteoric

Water Lines (LMWLs) of the river, shallow groundwater, and deep groundwater indicate

a significant similarity in stable isotope compositions among these water samples. The

gradients of these water lines suggest the order of flow, starting from rainfall (water line

gradient of 7.76), progressing to river water (6.17), and eventually reaching the groundwater

(5.44 for shallow groundwater and 5.81 for deep groundwater).

Figure 5.6c illustrates the correlation between the depth of groundwater samples and

their δ18O values, overlaid with an approximation of the average depths of the upper

aquifer, aquitard, and lower aquifer based on lithological profile data from the relatively

flat part of the basin. Since the borehole locations differ from the water samples and

the two fieldwork activities were conducted at separate times, this approximation helps

provide context. The δ18O values, ranging between −6‰ and −8‰, are relatively wide

for stable isotope measurements, particularly for samples collected from deep groundwater.

The broadest range is observed at depths between 40 and 60 meters below the surface

elevation, which coincides with the aquitard’s boundary that typically separates the upper

and lower aquifers. This finding further supports the aquifer interaction hypothesis, as it

indicates the likelihood of mixing processes due to vertical groundwater flow conveyance.

The elevated stable isotope values at around 40 meters depth suggest that groundwater is

temporarily impeded and mixed vertically by the aquitard. After breaching the aquitard

layer, stable isotope profiles in the lower aquifer closely resemble those in the upper aquifer,

which aligns with the similarity in geological formation and soil properties in both aquifers.

A comparable analysis can be made from Figure 5.6d.
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Figure 5.7: The spatial distribution of the simulated groundwater recharge in the BGB,

averaged between 2005 and 2018.

5.3.4 Model simulation: Groundwater recharge spatial distribution

The groundwater recharge, utilized as input for the groundwater flow model, is computed

through hydrological simulations conducted using the Wflow sbm model, as detailed in

(Rusli et al., 2023a). Originally, these simulations are carried out on a daily basis and are

subsequently aggregated into monthly time steps to align with the temporal resolution of

the groundwater flow model. Given the region’s wet and humid climate, the variation in

groundwater recharge between the rainy and dry seasons is relatively limited. Figure 5.7

illustrates the spatial distribution of the average groundwater recharge within the BGB

between 2005 and 2018.

The calculated values primarily fall within the range of 0.6 to 0.9 mm/day and exhibit

spatial variability in response to the terrain’s slope. In areas with steep slopes, surface

water tends to run off more readily due to gravitational forces, making vertical infiltration

through the soil less common. Consequently, the groundwater recharge in mountainous

regions is relatively lower, typically around 0.6 to 0.7 mm/day. In areas with gentler slopes,

groundwater recharge rates increase to approximately 0.8 and 0.9 mm/day.
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(a) Groundwater head distribution of the

upper unconfined aquifer.
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(b) Groundwater head distribution of the

lower confined aquifer.

Figure 5.8: The spatial distribution of the simulated groundwater head contour in the (a)

upper unconfined layer and (b) lower confined layer. Both figures are in agreement with the

topographical profile of the basin surface, although the profile of the groundwater head in the

unconfined aquifer is more responsive compared to the ones from the confined aquifer.

5.3.5 Model simulation: Regional groundwater flow direction

The determination of the regional groundwater flow direction is facilitated through contour

plots representing the distribution of groundwater heads. In line with the principles of

groundwater flow, where water naturally moves from areas of higher hydraulic heads to

those with lower heads, a flow direction is symbolized by perpendicular lines between the

head contour lines. This relationship is based on the assumption of horizontally isotropic

conditions, which is a fundamental premise of the groundwater flow model. Figures 5.8a

and 5.8b illustrate the simulated distribution of groundwater levels within the upper

(unconfined) and lower (confined) aquifers, respectively, as simulated by our groundwater

flow model at the end of the simulation time (2018).

In general, these contours align with the topographical profile of the basin, where groundwa-

ter primarily flows from the periphery of the basin towards its central region, characterized

by lower elevations and milder surface slopes. However, there are noteworthy differences

between the upper and lower aquifers. The groundwater head contours in the upper

aquifer exhibit more variability and steeper gradients due to the larger area of groundwater

abstraction and the influence of groundwater recharge.

The impact of groundwater abstraction on the groundwater heads is partially visible

in Figure 5.8a, depicted by the local closed contour lines near the eastern part of the

groundwater abstraction areas. Given that the values of the local groundwater drawdown

are generally lower than the contour interval of 25 meters, it may not be readily discernible

in the figure. To provide a more detailed representation of groundwater table drawdown,

Section 5.3.8 provides the result of the simulated groundwater table drawdown presented

not in contour form but as a raster-based display.
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On the other hand, the impact of groundwater recharge on groundwater storage is apparent

in the differences in groundwater head values: the groundwater head in the upper aquifer

reaches heights of up to 1500 meters above sea level (ASL), while in the lower aquifer,

it only extends to around 1300 meters ASL. On the other hand, the lower values of the

groundwater head in both aquifers are relatively consistent, typically ranging between 625

and 675 meters ASL.

5.3.6 Model simulation: Groundwater age estimates

The groundwater age estimates are approximated with two methods in this study: ra-

diocarbon (14C) content measurements and the MODPATH backward particle tracking

analysis. Considering most of the groundwater age estimates are younger than 10,000

years, Figure 5.9 shows the comparison between both approximations within the domi-

nant range. The uncertainty bounds in each axis are illustrated by the error bars. The

uncertainties of the measurement-based estimates come from the multiple samples taken

for multiple measurements in one point location. The ones of simulated-based estimates

come from the temporal precision of the MODPATH simulation. Initially, the simulation

is set up with groundwater abstraction as a constant boundary condition, following the

current model setup. The result of this initial run is shown in Figure 5.9a. The Pearson

coefficient correlation between the two estimates, however, is as low as 0.05, as we see the

dots are widely spread across the graph. This occurs due to the model setup, as there

was supposedly no groundwater abstraction in the far past. Removing such a boundary

condition from the simulation improves the Pearson coefficient correlation between the

two age estimates to 0.77. Visually, the improvement is also shown in Figure 5.9b.

5.3.7 Model simulation: Identification of aquifer interaction

The presence of aquifer interaction in the numerical groundwater flow model is inferred

through the analysis of intercell flow. To begin with, the groundwater budget is divided into

distinct vertical layers, and the fluxes between cells within each layer are then collectively

assessed. It’s worth noting that intercell flow differs from the specific discharge in the

vertical direction (qz), as reported by MODFLOW output. qz takes into account various

flow boundaries within the cells or layers, including contributions from sources such as

rivers, wells, recharge, etc., and cumulatively represents the net change in flow over time.

In contrast, intercell flows exclusively quantify the rate at which groundwater moves from

one cell to an adjacent cell in a specific direction. This flow occurs as a consequence of

differences in pressure between the two neighboring cells.

Figures 5.10a and 5.10b illustrate the spatial distribution of vertical intercell flow, specifi-

cally from the upper aquifer to the lower aquifer. The patterns observed in both figures

exhibit a certain symmetry, highlighting the equilibrium of groundwater movement between

the aquifers. In the upper aquifer, there are areas around the midstream of the river where
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(b) Groundwater age comparison without abstrac-

tion boundary condition.

Figure 5.9: The comparison between groundwater age estimates from water samples measured

radiocarbon content (x-axis) and from MODPATH backward particle tracking analysis (y-axis).

Figure (a) shows the result when the model is simulated with groundwater abstraction, while

Figure (b) is without groundwater abstraction. The error bars indicate the uncertainty of

the groundwater age estimates, sourced from multiple measured samples for the x-axis and

temporal precision of the MODPATH simulation for the y-axis.

upward fluxes (indicated by positive values) are noticeable. In these regions, groundwater

from the lower aquifer, characterized by undisturbed confined groundwater pressure, moves

upwards into the upper aquifer. This movement occurs because the unconfined groundwa-

ter table in the upper aquifer has been diminished due to shallow groundwater abstraction.

The average upward flux is estimated at 0.47 mm/day, which is equivalent to 90.10 million

cubic meters per year (Mm³/year). In contrast, the majority of areas, particularly beneath

the zones of deep groundwater abstraction, experience a general downward movement

of groundwater. The substantial and concentrated industrial abstraction from the deep

groundwater significantly reduces confined groundwater pressure, increases the hydraulic

gradient between the aquifers, and forces groundwater from the upper aquifer to move

downward. On average, the downward flux is calculated at 0.68 mm/day, equivalent to

289.30 Mm³/year. This value increases to -1.08 mm/day, equivalent to 31.36 Mm³/year,
under the estimated industrial areas. It’s important to note that the relationship between

the flux rates and volumes is non-linear due to variations in the sizes of the areas involved.

When aggregated across the entire groundwater basin, the aquifer interaction is quantified

at an average rate of 0.30 mm/day, which amounts to a substantial 187.70 Mm³/year of
groundwater movement within the groundwater storage between the aquifers.
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Intercell flow in vertical direction

from the upper aquifer (mm/day)
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(a) Intercell flow in the vertical direction from

the upper aquifer to the underlying layers.

Intercell flow in vertical direction

to the lower aquifer (mm/day)

 

0

(b) Intercell flow in the vertical direction to

the lower aquifer from the overlaying layers.

Figure 5.10: The spatial distribution of the intercell flow from the upper and to the lower

aquifer. Negative flows mean the fluxes are heading outwards from the cells/layers, while

positive flows represent inward fluxes.

Notable disparities in groundwater movement patterns are also evident between the rela-

tively flat area in the middle of the basin and the higher elevated, steeper slope area at

the basin’s periphery. Although the direct impact of groundwater abstraction in the lower

elevated basin area on aquifer interaction is comprehensible, it’s intriguing to observe

the substantial groundwater movement in the mountainous region, despite lower levels

of groundwater abstraction in these areas. In the mountainous region, characterized by

elevations higher than 1000 meters above sea level (ASL), the average vertical ground-

water flow is approximately 0.63 mm/day, which is more than double the average rate

observed across the entire basin. This trend persists throughout the basin: the higher

the elevation, the more significant the contribution to the lower aquifer, even in areas

with less groundwater abstraction. For elevations above 1200 and 1500 meters ASL, the

average vertical groundwater flows increase to 0.77 and 0.88 mm/day, respectively. This

observation suggests that the depletion of groundwater storage in the flat, central part of

the basin, as indicated by declining groundwater tables, is primarily compensated by the

inflow of groundwater from the basin’s higher-elevated periphery.

In addition to the analysis derived from the map view of the intercell flow, we also present

analysis from north-south and west-east cross sections. Figure 5.11a and Figure 5.11b

depict the normalized velocity vectors of groundwater flow in each layer. The blue and

red bars in each figure indicate the grid cells where the river and well boundary conditions

are applied, respectively. These bars do not represent the depth of the river or well but

rather the grid cell in which the boundary conditions are applied. Another important note

is that Figure 5.11 displays the velocity vectors representing the resultant vectors of the

specific discharge in all directions and not intercell flow in a single direction.
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(a) Velocity vector in the north-south cross-section.

(b) Velocity vector in the west-east cross-section.

Figure 5.11: The normalized velocity vectors in two cross-sections (a) north-south and (b)

west-east directions. The blue and red bars in each figure indicate the whole cell where the

river and well boundary conditions, respectively, are assigned. It is important to note that the

bars do not represent the depth of the river or well, but the grid cell in which the boundary

conditions are applied.

From the north-south cross-section (Figure 5.11a), we observe that in the upper layer’s

cells located away from the groundwater abstraction boundary conditions, groundwater

flows downward to the underlying aquifers. This trend is even more pronounced in the

mountainous area on both sides of the figure, supporting our previous analysis of the

higher elevated regions compensating for the groundwater abstraction in the lower part of
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the basin. Near the groundwater abstraction boundary conditions applied in the upper

layer, the velocity vectors generally point upward, aligning with the area in blue color

shown in Figure 5.10a. Meanwhile, near similar boundary conditions but applied in the

lower layer, the velocity vectors move downward. The groundwater flows through the

aquitard, as they compensate for the abstracted deep groundwater. In the vicinity of the

river boundary conditions, these fluxes create tension for the groundwater around the

aquitard layer. They either flow upward to contribute to the river baseflow or downward

to the confined layer, contributing to the aquifer interaction.

The west-east cross-section (Figure 5.11b) displays more compact velocity vectors. With

small tributaries crossing through the west-east cross-section (compared to the north-south

ones), there is less competition between the river and the aquifer interaction fluxes. Similar

to the analysis derived from the north-south cross-section, most of the velocity vectors

in the aquitard layer shown in Figure 5.11b are in line with our analysis derived from

Figure 5.10a. In areas close to the river and groundwater abstraction boundary conditions

are applied only to the upper unconfined layer, there are upward groundwater fluxes.

However, in areas with intense groundwater abstraction from both layers and in the

mountainous area, the velocity vectors are dominated by downward flow at an even steeper

gradient. This indicates the cumulative impact of direct groundwater table drawdown due

to domestic groundwater abstraction boundary conditions applied in the upper layer and

indirect groundwater table drawdown due to aquifer interaction induced by the industrial

groundwater abstraction boundary conditions applied in the lower layer.

5.3.8 Model simulation: Groundwater level changes

With an average of 187.70 Mm3 of groundwater annually flowing from the upper aquifer

to the underlying aquifers, the groundwater level in the unconfined aquifer is inevitably

affected. Although such aquifer interaction fluxes do not leave the groundwater storage

as a whole, they do influence the groundwater table fluctuation; the groundwater level

dwindles as a consequence of the net decline in the upper storage partition. Figure 5.12

below shows the spatial distribution and the magnitude of the groundwater level decrease

in the BGB throughout the simulation period between 2005 and 2018.

Upon examination of the groundwater abstraction area and the spatial distribution of

groundwater level decrease presented in Figure 5.12, a discernible correlation emerges

between these two variables. It becomes evident that domestic groundwater abstraction

from the upper aquifer primarily concentrates along the river and in the northwest and

east regions of the basin. The expansion of industrial zones, driven by urban development,

is particularly notable in proximity to densely populated areas, especially in the eastern

section near the surface catchment outlet. In regions where groundwater abstraction

occurs exclusively from the upper aquifer, and not from the lower aquifer, the average

groundwater level drawdown equates to a net decline of approximately 2630.93 m3 per
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Figure 5.12: The spatial distribution of the groundwater level drawdown in the BGB

throughout the simulation period between 2005 and 2018.

model grid cell in unconfined storage volume. This calculation is derived by comparing

the groundwater level in the unconfined aquifer between the initial state in 2005 and the

conclusion of the simulation in 2018. However, it’s important to note that this figure is

significantly influenced by the groundwater level changes in the eastern area of the basin.

