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ruminants is better than no monitoring at all.  
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2. Striving for a “one size fits all” solution for monitoring enteric 

methane production of individual dairy cows in practice is an utopic 
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Summary 
Global anthropogenic activities contribute to increasing atmospheric concentration levels of 

greenhouse gases (GHG), mostly in the form of carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), and fluorinated gases (EPA, 2012). At the current GHG emission levels, this 

enhanced greenhouse effect has already and unequivocable started causing climate change, with 

a global surface temperature rise of 1.1°C from 1850-1900 to 2011-2020 (IPCC, 2023) and 

negative effects on the environment. It is therefore urgent and essential that the GHG emissions 

from anthropogenic activities drastically reduce. 

Amongst these human-sourced activities, the ones related to agriculture (within the farm gate) 

themselves appear to be responsible for 9 to 14% of the total share (Mbow et al., 2019). The 

non-CO2 emissions from livestock were estimated by Herrero et al. (2016) to range between 

2.0 and 3.6 Gt CO2-equivalents per year, with cattle being the main source of emissions from 

the sector with 65-77% of the share (FAO, 2021a; Mbow et al., 2019). Considering that 

livestock’s emissions are for 40% due to methane resulting from enteric fermentation (Vonk et 

al., 2018), reducing its production (essentially by cattle) is one of the priorities. However, 

evaluating the performance of mitigation strategies requires techniques to monitor the enteric 

methane production of individual animals. Therefore, this thesis explores possibilities to 

monitor enteric methane production, at individual level and under practical conditions. 

Chapter 1 provides an overview of the current need of reducing anthropogenic GHG emissions. 

Attention is given to the role of agriculture and livestock, with a focus on the emission of 

methane by ruminants. The processes leading to its production, as well as diverse reduction 

strategies are presented. Subsequentially, the available methods for monitoring enteric methane 

production at individual level under both controlled and practical conditions are described. 

Challenges and limitations emerging from practical measurements are highlighted. The aims of 

the thesis are delimited and defined as: 

 Develop an improved version of the cubicle hood sampler and test the performance of 

its embedded sensors. 

 Investigate the ability of two practical devices (portable accumulation chamber and 

cubicle hood sampler) to assess methane production rates in sheep and cows 

respectively. 

 Develop a model allowing to assess postprandial methane production at population and 

individual levels, in order to convert discrete measurements into daily production rates. 
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 Report and discuss the challenges and limitations encountered when monitoring enteric 

methane in ruminants under practical conditions, and provide perspectives. 

To address these aims, a first practical monitoring device is introduced in Chapter 2. This so-

called portable accumulation chamber (PAC) consists in an airtight compartment in which 

small ruminants (e.g. sheep, goats) are held for about an hour. The methane and carbon dioxide 

produced by the animal accumulates in the chamber (no ventilation) before being sampled and 

the methane production rate (MPR) determined from the measured increase in concentration 

and air volume. Literature research showed that this device is already used around the world, 

but its performance in terms of absolute measurement accuracy has not been tested. Using a 

mass flow controller (MFC) releasing known masses of methane, we investigated the ability of 

a set of ten PAC to (repeatedly) measure absolute methane production levels, and to rank 

animals according to them. After excluding two severely leaking chambers, this study showed 

that the measurements made by the remaining eight PAC were highly repeatable across 

chambers and replicates. However, methane recovery appeared to be under-performing by 

roughly 30%, and to be significantly decreasing with increasing injected mass. We suspect both 

the under-recovery and the drift to be due to measurement errors made by the gas analyser as it 

was not calibrated. The results of this study emphasize the necessity of whole-system 

calibrations when monitoring gaseous exchanges. We could conclude that the tested set of PAC 

can be used to rank animals based on their MPR but should not yet be used for studies requiring 

high measurement accuracy. 

Measuring enteric methane production in practice is (currently) only possible through spot 

sampling. Knowing that methane production is generally non-linear and dependent of feeding 

regime and time of the day, we formulated a model allowing to convert non-continuous 

measurements into postprandial production curves. This hierarchical methane rate (HMR) 

model consists in a Bayesian hierarchical stochastic kinetic equation, and is presented in 

Chapter 3. In this chapter, the model was used to fit a non-linear curve on the climate 

respiration chamber (CRC) dataset of twenty-eight lactating cows before computing an area 

under the curve, thereby providing an estimate of MPR from individual cows. The shape 

parameters of the model were pooled across cows (population-level), while the scale parameter 

varied between individuals. This allowed for the characterization of variation in MPR within as 

well as between cows. In this chapter, model fit was thoroughly investigated. We concluded 

that the MPR predictions made by HMR for these cows appeared to reflect individual MPR 
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levels and variation between cows as well as the standard approach taken by scientists with 

CRC data. 

In Chapter 4, the design of the latest cubicle hood sampler (CHS) prototype is presented. This 

system aims at monitoring the individual MPR of dairy cows on-barn while animals lie down 

in  cubicles with CHS. The air exhaled by the animal is collected by the device so that its 

methane content can be evaluated. After detailing the specificities of this prototype, embedded 

sensors intended to identify animals and monitor their head position are presented. The data 

collected by the ultrasonic sensors did not allow to monitor head positions as the sensors kept 

failing. Identifying animals using radio frequency identification (RFID) first yielded 

satisfactory results, but resulted in a failure of the system. Subsequently tested in a new setting, 

sufficient levels of correct identification could no longer be reached. In addition, recovery tests 

were conducted using an artificial reference cow (ARC) to assess the ability of the CHS to 

monitor two levels of MPR. The recovery rates obtained indicated the ability of the system to 

estimate these two production rates. 

Chapter 5 investigates the ability of the CHS to monitor the MPR of twenty-eight lactating 

dairy cows. For this, the individual MPR of the animals were consequently assessed by the gold 

standard CRC and the CHS. Due to the system failures detailed in Chapter 4, CHS data was 

only obtained for twenty-one cows. The daily MPR estimated by the two devices for these 

animals were compared, which showed their poor correlation. Ranks were computed according 

to the production levels, which resulted in an acceptable level of agreement. After that, the 

eleven cows with the most CHS observations (>30) were selected. An independent CRC dataset 

(seventeen cows) was fitted with HMR, thus providing informative prior distributions for the 

hyperparameters used in the eleven cows CHS fit. New linear regression of the MPR levels 

estimated by the CRC and the CHS for these eleven cows showed that using HMR did not 

improve correlation levels nor ranking. However, the results obtained in this chapter enabled 

the detection of a persistent bias in the estimations made by the CHS. We suspect it to be due 

to a poor recovery of the breath sample by the device, and to errors made in the monitoring of 

background methane concentrations. The model could not compensate for this bias, whose 

cause(s) must be identified and resolved. In its current state, the CHS should not be used to 

measure absolute methane production levels, but it can be used (with care) to rank animals. 

Lastly, Chapter 6 concludes and discusses the practical implications of the research conducted 

in this thesis. The challenges encountered when trying to monitor enteric methane with two spot 

sampling devices are summarized. The key factors that appear to play an important role in 
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measurement accuracy are identified. They consist in the recovery of the breath sample and its 

representativeness, the representativeness of the background measurements, the performance 

and accuracy of the whole-system being used to monitor MPR, and finally the overall sampling 

scheme and data analysis. Possible solutions to these challenges and suggestions for further 

outlook are proposed. Overall, this work has brought to light the complexity of monitoring 

enteric MPR in practice, and the interconnectedness of the impacting factors. It is strongly 

recommended to address the key elements in a systemic manner with respect to their 

interconnectedness as demonstrated in this thesis. 

  



Glossary of terms 

| 5 

Nomenclature 

Abbreviations  

ARC Artificial reference cow 

AUC Area under the curve 

CCC (Lin’s) Concordance correlation coefficient 

CHS Cubicle Hood Sampler 

CH4 Methane 

CRC Climate respiration chamber 

CO2 Carbon dioxide 

DIM Days in milk 

DM Dry matter 

DMI Dry matter intake 

ELPD Expected log pointwise predictive density 

FTIR Fourier-transform infrared spectroscopy 

GEM GreenFeed emission monitoring 

GHG Greenhouse gas 

GLM Generalized linear model 

GWP Global warming potential 

HMR Hierarchical methane rate 

HTS Cubicle hood sampler training set 

ICC Intraclass correlation coefficient 

IR Infrared 

LMD Laser methane detector 

LOO-CV Leave-one-out cross validation 

MC Measurement cycle 
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MFC Mass flow controller 

MPR Methane production rate 

OHS Original cubicle hood sampler (data)set 

ORS 
Original climate respiration chamber 

(data)set 

PAC Portable accumulation chamber 

PPC Posterior predictive check 

PPD Posterior predictive distribution 

RFID Radiofrequency identification 

RMSE Root mean square error 

RT Recovery test 

RTS 
Climate respiration chamber training 

(data)set 

TMR Total mixed ration 

ULS Ultrasonic sensors 
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Symbols  

α Scale parameter of the HMR equation 

β, γ and δ Shape parameters of the HMR equation 

σ Variance 

θ Cow head-body angle (degrees) 

CH4 Methane 

[CH4]B Background methane concentration (ppm) 

[CH4]H Hood methane concentration (ppm) 

CO2 Carbon dioxide 

CV Coefficient of variation (%) 

H2 Hydrogen 

m Methane concentration (mg/m3) 

M Molar mass of methane (kg.mol-1) 

N2O Nitrous oxide 

O2 Oxygen 

p P-value 

P Ambient pressure (mbar) 

Q Airflow (m3/h) 

r Pearson’s correlation coefficient 

R Universal gas constant (J.mol-1.K-1) 

R2 Coefficient of determination 

SF6 Sulphur hexafluoride 

T Ambient temperature (K) 

VM Molar volume of methane (m3.mol-1) 
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1.1.  Man-induced climate change and the role of agriculture 
 

Global anthropogenic activities contribute to increasing atmospheric concentration levels of 

greenhouse gases (GHG), mostly in the form of carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), and fluorinated gases (EPA, 2012). By absorbing and reflecting infrared light, 

these gases affect the solar energy outflow of the earth and create a greenhouse effect. Energy 

that is emitted by the sun essentially enters our atmosphere as short wave radiation (visible 

light). When leaving it, due to reflection from the earth surface, it does so as infrared (IR) 

radiations, which correspond to wavelengths that are longer than the visible section of the red 

spectrum, and shorter than microwaves. These IR radiations are perceived as heat. When 

present in the atmosphere, GHG reflect back to Earth part of the IR radiations that should have 

left it, thus trapping heat into the atmosphere (UNFCCC, 2007). At the current GHG emission 

levels, this enhanced greenhouse effect has already and unequivocable started causing climate 

change, with a global surface temperature rise of 1.1°C from 1850-1900 to 2011-2020 (IPCC, 

2023) and negative effects on the environment. It is therefore urgent and essential that the GHG 

emissions from anthropogenic activities drastically reduce. 

However, the reported levels of average annual GHG emissions by the Intergovernmental Panel 

on Climate Change (IPCC) between 2010 and 2019 were found to be higher than in any 

previous decade. All together, they have been estimated to represent a total net emission of 59 

± 6 Gt CO2-equivalents in 2019, which is 12% higher than the level of 2010 (IPCC, 2023).  

Amongst these human-sourced activities, the ones related to agriculture (within the farm gate) 

themselves appear to be responsible for 9 to 14% of the total share (Mbow et al., 2019). Using 

the global warming potential (GWP) values to represent the energy absorbed by each gas over 

a 100 years and in comparison with CO2 (Myhre et al., 2013), this corresponds to a total mass 

of 6.2 ± 1.4 Gt CO2-equivalents that is emitted by agricultural activities (IPCC, 2013). During 

the period going from 2007 to 2016, crop and livestock productions generated 142 ± 42 Tg CH4 

and 8.0 ± 2.5 Tg N2O per year (Mbow et al., 2019). Their respective GWP of 28 and 265 at a 

100 year horizon (Myhre et al., 2013) are not neglectable. 

With numbers varying slightly between references, the non-CO2 emissions from livestock 

(within farm gate) were estimated by Herrero et al. (2016) to range between 2.0 and 3.6 Gt CO2-

equivalents per year, and by the FAOSTAT (2018) to have been around 4.1 ± 1.2 Gt CO2-

equivalents yearly between 2010 and 2016. Independently of the inclusion or exclusion of 

outside-the-farm-gate parameters (e.g. energy and land use, transportation), all references agree 
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that cattle is the main source of global emissions from the livestock sector, with 65-77% of the 

share (FAO, 2021a; Mbow et al., 2019). Small ruminants such as sheep and goat are for their 

part responsible for about 6% of the share, with an estimated yearly emission of 0.47 Gt CO2-

equivalent (FAO, 2013). Even though the GHG emissions per unit of animal product produced 

(GHG emissions intensity) have globally largely declined (approximately 60% lower in the 

2010s than in the 1960s) thanks to improved milk and meat productivity of cattle (Davis et al., 

2015; FAOSTAT, 2018), the general GHG emissions trend from livestock continues to be 

upwards due to the increasing demand for livestock products (Mbow et al., 2019). Considering 

that livestock’s emissions are for 40% due to methane resulting from enteric fermentation 

(Vonk et al., 2018), and for 9% (5% N2O, 4% CH4) due to manure and its management (FAO, 

2014), reducing the methane emissions (especially the enteric methane produced by cattle) is 

one of the priority reduction pathways to be investigated.  

 

1.2.  Methane emissions from cattle: origins and reduction strategies 
 

Methane emitted by cattle originates from two sources: the rumen (enteric fermentation), and 

the manure (biological and chemical processes occurring after excretion). These are described 

below. 

 

1.2.1. Enteric methane  

Methanogenesis 

The first process occurs once a ruminant has ingested feed (postprandial) that is taken to the 

anaerobic, methanogenic environment of the digestive tract. There, and more particularly in the 

rumen, the organic matter contained in the alimentary bolus is degraded by a diverse community 

of anaerobes during what is called the anaerobic fermentation process. First, the primary 

anaerobic fermenters convert the structural carbohydrates, proteins and other organic polymers 

of the plants that are contained in the feed into their monomer components (Figure 1.1). These 

monomers are then converted by the primary fermenters and other microbes into volatile fatty 

acids, H2 (hydrogen) and CO2. These latter products of fermentation (H2 and CO2) are then used 

as main substrate by the methanogens to produce CH4 (Morgavi et al., 2010). Ruminal 

fermentation rate is time dependent, with postprandial durations affecting methane production 

rate (MPR) in a non-linear manner. A rapid rise towards a methane production peak (reached 

30 to 140 min after feeding) and a slow decrease back to the basal production level (Crompton 
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et al., 2011; van Lingen et al., 2017) can be observed in cattle, the amplitude and period 

depending mainly on the feed intake pattern.  

Generally, methane is perceived as not only a potent GHG, but also as an energy loss for the 

animal (reduction of the feed conversion efficiency) and an economic waste for the farmer 

(González-Recio et al., 2020). Nevertheless, it is important to note that it plays a crucial role in 

maintaining the H2 levels to quantities that do not inhibit the normal functioning of the 

microbial enzymes involved in the digestion process of fibrous feed (Morgavi et al., 2010). 

 

 

Figure 1.1. Schematic microbial fermentation of feed polysaccharides and H2 reduction pathways in the 

rumen (Morgavi et al., 2010). 

 

Mitigating enteric methane production 

Diet 

The main driver for enteric methane production has long been known to be the diet. Therefore, 

changing the ration’s content is the most effective straightforward approach to reduce enteric 

methane production (Haque, 2018; Kebreab et al., 2010). Forage and concentrate qualities, 

contents and ratios can be altered. For example, ensuring a lower content of non-digestible fibre 

increases both digestibility and passage rate, therefore redirecting rumen fermentation towards 

propionate (Hills et al., 2015). As shown by Beauchemin et al. (2009), propionate serves a role 
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as an H2 sink, meaning that an increased propionate content in the rumen leads to lower amounts 

of H2 available for methanogenesis. Starch content in the diet can also be increased, for example 

through the implementation of maize in the ration (Hart et al., 2015). At it is low in protein, and 

its starch content partially bypasses the rumen, the production of methane by the methanogens 

is reduced. Still, its digestion in the small intestine provides the animal with the necessary 

energy, notably in the form of glucose. Feeding maize has the simultaneous advantage of 

improving nitrogen efficiency, leading to lower presence of unutilized nitrogen in the urine 

(Dijkstra et al., 2013; Hristov et al., 2013a). Another possibility is to increase the share of 

concentrate in the provided ration. While the increase in dry matter intake (DMI) does lead to 

an increase in absolute methane production (g/d) (Boadi and Wittenberg, 2002; Lovett et al., 

2005; van Wyngaard et al., 2018), it still decreases both CH4 intensity (g CH4 per kg of output 

product) (Aguerre et al., 2011; Yan et al., 2010) and CH4 yield (g CH4 per kg of DMI) (Jiao et 

al., 2014; Tyrrell and Moe, 1972). 

Another approach to be taken with feeding is the inclusion of additives in the ration. They 

usually are based on organic acids, chemical inhibitors, secondary plant compounds (Knapp et 

al., 2014), or probiotics (Haque, 2018), that either directly inhibit methanogens (or 

methanogenesis), favour H2 disposal, or supress ciliate protozoa  (Knapp et al., 2014). In any 

case they must be used with care as too extensive defaunation is correlated with an increase in 

ruminal methanogen density (Mosoni et al., 2011), and too high concentrations of H2 can lead 

to the inhibition of the fermentation process (Weimer, 1998).   

 

Breeding 

Reducing enteric methane production can also be achieved by breeding lines of animals that 

naturally and permanently produce less methane (Boadi et al., 2004). Indeed, several studies 

demonstrated the presence of significant variation in methane production between animals, in 

both sheep and cows, in relation with phenotypic traits and heritability (Breider et al., 2019; 

Lassen and Løvendahl, 2016; Pinares-Patiño et al., 2003). This approach has the key advantage 

of permanently reducing the methane production of the animals. However, breeding individuals 

with lower methane production levels may be incompatible with other breeding objectives 

(Eckard et al., 2010). Genetic selection that improves resistance, health, and fertility of the 

descendance will lead to increased lifetime and productivity, therefore indirectly reducing CH4 

intensity (Knapp et al., 2014). 
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Lastly, herds can be managed differently so that overall (lifetime) productivity is increased 

(Boadi et al., 2004; Johnson et al., 1996; Moss et al., 2000). One approach is to replace non-

productive and low-producing animals with high-producing ones. Maintenance of the latter will 

increase the total net methane production of each animal, but their CH4 intensity will decrease 

(Gebbels et al., 2022; Patra, 2012). This approach must be supported by adequate feeding 

management to improve productivity and reduce CH4 intensity (Haque, 2018).  

 

Other farm management strategies 

Additionally, the number of dry cows and replacement heifers should be kept to a minimum, 

which stems from the need for an increase of the animals’ life expectancy, and the reduction of 

the culling rate (Knapp et al., 2014). Nevertheless, replacement levels that are too low can 

compromise genetic progress and should be avoided (Gill and Allaire, 1976).   

Strategies to increase fertility rate may also be implemented (Smith et al., 2014). Indeed, lower 

fertility rates and increases of days open (number of days a cow is not pregnant) lead to lower 

reproductive efficiency, lower productive lifetimes, and therefore to higher CH4 intensity 

(Knapp et al., 2014). Higher fertility can be achieved by ensuring the good health and comfort 

(e.g. avoidance of heat stress) of the animals (Hansen, 2007; Kadzere et al., 2002), and 

implementing optimal reproduction programs (Knapp et al., 2014).  

A recapitulative overview of the enteric methane mitigation strategies can be found in Figure 

1.2 (Arndt et al., 2022). 

 

Figure 1.2. Enteric methane mitigation strategies in ruminants (Arndt et al., 2022). 
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1.2.2. Methane from manure 

Manure composition and methane production 

Faeces excreted by ruminants are essentially composed of nitrogen (mostly in its inorganic 

form), carbon, and water (Chadwick et al., 2011; Paul et al., 1993). These compounds are part 

of the essential factors leading to the production of CH4 and N2O in excreted manure. Methane, 

for its part, is generated during the anaerobic decomposition of the organic matter that is present 

in faecal matter, and in the bedding material (Batstone et al., 2002; Hellmann et al., 1997; 

Møller et al., 2004). Acid producing bacteria degrade these organic compounds into other 

compounds, such as volatile acids. Subsequentially and in the absence of oxygen, (methane 

producing) bacteria use these volatile acids to produce CH4. Environmental factors, such as 

ambient temperature (Clemens et al., 2006; Sommer et al., 2007), manure composition, and 

manure management and storage (Hill et al., 2001; Ni et al., 2008) highly influence the extent 

to which methane is produced from the excreta. 

 

Mitigating methane production from manure 

A first lever for mitigation is the storage of manure in cooler environments (e.g. outside storage 

in cool climates), as lower temperatures slow down the methanogenesis process (Sommer et 

al., 2004; Umetsu et al., 2005). When ambient conditions are not cool enough, slurry channels 

can actively be cooled. If the exchange energy is functionally used, this can be a cost effective 

approach (Sommer et al., 2004). In addition, solid manure can be composted so that its 

degradable organic matter is converted by microorganisms into CO2 and water. However, 

composting results in losses of nitrogen in various forms (Chavez-Rico et al., 2022). Occurring 

in (primarily) aerobic environments, this process decreases methanogenesis (Amon et al., 

2001). Manure (in all forms) can also be covered during storage, with straw or plastic sheets 

(Chadwick, 2005; VanderZaag et al., 2009). In the case of slurry, the solid and liquid fractions 

can be separated using mechanical separation processes (Burton, 2007), or innovative barn 

floors (Galama et al., 2020). Separate storage of the two fractions results, in most cases but not 

all, in lower methane emissions (Dinuccio et al., 2008; Fangueiro et al., 2008). Chemical 

additives may also be added into the slurry storage to prevent the formation of CH4 (Petersen 

et al., 2013).  
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1.3.  Individual monitoring of enteric methane production 
 

To evaluate the performance of the aforementioned reduction strategies, techniques are needed 

to monitor their effect on the methane production of the animals. In this thesis, focus is given 

to the reduction of the enteric emissions as it represents the main part of methane emissions (ca. 

40%) in the agricultural sector (see section 1.1). While the effect of nutrition on enteric methane 

production can be studied at both individual and herd level, mitigation strategies such as genetic 

selection require individual monitoring (González-Recio et al., 2020). Additionally, they 

require repeated recordings of a large number of animals (Manzanilla-Pech et al., 2021), hence 

the need for monitoring under practical conditions (on farms). Consequently, only the available 

devices that measure the enteric methane production of individual ruminants will be presented.  

 

1.3.1. Flux measurement methods 

The first approach to measuring enteric methane production is with flux methods. The flux of 

a quantity can be defined as being the flow rate of that quantity, across a specific area and period 

of time (Stauffer, 2006). It therefore yields a trend that represents the dynamics of the 

production process. 

 

Closed monitoring devices 

Climate respiration chamber 

The climate respiration chamber (CRC) has long been recognized as being the gold standard 

for measuring respiratory exchanges and gas production from animals, and is used to 

benchmark other methods. They consist of airtight compartments in which individual animals 

are kept for a period of time (Figure 1.3), usually ranging between 1 and 7-d (Hammond et al., 

2016a). They vary in design and dimension between institutes and the species they are made 

for (GlobalResearchAlliance, 2018). 

In the open-circuit CRC, inflowing air is circulated through the chamber to mix inlet air with 

the gases produced by the animal. The concentration of all gases of interest (i.e. CH4) are 

measured in the inlet and the outlet air by a series of gas analysers, and the difference attributed 

to the animal. Methane emission is then determined by multiplying the concentration difference 

with the airflow rate (Kuhla et al., 2015). Measurements made in CRC are systematically 
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corrected for humidity, temperature, and pressure (standard temperature, pressure, dry, STPD) 

as they affect gas volume (Hammond et al., 2016a). In the facility of Wageningen University 

& Research, they allow for one outcome value every 10 min, being the average of samplings of 

120 sec each (Alferink et al., 2015). 

The CRC is the device with the most controllable environment, in terms of ambient conditions 

and air fluxes, therefore resulting in the most accurate MPR estimates. However, critical sources 

of variation remain, which are the air mixing, the airflow (in the chamber and the ducting 

system), and the gas analyser errors (Gardiner et al., 2015). In their study, Gardiner et al. (2015) 

showed that there were significant differences in recovery rate between twenty-two chambers 

across six facilities in the UK. Variation in recovery appeared to be due to uncertainties in the 

sample ducting and flow measurements (15.3%), the chamber mixing (3.4%), and in the 

methane analyser records (1.3%). This work brought to light the need for calibration and 

recovery testing, and the reporting of these results, which was emphasized by Gerrits et al. 

(2017).  

By being highly precise, CRC are ideal for small scale experiments, in which the required 

accuracy and precision levels are high (Lassen and Difford, 2020). However, this methodology 

is expensive, labour intensive and has low throughput, which is prohibitive to measure large 

numbers of animals under experimental settings (Garnsworthy et al., 2019). Furthermore, the 

prolonged confinement within the chamber restricts natural behaviours and induces social 

isolation which could result in behavioural changes, reduced feed intake and performance 

(Gastelen et al., 2015). Reduction of the ingested quantities could result in an underestimation 

of the animal’s methane production rate as feed intake is the primary driver of CH4 production 

by ruminants (Hristov et al., 2013a; Kristen A Johnson and Johnson, 1995). These are limiting 

points for CRC to be used at large scale and in practical conditions. 
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Figure 1.3. Schematic of a climate respiration chamber (Hill et al., 2016). 

 

Portable accumulation chambers 

Portable accumulation chambers (PAC) are an alternative to respiration chambers. 

Significantly less complex in their functioning, they are simple airtight boxes in which an 

animal is held for a period of 40 to 120 min (usually 50) (Jonker et al., 2020b). During this time, 

gases emitted by the animal accumulate in the chamber, while oxygen level depletes (Goopy et 

al., 2011; Hegarty, 2013). Changes in gaseous concentrations are recorded, usually in the 

beginning (to account for background concentrations), and the end of the experiment. The 

volume of the chamber, corrected for the estimated volume of the animal, is then used to 

estimate the mass flux of (methane) gas produced by the animal (Jonker et al., 2020b). They 

offer a low cost and higher throughput alternative to the CRC (Goopy et al., 2011).  

The portable nature of the PAC has enabled researchers across the world to record CH4 

production from thousands of small ruminants, primarily for ranking of animals and selection 

experiments (Jonker et al., 2020b). However, there is a large variation in design of PAC across 

research groups and limited consensus on best practices (Jonker et al., 2020b) which may lead 

to unequal performances. The majority of the PAC validation studies involved recording sheep 

in respiration chambers and then recording with PAC to determine the correlation between both 

devices’ estimates. For example, Goopy et al. (2011) found the methane estimates of PAC and 
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CRC to have a correlation of 0.71, while Robinson et al (2015) reported correlations between 

0.0 and 0.19 when adjusted for liveweight and feed intake. In any case, sheep cannot be 

recorded by both methods simultaneously for logistical reasons, which poses a challenge to 

researchers to determine if differences between measurements with both methods are due to 

true differences in the methodologies or as a result of extraneous biological factors, such as 

intra or inter-day(s) variations, feed intake or dietary changes between measurements (Jonker 

et al., 2020b; O’Connor et al., 2021b, 2021a). 

Additionally, PAC cannot be used over extensive periods of time to avoid negative effects 

which might result from the increasing concentrations of CO2 in the chamber. They also only 

allow for a single spot sample per animal and per day of testing (Hammond et al., 2016a). 

Considering that MPR varies through time and in response to feeding, we can only assume that 

single spot samplings do not accurately reflect the daily MPR level of an animal, as the moment 

of sampling will determine the production rate and impact the extrapolated daily estimate. 

Lastly, animals that are monitored in sequence will not all be monitored at the same phase of 

the postprandial production curve, which adds to the variability between estimated levels. Only 

repeated measurements, randomly spread over time, could compensate for this type of error. 

The usage of PAC should therefore still be homogenized and optimized. 

 

 

Figure 1.4. Schematic of a portable accumulation chamber. 
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Semi-closed monitoring devices 

GreenFeed 

The so-called GreenFeed Emission Monitoring (GEM) system (C-Lock Inc., South Dakota) is 

a stand-alone head chamber that can be placed anywhere in the pastures or the barns (Figure 

1.5). It is programmed to distribute small amounts of concentrate at specific time intervals, with 

the aim of attracting animals into to the system. The system, equipped with radio frequency 

identification (RFID), identifies each animal upon arrival and times the duration of its presence. 

If an animal remains present with its head acceptably placed within the system for a minimum 

of 3 min, the concentration of CH4 and CO2 in its breath will be monitored by the nondispersive 

infrared sensor (Tedeschi et al., 2022) for about 3 to 7 min (Hammond et al., 2015). The 

concentration levels monitored are differentiated from the background concentrations to 

distinguish the production of the animal from the ones of other sources. This information is 

then connected to the airflow going through the system (which is induced by a fan and 

monitored by an anemometer) so that a flux can be calculated for each visit. The fluxes are then 

averaged over the measurement period to obtain a daily mean MPR (Della-Rosa et al., 2021; 

Tedeschi et al., 2022).  

However, it is known that the confidence level of a MPR estimate is dependent on the number 

of samples taken for each animal (Cottle et al., 2015), their duration (Arthur et al., 2017), and 

their distribution within a 24-h period (Della-Rosa et al., 2021). There seems to be no consensus 

on the recommendations made in the literature regarding the number of visits required and their 

distribution over time (Gunter and Bradford, 2017; Hristov et al., 2015; Manafiazar et al., 2016), 

nor on how to analyse and average the collected data (Hegarty, 2013; Manafiazar et al., 2016). 

