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A B S T R A C T   

Governments and the food industry make major efforts to ensure food safety throughout the global supply chain 
and support food availability. Experiences with Coronavirus disease 2019 (COVID-19) have re-emphasized the 
need for preparedness in many sectors, including the food sector. This position paper analyzes the potential 
introduction and transmission of pandemic viruses via the food chain and hypothesizes which new food safety 
issues could arise. Two scenarios, a gastrointestinal virus and a respiratory virus, were explored. Possible risks 
and economic costs of introduction and transmission, regulatory and analytical needs, and control strategies 
associated with such scenarios are described. Overall, if a pandemic virus associated with the food chain was to 
occur, our preparedness is currently lacking given our potentially limited knowledge of introduction and 
transmission pathways, as well as access to methods to detect the viral presence and infectivity and model the 
transmission of the pathogens, even though the economic and societal impact of such a scenario is likely 
extensive. The food and fomite component could be easily neglected or underestimated in a future pandemic. On 
the other hand, better tools to prove the lack of food chain transmissibility of a pandemic virus could also prevent 
unnecessary economic losses across the sector. In the event of a foodborne pandemic virus, food safety testing 
would provide a clear purpose to detect deviating batches, obtain monitoring data, and assess compliance to 
hygiene criteria; however, providing complete safety through enforcement criteria is demonstrated to be 
economically unfeasible; therefore, other control interventions will be needed. These messages are important for 
food business operators and governments to understand the possible analytical needs, opportunities, and caveats 
for food safety testing. Narrowing the knowledge gaps on introduction and transmission, and improvement of 
analytical feasibility is required to benefit our preparedness against the emergence and spread of future food
borne pandemic pathogens.   

1. Introduction 

According to the World Health Organization, as of February 2023, 
there are over 750 million confirmed cases and 6.8 million deaths 
resulting from Coronavirus disease 2019 (COVID-19) (World Health 
Organization, 2023). COVID-19 is caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), a pandemic virus characterized 
by efficient person-to-person transmission, initially little or no immunity 
in populations, and risk of severe disease. For more than two years, 
COVID-19 has impacted our socio-economic system. The food sector has 
faced considerable challenges in production, distribution, processing, 
trade, and consumer demand. The latter was seen globally with stock
piling and panic-buying of household food supplies and the closure of 

restaurants and food services. Food safety and food availability must, 
however, always remain guaranteed. Consequently, governments and 
the food industry have gone through major efforts to ensure food safety 
throughout the global supply chain and to support food availability. 

In the COVID-19 pandemic, the transmission of SARS-CoV-2 via food 
has been reported to be unlikely (González et al., 2021; Rose-Martel 
et al., 2021). Nonetheless, the COVID-19 pandemic has placed pressure 
on the food system and globally affected food security, e.g., by disrup
tions in the workforce and supply chains and travel- and trade re
strictions (Bron et al., 2021). Experiences with COVID-19 re-emphasize 
the need for preparedness in many sectors, including the food sector. 
The possibility of the transmission of a pandemic virus via food needs to 
be considered. Foods that are handled or traded raw are associated with 
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various viral food-borne illnesses (Bosch et al., 2018). If food products or 
packaging were to play a role in spreading a pandemic virus, analytical 
methods would then be needed to detect viruses. Alongside this need, it 
is relevant to evaluate the transmission routes for new sources of viral 
infection, how the spread of these viruses occurs, and to design 
cost-effective control measures. These above-mentioned knowledge el
ements require further actions to better prepare for a scenario where 
pandemic pathogens are transmitted via food supply chains. For this, 
several questions arise about a possible food-borne pandemic occurring 
in our food supply chain: 

- What is known about the role of food and the food chain in intro
ducing and transmitting potentially highly pathogenic viruses into 
the human population?  

- How could scenarios look like in which, next to person-to-person 
spread, food plays a relevant role in the transmission of a 
pandemic virus?  

- How well prepared is our current food safety system, including 
regulatory bodies and current guidelines, for such a situation?  

- Which analytical methods are needed to investigate and confirm the 
infectivity of pandemic foodborne viruses?  

- What would be the economic impact on the food system? 

The aim of this study is to evaluate the potential introduction and 
transmission of pandemic viruses via the food chain, hypothesize con
sequences for food business operators and assess the economic impact 
that could arise if a food-borne transmissible pandemic virus was to 
occur. We illustrate the impact of a pandemic that also transmits across 
the food chain with two scenarios, a pathogenic gastrointestinal virus 
with increased virulence and a pathogenic respiratory virus with gained 
stability, and their consequences for hygiene codes. To assess the po
tential economic effects and societal costs associated with these sce
narios, we hypothesized a pandemic occurrence in two vulnerable food 
chains – the strawberry chain and the salmon chain. The results of this 
study help food-business operators and governments consider the 
possible risk and impact of pandemic viruses being introduced and 
transmitted via our food system and the regulatory and analytical needs, 
as well as control strategies associated with such scenarios. 

2. Role of food in the introduction of viruses into the human 
population 

The scientific community closely watches the emergence and spread 
of several viruses with potential pandemic properties and their impact 
on public health. The avian Influenza A virus is considered a global 
health threat, causing recurring pandemics in 1918, 1957, 1968, and 
2009 (Harrington et al., 2021). The year 2022 has also seen an alarming 
number of Influenza A outbreaks in poultry farms in Europe (Adlhoch 
et al., 2022), emphasizing the importance of pandemic preparedness 
against high-risk viruses (Naguib et al., 2020). Recent viral pandemics 
such as Influenza A H1N1 and SARS-CoV-2 have been characterized by 
person-to-person respiratory transmission. It is, however, difficult to 
precisely determine the food and fomite transmission component 
compared to respiratory transmission due to an incomplete under
standing of the adsorption and transfer properties of viruses, as well as 
challenges in sampling and quantifying infective viruses from surfaces 
including foods (Castano et al., 2021). 

Even though it is probably not possible to predict the exact origin and 
impact of a future pandemic, substantial health, economic and societal 
consequences are expected, as shown by previous pandemic viruses like 
SARS-CoV-2 (Panneer et al., 2022). In our study, a literature review was 
performed (details in Supplementary materials: Methods A) to assess 
how food has contributed to the introduction of new viruses in the 
human population and which pandemic viruses could have the potential 
to spread across the food chain. Food can play distinctive roles in the 
emergence of viruses, including their spillover to the human population. 