In this particular zone, where groundwater is drawn solely from the upper aquifer and the

industrial groundwater abstraction exerts additional pressure, the decline in unconfined

storage volume intensifies. When we calculate the net decline in unconfined storage volume

specifically along the rivers, where surface water partially compensates for the groundwater

abstracted from the unconfined storage, the value is notably lower at 851.91 m3 per model

grid cell. Conversely, in areas where groundwater is abstracted from both the upper and

lower aquifers, the groundwater level drawdown is more pronounced. The average decline

in unconfined storage volume in these areas amounts to 3126.57 m3 per model grid cell,

with the most substantial groundwater level drawdown reaching 3.32 meters. Interestingly,

similar trends are observed in the undisturbed mountainous areas. Despite the absence

of groundwater abstraction in these predominantly higher-elevated regions, the average

groundwater level drawdown exceeds that of areas with groundwater abstraction. In these

areas, the average net decline in unconfined storage volume is calculated to be as high as

6525.66 m3 per model grid cell.
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5.4 Discussion

5.4.1 Analysis limitation and the ideal data situation

Conducting hydrological and groundwater research in a data-scarce area inherently intro-

duces a multitude of challenges and uncertainties. In this study, the fact that each of the

data sources has its own limitations is the factor that keeps us away from a fuller analysis

and a better-constrained model setup. It is imperative to recognize that the propagation of

uncertainties within our simulation framework is a persistent challenge. This propagation

initiates from the hydrological simulation, which estimates groundwater recharge, and

extends through the groundwater flow simulation, which gauges groundwater response

behavior to the inferred flow boundaries. This process encompasses a variety of elements,

ranging from model input and parameterization to calibration data. Consequently, the

need to effectively manage and address these uncertainties remains a pivotal task in our

study. To tackle these complexities and enhance our understanding, we have implemented

an EWT-based model evaluation approach. This approach serves as a valuable complement

to the calibration of groundwater table and groundwater storage simulations, as previously

documented in our earlier studies (Rusli et al., 2023a).

In our analysis of EWT data, it is important to note that these data are not available

in the form of a time series and are instead based on measurements predating 2010.

Consequently, any changes in the chemical composition of groundwater over the past

decade are not represented within the dataset. Fortunately, the time scale of groundwater

flow and its associated chemical reactions is notably slower than the movement of surface

water (Winter et al., 1998; Schellenger and Hellweger, 2019). This characteristic supports

our contention that the utilization of the once-at-a-time (OAT) measured EWT data

remains pertinent for our subsequent analysis. However, it is essential to acknowledge

that the available EWT data exhibit limitations in terms of their spatial distribution and

data density. Similar to the data associated with the groundwater model, EWT data

are predominantly concentrated in urban areas, which is logical considering that cities

are focal points for human activities related to groundwater. Nevertheless, the scarcity

of information pertaining to mountainous areas necessitates certain approaches, such as

making assumptions and conducting spatial interpolations, to bridge these gaps. It is

important to recognize that such techniques introduce uncertainties into our analysis.

Our study is not without the recognition of inherent risks associated with drawing con-

clusions from limited data quantities. For instance, while we estimate groundwater age

using 14C measurements, it is important to acknowledge that the intricacies of the process

behind the estimated age remain undisclosed. It is plausible that this estimation can

be influenced by the mixing of waters from two sources with extreme age differences,

potentially distorting the average estimated age. Ideally, we would prefer data in the form

of modern carbon percentages, however, we have utilized all the limited data available to
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arrive at our results. In our MODPATH analysis, we should note that several assumptions

are made in the simulations. Notably, we do not simulate the mixing and chemical reac-

tions that may occur during groundwater transport. However, we contend that employing

straightforward and justifiable approaches, supported by the available data, often yields

higher reliability. This approach aligns with the findings of the previous study (Voss and

Soliman, 2013). Beyond the availability of data to underpin our model, our approach is

deeply intertwined with the objectives of our analysis. It is clear that reliance on a single

approach, whether exclusively based on EWT data or solely on model-based evaluations,

is inherently insufficient. To address this limitation, we adopt a comprehensive approach

that draws from multiple sources of EWT data. Furthermore, our model evaluation

also encompasses various perspectives from groundwater recharge, flow direction, age

estimates, to aquifer interaction. The consistent alignment across these different facets

offers compelling support for our proposal for incorporating EWT data, particularly in

the context of data-scarce regions where the ideal data may be absent.

All the circumstances described above demonstrate the importance of an openly accessible

integrated groundwater database system in the BGB, specifically, and in Indonesia and

other data-scarce areas, in general. As we have shown in the EWT data, the borehole

data, and even some fieldwork data, there have been numerous OAT measurements in

the study area. Unfortunately, they are mostly done by independent projects, scattered

among various parties: the government, the private sector, companies, consultants, and

even individuals. The already-measured data, regrettably, are not adequately gathered,

stored, and accessible to the public. Provided that the government could take advantage

of this opportunity, i.e. by assisting in collating the available data and bridging the

gap of information among the stakeholders, the challenge of data scarcity in conducting

groundwater-related research in the BGB could be minimized.

5.4.2 EWT data-driven analysis and numerical model output comparison

From the description of the EWT data analysis and the output of the numerical groundwater

flow model, we can see the agreement, in a qualitative sense, between the two approaches.

Both methods are consistent in assessing the groundwater recharge spatial distribution,

the regional groundwater flow direction, and in identifying the aquifer interaction through

the vertical groundwater flows. The EWT data analysis strengthens the confidence in the

numerical model accuracy, especially considering the limited calibration data available.

Cooperatively, the numerical model provides invaluable quantitative information on the

groundwater state. Compared to previous studies, most of our findings support and

strengthen the groundwater modeling studies conducted in the study area. Having said

that, we also observe a few deviations in our analysis, however, as opposed to some of the

established notions of the groundwater flow system in the BGB.
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In our study, the groundwater recharge spatial distribution is characterized by the collated

EWT data and calculated using the previously set wflow sbm model (Rusli et al., 2023a).

Such setup has also been tested and proved to deliver good performances (Imhoff et al.,

2020; Wannasin et al., 2021a). Combined with data from other studies (Taufiq et al.,

2017), we found similarities in groundwater recharge potential in both higher and lower

elevated areas in the BGB. The simulated groundwater recharge, naturally, shows some

spatial variabilities, but it is calculated at a relatively narrow range between 0.7 and

0.9 mm/day across the basin. This is in contrast with some previous works analyzing

the groundwater recharge in the BGB (Pujiindiyati and Satrio, 2013; Widodo, 2013),

but at the same time, is supported, to a certain extent, by other works (Hutasoit, 2009;

Delinom and Suriadarma, 2010). The discrepancies occur due to several factors, mostly as

a consequence of the selected data and methods in estimating the groundwater recharge.

While previous research relied on using limited input variables of only land use map, soil

type, topography map, or EWT data, for example, we are the first study that combines

all the factors into a comprehensive hydrological simulation.

The agreement between the EWT data analysis and the groundwater flow model simulation

is also demonstrated by the derived regional groundwater flow. Both methods confirm

the strong influence of the basin’s topography on the directional pattern of the regional

groundwater flow system. Following the elevation contour, the groundwater generally

flows from the basin periphery inward to the basin’s center. Several cones of depressions,

as a consequence of highly concentrated groundwater abstraction, are detected by the

groundwater age estimates data. However, the groundwater flow model is unable to

replicate the local drawdowns due to its coarse horizontal spatial resolution. While the

actual size of the abstraction wells is usually smaller than 1 meter in diameter, the grid size

of our groundwater flow model is 100m × 100m, generating different cones of depression

surface area as well as mismatched groundwater level drawdown. Utilizing MODFLOW’s

unstructured nested grid discretization in its model to represent the abstraction wells is

computationally too demanding considering the high number of the estimated abstraction

wells in the basin. Instead, results of regional-scale studies could assist in setting up a

separate model that aims to imitate the groundwater behavior of local drawdown, as

previous studies have implemented (Ebraheem et al., 2004; Sefelnasr et al., 2014).

From the groundwater age estimates, it is possible to not only qualitatively assess but also

to quantitatively evaluate the model. This is achievable by using the Pearson correlation

coefficient between the groundwater age estimates from water samples’ radiocarbon content

and ones from the model simulation. A correlation of 0.77 is attained, however, this is viable

when a number of outliers are removed from the calculation. Visually, it is also apparent

that there are locations where the estimates from both approaches result in significantly

different values. This occurs due to several possible reasons. First, the MODPATH tracks

the particle moving between the middle of the cell grid, which physically represents a

100m × 100m area. In reality, moving within a cell itself might take a considerable
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amount of time. There is also a large spatial coverage discrepancy between one point of

the water sample with one grid cell, not even to mention the spatial variability within

the grid, such as groundwater abstraction, soil layer thickness, etc. Second, while the

groundwater travel time results in a magnitude of thousands of years, the boundary

condition of the model still depends on the most recent climate forcing. While we could

remove groundwater abstraction as the anthropogenic boundary from the model, simulating

accurate groundwater recharge dating back hundreds of years ago is impossible, let alone

thousands. Third, the flow path of groundwater is susceptible to change with groundwater

abstraction in place, especially the deep one. In a cell where groundwater is abstracted,

its flow path might be sourced from, for example, the northern part of the basin. However,

when the groundwater abstraction boundary is removed, its flow path entry point moves to

another location, even as far as the southern part of the basin. Under these two extremely

different paths, the groundwater age estimates are expected to have large differences.

All these factors are necessary to be taken into account when evaluating the agreement

between the two approaches using the groundwater age estimates variable.

One of the most important agreements between both methods is their success in recognizing

the aquifer interaction in the BGB. As has been specified above, the majority of basin-scale

water balance analysis focus on the groundwater storage as one whole bucket instead of

stratified partitions (Bhanja et al., 2018; Mehmood et al., 2022; Ramjeawon et al., 2022).

In practice, the impact suffered by the groundwater level from the unconfined aquifer is

more severe compared to the ones from the underlying aquifers and is disproportionate

to the groundwater abstraction that occurs in different layers of aquifers. While our

quantification of the aquifer interaction is discussed below, it is very important to first

appreciate and be aware of the subsurface flow processes on groundwater moving from the

upper aquifer to the underlying aquifers.

5.4.3 Layer-based groundwater budget zones

To implement our concept of analyzing groundwater storage as stratified partitions, we

define the groundwater budget zonation based on its hydrogeological layer. By looking

at the intercell flow from the upper aquifer (Figure 5.10a) and to the lower aquifer

(Figure 5.10b), we actively attempt to estimate the aquifer interaction indicated by the

EWT data. To the best of our knowledge, our study is the first to quantify and assess the

exchange between the shallow and the deep groundwater in the BGB.

We can see that Figure 5.10a and Figure 5.10b almost exactly mirror each other. This

describes the characteristics of the interspersing discontinuous aquitard layer in the BGB.

While there is only limited data on the resistive aquitard layer, we know from the borehole

data that in several locations, its thickness is relatively small compared to the extent of the

aquifer, or even disconnected in a few places. The results suggest that the aquitard layer’s

capacity to prevent vertical groundwater movement is insufficient due to its properties
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combination of spatially distributed thickness, specific storage, and hydraulic conductivity.

However, we believe it still hinders the magnitude of the fluxes to a certain extent, as the

confined storage is only partially refilled by the groundwater from the upper aquifer. Our

ability to estimate the aquitard parameterization in our groundwater flow model is very

limited, unfortunately, by the information and data availability in regard to this particular

layer; borehole data spatial distribution and density, aquitard layer pumping tests and soil

samplings, and aquitard piezometric head measurements are some examples of related data

that could be improved. For an even more accurate aquifer interaction quantification in the

future, the parameterization of the aquitard layer, grounded on reliable and comprehensive

groundwater data, is very important. The importance of understanding the flow through

the aquitard in this regard, previously so-called vertical groundwater movement, leakage,

and/or aquitard drainage, has also been highlighted in previous research (Malama et al.,

2007; Chen et al., 2018b; Luo et al., 2020).

Both the EWT data analysis and the groundwater flow model simulation also indicate

that the unconfined groundwater storage is dwindling disproportionally compared to the

groundwater abstraction, not only due to the domestic pumping but also to the aquifer

interaction that is often not recognizable and quantifiable from a ’one groundwater storage

bucket’ concept. Using the model calculated groundwater level changes, we determine the

unconfined aquifer storage decrease which results in an average rate of 51 Mm3/year. Such

storage lost, notably from only the unconfined partition, contributes up to 60.3% of the

total groundwater storage lost, estimated from our previous studies (Rusli et al., 2023a),

despite the upper storage contributing to only 32.3% of the total groundwater abstraction.

The different ratios in groundwater storage lost among the subsurface partitions and the

groundwater storage as a whole as compared to the groundwater abstraction demonstrate

the importance of understanding the subsurface processes when assessing the so-called

’groundwater storage change’. This is particularly important when the analysis method uses

only a single approach, for example only remote sensing data of GRACE, only observation

well data, or only numerical model simulation, as they might mislead the consequent

analysis due to their different spatial representations in the vertical direction.

5.4.4 Spatial distribution of the groundwater level changes

As briefly mentioned in Section 5.3.8, we found a close correlation between the groundwater

level changes and the estimated groundwater abstraction zones, which is straightforwardly

intuitive. The interesting finding is that the so-called groundwater abstraction in the

BGB occurs at various depths spatially, and the correspondence of the groundwater

level changes is also found consistent with the vertical variation of the abstraction. The

correlation of groundwater level changes to land use also extends to the river network

estimates. Figure 5.12 clearly indicates the influence of surface water (river in particular)

in compensating for the groundwater level drawdown, as the majority of areas around the

river have significantly lower changes compared to the other areas. Such a relationship
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between the abstraction area (and land use in this case), the river delineation, and the

groundwater level changes emphasizes the importance of considering all involved aspects

when formulating groundwater management policies and strategies, which has also been

investigated, simulated, and discussed in previous studies (Levy and Xu, 2012; Petpongpan

et al., 2021). There is also a correlation between the groundwater level changes and the

topographical features of the basin. The fact that the higher elevated area suffers from

the highest groundwater level drawdown despite having the smallest area of groundwater

abstraction indicates the contribution from the mountain in sustaining the groundwater

level in the urban area, which in the long run, theoretically, might cause groundwater

basin closure (Molle et al., 2010; Zeinali et al., 2020; Pauloo et al., 2021).

Another interesting finding from the model simulation is the fact that the highest ground-

water level change is calculated at only −3.32 meters. While this value might not seem

significant, it represents the groundwater level change in the whole model grid cell with

the size of 100 m × 100 m, not in one particular observation well. The local groundwater

level change around the referred abstraction well, which typically has a diameter smaller

than 1 meter, is theoretically much higher than the grid-representative groundwater head

decrease. Such a circumstance where the simulated groundwater level change is found lower

compared to the actual local drawdown due to its spatial resolution has also been noticed

in other studies (Yidana et al., 2015; Pétré et al., 2019b). Therefore, understanding the

circumstances of the observation wells data is very important in calibrating a numerical

groundwater flow model representativeness.

5.5 Conclusions

In this study, we quantify the aquifer interaction, driven by multi-layer groundwater

abstraction, in the BGB by utilizing the collated EWT data in conjunction with a

numerical groundwater flow model during the period between 2005 and 2018. In addition,

we also use the model simulation output to observe the impact of multi-layer groundwater

abstraction on the spatial distribution of the groundwater level changes.

In the EWT data analysis, we focus on three data: (1) major ion elements, (2) groundwater

age, and (3) stable isotope. We overlay our EWT data plot (Stiff diagrams, interpolated

groundwater age profile, and δ2H and δ18O correlation) on the BGB map to qualitatively

evaluate their spatial patterns, their values’ changes, and their correlation with other

available information, for example, land use and topographical distribution.