Repeatability and accuracy of the MPR estimated by the GEM seem to differ as well, as a result 

of the experimental design, the sample size, and the (reference) monitoring device their output 

is compared to. For example, Huhtanen et al. (2019) found GEM measurements to be highly 

correlated to CRC ones (r > 0.90), while Hammond et al. (2015) found them to have poor 

concordance with the levels estimated by the gold standard. In the same study however, they 

found GEM estimates to have moderate concordance with the levels measured with the sulphur 

hexafluoride tracer gas method. For their part, Alemu et al. (2017) found CH4 estimates to differ 

between GEM and CRC, but concluded that MPR can be accurately estimated by the GEM 

when time of feed intake is known. Optimally, full system calibration of the GEM system 

should be done to conclude if these diverging results are the consequence of varying 

experimental designs, frequency and number of samples taken, or are due to measurement 
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errors that lie within the system. A calibration study conducted by McGinn et al. (2021) with a 

mass flow controller (MFC) releasing known masses of CH4 into a GEM placed in a CRC 

allowed the authors to conclude that the GEM can accurately estimate CH4 emission rate over 

a short measurement period. However, the authors stipulated that their study neglected the 

additional errors that are known to occur when determining the 24-h MPR of an animal 

(Velazco et al., 2016), which may lead to different results in practice. 

 

 
Figure 1.5. Schematic of a GreenFeed emission monitoring system (Hill et al., 2016). 

 

Cubicle hood sampler 

The cubicle hood sampler (CHS) was first developed by Wu et al (2016). Placed in the cubicles 

of a dairy barn, it relies on the fact that cows lie down up to 12-h per day in a relatively stable 

position, therefore enabling extended monitoring durations. This makes the CHS an appealing 

method, as it could allow to overcome the effect short sampling times have on the MPR 

estimations of other alternative methods (Kuhla et al., 2015).  

Two prototypes were designed and developed by Wu et al (2016). They both consist of three 

vertical panels isolating the space around the head of the cow, that are connected to an extraction 

hood. The hood is connected to a piping system at the end of which a fan extracts the air from 

the hood, with the aim of collecting all air exhaled by the cow present cow. The piping includes 
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a flow rectifier and a flow meter (enabling flux calculation). Its methane concentration (amongst 

others) is then monitored by a Fourier Transform Infrared (FTIR) spectrometer gas analyser. 

A fan, placed before the exhaust, induces a flow rate within the CHS (Figure 1.6). 

In the first design, called “basic sample hood”, the gas sampling of the hood consists in an open 

inlet (Figure 1.7). In the upgraded version (called “fume sample hood”), two additional panels 

(one vertical, one horizontal) are added inside the hood to reduce inlet size. Inlet area is thus 

limited to perforations points in the added panels, aiming to create a negative pressure under 

the hood, thus increasing the suction effect, while limiting dilution with background air. A 

complementary curtain is mounted at one end of the hood (behind the cow’s shoulders) to 

decrease the hood openness (Figure 1.8).  

The authors evaluated the ability of the fume sample hood to recover known fluxes of methane 

in a barn (basic design tested under laboratory conditions). These fluxes were induced by an 

artificial reference cow (ARC) that controls the methane release rate through its mass flow 

controller (MFC), and simulates the exhalation and eructation cycles of a cow. Regardless of 

the air velocity and ARC-to-inlet distance that were experimented with, the fume sample hood 

was able to recover 97.2 ± 8.1% of the methane released. 

 

Figure 1.6. Schematic side view of the Cubicle Hood Sampler, with a fan creating a controllable airflow 

creating a negative pressure at the inlet, and a piping system equipped with a flow meter transporting 

the extracted breath air to the exhaust. Arrows indicate airflows. Positioning of the Cubicle Hood 

Sampler is shown on the right (Wu, 2016). 
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Figure 1.7. "Basic sample hood" prototype, showing the front, cross-section 1-1, and top view of the 

hood, composed of a top hood (A1), a front panel (A2), and two side panels (A3) (Wu, 2016). 

 

 

Figure 1.8. "Fume sample hood" prototype, showing the front, cross-section 1-1, and top view of the 

hood, composed of the same components as the basic sample hood with two additional panels, one 

placed vertically and one horizontally. The panels contained three gas inlets: at the front (B1), the middle 

top (B2), and the upper top (B3). Each gas inlet was made of a perforated panel with round holes. The 

fume sample hood was also extended with a top curtain (C) and two extended side panels (D). 
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Open-air monitoring device 

Tracer gas measurements 

Tracer gases are not flux methods per se, but consist in linking information on two fluxes. For 

this, the known release rate of a gas is linked to the unknown production rate of another gas, in 

this case methane. The most common case for measuring enteric methane is to use sulphur 

hexafluoride (SF6) gas. 

Its use was first reported by Johnson et al. (1994a), who assumed that the emission of SF6 

simulated the one of CH4, with identical dilution rates. They thus stated that the MPR of a cow 

could be calculated by using the CH4 and SF6 concentrations measured in the breath air, together 

with the known release rate used for SF6. They introduced a protocol in which a permeation 

tube (a threaded stainless steel tubing equipped with a cap) releasing a controlled rate of SF6 

(between 500-1000 ng of SF6/min in their case) is placed in the rumen of a cow (Figure 1.9). 

The animal is simultaneously equipped with a collection vessel placed on its back or around its 

neck, and a capillarity tube going from the vessel to the head of the animal (close to the mouth 

and nostrils) where it is held in place by a halter. Samples of the exhaled air are continuously 

collected over a recommended period of minimum 5-d, covering full 24-h periods (Hammond 

et al., 2016a). Regular measurements of the background concentrations in SF6 and CH4 must 

be made so that they can be deduced from the concentrations found in the collection vessel 

(Williams et al., 2011). 

A number of studies compared the MPR estimated for the same animals in CRC and with SF6 

as a tracer gas. In general, the SF6 method leads to slight variations in the methane production 

that is estimated, which can oscillate between 5 and 10% lower or higher than the MPR 

estimated by the CRC for the same animals (Boadi et al., 2002; Grainger et al., 2007; Pinares-

Patino et al., 2011). However, variation within and between animals was found to be 

considerably higher with the SF6 approach than with the gold standard (Grainger et al., 2007; 

Pinares-Patino et al., 2011). Guidelines were published in 2020 to try to homogenize the use of 

this technique to measure enteric methane from ruminants (Berndt et al., 2020). By addressing 

issues such as the declining release rate of SF6 through time (Deighton et al., 2013), or the 

necessary low background CH4 and (residual) SF6 concentrations (Berndt et al., 2020) could 

help reduce variability and increase repeatability and accuracy. 
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Figure 1.9. Schematics of the sulphur hexafluoride tracer gas technique (Hill et al., 2016). 

 

1.3.1. Concentrations measurements methods 

The second approach to monitoring enteric methane production is by evaluating the 

concentration of methane that is present in the breath sample. Devices that solely monitor 

concentration do not allow the calculation of methane production rates, but provide information 

on the quantity of gas that is present in a certain volume. 

 

Semi-closed monitoring device 

Sniffers 

The use of sniffers was first presented by Garnsworthy et al. (2012) and corresponds to the 

eructation samples that are taking during feeding or milking. They can globally be characterized 

as sampling probes placed in automated milking systems (AMS) or in feeders that are directly 

connected to a gas analyser (Figure 1.10). Gas analysers used differ between experiments and 

facilities, which operate at varying sampling intervals and accuracy levels. An embedded 

software is used to identify and monitor eructation peaks (Hammond et al., 2016a). Usually, 

these peaks are monitored over visits of 3 to 10 min to be analysed as an overall mean, or as the 

mean of the detected eructation peaks (Garnsworthy et al., 2019). Eructation peaks can be 

converted into concentrations emitted by the animal by estimating the dilution rate of the 
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sampled eructed air. A value of the dilution rate can be obtained through regular calibrations 

(Bell et al., 2014). 

Downsides associated with sniffers are linked to the fact that they solely monitor 

concentrations, and not fluxes, which do not allow to estimate production rates (Lassen and 

Difford, 2020). They also only detect and monitor eructation peaks, and do not take into account 

volume or rate of exhaled air nor flatulence (Garnsworthy et al., 2012) and are therefore not 

representative for all emissions. In addition, Hegarty (2013) and Huhtanen (2015a) have 

highlighted the influence of the distance between the animal’s head and the inlet on the gas 

concentrations measured in exhaled air samples, with longer distances leading to lower 

concentrations measured and to biased estimates. Lastly, visit frequencies vary between 

animals, with respect to parity, feed intake, milk yield, and milking frequency. Dominances and 

competition for accessing the feeder or AMS are also likely to impact visit frequency and 

timing, and thus the resulting methane estimates (Hammond et al., 2016a; Lyons et al., 2014). 

Presenting high levels of random errors and experimental variation (Huhtanen et al., 2015a; 

Huhtanen and Hristov, 2018; Wu et al., 2018), the use of sniffers has been excluded from 

national inventories and nutritional studies (Garnsworthy et al., 2019; Hristov et al., 2018), but 

they could maybe still be used in studies investigating genetic correlations, as sniffers 

measurements have been shown by some studies to be repeatable (Lassen et al., 2012) and 

heritable (Lassen and Løvendahl, 2016; Pszczola et al., 2019). 

 

Figure 1.10. Schematic front (left) and side (right) view of a sniffer (Garnsworthy et al., 2012). 
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Open air monitoring device 

Handheld laser methane detector 

The handheld laser methane detector (LMD) is another approach to monitoring the methane 

concentrations of breath samples. With this technique, a portable device is held by an operator 

and taken either on a field or in a barn. Each animal must be approached (and monitored) 

sequentially by the operator. When sufficiently close to the animal (1 to 3 m), the LMD is 

oriented towards the head of the animal, and held to sample its exhaled air (Chagunda et al., 

2009). The LMD uses infrared absorption spectroscopy to analyse the methane concentration 

of the collected sample. If animal movement allows it, data acquisition should last for a short 

(continuous) period of 2 to 4 min (Ricci et al., 2014). The data thus obtained represents the 

animal’s respiratory cycles of the monitoring period. Only the detected peaks representing an 

increase in CH4 resulting from an exhalation or an eructation are used in the data analysis (Ricci 

et al., 2014).  

Studies reported that data obtained with LMD were in good, positive agreement with CRC when 

samples were measured simultaneously, i.e. LMD used in CRC (Chagunda and Yan, 2011; Sorg 

et al., 2017). However, sequential comparison of LMD and CRC estimates yielded mixed 

results, notably as a result of frequency and time of sampling (Ricci et al., 2014). It was shown 

that collected values must then be differentiated and segregated in two categories (exhalation 

and eructation) to improve its correlation with CRC measurements. The authors however 

reported it to be a difficult process. Additional difficulties linked to approaching unrestricted 

cows, and the effect of duration (Boré et al., 2022), relative humidity, pressure, wind speed and 

direction (Chagunda et al., 2013) on the LMD’ methane measurements. However, the high 

portability of the device has the advantage of enabling spot sampling on varying practical 

conditions and production systems (Chagunda and Yan, 2011; D. et al., 2018). 
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Figure 1.11. Picture of a handheld laser methane detector (Chagunda et al., 2013; Credit: A. Ross). 

 

1.4.  The challenges of practical monitoring 
 

Monitoring enteric methane production in practical conditions excludes the use of CRC and 

inevitably comes with challenges. First of all, this type of devices generally either rely on the 

voluntary visit of animals into the system (e.g. GEM, sniffers, CHS), or requires the presence 

of an operator (e,g. LMD, PAC). In either case, only spot samples are possible, with minimal 

to inexistant control on the sampling scheme. Considering the general non-linearity of methane 

production after feed intake, converting snapshots into daily estimates is subject to errors. It has 

now been well established that the confidence level of a MPR estimate depends on the number 

of measurements taken each day for an animal (Cottle et al., 2015), their duration (Arthur et al., 

2017), and their distribution over a complete 24-h period (Della-Rosa et al., 2021). In addition, 

feeding frequency diverge between individuals, which naturally eat varying quantities, and at 

different times, speeds and frequencies. These factor have a major impact on the number of 

daily samplings and their intervals that are necessary for spot sampling techniques to obtain 

reliable methane production estimates (Lee et al., 2022; van Lingen et al., 2023). However, 

sampling frequency cannot be easily altered, making levers for action limited. Models could 

potentially prove useful with this matter, for example if used to convert discrete measurements 

into daily rates by compensating for missing parts of the production curve. However, such 
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models have not yet been validated and their added value remains to be proven. The use of a 

tracer gas (e.g. SF6), for its part, allows for a continuous monitoring over multiple days, and is 

not restricted to indoor use. While this represents an advantage, this method requires cows to 

wear equipment and to be handled, which may cause stress. Additionally, SF6 is a highly potent 

GHG with a GWP of 23500 (Myhre et al., 2013), which’s use should be limited.  

Secondly, additional challenges come with the collection of the sample itself. As about 98% of 

enteric methane is released by ruminants through exhalation and eructation (Johnson et al., 

2000), breath samples should be collected and analysed. However, collecting breath air implies 

dealing with dilution, a problem that amplifies for devices operating in the more open 

environments (e.g. CHS, LMD). Indeed, the level of dilution of breath samples has been shown 

to be affected by two main factors: the airflows (speed, pattern, direction) around the device 

(Wu et al., 2016), the muzzle position and its distance to the inlet (Huhtanen et al., 2015a). 

Airflows can only partially be modified or avoided, for example by placing panels or curtains, 

and selecting the positioning of the device with care. Computational Fluid Dynamics (CFD) 

can be of help to model airflows in the livestock buildings (Rong et al., 2016), and to find the 

most optimal location to place the device. Head - and thus muzzle - positions are not to be 

altered, as the animals should be able to move freely. Nonetheless, the angle and distance 

between the muzzle and the inlet has been shown to be highly correlated with measured gas 

concentrations (Huhtanen et al., 2015a), therefore impacting the MPR estimate. The monitoring 

devices thus need to include sensors that monitor this distance so that monitoring ceases when 

the distance becomes too great (as with the GEM), or for the measurements to be filtered out at 

a later stage. 

Additionally, background methane concentrations must be monitored in parallel to any device’s 

enteric methane measurement. Background concentrations must be subtracted from the levels 

contained in the breath, so that methane produced by a cow of interest can be differentiated 

from the emissions of the barn (herd, manure). However, background methane concentrations 

vary in space and time (Wu et al., 2016), meaning that the location, timing, and frequency of 

background sampling can lead to monitoring different concentration levels. Errors made in 

background estimation will reflect on the accuracy of the MPR estimate. However, the high 

uncertainty that can be linked to background concentration measurements can be overcome 

when the concentration of the breath sampler is much greater than the background levels 

(McGinn et al., 2021). Aiming for the accumulation of breath air to increase its methane 

concentration can be one approach to take. 
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Finally, the levels of accuracy and robustness that are desired are dependent on each study and 

its objectives (i.e. the study of relative differences between animals or the monitoring of 

absolute levels of methane production). Devices designed to monitor enteric methane in 

practical conditions must therefore be conceived and tested in accordance with what they wish 

to evaluate. 

 

1.5.  Study aims 
 

The lack of reliable practical devices to monitor enteric methane production at large scale is a 

hindrance to the evaluation and implementation of GHG reduction strategies in livestock 

production. Although many devices have been developed for this purpose, they do not yet 

operate satisfactorily (Hill et al., 2016), and many challenges remain to be tackled. This thesis 

aims at addressing some of these challenges. 

The framework of this study revolves around the exploration of three key aspects. Firstly, it 

aims to investigate the accuracy of methane production rates estimated by two practical devices, 

both in the presence and absence of animals. Secondly, it explores the conversion of discrete 

measurements (resulting from spot sampling methods) into daily production rates, taking into 

account the general non-linearity of the postprandial methane production curve. Lastly, it seeks 

to identify the factors affecting and limiting individual measurements of enteric methane fluxes 

under practical conditions. This comes down to the following study aims: 

 Develop an improved version of the cubicle hood sampler and test the performance of 

its embedded sensors. 

 Investigate the ability of two practical devices (portable accumulation chamber and 

cubicle hood sampler) to assess methane production rates in sheep and cows 

respectively. 

 Develop a model allowing to assess postprandial methane production at population and 

individual levels, and to convert discrete measurements into daily production rates. 

 Report and discuss the challenges and limitations encountered when monitoring enteric 

methane in ruminants under practical conditions, and provide perspectives. 
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1.6. Thesis layout 
 

In Chapter 2, a validation study was conducted with a set of 10 portable accumulation 

chambers to investigate their ability to measure absolute methane production rates and to rank 

animals according to these levels. This was achieved through the completion of recovery tests 

using a mass flow controller, which releases known masses of methane. Chambers were tested 

for their ability to repeatedly record the same mass, as well as for their capacity to accurately 

monitor a range of masses. This work represents the first real calibration test conducted in 

portable accumulation chambers, and proposes an accessible protocol to detect leakages and 

calibrate portable accumulation chambers’ measurements. 

Chapter 3 presents a first of its kind methane production model. In this chapter, we present an 

extension of the model of Crompton et al. (2011), which we reformulated into a Bayesian 

hierarchical kinetic model. In this so-called hierarchical methane rate model, parameters 

representing the shape of the methane production curve were pooled across cows (population-

level), while the scale parameter was allowed to vary between cows. This allows the borrowing 

of information across cows, while representing between cows variability. Fitting the model with 

climate respiration chamber data showed how the model can be used to convert discrete 

measurements into non-linear curves, before deducting daily methane production rates. 

In Chapter 4, the latest prototype of the cubicle hood sampler is presented. This device aims 

at monitoring the daily methane production of individual cows under barn conditions and in a 

non-intrusive manner. Its design (components, dimensions, settings) are presented. Preliminary 

results, such as the recovery rates of the four units, and the performance of the cow 

identification and head monitoring systems are shown and discussed.  

In Chapter 5, the ability of the cubicle hood sampler to estimate individual methane production 

rates and rank cows accordingly was investigated. This chapter details the study in which the 

methane production of twenty eight lactating dairy cows were estimated by climate respiration 

chambers and cubicle hood samplers. Direct comparison of these levels were done, before 

investigating the added value of fitting the hierarchical methane rate model with cubicle hood 

sampler data. This chapter reports the latest findings on the ability of the cubicle hood sampler 

to monitor methane production rates, and the challenges that arose from this study. 

The last section, Chapter 6, connects all the findings collected in this thesis. The added value 

of each section is discussed, together with the limitations that have been encountered. The key 
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elements that affect the accuracy of the estimations of (individual) enteric methane production 

made under practical conditions are identified. Their interactions are highlighted, and 

propositions are made to resolve or better understand them. Recommendations and points of 

attention for further research are synthetized. 
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Highlights 

 Portable accumulation chambers are well suited to rank small ruminants according to their 

methane production rates. 

 If uncalibrated, portable accumulation chambers are not suited to record absolute methane 

production levels. 

 Recovery tests are an effective way to assess the accuracy of devices monitoring gaseous 

exchanges freely of extraneous factors. 

 

Abstract 

Using portable accumulation chambers (PAC) is an attractive approach to recording methane 

(CH4) production of small ruminants. Mass flow controllers (MFC), for their part, are an 

effective way of validating PAC measurements, as they allow to simulate methane production 

rates freely of extraneous factors. The present study describes a series of tests carried out to 

evaluate the accuracy and precision of methane mass recordings of eight PAC against known 

CH4 masses released by a MFC. Across the tested range, the PAC were able to recover between 

67.6 and 74.5% of the true CH4 released. No significant differences were detected between the 

different PAC, but a statistically significant linear shift was detected over the mass range. 

Therefore, PAC as currently used are not well suited for applications looking at absolute 

production levels requiring high absolute accuracy. If recovery tests are conducted regularly 

across the measurement range, a calibration factor could be generated to correct for the 

inaccuracy. These PAC were however well suited for investigating relative differences between 

animals, e.g. ranking animals to compare differences in CH4 production between breeds. The 

methane recordings made by these chambers were highly precise, with low coefficients of 

variation between replicates (0.0-2.4%) and high repeatability (>0.99). Furthermore, the 

correlation between released and recorded CH4 masses was very strong and positive (R>0.99). 

Overall, the mass recovery test presented here provides a feasible method for harmonizing 

methane monitoring procedures using PAC between research groups, thereby improving joint 

efforts aimed at mitigating greenhouse gas production in small ruminants.  
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2.1.  Introduction 
 

Over the past decades, the potent greenhouse gases (GHG) emissions from livestock farming 

have kept rising. In 2019, enteric methane from ruminants (resulting from the enteric 

fermentation process) accounted for 44.3% of the global sector’s emissions (FAO, 2021b). With 

a global warming potential 28 times that of carbon dioxide (CO2) (IPCC, 2021) and a 

conversion to the long lived pollutant CO2 (IPCC, 2014) after reaching its lifetime of 12 years 

(G. Myhre et al., 2013), its emission must imperatively be mitigated. 

Small ruminants such as sheep and goats make up over 50% of the global ruminant production 

with a world population exceeding two billion animals (Gilbert et al., 2012). Sheep and goats 

are raised for fibre, meat, milk and hides over a wide range of climatic conditions and 

production systems, particularly in marginal areas and extensive systems where conventional 

crop production is infeasible (Alberto et al., 2018; Hristov et al., 2013a). Reducing the CH4 

emission from sheep and goats is therefore high on the international research agenda, with 

strategies spanning multiple disciplines such as animal breeding, nutrition, and microbiology 

(Hess et al., 2022; Jonker et al., 2018). All disciplines require accurate and precise 

measurements from which to gauge the response and efficacy of different mitigation strategies.  

However, different scopes of applications may require different levels of accuracy and precision 

in methane mass estimation. For instance, strategies looking at relative differences between 

individuals or groups of animals, such as ranking animals for breeding or comparisons between 

breeds, may forego some accuracy in place of precision, correlation and ease of measurement 

(Lassen and Difford, 2020). Conversely, strategies which concern absolute differences between 

treatments require high levels of measurement accuracy and precision.  

Climate respiration chambers (CRC) are widely regarded as the “gold standard” method for this 

type of measurements. In this system, animals are confined for several days in individual open-

circuit compartments in which metabolic and gaseous exchanges are monitored. Inlet and outlet 

airflows as well as the internal climate conditions (temperature, humidity) are fully controllable. 

Monitoring of the concentration difference in the inlet and outlet gas mixtures, coupled with 

flow information, allows for CO2, O2, and CH4 fluxes to be calculated (Kuhla et al., 2015). 

However, this methodology is expensive, labour intensive and has lower throughput, which can 

prove prohibitive to measure large numbers of animals under on-farm settings (Garnsworthy et 

al., 2019; Robinson et al., 2020). Furthermore, the prolonged confinement within the chamber 
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restricts natural behaviours and induces social isolation which could result in behavioural 

changes, and reduced feed intake (Gastelen et al., 2015).  

A low cost and relatively higher throughput alternative is the portable accumulation chamber 

(PAC) (Goopy et al., 2011), where an animal is confined into a closed chamber for a period of 

40 to 120 min (usually 50 min) and the changes in gaseous concentrations are recorded (Jonker 

et al., 2020b). The volume of the chamber, corrected for the estimated volume of the animal, is 

then used to estimate the mass flux of (methane) gas produced by the animal. The highly 

portable nature of the PAC has enabled researchers across Australia, Ireland, New Zealand, 

Norway, and Uruguay to record CH4 production from thousands of sheep, primarily for ranking 

of animals and selection experiments (Jonker et al., 2020b). However, there is a large variation 

in design of PAC across research groups and limited consensus on best practices (Jonker et al., 

2020b) which may lead to unequal performances and, therefore, incomparable results.  

Despite their extensive use across the globe, the absolute accuracy and precision of the PAC’ 

measurements, and the ability of this system to rank animals based on their methane production 

rates (MPR) have received little attention. The majority of research has involved 

subsequentially recording sheep in CRC and in PAC to evaluate the level of correlation between 

the MPR levels estimated by both methods. For example, Goopy et al. (2011) found the methane 

estimates of PAC and CRC to have a correlation of 0.71, while Robinson et al (2015) reported 

correlations between 0.0 and 0.19 when adjusted for liveweight and feed intake. For logistical 

reasons, sheep cannot be recorded by both methods simultaneously, which poses a challenge to 

researchers to determine if differences between measurements with both methods are due to 

true differences in the methodologies or as a result of extraneous physiological factors, such as 

intra or inter-day(s) variations, feed intake or dietary changes between measurements (Jonker 

et al., 2020b; O’Connor et al., 2021a, 2021b). To allow for a validation of the PAC’s ability to 

accurately monitor individual MPR from sheep and use these results to rank individuals, it is 

essential that the impact of biological and methodological factors on accuracy are distinguished. 

To achieve this, a thorough validation of each used PAC must be conducted. Therefore, the 

objectives of the present study were to determine the absolute measurement accuracy, precision, 

and ranking ability of the different chambers, and across the range of MPR produced by sheep. 

To achieve this, we conducted an intra-laboratory ring and a range test, in which precise and 

known fluxes of methane were released into the PAC units before calculating the recovery rates 

achieved by the system. This can elucidate the absolute measurement accuracy gap between 

PAC, as well as the precision and efficacy of ranking across the range of MPR at which the 
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PAC are expected to perform, which can range from 0.25 to more than 2 g h-1 depending on 

ration, postprandial duration, breed, age, and physiological status (Jakobsen et al., 2022; 

McHugh et al., 2022; Navajas et al., 2022).  

 

2.2.  Material and Methods 
 

2.2.1 Portable accumulation chambers 

The ten PAC used in the present study have been mounted in a truck, allowing transportation 

of the equipment to commercial farms and remote pastures. The design of the truck was adapted 

to allow for heating when conditions were extremely cold, thus preventing the impact of the 

low temperature and high moisture on the gas measurements. Ten identical chambers were 

built-in, with five on each lateral side of the truck separated by a walkway. Each chamber 

measured 113 x 84 x 115 cm (L x W x H, Figure 2.1) which corresponds to a total internal 

volume of 1127 L once corrected for internal parts. The chambers’ outer structure was made of 

welded aluminium sheeting and made hermetic by a pneumatic rubber lining around the door 

opening. These doors were equipped with an inlaid polycarbonate panel to allow visual 

observation of the sheep and reduce isolation-induced stress by allowing animals to see each 

other. A gas extraction system (Figure 2.1, E) was fitted to each row of PAC on either side of 

the truck, and allowed for the removal of residual gases from previous measurements before 

carrying out a new one. All PAC could be flushed individually or simultaneously as they were 

individually connected to the exhaust system by a supple PVC piping equipped with a valve 

(V). At the time of use, chambers were 2 years old, and had been used to record methane 

production from more than 4500 Norwegian white sheep. 

Each PAC was equipped with one pressure manometer (GM511, Benetech, Shenzhen, China) 

measuring the absolute pressure difference with the ambient air, and placed on the upper panel 

of the chamber (M) and providing a reading of the internal chamber pressure every 0.5 sec. This 

information allowed the operators make sure that the chamber was air tight. An Eagle 2 multi 

gas analyzer (E2, RKI Instruments, Union City, USA) was connected at will to any of the 

chambers with a probe fitted through a compression port (CP). The Eagle 2 detection principle 

relies on infrared spectroscopy and thermal conductivity, and permits measurements of 

methane, oxygen, and carbon dioxide gas concentration with one reading every 15 sec for each 

gas. For methane, reading increments of the Eagle 2 were of respectively 5 ppm in the 0-200 

ppm range, 10 ppm in the 200-1000 ppm one, and 50 ppm in the 1000-10000 ppm scale. 
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Figure 2.1. Schematic view of the portable accumulation chamber. From top to bottom: E: Exhaust 

duct, V: Valve (connecting the chamber to the exhaust/flushing system); M: Manometer; CP: 

Compression Port; MFC: Mass Flow Controller; E2 I: Eagle 2 Inlet; D: Door (equipped with a window); 

GC: Gas Cylinder (methane); GO: Gas Outlet; F: Fan; E2: Eagle 2 gas analyser. Fan and Eagle 2 are 

placed inside the chamber while the other components are placed outside. Gas tubes and flows are 

represented by dashed line when located inside, and plain lines when located outside the chamber. 

 

2.2.2 Calibration gas and mass flow controller 

All the tests subsequently described were carried out using a mass flow controller (MFC) 

releasing known fluxes of methane in ranges between 0 and 500 mln min-1 at an accuracy of 

±0.5% reading deviation plus ±0.1% full scale (EL-FLOW Select F-201-CV-500, Bronkhorst 

High-Tech B.V., Ruurlo, The Netherlands). The MFC was calibrated prior to the experiments 

at the Air Quality Lab of Wageningen University & Research (Wageningen, The Netherlands) 

with a gas mixture of methane (3000 ppm) in nitrogen. Calibration was done against two 
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reference flow meters: one Defender 510L (range 0-500 ml) and one Defender 510M (range 0-

5000 ml) (MesaLabs, Lakewood, USA), themselves most recently calibrated in, respectively, 

December 2020 and December 2021 by the third-party TPF control B.V. (Boven-Leeuwen, The 

Netherlands). The calibration line [eq. 2.1]  was obtained for the MFC for the range of 0-500 

mln min-1: 

Measured flow lab =  1.36 ×  Set flow lab +  1.20  [eq. 2.1] 

where Measured flow lab is in ml.min-1 and Set flow lab in mln.min-1. 

The desired injection rates were calculated depending on each experiment. To modulate 

injection rates, the MFC relied on the thermal bypass measuring principle and the controllable 

opening of an integrated valve coupled to a laminar flow element (stack of stainless-steel discs 

with precision-etched flow channels). Prior to use, a minimum warm-up time of 30 min was 

required for the internal components of the MFC to reach the temperature required for accurate 

injection rates. Connections between MFC, inlet and outlet were made with polyethylene tubing 

(⌀internal = 4.35 mm). The calibration gas used during the leakage test was CH4 (2000 ppm) in 

nitrogen, and an ultra-high purity methane one (≥ 99.9995 purity methane) for the intra-

laboratory ring and range tests (Linde Gas AS, Oslo, Norway). 