Food can mediate viral spillover either through direct ingestion of vir
ally contaminated food but also via on-farm contact with the husbandry 
or game. For example, the Nipah virus has spilled over from bats to pigs 
to humans in an outbreak in Malaysia through close contact with the 
pigs rather than the consumption of porcine meat (Chua, 2003; Parashar 
et al., 2000). In Bangladesh, there have been seasonal Nipah virus out
breaks in the human population caused by the consumption of raw date 
palm sap contaminated with bat secretions during winter (Hassan et al., 
2022). SARS-CoV-2 has most likely emerged in a seafood market in 
Wuhan, China (Worobey et al., 2022), while SARS-CoV-1 likely emerged 
through the ingestion of Chinese ferret badgers, raccoon dogs, or Hi
malayan palm civets sold as food (Maske et al., 2021). Avian influenza 
has very occasionally spread to humans through live poultry at markets 
and duck farms (Cáceres et al., 2021) and through wild bird pet trade 
(Dudley, 2008). Intensive livestock production possibly facilitated 
Reston ebolavirus spillover from livestock in the Philippines and Mar
burg virus and Ebola virus in sub-Saharan Africa (Glennon et al., 2018). 
The Hepatitis E virus has been described as a risk for humans who 
consume game meat (Hedman et al., 2020) and porcine meat (EFSA 
Panel on Biological Hazards (BIOHAZ) et al., 2017). Infection with 
rabies lyssavirus and parapoxvirus has occurred after direct contact with 
hunted wild animals (Hedman et al., 2020). Hunting and consumption 
of non-human primates is a public health concern due to close contact 
between humans and animal carcasses and raw meat (Devaux et al., 
2019). Finally, bushmeat is considered one of the primordial risk factors 
associated with the Hendra virus and Nipah virus spillover to human 
populations in Africa (Mbu’u et al., 2019; Pernet et al., 2014; Weiss 
et al., 2012). Collectively, these examples highlight the substantial role 
of food in introducing viruses into the human population. Zoonotic 
spillover is proposed to occur most commonly through direct contact 
with husbandry animals that are grown for food rather than the con
sumption of animal foods (Ellwanger & Chies, 2021). However, 
surface-mediated spillover of viruses through the direct consumption of 
food did also occur for Nipah virus through bat guano after ingestion of 
date palm sap. Although serological and epidemiological links have 
identified the source of the spillover in the last example, it remains 
scientifically challenging to provide a specific likelihood for this mode of 
transmission across all spillover events. 

In summary, a body of literature illustrates that the food chain is a 
mediator for spill-over events of viruses. Many of these viruses (i.e., 
Nipah, Hendra and Marburg virus, Ebola virus, SARS and MERS) are 
among those that are prioritized by WHO for their epidemic potential 
(World Health Organization, 2022b) and ranked high for their zoonotic 
spillover potential (e.g., Ebola, Seoul, Nipah, Lyssa, Hepatitis E and 
Marburg virus and SARS-CoV-1 and 2) (Grange et al., 2021). The his
torical role of food in the emergence of viruses, together with their 
estimated epidemic potential, sketches plausible scenarios for the 
involvement of the food chain in a pandemic virus outbreak. When a 
food (chain) related spillover event occurs, this could catalyze a 
pandemic where either food can continue to play a role or where it 
becomes a less relevant vehicle or route. The likelihood of the food itself 
becoming a major transmission route in a scenario where a new 
pandemic virus emerges from the food chain is yet unknown. 

3. Role of food in the transmission of a pandemic virus 

The WHO estimated that yearly almost one in ten persons in the 
world fall ill after consuming contaminated food (World Health Orga
nization, 2017). Most frequently, food-borne illness is caused by diar
rheal disease agents, although over 200 different diseases can be 
transmitted through food. Previous food-borne viral epidemics have not 
exhibited the level of transmissibility required to be classified as a 
pandemic. Most historical pandemics have been characterized by res
piratory transmission. At the same time, in current pandemic in
vestigations, the food-borne transmission component is often poorly 
defined and sometimes neglected (Otter et al., 2016). 

R.A.M. Dirks et al.                                                                                                                                                                                                                             



Food Control 156 (2024) 110138

3

In our study, we performed a second literature study (described in 
Supplementary materials: Methods A) to investigate known foodborne 
or fomite transmission of respiratory viruses. We investigated in which 
environments transmission of surface stable respiratory viruses has 
occurred, what percentage of transmission was mediated by surfaces 
rather than aerosols, and whether gastrointestinal infection occurred in 
these instances. During the SARS-CoV-2 pandemic, no evidence was 
found of virus transmission through the soil, dust, and clean water en
vironments (Shao et al., 2021) or transmission through infected animals 
kept or caught for human consumption. However, the virus can remain 
infectious for two days in uncooled water (La Rosa et al., 2020) and 
multiple days on surfaces such as plastics, metals, and clothes (Aboubakr 
et al., 2021), while SARS-CoV-1 and MERS-CoV have remained infec
tious on frozen foods for years (Adelodun et al., 2021). In addition, 
SARS-CoV-2 nucleic acid persistence was demonstrated on frozen cod 
packages (Liu et al., 2020). 

Evidence for SARS-CoV-2 transmission via surfaces or food products 
and packaging remains controversial. In cases where potential surface or 
food product transmission has occurred (Wang et al., 2022), infected 
individuals have been in the physical vicinity, making it hard to rule out 
strictly airborne transmission. No comprehensive method exists to 
discriminate fecal-oral or surface transmission from direct respiratory 
transmission to humans in these scenarios (Mbu’u et al., 2019). A 
quantitative microbial risk assessment (QMRA) study for SARS-CoV 2 
estimated that there would be less than 1:10,000 (Wilson et al., 2021) 
chance of infection after touching a contaminated surface (Edwards 
et al., 2022). Although the respiratory viruses SARS-CoV-1 and 2, 
MERS-CoV, and avian influenza are all capable of remaining infectious 
on fomites for multiple days, contact through contaminated surfaces 
appears to be a frequent transmission route mainly for avian influenza 
(L. Guo et al., 2021; Kampf et al., 2020; Otter et al., 2016). Estimating 
transmissibility through fomites remains challenging, leading to great 
heterogeneity in transmissibility estimates across different studies 
(Leung, 2021). The discrepancy between transmission routes is prob
lematic for pandemic risk management, especially when simulation 
experiments for future pandemics are based on incomplete data or 
biased models. 