For the groundwater flow model setup, we use the previously developed groundwater flow

model (Rusli et al., 2023a). The model parameterization is based on field and laboratory

measurements, literature studies, population-based estimates, and hydrological simulation

using the wflow sbm model (Imhoff et al., 2020; Wannasin et al., 2021a). The simulation

is run transiently between 2005 and 2018 in monthly time steps.
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In evaluating the groundwater flow model, we assess the similarity between the EWT data

analysis and the numerical model simulation results. Qualitatively, both methods are in

agreement on interpreting the groundwater system in the BGB from the perspective of

groundwater recharge spatial distribution, regional groundwater flow direction, groundwater

age estimates, and aquifer interaction identification.

Based on the model simulation, we quantify the aquifer interaction at, on average, 0.110

m/year, which is relatively significant compared to the other groundwater fluxes. We also

determine the unconfined aquifer storage volume decrease, calculated from the change

in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This

number shows that the upper aquifer storage is dwindling at a rate that is disproportionate

to its groundwater abstraction, hugely influenced by the aquifer interaction. The storage

lost from only this partition contributes up to 60.3% of the total groundwater storage lost,

despite contributing to only 32.3% of the groundwater abstraction. Additionally, we also

investigate and examine the correlation between the groundwater level changes and the

groundwater abstraction zones. Despite having the fewest groundwater abstraction zones,

the mountainous area, unfortunately, suffers from the largest groundwater level drawdown,

as well as the highest aquifer interaction, which in the long run could lead to potential

basin closure (Molle et al., 2010; Pauloo et al., 2021).

Following our effort to collate the scattered groundwater-related data, we see the opportu-

nity to initiate an open integrated groundwater database system in the BGB, specifically,

and in Indonesia and other data-scarce areas, in general. The government as the authorized

stakeholder has the most important role in bridging the groundwater-related data and

information gap among researchers, practitioners, companies, and the public.

This study contributes to showing the importance of the quantification of aquifer interaction

and groundwater level change dynamics driven by multi-layer groundwater abstraction

in multi-layer hydrogeological settings. A better understanding of the groundwater

flow mechanism will assist in deriving basin-scale groundwater policies and management

strategies under the changing anthropogenic and climatic factors, thereby ensuring more

sustainable groundwater management.
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Abstract

Groundwater is under the pressure of changing climatic and increasing anthropogenic

factors. In this study, we project the effect of these two factors on the projected future

groundwater status. Climate projections of RCP4.5 and RCP8.5 from the Coupled

Model Intercomparison Project Phase 6 (CMIP6) drive a one-way coupled Wflow sbm

and MODFLOW model. In addition, three plausible groundwater abstraction scenarios

with diverging predictions from increasing, constant, to decreasing volumes and spatial

distribution are used. Groundwater status projections are assessed for the short-term

(2030), mid-term (2050), and long-term (2100) periods. We use the Bandung groundwater

basin (BGB) as our study case, located 120 kilometers from the current capital city of

Indonesia, Jakarta, which is currently under a relocation plan. Results show that changes

in the projected climate input, including intensifying rainfall and rising temperature, do not

propagate significant changes in groundwater recharge. Under the current unsustainable

groundwater abstraction rate, the confined piezometric head is projected to drop up

to 7.14 meters, 15.25 meters, and 29.51 meters in 2030, 2050, and 2100, respectively.

When groundwater abstraction expands in proportion to the present population growth,

the impact is worsened almost two-fold. In contrast, if the groundwater abstraction

decreases because of the relocated capital city, the groundwater storage starts to show

replenishment potential. As a whole, projected groundwater status changes are dominated

by anthropogenic activity, and less so by changes in climatic forcing. The results of this

study are expected to demonstrate and inform responsible parties in operational water

management on the issue of the impact of projected climate forcing and anthropogenic

activity on future groundwater status.
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6.1 Introduction

Groundwater has been known to be over-exploited in many basins worldwide (Bierkens

and Wada, 2019; Gleeson et al., 2020). In more than half of the sub-districts located

in the northwestern part of Bangladesh, the estimated groundwater abstraction has a

higher volume than the simulated groundwater recharge (Shahid et al., 2015). Even more

drastically, twenty-one (out of twenty-three) provinces in China were diagnosed with

groundwater over-exploitation-related problems (Lili et al., 2020). In the northeastern

part of Brazil, the intensification of groundwater exploitation has caused piezometric

surface drawdowns of up to 100 meters (Luna et al., 2017). In the archipelago part of

Spain, Gran Canaria, the ensuing groundwater depletion would require a few decades to

recover (Custodio et al., 2016). From all such cases, we can see the severe impact driven

by anthropogenic activities through groundwater abstraction on the groundwater regime.

Dwindling groundwater tables, depleting groundwater storage, and degrading groundwater

quality, have led to various consequences such as land subsidence (Chen et al., 2022),

wetland deterioration (Mancuso et al., 2020), groundwater pollution (Meng et al., 2022),

and seawater intrusion (Momejian et al., 2019).

Besides anthropogenic activities, climatic change may also play an important role in

a changing groundwater regime since groundwater recharge is the dominant driver of

groundwater flow. Surface and soil properties aside, the generation process of groundwater

recharge is modulated by precipitation, temperature, radiation, and other climate variables

in the likely climate-dependent regions. The recent changes in these variables’ patterns,

frequencies, and extremes, have led to the alteration of the variable that directly regulates

the groundwater table distribution. Several studies suggest that changes in climate

contribute positively to the increase of groundwater recharge (Tillman et al., 2016; Patle

et al., 2018; Gaye and Tindimugaya, 2019). This occurs as rainfall intensification has

provided a higher volume of water, therefore providing an opportunity for more abundant

groundwater resources. Some others advocate contrarily, where they estimate a decline in

groundwater recharge as a consequence of climate change (Pardo-Igúzquiza et al., 2019;

Anurag and Ng, 2022; Trásy-Havril et al., 2022). Mostly, the reduction is related to the

higher potential evapotranspiration driven by the warming temperature. Some others

found the trend to be less definitive, varying per case depending on various factors, and

involving large uncertainties in its quantification (Meixner et al., 2016; Smerdon, 2017;

Yawson et al., 2019; Wu et al., 2020; Wang et al., 2021a).

As much as both anthropogenic and climatic factors have influenced the groundwater

regime in the past centuries even at the global scale (Döll et al., 2012), they also, to

various extents, control the current and future status of the subsurface resource (Stevenazzi

et al., 2017; Liu et al., 2022). Therefore, future groundwater resource prediction relies

greatly on climate projections and anthropogenic scenarios. In regard to climate projection

studies, the Coupled Model Intercomparison Project (CMIP) takes an important position in
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coordinating the global climate models (GCMs) worldwide. In its current sixth development

phase, CMIP6 (Eyring et al., 2016) distributes climate model outputs from numerous

GCMs run by various model groups under different Representative Concentration Pathway

(RCP) scenarios (IPCC, 2021), a set of pathways developed specifically on the span of

projected radiative forcing values by the year 2100 (Vuuren et al., 2011). With numerous

hydrological forcing projections available in multiple scenarios, it is possible to simulate

future groundwater recharge using hydrological models, from catchment to global scales

(Yuan et al., 2015; Zhao et al., 2021; Hua et al., 2022).

While climate variables have indirect repercussions on groundwater recharge as they are

also controlled by other factors, in particular the basin surface and subsurface properties

within a hydrological modeling framework, groundwater abstraction physically and directly

removes the groundwater from subsurface storage. Regarding anthropogenic projection

scenarios, many studies develop scenarios in which the groundwater abstraction rates

increase (Chang et al., 2020; Ansari et al., 2021), in line with rising populations. Only a

few studies projected the abstraction to decrease in the future, and in the case they do, it

is estimated not as the likely scenario but as recommended policies with the aim to achieve

sustainable abstraction rates. Nevertheless, in some specific basin-scale areas, decreasing

future groundwater abstraction might be a real possibility, which is not less important to

be studied in comparison to the increasing abstraction scenario. This becomes even more

crucial as changes in anthropogenic factors are often quantified to be more influential to

the groundwater level compared to changes driven by climatic factors (Varouchakis et al.,

2015; Brewington et al., 2019; Mustafa et al., 2019).

In this study, we aim to envisage future groundwater availability under different climatic

scenarios and multiple and diverging anthropogenic scenarios. The test basin is the

Bandung groundwater basin (BGB), located in Java Island, Indonesia. While currently

developed in a rising population trajectory, the Indonesia capital city relocation plan could

steer the future groundwater abstraction down in the BGB. A detailed description of

the affiliations between Jakarta, the current capital city, and the BGB is presented in a

later section, along with the new capital city plan’s short-term future schedule. Briefly

summarized, the BGB and Jakarta are closely connected. The urban and industrial

sector development in the study area is highly influenced by the demographic and socio-

economic activity within and around the capital city. With the plan to relocate the capital,

it is predicted that many aspects of the study area would be impacted, including the

groundwater abstraction volume, rate, and spatial distribution. Later in this study, the

projected groundwater abstraction scenario is the reflection of our interpretation regarding

this potential impact. The comparable likelihood of future groundwater abstraction to

either increase following the current trajectory or decrease as impacted by the capital city

relocation plan makes this case study unique as compared to other study areas.
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Under the future climatic forcing and groundwater abstraction uncertainties, in our analysis,

we simulate the groundwater level and storage changes using a one-way coupled wflow sbm

and MODFLOW model (Rusli et al., 2023a; Rusli et al., 2023b). By applying multiple

climatic forcing and abstraction scenarios, we aim to specifically (1) quantify the impact

of future climate projection on groundwater recharge, and (2) assess the impact of the

changing groundwater abstraction on groundwater status in the study area. It is expected

that the outcome of this study would be useful to understanding the subsurface processes

projection, generally, and is comparable with other basins with similar characteristics.

We also believe that this study would provide valuable input for the BGB authorities to

improve the current and future groundwater policy and management.

6.2 Material and methods

6.2.1 The influence of Jakarta and the new capital city plan on the BGB

Jakarta is a congested metropolitan city, with an area of 4,384 km2, and a population

density of 13,000 people per km2. In 2019, there were up to 3.2 million commuters entering

the Jakarta Metropolitan Area (JMA) daily (Martinez and Masron, 2020). Undoubtedly,

Bandung City, the largest city within the BGB, is one of the cities with tangible mutual

dependencies to Jakarta due to its neighboring distance (see Figure 6.1). The flows of

demographic and socio-economic activities between these two cities make them often

referred to as the Jakarta-Bandung mega-urban region (Pravitasari et al., 2018). The

Cipularang Toll Road, one of the highway connections between Jakarta and Bandung, is

even classified as the busiest corridor in Java Island (Andani et al., 2020).

The future of the groundwater regime in the BGB becomes uncertain with the latest

geospatial planning of Indonesia. It is to move the capital city from Jakarta to Nusantara,

located on a separate island in Borneo (Nugroho, 2020; Hackbarth and Vries, 2021; Mutaqin

et al., 2021). With relocation starting in 2024 (Vries and Schrey, 2022), it would not only

move the center of government but also mobilize part of the residents from Jakarta (Kodir

et al., 2021). Therefore, the urban and industrial development in cities surrounding Jakarta,

including those in the BGB, is predicted to be impacted. The Presidential Regulation of

Indonesia number 63, 2022 (Indonesia, 2022) stated that the relocation is to be finalized

in 2045. In the regulation’s appendix, it is estimated that the population in Nusantara

City would increase by eight folds, from around 150,000 people to more than 1.2 million

people by the end of 2029 (Indonesia, 2022), with a considerable portion of the people

actually relocated from JMA and its surrounding, including the BGB.

Considering the capital city relocation plan and the close affinity between our study

area and Jakarta, it is reasonable to imagine that the former issue would influence the

growth of the urban and industrial areas in the BGB. Indirectly, it would also be possible

to forecast that the pressure of pumping groundwater to fulfill the water demand in
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INDONESIA

Upper Citarum River

Industrial abstraction area

Domestic abstraction area

Bandung groundwater basin

Jakarta region (current capital city)

JAKARTA

Figure 6.1: Overview of the BGB’s relative position to Jakarta, the capital city of Indonesia.

This image is adapted from Rusli et al. (2023b).

the future could be reduced. However, such a trend did not always happen in other

former capital cities, such as Rio de Janeiro (Silva Jr and Pizani, 2003), Lagos (Healy

et al., 2020), and Yangon (Hashimoto et al., 2022). In these three ex-capital cities,

the economic growth carries on, despite being at different rates, and is translated to

increasing groundwater abstraction. The uncertainties involving the future water resources,

specifically groundwater abstraction, in the BGB are highly unsettling, thus multiple and

diverging scenarios are necessary to be explored. Therefore, while the common conceptual

understanding of groundwater abstraction projection is to increase in the future, in

this study we define three scenarios with wide ranges, stretching from an increasing to

decreasing future groundwater abstraction, described in Section 6.2.4.

6.2.2 Simulation workflow and temporal framework

There are two numerical simulations involved in the modeling framework within this

study: (1) surface hydrological and (2) groundwater flow. The hydrological simulation

is performed using the Wflow sbm model, with two climate variables as its main forcing:

the rainfall and the potential evapotranspiration. Hence, the climatic factors are included.

This produces two outputs: the simulated river discharge and the groundwater recharge.

While the simulated river discharge is used to evaluate the simulation performance, the
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groundwater recharge is further used to force the succeeding model - the MODFLOW

groundwater flow model. Aside from having the simulated groundwater recharge as its

input, the groundwater flow model is also regulated by boundary conditions of groundwater

abstraction, hence the anthropogenic factors. The outputs of the groundwater flow model

include transient groundwater head (groundwater table for the unconfined layer and

piezometric head for the confined layer) and groundwater storage changes.

We consider a two-phase simulation setup in this study based on the temporal categorization:

the baseline and the future period. The baseline period is used as the ’control’ of changes

in the latter period; this is very important to note especially for variables whose projected

changes are expressed in percentage relative to the benchmark. For the Wflow sbm model

hydrological simulation using Wflow sbm and the MODFLOW model groundwater flow

simulation, the benchmark period is set between 2005 and 2015. The baseline hydrological

simulation was forced by the CHIRPS rainfall estimates (Funk et al., 2015), and the

groundwater abstraction defined in the groundwater flow model was estimated upon

population number and a number of literature reviews (Rusli et al., 2021). For the climate

data temporal classification, the baseline period’s temporal coverage starts from 1981 to

2015 following the categorization on the Copernicus Climate Data Store of MRI-ESM2-0

model group (Copernicus Climate Change Service, 2021). For the future period, we

classify the temporal setting into three categories: the short-term future (up to 2030), the

mid-term future (up to 2050), and the long-term future (up to 2100). These temporal

classifications serve not only as the analysis checkpoints but also as the milestone for the

projected groundwater abstraction spatial distribution. On the whole, Figure 6.2 outlines

the role of the temporal setup in this study (in the horizontal direction), from the baseline

(left box) to the future (right box) period, as well as the setup for subsequent hydrological

and groundwater flow simulations (in the vertical direction) in each of the period.