 

2.2.3 Leakage test 

A leakage test was conducted on each of the 10 PAC to ensure that they were all pneumatically 

sealed. After sealing of the door, the methane gas mixture was released inside the chamber at a 

flow of 681 ml min-1 until a pressure of 2 mbar was reached (manometers M, Figure 2.1). Once 

this pressure threshold was reached, the injection ceased and the manometer pressure reading 

was monitored every minute for 10 min. From this test, one chamber was found to have a severe 

leak which did not allow the chamber to reach the pressure threshold, and a second chamber 

lost gas pressure within 10 min after reaching the threshold. Both chambers were excluded from 

the ring and range tests as they could not be repaired soon enough. When repaired (later stage), 

both leakages appeared to be due to cracks in the rubber joints that normally make the doors 

airtight. The other eights PAC were found to be hermetic and included in the study.  
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2.2.4 Ring test  

The ring test was conducted to investigate the inter-chamber measurement repeatability. For 

this, 1.59 g of methane were injected in each chamber in (consecutive) triplicates using the 

MFC. As described in Figure 2.1, methane was injected through the compression port of the 

chamber (CP). Gas outlet (GO) was suspended at approximately 65 cm from the floor of the 

PAC to mimic the head position of a standing sheep. A battery-operated mini-fan (F, Clas 

Ohlson, Insjöm, Sweden) was placed on the PAC’s floor during the measurements to simulate 

the natural mixing of gases that would normally have occurred from sheep movements, body 

heat, and respiration. The MFC was set at an injection rate of 681 ml min-1. Accounting for a 

mass of 0.72 g CH4 per L of a 999999 ppm calibration gas, the duration of injection was 

calculated as: 

t =  
Tm

0.00072 gCH4
L  ×  IR

 
[eq. 2.2] 

where Tm is the target mass in g, IR the injection rate in ml min-1, and t the time in min. 

This protocol was designed to favour the number of replicates per PAC unit tested, which 

provides essential information on repeatability and precision. Therefore, we opted for the 

quickest injection duration that allowed to reach the target mass, unlike the classical 40 to 60 

min measurements normally conducted with live animals. As a result, a total of 1.59 grams of 

methane were injected in each chamber after 195 sec of injection [eq. 2.2], at which point the 

gas valve was closed.  

Methane concentration was measured by one Eagle 2 (E2) which was directly placed into the 

PAC as the only CP was used by the injection line. The device was positioned on the floor 

while its sampling probe (L = 1.5 m) was attached to the ceiling of the chamber (E2 I) to mimic 

its regular positioning. The background methane concentrations (ppm) (residual gases present 

in the chambers) were recorded at t0 and subtracted from subsequent readings. One 

concentration reading was recorded when injection stopped (t195sec), and then once every minute 

for 3 min. From this, an average value of the methane concentration was computed over the 3 

min post-injection, completed by its standard deviation, which provided insights on the level of 

stability of the measured concentrations and resulting recovery rates. After that, the PAC was 

flushed through the exhaust (E) system to remove the residual gas. This process was repeated 

until all PAC had been tested in triplicates. The methane concentrations monitored by the Eagle 
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were then used to calculate the estimated volume of methane (L) present in the chamber using 

the equation of Jonker et al. (2020b):  

VCH4 =  
[CH4PAC]  −  [CH4B]

1000000
 × VPAC [eq. 2.3] 

where VCH4 is the volume of methane (L), [CH4PAC] is the stabilized methane concentration 

(ppm) monitored over the final 3 min, [CH4B] is the background methane concentration (ppm) 

at t0 , and VPAC the internal volume of the PAC (L).  

The injected volume was then converted into mass using the ideal gas law principle: 

mCH4 =  VCH4 × STPD ×  MCH4
MV

  [eq. 2.4] 

where mCH4 is the methane mass (g), VCH4  the injected volume (L), MCH4 the molar mass of 

methane (g); and MV the molar volume (L) of methane at STPD (standard temperature and 

pressure dry). 

The STPD correcting factor was calculated as indicated by Alferink et al. (2015). 

 

2.2.5 Range test  

The range test was conducted to assess the absolute measurement accuracy of the setup across 

the range of methane fluxes which are expected to be measured in practice. Two chambers were 

randomly selected and tested in (consecutive) duplicates across the range of 0.5 to 2.5 g. This 

range was established to correspond to the diversity of MPR normally monitored for the type 

of sheep with which this system is used.  

Methane masses of 0.48, 1.08, 2.04 and 2.52 g were injected in the two chambers over 60, 135, 

255 and 315 sec respectively. For each treatment, the duration of injection was calculated using 

formula [eq. 2.2]. The protocol followed the general procedure established for the ring test, 

namely: a flushing of the PAC prior to each measurement followed by the injection of methane 

gas into the chamber using the MFC at an injection rate of 669 ml min-1. Methane concentrations 

in the PAC were recorded with an Eagle 2 at t0 (background concentration), at the cease of 

injection, and once every minute for 3 consecutive minutes. The average concentration values 

obtained over the 3 min post-injection were used for further analysis. 
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2.2.6 Statistical Analysis   

All statistical analysis were done with R x64 4.1.0.  

Recovery rates were calculated according to equation [eq. 2.5]. They provided an indication on 

the percentage of methane mass PAC were able to recover, as well as information on the 

presence of systematic errors between injected and recovered values. 

Recovery rate =  
mrecovered

minjected
× 100 [eq. 2.5] 

The coefficient of variation (CV) was computed for each PAC unit to determine the magnitude 

of the variation between replicates. A linear mixed model was fitted on the recovery rates across 

the range test to assess the proportion of variation explained by differences in the range relative 

to the replicate variation. This was done using the Sommer package (Covarrubias-Pazaran, 

2016), which gave the following form:  

yijk =  µ + PACi + Rangej + eijk [eq. 2.6] 

Where, yijk is the recovered mass of CH4, of the ith PAC chamber (i = 2 levels), of the jth range 

setting Rangej (j = 5 levels correspond to 0.5 g to 2.5g CH4 in 0.5g increments). The random 

effect Rangej is assumed to be normally distributed with a mean of zero and variance structure 

~ND(0,IσRange2 ). Similarly, the residual error term of the kth replicate of the jth range of the ith 

PAC was assumed to be ~ND(0,Iσe2). The repeatability expressed as a coefficient was computed 

according to Wolak et al. (2012) as: 

Rep =  σRange2 / �σRange2 +  σe2� [eq. 2.7] 

A linear regression of the masses of methane injected by the MFC on the methane recovered 

by the PAC was performed to test for any potential bias in recovered CH4 values. It was used 

to calculate R2, which indicates the percentage of variance in the response variable that is 

explained by the regression model. Pearson’s correlation coefficient (r) was derived from R2, 

and denotes the level of correlation between the injected and recovered methane masses. In 

addition, the Root Mean Square Errors (RMSE) were calculated to estimate the measurement 

errors made by the device, with smaller values reflecting a lower level of error. One-way 

ANOVA were used to detect potential presence of significant differences in recovery rates 

between PAC, and between injected masses. 
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2.3.  Results 
 

2.3.1. Ring test 

The PAC in the current study had fairly consistent and systematic recovery rates of 

approximately 69.4% ±1.1 (Table 2.1, Figure 2.2). In addition, there was a low average 

coefficient of variation (1.6%) across replicates and a substantial repeatability of 0.99. The 

computation of the one-way ANOVA yielded a p-value of 0.207, showing that there were no 

significant differences in the average recovery rates measured by the different PAC. An 

overview of the dataset can be found in Appendix A, showing notably the consistency in 

recovery rate observed over the 3 min post injection. 

 

 

Table 2.1.Ring test (1.6g CH4): Mean recovered methane mass (g) per portable accumulation chamber 

and standard deviation (three repetitions per chambers). Corresponding recovery rates (%), standard 

deviation in recovery rate between repetitions (%), and coefficient of variation across chambers (%). 

PAC number 
Mean recovered 
mass ± standard 

deviation, g 

Mean recovery 
rate and standard 

deviation, % 

Coefficient of 
variation in 

recovery rate, % 

2 1.09 ± 0.007 69.63 ± 0.48 0.69 

3 1.10 ± 0.020 69.24 ± 0.54 0.78 

4 1.08 ± 0.043 68.42 ± 1.61 2.36 

5 1.10 ± 0.027 69.47 ± 1.91 2.74 

6 1.09 ± 0.013 67.84 ± 0.41 0.60 

7 1.09 ± 0.010 69.83 ± 0.63 0.90 

8 1.13 ± 0.027 70.44 ± 0.71 1.01 

10 1.09 ± 0.006 69.59 ± 0.36 0.53 

Grand mean 1.10 ± 0.024 69.37 ± 1.10 1.59 
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Figure 2.2. Recovery rates (%) obtained in the ring test during which 1.59g of methane were injected 

in triplicates (in duplicate for PAC 6) in the eight chambers that were retained after the leakage test. 

Scale of recovery rates going from lighter (higher values) to darker (lower values) blue. 

 

2.3.2. Range test 

Across the range of methane masses (0.47 - 2.48 g, Table 2.2), the two PAC had similar 

recovery rates, with an average of 70.6% ±2.1 and a low CV between replicates (2.9%). The 

linear relationship between injected and recovered methane masses appeared to be strong and 

positive (R2 = 0.999, Figure 2.3) and RMSE to be low (0.515). However, there was a significant 

shift in recovery rates with increasing masses (p-value < 4.88e-5, Figure 2.4). An overview of 

the dataset can be found in Appendix B, showing notably the consistency in recovery rate 

observed over the 3 min post injection. 
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Table 2.2. Range test (treatments 0.5 to 2.5g CH4): Mean and standard deviation of the mass (g) 

recovered by the two chambers for each of the five treatments levels. Average recovery rates (%) 

calculated from equation [eq. 2.5] and their standard deviation. 

Mean injected 
mass, g 

Mean recovered 
mass, g 

Standard 
deviation 

recovered mass, g 

Mean recovery 
rate and standard 

deviation, % 

Coefficient of 
variation in 

recovery rate, % 

0.47 0.35 0.005 73.88  ± 1.02 1.39 
1.06 0.77 0.000 71.48 ± 0.00 0.00 
1.54 1.09 0.021 68.82 ± 1.63 2.37 
2.01 1.43 0.000 70.01 ± 0.06 0.09 
2.48 1.74 0.008 69.18 ± 0.33 0.48 

 

 

 

Figure 2.3. Linear regression of the five methane mass injected by the MFC during the range test against 

the mass recovered by the two PAC (regression line: x = -0.039 + 1.47y). The regression line x = y is 

represented by the dashed line. The scale of distances between values and regression line are represented 

by shades of blue, going from lighter (higher values) to darker (lower values) blue. 
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Figure 2.4. Recovery rates (%) obtained in the range test during which methane mass of 0.5 to 2.5 g 

were injected in the two chambers that were randomly selected for the test (regression line: y = -2.24x 

+ 74). Scale of recovery rates going from lighter (higher values) to darker (lower values). 

 

2.4.  Discussion 
 

Portable accumulation chambers have traditionally been used for animal ranking experiments 

(Jonker et al., 2018), or to compare relative differences between experimental groups, such as 

breeds or lineages. For this type of research, absolute measurement accuracy is not strictly 

required, and instead relative differences between measurements are of interest (Fredeen, 1986).  

Adequate precision of the measurements as well as correlation to the true levels are therefore 

of primary importance (Lassen and Difford, 2020). However, there is increasing interest in 

expanding their use to different scopes of applications, for instance GHG inventories or as a 

response variable in dose-response trials used for investigating physiological response and 

nutrition effect, where the absolute accuracy is of importance (Jonker et al., 2020a). Here, we 

interpret findings of the ring and range tests, firstly in terms of accuracy to evaluate the potential 

use of PAC in these applications, and secondly in terms of correlation and precision to validate 

their use in ranking experiments. 
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2.4.1. Accuracy of the PAC methane measurements 

The recovery rates across the ring test revealed that the PAC are consistently under recording 

methane mass by approximately 30% of the true value. There were no significant differences 

between the chambers, demonstrating the systematic nature of this under recording. The ring 

test revealed that the recovery rates have a small but significant linear shift in accuracy across 

the measured range, going from 73.88 ± 1.02 to 69.18 ± 0.33 between the 0.5g and the 2.5g 

injections (Table 2.2, Figure 2.3). This shows that it is necessary to conduct recovery tests 

across the desired measurement range so that shifts in accuracy can be corrected for, without 

which PAC cannot be used as a methane measurement device in studies requiring high 

measurement accuracy. Mass recovery testing in PAC yet remains rare, which makes 

comparisons to literature challenging. Most studies either do not conduct recovery tests, or 

solely perform leakage tests which might be confused with recovery tests. For instance, Goopy 

et al. (2011) released SF6 tracer gas into PAC and monitored the inner SF6 concentrations of 

samples taken 2-h after injection of the tracer gas. Measured concentrations were found to be 

ranging between 98 and 99% of the concentration directly after injection. Similarly, Paganoni 

et al. (2017) released CH4 gas up to a fixed initial concentration and recorded the concentration 

in the PAC over a 2-h period. In their case, concentrations were found to equate to 95% of the 

original value. However, both approaches do not constitute true recovery tests, as the true mass 

of injected gases were not known. In other words, even though the volume of the chamber and 

measured gas concentrations are (near) constant over a period, the mass estimated may still be 

inaccurate if for example the constant measured gas concentration readings are themselves 

inaccurate. These inaccuracies will remain undetected in concentration tests without knowledge 

of the true injected mass and thus the true gas concentration. These studies thus provide limited 

information of the ability of PAC to accurately monitor the mass of specific gases but are a 

good indicator of potential leakage. 

Previous comparisons of sheep and lambs’ MPR as (sequentially) measured by PAC and CRC 

are another approach towards testing the accuracy of PAC measurements. Overall, these studies 

have indicated considerable under recording of CH4 production by PAC. For instance, Goopy 

et al. (2011) recorded the methane production of 39 sheep in CRC for 22-h, and subsequently 

in PACs for 1-h. The daily MPR as estimated by the PAC was only 23.2% of the 29.8 g d-1 

monitored by the CRC. In a larger scale trial, Jonker et al. (2018) recorded daily CH4 production 

in 3601 lambs in CRC and in PAC, with the latter recording on average 7.5 g d-1 as opposed to 

the 24 g d-1 in the CRC. These results corresponded to a recovery rate of approximately 31%. 
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However, it must be noted that these studies were not aiming at investigation the recovery rates 

of the chambers used and their designs were focussed on ranking of sheep. In addition, the 

differences between measurements may most certainly have been influenced by the diverse 

sampling days, times (postprandial duration) and diets. Thus, this approach has limited use as 

differences in recovery rates and accuracy due to methodological factors may be confounded 

with differences due to biological factors. However, they do give an indication of the range of 

recovery to be expected under challenging scenarios. Assessing the recovery of sets of PAC 

should therefore be done in the absence of extraneous factors before conducting any study with 

live animals, as the approach described in this study allows. This is crucial for applications 

requiring absolute accuracy of gas measurements. In the case of ranking experiments, it is not 

necessary to determine whether there are systematic differences in accuracy or differences 

between PAC, provided that potential differences between chambers are appropriately 

accounted for in the statistical analysis conducted (for example by including a chamber effect). 

However, it remains best practice to monitor differences in recovery rates and to correct these 

mechanically rather than statistically where possible. An important consideration for the use of 

PAC in applications requiring high accuracy is the realization of a calibration procedure against 

a reference method. The approach taken for the range test in this study can be used for this 

purpose. This requires making use of the regression equation shown in Figure 2.3 to align PAC 

measurements with the true value. However, this calibration standard is likely to be only 

relevant for the conditions under which it was performed, meaning that complementary routine 

recovery tests should be conducted. This has become common practice with the gold standard 

method CRC, and is best exemplified by a study conducting a ring test of twenty-two CRC at 

six different facilities in the United Kingdom (Gardiner et al., 2015). Recovery rates were found 

to vary across CRC, ranging from 59 to 115%, demonstrating both positive and negative shifts 

in accuracy, and showing very clearly that even the gold standard methods can differ in absolute 

accuracy. The authors thus highlighted the importance of recovery testing, in terms of both 

accuracy and transparency. As a result, and after correction of the measurements values using 

the recovery rate as a calibration factor, the combined uncertainty across chambers was reduced 

from 25.7% to 2.1%. This has led to international consortiums calling for the publishing of 

recovery rates as a prerequisite to publishing gaseous exchange data and as an approach to 

harmonize measurements both for respiration chambers and other methods (Gerrits et al., 2017; 

Hammond et al., 2016a).  
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Another approach is to identify the cause of the shift in accuracy. Depending on the monitoring 

device, this can be a tedious approach. However, in static chambers, such shifts can only be the 

result of a leaking unit, errors of injected mass, or a shift in the measurement accuracy of the 

sensor. As the chambers were tested for leakage, and the MFC was calibrated against two 

reference flowmeters, only the gas analyser remains as potential source of error. Offsets (linear 

or not) are common in analysers and simply require to be calibrated thorough the measurement 

range at which they are expected to operate. These offsets can lead to varying levels or under 

or overestimation of the measured concentrations, leading to shifts in recovery such as the one 

observed here. In addition, humidity has been shown to be an inference factor of infrared 

sensors, being correlated to the gas concentrations that are measured with this technology (Dinh 

et al., 2016; Singh and Malarvili, 2020; Yuliang et al., 2017). Gas analysers using infrared 

spectroscopy (alike the Eagle 2) should therefore be calibrated across the concentration and the 

humidity range at which they are expected to operate, allowing these offsets to be calibrated 

for. 

Although the instrument was auto calibrated, the instrument’s “autocalibration” function 

constitutes a zero point calibration and not a full span calibration. This does not allow to detect 

potential shifts in accuracy that usually occur across the measurement range, and does not 

account for humidity levels. Subsequently, we determined that a span calibration is possible 

and necessary for this sensor, but requires sending the analyser out of the country, which was 

not possible then. Optimally, the current gas analyser should be calibrated with methane gas 

concentrations ranging between 400 and 2300 ppm to operate over the whole range of expected 

CH4 produced by sheep. We expect that applying such a calibration to the dataset will most 

likely increase recovery rates and correct for the shift in recovery, therefore probably leading 

to a higher measurement accuracy. A full sensor evaluation is needed to determine if a span 

calibration will increase the recovery rates to 100% or if systematic sensor inaccuracy is 

persistent and to what extent this affects recovery. For instance, a number of methane sensor 

comparisons have been conducted and found systematic and significant differences between 

different sensors, indicating that depending on the sensor type, and regardless of any other 

factors, recovery rates will differ due to sensor type alone (Difford et al., 2016; Rey et al., 2019; 

Sypniewski et al., 2019). 
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2.4.2. Precision and ranking of PAC methane measurements 

Precision reflects the amount of random or non-systematic errors that can afflict measurements, 

and is particularly important in ranking applications as it can cause unwanted re-ranking and 

bias correlation estimates downwards (Lassen and Difford, 2020). It is prudent to first evaluate 

a system for these non-systematic errors prior to the additional of live animals which introduce 

their own set of random biological variation. The repeatability in the absence of animals gives 

an indication of the precision of the technical aspects of a system, if this is low researchers may 

wish to find way of improving the measurement system prior to live animal experimentation.  

The ring test revealed substantial precision of measurements with a repeatability close to unity 

(0.99) and very low CV ranging from 0.0 to 2.7% across both ring and range tests, together 

demonstrating very low variance between replicates. These findings are encouraging and offer 

a theoretical upper limit to what precision can be achieved with PAC systems with-out random 

biological variation introduced by live animal measurements. In addition, the strong and 

positive relationship between injected and recovered methane masses (R2 = 0.999, Figure 2.3) 

and low RMSE (0.515) show that the tested PAC can differentiate methane production levels, 

even in spite of the presence of systematic errors. The chambers tested here are therefore well 

suited to rank animals as they can record relative differences in the tested range. 

By using a MFC, we have removed the random extraneous confounding biological factors 

introduced when monitoring live animals. Direct comparison with research works in which 

MPR were sequentially measured by PAC and CRC is weakly informative with regard to the 

accuracy of the measurement system, as it is usually not the purpose of those studies (aiming at 

investigating the precision of the relationship between both methods). However, it does show 

how these results can vary in the presence of biological factors, and emphasizes the importance 

of recovery tests free of animals. For instance, O’Connor et al. (2021b) recorded 48 ewes lambs 

over 17 consecutive days in PAC and found the repeatability between measurements to be 

moderate (0.36) and with large variations between days. Goopy et al. (2011) recorded MPR in 

39 sheep (following the same diet) with CRC for 22-h, followed by a single 1-h recording in 

the PAC. They found positive Pearson’s correlations ranging from 0.69 to 0.71. As for their 

part, Jonker et al (2018) recorded methane in 3601 lambs with CRC and PAC and found lower 

phenotypic correlations between methods ranging from 0.004 to 0.27, however their design was 

aimed at genetic correlations which were higher ranging from 0.41 to 0.67. Lastly, Robinson et 

al. (2020) recorded 510 ewes that were on the same diets with PAC and CRC, but 4-d or more 
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apart, and found phenotypic correlations of 0.63 - 0.64. These studies suffered from the 

unavoidable non-simultaneity of the CRC and PAC measurements on live animals. 

 

2.4.3. Practical implications 

Depending on the scope of applications, researchers may require different degrees of accuracy, 

precision, and correlation from a system monitoring MPR. Previous studies have approached 

method evaluation by non-simultaneously recording the MPR of live animals in PAC and CRC. 

Methane production rate levels were found to vary between methods, effectively confounding 

differences induced by biological factors and varying measurement accuracy. In the current 

study, we outlined an approach that uses precise and known methane mass release, and therefore 

enables researchers to test all three facets of measurement agreement free of animal variation. 

We demonstrated that the precision of repeated measurements of the tested PAC (repeatability 

= 0.999) and the correlation to the true methane mass were equally high (correlation = 0.999). 

It confirmed that these PAC are well suited to rank animals based on their methane production 

levels, and to determine relative differences between experimental groups. Importantly, in 

genetic trials a more precise measurement or phenotype can only improve the precision of the  

breeding value used to rank animals for selection. Precision of the breeding values can also be 

increased through increasing the number of relatives which are also measured (Lassen and 

Difford, 2020), thus increased throughput of the method also directly improves the precision of 

the breeding value, even though it does not affect the precision of the direct measurement. 

Additionally, we detected a significant shift in accuracy which follows a linear trend across the 

measurement range. This phenomenon is commonly observed with gas analysers using infrared 

spectroscopy, whose measurement accuracy is known to drift across the concentration range.  

The resulting absolute measurement accuracy appeared to be insufficient for studies requiring 

high measurement accuracy. In principle, PAC could potentially be used for applications 

requiring high measurement accuracy if the proper recovery testing and calibrations are 

followed, as outlined in this study. However, work is needed to establish the relationship 

between the short term PAC measurement 50 min its relationship to the full 24 hour period it 

is approximating in the presence of factors like diurnal and postprandial variations.  

Importantly, these results only reflect the performance of the tested units and in the absence of 

extraneous biological variations due to animals.  In practice, researchers conducting trials using 

PAC need to employ suitable experimental designs to control or remove these factors. 



Monitoring enteric methane production with portable accumulation chambers 

| 55 

Lastly, ring and range recovery tests are an attractive approach to harmonising different 

generations of PAC or even other methods of measurement when researchers can benefit from 

combining databases. For example, joint genetic evaluations and GHG inventories have 

received considerable attention in dairy cattle (Garnsworthy et al., 2019; Manzanilla-Pech et 

al., 2021)  and is anticipated to receive similar research inputs in small ruminants in the future. 

 

2.5.  Conclusions 
 

The portable accumulation chambers tested in this study achieved recovery rates between 67.6 

and 74.5%, with a statistically significant negative linear shift in recovery across the methane 

range. For applications investigating absolute differences in MPR, the current measurement 

accuracy is insufficient. However, conducting recovery tests across the tested methane mass 

range can be used to calibrate measurements and resolve shifts in accuracy. The scope of PAC 

applications could therefore be extended to applications requiring higher accuracy, provided 

that these calibrations are conducted rigorously and repeatedly. The chambers showed very high 

precision, with a repeatability coefficient of 0.99 and high linear correlation with the true values 

of methane mass (>0.99). This confirms that the PAC included in this study are well suited for 

applications looking at the relative difference between individuals or experimental groups, such 

as ranking or breed comparisons. 
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Highlights 

 Using climate respiration chamber data, the hierarchical methane rate model can accurately 

predict the methane production of individual cows. 

 This model allows to model population-level shape parameters while allowing for 

individual variation in scale. 

 The partially pooled approach taken proved to make more accurate methane production 

predictions than its fully pooled equivalent. 

 

Abstract 

Monitoring methane production from individual cows is required for evaluating the success of 

greenhouse gas reduction strategies. However, converting non-continuous measurements of 

methane production into daily methane production rates (MPR) remains challenging due to the 

general non-linearity of the methane production curve. In this paper, we propose a Bayesian 

hierarchical stochastic kinetic equation approach to this challenge. Modelling was used to fit a 

non-linear curve on climate respiration chamber (CRC) data of twenty-eight individual dairy 

cows before computing an area under the curve, thereby providing an estimate of MPR from 

individual cows. The shape parameters of this model were pooled across cows (population-

level), while the scale parameter varied between individuals. This allowed for the 

characterization of variation in MPR within as well as between cows. Model fit was thoroughly 

investigated through posterior predictive checking, which showed that the model could 

reproduce the CRC data of twenty-eight cows well. Comparison with a fully pooled model (all 

parameters constant across cows) was evaluated through cross-validation, where the 

Hierarchical Methane Rate (HMR) model proved to perform better. Concordance between the 

values observed in the CRC and the ones predicted by the HMR model was assessed with R2 

(0.995), r (0.997), root mean square error (10.0 g/d), and Lin’s concordance correlation 

coefficient (0.961). Overall, the predictions made by the HMR model appeared to reflect 

individual MPR levels and variation between cows as well as the standard approach taken by 

scientists with CRC data. 
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3.1.  Introduction 

 

Livestock farming faces an urgent need to reduce its greenhouse gases (GHG) emissions and  

reduce the impact of the sector on the environment. Methane (CH4) is a major GHG contributor, 

and its production by ruminants - and particularly cattle - requires considerable reduction. 

Methane is produced by ruminants as a result of the enteric fermentation process that occurs in 

the digestive tract during the anaerobic fermentation of feed. During this process, carbon 

dioxide (CO2) and other carbon-containing metabolites are produced and reduced into CH4 by 

the methanogens (Morgavi et al., 2010) before being released by the animal through exhaling 

and eructating.  

To mitigate enteric methane production at cow level, several reduction strategies have been 

identified. These mainly involve dietary modifications or the breeding of individuals with lower 

methane production levels (Arndt et al., 2022; Hristov et al., 2013b; Knapp et al., 2013). 

However, evaluating the success of these strategies requires the availability of methods that can 

accurately quantify the methane production rate (MPR) of individual cows under practical 

conditions (e.g. while housed in barns or on pasture). Although several approaches to measure 

methane production under these conditions have already been developed (e.g. GreenFeed, 

sniffers, use of SF6 as a tracer gas), they all present challenges with respect to measurement 

accuracy and throughput, animal intrusiveness, practicability, and costs (Hammond et al., 

2016a; Negussie et al., 2017). Additionally, MPR vary in time and in response to feeding. For 

example, dietary composition, dry matter intake (DMI), and frequency of feed intake affect 

postprandial (subsequent to feed intake) production rates (Hristov et al., 2013b; K. A. Johnson 

and Johnson, 1995). Ruminal fermentation rate is time dependent, with postprandial durations 

affecting MPR in a non-linear manner. A rapid rise towards a methane production peak (reached 

30 to 140 min after feeding) and a slow decrease back to the basal production level (Crompton 

et al., 2011; van Lingen et al., 2017) can be observed in cattle, the amplitude and period 

depending mainly on feed intake pattern. As a result, accurate MPR estimations necessitate the 

entirety of the methane production curve to be monitored or known in a reliable way. 

Practical monitoring techniques only allow for spot sampling as they are often limited by 

material and labour resources, or rely on the voluntary visit of animals to the monitoring device. 

They may result in observations that are not well distributed over time, and are prone to bias 

(Hammond et al., 2016a). Given the postprandial variation in MPR, measurements should cover 

complete periods between two feed allocations or meals, and not rely solely on scarce spot 
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sampling to accurately estimate methane production (Hammond et al., 2016a; Kuhla et al., 

2015). The number of spot samples required for accurate estimates of daily methane production 

depends on factors including frequency and level of feeding (Lee et al., 2022; van Lingen et al., 

2023). In order to convert discrete (non-continuous) measurements of methane productions into 

daily MPR, modelling could be used. The output collected by methane measurement devices 

could be used to fit a non-linear curve before computing the area under the curve, therefore 

providing an estimate of MPR. 

Numerous models have been developed to simulate postprandial methane production from 

dairy cows. These include static empirical models that directly relate nutrient intake and 

methane output, and dynamic mechanistic models that use mathematical descriptions of 

ruminal methanogenesis to predict methane production (Mills et al., 2003). Whilst some of 

these models offer a very complete computation of physiological processes (Bannink et al., 

2011; Kebreab et al., 2019; van Lingen, 2017), they usually require extended diet-related 

information as input to the model (e.g. DMI, metabolizable energy intake, and dietary starch, 

cellulose, and other carbohydrates content). However, such information is not always available 

in practice, emphasizing the continued need for and interest in basic modelling that necessitates 

less information as input. 

A more straightforward approach was taken by Crompton et al. (2011), who fitted dairy cattle 

MPR measured by climate respiration chambers (CRC) as an exponential response to feeding 

frequency and postprandial duration. Their model fitted the CRC data satisfactorily and 

described well the fluctuations in methane release in response to the changes in feeding pattern. 