Due to challenges in establishing attribution of the surface and food- 
to-person mode of transmission during viral emergence and pandemics, 
there is a knowledge gap in the environmental or surface transmission of 
viruses. As a result, the food and fomite component could be easily 
neglected or underestimated in the early phases of a future pandemic. 

4. Scenarios 

If food becomes a vehicle for pandemic viral transmission, the fear of 
worldwide virus dissemination via food will affect international food 
trade, asking for additional intervention measures to contain the food
borne viral spread and secure access to food sources. Especially food 
items that are consumed raw or undercooked, either derived from fresh 
or frozen food chains with intense manual handling, are prone to the 
introduction and transmission of human viruses (Bosch et al., 2018). 

Gastrointestinal viruses, such as norovirus (NoV), are spread person- 
to-person via contaminated water and food and after deposition on 
surfaces and subsequent oral ingestion. The higher environmental sta
bility of gastrointestinal viruses relative to respiratory viruses facilitates 
this transmission mode. In contrast, respiratory pathogens such as SARS- 
CoV-2 spread to new hosts mainly via coughing and exhaling saliva and 
aerosols. Noteworthy for a pandemic virus (PV) is its transmissibility. A 
foodborne PV would, in addition, need to be exceptionally stable to 
facilitate a surface mode of transmission. This also includes a continu
ation of transmission via the person-to-person route once the surface 
stable PV has been introduced into the human population, as well as 
transmission by individuals with or without symptoms, notably when 
working in the food chain. Another threat could be when variants of the 
PV are present on food or even accumulate in food, e.g., oysters leading 

to recombination events within the host cells. 
In our study, we evaluated the scenarios of (i) an emerging, non- 

enveloped, gastrointestinal food-borne virus that develops a signifi
cant disease burden and (ii) an emerging respiratory virus associated 
with severe illness that gains the environmental stability of a food-borne 
virus. The relevance of these two scenarios with two selected exemplary 
food chains, i.e., strawberry and salmon, is then elucidated. 

4.1. Scenario PV1: pandemic transmission of a gastrointestinal virus via 
food 

Of all foodborne viruses, noroviruses are most frequently associated 
with foodborne viral disease and are the leading cause of gastroenteritis 
worldwide (World Health Organization, 2015). Humans are most likely 
the only reservoir for human pathogenic noroviruses (Glass et al., 2009). 
NoV is transmitted via the fecal-oral route, as well as via ingestion of 
vomit aerosols, promoted by a sudden onset of vomiting (Zelner et al., 
2013). The relative contribution of different transmission routes to the 
public health risk remains unknown (EFSA Panel on Biological Hazards 
(BIOHAZ), 2011). 

NoV properties such as high environmental persistence due to its 
small size and lacking virus envelope, the great number of excreted vi
ruses, the high probability of infection per ingested virus particle, and its 
antigenic variation contribute to the success of NoV as a foodborne 
pathogen. Despite the great genetic diversity of NoV, genogroup II ge
notype 4 (GII.4) is responsible for the majority of disease cases with a 
global spread of GII.4 strains which are periodically emerging and 
replacing the previous predominant strain (Bull et al., 2010; Lindesmith 
et al., 2008; Siebenga et al., 2009, 2010). NoV infection is generally mild 
and self-limiting, but what if a pandemic strain evolves that causes more 
severe infectious outcomes? In our first scenario (Fig. 1), we elaborate 
on the consequences of a non-enveloped, gastrointestinal food-borne 
virus, such as an emerging pandemic NoV strain, with an increased 
disease burden on food safety management and economic aspects. 

4.2. Scenario PV2: pandemic transmission of a respiratory virus via food 

We focused on a respiratory virus in our second scenario, as this 
group of viruses is considered to have the highest pandemic potential 
due to their efficient person-to-person spread. O’Brien et al. (2021) give 
an overview of viruses that are known to cause respiratory illness in 
humans but also have the potential for foodborne transmission. 
Currently, there is little epidemiological evidence that foodborne 
transmission of respiratory viruses plays a significant role in virus 
transmission (O’Brien et al., 2021). However, infectious respiratory vi
ruses with envelope, such as SARS-CoV-2 or avian influenza H5N1, can 
also cause gastrointestinal symptoms and can be excreted via feces (de 
Jong et al., 2005; M. Guo et al., 2021). Receptors for cell entry of res
piratory viruses, such as SARS, are not only expressed in the respiratory 
tract but also in the gastrointestinal tract, facilitating potential replica
tion in the intestinal epithelium (M. Guo et al., 2021). In addition, there 
is growing evidence that certain enveloped respiratory viruses can 
persist in low pH and digestive juices, potentially by the protection of 
virus particles from degradation by viscous mucus (Hirose et al., 2017) 
or food matrices (Han et al., 2019; Harlow et al., 2022). 

Next to a potential fecal-oral spread, the transmission of a more 
environmentally stable respiratory virus may then also occur by 
contamination of food with respiratory droplets from infected persons. 
In our second scenario study (Fig. 2), we, therefore, describe an envel
oped respiratory virus that evolved into an environmentally stable virus, 
which is efficiently transmitted via food contaminated by respiratory 
droplets as well as by fecal contamination. 
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4.3. Strawberry and salmon as potential food chains for pandemic virus 
transmission 

The economic effects of transmission of the two previously described 
pandemic foodborne viruses are studied in two food chains: the straw
berry and the salmon chain, both fresh and frozen (Chapter 7). Straw
berries and salmon can be consumed raw and are prone to virus 
contamination during several manual handling steps in the farm-to-fork 
continuum. Especially contamination early in the chain of foods that are 
subsequently traded frozen may result in virus spread that is dispersed in 
time and geography (Falkenhorst et al., 2005; Verhoef et al., 2011). 
Strawberries were chosen as soft fruits as they have been implicated in 
many international outbreaks (Bartsch et al., 2018; Müller et al., 2015; 
Petrović & D’Agostino, 2016) and have the highest trade volumes of 
consumed soft fruits (Food and Agriculture Organization of the United 
Nations, 2022a). Salmon was chosen as it can be consumed raw as well 
as cooked, requires multiple stages of food handling, and was one of the 
highly import-restriction affected chains in the COVID-19 pandemic 
(Ahmed & Azra, 2022). The cool climate and high humidity during 
slaughtering and processing may favor not only person-to-person 
transmission but also the spread and persistence of virus particles via 
the product (Chen et al., 2022). 