6.2.3 Climate projection data and scenario

In this study, we develop two climatic scenarios that involve changes in projected rainfall

and potential evapotranspiration, influenced by temperature and radiation. For the

future period hydrological simulation, we use the CMIP6 (Coupled Model Intercomparison

Project Phase 6) climate model runs (Eyring et al., 2016) under two greenhouse gas

concentration trajectory scenarios: RCP (Representative Concentration Pathway) 4.5

and 8.5 (IPCC, 2021). The RCP4.5 is selected as the intermediate scenario, while the

RCP8.5 is the extreme one. The considered variables are those required as the input to the

Wflow sbm model, specifically precipitation and near-surface air temperature as well as

surface downwelling shortwave radiation and top-of-atmosphere (TOA) incident shortwave

radiation. The latter three variables are used to estimate potential evapotranspiration

using the method proposed by Bruin et al. (2016). All the mentioned climate model

products are publicly available on the Copernicus Climate Data Store (Copernicus Climate

Change Service, 2021).
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Figure 6.2: The overview of the modeling workflow. The left and right boxes show, respectively,

the model setup during the baseline period and the future period. While both the hydrological

and groundwater flow model’s setup is similar during the two periods, the forcing data and

boundary conditions are different and determined according to their respective configuration.

To select the model group, we apply criteria that the product should have (a) a spatial

resolution of approximately 1°×1°, (b) a daily temporal resolution for rainfall and temper-

ature, and (c) a projection scenario of historical, RCP4.5, and RCP8.5; applicable to the

four mentioned variables. Considering the criteria and other climate projection studies,

we use the climate model outputs from the MRI-ESM2-0 model group (Yukimoto et al.,

2019) for the precipitation and near-surface air temperature. We do not use an ensemble

of multiple climate projection products for several reasons. First, as mentioned above,

while the change in climate variables impacts the surface water cycle, it is mediated by

the soil before subsequently affecting the subsurface water budgets. Therefore, climatic

changes impact the groundwater recharge in a way lower magnitude compared to the

surface variables, especially considering the governing control of soil within the ground-

water recharge generation processes. This theory has been confirmed in many studies.

In the Upper Colorado River basin, the groundwater recharge changes are projected

to be under 10% relative to its baseline until 2100 despite the extreme climate change

scenario (Tillman et al., 2016). In the Western United States, it was found that including

the uncertainty bounds to the analysis projects no change to the groundwater recharge

(Meixner et al., 2016). In the United Kingdom barley crop fields, the groundwater recharge

is projected to change up to a minuscule 31 mm in 2050 under the largest reduction

scenario (Yawson et al., 2019). Second, previous studies have found the anthropogenic
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factor as the more dominant factor in groundwater level predictions compared to the

climatic ones (Mustafa et al., 2019; Aslam et al., 2022). Combining 44 climatic scenarios

from different RCPs and model groups to force their groundwater flow model, Mustafa

et al. (2019) estimated that groundwater abstraction scenarios still hold up to 7.4 times

higher influence on the projected groundwater level compared to the climatic scenarios.

This is important, especially considering the computational cost that is generally way

more demanding in simulating the climatic scenarios, which turns out to be less dominant

in regulating the projected groundwater regime. Third, the MRI-ESM2-0 model group

has also been suggested to perform well in CMIP6 outputs (Oruc, 2022), especially those

related to cloud-related processes (Kawai et al., 2019). It has also proved to be one of the

best-performing models in other studies, including in Southeast Asia region (Iqbal et al.,

2021; Baghel et al., 2022), which is very close to our study area. It is not used for the

global radiation data, however, as it does not cover the TOA incident shortwave radiation

projection for the RCP 8.5. Therefore, for the global radiation data, we use the climate

model output from the GFDL-ESM4 model group (Krasting et al., 2018), which qualifies

for all the criteria mentioned above.

6.2.4 Groundwater abstraction scenarios

For the groundwater abstraction projection, we consider three diverging scenarios where

the groundwater abstraction (a) increases, (b) stays constant, and (c) decreases in the

future. Meanwhile, the groundwater abstraction during the baseline period is set according

to estimates from our previous studies (Rusli et al., 2023a), increasing annually from 300

Mm3 per year in 2005 to 495 Mm3 per year in 2020. For all boundary conditions, the

groundwater abstraction is distributed horizontally based on land use and vertically based

on domestic/industrial water demand classification.

In this study, we propose a new approach to establishing the scenario where the future

groundwater abstraction increases (scenario one). Commonly, the projected groundwater

abstraction rate increases in proportion to the projected population growth. We indeed

apply such a method to estimate the annual volume of the future groundwater abstraction

in the study area, using an annual population growth rate of 1.36% referring to the United

Nations’ World Population Prospects, shown in Figure 6.3a. Under this scheme, the annual

groundwater abstraction volume in 2030, 2050, and 2100 is projected to be 529, 839, and

1,346 Mm3 per year, respectively. However, we have not yet found an approach that not

only increases the abstraction rate but also expands its spatial distribution. Considering

the currently high population density in the BGB, it is only logical that a surge in

groundwater abstraction volume is accompanied by an enlargement of the abstraction

area. In this paper, we expand the groundwater abstraction location by increasing the

area of the initial abstraction location proportionally to the volume of abstraction.
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(a) Abstraction scenario 1: increasing abstraction
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(b) Abstraction scenario 2: constant abstraction
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(c) Abstraction scenario 3: decreasing abstraction

Figure 6.3: The three diverging scenarios of estimated groundwater abstraction volumes

(right axis, Mm3/year) based on the projected number of population (left axis, millions).

The other two groundwater abstraction scenarios are based on Indonesia’s capital city

relocation plan. In the ’stay constant’ scenario (scenario two), we assume that the urban

and industrial area that is currently settling will continue to remain where they are now,

with stagnant development (Figure 6.3b). Therefore, the groundwater abstraction rate

is made constant from 2020 to 2100. In the decreasing groundwater abstraction scenario

(scenario three), we assume that the capital city relocation would decrease the population

of the BGB and water demand gradually in the future (Figure 6.3c). By 2100, it is

assumed that the number population will be halved from 2020, therefore also decreasing

the groundwater abstraction rate by 50% to 248 Mm3 per year, linearly interpolated.

In scenarios two and three, the spatial distribution of the groundwater abstraction area

remains constant with one in the baseline period.
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Table 6.1: Climate dataset for bias adjustment and statistical downscaling

Variables Climate model output ’Ground truth’ data

Precipitation MRI-ESM2-0 CHIRPS1

Near-surface air temperature MRI-ESM2-0 ERA5-Land

Surface downwelling shortwave radiation GFDL-ESM4 ERA5-Land

TOA incident shortwave radiation GFDL-ESM4 ERA5-Land
1 two CHIRPS products of different resolutions of 0.25°×0.25° and 0.05°×0.05° are used

6.2.5 Bias adjustment and statistical downscaling method of ISIMIP3b

In climate-related research, it is a common practice to employ bias correction when working

with climate simulation data. This is done as they generally have different statistical

attributes to climate observation data (Lange, 2019). The discrepancies occur due to

various factors, such as differences in spatial resolution and systematic biases. Therefore,

bias correction, involving two steps method of bias adjustment and statistical downscaling,

is applied to bridge and minimize this gap. In this study, we apply the method tailored to

the Inter-Sectoral Impact Model Intercomparison Project phase 3b (ISIMIP3b) for our

bias correction (Lange, 2019; Lange, 2021).

Within the ISIMIP3b framework, two datasets are specified as benchmarks: (a) historical

’ground truth’ data and (b) high-resolution data employed for the bias adjustment and

statistical downscaling processes, respectively. In this study, we use CHIRPS estimates

(Funk et al., 2015) with a spatial resolution of 0.25°×0.25° as the historical ’ground truth’

rainfall estimates. Notably, the spatial resolution of the MRI-ESM2-0 model output

is coarser than that of CHIRPS estimates. To align these datasets appropriately, the

MRI-ESM2-0 model output is initially re-gridded and resampled to match the spatial

resolution of CHIRPS before the bias adjustment was applied. As CHIRPS is available

at an even higher resolution of 0.05°×0.05°, we use it further as the benchmark for the

statistical downscaling. The historical ’ground truth’ estimates for the other variables

(near-surface air temperature, surface downwelling shortwave radiation, and TOA incident

shortwave radiation) are based on ERA5-Land hourly data (Copernicus Climate Change

Service, 2019). All the datasets used for the application of ISIMIP3b in this paper are

listed in Table 6.1.

6.2.6 Wflow sbm model setup

The Wflow sbm model is used to perform the hydrological simulation in this study. With

model parameters that mostly represent physical characteristics, using Wflow sbm makes

it easier to intuitively interpret and correlate the parameter values with physical catchment

properties. In the last decade, Wflow sbm has been widely used in many hydrological

modeling studies (López et al., 2016; Hassaballah et al., 2017; Gebremicael et al., 2019),

including those in tropical regions in South East Asia (Rusli et al., 2021; Wannasin et al.,

2021a), delivering good performance, shown by KGE, NSE, and RMSE metric.
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We use a similar Wflow sbm model setup for our previous study (Rusli et al., 2023a; Rusli

et al., 2023b). Started with high-resolution model parameterization based upon point-

scale (pedo)transfer functions (PTFs) (Imhoff et al., 2020), it is followed by downscaling

designated to the model resolution of 0.08°×0.08°. We use (a) SoilGrids database (Hengl et

al., 2017) for soil-related parameters estimation, (b) Monthly Leaf Area Index climatology

for daily interception calculation (Gash, 1979), (c) MERIT-DEM dataset (Yamazaki

et al., 2017) for river network delineation (Eilander et al., 2020), and (d) vito land use

map (Buchhorn et al., 2020) for deriving land-use related parameters. We simulate the

recharge by previously calibrating the MaxLeakage parameter by optimizing the KGE

value between the observed and the simulated discharge (Rusli et al., 2023a).

Precipitation and potential evapotranspiration data are the primary forcing data to run the

Wflow sbm model, besides the static maps input. In accordance with our temporal setting,

we prepare and split the forcing data into the baseline and future projection periods.

For the baseline period, CHIRPS rainfall estimates (Funk et al., 2015) and potential

evapotranspiration derived from ERA5 temperature and global radiation data using the

method from Bruin et al. (2016) are used. Using the Extended Triple Collocation method

(McColl et al., 2014), CHIRPS products were found to perform well in estimating rainfall

in the study area in our previous study (Rusli et al., 2021). In the future period, the

forcing data are obtained from the bias-corrected climate projection: (1) the bias-corrected

rainfall projections from the CMIP6 model output of the MRI-ESM2-0 model group

and (2) the potential evapotranspiration derived from the bias-corrected near-surface

air temperature projections from the CMIP6 model output of the MRI-ESM2-0 model

group and the bias-corrected surface downwelling shortwave radiation and TOA incident

shortwave radiation projections from the CMIP6 model output of the GFDL-ESM4 model

group, based on two RCP scenarios (RCP4.5 and RCP8.5).

6.2.7 Groundwater flow MODFLOW model setup

The MODFLOW6 model, which solves the Darcy three-dimensional groundwater flow

equation using the control-volume finite-difference (CVFD) method, is used to perform

the groundwater flow simulation in this study. The model is built using the MODFLOW

python package, flopy (Bakker et al., 2016).

The MODFLOW model parameterization in this study is based on the combination of

literature reviews, fieldwork, and laboratory experiments. The model’s subsurface vertical

discretization is based upon collated borehole data (Rahiem, 2020), interpreted as a 3-layer

model: the upper aquifer as the top layer, the thin interspersing aquitard as the middle

layer, and the lower aquifer as the bottom layer. The hydraulic conductivities of the soil

were measured by a combination of slug tests in the field, laboratory tests, and private

company reports. They were then recalibrated by minimizing the difference between the

simulated and the observed groundwater table (Rusli et al., 2023a). The Kh of the upper
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and the lower aquifer are found in relatively similar ranges between 0.15 and 0.58 meters

per day, as they are formed by a solitary geological formation. The Kv ranges between

3.0×10−4 and 6.0×10−4 meter per day. The aquitard is ten times less permeable than the

aquifer, with Kh ranges between 1.5×10−2 and 5.8×10−2 meter per day and Kv ranges

between 3.0×10−5 and 6.0×10−5 meter per day. The storage parameters are obtained from

private company pumping test reports, and the river-related parameters were previously

calibrated under steady-state conditions. The model parameters are spatially interpolated

to produce gridded parameter values. The initial condition is defined by our previous

simulation results at the designated time (Rusli et al., 2023a). The well package, related to

groundwater abstraction, is set according to the scenario described in Section 6.2.4.

Similar to the hydrological simulation, we split the forcing data and the simulation period

into two windows; the baseline period between 2005 and 2015, and the future projection

period on short-term (up to 2030), mid-term (up to 2050), and long-term (up to 2100)

future. Both periods are forced by the groundwater recharge simulated by the Wflow sbm

model, resulting in three different inputs as the drivers of the groundwater flow model: the

baseline groundwater recharge, the future RCP4.5 groundwater recharge, and the future

RCP8.5 groundwater recharge. With the combinations of different inputs and boundary

conditions, six different outputs are produced from the groundwater flow simulation.

6.3 Results

6.3.1 Bias corrected rainfall projection

The statistical attributes of the rainfall estimates pre- and post- bias correction, as well as

ones of the future scenarios, are summarized in Table 6.2. In the MRI-ESM2-0 model group

’historical’ output pre-bias correction, the rainfall is, surprisingly, projected to decrease in

general compared to the CHIRPS estimates (column 1) in both RCP4.5 (column 4) and

RCP8.5 (column 6). These values are, however, prior to bias correction. The same trend

of climate model underestimation in almost every statistical distribution is also found

during the baseline period (column 1 and column 2), therefore bias correction is essential

to be implemented. By applying the ISIMIP3b bias adjustment, we come up with baseline

rainfall estimates that represent a better statistical fit to the CHIRPS estimates (column

3). Consequently, we apply the bias correction to the future scenario of RCP4.5 (columns

5) and RCP8.5 (columns 7).

To observe the seasonal impact on the projected climate scenario, we plot the monthly

rainfall of the baseline period of CHIRPS and the future period of the bias-corrected

RCP4.5 and RCP8.5 projections in Figure 6.4. During the rainy season between October

and March, we can see that the projected rainfall has an increasing trend, with higher

monthly rainfall especially from November to January. A contrasting trend is shown in the

dry season between April and September, with lower monthly rainfall especially from July
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Table 6.2: Application of ISIMIP3b bias correction to the rainfall estimates (in millimeters)

’Ground

truth’
MRI-ESM2-0 historical data* MRI-ESM2-0 RCP4.5 MRI-ESM2-0 RCP8.5

CHIRPS Pre-** Post-** Pre-** Post-** Pre-** Post-**

(1) (2) (3) (4) (5) (6) (7)

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q1 0.00 0.08 0.00 0.06 0.00 0.06 0.00

Median 4.67 0.97 4.17 2.81 5.45 2.39 5.18

Mean 7.61 5.74 7.62 6.87 8.70 6.64 8.52

Q3 12.50 9.19 12.53 11.41 14.60 10.92 14.26

Max 111.66 91.45 111.66 88.13 131.67 121.70 123.90
* historical data of the climate projection products have the temporal coverage of the baseline period (1981 - 2015)
** the pre- and post- columns represent the values pre- and post- bias-adjustment in the future periods (2015 - 2100)
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Figure 6.4: The comparison between the rainfall monthly statistics in the baseline period

and in the two future climate scenarios (RCP4.5 and RCP8.5). The future rainfall estimates

are bias-corrected using the ISIMIP3b bias correction method.

to September. In short, the wet period is projected to become wetter, and the dry period

to be drier. We can also observe only small differences in the statistical quartiles between

the two RCPs, with similar widths, mostly, between the orange and red boxes. The width

of the minimum and maximum values, however, is more apparent. The magnitudes of the

hydrological extremes are projected to be more pronounced in the future, therefore floods

and droughts are predicted to be more severe than they currently are.