However, the Crompton et al. (2011) model was designed to be fitted to individual cows. While  

information could also be pooled over cows, it would prevent the borrowing of information 

across cows, implying that the variability in MPR could be either overestimated (in the case of 

individual fitting) or underestimated (with pooled fitting) (Gelman and Hill, 2006). Moreover, 

the usual nonlinear regression approaches to fit kinetic models to observed data are limited in 

their flexibility and propagation of uncertainty (van Boekel, 2022). 

The objective of the current work was to extend the model of Crompton et al. (2011) using a 

Bayesian hierarchical stochastic kinetic equation approach. The hierarchical model we propose 

is partially pooled, having population-level shape parameters while also carrying a cow-level 

scale parameter. This approach allows for flexibility in the modelling of MPR over multiple 

cows. Moreover, the model emphasizes uncertainty propagation, with the intention of 

realistically representing variation in MPR between cows. In the remainder we first describe 
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the basic model and its Bayesian hierarchical extension. We will also explain our approach to 

the estimation of the model’s parameters. Next, we include and discuss results regarding model 

fitting, assessment, and comparison with a CRC dairy cattle dataset.  

 

3.2.  Material and methods 
 

3.2.1. Dataset 

The database used to fit the proposed model was obtained in a study conducted from August to 

October 2020 at the animal research facilities of Wageningen University & Research 

(Wageningen, the Netherlands) under the Dutch Law on Animal Experiments and in accordance 

with EU Directive 2010/63. All experimental procedures were approved by the Central 

Committee of Animal Experiments (The Hague, the Netherlands; 2017.D-0079.004).  

The experiment was conducted with 28 lactating Holstein-Friesian cows (mean 2.3 ± standard 

deviation 0.9 lactations; 93 ± 27 days in milk, DIM). Cows were blocked (7 blocks of 4 cows) 

based on parity and DIM and fed a basal total mixed ration (TMR) throughout the entire study 

consisting of 41% corn silage, 32% grass silage, and 27% concentrate on a dry matter (DM) 

basis. The TMR was formulated to meet 100 and 95% of net energy for lactation and 

metabolizable protein requirements (CVB, 2018), respectively, for cows consuming 22 kg 

DM/d and producing 34 kg/d of milk containing 4.0% fat and 3.4% protein. Each block was 

housed separately in a free-stall barn to facilitate ad libitum feed intake measurement of the 4 

cows within each block. The average feed intake of the block during the final 3 d of the 7-d 

free-stall ad libitum intake period was used to set a fixed daily feed allocation for individual 

cows within the block. This fixed amount (equal for all cows within a block) was fed 

individually during a 12-d tie stall period and a 4-d measurement period in CRC.  

After 12-d of adaptation to movement restriction in tie stalls and fixed amount of feed 

allocation, cows were moved into CRC for a 4-d measurement period to facilitate determination 

of gaseous exchange. The design and principles of the CRC at Wageningen University 

(Wageningen, the Netherlands) have been described in detail by Van Gastelen et al. (2015) and 

Heetkamp (2015). The CRC consist of two large chambers, each divided into two sub-

compartments (total of 4 CRC, each with a ground surface of 11.8 m2, and a volume of 34.5 

m3) separated by airtight walls. Walls are equipped with windows, which allow cows to see and 

hear each other to minimize the impact of isolation on cow stress level, behaviour, and 
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performance. During the experiment, the relative humidity and temperature were maintained at 

80.1% (± 1.2) and 10°C (± 0.1), respectively, by two computer-controlled air conditioning units. 

In each individual CRC, relative humidity was monitored by one Novasina Hygrodat100 sensor 

(Novasina AG, Lachen, Switzerland) and temperature was monitored by five PT100 sensors 

(Sensor Data BV, Rijswijk, the Netherlands) evenly spread over the chamber. Outside air was 

continuously pumped into the chamber at a ventilation rate of 43 m3/h (± 1.1) by a gas volume 

meter (Itron Delta 2080 G100, Itron GmbH, Karlsruhe, Germany). Exhaust air was released 

through a conduit equipped with an iris valve, allowing the constant regulation of the ambient 

pressure at a value of 102.9 kPa (± 7.36). Inlet and outlet air of each compartment was sampled 

for its CH4, CO2 and O2 content to be analysed by a series of ABB Advance Optima AO2000 

analysers (ABB, Berlin, Germany). The analysis of the CH4 and CO2 concentrations was done 

using a nondispersive infrared method, and a paramagnetic one for O2 concentration. Before 

the start and after the end of the experiment, the recovery rate of each CRC was assessed by 

releasing known amounts of CO2 and CH4 and comparing them to the ones measured by the 

gas analysis system. The average recovery of CO2 was 100.1% ± 0.4 (ranged from 99.4 to 

100.5%), and the average recovery of CH4 was 100.8% ± 0.5 (from 99.1 to 102.1%). During 

the experiment, the four CRC shared the same gas analysers in sequence, and the CH4 and CO2 

production and O2 consumption of each chamber was computed every 12 to 15 min by 

calculating the difference between inlet and outlet gas volumes and concentrations, and 

corrected to standard temperature and pressure. Automatic valves redirected the sampled air of 

a compartment to the analysers, flushing it for 120 s and recording the concentrations for the 

last 30s before moving to the next chamber or to inlet air. 

Milking and feeding occurred twice daily during the entire experiment in the CRC (0500 and 

1530 h). Gas measurements during time points when staff entered the CRC compartments for 

milking and feeding (maximum 30 min) were maintained in the dataset as humans do not emit 

significant quantities of CH4 and because including CH4 measurements during these time 

points, compared with excluding these CH4 measurements, did not affect the daily production 

of CH4 (van Gastelen et al., 2017). Postprandial durations during the measurement period were 

calculated as the time differences from the feeding times to the occurrence of each gas sample, 

giving values between 0 and 13.5-h. For the purpose of the study, MPR that were not monitored 

over a complete 24-h period were removed from the dataset as they provided biased estimates. 

Thus, data from 1530 on d 1 in the CRC until 1530 on d 4 in the CRC was used. 
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For the purpose of the separate study not related to the current analysis, cows were randomly 

assigned to treatments which consisted of the basal TMR or the basal TMR including 1 of 3 

iso-MP rumen-protected protein supplements. The supplements were mixed by hand into the 

TMR at each moment of fresh feed allocation for the final 16-d of the experiment (12-d tie stall 

period and 4-d measurement period in CRC). These treatments did not affect DMI (mean = 18.7 

kg/d; SEM = 0.63; p = 0.91) or methane production over the 4-d period in the CRC (mean = 

185 kJ/kg BW0.75/d; SEM = 5.5; p = 0.35). 

 

3.2.2. Crompton et al. (2011) kinetic model 

In the study of Crompton et al. (2011), the MPR of 4 lactating Holstein-Friesian cows were 

monitored in open-circuit CRC over  4-d. Cows were fed either 1, 2 or 4 times daily. Crompton 

et al. (2011), following  the principles introduced in the lactation curve described by Dijkstra et 

al. (1997), defined a mathematical model which reuses the Gompertz growth function 

(Gompertz, 1825) with the addition of a decay term. This resulted in the following exponential 

function to describe asymmetrical shape MPR profiles: 

M (g/d) = α ∙ exp �β ∙ �
1 − e−γt

γ � − δt� [eq. 3. 1] 

where M is the postprandial MPR, α is a scale parameter representing the theoretical MPR at t 

= 0, β is a proliferation parameter, and γ and δ are decay parameters. Hence, β, γ, and δ are shape 

parameters. All parameters must be non-negative. 

This model is based on the assumption that after ingestion of a meal and up to ingestion of the 

next meal, methane production is deterministically characterised by a phase of rapid increase 

up to a maximum value, and a following decreasing slope back to the basal level (Crompton et 

al., 2011; Macciotta et al., 2011). However, individual deviations from the standard shape exist 

(e.g. due to intake pattern, diet composition, and genetics). These deviations represent a 

stochastic component that induces individual deviations from the standard population curve, 

and which we desired to implement in the model. Additionally, individual MPR computations 

offer limited scaling possibilities as the obtained parameters values are only valid for the 

individual cow for which they were computed and cannot be extrapolated to other cows. 
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3.2.3. Hierarchical Methane Rate model 

To generalize the model of Crompton et al. (2011) and extend its applications, we reformulated 

it into a partially pooled multilevel (hierarchical) model. This so-called Hierarchical Methane 

Rate (HMR) model is a Bayesian representation (Appendix C) of a stochastic process that aims 

at simultaneously integrating the data of multiple individuals to model the grand MPR curve of 

that specific population in the specific housing and management conditions. From this 

estimated population curve, 3 shape parameters (β, γ, and δ) can be derived and generalized to 

the studied population, whilst the scale parameter (α) is allowed to vary over cows. Individual 

MPR curves can then be derived from the estimated population curve by allowing each cow to 

diverge from the original curve, through the inclusion of variation in α and measurement errors. 

Being partially pooled, the HMR model is a compromise between the principles of pooled and 

un-pooled models. It allows for the information from different repetitions (cows) to be 

connected and combined (like pooled models), while still allowing for each individual to vary 

from the rest of the group (multilevel modelling). Group means are thus considered as being a 

random sample of a population, and the parameters of the model can be sampled from a single 

distribution (van Boekel and Roux, 2022). Multilevel modelling also has the advantage of 

counteracting the risks of pseudo-replication, cases that lead to an underestimation of the 

variation and to biased estimates (Lazic et al., 2020, 2018). 

The HMR model likelihood is therefore defined as methane per cow (Mc): 

Mc ~ N(μc,σϵ)  

With 

μc (g/d) = (α� + αc)  ∙ exp �β ∙  � 
1 −  e−γt

γ � − δt� [eq. 3. 2] 

In this model, we have a population scale effect α� as well as a random scale effect for cow αc. 

This is thus a partially pooled model, where the shape parameters are population parameters, 

and the scale parameter carries a random effect for cow.  
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We formulated the following prior distributions: 

 α� ~ Ν(500, 200) 

 αc ~ Ν(0,σα) 

 β ~ N+(0, 2) 

 γ ~N+(0, 2) 

 δ ~N+ (0, 2) 

 σα ~T3+(0, s) 

σε ~T3+(0, s) 

where N+ denotes the half-normal distribution, and T3+ indicates a half t-distribution with 3 

degrees of freedom. The σα parameter represents the between-cows variance in the scale 

parameter, while σε characterizes the within-cow variance in the response variable. The scale 

factor s is set to the pooled median deviation of observed methane over time. This is a robust 

choice. These priors reflect the nonnegativity requirement on the shape and variance 

parameters. Moreover, they are weakly informative while supportive of sampling efficiency 

(Bürkner, 2017).  

  

3.2.4. Computational approach and convergence assessment 

We generated samples from the posterior distributions of the parameters in the HMR model by 

way of Hamiltonian Monte Carlo (Bürkner, 2017). For each parameter we ran 4 Markov chains 

of 2000 iterations. The first 1000 iterations were discarded as warm-up, leaving 4000 iterations 

per parameter for inference. In the Bayesian approach, estimation then concurs with summary 

statistics of the posterior draws while inference concurs with the evaluation of proportions of 

posterior draws. We applied various convergence diagnostics for our sampling approach. First, 

we visually inspected the multiple, randomly started Markov chains for convergence on the 

same stationary distribution. In addition, we calculated the Gelman-Rubin convergence 

diagnostic (denoted 𝑅𝑅𝑅𝑅�) (Gelman and Rubin, 1992). It compares, for each parameter, the 

estimated between-chains and within chain variances. Intuitively, a well-mixing, stationary set 

of chains will have within-chain variances approximately equal to the between-chains variance. 

As a rule-of-thumb, an 𝑅𝑅𝑅𝑅� ≤  1.01 (Vehtari et al., 2020) or 1.1 (Gelman and Rubin, 1992) is 

taken as evidence for convergence. 
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3.2.5. Model diagnostics and model comparison 

The goodness of fit of the HMR was assessed using Posterior Predictive Checks (PPC) and 

their related Bayesian p-values. The purpose of PPCs is to determine whether a model 

adequately describes the collected data or not (Gelman et al., 1996; Lynch, 2005). It allows to 

evaluate the predictive performance of a model by replicating data under this fitted model 

(which is a representation of data we might collect in the future) and comparing its outcome to 

the actual observed values. If the model adequately represents the data-generating mechanism, 

then replicated data under the posterior model will behave as the observed data. In the current 

study, a PPC was performed by generating 1000 draws of data from the posterior distribution 

of the fitted model and comparing its outcomes to the observed values to look for systematic 

discrepancies. In complement, a Posterior Predictive Distribution (PPD) analysis was 

performed. The PPD shows the distributions of future plausible observations under the fitted 

model and, therefore, whether or not the mean and 99th quantile of the replicated data are within 

the range of the observed values. 

The HMR was compared to a fully pooled model with respect to their predictive performances. 

This comparison uses a leave-one-out cross-validated (LOO-CV) estimate (Vehtari et al., 

2017) of the expected log predictive density (ELPD). The ELPD is the expected log pointwise 

predictive density for a new observation, i.e. it is indicative of the expected predictive accuracy 

for new data. Higher ELPD scores indicate better models. Models can be compared based on 

their ELPD difference. An absolute difference in ELPD higher than 4 indicates that one model 

has notably better predictive performance than the other model (Sivula et al., 2020). The 

associated standard error (SE) reflects the level of uncertainty with respect to the ELPD 

difference: if the SE is small relative to the difference, we are more certain that the models 

under comparison do differ in their predictive performance levels. 

The comparison of the HMR model with a fully independent equivalent (no pooling) was not 

investigated in this LOO-CV. A no pooling approach would have led to as many models as 

there are repetitions (van Boekel and Roux, 2022), i.e. 28 models. Therefore, each LOO-CV 

computation would only provide insight on the balance of one of the 28 models against HMR, 

and general conclusions on balance and goodness of fit could not be drawn. Most importantly, 

fully independent modelling yields estimates of the parameters that are not connected to the 

parameters’ values obtained for the other individuals of the group (van Boekel and Roux, 2022). 

As a result, group means are approached independently, as if there was an infinitely large 

variation between groups. This tends to overestimate the differences between groups, leading 
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to overfitting (Gelman and Hill, 2006). Comparison with such a modelling approach was 

therefore not done.  

  

3.2.6. Concordance metrics 

After derivation of the individual MPR curves, their areas under the curve (AUC) were 

computed to provide the methane production of a cow over time. The AUC were calculated as 

follows: 

AUCc  =  � Mc�  dt
tf

0
 [eq. 3. 3] 

where 𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐�  represents the predicted (based on our Bayesian posterior estimates) methane 

production curve for cow c and where tf represents the final measurement time. This integral is 

non-analytical and we used standard numerical integration techniques for its evaluation. 

The AUC of each cow was then converted into a daily MPR (g/d) by dividing its value by the 

time fraction over which it was computed (duration between two feed allocations). 

For each cow, methane production assessments conducted over the relevant 3-d in the CRC 

were averaged into a single daily MPR estimate, as is common practice in CRC research. These 

individual values represent the reference value against which the model predictions were 

compared. Measured (averaged) and predicted MPR curves were plotted for each cow. 

A linear regression of the CRC’ measurements on HMR’ predictions was performed to test for 

the presence of a linear relationship between averaged CRC and predicted HMR estimates. It 

was used to determine R2, which indicates the proportion of variance in the response variable 

that is explained by the regression model. Pearson’s correlation coefficient (r) was derived from 

R2, which denotes the level of correlation between the observed and predicted MPR. Both R2 

and r yield values between 0 and |1|. In addition, the Root Mean Square Errors (RMSE) were 

calculated to measure the prediction errors made by the model, with smaller values reflecting a 

lower level of error. 

The core of the HMR model is to sense variations in MPR between individuals. Therefore, 

agreement between observed and predicted MPR estimates is sought. To assess this level of 

agreement, we used Lin’s concordance correlation coefficient (CCC) (Lin, 1989), taking a 

value between -1 (perfect disagreement), 0 (no agreement) and 1 (perfect agreement). 
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3.2.7. Software and code 

The HMR model was coded in R (x64 4.1.0.) using the public libraries Bolstad2 (Bolstad, 

2010), brms (Bürkner, 2017), and Rcpp (Eddelbuettel and Francois, 2011). The leave-one-out-

cross-validation was done using the loo library (Vehtari et al., 2017). 

 

3.3.  Results and discussion 
 

3.3.1. Computational approach and convergence assessment 

The posterior means of the α, β, γ, and δ parameters were extracted from the inference analysis. 

Across the range of cows, α� = 242.1 ± 7.7, β = 2.38 ± 0.15, γ = 2.99 ± 0.11, and δ = 0.0393 ± 

0.0005 (Table 3.1). The variability between cows for the individual scale parameter α� equated 

to  σα�  = 21.88 ± 3.37, which reflects the variability that is naturally present between cows and 

the ability of the model to reflect it. Deviation in the scale parameter values between cows is 

shown in Figure 3.1.  

For each of the estimates, the convergence diagnostic R� indicates the convergence of the 

Hamiltonian Monte Carlo. As all values are lower than or close to the rule of thumb 1.01 

(Vehtari et al., 2020) or 1.1 (Gelman and Rubin, 1992), we can conclude that the chains 

converge. This means that a stationary distribution (equilibrium) has been reached and that no 

convergence issues were detected, indicating that the estimates of the parameters can be trusted 

(Gelman and Rubin, 1992). 

Table 3.1. Bayesian estimates of the population parameters 𝛼𝛼𝛼𝛼�, β, γ, and δ and variance components 𝜎𝜎𝜎𝜎𝛼𝛼𝛼𝛼�  

and 𝜎𝜎𝜎𝜎𝜀𝜀𝜀𝜀. Estimates are presented with their standard error (SE) as well as lower and upper 95% credible 

intervals. For each parameter the estimated convergence diagnostic 𝑅𝑅𝑅𝑅� reflects the convergence of the 

Hamiltonian Monte Carlo chains. 

Parameter Mean SE 
95% Credible interval 

𝑅𝑅𝑅𝑅� 
Lower  Upper 

𝛼𝛼𝛼𝛼� 242.1 7.7 227.7 257.7 1.02 

β 2.38 0.15 2.10 2.69 1.01 

γ 2.99 0.11 2.78 3.21 1.01 

δ 0.0393 0.0005 0.03923 0.03926 1.00 

𝜎𝜎𝜎𝜎𝛼𝛼𝛼𝛼�  21.88 3.37 16.32 29.71 1.00 

𝜎𝜎𝜎𝜎𝜀𝜀𝜀𝜀 64.99 0.47 64.07 65.93 1.00 
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Figure 3.1. Ridgeline plot of the population scale factor (𝛼𝛼𝛼𝛼�) and the individual deviations from the 

population per cow (α), indicated by their number.  

 

3.3.2. Model diagnostics and model comparison 

A 1000 draws of data were replicated in a PPC under the HMR model (Figure 3.2. A). The 

similarities that can be observed between observed data and samples generated from the PPD 

(centred, symmetrical)  show the predictive capacity of the HMR model and indicates no 

systematic discrepancies. In addition, the bulk of the distributions of the mean values fell in the 

middle of the PPD (Figure 3.2. B), which shows the ability of the model to reproduce mean 

values accurately. The PPD of the 99th quantile of values appeared to lie in the centre of the 

distribution (Figure 3.2. C), which means that the extreme values are also well represented by 

the model. Complementarily, the computation of the Bayesian p-values showed that 51.5% of 

the replicated values of the mean, and 33.6% of the replicated values of the 99th quantile lie 

within the observed values. According to the rule of thumb, all Bayesian p-values above 0.1 

(10%) are acceptable (Lambert, 2018). 

In contrast to other metrics, the PPC and PPD methods do provide indications about the 

predictive capacity of a model. Therefore, these results are particularly informative considering 

that the purpose of the HMR model is to aid in predicting MPR from new sets of cows.  

The LOO-CV was used to assess and compare the predictive performance of the partially 

pooled model (HMR) with that of its fully pooled equivalent. The fully pooled model yielded 

an estimated ELPD of -53411.4 (SE = 90.2), while the ELPD of the partially pooled model 
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equalled -51758.5 (SE = 85.9). As the difference in ELPD of 1652.9 is significantly larger than 

|4| and in favour of the partially pooled model, it shows that the HMR model predicts the 

observed data significantly better. The associated SE difference of 69.3 corresponds to 4.2% of 

the difference in ELPD, which reflects the low uncertainty that the difference in prediction 

accuracy between the two models could have been due to chance. These results confirm that 

the partially pooled approach taken with the HMR model makes it more suitable to predict 

individual MPR from cows. 

 

 

Figure 3.2. Posterior Predictive Checks (PPC) of the HMR model. A: PPC of the replicated data (1000 

draws) fitted with the HMR model for the studied grand population of cows. Dark plain line: observed 

values; light plain line: replicated values. B: Posterior Predictive Distribution (PPD) of the mean of the 

values fitted with the HMR model (1000 draws) for the studied grand population. Dark plain line: 

observed mean; bars: replicated means. C: PPD of the 99th quantile of the values fitted with the HMR 

model (1000 draws) for the studied grand population. Dark plain line: observed value of the 99th 

quantile; bars: replicated 99th quantile values. 
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3.3.3. Concordance metrics 

The prediction of the grand population’s MPR by HMR resulted in one estimated methane 

production trendline (Figure 3.3. A), complemented by the upper and lower bounds of its 

credibility interval (0.95). Individual MPR curvatures were derived from the population 

prediction, two examples of which can also be seen in Figure 3.3 (B and C). An AUC was 

estimated for each cow and converted into MPR, resulting in a mean MPR of 407.2 ± 35.0 g/d 

(coefficient of variation CV = 8.6%, Table 3.2). 

The MPR measurements done by the CRC over 3-d were plotted for each cow. Figure 3.4 shows 

the curves of two example cows, with the other individuals providing similar standard curves, 

varying only in range.  All methane production measurements collected over the 3-d in the CRC 

were averaged into a single daily MPR estimate per cow, as is common practice in CRC 

research. In the CRC, mean daily MPR was  416.7 ± 36.2 g/d  (Table 3.2), and variability 

between cows 8.7%.  

Despite the fact that the model must deal with the uncertainty resulting from the borrowing of 

information from a population that is propagated to individuals, the mean MPR and inter-cow 

variability predicted by the HMR model appeared in agreement with the levels monitored by 

the CRC. Additionally, the goodness of fit of the HMR model was first assessed through the 

linear regression of the MPR that were monitored and predicted for each of the cows (Figure 

3.5). It resulted in a R2 value of 0.995 (Table 3.3), which shows the strong ability of the model 

to explain the variance in monitored MPR. A value of  0.997 was obtained for Pearson’s r, 

which reflects the strong and nearly perfectly linear correlation between the observed and 

predicted MPR (Altman, 1990). The RMSE equalled 10.0 g/d, which is 2.41% of the observed 

(monitored) mean. This value reflects a high prediction accuracy. Lastly, the computation of 

Lin’s CCC resulted in an excellent concordance (0.961). This result shows the ability of HMR 

to predict the MPR of individual cows, which is essential for its future applications.  
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Figure 3.3. Postprandial MPR as predicted by the HMR model. A: Prediction of the grand population 

curvature. B, C: Example of two individual curves (cows 2 and 12) as deduced by the HMR model from 

the predicted grand population curvature. Grey ribbons: credible intervals; dashed lines: predicted MPR 

of the grand population; plain lines: predicted MPR of individual cows. 

 

Table 3.2. Mean methane production rate (MPR), standard deviation (sd) and coefficient of variation 

(CV) between cows as monitored by the respiration chamber and predicted by the Hierarchical Methane 

Rate (HMR) model. 

Monitored Predicted 

Mean individual 
MPR (g 

CH4/day) 

sd (g 
CH4/day) 

CV (%) 
Mean individual 

MPR (g 
CH4/day) 

sd (g CH4/day) CV (%) 

416.7 ± 36.2 8.7 407.2 ± 35.0 8.6 
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Figure 3.4. Example of two individual MPR (g/d) monitored by the CRC over a total period of 3-d for 

cow 2 (A) and 12 (B). Each colour represents the combination of the 2 postprandial MPR monitored 

over this 24-h time interval (Day 1, Day 2, Day 3). The plain horizontal line represents the mean methane 

production rate obtained for the monitored cow (g/d).  

 

 
Figure 3.5. Linear regression of the individually monitored (CRC) and predicted (HMR) MPR (g/d) and 

regression line. Dashed line shows x = y. 
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Table 3.3. Indicators of the goodness of fit of the model R2, Pearson’s r, and root mean square error 

(RMSE). Estimate, p-value and confidence intervals of Lin’s concordance correlation coefficient 

(CCC). 

Indicator 

R2 RMSE 
RMSE as % of 
the observed 
MPR mean 

Pearson’s r CCC Lower CI Upper CI 

0.995 10.033 2.407 0.997 0.961 0.933 0.978 

 

3.3.4. General discussion 

In this paper, we proposed a Bayesian hierarchical stochastic kinetic model to predict MPR. 

The hierarchical model we exposed is partially pooled, and has population-level shape 

parameters while carrying a cow-level scale parameter. This approach allowed for flexibility in 

the modelling of MPR over multiple cows, therefore allowing the computed curves to reflect 

part of the variations in MPR that are present between individuals. We emphasized uncertainty 

propagation, with the intention to realistically represent variation in MPR between cows. We 

firstly described the basic model and its Bayesian hierarchical extension, before explicating our 

approach to the estimation of the model’s parameters. We assessed and discussed model fit and 

concordance.  

The extensive model evaluation that has been carried out in this paper has shown that the HMR 

model is an adequate representation of the postprandial MPR curve. Its ability to partially pool 

information from a grand population of cows and to allow for individual variability in the 

chosen scale parameter has proven effective. Its predictive performance was shown and gauged 

to the one of its fully pooled equivalent model. The latter resulted in lower prediction accuracy 

and underfitting. Placed in a Bayesian context, the HMR model has broadened the applications 

of the model of Crompton et al (2011).  

In a next phase, time could be implemented as an additional hierarchy level of the model. 

Indeed, cows are subject to changes in physiological status and feed intake over time, which 

have an impact on MPR. Therefore, implementing this source of variability in the HMR’ 

predictions could improve the model further. Additionally, assessing its goodness of fit and 

predictive performance under conditions of differing feeding frequencies (e.g. once, twice, 

thrice daily, ad libitum, restricted), lactation status, and milk yield would be very informative 
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as these factors have the potential to impact methane production levels (Bittante et al., 2018). 

Besides, feeding frequency is a major factor in the required number of daily samplings and their 

intervals during CH4 spot sampling techniques to obtain reliable methane production values of 

individual animals (Lee et al., 2022; van Lingen et al., 2023). The present HMR model assumes 

an asymmetrical shape of methane production rate upon consumption of a meal, with a 

continuous rise to a peak methane production followed by a gradual decline. The number of 

actual meals of an animal is then a major determinant of the parameters of the HMR model, 

with for example a more rapid decline after peak production in animals consuming several small 

meals compared with animals consuming one large meal daily, as demonstrated by Crompton 

et al. (2011). 

Complementarily, the presence of individual variation in the shape parameters could be 

explored. In fact, the demarcation of the model only allows the scale parameter to vary between 

cows, whereas shape might also vary between individuals. It would therefore be interesting to 

study the individual variation of the three shape parameters and assess which of them is most 

likely to vary from one individual to another. However, such a study will be computationally 

expensive.  

Lastly, it would be interesting to investigate the gain in MPR estimation accuracy obtained 

when the HMR model is used to fit datasets resulting from monitoring devices that operate at 

lower sampling frequencies than the CRC, such as the commonly used spot sampling methods 

used in practice (e.g. GreenFeed, sniffers, Cubicle Hood Sampler). Indeed, their throughput is 

usually limited and does not cover full periods between two feedings. As previously stated, 

monitoring or modelling the entirety of the MPR curve is key to accurate MPR estimates, which 

is where the HMR could be of aid for two reasons. First, because it allows to convert discrete 

measurements into a non-linear production curve that respects the mechanics of postprandial 

methane production. Secondly, because the borrowing of information across cows could 

partially compensate for the limited amount of information that is available for one individual. 

Mathematically, the HMR model is able to operate with limited input information, but its 

prediction accuracy is expected to vary depending on the number of observations and the phase 

of the methane production curve at which they have been collected. 
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3.4.  Conclusions 
 

This study demonstrated the ability of the HMR model to predict MPR of individual cows 

(using CRC data) by modelling population-level shape parameters while allowing for individual 

variation in scale. The hierarchical Bayesian approach taken with the model proved to make 

more accurate MPR predictions than its fully pooled equivalent, and to offer broader application 

opportunities than the previous models. Next, we suggest to fit the HMR model with datasets 

from spot-sample measurement devices and to investigate its effect on the MPR estimation 

accuracy. 
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Highlights 

 Ultrasonic sensors that are not dust-tight and waterproof are not suited for use in barns. 

 As used here, the performance of radio frequency identification was not sufficient. 

 Ultrasonic sensors and radio frequency identification will be replaced by computer vision. 

 The recovery tests conducted showed the system’s ability to monitor methane production 

accurately. 

 

Abstract 

Monitoring methane production from individual cows is crucial for the implementation of 

greenhouse gas reduction strategies. However, monitoring methane production rates (MPR) 

under practical conditions and with acceptable levels of accuracy, intrusiveness, and throughput 

remains challenging. In this study, we present a renewed design of the Cubicle Hood Sampler 

(CHS) as an alternative solution to this challenge.  