Zoonotic or vector-borne transmission could also play a role in 
pandemic viral transmission via the food chain. Such transmission 
routes would have different impacts on the food chain and require 
different types of interventions than transmission routes via food 
ingestion and food or food packaging surface. In this study, these 
transmission routes are not further elaborated upon; nonetheless, it can 
be important for policymakers and other stakeholders to consider their 
eventual impact on our food system. 

5. Hygiene codes for the scenarios and effectivity of sampling 

In our scenarios, the introduction of a virus into the two food chains 
is the result of human fecal contamination or vomit and/or respiratory 
droplets. Depending on the potential introduction route of the virus, 
mitigation measures to prevent virus introduction would need to be 
selected. 

5.1. Guidelines for the control of pandemic viruses in food 

To give guidance on safe food preparation in case of a food- 
transmitted pandemic virus, existing guidelines for hygienic produc
tion of foodstuffs related to NoV and Coronaviruses (CoV) (Codex 

Fig. 1. Scenario PV1: Pandemic transmission of a gastrointestinal virus via food. Transmission of a gastrointestinal virus via fomites and food (current situation, 
black) and additional transmission of a pandemic gastrointestinal virus, i.e., a virus that has evolved to increase virulence and/or pathogenicity (orange). Image icons 
designed by Freepik (www.freepik.com). 

Fig. 2. Scenario PV2: Pandemic transmission of a respiratory virus via food. Person-to-person transmission of a pandemic respiratory virus (current situation, black) 
increases in the severity of spread after developing environmental stability (new transmission routes and infections in orange). Image icons designed by Freepik 
(www.freepik.com). 
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Alimentarius Commission, 2012; European Commission, 2004; Food 
and Agriculture Organization of the United Nations, 2021; World Health 
Organization, 2022a; World Health Organization & Food and Agricul
ture Organization of the United Nations, 2020) were evaluated for their 
potential effectiveness to control the pandemic viruses in the two sce
narios (Table 1). Table 1 shows that many measures target both virus 
types, although other measures might be only effective against one of 
the two. Since enveloped viruses, like those modeled in PV2, are usually 
less resistant to environmental conditions and treatments than 
non-enveloped viruses, like those modeled in PV1, measures to reduce 
PV1 from food and food processing areas are assumed to also reduce 
PV2. However, the effectiveness needs to be further evaluated specif
ically for a new pandemic virus as well as hurdles for compliance with 
the required measures. With respect to the effectiveness of virus inac
tivation, process steps need to be validated before implementation 
(Codex Alimentarius Commission, 2012) for the specific virus-matrix 
commodity. The possibility to do this may be limited to the availabil
ity and applicability of, e.g., viral infectivity assays or cultivable sur
rogate viruses (see Chapter 6). For this, and because monitoring of 
end-products cannot safeguard food (as argued in the next sections), 
prevention of contamination by the compliance of guidelines is 
important. 

Studies on compliance with hand hygiene for the prevention of NoV 
and other food-borne pathogens indicate the importance of awareness, 
knowledge, sanitary facilities, time, and quality control (Boxman, 
2013). The recent COVID-19 pandemic has shown that public aware
ness, education, and the severity of the disease can increase compliance 
with hand hygiene and willingness to wear personal protection equip
ment (PPE), like masks. Moreover, the recent pandemic also stressed the 
importance of the availability of raw materials to produce masks and 
laboratory testing materials (reagents, tips, etc.). In addition to personal 
hygiene measures and compliance with hygiene codes, innovations in 
the food sector and advanced traceability systems, if properly validated, 
could further increase the safety of food and handling thereof. 

5.2. Monitoring and surveillance 

Next to measures in food hygiene, in order to assess and mitigate the 
risks associated with a foodborne pandemic virus, monitoring and sur
veillance programs will need to be put into place. In this section, we 
explore the purpose and utility of such monitoring and surveillance 
strategies. 

5.3. Sampling 

Sampling can be performed for many reasons. There can be routine 
sampling, for example, to show compliance with microbiological 
criteria. Also, samples can be analyzed to identify hazards associated 
with product categories. In some situations (investigations, for special 
events), targeted sampling can be performed to answer specific ques
tions. In case of a large outbreak or pandemic, increased sampling will 
also be performed. All these types of sampling will be discussed in the 
following sections. 

5.4. Challenges of sampling strategies for highly infectious pathogens in 
food 

Certain viruses are characterized by a very low infectious dose that is 
sufficient to infect 50% of a susceptible population (ID50), making it 
unrealistic to prove safety by end-product testing. Taking the most 
frequent viral gastrointestinal agent as an example, for NoV, an ID50 of 
18 particles is described (Teunis et al., 2020), meaning that one 
consumed particle already has a 2.8% probability of starting an infec
tion. This implies testing is an ineffective tool to mitigate food safety, as 
will be explained below. In the following examples, it is assumed that 
the sub-sampling and analysis method is 100% effective. In practice, the 

Table 1 
Suggested hygiene measures for food safety with respect to Scenario 1: 
Pandemic transmission of a gastrointestinal non-enveloped virus via food (PV1) 
and Scenario 2: Pandemic transmission of an enveloped respiratory virus via 
food (PV2). Measures are modified from regulations for food safety with respect 
to NoV and SARS-CoV-2, based on ECa, Codexb, FAOc,d and WHOc,e. +: recom
mended; - not recommended; ± recommended under certain circumstances; ? 
needs further study.  

Measures Effective in 
reducing virus 
contamination 

Remarks 

PV1 PV2 

General prevention 
Prevent fecal- and vomit- 
contamination of the 
environment and water 

+ +

Prevent airborne 
contamination 

+ + E.g., aerosols 

Control of products/ 
ingredients 

+ + E.g., imported foods 

GAP/GMP/HACCP 6) + +

Waste management + + Including disposable equipment  

Infection Prevention and Control 
Health status + + Note: asymptomatic virus 

shedding (incl. shedding before 
or after symptoms) may occur 

Vaccination + + Limitation: Availability of 
vaccination 

Easy availability of toilets + +

Hand washing facilities in 
the vicinity of toilets 

+ +

Personal protective 
equipment 

+ + Gloves 

Glove use procedure + + Not a replacement for 
handwashing 

Other personal protective 
equipment 

? + Face masks, disposable 
overshoes, etc. 