6.3.2 Bias-corrected potential evapotranspiration projection

We apply the bias-correction method of ISIMIP3b to the near-surface air temperature,

surface downwelling shortwave radiation, and TOA incident shortwave radiation, in a

similar fashion as one to the rainfall estimates. Figure 6.5a and 6.5b show the monthly

near-surface air temperature and radiation projections, respectively. The monthly average

temperature sharply increases from the baseline period of the aggregated ERA5-Land

hourly estimates to the future period of the bias-corrected CMIP6 projections in all

statistical attributes; quartiles, average, interquartile range, and extreme values. The
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(a) Comparison between the temperature in

the baseline period and in the two future cli-

mate scenarios (RCP4.5 and RCP8.5).
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(b) Comparison between the radiation in the

baseline period and in the two future climate

scenarios (RCP4.5 and RCP8.5).
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(c) Comparison between the potential evapotranspiration in the baseline period and in the two future

climate scenarios (RCP4.5 and RCP8.5).

Figure 6.5: The results on bias-corrected projections on three variables: (a) temperature, (b)

radiation, and (c) potential evapotranspiration.

temperature, on the long-term average, is projected to be warmer by 2.21°C and 2.72°C in

RCP4.5 and RCP8.5 scenarios, respectively. The projection on global radiation is based

on the GFDL-ESM4 model group, with a tendency of slightly less surface downwelling

shortwave radiation in the future. The TOA incident shortwave radiation remains almost

constant throughout. On the radiation variable, the two different climatic scenarios of

RCP4.5 and RCP8.5 do not seem to differ a lot in their statistical values.

We use the three variables above to calculate potential evapotranspiration using the method

of Bruin et al. (2016), with the result shown in Figure 6.5c. The range of the estimates is

visually inconsistent between the baseline and the future period, as the future period is

calculated in monthly time steps according to the temporal resolution of the radiation

projections. Therefore, the variation between the statistical distribution is lower compared

to ones of the baseline period, where it is available in the daily time step. The difference

in the magnitude is considered low, as the highest difference in average daily potential

evapotranspiration is less than 0.5 mm per day. Without looking at the seasonal variance,

the annual daily potential evapotranspiration averages of the baseline period, the future

RCP4.5 scenario, and the future RCP8.5 scenario are 3.24, 3.26, and 3.23 mm per day,

respectively, which are relative to insignificant differences.



120 Future groundwater availability projection

6.3.3 Groundwater recharge projection

The projected rainfall and potential evapotranspiration drive the Wflow sbm model to

project groundwater recharge. A number of conceptual correlations are easily derivable in

the projection of groundwater recharge: increased rainfall intensifies wet-season recharge,

drier periods reduce dry-season recharge, rising temperatures limit soil infiltration, etc.

As the difference in groundwater recharge in mm per day unit is relatively small, we

accumulate the daily recharge to monthly recharge. The seasonal pattern of the monthly

groundwater recharge is shown in Figure 6.6a. The values intrinsically represent the number

of days in each month, therefore the groundwater recharge in the non-31-day months is

lower than those in the 31-day months. The results are confirmed to be consistent in all the

short-term, mid-term, and long-term future assessments of groundwater recharge.

Distinct groundwater recharge patterns emerge in relation to wet and dry seasons. Between

the start of the wet season when the soil moisture starts to be saturated (December)

and the beginning of the dry season when the soil’s maximum capacity for storing water

is still attained (May), the groundwater recharge could no longer increase despite the

increasing rainfall. On the other hand, between the start of the dry season when the soil

moisture starts to dry up (June) and the beginning of the wet season when the void spaces

in the subsurface are still available for water to fill into (November), the magnitude of

the groundwater recharge is relatively more subject to change. Having said that, during

the latter period, differences in median and extreme recharge values are relatively small,

although quartile values exhibit variations. Median values vary most significantly either

in September (RCP4.5) or October (RCP8.5), with small increases of 1.27% and 1.79%,

respectively. In all other months except June, groundwater recharge either slightly increases

or remains relatively constant. Annually, the average groundwater recharge during the

baseline period of 315.1 mm per year is projected to insignificantly increase to 316.1 mm

per year for the RCP4.5 and 316.4 mm per year for the RCP8.5 scenario.

The results indicate the dominant role of the already-saturated soil in controlling the

groundwater recharge processes in the BGB. When the soil’s maximum capacity is reached,

more rainfall leads to no change in the recharge processes. Instead, it leads to more

water loss to evapotranspiration should the PET allows. It would also lead to an increase

in surface runoff discharge. On average, the absolute relative change in the rainfall,

temperature, and groundwater recharge estimates under the RCP4.5 scenario, respectively,

are 31.03%, 10.71%, and 0.36%. The similar changes for the RCP8.5 scenario are 28.36%,

13.10%, and 0.44%. Figure 6.6b visually contrasts the magnitude of changes in rainfall and

potential evapotranspiration on the left axis with groundwater recharge on the right axis,

using a scale that is ten times larger, all represented as monthly averages. The average

value is chosen over the median value, specifically for this figure, to take into account the

projected extreme values. From the results, the change in the groundwater recharge is

found to be far less responsive compared to its driver, especially the rainfall.
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(a) Comparison between the simulated groundwater recharge in the baseline period and in the two

future climate scenarios.

(b) Comparison between the projected average monthly rainfall, potential evapotranspiration, and

groundwater recharge.

Figure 6.6: The results of (a) groundwater recharge projection and (b) its value relative to

its driver of rainfall and potential evapotranspiration. The values are averaged over the future

period, annually, up to 2100.
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6.3.4 Groundwater level projection

The combination of two climatic and three groundwater abstraction scenarios results in

six outcomes of projected groundwater level. For each outcome, there are three temporal

checkpoints assigned as the milestone of the assessment: the short-term, the mid-term,

and the long-term future in 2030, 2050, and 2100, respectively. There are also two layers

of aquifers, the unconfined and the confined aquifers, to be assessed. As there are a lot of

numbers to unpack, we discuss the results as per the abstraction scenario.

Generally, we focus on the maximum drawdown values of the groundwater table/piezometric

head, as the change in the groundwater head is found to be highly localized, both from the

simulation and observation perspective. Furthermore, the baseline groundwater abstraction

area is estimated ’only’ at 27.3% of the total basin area for the domestic groundwater

abstraction, and even at 4.7% for the more intensive industrial abstraction. Taking the

average or median value for the whole groundwater basin, therefore, would not be suitable

to represent the severity of the groundwater abstraction impact, considering the high

number of cells involved in the numerical simulation.

Under the increasing groundwater abstraction scenario, the groundwater level is projected

to continue decreasing, as expected. The numbers are alarming, particularly for the

confined aquifer, where the groundwater abstraction is spatially more concentrated with

higher abstraction rates compared to one in the unconfined layer. Under the RCP4.5

scenario, the maximum piezometric head drawdown for the confined aquifer is projected to

be at -10.04 meters in 2030, -19.98 meters in 2050, and -48.79 meters in 2100. Under the

RCP8.5 scenario, these numbers are calculated at the same magnitude up to two decimals.

The numbers are also concerning for the unconfined aquifers, as the groundwater table is

projected to dwindle to up to -3.38 meters and -3.40 meters in the long run under the

RCP4.5 and RCP8.5 scenarios, respectively. Based on the drawdown area, the trend shows

that the impacted area is enlarged as the groundwater abstraction area expands. In the

unconfined aquifer, respectively 74.6%, 80.5%, and 87.2% of the groundwater basin area

is projected to experience groundwater table drawdown in 2030, 2050, and 2100 under

the RCP4.5 scenario, obviously with varying magnitude. For the confined aquifers, the

numbers representing the depression area are 70.5%, 72.9%, and 75.4%. Under the RCP8.5

scenario, these numbers are pretty much consistent, with a maximum of less than 1%

difference from the RCP4.5 results.

The second abstraction scenario portrays the projection of the current situation in the

study area. Should the anthropogenic pressure remains the same, the groundwater level,

as expected, is projected to remain dwindling. The maximum confined piezometric head

drawdown for 2030, 2050, and 2100 under the RCP4.5 scenario are -7.14, -15.25, and

-29.51 meters. The numbers for the RCP8.5 scenario are very similar: -7.14, -15.28,

and -29.51 meters. Similar to the increasing abstraction scenario, the unconfined aquifer

groundwater table drawdown is noticeably lower compared to that of the confined aquifer,
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Unconfined_2030 Unconfined_2050 Unconfined_2100

Confined_2030 Confined_2050 Confined_2100

Figure 6.7: The spatial distribution of the projected groundwater head change under the

RCP4.5 climatic scenario and the constant groundwater abstraction anthropogenic scenario.

The three columns indicate the situation in the short-term (up to 2030), mid-term (up to

2050), and long-term (up to 2100) future, while the two rows represent the unconfined (top)

and the confined (bottom) aquifers.

with a maximum drawdown of -2.58 and -2.60 meters in 2100 for RCP4.5 and RCP8.5,

respectively. The drawdown area increases, with up to 84.7% and 75.0% of the groundwater

basin area experiencing long-term dwindling groundwater heads in the unconfined and

confined aquifer. Despite the lesser extent of the impacted area relative to the previous

scenario, the vastly dominant area of decreasing groundwater head remains a concern. To

visualize the time-series increasing impact of the groundwater head drawdown, Figure 6.7

shows the propagation of the groundwater head decline in the BGB under the RCP4.5

climatic scenario and the constant groundwater abstraction anthropogenic scenario.

The third abstraction scenario projects the groundwater abstraction to decrease, influenced

by the relocation of Indonesia’s capital city. Under this scenario, the groundwater is

projected to be partially replenished between 2050 and 2100. This is indicated by the

projected piezometric head drawdown that reaches -12.61 meters in 2050, but is calculated

at -11.75 meters in 2100. Granted that -11.75 meters remain a net negative of groundwater

head in the future, however, subsurface flows (and replenishment) are known to have

a longer time scale as compared to surface flows to reach equilibrium. The fact that

the piezometric head drawdown decreases signals an improving situation under scenario

three. Having said that, the groundwater table in the unconfined aquifer is projected to

decrease up to -2.58 and -2.93 meters under the RCP4.5 and RCP8.5 scenario, respectively.

However, its drawdown area is projected to be smaller, going from 80.8% and 83.6% in
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Table 6.3: Summary of projected maximum groundwater head drawdown under multiple

climatic and anthropogenic scenarios

Increasing abstraction Constant abstraction Decreasing abstraction

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

(1) (2) (3) (4) (5) (6)

2030
Unconfined -0.98 -0.97 -0.89 -0.89 -0.89 -0.97

Confined -10.04 -10.04 -7.14 -7.14 -7.11 -7.11

2050
Unconfined -1.69 -1.69 -1.49 -1.49 -1.49 -1.69

Confined -19.98 -19.98 -15.25 -15.28 -12.60 -12.61

2100
Unconfined -3.38 -3.40 -2.58 -2.60 -2.58 -2.93

Confined -48.79 -48.79 -29.51 -29.51 -11.55 -11.75

2030 for RCP4.5 and RCP8.5 respectively to 75.5% and 76.7% in 2100. The response of

groundwater replenishment is unique between the aquifer layers; the unconfined aquifer

primarily reduces the drawdown area, while the confined aquifer relaxes the magnitude of

the piezometric head drawdown. Nevertheless, it presents an opportunity for groundwater

replenishment in the future given the right policy and management in the study area.

The two climatic scenarios, the three diverging abstraction scenarios, and the multiple

assessment checkpoints as well as the two aquifer layers admittedly provide a lot of numbers

to digest. Table 6.3 summarizes the maximum groundwater head drawdown in all involved

scenarios, checkpoints, and layers in focus. The table makes it easy to see that the

anthropogenic factor holds a more dominant influence on the status of the groundwater

table in the future, with the climatic factor offering fewer changes in values due to the

soil capacity control. This is shown by higher discrepancies when we are moving over

the major columns, for example from column (1) to (3) to (5), compared to when we are

moving over the minor columns, for example from column (1) to (2), (3) to (4), or (5) to

(6). We can also see the propagation of the impact over time, from the major rows, and

the more severe impact to the confined groundwater head compared to the unconfined

groundwater table.

6.3.5 Groundwater storage projection

As stated above and shown in Figure 6.7, the drawdown impact of the groundwater

abstraction is highly congregated. In the unconfined layer, the drawdown area is distributed

under the abstraction area, while the area close to water bodies is less impacted. This

occurs due to surface water and groundwater interaction, where the groundwater table

is also regulated by the surface water elevation aside from the subsurface flow. In the

confined aquifer, the highly elevated area on the surface is much less impacted compared

to the one in the overlying aquifer, and the drawdown area is, in general, directly located

under the abstraction area. Using only the groundwater head, although useful, could not

capture the whole picture of the basin’s groundwater regime projection. Therefore, we

also assess the groundwater projections from the perspective of its integrated cumulative

storage changes over time.
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Figure 6.8: The cumulative projected groundwater storage changes from 2015 to 2100 for all

climatic and anthropogenic scenarios.

Figure 6.8 shows the trajectory of each outcome in terms of its accumulated groundwater

storage changes relative to the one in 2015 as the benchmark. Consistent with the earlier

results, the difference between climatic scenarios is very thin, as lines with the same color

are almost intersecting. However, the impact of the diverging abstraction scenario is

visually apparent and even results in diverging groundwater storage change. Using the

gradient of the storage depletion accumulation for scenario two as the benchmark, it gets

up to 3.43 times steeper for scenario one and up to 0.40 times milder for scenario three

during the most extreme year, both propagating in curve-shaped lines. The lines’ shapes

deliver important messages, as they indicate the uniquely diverging results of deteriorating,

sustained, and improving groundwater storage depletion under the first scenario, second,

and third scenarios, respectively. It is also notable that despite the indication of confined

groundwater replenishment from the groundwater level perspective, assessment of the

groundwater storage change suggests otherwise, further discussed in Section 6.4.2.

Under the constant abstraction scenario, the BGB storage is projected to lose almost 20

billion m3 in the upcoming 85 years. While the number might seem exaggerated, it is

actually equivalent to an average of 0.54 mm per day of storage depletion. The rate of

storage depletion is relatively constant throughout the short-term, mid-term, and long-

term future in this scenario, as per the abstraction rate. Under the increasing abstraction

scenario, the long-term storage depletion is projected at -1.17 mm per day on average.

This is a result of an escalating depletion, as the storage loss is averaged at -0.53 mm per

day between 2015 and 2030, -0.86 mm per day between 2030 and 2050, and -1.48 mm per

day between 2050 and 2100. Under the decreasing abstraction scenario, the long-term

storage depletion is projected at -0.40 mm per day on average. This is the result of a

withering depletion, despite the dwindling continuation, as the storage loss is averaged at

-0.54 mm per day between 2015 and 2030, -0.49 mm per day between 2030 and 2050, and

-0.33 mm per day between 2050 and 2100.
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6.4 Discussion

6.4.1 Projections uncertainty

In climate projection studies, uncertainties are unavoidable as they are propagated from

multiple sources: climate variability, climate model, and emission scenario (Latif, 2011).