Placed in the cubicles, the CHS collects and analyses the methane content of the air exhaled by 

cows when lying down. Ultrasonic sensors were used to monitor the head position of cows 

within the system, information of importance when measuring breath components. However, 

they appeared not to be suited for barn use. Radio frequency identification was used to link 

measurements to specific cows but, as used here, the levels of correct identification were 

insufficient. The ability of four CHS to recover known MPR was assessed in three series of 

recovery tests using a reference method (artificial reference cow (ARC)). For the tested fluxes, 

there were no significant difference in recovery rates (mean 110.5% ±8.7) between CHS (p = 

0.207), treatments (p = 0.080), and repetitions (p = 0.148). The coefficients r = 0.99, and R2 = 

0.98 showed that the correlation between injected and recovered fluxes was strong and positive, 

and that variance in recovered rates could be well explained by variance in the injected values. 

Repeatability equated 0.94, showing the excellent repeatability and reliability across replicates. 

These results overall place the CHS as a promising tool for on-barn methane measurements. 
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4.1.  Introduction 

 

Currently, livestock farming faces an urgent need to reduce its greenhouse gases (GHG) 

emissions and  reduce the impact of the sector on the environment. Methane (CH4) accounts 

for one of the major GHG contributors, and its production by ruminants (and particularly cattle) 

requires a considerable shrinkage. 

Methane is produced, by all ruminants, as a result of the enteric fermentation process occurring 

in the digestive tract and during the anaerobic fermentation of feed. During this process, carbon 

dioxide (CO2) is produced and reduced into CH4 by the methanogens (Morgavi et al., 2010) 

before being released by the animal through exhaling and eructating. This by-product is not 

only a substantial source of GHG, but also an energy loss for the animal (reduction of the feed 

conversion efficiency) and an economic waste for the farmer (González-Recio et al., 2020; K. 

A. Johnson and Johnson, 1995).  

Mitigation strategies have already been identified to mitigate methane production at cow level. 

They have as main axis of action the modifications of the rations content, like implementation 

of additives, reduction of fibre content, increase of feed efficiency (Boadi et al., 2004; Knapp 

et al., 2013) or the long-term breeding of individuals with lower individual methane production 

(Clark, 2013; Moss et al., 2000). However, evaluating their performance requires the 

availability of devices that can accurately quantify the methane production rates (MPR) of 

individual cows throughout time. Although several approaches have already been developed 

(e.g. GreenFeed, sniffers, use of SF6 as a tracer gas), none of them yet offers an acceptable 

combination of measurement accuracy, intrusiveness, practicability, and price, while also 

operating at sufficient throughput (Hammond et al., 2016a; Negussie et al., 2017). In addition, 

MPR has already been demonstrated to vary in time and in response to feeding. For example, 

dietary composition, dry matter intake, and frequency of feed intake affect postprandial 

(subsequent to feed intake) production rates (Hristov et al., 2013a; K. A. Johnson and Johnson, 

1995). The rumination status (fermentation rate) has been shown to be inherent to time, with 

postprandial durations affecting MPR non-linearly. The enteric production of methane is 

consistently characterized by a first rapid rise towards a production peak (reached 30 to 140 

min after feed intake) and a slow decrease back to the basal production level (Crompton et al., 

2011; van Lingen et al., 2017). Therefore, accurate estimates of MPR depend as much on the 

number of observations that can be collected by the system, as on adequate sampling throughout 
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the production curve. Simple extrapolations from short monitoring periods to daily MPR 

estimates can therefore not be accurate (Kuhla et al., 2015).  

Introduced by Wu et al. (2016), the Cubicle Hood Sampler (CHS) is an innovative device that 

(non-intrusively) monitors the individual methane production of cows while present in cubicles. 

By opting for extended monitoring durations (up to 12 hours per cow per day), the CHS could 

overcome the effect short sampling times have on the MPR estimations of other alternative 

methods (Kuhla et al., 2015). In addition, the non-intrusive nature of this tool could allow for 

simple implementation on barns and high throughput. The additional sensors added to the 

system (cow identification, head position monitoring) provide innovative ways to collect 

parallel data, which are used in the MPR calculation. These elements place the CHS system as 

a promising tool in terms of both accuracy and innovation. 

The objectives of this study were to evaluate the ability of the latest updated CHS prototype to 

measure known MPR, and get a first impression of the performance, applicability and resistance 

of each sensing system under barn conditions. To achieve this, we built four units of an 

improved version of the CHS and monitored endurance in time, as a result of barn and weather 

conditions and animal-induced damage. The performance of the cow identification and head 

monitoring systems were evaluated through comparisons with ground truth observations. The 

ability of the system to monitor two levels of methane fluxes was investigated through repeated 

recovery tests. They provided an indication on the measurement accuracy of each CHS at these 

two levels.  

 

4.2.  Material and methods 
 

4.2.1. Dataset 

The dataset was collected during a study conducted from August to October 2020 at the animal 

research facilities of Wageningen University & Research (Wageningen, the Netherlands) under 

the Dutch Law on Animal Experiments and in accordance with EU Directive 2010/63. All 

experimental procedures were approved as complying with the regulations on animal 

experiments in vigour. They were classified by the Animal Welfare Officer as a non-animal 

experiment, as referred to in the Dutch Act on Animal Experiments, since the experimental 

procedures caused less pain or distress than the insertion of a needle under good veterinary 

practice. 
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The experiment was conducted with 28 lactating Holstein-Friesian cows (2.3 ± 0.9 lactations; 

93  ± 27 days in milk). Cows were blocked (7 blocks of 4 cows) based on parity and days in 

milk, and fed a basal total mixed ration throughout the entire study consisting of 41% corn 

silage, 32% grass silage, and 27% concentrate on a dry matter basis. The total mixed ration was 

formulated to meet 100 and 95% of the net energy for lactation and metabolizable protein 

requirements (CVB, 2018), respectively, for cows consuming 22 kg dry matter/d and producing 

34 kg/d of milk containing 4.0% fat and 3.4% protein. Each block was successively housed in 

the free-stall barn for a period of 7-d each. 

 

4.2.2. Structure and key components 

Based on earlier prototypes (Wu, 2016), four updated CHS units were built at the experimental 

facility of Wageningen University & Research in August 2020 (Nergena, Bennekom, The 

Netherlands). The units were placed in adjacent cubicles of the free-stall barn, bounded at one 

end by the building’s structure, at the other by the slatted floor. 

The physical separation between the lateral sides of each cubicle (left L, right R, Figure 4.1) 

was made using vertical Plexiglass panels measuring 115 x 140 cm (height x length). An inner 

space of 115 x 120 cm was delimited around the end of the cubicles receiving the head and 

forelimbs of the animals with an additional top (T) and two front (F) panels, inserted between 

the L and R ones. These physical separations were essential to prevent mixing between gas 

mixtures originating from the monitored animal and the rest of the herd (e.g. breaths and belches 

of cows in adjacent stalls or present on the slatted floor).  

Samples were collected through the F panels, which was constituted of two parallel panes, 

spaced 10 cm apart for gas circulation. Three horizontal slots of 2  x 120 cm were cut in the 

Plexiglas layer F that was closest to the cows’ snouts, at heights of respectively 25, 55 and 125 

cm from panel G; an horizontal panel placed 15 cm above ground level to create a protected 

space for the placement of sensors. These three inlets allowed exhaled and eructated breath to 

enter the system. 
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Figure 4.1. Schematic front view of the CHS. Exhaled air flowing into inlets A, B and C (stripped 

rectangles), and in the direction of the outlet (complete piping not visible). “L” left, “R” right, “F” front, 

“T” top and “G” ground panels of the structure. “ULS” ultrasonic sensors. Single arrows show airflows, 

and double arrows represent length. 

 

Placed above the CHS’s structure (Figure 4.2), a PVC pipe (⌀ = 110 mm) containing a fan (4, 

TD-250 S&P Holland) permanently induced an airflow of approximately 200 m3/h. This suction 

caused an under-pressure in the hood, resulting in the extraction of exhaled air and belches into 

the piping. Dispersion of the breath air into the barn was limited by the implementation of a 

rear flap (6), falling behind the withers of the cow. In the exhaust, the presence of a flowmeter 

(1, Lambrecht Vane Anemometer 1468) permitted the continuous monitoring of the instigated 

airflow rate. Temperature and humidity of the sample were monitored using a T-RV sensor (2, 

Vaisala T-RV probe HMP60). Breath samples were collected through a polyethylene tube (3, 

⌀ = 4.35 mm), filtered for dust particles, and pumped to a gas analyser (Fourier-transform 

infrated spectroscopy (FTIR), Gasmet Technologies) measuring methane concentration. Every 

21 seconds, the FTIR provided a mean value of the methane concentration (ppm) measured 

over the last twenty seconds. All data but the FTIR was collected and stored by a datalogger 

(CR1000X, Campbell Scientific) every 30 seconds.  
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Figure 4.2. Schematic upper side view of the CHS. 1: Flowmeter, 2: T-RV sensor, 3: Hood sampling 

point, 4: Fan, 5: Background sampling points, 6: Rear flap. Single arrows symbolize airflows. 

 

4.2.3. Sampling strategy and cow recognition 

Cubicles equipped with a CHS were monitored in sequence by one FTIR gas analyser. 

Switching between sampling lines was automated in the datalogger hardware and performed by 

a multiplexor (engineered and built by Wageningen University & Research Air Quality Lab). 

The starting and ending of a measurement cycle (MC) was based on the recognition of the 

presence of a cow in one of the units (an example of which is shown in Figure 4.3). Detection 

and identification of cows (to attribute observations to the correct individual) were carried out 

using radio frequency identification (RFID), consisting of sets of detectable tags (UHF tags, 

SparkFun Electronics), readable by UHF RFID reader antennas (RP-TNC, SparkFun 

Electronics). Its coupling to a simultaneous RFID tag readers (Simultaneous RFID Reader - 

M6E Nano, SparkFun Electronics) allowed to detect multiple tags simultaneously and to assign 

them to the same cow.  
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Each cow was provided with a halter to which five RFID tags were attached. Two positions 

were experimented with to optimize the cow recognition system: configuration 1) three tags on 

the chamfer, two tags under the jaw (three weeks, twelve cows); and configuration 2) three tags 

between the ears, two tags on the chamfer (four weeks, sixteen cows). Each set of tags was 

encoded to send a unique (low tension)  frequency signal, corresponding to one of the cows 

(SparkFun Simultaneous RFID Tag Reader Library “Write_EPC”, Arduino 1.8.19).  

A UHF RFID reader antenna was placed in each of the CHS, under panel G for configuration 

1, and on panel T for configuration 2 (Figure 4.1). Using the “Read_EPC” library (SparkFun 

Simultaneous RFID Tag Reader Library, Arduino 1.8.19), the detection range of each antenna 

was set to 2000 dBm to match the diameter of the hood. Upon arrival in a cubicle, tags worn 

by a cow were detected by the antenna. An R2R network was then used to transform the unique 

cow identifier to an analogue output that could be read by the datalogger. In the datalogger 

code, a counter was programmed to increment by one for each successful identification of a tag 

present in the antenna’s detection range. Once the counter had reached the set value of three 

(corresponding to 1 minute of presence in a CHS), a MC would start. In the event that a cow 

moved or left the cubicle before the counter reached the pre-set value, a decrement of one was 

deducted from the counter for each missed reading. Eventually, the counter reached zero and 

other CHS were scanned again for occupancy. The implementation of this counter as a 

prerequisite to measurements’ initialisation has allowed to limit the loss of data related to 

interrupted MC.  

The MC always operated according to the same predefined pattern. First, the background 

methane concentration around the cubicle (5, Figure 4.2) was monitored for 6 minutes to 

differentiate the cow-specific methane production from other ambient emissions (e.g. herd, 

manure pit). The first minute of sampling corresponded to the flushing of the remaining gas in 

the inlet tubing and its replacement by the newly sampled gas (build-up time). The 

corresponding data were removed from the later analysis. Next, background methane 

concentrations (ppm) were measured by the FTIR for 5 minutes, with one mean reading every 

21 seconds. Then, monitoring automatically switched to the hood inlets (A, B, C, Figure 4.1). 

Similarly to the background measurement, the first minute of data was deleted, followed by a 

15 minutes monitoring of the cow’s methane production. Lastly, the background methane 

concentration was monitored again, identically to the first MC step. 
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Figure 4.3. Picture of a methane flux measurement with one cow lying in the second of the four CHS 

units of this study (2020). 

 

4.2.4. Head position monitoring 

When monitoring breath components, information on the orientation of the head of the animal 

in the measurement device is essential (Hammond et al., 2016a). Muzzle position and distance 

to inlet have been found to be highly correlated with measured gas concentrations (Huhtanen 

et al., 2015b), making the filtering of data measured during inadequate head positionings key 

to the obtention of accurate MPR estimates. In the case of the CHS, postures in which the cows’ 

busts were present between the rear flap (6, Figure 4.2) and the R, L, F and T panels (Figure 

4.1) were classified acceptable, as they allowed the muzzle to be positioned acceptably under 

the extraction hood (Figure 4.4, A). Postures other than this positioning led to rearwards 

orientation of the snouts (Figure 4.4, B) and breath exhalation onto the background sampling 

points (5, Figure 4.2) instead of into the hood’s inlets. In these cases, collected air samples 

corresponded to ambient air and could not be used to estimate the individual MPR. 

To filter out these skewed samples, a series of nine ultrasonic sensors (ULS) (HC-SR04, 

Sparkfun) were evenly distributed over the first layer of panel F (3 x 3, Figure 4.1), facing the 

head of cows. All sensors were programmed (Arduino Uno Rev3, Arduino IDE) to propel a 

series of twenty-one consecutive pulses. Depending on the distance between the ULS and the 
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cow’s bust, each pulse was converted into a higher or lower voltage, which was in turn 

expressed as a distance. The median distance measured by the pulses of each sensor was then 

retained as its true value. The ULS operated in sequence to avoid interference. Once all sensors 

had emitted twenty-one pulses each, only the smallest distance measured by each column was 

stored, and the cycle was repeated.  

 

 
Figure 4.4. View of the four CHS units as simultaneously seen through camera 2 (A, left) and 1 (B, 

right). 

 

4.2.5. Other sensors 

Additional sensors were included in the CHS to collect complementary information. One 

flowmeter was placed in each of the exhaust piping to monitor the airflow going through the 

units (12 records per min, one mean value stored every 30 sec). This information was necessary 

to ensure that the correct extraction flow was maintained, and to calculate methane fluxes 

(equation [3]). One T&RV sensor was placed at the inlet of each polyethylene tube transporting 

the gas samples from the CHS’s exhaust to the FTIR gas analyser. These data were used in the 

calculation of the molar volume of methane [1], and to convert ULS’ mV output into a distance, 

as T and RV impact the speed at which the pulses travel through space. A measure of the 

ambient pressure was provided by the FTIR and used in equation [1]. Finally, two infrared 

cameras (DS-2CD2T63GO-I5, Hikvision) were placed above the cubicles as ground truth in 

the eventuality of missing information, unexpected events or results. Each camera continuously 

monitored two CHS, providing footages such as those visible in Figure 4.4.  
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4.2.6. Recovery tests 

Three recovery tests were conducted at the beginning, middle, and end of the experiment (week 

0, 3 and 7). They had two main objectives. First, they allowed to assess the ability of the system 

to recover known levels of methane production. This provided an indication on the presence of 

potential bias in the recovered values. Secondly, their repetition in time gave indications on the 

potential evolution of the CHS performance over time. 

For this, two levels of methane flux were defined to correspond to the daily MPR of a low (200 

gCH4/d) and high (400 g/d) producing cow. They were injected into each of the CHS using the 

Artificial Reference Cow (ARC) created by Wu et al (2015). The ARC mimics the breathing 

and belching cycles of a cow, and can release defined amounts of CO2, and CH4. The flux of 

these two gases is controlled by two mass flow controllers (MFC, F-201CV-5KO, Bronkhorst 

High-Tech B.V., Ruurlo, The Netherlands), while the tidal volume is induced by compressed 

air pushing a piston through an aluminium cylinder. For these recovery tests, the methane MFC 

was connected to a 99.995% pure methane cylinder (equivaling 0.71 gCH4/L), while the CO2 

and breathing simulations were not activated. An additional polyethylene tube (internal ⌀ = 

4.35 mm) connected to the ARC outlet served as gas injection line.  

For both treatments (200 and 400 gCh4/d) and each repetition of the recovery test, the same 

protocol was followed (Figure 4.5). The injection line was placed directly in front of the CHS 

inlet B (Figure 4.1) and the injection flow set to either 0.2 L/min (≈0.14 gCH4/min) or 0.4 L/min 

(≈0.28 gCH4/min), which respectively roughly corresponds to the daily production of 200 and 

400 grams (with some variation depending on the ambient conditions of the day. Background 

methane concentration was monitored (5, Figure 4.2) for 6 minutes (B1) before switching to 

the hood for 11 minutes (H), and back to the background for 6 additional minutes (B2). For the 

same reasons as for the MC, the first minute of each sampling was discarded as build-up time. 

Concentrations (in ppm) monitored over each sampling period were averaged, providing one 

mean ppm reading for B1, H, and B2. 
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Figure 4.5. ARC and methane cylinder placed in one of the CHS before proceeding to the recovery test. 

During a recovery test, the outlet (black tubing, indicated by the arrow) is placed under the hood. 

 

The conversion from the concentration readings to a daily MPR was done following the 

equations [eq. 4.1] to [eq. 4.3]. In a later phase, the same equations will be used to calculate the 

MPR of cows estimated by the CHS for each MC. 

First, the methane’s molar volume at the time of sampling was calculated as shown in [eq. 4.1], 

as the (molar) volume occupied by a gas is dependent of the ambient temperature and pressure 

(Charle’s Law, and Gay-Lussac’s Law). 

Methane molar volume: 

VM = R × T ÷ P [eq. 4.1] 

Where VM is the molar volume (m3.mol-1), R the universal gas constant (J.mol-1.K-1), T the 

temperature (K) and P the ambient pressure (Pa). 

Consecutively, the methane concentration of the measurement (expressed as the difference 

between background and hood sampling) was deducted as shown in equation [eq. 4.2].  
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Methane concentration: 

m = ([CH4]H −  [CH4]B) × 10−6 × (MCH4 ÷ VM)  [eq. 4.2] 

Where m is the increase in methane concentration in the sample (kg/m3), [CH4]H  and [CH4]B 

are the methane concentrations (ppm) measured in - respectively - the hood and the background 

([CH4]B being the mean of B1 and B2 concentrations), MCH4 the molar mass of methane 

(kg.mol-1) and VM the molar volume (m3.mol-1). 

For reading purposes, the methane mass was ultimately converted into a daily flux, thus 

providing an estimate of the MPR over 1-d [eq. 4.3].  

Daily methane production rate: 

MPR =  m ÷ 1000 × Q ×   24  [eq. 4.3] 

Where MPR is the methane production rate per day (g/day), m the methane concentration 

(kg/m3) and Q the airflow going through the CHS (m3/h). 

 

4.2.7. Statistical analysis 

All statistical analysis were done with R statistical software x64 4.1.0. 

The ability of each RFID configuration to accurately identify cows was evaluated by comparing 

its outputted ID to the cow that had been identified in the videos for each MC. A true and false 

identification count was then made and converted into a percentage of correct identifications. 

The effect of cows and CHS units on the accuracy of the identifications made by the RFID was 

investigated with a Generalized Linear Model (GLM) for discrete data (Poisson regression).  

Recovery rates (%) were calculated according to equation [eq. 4.4]. They provided an indication 

on the percentage of the methane flux that the CHS were able to recover, as well as on the 

presence of systematic errors between injected and recovered values. 

Recovery rate =  mrecovered × 100
minjected

  [eq. 4.4] 

The coefficient of variation (CV) was computed for each CHS and treatment to determine the 

magnitude of the variation between replicates. 

One-way ANOVA were computed to test for the presence of significant differences in recovery 

rates between 1) treatments, 2) repetitions, and 3) CHS units.  
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An orthogonal linear regression was fitted on the recovery rates obtained across treatments to 

assess the proportion of variation in recovery rates that is explained by differences in the 

injected flux. An orthogonal regression was preferred to a standard linear regression, as 

recommended by the European Committee for Standardization (NEN, 2017) in cases where the 

uncertainty attached to each result given by the reference method (ARC) is not neglectable 

compared to the uncertainty of the individual results given by the alternative method (CHS). 

Therefore, the orthogonal linear relation between injected and recovered methane fluxes was 

defined as: 

y�i =  C0 + Cix�i)  [eq. 4.5] 

Where 

C0 =  y� −
s(y�)
s(x�)

x� 

Ci =  
s(y�)
s(x�)

 

With y� the mean injected flux, x� the mean recovered flux, and s(y�) and s(x�) their respective 

standard deviations. 

It was used to calculate R2, which indicates the percentage of variance in the response variable 

that is explained by the regression model. Pearson’s correlation coefficient (r) was derived from 

R2, and denotes the level of correlation between the injected and recovered methane fluxes. In 

addition, the root mean square error (RMSE) were calculated to measure the estimation errors 

made by the device, with smaller values reflecting a lower level of error. 

Lastly, the computation of the intraclass correlation coefficient (ICC) provided information on 

the level of repeatability (and therefore reliability) between replicates. Under the mixed effect 

model of the absolute agreement between two judges (ARC and CHS), the ICC was calculated 

as (Nakagawa and Schielzeth, 2010; Sokal and Rohlf, 1995): 

ICC =  
σβ
2

σβ
2+σ2

  [eq. 4.6] 

Where σβ2  is the variance of the between-judges estimates between the replicates and σβ2 + σ2 

the total variance (addition of the variance of interest and the unwanted variance). 
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4.3.  Results and discussion 
 

4.3.1. Identification of cows using RFID 

For configuration 1, a total of 155 MC were monitored, of which 96.1% were correct 

identifications, which was very satisfactory. However, these results were obtained for the first 

2 groups of cows only, and the identification system failed as of group 3. Due to this system 

failure, and despite the previously satisfactory performance of the RFID, all data acquisition 

stopped for that group. It resulted in the implementation of configuration 2, which provided 631 

MC, of which 63.1% were correct identifications. The clear cause of the failure of the first setup 

was not identified, and all tags were replaced each week of configuration 2 as a prevention. 

Still, the performance of this configuration never reached the one of the first setup. 

Retrospectively, it might have been preferable to keep configuration 1 in place while frequently 

replacing the used tags. The complementary Poisson-regressions showed that these results were 

not significantly different between CHS units (p = 0.165), and that only two cows led to 

significantly different levels of identification correctness (p cow a = 4.01e-05; p cow b = 0.004). 

This can be explained by their tendency to lie down leaning backwards, in which cases cows in 

adjacent cubicles were being detected, leading to incorrect identifications.  

In general, the main source of error in identifying cows seemed to be related to the lying position 

of both the monitored cow and the cow(s) lying in adjacent cubicles. In some positions, the tags 

worn by one cow were located closely to the adjacent antenna, which could pick its signal. 

These cases have led to errors and misidentifications. As the lying position of the cows may not 

be influenced, mastering the detection range of the antennas is crucial. Unfortunately, the metal 

components of the cubicles seemed to affect the detection range of the antenna in an 

unpredictable way, making it more difficult to control. 

In the tested configurations, the identification of cows using RFID did not offer a sufficiently 

reliable way to identify individuals. However, the identification process is of great importance 

as it is used to link the MPR estimates to the correct animal, information which is then used to 

select rations or lines of cows. Even though options are available to improve the RFID system, 

any electronics placed in a barn add up to the complexity of the CHS and to its maintenance. 

We believe that it is preferable to minimise sources of failures and errors, and that the CHS 

should be made as easy to use as possible, without affecting its MPR estimation accuracy. 

Therefore, in future studies the current cow identification system will be replaced by a camera 

vision recognition of coat patterns, following the work of Andrew et al (2020, 2016). 
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Preliminary work has already highlighted that the main challenges will be recognising mainly 

unicolour cows, and attributing the coat patterns of both flanks to the same cow.  

 

4.3.2. Monitoring head pose using ULS 

Unfortunately, the dataset obtained with the ULS could not be processed. Indeed, they were 

extremely affected by humidity and dust, the presence of which cannot be avoided in barns, 

even in spite of all the measures taken to do so. As a result, their distance output often resulted 

in unreliable data (e.g. distances out of the plausible range), and electronical parts required 

frequent replacement due to failures. Lastly, some parts of the CHS structure fell within the 

detection range of the ULS of the two outer columns. This sometimes lead to a detection of the 

CHS’ side panels instead of detecting the monitored cow. 

Waterproof and dustproof ULS are available on the market. Since this experiment was 

conducted, they have become affordable, which no longer makes cost a limitation. However, 

ULS sensors still require additional electronics and wiring to operate. These are not water or 

dustproof, add to the initial labour, and to the maintenance level once placed in the barn. For 

the CHS to be a practical tool, labour and maintenance levels should be minimized where 

possible. In addition, it proved difficult to conciliate a sufficiently large detection range with 

immovable within-range parts of the CHS. Therefore, it was decided not to continue with the 

ULS sensors to monitoring the head pose. 

Currently, a computer vision algorithm is being developed to infer the head pose of the animals 

from the video material. Once optimised, it will be used to automatically filter out biased 

samples in a cheap, autonomous, and robust manner. 

 

4.3.3. Recovery tests 

Across all CHS, treatments, and repetitions, the mean recovery rate equalled 110.5% ±8.7. 

Treatment 1 (200 g/d) resulted in a mean recovery rate of 113.6% ±9.6 across CHS and 

repetitions, and treatment 2 (400 g/d) in a recovery of 107.4% ±6.6. A summary of the recovery 

rates is presented in Table 4.1, and a complete overview in Appendix D. Recoveries that are 

higher than 100% are most likely the result of the cumulative uncertainties of all sensors 

which’s data are included in the calculations. However, it may also reflect errors in the gas 

sampling strategy, for example in monitoring background methane concentrations, which have 
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a direct impact on the estimated MPR. Various background sampling strategies should therefore 

be tested in the future to investigate their effect on the methane fluxes recovered by the hood. 

The computation of one-way ANOVA showed that there were no significant differences in 

recovery rate between CHS units (p = 0.207), and plausibly no significant difference between 

in recovery rate between treatments (p = 0.080). These results show that the recovery 

performance of the CHS does not differ between measurement units nor MPR level. An 

additional ANOVA showed that recovery rates did not differ significantly between the 

repetitions (p = 0.148), indicating that the CHS ability to estimate MPR did not change in 7 

weeks. We conclude that the MPR estimates made by the CHS (during this experiment, and 

within the range of 200 to 400 g CH4/d) can be corrected for using the regression equation 

shown in Figure 4.6. For the longer term, conducting recovery tests at larger time intervals and 

over a longer timeframe (e.g. every month for a year) would provide essential information on 

the durability of the system and its estimates. In addition, the orthogonal linear regression of 

injected and recovered fluxes showed levels of correlation (r = 0.988) and explained variance 

(R2 = 0.977) close to unity (Figure 4.6). The RMSE equated 34.95g, which is acceptable for 

MPR levels of 200 and 400g/day. These values reflect the satisfactory level of linear 

relationship between injected and recovered fluxes. The computation of the ICC yielded a value 

of 0.942 which shows the excellent repeatability and reliability between the methane fluxes 

injected by the ARC and the ones recovered by the CHS across replicates.  

The results obtained in the recovery tests place the CHS as a promising tool to monitor MPR 

from individual cows on barn. In an upcoming step, the daily MPR estimations made by the 

CHS for individual cows should be compared to the ones made by a reference method (e.g. 

climate respiration chamber) for the same individuals. However, differences in estimated MPR 

due to biological factors resulting from the animals may be confounded with differences due to 

methodological factors. Therefore, the effect of biological factors and measurement errors on 

the accuracy of the estimate should be distinguished by performing recovery tests in addition 

to the actual live measurements (Gerrits et al., 2017). 

  



Optimisation of the Cubicle Hood Sampler 

| 97 

Table 4.1. Mean recovery rate (%) and standard deviation per CHS unit, across treatments and 

repetitions. 

CHS Mean recovery rate (%) Standard deviation (%) 

1 106.95 7.75 

2 113.10 7.30 

3 105.62 7.17 

4 116.21 9.54 

 

 
Figure 4.6. Orthogonal linear regression of the methane fluxes injected by the ARC and recovered by 

the four CHS, across CHS units, treatments, and repetitions (plain line). Dashed line represents x = y. 

 

4.3.4. Further optimisation 

In the upcoming phase, the sensors that were used to identify cows and monitor their head 

positions will both be replaced by camera vision algorithms to improve performance and reduce 

costs and labour. An algorithm is already being developed to infer the head pose of the animals, 

and the work of Andrew et al (2020, 2016) will be used as baseline to identify cows based on 

their coat patterns in an upcoming step. Both algorithms will be used post-hoc as their results 

are not needed in real time, but only to filter the data and attribute it to the right individual.  

Additional attention will be given to the overall gas sampling and monitoring. Indeed, the 

current gas analysers which are available are globally either rather expensive, or cheaper but 

less accurate. Therefore, only one gas analyser could be used in this study, which resulted in a 
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sequential monitoring of cows with an alternating between hood and background, and a reduced 

data collection. However, accurate methane gas analysers are currently on their way to 

becoming significantly cheaper, which could allow for each CHS to be equipped with its own 

gas analyser within a few years. In that case, sampling strategy would be eased as continuous 

sampling would not require MC initiation or ending, thus simplifying the system. The 

monitoring of background methane concentrations could also become continuous, which would 

concurrently increase the accuracy of the MPR estimates. 

Lastly, the portability of the CHS must be improved as its portability and adaptability to varying 

cubicles dimensions are simply lacking in its current design. This would allow for the system 

to be easily transported and implemented in multiple locations and various barn setups. Overall, 

we wish for the CHS to be as cheap and easy to use as possible, while maintaining the accuracy 

of its measurements. 

 

4.4.  Conclusions 
 

In this study, we presented the specificities of the latest prototype of the Cubicle Hood Sampler. 