Hand sanitizing with 
ethanol-based gels 

– ? To be studied for effectiveness 
for PV2 

Training on personal 
hygiene 

+ + Increase awareness of virus 
transmission 

Physical distancing/barriers ? + Screens 
Good respiratory hygiene ? + Coughing/sneezing in the elbow 
Quarantine for ill personnel + + PV1: return to work only after a 

period without gastrointestinal 
complaints 

Strict regulations for non- 
employees 

+ + For entering the premises 

Regular (extra) cleaning 
procedures 

+ + Consider the inclusion of 
disinfection  

Cleaning and disinfection of the processing area 
Hygienic design of 
workspace 

+ +

Maintenance and cleaning + +

Surface disinfection 
E.g., Chlorine, vaporized 
hydrogen peroxide, 
quaternary ammonium 
compounds 

+/− +/− Dependent on disinfectant, 
treatment conditions and virus 

Ultraviolet light radiation + + For surfaces and water only 
Alcohol-based sanitizers – + Ethanol, propan-2-ol, propan-1- 

ol (>70%, sufficient contact 
time)  

Processing steps to reduce the virus in food 
Cooling and freezing – –  
Heat treatment + + Dependent on treatment 

conditions 
Washing food products/ 
ingredients 

+/− +/− Dependent on treatment 
conditions/food matrix – may 

(continued on next page) 
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sensitivity and selectivity of methods are limited by, e.g., homogeneity 
of contamination in the batch, the virus extraction efficiency from the 
product, and the presence of inhibitory substances in the extract 
hampering the detection assay. Such effects largely reduce the efficiency 
of sampling plans (Zwietering and den Besten, 2016). 

If in a batch of 1000 kg, there would be 1000 NoV particles, i.e., 1 
particle per kg, and, with a 5 × 25 g = 125 g sample taken, this would 
give approximately 12.5% detection probability. With an estimated 
infection probability or Pinf(1) = 0.028 (based on an ID50 of 18 particles, 
i.e., Pinf(1) can be estimated to be about 0.50/18), this one batch would 
result in 1000 × 0.028 = 28 cases. Not all infections result in illness; out 
of 28 infected persons, 19 developed acute symptoms of gastroenteritis 
(68%) (Teunis et al., 2008), and large uncertainty infection is assumed. 
When assuming a serving size of 50 g, this 1000 kg would be 20,000 
servings, so the number of illnesses per serving would be 28/20000 =
0.0014 illnesses per serving. If a consumer has 50 servings per year 
(approximately one per week), this results in a yearly illness probability 
of 6.8% (i.e., 1-(1–0.0014)^50), and 67,000 people per million would 
then fall ill if this were the average contamination level. 

The burden of such a foodborne disease can be estimated using 
disability-adjusted life years (DALYs), where 1 DALY represents one year 
of full health lost. In a report describing the disease burden of food- 
related pathogens in the Netherlands in 2019, it was estimated that 
585,000 people in the Netherlands contracted a NoV infection (with 66 
estimated to die and 1800 DALYs lost). Of these, 98,000 were calculated 
to contract NoV after the consumption of contaminated food, of which 

7100 specifically after the consumption of produce (Lagerweij et al., 
2020). With a Dutch population size of 17.4 million, this would mean 
33,000 cases of NoV per million people, 5600 cases per million related to 
food, and 400 per million related to produce. Therefore, 67,000 people 
would fall ill per million due to a product category, strawberries in our 
example, that is a vehicle for this virus is too high of a risk. For lower 
levels of risk, more stringent plans would be required, but testing 5 × 25 
g of a batch of 1000 kg is already very large and economically unreal
istic. This example (assuming perfect methods and homogenously 
distributed virus particles) has been further worked out in Table 2 for 
varying batch sizes, the number of virus particles in the batch, the 
number of samples taken, weight per sample, and the number of servings 
of 50 g per person. Next to the detection probability, the estimated 
public health impact of various contamination scenarios is presented. 

In Table 2, for most levels of contamination, the sampling plans have 
a very low probability of detection with 5 × 25 g samples. The level of 
contamination with a reasonable probability of rejection (71%, see the 
third row) detects batches with a level that would make everyone ill 
once per two years. Very low concentrations (10 particles) come to a 
realistic public health risk (69 illnesses per million people), and these 
have a very low probability of being detected or rejected. But higher 
concentrations, having a higher public health risk, still have a very low 
probability of being detected. In conclusion, although one can reduce 
the public health burden by safety testing, this shows that one cannot 
detect the majority of unwanted batches with a realistic sampling plan. 

This calculation assumes high infectivity and that all virus particles 
are infective. Reduced environmental stability is expected for respira
tory viruses (PV2) compared to gastro-intestinal viruses (PV1). Results 
also depend on the dose-response parameter selected that contains large 
uncertainty. Teunis et al. (2020) describe for NoV a strong variation of 
host susceptibility and virus pathogenicity, with a probability of illness 
from one virus particle between 0.0007 and 0.2 for a NoV genogroup I 
virus and between 0.015 and 0.035 for one virus particle for NoV gen
ogroup II virus. In addition, Schmidt (2015) describes the probability of 
illness consuming 1 particle to be estimated from 0.00077 to 0.46 for 
various alternative fitted dose-response models. 

Table 1 (continued ) 

Measures Effective in 
reducing virus 
contamination 

Remarks 

PV1 PV2 

reduce risk or cause additional 
cross-contamination 

Adapt pH, water activity ? ? Dependent on the virus (sub) 
type and conditions of 
treatment 

Treatments such as high 
hydrostatic pressure, 
irradiation, cold plasma 

+/− ? Dependent on the virus (sub) 
type and conditions of 
treatment  

Training 
Food business operators, 
food handlers 

+ +

Consumers: education, 
scientific outreach 

+ + Awareness of virus transmission 
routes is general and broader 
than food only 

GAP/GMP/HACCP: Good Agricultural Practice/Good Manufacturing Practice/ 
Hazard Analysis and Critical Control Point. 

a European Commission (2004). 
b Codex Alimentarius Commission (2012) 
c World Health Organization and Food and Agriculture Organization of the 

United Nations (2020). 
d Food and Agriculture Organization of the United Nations (2021) 
e World Health Organization (2022a) 

Table 2 
Effect of viral contamination levels on detection probability and public health with a sampling plan of 5 × 25 g samples. A serving size of 50 g and 50 servings per year 
is assumed, and a homogeneous distribution of viruses.  