The natural climate variability is highly uncertain as Buser et al. (2010) suggested the

extrapolative nature of climate variables which involved different biases in the scenario and

the control period. Each model also has different responses to climatology and perturbation

components uncertainties, for example, as stated by Adachi et al. (2019). To tackle the

wide range of uncertainty bounds, many studies propose using an ensemble of climate

projection products (Hawkins et al., 2016; Rajczak and Schär, 2017). Meanwhile, other

studies promote the efficiency of bias correction to reduce the uncertainties of climate

projection products as such a method takes into account the ’ground-truth’ estimates of

the corresponding climate variables (Lange, 2019; Wu et al., 2022).

In our study, climate projections uncertainty is also hardly avoidable. The range of

projected climate in different model groups might vary to a certain extent. However, we

believe that the uncertainties have been limited due to three reasons. First, the focus

of the hydrological simulation is groundwater recharge, which is not solely controlled by

climate variables. Indeed, climate plays an important role, as it provides the input to the

basin that further generates recharge. However, the control of the groundwater recharge

production is also regulated by the basin: its soil moisture capacity, its surface water

cycle, its subsurface properties, etc. With the other simulation components’ relatively

known values, in this case, the Wflow sbm model parameterization, the groundwater

recharge estimates, therefore, are not singlehandedly impacted by the uncertainties of

the climate projections. In fact, groundwater recharge is not projected to change by

significant margins in some other studies, too (Meixner et al., 2016; Tillman et al., 2016;

Yawson et al., 2019). Second, the primary goal of the study is to project groundwater

availability, which is affected by both groundwater recharge and groundwater abstraction.

Groundwater recharge projections exhibit a relatively narrow range of changes in the future,

with anthropogenic factors exerting more significant influence (Mustafa et al., 2019; Aslam

et al., 2022). In our scenario, the simulation results confirm that the three abstraction

scenarios spanning from increasing to decreasing projection outweigh the uncertainty

bounds propagated from the climatic scenario. Third, we also apply a bias correction

method to the climate projection products, which has been proven in previous studies to

effectively reduce climate projection uncertainties (Rahimi et al., 2021; Wu et al., 2022).

Table 6.2 columns (1), (2), and (3) show a remarkable improvement in the bias-corrected

climate model output. By bias-correcting the projected climate variables and taking into

account the historical high-resolution ’ground truth’ data as the benchmark, we believe

the uncertainties of the climate projection have been significantly reduced.
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6.4.2 Impact assessment on future groundwater level projections

As shown in the simulation workflow (Figure 6.2), future groundwater status is projected

by altering climate forcing input and groundwater abstraction as the boundary condition.

The former imparts its contribution to groundwater recharge estimates. However, as shown

in Figure 6.6b, there are significant differences in the impact of climate variables’ changes

on the surface and the subsurface component of the water cycle. The rainfall median, not

considering the seasonal fluctuation, is projected to change (either increase or decrease)

up to 31.03% and 28.36% for RCP4.5 and RCP8.5 respectively. On the other hand, the

projected change in the groundwater recharge is less than 1%, indicating a slower response

of subsurface components to the climate change projection.

This result is limited, however, by the nature of the model one-way coupling. In our model

setup, groundwater recharge is fully controlled by the surface processes and the mostly

saturated soil. Physically, groundwater storage depletion due to groundwater abstraction

would reduce soil water content. By that process, there would be more space for water to

infiltrate, indicating two-way feedback between groundwater abstraction and groundwater

recharge. A one-way coupled model, unfortunately, is not capable of incorporating such

processes into its simulation. This further proves that basin properties possess equal, if

not more, importance compared to the climate forcing in groundwater recharge projection.

This looks site-specific, however, depending on the basin features, especially the land

use/land cover type, the soil maximum capacity, and the subsurface properties. This also

highlights the importance of basin-scale information in climate projection studies (Bhave

et al., 2013; Jackson et al., 2015; Marcos-Garcia et al., 2023), which have been conducted

largely in global scale studies.

The uncertainties of future anthropogenic factors, considering their large influence, should

be the primary focus in future groundwater management. While the climatic factor

is relatively intractable, groundwater abstraction activities, in terms of rates, volumes,

and spatial distribution, are relatively manageable through groundwater policies and

governance. Not to mention its more influential impact on the groundwater regime.

Improving the understanding of subsurface response and bridging the key gap between

science and policy should be the main focus while strengthening the law should be the

responsibility of all involved stakeholders. The topic of climate change should not be

blamed for degrading groundwater basin quality while the elephant in the room in the

form of unsustainable groundwater abstraction is given less attention.

The simulation results also reveal the importance of multi-perspective assessment in

groundwater regimes. On one side, Table 6.3 implies that the groundwater situation in

the confined aquifer is improving under scenario three of groundwater abstraction, where

the maximum piezometric head drawdown in 2100 is lower than one from 2050. On the

other side, Figure 6.8 shows that the groundwater storage is still depleting, shown by

the negative gradient of all the lines, including ones from the abstraction scenario three.
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Such discrepancies occur as the two assessment variables, the groundwater head and the

groundwater storage, represent two different dimensions. The groundwater head represents

a point, or a single grid, value that constitutes local features, while the groundwater

storage evaluates the basin-integrated response. Referring to only one assessment variable

could lead to a misunderstanding of the process of the groundwater flow system. We

discuss the interpretation of the two conflicting numbers in the following section.

6.4.3 Opportunities for groundwater replenishment

The different gradients shown in Figure 6.8 represent diverging directions of the groundwater

storage over time. While all the results accumulate negative changes, the rate at which the

groundwater storage is depleting differs among scenarios. With a decreasing groundwater

abstraction scenario in the future, the depletion rate is also projected to decline. Admittedly,

groundwater replenishment might take a comparably long time to reach a new equilibrium,

considering the subsurface low flow velocity. The current declining, but slower, groundwater

storage depletion, therefore, could be interpreted in two ways, either (1) the groundwater

storage is still in a deterioration trend, or (2) the groundwater storage is actually being

replenished, but has not yet reached the new equilibrium state. The latter hypothesis is

supported by the values in Table 6.3, which at first glance might seem inconsistent with the

results in Figure 6.8. By any means, the results in scenario three, which is highly possible

due to the capital city relocation plan, suggest an opportunity for future groundwater

replenishment, although it takes some time to yield a positive turning point. Consistent

future groundwater head monitoring in the study area could provide crucial insight, which

will assist in deriving adaptation policies in response to the capital city relocation.

We also notice different responses of unique groundwater ’replenishment’ between the

aquifer layers. In the unconfined aquifer, the primary response of the groundwater

replenishment is to reduce the impacted drawdown area. While the groundwater table

is dwindling in all future checkpoints, there are smaller (simulated) drawdown areas in

2100, even compared to ones in 2030. On the other hand, the confined aquifer responds

by relaxing the magnitude of the piezometric head drawdown. This, presumably, is

directly related to the spatial distribution of groundwater abstraction. The groundwater

abstraction applied in the unconfined aquifer is more widespread with lower rates of

abstraction. Therefore, the drawdown area is highly dependent on the spatial distribution.

In the opposite to the unconfined aquifer, the groundwater abstraction applied in the

confined aquifer is more concentrated with intense rates of abstraction. Decreasing the rate,

consequently, delivers noticeable influences on the stressed piezometric head. This reveals

an important opportunity for future groundwater policies: the governance of groundwater

abstraction authorization should include not only the abstraction rate limitation but also

the consideration of future and integrated geospatial planning of the study area.
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6.5 Conclusions

In this study, future groundwater availability under multiple climatic and diverging

anthropogenic scenarios is projected. We simulate groundwater recharge projection using

the hydrological model Wflow sbm. The climate projection forcing is taken from the

CMIP6 MRI-ESM2-0 model group, including the projected rainfall as well as the projected

temperature and radiation data to estimate potential evapotranspiration. The Wflow sbm

model is forced with climate projections under RCP4.5 and RCP8.5 scenarios. Further,

using the groundwater recharge projection as the groundwater flow driver, we simulate

the subsurface flow under a groundwater abstraction scenario as the boundary condition.

We develop three diverging scenarios; increasing groundwater abstraction as the most

common approach, constant abstraction as the benchmark, and decreasing abstraction as

a possibility. We take the BGB in Indonesia as our test case, located near Jakarta, the

current capital city of Indonesia. The BGB has a wide range of uncertainties in terms of

future groundwater abstraction, in response to the Indonesia capital city relocation plan,

therefore nicely covering the three developed anthropogenic scenarios.

We apply the bias correction method of ISIMIP3b to the CMIP6 climate projection data

before forcing it to the Wflow sbm model. The bias correction reduces the uncertainty

of the climate variables’ projection, as the bias-corrected historical data show consistent

statistical distributions to the ’ground-truth’ data. Future rainfall and temperature median

are projected to change by 31.03% and 10.71% under RCP4.5, and 28.36% and 13.10%

under RCP8.5. Future groundwater recharge projection reveals the dominant control

of the soil component in generating the groundwater recharge in the study area. The

fact that there is less than a 1% change projected for the groundwater recharge variable

under both climatic scenarios shows that most of the time, the recharge is already at its

maximum capacity. During the rainy season, rainfall intensification could not generate

more recharge. On the other hand, during the dry season, increasing rainfall drives higher

recharge, however, during the dry period that is projected to be even drier, the deficit of

groundwater recharge almost balances out those additional recharge.

As expected, under the increasing and constant groundwater abstraction scenario, the

groundwater status is projected to drop. The maximum groundwater head drawdown rises

over time, the drawdown area expands, and the groundwater storage depletes. However,

a positive sign of groundwater replenishment potential is shown under the decreasing

groundwater abstraction scenario, despite the conflicting numbers shown between the

point-based groundwater level assessment and the basin-integrated groundwater storage

assessment. Despite being slow and occurring between 2050 and 2100, there is a sign

that the groundwater storage is going in the right direction to be refilled. It is also

indicated that the groundwater table is highly regulated by not only the volume and rate

of groundwater abstraction but also its spatial distribution. Comparing the results of

climatic and anthropogenic impact, we conclude that groundwater abstraction propagates
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a more significant impact on the simulated future groundwater availability. The findings

of this study are expected to assist in deriving and improving the current and future

groundwater policies and management strategies.
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This chapter synthesizes the results of the studies presented in this thesis. The chapter

begins by addressing the research questions formulated in Chapter 1 based on specific

objectives, followed by the answer to the primary objective. It is then followed up with the

lesson learned on the challenges and strategies in dealing with and conducting groundwater

studies in data-scarce areas. The last section is dedicated to discussing future opportunities

in developing a research-based and practical approach to improving groundwater resource

governance in developing countries. By using the Bandung groundwater basin as an

example, this approach could be adopted to improve groundwater management in other

developing regions.

7.1 Main findings

7.1.1 Water balance components estimates (Chapter 3)

The first research question in the first specific objective is To what extent do different

datasets and products differ in estimating water balance components in the Bandung

groundwater basin? To answer the question, multiple estimates on three water balance

components: rainfall, actual evaporation, and river discharge are collated. For each vari-

able, estimates determined by various methods are aggregated. Four rainfall products are

assessed: ground observation, gauge-based interpolation, satellite product, and a combina-

tion of remote-sensing and station data. Additionally, hydrological model-based estimates

and reanalysis products for actual evaporation and river discharge are incorporated, besides

global estimates products and observation data. It is expected that discrepancies would

occur among estimates, however, the extent was unknown. Besides using each estimate’s

statistical parameters, the Extended Triple Collocation (ETC) technique is also applied

to quantify the discrepancies. While estimates on actual evaporation were found to be

relatively consistent among products, the same trend cannot be concluded for rainfall and

river discharge variables. Given the extent of discrepancies among the water balance

components’ estimates, it is highly recommended to consider multiple estimates in

conducting hydrological water balance analysis in data-scarce areas.

The second research question on the first specific objective is How well does a hydrological

simulation using the Wflow sbm model perform in comparison with other estimation

methods? In answering this question, the ETC technique is used to assess the simulated

actual evaporation. It results in satisfactory estimates, with the r2 of 0.70, better than that

of 0.65 from ERA5 products. For river discharge estimates, discharge observation data is

used as the benchmark value, with the assumption that it involves the least uncertainties.

Using three metrics of Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE),

and Root Mean Square Error (RMSE), the river discharge estimates simulated using the

Wflow sbm model produce better results when compared to global reanalysis products

of GloFAS-ERA5. Wflow sbm model estimates are also visually in agreement with the
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observed data. Considering local-scale data limitations to simulate the hydrological cycle

in data-scarce areas, making use of a hydrological model with global parameterization, in

particular the Wflow sbm model, can be beneficial to estimate water balance components

in a data-scarce area.

The last research question in the first specific objective, Considering the uncertainty bounds

in each of the surface water balance components, to what extent the definitive basin water

storage change status can be determined?, provides an insightful answer. In this study, it is

revealed that the status of basin water storage change in the Bandung groundwater basin

cannot be definitively determined considering the uncertainty bounds of the water

balance components. Using different sets of water balance components estimates allows

us to arrive at different conclusions: from decreasing to increasing water volume stored

within the analyzed domain. The need to improve the accuracy and narrow the range of

water storage change estimates is apparent from the results. Therefore, it is suggested to

incorporate a numerical groundwater flow model so that the internal subsurface

hydrological processes can be explored, simulated, and validated in further studies.

7.1.2 One-way coupled wflow sbm and MODFLOW model (Chapter 4)

The first research question in the second specific objective is How can the recharge estimates

from the Wflow sbm hydrological model be incorporated into groundwater flow simulation?

To integrate the Wflow sbm model’s groundwater recharge estimates into groundwater

flow simulation, adjustments are necessary. While surface water estimates, like rainfall, are

available at high temporal resolutions, groundwater flows at a slower rate. The Wflow sbm

groundwater recharge estimates in this study, for example, are produced in daily temporal

resolution, while the groundwater flow model is run at monthly resolution. Thus, temporal

aggregation of the Wflow sbm model output is required to match the groundwater flow

model temporal resolution. Additionally, spatial adjustments are also necessary to align

the gridding system between the two models. In short, the incorporation of groundwater

recharge simulated by the Wflow sbm model largely involves spatial and temporal

adjustment to fit the designated groundwater flow model resolution.

The answer to the second research question in the second specific objective, To what

extent can a parsimonious, yet reliable, groundwater flow model in the study area be

constructed, considering the limited hydrogeological data availability?, is model gradual

development. Initially, the model is set up in a simple manner, featuring low spatial

resolution, steady-state conditions, a single aquifer layer, and no flow boundary conditions.

As new data slowly become available, they are progressively incorporated into the

model as long as it is contextually justified. Borehole data are spatially interpolated to

fill gaps in mountainous regions, and fieldwork test points are strategically distributed to

address data sparsity in high elevated areas. River streams are delineated using the ArcGIS

hydrology toolbox, while groundwater abstraction zones are derived from the national land
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use database. On the whole, despite the limited hydrogeological data, alternative data

sources are often available. However, model representation should be prioritized

over model complexification, especially in data-scarce areas where excessive detail

may not be justified but can lead to unnecessary complexity.

The last research question in the second specific objective is What factors need to be

considered in utilizing and, more importantly, contextualizing open-source remote-sensing-

based global estimates of terrestrial water storage change (GRACE) in basin-scale model

evaluation? As groundwater head observations for calibration data are limited in the

study area, the remote-sensing products of GRACE are used to compare the one-way

coupled simulation results with and evaluate the one-way coupled model performance.