The head position monitoring system relying on ultrasonic sensors appeared to not be well 

suited for barn use. The cow identification setup using radio frequency identification first 

seemed promising, but resulted in unstable and unsatisfactory levels of correct identification. 

Therefore we have decided to replace these sensors by two camera vision algorithms. Finally, 

the recovery tests conducted over the range of methane production rates at which the system is 

expected to perform position the Cubicle Hood Sampler as a promising method for on-barn 

monitoring of methane production rates from individual dairy cows.  
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Highlights 

 Methane production rates estimated by the current cubicle hood sampler design are biased. 

 Modelling could not compensate for the biased input information. 

 Ranking animals according to their methane production levels is already possible with the 

cubicle hood sampler, but there is room for improvement. 

 Sources of bias must be identified and addressed to improve the accuracy of the estimates. 

 Biases may be due to low breath recovery and its effect on background measurements. 

 

Abstract 

Monitoring methane production from individual cows is crucial for the implementation of 

greenhouse gas reduction strategies. However, monitoring methane production rates (MPR) 

under practical conditions remains challenging. In this study, we investigate the performance 

of a potential solution to this challenge. 

The cubicle hood sampler (CHS) is a monitoring device placed in the cubicles of barns, that 

collects the air exhaled by cows when lying down. The methane production rates (MPR) of 28 

dairy cows were measured by four CHS devices and compared to the levels measured by climate 

respiration chambers (CRC). A linear regression showed no strong correlation between the two 

sets of estimates (r=0.24). Estimations made by the CHS appeared to be biased, which cannot 

be corrected for in the absence of a strong linear correlation. Using Bayesian modelling, 

information was borrowed across cows to simulate complete methane production curves in an 

attempt to improve the MPR estimation accuracy. However, the model could not compensate 

for biased observations, and accuracy levels did not improve. An under-recovery of the breath 

samples by the hood is suspected. These issues must be addressed. Nevertheless, the CHS 

ranked cows satisfactorily, with Kendall W values of 0.625 (p = 0.201)  in the original dataset, 

and 0.659 (p = 0.214) after using the model. Resolving the bias issue is expected to have a 

simultaneous positive effect on both ranking agreements. We advise to use the HMR model to 

borrow information across cows, and convert  discrete measurements into methane production 

curves, as it will provide more realistic MPR estimations. 
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5.1.  Introduction 

 

Global anthropogenic activities contribute to the emission of greenhouse gases (GHG), mostly 

in the form of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases 

(EPA, 2012). At the current emission levels, they contribute to the enhanced greenhouse effect, 

which has already and unequivocally started causing climate change (IPCC, 2023), with notable 

effects on the environment. It is therefore urgent and essential that the GHG emissions from 

anthropogenic activities drastically reduce. 

For their part, the global GHG emissions related to the agricultural sector (within the farm gate), 

represent 9 to 14% of the total share (Mbow et al., 2019), with about 6.2 ± 1.4 Gt CO2-

equivalents per year (IPCC, 2013). The non-CO2 emissions from livestock were estimated by 

Herrero et al. (2016) to range between 2.0 and 3.6 Gt CO2-equivalents per year within the farm 

gate, and by the FAOSTAT (2018) to have been around 4.1 ± 1.2 Gt CO2-equivalents yearly 

between 2010 and 2016. Irrespective of the inclusion or exclusion of outside-the-farm-gate 

parameters (e.g. energy and land use, transportation), all references agree that cattle is the main 

source of global emissions from the livestock sector, with 65-77% of the share (FAO, 2021a; 

Mbow et al., 2019). Considering that livestock’s emissions are for 40% due to methane resulting 

from enteric fermentation (Vonk et al., 2018), and for 9% (5% N2O, 4% CH4) due to manure 

and its management (FAO, 2014), reducing the enteric methane emissions (essentially from 

cattle) is one of the priority reduction pathways.  

Approaches are available to reduce the enteric emissions at the animal level. In cattle, they are 

essentially oriented either around feeding, or genetic selection. Diet being the main driver for 

enteric methane formation, changes in the ration’s content is the most effectively 

straightforward approach to reduce its production (Haque, 2018; Kebreab et al., 2010). For 

example, a reduction of the non-digestible fibre content (Hills et al., 2015) or an increase of the 

starch content (Hart et al., 2015) will lead to a diminution of the methanogenesis, and thus to 

the amount of enteric methane produced. Other possibilities are, for example, the increase of 

the share of concentrate in the provided ration (Aguerre et al., 2011; Tyrrell and Moe, 1972), 

or the supplementation with additives or probiotics (Knapp et al., 2014). Genetic selection, for 

its part, can be used to breed lines of animals that naturally and permanently produce less 

methane (Boadi et al., 2004). Several studies demonstrated the presence of significant variation 

in methane production between animals, in relation with phenotypic traits and heritability 
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(Breider et al., 2019; Lassen and Løvendahl, 2016). This approach has the key advantage of 

permanently reducing the methane production of the animals.  

However, evaluating the performance of these reduction strategies requires the availability of 

devices that can accurately quantify the methane production rates (MPR) of individual cows 

through time. While the gold standard climate respiration chamber (CRC) allows a very 

accurate monitoring of this production rate, its costs, intrusiveness, and impracticability (cannot 

be used in on-barn) do not make it well suited for large scale applications. Conversely, the 

practical methods already available (e.g. GreenFeed, sniffers, use of SF6 as a tracer gas) all 

present challenges with respect to measurement accuracy and throughput, animal intrusiveness, 

practicability, and costs (Hammond et al., 2016a; Negussie et al., 2017). Additionally, they only 

allow for spot sampling as they are often limited by material and labour resources, or rely on 

the voluntary visit of animals to the monitoring device, and therefore result in observations that 

are not well distributed over time and are prone to bias (Hammond et al., 2016a). 

Given the non-linearity of the methane production curve, which is known to vary over time and 

in response to feeding (Hristov et al., 2013b; K. A. Johnson and Johnson, 1995), Wu et al. 

(2016) introduced the Cubicle Hood Sampler (CHS) as an innovative approach to monitoring 

MPR over significantly longer periods of time than other spot sampling methods allow. Placed 

in the cubicles, this device has the potential of non-intrusively monitoring the MPR from cows 

for up to 12-h per day, making it very promising. The design of its latest prototype was 

developed and presented in Chapter 4.  

The aim of this study was to assess the ability of the latest CHS prototype to measure the known 

MPR of a set of dairy cows. To achieve this, we compared the individual MPR of 21 cows as 

measured by the CHS, and by the reference CRC. The correlation between the individual 

methane production levels measured by the two devices was studied. Additionally, ranks were 

computed and compared. Finally, the added value of converting discrete CHS measurements 

into continuous curves, by borrowing information across cows, and using a Bayesian 

hierarchical model (Chapter 3) was investigated. 
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5.2.  Material and methods 

 

5.2.1. Animals and experimental design 

The two datasets (CRC and CHS) were collected during a study conducted from August to 

October 2020 at the animal research facilities of Wageningen University & Research 

(Wageningen, the Netherlands) under the Dutch Law on Animal Experiments and in accordance 

with EU Directive 2010/63. All experimental procedures were approved as complying with the 

regulations on animal experiments in vigour. The CRC experimental procedures were approved 

by the Central Committee of Animal Experiments (The Hague, the Netherlands; 2017.D-

0079.004). The CHS procedures were classified by the Animal Welfare Officer as a non-animal 

experiment, as referred to in the Dutch Act on Animal Experiments. 

The experiment was conducted with 28 lactating Holstein-Friesian cows (mean 2.3 ± standard 

deviation 0.9 lactations; 93  ± 27 days in milk, DIM). Cows were blocked (7 blocks of 4 cows) 

based on parity and dry matter intake (DMI), and fed a basal total mixed ration (TMR) 

throughout the entire study consisting of 41% corn silage, 32% grass silage, and 27% 

concentrate on a dry matter (DM) basis. The TMR was formulated to meet 100 and 95% of net 

energy for lactation and metabolizable protein requirements (CVB, 2018), respectively, for 

cows consuming 22 kg DM/d and producing 34 kg/d of milk containing 4.0% fat and 3.4% 

protein. 

Each block of cows was first housed separately in a free-stall barn for 7-d to facilitate ad libitum 

feed intake measurement of the 4 cows within each block. The average feed intake of the block 

during the final 3-d of the 7-d free-stall ad libitum intake period was used to set a fixed daily 

feed allocation for individual cows within the block. This fixed amount (equal for all cows 

within a block) was fed individually during a 12-d tie stall period and a 4-d measurement period 

in CRC. During the additional 7-d period in which cows were housed in the CHS barn, blocks 

were fed collectively with the daily feed allocation defined in the first phase. 

After 12-d of adaptation to movement restriction in tie stalls, cows were moved into CRC for a 

4-d measurement period to facilitate determination of gaseous exchange. The design and 

principles of the CRC at Wageningen University (Wageningen, the Netherlands) have been 

described in detail by Van Gastelen et al. (2015) and Heetkamp (2015). The CRC consist of 

four chambers (each with a ground surface of 11.8 m2, and a volume of 34.5 m3) separated by 

airtight walls equipped with windows. During the experiment, the relative humidity and 
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temperature were maintained at 80.1% (± 1.2) and 10°C (± 0.1). Air renewal was maintained 

by continuously pumping outside air into each chamber at a ventilation rate of 43 m3/h (± 1.1). 

The ambient pressure was maintained at a value of 102.9 kPa (± 7.36). Inlet and outlet air of 

each compartment were sampled for their CH4, CO2 and O2 content to be analysed in sequence 

every 12 to 15 min by a series of ABB Advance Optima AO2000 analysers (ABB, Berlin, 

Germany). Milking and feeding occurred twice daily during the entire experiment in the CRC 

(0500 and 1530 h). Gas measurements during the time points when staff entered the CRC 

compartments for milking and feeding (maximum 30 min) were maintained in the dataset as 

humans do not emit significant quantities of CH4 and because their inclusion does not affect the 

daily production of  CH4 (van Gastelen et al., 2017). Postprandial durations during the 

measurement period were calculated as the time differences from the feeding times to the 

occurrence of each gas sample, giving values between 0 and 13.5-h. For the purpose of the 

study, MPR that were not monitored over a complete 24-h period were removed from the 

dataset as they provided biased estimates. Thus, data from 15:30 on d 1 in the CRC until 15:30 

on day 3 in the CRC was used, and represents the original CRC set (ORS, 9064 observations). 

Afterwards, each block was moved to a free-stall barn equipped with 4 CHS units for a period 

of 7-d. Access to other cubicles was restricted to maximize data collection. The design and 

principles of the CHS have been described in Chapter 4. Essentially, they can be characterized 

as hoods that are placed over one of the cubicles’ end and that extract the exhaled air and belches 

of lying animals. Measurement cycles (MC) are initiated on the basis of cow recognition by 

radio frequency identification (RFID) and occur in sequence. They follow a defined cycle of 

measuring the background methane concentrations for 6 min (B1) before monitoring the ones 

within the CHS 0for 16 min, and switching back to the background for 6 additional min (B2). 

With this setup, only one cubicle can be monitored at the time. During a cycle, methane 

concentrations (ppm) are measured for 21 sec by a Fourier Transform Infrared spectroscopy 

(FTIR, Gasmet Technology) and averaged over this period of time. The airflow going through 

the exhaust (Lambrecht Vane Anemometer 1468) as well as the temperature and humidity of 

the sample (Vaisala T-RV probe HMP60) are measured every 30 sec and used to calculate 

methane production rates (MPR). Cows were milked and fed twice daily around 05:00 and 

15:30. No other procedures or interventions were conducted in the barn. Due to failures of the 

cow identification system (initiating the MC), data was only obtained for 21 of the 28 cows. 

This 21 cows set corresponds to the original CHS set (OHS, 21 cows, 621 observations). 
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5.2.2. Calibrations 

Calibrations of the CRC and the CHS units were done with a series of recovery tests (RT) 

conducted in both devices. For the CRC, two methane RT were conducted (before and after the 

experiment) as detailed in Chapter 3. They resulted in a mean recovery rate of 100.8 ± 0.5% 

across chambers and repetitions. The CHS were calibrated three times (before, half way 

through, and after the experiment) as described in Chapter 4. They yielded a mean recovery of 

110.5 ± 8.7% across units, treatments, and repetitions. Attention must be given to recoveries 

that are higher than a 100%, as they may result from the cumulative uncertainties of all sensors 

whose data are included in the calculations, or to errors in the gas sampling strategy (for 

example in monitoring background methane concentrations). Methane production rates 

estimated during the experiment using [eq. 4.1] to [eq. 4.3] were calibrated according to the 

recovery rate of each CHS unit.  

 

5.2.3. Hierarchical Bayesian modelling of MPR 

The CHS dataset is composed of discrete measurements, with sections of the postprandial 

methane production curve that are not systematically monitored, depending on cows’ activity, 

farm routine, and CHS availability. Considering the non-linearity of the methane production 

curve (Crompton et al., 2011; van Lingen et al., 2017), we wished to approach the estimation 

of individual MPR as a fitted curve, which could better represent the dynamics of the methane 

production process than means do. For that, we used the Hierarchical Methane Rate (HMR) 

model presented in Chapter 3 to convert the discrete estimates into a postprandial representation 

of the methane production curvature. This model is a partially pooled multilevel (hierarchical) 

model and a Bayesian representation of a stochastic process (see Appendix C for additional 

explanations on Bayesian analysis). It aims at simultaneously integrating the data of multiple 

individuals to maximize input information and provide a better representation of the methane 

production curve. The HMR thus first models the grand MPR curve of that specific population, 

from which 3 shape parameters (β, γ, and δ) can be derived and generalized to the studied 

population. The scale parameter (α), for its part, is allowed to vary over cows to represent 

variation in methane production levels. Individual MPR curves are then derived from the 

estimated population curve by allowing each cow to diverge from the original curve, through 

the inclusion of variation in α and measurement errors. This approach has the advantage of 

connecting and combining information from different cows, therefore improving the accuracy 

of the resulting individual MPR curvature. With such models, two approaches can be taken: the 
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priors’ distributions given to the model’s parameters can either be set as weakly informative or 

as informative. Weakly informative priors express considerable uncertainty regarding a 

parameter, but are still proper probability distributions that support inference; while informative 

priors encode quite strong a priori information about a parameter, information that often stems 

from previous studies or independent samples (Gelman et al., 1995). 

To try to maximize the positive effect HMR could have on the accuracy of the CHS estimates, 

we chose to opt for informative priors. These were obtained through a preceding fit using (for 

robustness) an independent dataset. For this, the group of 21 cows for which CHS data was 

obtained was split into two based on the number of observations of each cow. Half of the 

individuals with the most observations were retained as the CHS test set (HTS, 11 cows, 481 

observations), while the remaining cows (10) were combined with the 7 cows that had CRC 

data but no CHS observations to create the CRC training set (RTS, 17 cows, 5616 

observations). The HMR was first fitted on the RTS dataset. The posterior values of this fit then 

informed the hyperparameters in the prior distributions (making them informative) for the HTS 

fit.  

 

5.2.4. Statistical analysis and concordance metrics 

The MPR of both original sets (ORS and OHS, n = 21) were averaged per cow and over all 

days yielding a single daily MPR estimate (g/d) per animal. The MPR of the HTS were deduced 

for each individual cow (n = 11) from the computation of the area under the cow’s individual 

MPR curve. These areas under the curve (AUC) were computed according to Chapter 3 and 

divided by the time fraction over which they were computed (duration between two feed 

allocations). They yielded a single daily MPR value per cow in g/d. Data from RTS was not 

further used as it corresponds to a different set of cows than HTS. This set was only used to 

extract the parameter values that were needed for the HTS model fit. 

Mean daily methane production rates (g/d) were calculated for each set with their standard 

deviation (sd) and coefficient of variation. A complementary autocorrelation analysis was 

conducted to assess the (potential) levels of autocorrelation between the MPR observations (lag 

of 1) collected through time, by both devices and for each cow. Each CRC observations were 

separated by a 10 min timespan, while time intervals between CHS records were more variable, 

but always larger than in the CRC. Autocorrelations are included between -1 (perfect negative 

autocorrelation), and 1 (perfect positive autocorrelation. A value of 0 shows no autocorrelation 
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between observations (Kendall, 1948; Mann, 1945). A linear regression of the individual MPR 

estimated by the CRC on the MPR estimated by the CHS was performed to test for any potential 

bias in MPR estimation by the CHS. This was first done with ORS against OHS to provide 

indications on how well does the system itself performs (without using the model). Then, the 

11 cows subsets of ORS and OHS were regressed against each other to give a direct comparison 

point for the regression of the ORS subset against HTS. The latter was used to assess the added 

value of HMR. These regressions were used to calculate R2, which indicates the percentage of 

variance in the response variable that is explained by the regression model. Pearson’s 

correlation coefficient (r) was derived from R2, and denotes the level of correlation between the 

rates monitored by the two systems. In addition, the Root Mean Square Errors (RMSE) were 

calculated to measure the estimation errors made by the CHS, with smaller values reflecting a 

lower level of error.  

Lastly, the ability of the CHS to rank animals based on their MPR levels was investigated with 

Kendall’s coefficient of concordance (Kendall’s W) (Kendall and Smith, 1939). This non-

parametric statistic measures the agreement between the ranks attributed to each individual cow 

based on its MPR estimated by the CRC versus its CHS one. A value included between 0 (no 

concordance) and 1 (absolute concordance) was obtained for the overall accordance between 

all ranks. Ranks obtained with the OHS, the OHS subset, and the HTS were compared to the 

ORS ones. 

 

5.2.5. Software and code 

The HMR model was coded in R (x64 4.2.3.) using the public libraries Bolstad2 (Bolstad, 

2010), brms (Bürkner, 2017), and Rcpp (Eddelbuettel and Francois, 2011). All analysis were 

computed in R (x64 4.2.3.). 

 

5.3.  Results and discussion 
 

5.3.1. Model fit 

Fitting the HMR model with RTS yielded a population curve (Figure 5.1) whose parameters 

took the posterior values α = 254.82 ± 9.66, β = 2.08 ± 0.17, γ = 2.75 ±  0.13, and δ = 0.0375 ± 

0.0007. These values informed the location and spread of the prior distributions for the HTS fit, 

except for the standard deviation of α that was increased from 9.66 to 100 to enable a larger 



Monitoring enteric methane production with the cubicle hood sampler 

| 111 

variation in scale between cows, and better reflect their variability. It yielded a population curve 

(Figure 5.2) and new posterior parameters values α = 154.86 ± 13.87, β = 1.94 ± 0.17, γ = 2.83 

± 0.13, and δ = 0.0377 ± 0.0007. The increase in credible interval observed for the HTS fit 

reflects the lower prediction certainty of the HTS model fit that is linked to the lower number 

of observations available in this set. 

Individual methane production curves were also derived from the fit, an example of which is 

shown in Figure 5.4 (see Appendix H for the other individual curves). In comparison with the 

CRC dataset of the same cow (Figure 5.3), it appears clearly that the CHS collects significantly 

lower numbers of observations, and that the peak of the methane production curve (reached 30 

to 140 min after feeding) is not captured by the device. Variability between the individual 

estimates of MPR also appears to be significantly higher in the CHS (spread of values visible 

in Figure 5.4), which can be due to measurement errors themselves (hood and background), or 

to varying airflows and cow postures both around and within the device.  

 

 
Figure 5.1. Population curve of the postprandial methane production rates obtained with the climate 

respiration chamber training set (RTS). Blue dots represent the MPR estimated at each time fraction of 

the postprandial duration. Plain grey lines represent the 95% credible interval. 
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Figure 5.2. Population curve of the postprandial methane production rates (MPR) obtained with the 

cubicle hood sampler test set (HTS). Blue dots represent the MPR estimated at each time fraction of the 

postprandial duration. Plain grey lines represent the 95% credible interval. 

 

 
Figure 5.3. Example of the postprandial methane production rates (MPR) estimated by the climate 

respiration chamber (CRC) for one cow (ORS). Each colour represents values monitored over the same 

day of measurement (Day 1, Day 2, Day 3). The plain horizontal line represents the mean methane 

production rate obtained for this cow (g/d). This figure illustrates the high throughput of CRC. 
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Figure 5.4. Example of the postprandial methane production curve obtained for one cow by fitting the 

hierarchical methane rate (HMR) model with cubicle hood sampler (CHS) data (CHS test set: HTS). 

Each pink dot represents the methane production rate estimated by the CHS over one measurement 

cycle. The dashed blue line shows the population curve obtained with the HMR fit, while the plain pink 

line shows the methane production curve of the individual cow of interest. Dashed grey lines represent 

the 95% credible intervals. 

 

5.3.2. Absolute MPR estimates 

The mean MPR obtained with the CHS (OHS, OHS subset, and HTS) appeared to be 

considerably lower than the levels measured by the CRC (ORS) (Table 5.1). This 

underestimation appears to be consistent, both across animals and through the methane 

production curve. Absolute levels of variation in estimated MPR between cows (sd) did not 

vary much across analysed CRC and CHS (OHS and HTS) datasets. However, relatively to 

their respective mean, they led to coefficients of variations that are about twice higher for the 

CHS than for the CRC. These higher levels of  variability in estimates made by the CHS were 

expected, as they result from the known sources of errors that are associated with complex barn 

environments (e.g. complex airflows, challenging background sampling, presence of 

surrounding cows etc.). Additionally, the level of autocorrelations between ORS measurements 

yielded a mean value of 0.388 ± 0.148 between measurements within cows, showing the 

positive autocorrelation that is present between two consecutive estimates  made by the CRC, 

thus reducing the overall CV. Conversely, the OHS measurements appeared to have low levels 

of autocorrelation, with a mean value of  -0.003 ± 0.268 (Appendix E). These results can be 
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explained by the shorter time interval between two observations made by the CRC, and by the 

larger and more variable intervals observed in the CHS. 

 

Table 5.1. Mean methane production rate (MPR, g/d) of all datasets. The original sets include the 

original respiration chamber set (ORS), and the original cubicle hood sampler set (OHS). The test sets 

include a subset of the ORS (ORS subset), a subset of the OHS (OHS subset), and the cubicle hood 

sampler training set (HTS). The number of cows (n) included, together with the mean MPR (g/d) of 

each dataset are presented with their standard deviation (sd, g/d), and coefficient of variation (CV, %). 

 Original sets  Test sets 

 ORS OHS  ORS subset OHS subset HTS 

n cows 21 21  11 11 11 

Mean (g/d) 415.4 242.9  403.3 236.6 234.3 

sd (g/d) 36.9 44.5  32.8 36.1 34.5 

cv (%) 8.9 18.3  8.1 15.3 14.7 

 

The regression of OHS, OHS subset, and HTS on ORC yielded three regression lines. The OHS 

regression (Figure 5.5) resulted in the values R2 = 0.06, r = 0.24, and RMSE = 179.8. The OHS 

subset regression (Figure 5.6) provided the values R2 = 0.09, r = 0.30, and RMSE = 171.7, while 

the HTS one (Figure 5.6) yielded R2 = 0.05, r = 0.22, and RMSE = 174.2. In all cases, the r 

values reflect the poor strength of the relationship between the MPR estimated by the CRC and 

the CHS. The R2 values show the low amount of variance in MPR measured by the CRC that 

can be related to the CHS data. Lastly, the high RMSE values show that the CHS cannot predict 

the CRC levels accurately. In the absence of a strong, linear relationship between the MPR 

levels estimated by the CRC and the CHS, the equations of the linear regressions shown in 

Figure 5.5 and Figure 5.6 are not suited to be used as calibration lines. Methane production 

rates estimated by the CHS can therefore not be corrected for this way. 

Additionally, fitting the HMR model with CHS data (HTS) did not improve the concordance 

metrics’ values. Indeed, the model can be used to convert discrete measurements into a 

postprandial production curve (which is a better representation of this biological process), but 

it cannot compensate for estimates that are biased in the first place.  
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Figure 5.5. Linear regression of the individual methane production rates (MPR) estimated by the climate 

respiration chamber (CRC: ORS) and the cubicle hood sampler (CHS: OHS). Each point represents the 

average MPR of a cow as estimated by both devices, completed by the (plain) regression line over all 

estimates. The dashed line symbolizes x = y. 

 

 

Figure 5.6. Linear regressions of the individual methane production rates estimated by the climate 

respiration chamber (CRC: ORS subset) against the ones estimated by the cubicle hood sampler in the 

original subset (CHS: OHS subset) in green, and in the test set (CHS: HTS) in brown. Each point 

represents the average MPR of a cow as estimated by both CRC and CHS (OHS subset: green; HTS: 

brown), completed by the (plain) regression line of each set of estimates. The dashed line symbolizes x 

= y. 
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5.3.3. Ranking of individual MPR 

The computation of Kendall’s W rankings yielded a value of W = 0.625 (p = 0.201) for the 

OHS (Figure 5.7), of W = 0.736 (p = 0.142) for the OHS subset (Figure 5.8), and of W = 0.659 

(p = 0.214) for the HTS (Figure 5.9). These W values show that the CHS allows to rank cows 

reasonably well, but that errors in ranking are still being made. Selecting animals on these 

values must therefore be done with care. The ranking agreement obtained with the HTS 

appeared slightly higher than the one obtained for OHS, but lower than the one of the OHS 

subset. This shows that the higher ranking agreements are due to the smaller sample size (11 

versus 21), and therefore the smaller chance of errors.  

 

 
Figure 5.7. Ranks based on methane production levels estimated by the climate respiration chamber 

(CRC: ORS) and by the cubicle hood sampler (CHS: OHS) for twenty-one cows. 
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Figure 5.8. Ranks based on methane production levels estimated by the climate respiration chamber 

(CRC: ORS subset) and by the cubicle hood sampler (CHS: OHS) for eleven cows. 

 

 

Figure 5.9. Ranks based on methane production levels estimated by the climate respiration chamber 

(CRC: ORS subset) and by the cubicle hood sampler after use of the hierarchical methane rate model 

(CHS: HTS). 

 

5.3.4. General discussion and implications 

In its current state and with the quantity of data that was collected, the CHS - with or without 

using HMR - cannot be used to accurately estimate the MPR of individual cows. It consistently 
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measured significantly lower MPR than the CRC did, and did not show a sufficiently strong 

linear relationship that could have allowed for its MPR estimates to be corrected for. In its 

current state, the CHS should not be used in experiments requiring accurate estimations of 

individual MPR, such as studies investigating the effect of feed or additives on methane 

production. The reasons behind the persistent measurement bias that have been highlighted in 

this work must first be identified and addressed. As measurement bias and underestimation 

appeared to be persistent, we hypothesise that they are essentially due to a poor overall recovery 

of the breath samples as such. Indeed, the RT that were conducted provided insights on the 

good performance of the system itself (ducting, fan, gas analyser), as injected and recovered 

methane fluxed were well (and positively) correlated. However, during the RT, the positioning 

of the injection line directly in the inlet may not have been fully representative of the actual 

experimental conditions, nor be indicative of the system’s ability to recover a breath sample in 

the presence of a cow. A smoke test was complementarily carried out to get an idea of the 

system’s ability to suck air into the inlet, and to detect potentially unwanted airflows. For this, 

smoke was released with a smoking machine at various distances and angles from the inlet 

points (roughly 10 to 40 cm, 0 to 180◦). This showed that the smoke was satisfactorily sucked 

into the hood, and this even when the smoking machine was oriented backwards from the inlets. 

However, the amount of smoke that was recovered by the CHS in varying release positioning 

could not be quantified. Moreover, smoke alone cannot simulate the complex air dynamics that 

occur in the presence of animals (e.g. exhalations blowing air in a direction, obstruction due to 

cows’ bodies, creation of heat and humidity) and at varying dates, times of the day, and weather 

conditions. Indeed, methane concentrations have already been shown to vary around a previous 

prototype of the CHS, both temporarily and spatially (Wu et al., 2016). These variations were 

essentially attributed to changes in airflow patterns and air speed in the barn. Additionally, this 

study highlighted the significant impact of background measurements on MPR estimates, with 

the variation in background methane concentrations strongly influencing the overall CV of the 

measurements made by the hood. This connects to our second hypothesis, which is that 

measurement errors made for the background sampling might strongly influence the resulting 

MPR estimates. As shown in equation [eq. 4.2], background methane concentrations are 

subtracted from the ones that are measured by the hood. Therefore, errors made in the 

background values will bias the overall MPR estimate. Simultaneously, a poor recovery of the 

breath sample by the hood’ inlets signifies that the remaining breath is (at least partially) 

redirected towards the background sampling points. This means that not only the hood itself 
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will under-record methane flux, but that background concentrations will be overestimated, thus 

amplifying the underestimation effect of the hood measurement.  

To address the aforementioned issues, and in an attempt to resolving the current measurement 

bias, we suggest to assess the recovery performance of both hood and background samplings. 

This could for example be assessed with a tracer gas method (e.g. SF6), in which cows are 

equipped with a permeation tube releasing SF6 at known release rate (Grainger et al., 2007; 

Johnson et al., 1994b). This gas only being naturally present in barns at low concentrations, the 

SF6 concentrations that would be measured by the CHS hood and background sampling points 

would thus be very indicative of their respective recovery. If it confirms the low recovery of 

the hood, the suction could for example be increased, by increasing fan speed, or redesigning 

the system to maximise under-pressure.   

At a later stage, accuracy of the estimates could be fine-tuned, for example by increasing the 

number and frequency of samples taken by equipping each CHS with its own gas analyser, 

enabling multiple cows to be monitored simultaneously instead of rotating measurement across 

cows with a single analyser. Linking methane and carbon dioxide measurements could also be 

done, as both production levels have been shown to be correlated (Madsen et al., 2010). 

We also advise to keep using the HMR model for estimating MPR in future setups to convert 

the discrete observations into a continuous methane production curve and calculate daily MPR 

as an AUC. The HMR model did not improve the accuracy of the MPR estimates here, which 

is only due to the biased estimates that were used to fit it with. The ability of the HMR model 

to correctly fit and replicate the CRC datasets of 28 cows has already been proven (Chapter 3). 