Batch size 
(kg) 

Virus particles in 
the batch 

Probability positive for 1 
sample 

Probability positive from 
5 samples 

Illnesses from such 
batch 

Pinf/ 
serving 

Pinf per year per 
person 

Illnesses per million 
persons 

1000 100 0.0025 0.0124 2.8 0.000139 0.00692 6921 
1000 1000 0.0247 0.118 28 0.00139 0.0671 67,133 
1000 10,000 0.221 0.713 278 0.0139 0.503 503,073 
10,000 10 2.5.10− 5 0.000125 0.28 1.39.10− 6 0.0000694 69 
10,000 100 0.00025 0.00125 2.8 1.39.10− 5 0.000694 694 
10,000 1000 0.0025 0.0124 28 0.000139 0.00692 6921 
10,000 10,000 0.0247 0.118 278 0.00139 0.0671 67,133  

Table 3 
Effect of the proportion of infectious particles on detection probability and the 
public health impact with a sampling plan with 5 × 25 g samples for a batch of 
10,000 kg containing 10,000 virus particles. A serving size of 50 g and 50 
servings per year is assumed, and a homogeneous distribution of viruses.  

Probability 
infectious 
particle 

Probability 
positive for 
1 sample 

Probability 
positive 
from 5 
samples 

Pinf/ 
serving 

Pinf per 
year per 
person 

Illnesses 
per year 
per 
million 
persons 

1 0.0247 0.118 0.00139 0.0671 67,133 
0.5 0.0247 0.118 0.000694 0.0341 34,138 
0.1 0.0247 0.118 0.000139 0.00692 6921 
0.05 0.0247 0.118 6.94.10− 5 0.00347 3466 
0.01 0.0247 0.118 1.39.10− 5 0.000694 694 
0.001 0.0247 0.118 1.39.10− 6 6.94.10− 5 69  
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In case only a smaller proportion of the virus is infective (Table 3), 
and with a sampling plan of 5 × 25g, there is a very low probability of 
detecting batches that give an unacceptable health burden, except if we 
are really at the lower bound of Teunis et al. (2020) or Schmidt (2015). 
Even with only 1% infectious particles, the public health burden of a 
batch that has only a 12% probability of being detected can be consid
ered not tolerable (namely, 694 illnesses would occur yearly per million 
people). 

In Table 4, the calculated probability of obtaining a positive result for 
various sampling plans is depicted. This demonstrates that a very 
stringent sampling plan is needed (120 samples of 25 g) to detect even 
an unacceptable level of contamination equal to 67,000 illnesses per 
million people per year in the Netherlands, with more than 95% 
probability. 

All these results are for the case of a homogenous, fully random 
distribution. In cases of clustering of virus particles, sampling will even 
be less performant. 

It can therefore be concluded that microbial criteria and sampling to 
verify compliance cannot be used to prove safety. It can be useful, 
however: i) to detect extremely deviating batches; ii) for verification; iii) 
to obtain monitoring data; and iv) to give confidence in proper control 
by a long sequence of negative results over a longer time. 

5.5. Monitoring 

As shown above, sampling has a reasonable probability of detecting 
gross deviations, so sampling does not prove control, but an out-of- 
control situation can be detected. Long-term collection of sampling 
data from different companies can give an estimate of the potential 
overall risk of contamination and additionally can provide data for trend 
analysis to investigate if changes are occurring. Since positive detection 
is and should be very infrequent, only large, combined data sets will give 
sufficient information to draw some conclusions. This then provides 
information for national and international risk management or assess
ment and data for trends such as changes over time and geographical 
differences. 

Li et al. (2022) reported the results of a very large monitoring study 
of SARS-CoV-2 contamination in frozen food-related samples, including 
swabs from food, packaging materials, environmental areas, and naso
pharyngeal samples of employees. Out of 55.83 million samples, 1455 
tested RT-PCR positive (0.0026%). Of 20.52 million food and food 
packaging materials, 1398 samples (0.0068%) were positive for RNA, of 
which 53.9% were from seafood and 37.9% from poultry or their 
packaging. The authors mention that current evidence shows that 
COVID-19 is neither a food safety issue nor a foodborne disease but that 
there is a risk for food handlers/operators, pointing towards the need to 
use effective PPE. This very large dataset illustrates several aspects 
mentioned above. If we would estimate the consumption of seafood in 
China to be about 70 million megatons (Godfrey, 2022) and assume that 
about half of the samples of food and food packaging material were from 
seafood (28 million samples), then despite the huge number of samples 
only 1 sample was taken from 2500 kg of product (about 25,000 servings 
of 100 g). If sampling were used for control, even this very large number 
of samples is by far insufficient to detect contaminated lots. However, 
this surveillance gives useful information for the prevalence of the virus 

RNA and can be used to analyze the risk of exposure of food handlers. It 
should be realized, however, that the prevalence might be uncertain due 
to potential false positive results (the positive rate is very low, and even 
a very low false positive rate might therefore have a large impact) and 
false negatives (due to methods, but also since not a whole serving is 
analyzed). 

5.6. Targeted sampling, special events 

In the case of specific situations (sewage leaks, floods, maintenance, 
etc.), it is relevant to additionally sample to gain some more confidence 
that the situation is not out of hand. Still, even with this additional 
sampling, no proof of control can be obtained, as shown above, since 
even with large sample sizes, too high levels of contamination can still 
go undetected. 

5.7. Investigational sampling 

In case of contaminated samples and food-borne outbreaks, addi
tional sampling can help to trace down the source of the contamination 
and be used in root-cause analysis. In the case of several contaminated 
samples, relations between contamination sources can be investigated 
with genetic analysis of the detected viral RNA. In these cases, there is no 
one standard procedure, and an investigational plan should be made, 
also including epidemiological and ecological perspectives. Factors 
along the whole food chain could be relevant, like inactivation during 
processing, consumer handling, and various routes of contamination. 
This requires different types of sampling, analyses, and cooperation 
between different organizations, doing a thorough root-cause analysis. 