However, several factors must be taken into account due to the difference in spatial

resolution and coverage between the two estimates. While GRACE is measured on a

1°×1° domain, the basin-scale modeling is applied in a smaller area. Discrepancies

in characteristics between the two domains are highly influential in interpreting the

results of water storage change estimates. These differences involve variations in the

coverage area, topographical features (terrain slope), and subsequently water

storage change response time. Incorporating these factors into the model evaluation

improves the quality of the model performance assessment.

7.1.3 (Inter) Aquifer interaction quantification (Chapter 5)

The first question to address in the third specific objective is To what extent can the result

of a parsimonious groundwater flow model, built on limited hydrogeological data availability,

be explored? In Chapter 5, the simulation results are examined in greater depth compared

to typical groundwater head output. The analysis focuses on the computed cell-to-cell flow,

referred to as intercell flow, which represents the vertical aquifer interactions across

the aquitard. Intercell flow quantifies the flow between connected cells in every direction:

up, down, front, back, left, and right. The objective in addressing the research question is

to not only assess the water budget of groundwater storage as a whole but also to analyze

it for each layer of aquifers. Specifically, the investigation emphasizes intercell flow in

the downward direction for the upper aquifer layer and in the upward direction for the

bottom aquifer layer. By extracting this particular groundwater flow simulation results,

it becomes possible to interpret the groundwater flow mechanism and processes

among different soil stratigraphy and aquifer systems. These interpretations are

elaborated on in the following two paragraphs.

With the absence of sufficient calibration data, the subsequent research question, To

what extent can EWT data analysis be incorporated in evaluating a groundwater flow

model?, becomes important. Given the impracticality of a quantitative approach in

such circumstances, a qualitative model evaluation method is adopted. The focus is on

bridging the evaluation gap by introducing EWT data into the equation. Chapter 5
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is entirely dedicated to answering the question. In short, it involves the aggregation of

qualitative analyses from EWT data. Investigations are carried out from the perspectives of

groundwater recharge spatial distribution, regional groundwater flow direction,

groundwater age estimates, and the identification of aquifer interactions. Although

the resulting conclusions are limited in their quantitative aspects, the agreement observed

between the numerical groundwater flow model and the EWT data analysis is encouraging.

It serves to enhance the model’s credibility and builds upon the approach taken in

the second objective, where model evaluation is complemented with remote-sensing-based

estimates of water storage changes.

The third research question in the third specific objective is What is the impact of

simultaneously abstracting groundwater from multiple depths and aquifers on groundwater

head, storage, and aquifers’ internal processes? The simulation results confirm and expand

on the established theory regarding the direct and indirect impacts of groundwater

abstraction on the associated aquifer layers. It is evident that groundwater abstraction

from a specific depth of an aquifer directly affects the hydraulic head of that same aquifer.

In addition to that, it is also very likely that the hydraulic head of other aquifers -

surrounding, overlaying, or underlying the point of abstraction - would be affected to some

extent. With this knowledge, simultaneous groundwater abstraction from multiple aquifer

layers clearly would induce multi-layer impact as well. This is confirmed by the results of

the intercell flow and is even quantified. The analysis reveals that the upper aquifer

storage is decreasing at a rate that is disproportionate to its groundwater

abstraction. In the Bandung groundwater basin, specifically, the storage lost by outflow

to the deeper aquifer contributes up to 60.3% of the total groundwater storage lost, despite

contributing to only 32.3% of the groundwater abstraction.

7.1.4 Future groundwater availability (Chapter 6)

After model setup and evaluation, the one-way coupled model is applied to answer the

research questions in the last specific objective. The first one is How do the projected

changes in climate variables in the Bandung groundwater basin influence groundwater

recharge? The projected trend of rainfall in the Bandung groundwater basin up to 2100 is

calculated by applying bias correction to the CMIP6 climate model output. This correction

is necessary to bridge the discrepancies of the statistical attributes among the climate

variables estimates. In general, the rainy season is projected to be even wetter, while the

dry season to be drier. Based on the projected temperature and global radiation, the

potential evapotranspiration is projected to increase slightly. An important finding emerges

from this analysis: the projected changes in the surface water component have little

influence on the projected groundwater recharge. This is due to the soil moisture

capacity being the controlling factor in the Bandung groundwater basin in generating

recharge. Under the current climatic factor, more rainfall leads to negligible changes in
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recharge generation once the soil’s maximum capacity is reached. In the study area, the

maximum monthly groundwater recharge change is quantified at 1.8%.

The second research question of the fourth specific objective is What are the possibilities of

groundwater abstraction changes in the Bandung groundwater basin, considering the capital

city relocation plan of Indonesia? The situation of the Bandung groundwater basin is

quite unique. Capital city relocations are relatively rare events, let alone projecting future

groundwater abstraction in a data-scarce and highly groundwater-dependent area that

covers the capital’s neighboring cities. Meanwhile, groundwater abstraction projection

is often considered in many previous studies to be the most influential factor in future

groundwater status projection, even when compared to climatic projection. Therefore,

multiple diverging scenarios representing different trajectories for future groundwater

abstraction are necessary to be developed. These scenarios encompass projections where

groundwater abstraction is expected to decrease, be constant, and increase in the future.

The abstraction wells’ locations also have to be adjusted according to the changes in the

abstraction rate. The aim is to capture a broad range of potential future groundwater

availability scenarios, accounting for the various possibilities of groundwater abstraction.

The variety of scenarios is also supposed to provide valuable insight that can assist in

formulating adaptation policies in response to the capital city relocation plan.

The final research question is To what extent do the changes in climatic forcing and anthro-

pogenic activities, both each and combined, influence the future groundwater availability in

the study area? The two preceding paragraphs explained that climatic factor primarily af-

fects the forcing component (groundwater recharge), while anthropogenic factors influence

the boundary conditions (particularly groundwater abstraction) in the conceptualization

of a groundwater flow model. For the climatic factor, despite the projected changes in

climate variables, the basin parameters possess a substantially more influential control in

generating groundwater recharge. The highest relative change of the monthly groundwater

recharge median of 1.8% does not propagate significant changes to the simulated

groundwater level and storage changes. The anthropogenic factor, however, conveys a

stronger effect on the groundwater level and storage changes. These projections range

from a depletion rate twice the current rate under increased abstraction to the potential

for groundwater replenishment with decreasing abstraction. Combined, it is made clear

that policies and regulations focusing on groundwater abstraction management is

the priority to achieve future groundwater governance.

7.1.5 Answering the primary objective

With the specific objectives successfully achieved, this thesis delves deeper into the primary

objective, which is to enhance the quantitative understanding of the groundwater system in

a data-scarce area, primarily focusing on the Bandung groundwater basin. As groundwater

flow is not detachable from the water cycle, this section also provides insights into the
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hydrological cycle as a whole. The discussion below reports the state of the art of the

surface water cycle in the study area before and after the completion of this thesis, followed

by a similar analysis of the subsurface flow.

Indonesia, as a developing country, faces significant challenges in hydrological studies,

particularly concerning data availability. In the Bandung groundwater basin, fortunately,

several rainfall stations’ measurements are (partially) accessible. Additionally, the growth

of open-source remote sensing-based products has expanded opportunities for hydrological

research in the region. However, studies that incorporate multiple data sources, employ

spatially distributed approaches, and consider uncertainty bounds are still relatively

scarce. To our knowledge, the majority of hydrological studies in and around the study

area are conducted, still, on the basis of rainfall stations’ dataset only. On the other hand,

at the same time, many studies point out the low confidence in the reliability of using such

an estimate. There are only an extremely limited number of studies in translating and

interpreting the point data to spatially distributed hydrological variables’ estimates, too.

Conventional methods such as the Thiessen polygon to estimate areal rainfall or lumped

modeling instead of a spatially distributed approach are still often used. On another note,

in the few available publications, analysis of the water balance components’ uncertainty

bounds is often lacking. Even with only a limited source of rainfall estimates that is not

openly accessible, large discrepancies are found among reports. This is compounded by

further uncertainties in the hydrological model structure, calibration data, and so on,

resulting in even larger discrepancies on other subsequent variables, for example, river

discharge and basin water storage changes.

In this thesis, multiple estimates of water balance components are collated and compared

to improve the understanding of the hydrological processes. The issue of spatially dis-

tributed modeling is tackled by performing hydrological simulation using a high-resolution

distributed Wflow sbm model, using global data to supply the model parameterization.

With a wide variety of estimates from field measurements, interpolated point datasets,

hydrological model simulation, remote sensing, and reanalysis products, the issues of un-

certainty in estimating water balance components are addressed using the uncertainties’

quantification of the Extended Triple Collocation (ETC) technique. The results indicate

the importance of groundwater flow modeling in understanding the subsurface processes

as well as the story of the water cycle as a whole. Relying solely on the surface

water components to determine basin water storage changes leads to an inconclusive

deduction of the basin’s overall status, with results that are easily swayed and highly

sensitive to modelers’ bias and decision-making processes.

The central focus of this thesis, the groundwater system in the Bandung groundwater

basin, has seen even fewer research efforts compared to surface water systems. Up until

2020, the Office of Mineral and Energy Resources (ESDM) of West Java Province was

legally assigned the responsibility of managing groundwater in the study area. However,
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the ESDM task extends far beyond a single topic of groundwater; it encompasses also the

topic of energy generation from solar, water, biogas, and geothermal, as well as material,

metal, and mineral mining, plus sub-urban area electrification. Given the extensive

scope of their duties, conducting regional-scale groundwater research simultaneously was

a challenge. Most of the groundwater research of old, to our knowledge, focuses on

problem identification and reports (Wangsaatmaja et al., 2006; Gumilar et al., 2015;

Tirtomihardjo, 2016). The cited papers outlined the general overview of the Bandung

groundwater basin and provided some dwindling groundwater table measurements, along

with figures on the increasing pressure for water supply. However, concrete and quantitative

solutions were often elusive and obscured by uncertainties (Delinom, 2009; Delinom and

Suriadarma, 2010; Abidin et al., 2012; Pujiindiyati and Satrio, 2013; Taufiq et al., 2017).

The studies on groundwater modeling, in particular, were hampered by (1) the availability

of a reliable distributed hydrological model that provides dependable groundwater

recharge estimates, (2) limited computational power that restricts the model’s spatial

resolution, and (3) the nature of open-source data that were previously not so common

within the scientific communities in the study area (especially before 2010), besides (4) the

insufficient and inadequate groundwater-related information, such as borehole

data, observation wells’ data, and more, to build the well-grounded groundwater flow

model. Nonetheless, some valuable and relevant findings from previous research remain

applicable today and have been utilized in this thesis. For instance, the assignment of a

no-flow boundary condition on the model’s northern side boundary is based on earlier

research that identified the influence of the Lembang geological fault on groundwater flow

dynamics in the Bandung groundwater basin (Delinom and Suriadarma, 2010; Pujiindiyati

and Satrio, 2013). Additionally, previous research efforts pointed to the existence of

aquifer interactions, although quantifying these interactions was challenging given the

limited information available at the time (Widodo, 2013; Taufiq et al., 2017). Overall,

while earlier research in the Bandung groundwater basin faced various constraints, it laid

the groundwork for subsequent studies and contributed valuable insights that continue to

inform current research efforts.

This thesis addresses the four major challenges mentioned earlier to enhance the accuracy

of groundwater flow quantification. Firstly, the groundwater recharge estimates were

computed using the distributed Wflow sbm model simulation calibrated by the river

discharge measurement and, partially, the water storage change of GRACE. This approach

is expected to improve the precision and accuracy of groundwater recharge

estimates. Secondly, the groundwater flow model is set at a higher spatial resolution,

with grid cells measuring up to 100 m × 100 m. To the best of our knowledge, this

represents the most detailed model available for the study area. Thirdly, unlike the

previous model, which was not freely accessible, the model developed in conjunction

with this thesis has been made available in an online open-source repository. This

ensures transparency and allows others to access and review the model configuration and



Ch
ap

te
r 

7

7.2 Lessons learned on data-related strategy 139

parameterization. Lastly, to address data scarcity, several initiatives were undertaken.

Collaboration with ESDM was initiated to obtain as much relevant information as

possible. A field campaign was conducted to gather additional data, and existing

data collation efforts by previous researchers, such as Rahiem (2020) on borehole data

and Irawan et al. (2016) on environmental water tracers data, were utilized. These

efforts have collectively contributed to updated knowledge in the study area, covering (1)

improved groundwater recharge estimates, (2) reliable groundwater flow model,

(3) groundwater flow mechanism understanding, and even (4) groundwater regime

projection under changing climatic forcing and anthropogenic activities.

7.2 Lessons learned on data-related strategy

After conducting the studies presented in this thesis, several lessons have been learned,

particularly regarding data availability. These insights can serve as valuable guidance

for improving the current data situation and laying a robust foundation for future data

acquisition related to groundwater variables. Consequently, better data are expected to

upgrade the quality of future groundwater modeling studies in the Bandung groundwater

basin, specifically, and in other data-scarce areas, generally.

7.2.1 Challenges of data-scarcity

The primary challenge often encountered when initiating groundwater-related studies is the

issue of data quantity. In this context, the term quantity could be associated with many

things. Temporally, lack of data quantity may manifest as data shortage. Alternatively,

it could also relate to measurement frequency. For example, having river discharge

data spanning a long time frame but collected infrequently (e.g., annually) would provide

limited insights into the behavior of the measured stream, particularly in the context of

rapid and dynamic fluctuations, such as floods. Spatially, a lack of data quantity is linked

with point representation over an area. Obviously, it is preferable to have more data

points instead of a few or even a single point of measurement covering an area, although

some factors need to be considered.

One crucial factor regarding the required number of data points is the spatial variability

of the area in focus. In a heterogeneous area, a higher number of observation points is

necessary to capture and understand the spatial variations adequately. On the contrary, in

a homogeneous area where features exhibit little variation, fewer measurement points may

suffice. In a data-scarce area with limited data points, using only available data immediately

without context could lead to a misinterpretation of the actual integrated/aggregated

system of the study area. Unfortunately, to understand the spatial variability itself, a

lot of points of measurement are usually obligatory in advance. Therefore, to achieve

well-distributed observation points considering a site’s spatial variability, a measurement

network also has to be established under a careful design.
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Ensuring data quality is another critical aspect of data collection in groundwater flow

modeling. Data quality pertains to the accuracy, precision, and repeatability of measure-

ments. It is essential to have confidence in the data, especially when they are used for

driving or calibrating models. Human-operated manual instruments are prone to human

error, while automatic devices require periodic calibration and maintenance. Statistical

analysis is typically used to evaluate data consistency, especially in detecting outliers,

trends, and more. More importantly, in many instances, experienced researchers rely on

their intuition and judgment to perform initial screenings of data quality, which can be

crucial for identifying and addressing issues early in a research process.

Another important aspect in assessing data quality is the representation of a measure-

ment. For example, groundwater table data from an observation well. Such data are

typically used to evaluate a groundwater flow model simulation, where the groundwater

head from both the observation and simulation are compared. However, it’s important

to recognize that the spatial scale of an observation well is typically much smaller than

that of a grid cell in a groundwater flow model. As a result, the observed and simu-

lated groundwater head values represent different spatial coverages, even though they

measure the same variable. Consequently, the comparison reliability becomes a function

of the actual basin system’s homogeneity across the space covered by the grid cell size.