By allowing for the borrowing of information across cows, the HMR model should be 

particularly valuable with datasets that lack information in parts of the curve (scarce 

measurements), and to convert spot sampling observations into postprandial methane 

production curve. Using it would therefore present a better representation of this dynamic 

process, and provide more realistic estimates of MPR. 

For now, it is still possible to use the CHS to rank animals. The Kendall W values obtained for 

ranking showed that the CHS allows to rank cows reasonably well, with or without making use 

of the HMR model. Depending on the relative level of raking accuracy that are wished for in 

(genetic) selection studies, the CHS can be used as an alternative system to rank animals in 

practical settings. In the future, we expect that resolving the measurement bias issue will 

simultaneously lead to higher accuracy in ranking. 
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5.4.  Conclusions 
 

In its current state, the cubicle hood sampler (CHS) cannot measure individual methane 

production rates (MPR) from cows accurately as its estimates are biased in a way that currently 

cannot be corrected for. It can therefore not be used in experiments requiring high measurement 

accuracy, such as nutrition studies. However, it can be used to rank and (genetically) select 

animals on the basis of their MPR. Using hierarchical Bayesian model did - here - not improve 

the accuracy of the MPR estimates, as the model cannot compensate for biased data. We 

therefore suggest to address this crucial bias issue, notably by investigating the ability of the 

hood to recover breath samples. Simultaneously, the presence of potential errors in background 

sampling should be investigated, and connected to the hood measurements, especially in the 

eventuality of a poor hood recovery. After addressing these issues, we advise to keep using the 

HMR model to convert discrete measurements into a methane production curve, which both 

provides a better representation this process, and a more realistic estimation of MPR by 

accounting for variability between animals. Lastly, it should allow to deal with smaller number 

of observations per cow, by enabling the borrowing of information between animals. 
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6.1.  Key findings and conclusions 
 

The research work conducted in this thesis allowed to evaluate the performance of two sets of 

devices that aim at monitoring the individual enteric methane production of - respectively - 

sheep and cows in practical conditions. Complementarily, a model was developed, and its 

ability to simulate the postprandial methane production curve of both a population of cows and 

its individuals was investigated. 

In Chapter 2, a study was conducted to assess the ability of a set of ten portable accumulation 

chambers (PAC) units with the same design to accurately monitor the methane production rate 

(MPR) of sheep and to rank animals according to these levels. This work did not involve live 

animals so that the performance of the chambers could be evaluated in the absence of 

extraneous, confounding factors. A series of tests were thus conducted using a mass flow 

controller (MFC): a leakage test to test chambers for potential leakages; a ring test to evaluate 

the ability of all chambers to repeatedly record the same methane mass; and a range test to 

investigate the MPR estimation accuracy of two chambers at varying masses. The leakage test 

showed that two out of ten chambers were leaking, bringing to light the necessity for regular 

leak testing. The ring test demonstrated that the remaining eight chambers could consistently 

and repeatedly record the same methane mass, with a repeatability above 0.99 and low 

coefficient of variation (0.0 - 2.4%) between replicates. Furthermore, the correlation between 

released and recorded CH4 masses was strong and positive (r > 0.99). These PAC are thus well 

suited for investigating relative differences between individuals. However, the measured 

recovery rates of masses injected in the range test showed that PAC (as used here) are not well 

suited for applications investigating absolute methane production rates at high accuracy levels. 

While there were no significant differences in recovery rate between PAC, there was however 

a significant shift in recovery over the range of injected masses, decreasing from 74.5% to 

67.6%. If recovery tests are regularly conducted across the measurement range, they could be 

used to generate a calibration factor to correct for the inaccuracy. Nonetheless, we suggest 

thorough calibration of the gas analyser, which was not done in this test due to practical 

limitations. If calibrated at different humidity levels and over the concentration range at which 

it is expected to perform, both the shift and the under-recovering might be explained. Overall, 

the approach taken in this study proved to be a simple, efficient, and reproducible manner to 

calibrate PAC units, which could offer a way to homogenize calibration of PAC units across 

experiments and research groups.  
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Chapter 3 introduced a newly developed hierarchical Bayesian stochastic model to model 

postprandial methane production curves in dairy cows. The so-called Hierarchical Methane 

Rate (HMR) model is a transformation of the equation proposed by Crompton et al. (2011) 

into a Bayesian representation of a stochastic process that aims to simultaneously integrate the 

data of multiple individuals to model the grand MPR curve of that specific population under 

their specific housing and management conditions. This model allows the computation of an 

estimated population curve, from which three shape parameters can be derived and generalized 

to the studied population (partially pooled), whilst the scale parameter is allowed to vary over 

cows (hierarchical). The HMR model was fitted with climate respiration chamber (CRC) data 

of twenty-eight lactating dairy cows. The mean MPR and inter-cow variability predicted by the 

HMR model appeared in agreement with the levels monitored by the CRC (CRC = 416.7 ± 

36.2 g/d, HMR = 407.2 ± 35.0 g/d). The linear regression of the observed and predicted 

individual MPR yielded a Pearson’s correlation coefficient r of 0.997 showing a strong and 

nearly perfectly linear correlation. The low RMSE value of 10.0 g/d (equal to 2.4% of the 

observed mean) reflected the high prediction accuracy of the model. Complementarily, a 

posterior predictive check (PPC) was used to replicate data under the fitted model (1000 

draws), which showed that the model could reproduce the observed data well, therefore 

demonstrating that it is a good representation of the biological process of interest. Finally, its 

comparison in a leave-one-out cross validation against the fully pooled equivalent of the model 

(all parameters pooled over cows) showed that the partially pooled model (HMR) can better 

estimate the individual MPR of the studied individuals (expected log pointwise predictive 

density difference of 1652.9 in favour of HMR, standard error = 69.3). Overall, the ability of 

HMR to predict the MPR of individual cows was shown.  

In Chapter 4, the latest prototype of the Cubicle Hood Sampler (CHS) was presented, which 

is a device aiming at monitoring the MPR of individual dairy cows. Its design and 

specifications were fully shared. Preliminary results of two detection systems included in the 

setup were presented. First, the cow identification one, based on radio frequency identification 

(RFID), was tested in two different setups. Configuration 1 yielded 96.1% of correct 

identifications (monitored cow ID matching the cow present in CHS) but ended up failing, and 

configuration 2 reached 63.1%. With the exception of two out of twenty-one cows, 

identification results were not significantly different between animals nor CHS units. In 

general, the main source of error in identifying cows seemed to be related to the lying position 

of both the monitored cow and the cow(s) lying in adjacent cubicles. In the tested 
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configurations, identifying cows using RFID did not yield sufficiently reliable results. 

Secondly, the results obtained with ultrasonic sensors (ULS) to monitor the head position of 

the cows could not be processed as the sensors were too sensitive to humidity and dust, leading 

to recurrent failures. As a replacement, work on a computer vision algorithm has been done to 

infer the head pose of the animals from video material. Once optimised, it will be used to 

automatically filter out biased samples in a cheap, autonomous, and robust manner. Lastly, 

recovery tests were conducted to evaluate the ability of the system to record methane fluxes. 

Across the four CHS units, the two treatments (200 and 400 gCH4/d), and the three repetitions, 

the mean recovery rate equalled 110.5 ± 8.7%. There were no significant differences in 

recovery rate between CHS units (p = 0.207), and plausibly no significant difference in 

recovery rate between treatments (p = 0.080). However, recovery rates that are higher than 

100% are most likely the result of the cumulative uncertainties of all sensors whose data are 

included in the calculations. Part of this uncertainty can be due to bias in the gas sampling 

strategy, for example by monitoring methane concentrations in the background air that are 

lower than those in the air actually entering the hood. In any case, the recovery tests as 

conducted here consist in a calibration of the system itself freely of the extraneous factors 

induced by the presence of cows. They might however not be fully representative of the ability 

of the CHS to recover the breath samples of cows, and the performance of the device must 

therefore also be tested in the presence of animals. 

Lastly, Chapter 5 presents the results of the evaluation study of the CHS for monitoring the 

methane production of dairy cows under barn conditions. The MPR of 21 cows were 

subsequentially estimated by the CHS and by CRC. Direct comparison of the estimated levels 

showed that the CHS measured (roughly) mean MPR twice as low (CHS = 242.9 g/d, CRC = 

415.4 g/d), with levels of variation between cows twice as high (CHS coefficient of variation 

(CV) = 18.3%, CRC CV = 8.9%). The linear regression of the monitored MPR yielded a 

Pearson’s r value of 0.24 and a root mean square error (RMSE) of 179.8. Autocorrelation was 

detected between the CRC measurements of each cow (0.39 ± 0.15), but not between the ones 

of the CHS (-0.00 ± 0.27) as they were spread further apart in time. Subsequently, the HMR 

model presented in Chapter 3 was used to fit the CHS data of the eleven cows with the most 

observations (nobs >30) using informative priors based on the posterior obtained in a previous, 

independent fit. The MPR levels obtained for these eleven cows were 234.3 ± 34.5 g/d, versus 

236.6 ± 36.1 g/d estimated by the CHS without the fit, and 403.3 ± 32.8 g/d by the CRC. The 

linear regression of CRC and fitted CHS values yielded a r of 0.22 and a RMSE of 174.2, while 
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the non-fitted CHS data resulted in a r of 0.30 and a RMSE of 171.7. The MPR ranks computed 

in the Kendall W test resulted in very similar values, with W = 0.625 for the twenty-one cows 

set, 0.736 for the eleven cows subset, and 0.659 for the fitted data. Overall, the analysis 

conducted in this chapter showed that there is a consistent bias in the estimations of MPR made 

by the CHS. Using the HMR model could not compensate for this bias. As a result, the CHS 

(in its current design) should not be used to estimate absolute methane production rates until 

this (consistent bias) issue is resolved. It may however be used (with care) to rank cows, or 

classify them as being above or below the mean MPR level of their own population. 

Overall, this work has brought to light the complexity of monitoring enteric methane 

production rates in practice and at individual level. Various difficulties were encountered, 

notably in terms of frequency and number of measurements (in connection with the general 

non-linearity of the postprandial methane production curve), breath sample recovery, 

background concentration measurements, calibrations, and overall data analysis. 
 

6.2.  From ideal situation… 
 

Climate respiration chambers are ideal for measuring gaseous exchanges in ruminants. By 

holding animals in airtight compartments, they allow to clearly differentiate gas consumption 

and production of the studied animals from the ones of the outer environment (background). 

Inlet and outlet of air are entirely controllable, making dilutions minimal. Airflows are precisely 

controlled and used to obtain a homogeneous climate in the chamber and a good mixing of the 

gas components of the air, ensuring the representativeness of the air samples being analysed. 

Part of the outlet air is generally recirculated into the room to increase gas concentrations and 

therewith the measurement accuracy. However, sufficient levels of oxygen should be 

maintained, and CO2 concentrations of about 1% (or 10000 ppm) in the chamber are 

recommended not to be exceeded (Lighton, 2018). As a rule of thumb, circulation rates should 

be equal to at least once the total volume of the chamber each minute to ensure good mixing. 

In the case of a 35 m3 CRC, this corresponds to a minimal circulation rate of 2100 m3/h 

(Heetkamp et al., 2015).  

Gas analysis is usually done alternatively between chambers using a multiplexer. A series of 

air samples are thus collected at each chamber inlet’s and outlet’s and transported to a gas 

analyser according to the defined sampling scheme. In some designs, the samples can be cooled 

down for the water vapor to condense (dew point), allowing for the interference of water vapour 

to be equal in all samples so that it can be neglected (Heetkamp et al., 2015). As an indication, 
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the data used for the CRC study reported in Chapter 3 corresponds to an alternating sampling 

between chambers, whose gas concentrations in CO2, CH4 and O2 were measured over 180 sec 

(per chamber) every 12 to 15 min by an Advance Optima modular system (ABB Ltd.). In 

addition to the estimation of CO2, CH4 production and O2 consumption, this information can 

be used to derive other indicators, for example to calculate heat production (Alferink et al., 

2015). Zero and span concentrations from different gas mixtures can be used to check and 

adjust the zero and span point deviation of the gas analyser. In Wageningen, this is done at 

least once daily, and is complemented by regular full system calibrations (usually before and/or 

after an experiment, without animals) to ensure that high measurement accuracy is maintained. 

The internal air pressure of the chambers can be adjusted as well. The units can be made 

hypobaric (under-pressurized) or hyperbaric (over-pressurized) depending on the study design, 

with recommended pressure differences of 50 to 100 hPa between rooms and outer 

environment. Using pressure information, leaks can be monitored and quantified to ensure that 

they remain within the tolerance level. In addition, the temperature and relative humidity levels 

of the chamber’s air can be controlled to obtain the desired climate (Heetkamp et al., 2015). 

Besides offering a highly controllable environment, CRC also permit a wide range of 

information to be obtained about the animal being studied. For example, body weight can be 

measured by a weighing scale that is directly placed under the animal (Labussière et al., 2015). 

Feed intake is controlled and monitored as rations are fed individually and eaten quantities (and 

refusals) are evaluated by a scale placed under the feeding bin. Even the excreta of the animals 

can be collected and analysed, for example when investigating the total energy balance 

(Heetkamp et al., 2015). In addition, CRC also possess the advantage of not being influenced 

by animal positioning or the presence of other animals. The head position of an animal within 

a chamber does not impact gas recovery as inner air is well mixed, and the absence of other 

animals creates no complications in terms of background or breath air sampling. 

However, some downsides come with using CRC. First, the confined space they offer 

constrains animals movements and behaviour. In addition, the isolating nature of the CRC has 

been demonstrated to induce stress, leading to decreases in dry matter intake, a variable that is 

directly correlated with methane production (Llonch et al., 2016). Respiration chambers are 

also very costly, labour intensive, and do not allow the screening of animals at large scale 

(Lassen and Difford, 2020). Therefore, a range of other methods are being developed so that 

enteric methane production can be individually monitored in practice, at large scale, and 

without interfering with animals and farmer routines. 
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Figure 6.1. Game “spot the differences” between cows monitored for enteric methane production with 

A) a climate respiration chamber, B) a GreenFeed emission monitoring, and C) a tracer gas. Credits: A) 

Wageningen University and Research, B) DairyNZ and University of Waikato, C) University of Kiel. 

A

B

C) 



General discussion 

| 131 

6.3. … to practical problems 
 

As observed in the literature (Chapter1) as well as in the studies conducted in Chapters 2, 4, 

and 5, the practical monitoring of enteric methane production is associated with restrictions on 

cow handling that are imposed by management requirements, and that create several additional 

sources of uncertainty in the monitoring of individual animals. Compared to the gold standard 

CRC, these extra sources of uncertainty lead to practical measurement approaches with lower 

and often unsatisfactory measurement accuracies. They have been identified as corresponding 

to four main sources of errors: the ones related to breath recovery, those occurring in 

background air monitoring, the issues arising from whole-system recovery and calibrations, 

and finally the ones connected to the overall sampling strategy and data handling. These 

uncertainties must be addressed so that MPR estimation accuracy may be improved. 

 

6.3.1. Breath recovery 

First of all, errors can arise from the recovery of the breath sample itself. For measurement 

systems operating in open or semi-open environments (like the ones shown in Figure 6.1 B and 

C), there is a chance that the breath sample is not recovered by the monitoring device 

sufficiently well. In this case, the methane mass contained in the breath of the animal is 

underestimated, leading to a subsequent underestimation of MPR. 

This could explain the weak correlation between the MPR estimated by the CRC and the CHS 

that was observed in Chapter 5. The mean recovery rates obtained in Chapter 4 for the four 

CHS units across the two treatments (200 and 400 gCH4/d injected with a MFC) and three 

repetitions did not show this, but it may be because these tests were not fully representative of 

the actual experimental conditions, nor were indicative of the system’s ability to recover breath 

samples in the presence of animals. In a design such as the one of the CHS, an under-recovery 

of the breath is particularly problematic as it may simultaneously lead to a second drawback. 

The breath air that was not captured by the hood will be drawn back onto the background 

sampling points. Consequently, background methane concentrations will most likely be 

overestimated. As these concentrations are subtracted from the levels monitored in the breath 

samples [eq. 4.2], MPR will be underestimated even more. 

Most likely, this could be due to an underperforming suction within the hood. This can be the 

result of an insufficient airflow going through the system, and of a poor (or non-existent) under-
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pressure effect under the hood. To overcome this, the airflow can easily be adjusted by 

increasing the flow rate of the fan. However, preliminary studies have shown that airflows 

between 120 and 200 m3/h are optimal for the CHS. Indeed, flow rates of less than 120 m3/h 

resulted in injected flux recoveries lower than 100%, while airflows rates of 120-200 m3/h 

achieved recoveries that were not significantly different from 100% (Wu, 2016). Higher 

airflows, on the contrary, have not been experimented with, but will induce an undesired 

additional flow of ambient air into the device. The latter would lead to an unwanted (greater) 

dilution of the breath sample, which must be avoided as it would further decrease the methane 

concentration of the sample. Increasing the airflow rate must therefore be done with care. 

Nonetheless, increasing the airflow rate in parallel to finding the optimal inlet surface area and 

resistance levels in the openings could have a simultaneous, positive effect by increasing the 

relative negative pressure effect under the hood. A relative under-pressure induces an inflow 

from the higher pressure environment to the under-pressurized one, ensuring a greater breath 

recovery. The relative under-pressure we wished to achieved in Chapter 5 may not have been 

reached in the current setting. It could be increased by augmenting the airflow rate and 

decreasing the surface area of the inlets and the resistance in the openings (e.g. using soft 

materials, avoiding sharp edges). As the negative pressure patterns obtained in the previous 

design of the CHS were shown not to be homogeneous in space (even at the same height plane) 

(Wu, 2016), its dynamics should be evaluated. 

 

Additional factor affecting recovery: head position 

It is now well established that the head position of an animal within an unclosed gas exchange 

monitoring system has a significant impact on breath recovery, and thus on the accuracy of the 

resulting MPR estimate. This does not represent an issue for closed monitoring systems (e.g. 

CRC, PAC), as they use total air sampling (Hegarty, 2013). However, it is a problem when gas 

concentrations are measured in air samples of unclosed monitoring systems (e.g. GreenFeed 

emission monitoring (GEM), CHS, sniffers), with aerial CH4 and CO2 concentrations being 

influenced by the distance between the sampling inlet and the head (mouth and nostrils) of the 

animal (Lassen et al., 2012). Huhtanen et al. (2015a) experimented with the effect of muzzle 

angle and distance to the inlet of a GEM and a sniffer. They concluded that even small 

alterations of the head position of the (simulated) animal induced large differences in measured 

gas concentrations, with a greater effect on the concentration (i.e. sniffer) than the flux (i.e. 

GEM) method. The same phenomenon was observed in the CHS.  
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In Chapter 5, the choice was made not to filter observations based on head position to maximize 

sample size. However, using this dataset, the head positions of cows were assessed by an 

observer based on the video recordings of the experiment (not reported in this thesis). A 

selection of observations was made according to the fraction of time during which the head of 

the cow was positioned forward, near the extraction inlets under the hood (head-body angle 

between 90 and 180◦). After filtering, only the data of the cows that still had more than 30 

measurement cycles (MC) were kept (n = 7 cows). The mean MPR estimated over these MC 

was compared to the ones made by the CRC for the same cows. A linear regression yielded a 

Pearson’s r correlation of 0.401, while r equated 0.257 when observations were not filtered 

based on head position. While this does not drastically improve the correlation between CRC 

and CHS estimates, it does show clearly that muzzle position has an effect on the MPR 

monitored by the CHS. This also allowed to quantify the level of bias present. The mean 

methane concentrations of all (21 sec) measurements (Figure 6.2) taken with cows in 

frontwards positions (head-body angle between 90 and 180◦, n = 2528 observations) equaled 

130.9 ± 8.8 (sd) ppm, while they equated 65.2 ± 12.2 ppm in backwards positions (0-90◦, n = 

430). This represents a mean difference of 65.7 ppm between both positions. Being in line with 

the literature, these results emphasize the importance of monitoring the head position (and 

filtering observations according to it) as a step towards obtaining more accurate estimations of 

MPR with unenclosed devices.  

Making use of this information is not only important for unenclosed devices in terms of 

measurement accuracy, but also because ignoring the effect of head pose on enteric methane 

measurements might also lead to the (genetic) selection of presumably low producing animals, 

which are in fact simply more restless or position their head farther away from the inlet of the 

monitoring device (Hammond et al., 2016a). 
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Figure 6.2. Breath methane concentrations measured by the cubicle hood sampler depending on the 

angle of the head under the system. 
 

6.3.2. Background concentration measurements 

When measuring methane emissions or fluxes, background concentrations (from the herd or 

the manure pit) have to be monitored so that they can be subtracted from the content of the 

breath of the animal(s) of interest. Errors in background concentration measurement will result 

in inaccuracies in MPR estimates [eq. 4.2]. These errors can be linked to three main factors. 

 

Sampling location and sample representativeness 

Errors can be made if the positioning of the background sampling points does not allow for a  

representative monitoring of the methane concentrations near the inlet of the monitoring 

device. For example, in their study using SF6 as a tracer gas, Berndt et al. (2020) showed that 

most (but not all) cows tended to group in the pasture, and that the monitoring of CH4 and SF6 

concentrations within this pack led to significantly higher background concentration levels than 

the ones monitored farther away in the paddock. Therefore, subtracting background 

concentrations measured farther away from the individual production of the animals that tend 

to pack up could lead to an overestimation of the individual MPR. Conversely, deducting 

background levels measured in the pack from the production of isolated animals could lead to 

an underestimation of their MPR. 
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A similar phenomenon might have been observed in Chapter 5. The decision was made to 

monitor background methane concentrations at the rear end of the cubicles (Figure 6.5 red 

dots). This location, a compromise between sufficient distance from the source and 

representativeness of the background air flowing into the hood, should allow to detect and 

monitor the methane concentrations patterns close to the hood. However, these sampling points 

were positioned near the slatted floor and manure pit. There is thus a chance that methane 

emitted by manure led to inhomogeneous spatial concentrations patterns, and was sensed by 

the background sampling points, leading to an overestimation of the methane concentrations in 

the background air entering the hood. A possibility to prevent this could be to place the 

sampling points higher and closer to the front of the cubicle, while maintaining them out of 

cows reach to avoid damage. In any case, finding the optimal location to monitor background 

concentrations is a challenge, and flow dynamics (spatial and temporal variation) occurring 

around and within the CHS should be extensively investigated. 

Another factor that could affect the representativeness of the sample is the sampling scheme. 

Wu et al. (2016) showed the presence of great temporal and spatial variations in methane 

concentrations around a preceding prototype of the CHS. They also added that the coefficient 

of variation (CV) observed between background measurements strongly increased the CV of 

the hood’s measurements. It might therefore be preferable to monitor both hood and 

background concentrations simultaneously to better capture the temporal changes occurring in 

the background. The impact of simultaneous versus non-simultaneous background sampling 

remains to be investigated, and might require the availability of multiple gas analysers or 

sensors. 

 

Interference of surrounding cows 

During the experiment conducted in Chapters 4 and 5, it appeared that cows surrounding the 

cubicle being monitored could impact the background methane concentrations measured. For 

example, animals tend to stand or walk by the CHS, sometimes with their muzzles positioned 

near the background sampling points (Figure 6.3). Other problematic situations arose from the 

position of cows lying in cubicles that were adjacent to the one being monitored. When rolled 

up (Figure 6.4), animals were exhaling directly under the background sampling points, 

potentially leading to the measurement of higher background concentrations which most likely 

did not represent the true ambient levels. These interferences correspond to random errors that 
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could be ignored as they do not systematically occur. However, if they prove to impact the 

MPR estimations too greatly and too regularly, it would be interesting to filter them out. 

An approach to this issue would be to relocate the background sampling points. Although not 

reported in this thesis, multiple background sampling points were tested in an experiment 

conducted in the absence of cows. For this test, ten background sampling points were installed 

at 10 different locations (Figure 6.5), and their ability to detect various (mimicked) 

interferences of cows was evaluated. It turned out that none of them was able of sensing all the 

events simulated, but that a positioning alternative to the one used in Chapters 4 and 5 was the 

one that detected the greatest number of them. The positioning of this sampling point is visible 

in Figure 6.5 (blue dot). This experiment showed that the background sampling points used in 

the research carried out (red dots, Figure 6.5) were perhaps not the most appropriate ones to 

sense cow interference, and that this could have led to errors in the monitoring of the 

background and (consequently) in the MPR estimated by the CHS. Nonetheless, this 

conclusion may not be extendable to the adequacy of the background sampling points when 

monitoring concentrations without surrounding cows as it was not investigated.  

 

 

Figure 6.3. Example of a surrounding cow standing and exhaling onto the background sampling point 

(green circle) of the monitored cubicle hood sampler. 
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Figure 6.4. Example of a surrounding cow (left) lying in a rolled-up posture and exhaling underneath 

the background sampling points (red circles) of the monitored cubicle hood sampler. 

 

 

Figure 6.5. Background sampling points tested when evaluating the effect of surrounding cows on the 

monitored background concentrations. Blue dot: most suited background sampling point. Red dots: 

current sampling points. Green dots: other background sampling points tested. Ambient sampling point: 

not visible on this picture. Credit: W. Westerbeke. 
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Hood-background concentrations difference 

Aiming for the largest hood-background concentrations difference is a way to reduce the effect 

of uncertainties in background measurements on the MPR estimate. This is because highly 

concentrated breath will be less sensitive to errors in background concentrations if they 

represent a relatively small percentage of the sampled breath concentration. This was shown 

by McGinn et al. (2021) with GEM, whose high uncertainty in background concentrations had 

little influence on the simulated breath measurements thanks to the large difference between 

the two mean concentrations. In our experiment with the CHS, the methane concentrations 

measured  at the background points equated 35.3 ± 26.9 (sd) ppm in average, while the breath 

samples captured by the hood had a mean concentration of 125.6 ± 56.0 ppm. Even without 

accounting for the spread of values, this means that (on average) the measured background 

levels are equal to 28.1% of the mean breath concentrations. In this setup, it means that 

variation or uncertainty in background measurements will considerably affect the resulting 

MPR estimate. Rethinking the settings of the design to increase concentration differential 

therefore seems necessary. 

 

6.3.3. Whole-system recovery test 

Gardiner at al. (2015), followed by Hammond et al. (2016a) and Gerrits et al. (2017), have 

stressed the importance of conducting recovery tests prior to any gaseous exchange 

measurements and of reporting their results. As they declared, it has become apparent that not 

all research groups adhere to the same standards, and that even the gold standard CRC can 

yield significantly different recoveries rates between facilities if not regularly checked 

(Gardiner et al., 2015). The results of Gardiner et al (2015) showed that, in the case of CRC, 

most of the absolute uncertainty was due to the facility design and the operation mode. 

Instrumental noise or chamber-to-chamber variability appeared to account for a smaller portion 

of the uncertainty (Gardiner et al., 2015). Most of the variation proved to be actually due to 

uncertainties in the sample ducting and flow measurements (15.3%), the chamber mixing 

(3.4%), and in the methane analyser measurements (1.3%). These results show that full-system 

recovery tests must be conducted (Gardiner et al., 2015) and not sole calibrations of parts of 

the system, a need that was also stressed by McGinn et al. (2021).  

Conducting this type of recovery tests can be fairly easily implemented in measurement 

procedures as they are relatively simple to perform. This was shown in Chapter 2 (PAC) and 4 
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(CHS). They can allow to detect and quantify the presence of systematic and random errors, 

which characterize the deviation of the result from the true value (Rabinovich, 2006). When 

they classify as random errors, they can increase the variance of the individual measurements 

(called noise) without altering the mean. In this case, they directly translate into an uncertainty, 

but the effect of these errors can be reduced with larger sample size (Aubinet, 2023). Systematic 

errors, on the contrary, do not generate noise but induce a bias in the measurements. Corrections 

can be applied if the source of error can be identified and quantified (Aubinet, 2023). 

Unfortunately, it is not always possible to do so and, in the worst case, unidentified systematic 

errors may remain. This kind of systematic error probably occurred in the comparative study 

of Chapter 5, but was not detected in the recovery tests described in Chapter 4. This shows that 

although recovery tests provide valuable information on the performance of a system itself and 

should be conducted (Chapter 2, Chapter 4), they may not be fully representative of the actual 

experimental conditions, nor be indicative of the system’s ability to recover breath samples in 

the presence of animals. 

 

6.3.4. Sampling scheme and data analysis 

Sampling scheme 

Postprandial MPR has been demonstrated to be generally non-linear and inherent to time  

(Crompton et al., 2011; van Lingen et al., 2017), with eaten quantities, ingestion speeds and 

feeding frequencies affecting the amplitude and length of each phase of the methane production 

curve (minimum, increase, maximum, decrease). These factors have been shown to play a 

crucial role in the number of daily samplings and the intervals that are necessary for spot 

sampling techniques to obtain reliable methane production estimates (Lee et al., 2022; van 

Lingen et al., 2023). Indeed, Lee et al. (2022) used CRC data to show that at least eight samples 

(every 3-h over a 24-h period) were necessary to estimate daily CH4 production, and to detect 

changes in MPR linked to dietary treatments. Van Lingen et al. (2023), for their part, stressed 

the need of defining accurate sampling schemes in connection to the feeding regime when 

estimating daily enteric methane production from cattle. They reported that at least three 

equally spread measurements should be taken each day when animals are fed ad libitum twice 

daily. When feeding was restricted (cows fed twice daily at 80–95% of the ad libitum intake), 

measurements taken at least every hour were necessary to obtain accurate MPR. This can be 

linked to the fact that the hourly MPR decreases as the number of feed deliveries in a day 

increases (Crompton et al., 2011). Defining a spot sampling scheme for monitoring enteric 
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methane must therefore be done with respect to the feeding regime that is sustained. Besides, 

it is important to note that the monitoring device used by Lee et al. (2022) and Van Lingen et 

al. (2023) to reach these conclusions was the CRC. It is possible that the method used to assess 

the measurement accuracy in connection to the sampling scheme may have an effect. Other 

conclusions in terms of sampling frequency might therefore be reached for each monitoring 

devices. Most likely, we can presume that devices operating at accuracy levels that are lower 

than the CRC will require more frequent sampling than the gold standard. 