6. Detection methods, virus culture and infectivity assays 

6.1. Detection methods for foodborne viruses 

Detection methods for viruses in food and environmental samples 
need to be very sensitive because of the low infectious doses. Further
more, as discussed in Chapter 5, relevant volumes need to be processed 
to obtain a virus extract due to the distribution heterogeneity of viral 
particles. Sensitive detection is complicated as viruses, unlike bacteria, 
are dependent on host cells for replication. Food matrix-specific 
methods have been optimized to increase the recovery of various vi
ruses from several food products and to reduce co-extraction of detec
tion assay-inhibitory substances. As culture methods are not available in 
routine analyses, virus extracts are often subsequently extracted to 
obtain nucleic acids to be tested in molecular detection assays. Stan
dardized and validated methods have been developed for the detection 
of NoV and hepatitis A virus RNA in soft fruits, leafy greens, bivalve 
mollusks, bottled water, and surfaces samples (International Organiza
tion for Standardization, 2019) and for quantification (International 
Organization for Standardization, 2017) using reverse transcriptase 
quantitative real-time PCR (RT-qPCR) (Lowther et al., 2019). Both ISO 
documents include quality controls and criteria for extraction and 
amplification efficiency to reduce the probability of false-negative re
sults, though the absence of the virus in food can never be guaranteed. It 
is also widely accepted that the detection of viral RNA in a sample does 

Table 4 
Effect of the number of samples on detection probability and the public health impact for a batch of 10,000 kg containing 10,000 virus particles. A serving size of 50 g 
and 50 servings per year is assumed, and a homogeneous distribution of viruses.  

Number of samples 
(n) 

Weight per sample 
(g) 

Probability positive for 1 
sample 

Probability positive from n 
samples 

Pinf/ 
serving 

Pinf per year per 
person 

Illnesses per year per million 
persons 

5 25 0.0247 0.118 0.00139 0.067 67,133 
10 25 0.0247 0.221 0.00139 0.067 67,133 
30 25 0.0247 0.528 0.00139 0.067 67,133 
60 25 0.0247 0.777 0.00139 0.067 67,133 
120 25 0.0247 0.950 0.00139 0.067 67,133  
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not directly demonstrate the presence of infectious viruses. This is 
because a small part of the genome is detected only, and RT-qPCR 
detection cannot provide information on the ability of the virus to 
multiply as an intact virus or the ability to cause infection (Manuel et al., 
2018). Moreover, detected viral genomes may be derived from local 
virus aggregates, leading to an overestimation of the contamination 
level. 

Interpretation of test results is not straightforward. When a food 
sample tests positive in an outbreak study, the epidemiological relation 
itself, or comparison of viral strains between patient and food, will add 
strength to the importance of the positive test result. However, what 
should be taken into consideration when a food sample tests positive in 
monitoring or surveillance? Besides the laboratory credibility, issues 
may include whether the sample is a raw or effectively processed food 
product, whether the product will be consumed raw or effectively pro
cessed, and what the expected public health risk is of the level of the 
detected contamination (Fig. 3). Processing raw products to reduce 
public health risks may lead to a loss of economic value (see Chapter 7). 
Therefore, there is a need for information on the infectivity of the 
detected viruses among regulators and food business operators. 

6.2. Infectivity assays 

Direct culture techniques using virus-replication supportive cell 
culture systems may provide information on the presence of infectious 
particles. The read-out system varies, e.g., detecting viral genomes in a 
cell lysate or culture supernatant, immunofluorescence staining of viral 
capsids in host cells, or cytopathic damage of host cells. For quantifi
cation of infective viruses in cell-culture systems, plaque counting can be 

used, or the Tissue Culture Infectious Dose 50 (TCID50) can be deter
mined. Plaque forming units (pfu) counting relies on cell lysis observed 
as clear zones in the cell-culture layer where monolayers of cells are 
covered with an agarose overlay after infection. TCID50 is the concen
tration at which 50% of the cells are causing a cytopathic effect when the 
cells are inoculated with a dilution series of viral extract. In contrast to 
NoV, SARS-CoV-2 virus in clinical samples has been shown to replicate 
in Vero E6-based culture cell lines, and the TCID50 could be determined, 
e.g., using a focus-forming assay in combination with a peroxidase-anti- 
peroxidase staining technique (Hiroi et al., 2021; Wurtz et al., 2021) or 
followed by genetic analysis such as genome sequencing (Zeng et al., 
2022). 

However, not all virus infections of cell cultures show a cytopathic 
effect. Moreover, in vitro culture systems are not available for routine 
analyses of many viruses such as NoV, despite efforts to accomplish such 
culture systems working with, e.g., B cells (Jones et al., 2015), Caco-2 
cells (Pohl et al., 2022), human intestinal enteroids (Ettayebi et al., 
2016; Hayashi et al., 2022), zebrafish larvae (Van Dycke et al., 2019), or 
animal models (Manuel et al., 2018). For this reason, culturable surro
gate viruses, e.g., feline calicivirus, murine norovirus, or Tulane virus, 
have been used to predict the inactivation of NoV during processing or 
disinfection (Hirneisen & Kniel, 2013; United States Environmental 
Protection Agency, 2017). In order to circumvent the biosafety level 
classification of SARS-CoV-2 (Biosafety Level 3), studies have been 
performed with either a less pathogenic human CoV, for example, 
hCoV-229E, porcine transmissible gastroenteritis virus or murine hep
atitis virus. 

In general, culture techniques are time-consuming, the use of animal 
models is unwanted and requires specialized facilities, and both are 

Fig. 3. Assessment of the risk of consumption of viral RNA contaminated food. When a food product, e.g., a sample of fresh or frozen strawberries, is tested positive for 
viral RNA, a decision tree can be used to estimate the public health risk. With PCR, it is unknown whether RNA is derived from infective viruses. Therefore, as a 
precautionary measure, the product should not be consumed without inactivation treatment. Strawberries can be processed, e.g., heated, to produce jam. With a low 
degree of contamination, it is very likely that no infectious viruses will remain. With high levels of contamination, the complete inactivation of infectious viruses also 
depends on the length of treatment and the internal temperature reached. 
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expensive, whereas results obtained with surrogate viruses must be 
interpreted with care as the surrogate may not behave similarly to the 
virus of interest (Bosch et al., 2018; Manuel et al., 2018). Moreover, 
testing food extracts for infectious viruses is challenging as the infectious 
virus particles need to be extracted from food without affecting the 
infectivity by the extraction method itself. In addition, the titer of the 
virus in the food extracts may be too low to observe virus replication in 
cell culture, or the food matrix itself, including the concomitant pres
ence of bacteria and fungi, may negatively influence the outcome. 