In cases where the basin exhibits significant spatial variability, these comparisons may

require careful interpretation. Additionally, the location of observation wells can introduce

biases. Wells positioned near physical boundary conditions, such as surface water bodies

or groundwater abstraction wells, may be influenced by their proximity to these features,

leading to potential inaccuracies in the measurements. These factors should be considered

when using observation well data in groundwater modeling and analysis.

Within the topic of data quality, good data also calls for accurate and complete

metadata. It is important for hydrology and hydrogeology data, at minimum, to include

information on measurement time, location, data type, size, and variables to measure.

Providing measurement location and time, for example, is crucial for understanding spatial

and temporal patterns and trends of the measured variables. Specifically, additional

information should also be available depending on circumstances. For an observation well,

details on well construction drawings and soil stratigraphy should be present. For a rainfall

gauge, the elevation placements, device calibration history, and surrounding environments

(canopy, building density, topography) should be attached to the data storage. This also

applies to other observation data. With all the included information, metadata helps to

contextualize data values, and might further assist in data screening.

Ultimately, a large quantity of high-quality data would only be useful should they be

provided with open accessibility. There are, obviously, pros and cons in open-sourcing

hydrology and hydrogeology data. Open-source data have the potential to reach higher

numbers of users. As a result, it leads to more research that might be beneficial to the
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study area and foster collaboration among the involved stakeholders. It also promotes

transparency, which indirectly can enhance data quality. On the other hand, a solid and

robust framework is necessary to initiate and maintain open-source data platforms. Quality

control of data input is obligatory and becomes even stricter. However, as much effort

is put in place to regulate data input, controlling public data usage and its output is far

more complex nonetheless. Unverified research output based on open-source data might

be overlooked, and worse, lead to misinterpretation in perceiving the actual situation.

Therefore, in order to achieve good hydrology and hydrogeology data accessibility, a

strong recommendation is made for the involvement of government agencies. Legal

regulation in citing the use of open-source data could be mandated, and such an authority

should only be bestowed to the official government bodies.

7.2.2 Strategies to overcome data-scarcity

As research in data-scarce areas is inevitable in the present time, in this section alternative

approaches to gather insights and information in data-scarce areas are explored. Some

require financial investment, but with careful planning, the gain would be valuable. Each

point discussed below, though seemingly evident, warrants consideration due to its relevance

in addressing data scarcity challenges. It is worth noting that the ultimate objective isn’t

simply to perpetually conduct research in data-scarce areas, but rather to empower these

regions with the necessary resources to transform them into data-sufficient areas. This is

further discussed in Section 7.3.

Under the situation where no open-source data are available, the significance of literature

from local sources cannot be overstated, particularly those written in the local language of

the study area. In various regions across the globe, many hydrology and hydrogeology data

are meticulously collected but remain confined to local repositories, often due to resource

limitations. Initiating collaboration with local legal parties responsible for groundwater

data would unlock a number of opportunities. The same goes for engaging with local

experts. As suggested in Chapter 4, the importance of local context is highly relevant

for basin-scale studies. Therefore, local knowledge should be prioritized, both with and

without the availability and accessibility of global-scale data.

Alternative data sources can also be found through direct interactions with govern-

ment agencies and/or the private sector from other fields/disciplines. In the context of

groundwater-related studies, access to geological documentation and other soil-related

information specific to the study area is of paramount importance. Thankfully, these data

are not the exclusive domain of hydrologists and hydrogeologists. Structural, geotechnical,

and transportation engineers, and professionals from various other fields, are also in the

same boat of gathering and assembling these details, each to their own needs in their

projects. On that account, multi-disciplinary collaboration could commence not only

in the data analysis phase but also during the data collation stage.
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Doing field campaign is also a reliable alternative should such an option be available.

Despite not being able to provide long-term measurement, in general, field campaigns

could be designed as such to specifically suit the needs of the study. It is typically most

useful to measure/estimate variables that are relatively persistent to change over time. At

the very least, it provides the most recent status of the situation. With a well-planned

follow-up, a field campaign also has the potential to add more information to a basin’s

overall knowledge should the measurement results be made open.

7.2.3 Knowledge prowess of multi-source data collation

The improvement of quantitative understanding of the groundwater system in the Bandung

groundwater basin, which is the primary objective of this thesis, serves as a practical

demonstration of the main topic discussed in this section. When examining each chapter

and previous studies as distinct research sources, it becomes evident that the Bandung

groundwater basin is indeed characterized by data scarcity. However, collating data and

estimates from multiple sources proves to be a powerful solution for overcoming

data scarcity challenges.

Estimating water storage changes typically relies on the mass balance approach, which

involves approximating the water balance components. Prior to delving deeply into this

subject in Chapter 3, numerous earlier studies on water balance budgets in the study area

were limited by their reliance on single-source data, making them sensitive to selection bias.

Chapter 3 demonstrates that by incorporating multiple estimates, it becomes possible to

draw more robust conclusions, even in the face of significant uncertainties surrounding

water storage change assessments.

The follow-up chapter in Chapter 4 also exemplifies that data collation does not only

involve one variable in focus with a number of estimation methods but also multiple

variables. Typically, groundwater flow model calibration relies solely on groundwater head

measurements, but in this case, another variable comes into play: terrestrial water storage

change estimates from GRACE. A reliable one-way coupled hydrological and groundwater

flow model was even constructed by incorporating groundwater-related data from the

private sector such as pumping test reports and borehole data, among others.

In Chapter 5, the model evaluation is further carried on by using the environmental water

tracer data. When used solely for hydrogeochemistry studies, such data would have limited

applications. Furthermore, these data were collected in various projects, and no continuous

spatial monitoring network was established. Additionally, the measurements were taken

at different times, which presents challenges in interpreting the situation. However, when

combined with the groundwater flow model, these data offer a unique perspective on

understanding the physical processes of subsurface flow. This comprehensive approach

may not be achievable with the same level of confidence if the analysis were based solely

on one data source.



Ch
ap

te
r 

7

7.3 Future opportunities 143

7.3 Future opportunities

While the chapters of this thesis have primarily focused on the Bandung groundwater

basin, it is important to consider future opportunities not only within this specific area

but also in other data-scarce regions. Notably, extrapolating this analysis to other study

areas requires careful contextualization and consideration of the local conditions and the

surrounding environmental context. As a whole, the lessons learned and the strategies

developed in this thesis are expected to serve as a valuable foundation for addressing data

scarcity challenges in various regions.

From the analysis and modeling standpoint, there remain additional aspects to consider

concerning the estimation of water balance components. While incorporating multiple

approaches to quantify each component may offer even more benefits, investigating the

strategy for the optimal hydrological processes understanding might be worth

exploring. In addition to that, despite the parsimonious nature of the groundwater flow

model in this study, it is imperative to include future data and information to enhance

the model’s future representation of the real-world system.

In terms of the coupling between the hydrological and groundwater flow models, this

study adopts a one-way model coupling approach, primarily due to the differences in the

timescales governing surface and subsurface processes. However, for prolonged simula-

tions, transitioning to a two-way model coupling system is advisable. This method

would enable the reciprocal feedback between groundwater abstraction that removes and

groundwater recharge that brings in groundwater from and to the aquifer to be accu-

rately simulated. Besides, this approach also allows for the determination of groundwater

recharge rates from not only the surface processes but also the available storage within

the groundwater system at a given simulation time.

Considering the current limitations in data quantity within the study area, it is advisable for

future studies to prioritize additional field campaigns, particularly in areas where data

remain limited. This recommendation arises from the uneven spatial distribution of data in

the study area, with a concentration of data points in urban areas. Expanding measurement

points in rural and mountainous regions would not only provide valuable information at

specific locations but also enhance our understanding of the spatial variability within the

Bandung groundwater basin. In a broader context, as previously discussed, increasing the

number of data points can contribute to the development of more comprehensive datasets

for future research and analysis.

From the time spent on the field, there are also noticeable major opportunities to assemble

data that have been measured. A large number of projects have been taking place in

the Bandung groundwater basin and many field measurements have been collected, from

borehole data, pumping test data, and more. However, the results often belong and

are confined to independent projects, particularly those initiated by the private sector.
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Consequently, the utilization of these data is typically limited to the scope of their original

purposes. To address this, a concerted effort in data gathering is necessary, ideally

driven by collaboration between government agencies and private sector entities. This

collaboration should encompass both historical and future data, mutually benefiting all

stakeholders involved. Such an endeavor should be underpinned by the establishment

of a robust groundwater database system to ensure the effective storage, retrieval, and

management of this valuable information.

In the context of dependable measuring systems, it is imperative to conduct a comprehensive

assessment of instrumentation. In data-scarce areas, the limited available data often

exhibit questionable figures. Conversely, in data-sufficient areas, the majority of data tend

to be relatively dependable. Although there is a lack of extensive studies on this subject, it

is reasonable to hypothesize a strong correlation between data quality and quantity.

While implementing groundwater data collection practices may be complex, maintaining

and assessing ongoing measurement systems should be less intricate. This underscores the

importance of investing in reliable instrumentation and regularly evaluating its performance

to ensure the accuracy and credibility of the collected data.

To reiterate, the ultimate objective is not to perpetually operate in data-scarce areas but to

empower these regions with the requisite resources to transform them into data-sufficient

areas. In the specific context of the Bandung groundwater basin, this transformation

would unlock numerous avenues for groundwater-related research, including studies on

pollutant transport in groundwater, groundwater potential in mountainous regions, the

impact of geological faults on groundwater flow, and various other topics. Achieving this

transformation necessitates the establishment of a robust groundwater data collection

framework, similar to initiatives undertaken in other data-scarce regions around the

world. Such a framework would serve as the foundation for advancing our understanding

of groundwater systems and addressing critical water resource challenges.



Ch
ap

te
r 

7





References

Abe, Y., Y. Uchiyama, M. Saito, M. Ohira, and T. Yokoyama (2020). “Effects of bedrock

groundwater dynamics on runoff generation: a case study on granodiorite headwater

catchments, western Tanzawa Mountains, Japan”. Hydrological Research Letters 14.1,

62–67. doi: 10.3178/hrl.14.62.

Abidin, H. Z., I. Gumilar, H. Andreas, D. Murdohardono, and Y. Fukuda (2012). “On

causes and impacts of land subsidence in Bandung Basin, Indonesia”. Environmental

Earth Sciences 68.6, 1545–1553. doi: 10.1007/s12665-012-1848-z.

Abou Zaki, N., A. Torabi Haghighi, P. M. Rossi, M. J. Tourian, and B. Kløve (2019).

“Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate

Experiment (GRACE) Data in Bakhtegan Catchment, Iran”. Water 11.7. doi: 10.

3390/w11071456.

Adachi, S. A., S. Nishizawa, K. Ando, T. Yamaura, R. Yoshida, H. Yashiro, Y. Kajikawa,

and H. Tomita (2019). “An evaluation method for uncertainties in regional climate

projections”. Atmospheric Science Letters 20.1, e877. doi: https://doi.org/10.1002/

asl.877. eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/asl.

877.

Ahmadi, A. and M. Nasseri (2020). “Do direct and inverse uncertainty assessment methods

present the same results?” Journal of Hydroinformatics 22.4, 842–855. doi: 10.2166/

hydro.2020.190. eprint: https://iwaponline.com/jh/article-pdf/22/4/842/

844265/jh0220842.pdf.

Alfieri, L., V. Lorini, F. A. Hirpa, S. Harrigan, E. Zsoter, C. Prudhomme, and P. Salamon

(2020). “A global streamflow reanalysis for 1980–2018”. Journal of Hydrology X 6,

100049. doi: https://doi.org/10.1016/j.hydroa.2019.100049.

Ali, R., D. McFarlane, S. Varma, W. Dawes, I. Emelyanova, G. Hodgson, and S. Charles

(2012). “Potential climate change impacts on groundwater resources of south-western

Australia”. Journal of Hydrology 475, 456–472. doi: 10.1016/j.jhydrol.2012.04.043.

Alley, W. M., T. E. Reilly, and O. L. Franke (1999). Sustainability of ground-water

resources. ENGLISH. Tech. rep. Report. doi: 10.3133/cir1186.



146 References

Andani, I. G. A., L. La Paix Puello, and K. Geurs (2020). “Exploring the role of toll

road construction on residential location choice in the Jakarta – Bandung region”. Case

Studies on Transport Policy 8.2, 599–611. doi: https://doi.org/10.1016/j.cstp.

2020.02.001.

Angelakis, A. N., K. S. Voudouris, and I. Mariolakos (2016). “Groundwater utilization

through the centuries focusing on the Hellenic civilizations”. Hydrogeology Journal 24.5,

1311–1324. doi: 10.1007/s10040-016-1392-0.

Ansari, A. H. M., R. Umar, N. us Saba, and S. Sarah (2021). “Assessment of Current and

Future Groundwater Stress through Varied Scenario Projections in Urban and Rural

Environment in Parts of Meerut District, Uttar Pradesh in Ganges Sub-basin”. Journal

of the Geological Society of India 97.8, 927–934. doi: 10.1007/s12594-021-1793-0.

Anurag, H. and G.-H. C. Ng (2022). “Assessing future climate change impacts on ground-

water recharge in Minnesota”. Journal of Hydrology 612, 128112. doi: https://doi.

org/10.1016/j.jhydrol.2022.128112.

Armanuos, A. M., A. Negm, C. Yoshimura, and O. C. S. Valeriano (2016). “Application of

WetSpass model to estimate groundwater recharge variability in the Nile Delta aquifer”.

Arabian Journal of Geosciences 9.10, 553. doi: 10.1007/s12517-016-2580-x.

Aslam, R. A., S. Shrestha, M. N. Usman, S. N. Khan, S. Ali, M. S. Sharif, M. W. Sarwar, N.

Saddique, A. Sarwar, M. U. Ali, and A. Arshad (2022). “Integrated SWAT-MODFLOW

Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under

Projected Climate Change, and Human Development Scenarios”. Atmosphere 13.12.

doi: 10.3390/atmos13122001.

Asoka, A., T. Gleeson, Y. Wada, and V. Mishra (2017). “Relative contribution of mon-

soon precipitation and pumping to changes in groundwater storage in India”. Nature

Geoscience 10.2, 109–117. doi: 10.1038/ngeo2869.

Asoka, A. and V. Mishra (2020). “Anthropogenic and Climate Contributions on the Changes

in Terrestrial Water Storage in India”. Journal of Geophysical Research: Atmospheres

125.10, e2020JD032470. doi: https://doi.org/10.1029/2020JD032470.

Baghel, T., M. S. Babel, S. Shrestha, K. R. Salin, S. G. Virdis, and V. R. Shinde (2022).

“A generalized methodology for ranking climate models based on climate indices for

sector-specific studies: An application to the Mekong sub-basin”. Science of The Total

Environment 829, 154551. doi: https://doi.org/10.1016/j.scitotenv.2022.

154551.

Bakker, M., V. Post, C. D. Langevin, J. D. Hughes, J. T. White, J. J. Starn, and M. N.

Fienen (2016). “Scripting MODFLOW Model Development Using Python and FloPy”.

Groundwater 54.5, 733–739. doi: https://doi.org/10.1111/gwat.12413.
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C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G.

Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren,

D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer,

L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux,
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