Moreover, some studies have reported MPR to be the lowest before the ingestion of the first 

meal of the day (Hammond et al., 2016b; Laubach et al., 2013). This points to the necessity to 

balance measurements over days and nights (van Lingen et al., 2023). This could be due to 

differences in feeding and ruminating behaviours observed between day time and night time 

(Schirmann et al., 2012). Daily MPR has also been demonstrated to vary between days, with 

Grainger et al. (2007) finding a variability (CV) of 4.3% within cows (n = 28) amongst days (n 

= 3), and Blaxter and Clapperton (1965) reporting a 7.2% CV for day-to-day (n = 4 to 5) 

variation based on 24-h monitoring of MPR in cattle (n = 54). This raises the question of the 

minimal period of time (days) over which an animal should be monitored for its MPR estimate 

to be representative of its true production, especially when linked to varying metabolic rate 

(e.g. heat load, activity, time of the day) and metabolic state (e.g. pregnant, lactating). 

 

Data analysis 

Statistical analysis and modelling are powerful tools that can prove useful when estimating 

daily MPR based on spot measurements. The model proposed in Chapter 3 provides an 

interesting approach to converting spot measurements into continuous methane production 

curves. Although it could not compensate for the biased estimates made by the CHS in Chapter 

5, it might improve the MPR estimation accuracy when fitted on unbiased data. By borrowing 

information across individuals of a same population, it could allow monitoring devices to deal 

with less frequent observations. In addition, this model accounts for the variability in MPR that 

is known to be present between cows, making its estimates realistic. Lastly, it allows to 

approach daily MPR as the estimated area under the curve (AUC), which better represents the 

dynamics of the production process than a mean does. Similarly, the use of smoothing splines 

was proposed by van Lingen et al. (2023) to fit the observations made in CRC before computing 

an AUC. Interpolation might also be an approach to compensate for the gaps present between 

two measurements, for example when monitoring background concentrations. However, 
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statistical tools should be used cautiously, and the excessive use of adjustments and correction 

factors should be avoided in the case of enteric methane assessments. 

 

6.3.5. Overall interconnectedness of the sources of uncertainty 

In addition to identifying the elements responsible for most of the uncertainty that is linked to 

the practical monitoring of individual methane production, it is essential to stress their 

interconnectedness. A poor recovery of the breath sample by the monitoring device will, in 

some methods, simultaneously lead to an overestimation of the background concentrations. 

Similarly, the presence of cows around the system can affect both the ongoing background 

measurement, for example by exhaling air near its inlets, and lead to the overestimation of the 

methane concentrations contained in background air. Both cases would lead to an 

underestimation of the methane production of the monitored animal. A sampling scheme that 

does not allow to capture the different phases of the postprandial methane production curve 

would lead to biased estimates of the individual MPR. Data processing can be helpful to 

partially compensate for missing information, but it cannot compensate nor correct for 

everything. The statistical analysis carried out should be also be defined depending on the 

nature of the dataset. Additionally, omitting to conduct whole-system calibrations will prevent 

the results from being corrected for systematic errors. Conversely, even the most accurate 

monitoring device cannot provide accurate estimations of MPR if the breath sample it analyses 

is not representative of the animal’s production or if the sampling scheme is inadequate. The 

overall connections involved are shown in Figure 6.6. 
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6.4. Remaining unknows and further outlook 

This study has brought to light the many challenges of monitoring enteric methane production 

of ruminants under practical conditions. On the basis of these elements, proposals are made for 

further research in order to try to solve some of the issues that were encountered with the CHS 

and to obtain a better understanding of the underlying processes. 

 

Breath recovery 

As extensively discussed, the breath recovery capacity of the CHS must be investigated. 

Experiments should be conducted to assess airflows patterns within the system and link them 

to the potentially poor under-pressure effect induced under the hood. A possibility could be to 

evaluate recovery at (varying) higher airflow rates and smaller inlet surfaces than the ones 

previously tested. This should be done in a recovery test, but also in the presence of animals. 

For the latter, animals could be equipped with tubes placed close to their muzzle and releasing 

a tracer gas (e.g. SF6) to evaluate the portion of this gas that is recovered by the hood. 

 

Background sampling 

Errors made in background sampling must be evaluated and addressed. First, the current 

sampling points proved not to be the best suited to detect the interference of surrounding cows. 

There is a chance that they were also not the most optimal to monitor the methane concentration 

patterns occurring around the CHS (varying in space), notably in connection with the potential 

interference of the manure pit emissions. These sampling points could eventually be relocated. 

However, relocation must be done with care as background measurements and dynamics have 

been shown to be complex. Firstly, airflows dynamics within and around the cubicles could be 

investigated with smoke tests. This could allow to visualize general flow dynamics and to 

(ideally) detect the presence of problematic patterns (e.g. emissions from the manure pit 

flowing onto the background sampling points). Secondly, using a tracer gas to assess the 

fraction of gas recovered by the hood (detailed in the Breath recovery outlook) would also 

allow to evaluate the fraction of the breath that is drawn back to the background samplings 

points. In addition, the relative effect of background measurements uncertainties could be 

decreased by increasing the differential between hood and background concentrations. This 

could be achieved by recirculating the air captured by the hood, as done in the CRC. 

Additionally, background air might require to be mechanically mixed, so that the effect of 
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sporadic events (e.g. surrounding cows), temporal and spatial variations can be smoothed out. 

Lastly, the effect of alternative and simultaneous monitoring of background and breath 

concentrations should be assessed. This would allow to evaluate its effect on the accuracy of 

the resulting MPR estimate. 

 

Sampling scheme 

Studies conducted in CRC have investigated and showed the importance of the sampling 

scheme (within and between days) when doing spot sampling measurements. This has not yet 

been investigated for other monitoring devices. Before investigating the effect of sampling 

scheme on the MPR estimated by practical devices, whole-system calibrations should be 

conducted to correct for bias. Then, multiple sampling frequencies could be experimented with 

and compared to the MPR levels monitored by CRC for the same animals. This will prove 

challenging as the levers of actions to increase the throughput of practical devices are limited. 

In a first time, it might be necessary to enclose animals so that their MPR is monitored over at 

least an entire 24-h period. In the case of the CHS, it could be achieved by building a CHS into 

tie-stalls to monitor a few individual cows over multiple days. Using these datasets, increasing 

percentages of records could be deleted to evaluate the effect on the resulting MPR estimates. 

If it appears that more observations are needed than what the positioning in the barn allows 

(e.g. cows not lying down right after eating and at certain moments of the day), we might 

consider redesigning the system. An inevitable additional layer of complexity will be added 

with varying feeding regimes. Its general effect should be investigated similarly to the studies 

of Lee et al. and van Lingen et al. (2022; van 2023). Trends might be obtained, but it will not 

be possible to evaluate the effect of all regimes (e.g. content, quantities) and feed intake patterns 

(e.g. speed, frequency). 

 

Hierarchical methane rate model 

Fitting the HMR model with CHS data did not lead to a significant improvement of the 

accuracy of the MPR estimates due to the presence of a strong measurement bias. However, 

HMR proved its usefulness on a CRC dataset. It would therefore be informative to investigate 

its added value when used with unbiased CHS records, and with the observations of other spot 

sample methods. It would be particularly ideal if the model could allow to (at least partially) 

compensate for the small sample size collected by some of the practical devices. Investigating 

minimal input sample size could be evaluated by fitting the HMR model with CRC data, and 
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comparing its output with the mean values monitored (as in Chapter 3) after randomly deleting 

increasing numbers of observations. While the number of observations most certainly plays a 

role on the estimation accuracy of HMR, it might also be affected by the phase of the 

postprandial methane production curve during which they were collected. For example, it could 

be that only the first 120 minutes after feed intake are of interest as they correspond to the 

minimum and the maximum production levels, with this duration depending on feeding regime 

(e.g. frequency, speed, quantities).  

In the present study (Chapter 3), feeding regimes were known and consistent over cows. 

Different feeding frequencies would alter the shape of the postprandial production curve, which 

would alter the parameter values of the HMR model. The dependency between  estimation 

accuracy and varying feeding regimes should be explored. 

Additionally, it would be informative to reconduct the model validation of Chapter 3 after 

allowing all parameters (shape and scale) to vary between cows. While being computationally 

more expensive than the partially pooled model, it could allow to identify which parameters 

vary between individuals and to what extent. This might enhance the accuracy of the MPR 

estimated by HMR. Finally, days could be included as an additional level of hierarchy to the 

model so that the between-days variation in MPR (e.g. within cows) can be taken into account. 

 

Head position monitoring 

If higher recoveries of breath are achieved in the future the head pose of animals under the 

hood would become less of an issue. As this is not yet the case and because completely rolled 

up animals would most likely remain an issue, monitoring head pose remains of importance. 

Through the experiments, many sensors aiming at monitoring head position have been tested 

(i.e. infrared, ULS, RFID). Unfortunately, none of them (in the tested setup) yielded satisfying 

performances. Recently, a pose estimation algorithm was trained to detect key points of cows 

(i.e. muzzle, ears, head, shoulders, cross bone) and calculate the angle between them (Figure 

6.7, Figure 6.8). This information could be used after data collection to filter out observations 

recorded in inadequate postures. These results will be communicated at a later stage, but the 

first results appear very promising. 
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Figure 6.7. Simultaneous key points detection of the head (1), muzzle (2), right (3) and left (4) ears, 

shoulder (5) and crossbone (6) of three cows lying in cubicle hood samplers. Credit: J. Blom. 

 

 

Figure 6.8. Examples of two head angles (left θ = 120 degrees, right θ = 60 degrees) calculated by the 

algorithm for the same cow while lying a cubicle hood sampler. Credit: J. Blom. 
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Cow identification 

Attributing observations to the correct cow is essential to avoid errors made in estimating 

individual MPR. In the tested setups, RFID did not yield a sufficient performance (i.e. 

identification accuracy and robustness). However, technical advances are being made, and 

more robust radio frequency identifiers are now available on the market. While they could be 

an option to consider, an alternative is to opt for a computer vision algorithm which would 

limit the use of sensors in the barn (security cameras being cheaper and less sensitive to barn 

environments than the RFID sensors). Reusing the open source work of Andrew et al. (2020, 

2016), cows might be identified using their coat patterns (Figure 6.9). Challenges will most 

likely emerge when identifying the mostly unicolour cows, and from the varying angles at 

which cows can be seen depending on their lying position (and flank). An alternative idea could 

be to identify the number on the ear tags of the animals as they enter a CHS. 

 

 

Figure 6.9. Examples of identification process with successful (first three columns) and unsuccessful 

(last three columns) image-pair comparisons (Andrew et al., 2016). Row 1: RGB images and row 2: 

corresponding depths images. Row 3: images yielded from pre-processing with retained and discarded 

features following feature-importance prediction in green and red respectively. Rows 4 and 5: examples 

of feature matching and geometric filtering on the same individual (left 3 examples) and different 

individuals (right 3 examples). 
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6.5. Concluding remarks:  

Monitoring individual enteric methane production rates under practical conditions represents a 

challenge in compromising required measurement accuracy with practical farm conditions. 

Many difficulties emerge from the barn environment (e.g. dust, humidity, non-linear airflows, 

other methane sources) and the presence of animals (e.g. voluntary movement, physiological 

processes, damage). Management strategy, farm type and design, ruminant species, and feeding 

regime are few of the many factors that vary greatly and fundamentally affect what can be done 

to monitor MPR in practice. It is therefore unlikely that there will ever be a “one size fits all” 

device to monitor enteric methane production rates of ruminants in practice.  

Conversely, respiration chambers were shown to be ideal for gas exchanges measurements. 

They provide the possibility to control many factors so that only the variables of interest can 

be explored. Unfortunately, they do not permit the large screening of animals, which remains 

a necessity. There is currently no consensus on one practical device that operates at sufficient 

levels of accuracy and throughput, but the need for large-scale screening does not justify the 

use of inaccurate or biased devices. Efforts to monitor enteric methane production rates in 

practice should therefore continue. Anyone striving to achieve more accurate measurements of 

the individual enteric methane production of animals in practice should therefore make 

conscious decisions concerning the following key elements: 

o Breath sample recovery and representativeness; 

- Taking into account that if the exhaled breath of the animals is not sufficiently 

recovered by the monitoring device, the sample being analysed will not be 

representative of the true methane contained in the breath, thus leading to biased 

methane production estimates. 

o Background measurements representativeness; 

- To avoid misestimating background concentrations, for example by not monitoring the 

true background concentrations of the air present near the monitoring device, which 

would lead to an under or over-estimation of methane production. 

o Whole-system performance and accuracy; 

- As the estimates that are made by a monitoring device that has not been calibrated 

cannot be corrected for measurement errors and can lead to bias. 

o Overall sampling scheme and data handling; 
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- Which should be defined so that the general non-linearity of the methane production 

curve can be captured by the device and appropriately taken into account in the data 

analysis. 

Lastly, it is strongly recommended to address these key elements in a systemic manner as their 

interconnectedness has been demonstrated in this thesis (Figure 6.6). 
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Appendix A. Detailed ring test PAC. 

Table A.1. Ring test: Monitored methane concentrations (ppm) post-injection, per chamber and per 

repetition. Mass injected during the ring test (1.6 g) were injected in triplicates in each of the eight 

chambers. One replicate (PAC 6 replicate 1) had to be removed from the analysis as the fan was not 

activated during the measurement, but is present in this table (indicated as “OTL”). Supplementary 

information relative to methane volume (L) and mass (g) injected calculated from [eq. 2.2] to [eq. 2.4] 

are also presented. Recovery rates (%) were calculated from [eq. 2.5]. 

PAC 
number 

Replicate 
Injected 
mass (g) 

Monitored [CH4] 
post-injection 

(ppm) 
Mean ± sd 

Corresponding 
CH4 volume 
injected (L) 

Estimated 
CH4 mass 
recovered 

(g) 

Recovery rate 
(%) ± sd 
between 

measurements 

2 
1 1.56 1400.00 ± 0.00 1.58 1.08 69.33 ± 0.00 
2 1.56 1400.00 ± 0.00 1.58 1.09 70.18 ± 0.00 
3 1.56 1400.00 ± 0.00 1.58 1.08 69.38 ± 0.00 

3 
1 1.58 1400.00 ± 0.00 1.58 1.08 68.63 ± 0.00 
2 1.57 1400.00 ± 0.00 1.58 1.09 69.61 ± 0.00 
3 1.61 1450.00 ± 0.00 1.63 1.12 69.49 ± 0.00 

4 
1 1.62 1450.00 ± 0.00 1.63 1.13 69.59 ± 0.00 
2 1.57 1350.00 ± 0.00 1.52 1.04 66.58 ± 0.00 
3 1.57 1400.00 ± 0.00 1.58 1.08 69.09 ± 0.00 

5 
1 1.58 1450.00 ± 0.00 1.63 1.13 71.65 ± 0.00 
2 1.58 1400.00 ± 0.00 1.58 1.08 68.63 ± 0.00 
3 1.59 1400.00 ± 0.00 1.58 1.08 68.13 ± 0.00 

6 
1: OTL 1.58 1183.33 ± 23.57 1.33 0.92 57.97 ± 1.15 

2 1.63 1400.00 ± 0.00 1.58 1.10 67.55 ± 0.00 
3 1.59 1400.00 ± 0.00 1.58 1.08 68.13 ± 0.00 

7 
1 1.56 1400.00 ± 0.00 1.58 1.08 69.57 ± 0.00 
2 1.56 1400.00 ± 0.00 1.58 1.10 70.55 ± 0.00 
3 1.56 1400.00 ± 0.00 1.58 1.08 69.38 ± 0.00 

8 
1 1.59 1433.33 ± 23.57 1.62 1.12 70.39 ± 1.16 
2 1.59 1433.33 ± 23.57 1.62 1.11 69.75 ± 1.14 
3 1.63 1500.00 ± 0.00 1.69 1.16 71.17 ± 0.00 

10 
1 1.56 1400.00 ± 0.00 1.58 1.09 70.01 ± 0.00 
2 1.56 1400.00 ± 0.00 1.58 1.08 69.38 ± 0.00 
3 1.56 1400.00 ± 0.00 1.58 1.08 69.38 ± 0.00 
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Appendix B. Detailed range test PAC. 

Table A.2. Range test: Monitored methane concentrations (ppm) post-injection, per chamber and per 

repetition. Mass injected during the range test (0.5, 1.0, 2.0 and 2.5 g) were injected in duplicates in 

each of the two chambers. Subset of the ring test (1.5g) is added to the range test data for better 

readability. Ring tests injections were done in triplicates. One replicate (PAC 6 replicate 1) had to be 

removed from the analysis as the fan was not activated during the measurement, but is present in this 

table (indicated as “OTL”). Supplementary information relative to methane volume (L) and mass (g) 

injected calculated from [eq. 2.2] to [eq. 2.4] are also presented. Recovery rates (%) were calculated 

from [eq. 2.5].  

 

  

PAC 
number 

Injected 
mass 
(g) 

Replicate 

Monitored [CH4] 
post-injection 

(ppm) 
Mean ± sd 

Corresponding 
CH4 volume 
injected (L) 

Estimated 
CH4 mass 
recovered 

(g) 

Recovery rate 
(%) ± sd 
between 

measurements 

5 

0.47 
1 463.33 ± 4.71 0.52 0.36 74.52 ± 0.76 
2 460.00 ± 0.00 0.52 0.35 74.13 ± 0.00 

1.06 
1 1000.00 ± 0.00 1.13 0.77 71.48 ± 0.00 
2 1000.00 ± 0.00 1.13 0.77 71.48 ± 0.00 

1.53 
1 1450.00 ± 0.00 1.63 1.13 71.65 ± 0.00 
2 1400.00 ± 0.00 1.58 1.08 68.63 ± 0.00 
3 1400.00 ± 0.00 1.58 1.08 68.13 ± 0.00 

2.01 
1 1850.00 ± 0.00 2.08 1.43 69.98 ± 0.00 
2 1850.00 ± 0.00 2.08 1.43 69.98 ± 0.00 

2.48 
1 2266.67 ± 23.57 2.55 1.75 69.39 ± 0.72 
2 2266.67 ± 23.57 2.55 1.75 69.53 ± 0.72 

6 

0.47 
1 450.00 ± 0.00 0.51 0.35 72.37 ± 0.00 
2 463.33 ± 4.71 0.52 0.36 74.52 ± 0.76 

1.06 
1 1000.00 ± 0.00 1.13 0.77 71.48 ± 0.00 
2 1000.00 ± 0.00 1.13 0.77 71.48 ± 0.00 

1.56 
1: OTL 1183.33 ± 23.57 1.33 0.92 57.98 ± 1.15 

2 1400.00 ± 0.00 1.58 1.10 67.55 ± 0.00 
3 1400.00 ± 0.00 1.58 1.08 68.13 ± 0.00 

2.01 
1 1850.00 ± 0.00 2.08 1.43 69.96 ± 0.00 
2 1850.00 ± 0.00 2.08 1.43 70.10 ± 0.00 

2.48 
1 2250.00 ± 0.00 2.54 1.73 68.83 ± 0.00 
2 2250.00 ± 0.00 2.54 1.73 68.97 ± 0.00 
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Appendix C. A primer on Bayesian data analysis. 

The Bayesian viewpoint provides an alternative to the classical approach to data analysis. Let 

𝜃𝜃𝜃𝜃 denote a model-specific collection of parameters (of continuous metric). The classic approach 

to data analysis then uses inferential procedures based on the likelihood of the observed data 

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃;𝑋𝑋𝑋𝑋). This likelihood represents the joint distribution of the data 𝑋𝑋𝑋𝑋 under the parameters of 

the postulated model. Usually, a retrospective evaluation is made of the estimate 𝜃𝜃𝜃𝜃� over all 

possible 𝑋𝑋𝑋𝑋 values conditional on the true unknown 𝜃𝜃𝜃𝜃 which is deemed fixed. Hence, in this 

viewpoint, the parameter collection is fixed and the data are random. The Bayesian approach, 

however, considers 𝜃𝜃𝜃𝜃 random. This allows one to construct 𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃|𝑋𝑋𝑋𝑋), the posterior distribution 

of the model parameters given the observed data. One then has to specify the prior distribution 

𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃), reflecting the uncertainty or knowledge regarding the model parameters before being 

witness to the data. One can then use Bayes’ rule to obtain the posterior distribution of interest: 

𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃|𝑋𝑋𝑋𝑋) =
𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃;𝑋𝑋𝑋𝑋)𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃)

∫𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃;𝑋𝑋𝑋𝑋)𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃) 𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃
. 

The posterior distribution thus consists of the joint probability function for 𝜃𝜃𝜃𝜃 and 𝑋𝑋𝑋𝑋 (the 

numerator in the expression) weighted by the marginal probability of the data under the model 

(the denominator, also called the prior predictive density or marginal likelihood). Intuitively, 

the Bayesian posterior is a weighted calibration of our data evidence with our prior knowledge.  

Bayes’ rule encapsulates the core machinery of Bayesian statistics. The denominator, however, 

often cannot be solved analytically, meaning that the posterior is not available in closed form. 

Posterior evaluation is then possible with the use of Markov chain Monte Carlo (MCMC) 

methods. MCMC represents a class of algorithms generating sequences of random samples that 

converge in distribution to a target probability distribution from which one cannot sample 

directly. In this work we use the powerful Hamiltonian Monte Carlo approach.  

The Bayesian approach to data analysis has several distinct advantages, several of which we 

will state here. First, parameter uncertainties are propagated (using MCMC) throughout the 

model, ultimately making for more robust and realistic model performance and model 

predictions. Second, it allows one to combine expert knowledge (in the form of prior 

formulations) with data evidence. One can thus incorporate multiple sources of information. 

Third, it has extensive model comparison capabilities allowing for a better grasp on the 

important question how appropriate a model is given the collected data. Fourth, it allows for 

very flexible (hierarchical) model construction. This work, for example, shows that it is very 
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permitting in implementing a physical model in a hierarchical stochastic setting. For more 

information on the Bayesian approach to data analysis we confine by referring to Gelman et al. 

(1995), Lambert (2018), and Press (2002). 
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Appendix D. Detailed recovery tests CHS. 

Table A.3. Summary table of the injected and recovered methane mass for each of the recovery test 

conducted. Treatment 1 represents a target daily MPR of 200 g/d, and treatment 2 of 400 g/d. 

Corresponding ambient conditions are also stipulated. Airflow corresponds to the mean flow going 

through the hood. Temperature was the ambient value in the barn. 

CHS Repetition Treatment 
Injected 

CH4 
mass (g) 

Recovered 
CH4 mass 

(g) 

Recovery 
rate (%) 

Mean 
airflow 
(m3/h) 

Temperature 
(°C) 

1 1 1 192.8 228.0 118.2 197.1 20.1 

1 1 2 385.6 392.6 101.8 197.1 20.0 

2 1 1 192.8 235.9 122.3 196.9 20.2 

2 1 2 385.6 439.9 114.1 196.9 20.3 

3 1 1 192.8 204.9 106.3 186.1 20.5 

3 1 2 385.6 386.8 100.3 186.1 20.5 

4 1 1 192.8 227.6 118.1 180.0 20.3 

4 1 2 385.6 415.2 107.7 180.0 20.4 

1 2 1 194.8 224.0 115.0 197.7 12.8 

1 2 2 389.5 405.4 104.1 197.4 12.7 

2 2 1 194.7 226.4 116.3 201.0 13.1 

2 2 2 389.4 443.2 113.8 200.1 13.5 

3 2 1 194.4 219.0 112.6 199.2 13.9 

3 2 2 388.8 447.9 115.2 198.4 14.2 

4 2 1 194.4 261.3 134.4 198.4 14.1 

4 2 2 388.8 439.9 113.2 197.8 13.9 

1 3 1 195.6 202.6 103.62 198.2 10.3 

1 3 2 391.1 387.1 99.0 195.9 10.35 

2 3 1 195.1 195.4 100.1 193.1 11.2 

2 3 2 390.2 437.0 112.0 193.4 11.7 

3 3 1 195.4 200.3 102.5 195.0 10.1 

3 3 2 390.7 378.3 96.8 195.7 11.1 

4 3 1 195.3 221.5 113.5 203.1 11.0 

4 3 2 390.5 431.8 110.6 202.4 10.9 
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Appendix E. Autocorrelation of the methane production time series 
estimated by the climate respiration chamber (CRC) and cubicle hood 
sampler (CHS) methane for each cow. 
Table A.4. Autocorrelation between the methane production rates estimated for each cow by both 

monitoring devices (climate respiration chamber, CRC, and cubicle hood sampler, CHS), and with a lag 

of 1. Mean and standard deviation (sd) are presented across cows per monitoring device.  

Cow CRC CHS 

364 0.397 0.193 

720 0.609 -0.072 

735 0.481 -0.296 

769 0.570 0.146 

960 0.099 0.006 

1345 0.428 -0.237 

1369 0.593 0.160 

1446 0.357 0.590 

1490 0.452 0.118 

1498 0.324 -0.089 

1516 0.213 -0.491 

1517 0.216 0.084 

1520 0.673 -0.389 

1542 0.334 -0.139 

1558 0.499 -0.230 

1565 0.344 0.628 

1573 0.204 0.070 

1948 0.325 0.025 

1982 0.235 -0.178 

1988 0.320 0.010 

2007 0.483 0.025 

Mean 0.388 -0.003 

sd 0.148 0.268 
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Appendix F. Confusion matrices of the true/false positives and negatives 
classifications estimated by the climate respiration chamber (CRC) and the 
cubicle hood sampler (CHS) when comparing each cow to the mean methane 
production level of their population. 

In addition to the data analysis presented in the core of the text, we conducted an analysis aiming 

to evaluate the ability of the cubicle hood sampler (CHS) to determinate if the methane 

production level of one cow is above or below the mean level of its group. This information is 

relevant when selecting cows based on their lower methane production rate (MPR) in 

comparison to a specific population, for example when genetically selecting animals. 

For this, we compared the classification (above or below the mean level) defined by the CHS 

and the climate respiration chamber (CRC), with and without using the hierarchical methane 

rate (HMR) model.  

A mean MPR level was calculated for each dataset. This resulted in five mean values: one for 

the original CRC set (ORS), the original CHS set (OHS), the CRC subset (ORS subset), the 

CHS subset (CHS subset), and the CHS training set (HTS). Then, the mean MPR of each cow 

was classified as being above or below the mean MPR level of its population. The 

categorizations defined by the two devices for each of the scenarios were then compared. 

Individuals that were classified by both devices as being above (or below) their mean population 

level were labelled as true positives (or negatives). Conversely, the individuals that were 

categorized as above the population mean by one device and below by the other were labelled 

as false positives or negatives. Using these labels, the accuracy, sensitivity and specificity were 

calculated for each case. It gave an indication on the level of correct classifications made by the 

CHS for the true positives (sensitivity), the true negatives, and the combination of both 

(accuracy). The outcomes were summarized in three confusion matrices (Figure A.1, Figure 

A.2, Figure A.3). 

The confusion matrix classifying the MPR levels of ORS and OHS against their respective 

population mean resulted in levels of accuracy of 0.619, sensitivity of 0.583, and specificity of 

0.667 (Figure A.1). The two matrices comparing the ORS subset to 1) the OHS subset, and 2) 

the HTS gave the same results as they both classified cows identically. They thus both yielded 

accuracies of 0.636, a sensitivities of 0.500, and a specificities of 0.750 (Figure A.2, Figure 

A.3), showing no difference with or without using HMR with this data. We can note that in all 

cases, most of the errors were linked to false positives. 
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Overall, these results showed that the CHS can accurately predict 61.9 to 63.6% of the true and 

false positives, i.e. evaluate if a cow is truly above or truly below the mean methane production 

level of its population. These results are in line with the ranks obtained with Kendall W, and 

make the CHS as a promising tool for selecting animals on the basis of their MPR and 

comparatively to the levels of their population. 

 

 
Figure A.1. Confusion matrix showing the classification of the individual methane production rates, as 

estimated by the climate respiration chamber (CRC: ORS) and the cubicle hood sampler (CHS: OHS). 

This matrix includes 21 cows. 
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Figure A.2. Confusion matrix showing the classification of the individual methane production rates, as 

estimated by the climate respiration chamber for the 11 cows subset (CRC: ORS subset) and the cubicle 

hood sampler (CHS: OHS subset). This matrix includes 11 cows. 

 

 
Figure A.3. Confusion matrix showing the classification of the individual methane production rates, as 

estimated by the climate respiration chamber (CRC: ORS subset) and the cubicle hood sampler after 

fitting its data with the hierarchical methane rate model (CHS: HTS). This matrix includes 11 cows. 

  



Appendices 

| 162  

Appendix G. Population and individual scale factor variation from the 
hierarchical methane rate (HMR) model fit using cubicle hood sampler data. 

 

 
Figure A.4. Ridge line plot of the population scale factor (𝛼𝛼𝛼𝛼�) and the individual deviations from the 

population per cow (α), indicated by their number (n = 11). 
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Appendix H. Individual methane production curves fitted with the 

hierarchical methane rate (HMR) model for the 11 cows of the HTS 

 
Figure A.5. Individual methane production curves fitted with the hierarchical methane rate (HMR) 

model for the 11 cows of the cubicle hood sampler (CHS) training set (HTS). Blue line: population 

methane production rate (MPR) curve; pink line: individual MPR fitted curve; dashed lines: credible 

interval; pink dots: CHS observations. 
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