In order to circumvent all the above, several alternative techniques 
have been described to estimate the number of infective viruses, so- 
called proxy studies, which are listed in Table 5 and explained in 
Fig. 4. Some proxy studies are based on determining capsid integrity, as 
it is assumed that loss of integrity results in loss of cellular attachment or 
receptor binding and that the viral genome will be prone to degradation 
due to nucleases in the environment that can enter the capsid (Knight 
et al., 2013). The so-called viability PCR assay is based on viral capsid 
integrity as nucleic acid intercalating dyes, like propidium monoazide, 
can enter non-intact viruses only. Inside the virus capsid, and after 
exposure to strong visible light, the dyes bind covalently to the viral 
genome. This binding hampers the detectability of the genome by 
RT-qPCR. Viability assays have been used to examine the environmental 
stability of viruses or the effects of heat treatments or UV exposure on 
infectivity (Elizaquivel et al., 2014). Incomplete exclusion of RNA from 
inactivated viruses may lead to false-positive signals, and therefore, 
efforts need to be carried out to improve the efficacy of this approach or 
complement it with other strategies (Elizaquivel et al., 2014). Also, the 
degree of secondary structure present within the target RT-qPCR region, 
the level of interaction and protection by capsid proteins, the mechan
ical stability or plasticity of the viral capsid, or the level of viral ag
gregation within the sample may cause such a bias (Bosch et al., 2018). 

Other principles measure intact viral genomes using sequencing or 
by detection of long target regions using PCR or use binding capacities to 
the intact cellular receptor (histo-blood group antigens) in porcine 
gastric mucin bound to magnetic beads or apply specific biosensors. 
Often, a combination of several principles is used as most assays provide 
partial insight into infectivity. The proxy assay of which the results 
mirror best the reduction of TCID50 can depend on the inactivation 
process itself, e.g., heat treatment, ultraviolet light exposure, chlorine, 
etc. 

Proxy assays have also been described for clinical samples. Some 
have described the application of NoV in environmental water, drinking 
water, or food samples. Proxy assays cannot always be incorporated into 

existing standard methods like ISO 15216, as the procedures already 
affect the infectivity of the viruses during extraction (Langlet et al., 
2018; Razafimahefa et al., 2021). Therefore, they are not easily applied 
in monitoring. However, they have been used to collect data on inacti
vation conditions in laboratory settings, e.g., temperature, time, ultra
violet light exposure, and disinfectants, to predict the effect of strategies 
to reduce the risk of viruses. The collective data can be used as input to 
model the remaining virus infectivity during food processes, e.g., in a 
quantitative risk assessment. For reasons of experimental complexity, 
most infectivity studies have been performed on virus dilutions. It is, 
however, known that viruses in the context of tissue may differ in 
sensitivity to, e.g., heat compared to viruses in buffer only. Up to now, 
infectivity assays applied to viral extracts from food are hardly described 
but may be more common in the future. Recently, infectivity tests on 
GII.4 containing extracts from heat-treated clams were performed using 
enteroids (Hayashi et al., 2022). 

Further research is, therefore, needed to investigate the application 
of these techniques for routine practice in food and environmental 
samples. Major challenges are the optimization of a virus extraction 
method suitable for all foods and environmental samples. The assays 
should be rapid, inexpensive, sustainable, and robust to detect infective 
viruses only and are applicable to whatever strain is in the sample (e.g., 
not all NoV strains replicate in enteroids). Another complication is that a 
proxy assay may provide partial information only, e.g., prove that the 
detected viral genome is derived from a virus that is able to bind and has 
a complete genome. When the next pandemic virus is transmitted be
tween persons and via surfaces and food, the ultimate challenge will be 
to demonstrate that surfaces contain infective viruses and, moreover, to 
attribute illness to each transmission route (person-to-person, conta
gious surfaces, and consumption of food). 

7. Economic effects 

An outbreak of a pandemic virus that spreads via the foodborne route 
can be expected to have an enormous economic impact globally, 
potentially resulting in even higher costs than a pandemic in which food 
plays a negligible role. If the virus transmissibility, infectivity, and 
human health impact were like that of SARS-CoV-2, the economic 
impact of the SARS-CoV-2 outbreak could provide a preliminary indi
cation of the economic impact of a non-foodborne pandemic. Laborde 
et al. (2022) estimated the short- and long-term impact due to the 
SARS-CoV-2 outbreak on the global gross domestic product (GDP) over 
the 2020–2030 period considering the policy and other measures taken 

Table 5 
Overview of recently published proxy assays to test for human norovirus (NoV) and SARS-CoV-2 (CoV) infectivity.  

Assay Principle Types of 
samples tested 

Available 
for NoV 

Available 
for CoV 

Example references 

PMA combined with 
RT-qPCR 

PMA (propidium monoazide) as an intercalating dye 
assay identifies capsid integrity combined with cycle 
threshold (Cq) values from the RT-qPCR 

shellfish, 
sewage, water 

+ + Hong et al. (2021); Lee et al. (2016); Otaki 
and Kazama (2021); Randazzo et al. 
(2018); Sarmento et al. (2020) 

LTR-PCR or WGS Long target region or whole genome sequencing as an 
indication for intact virus 

Water, clinical, 
and lab setting 

+ + Rodriguez et al. (2009); Wang et al. (2021) 

Aptamers NoV Mimics receptor-binding behavior and assesses capsid 
functionality 

Clinical 
settings 

+ Moore et al. (2016); Schilling-Loeffler et al. 
(2021) 

Aptamers CoV Tested on structural proteins (Nucleocapsid and spike 
glycoprotein) fluorescence measured with Enzyme- 
Linked Aptamer Binding Assay test (ELAA) 

Clinical setting  + Velázquez Roig and Rodríguez-Martínez 
(2022); Wandtke et al. (2022) 

HBGA capture HBGA (histo-blood group antigen) blockade correlates 
to the neutralization of live virus infections in vitro 

Clinical setting + Sels et al. (2021) 

PGM capture Human intestinal enteroids HBGA binding and VLP-pig 
gastric mucin (PGM) binding assays 

Virucidal hand 
rub testing 

+ Ettayebi et al. (2022) 

Electrochemical- and 
optical biosensors 

Biorecognition elements: aptamers, synthetic specific 
peptides, polyclonal antibodies, SPR (Surface plasmon 
resonance)-based biosensor, bioluminescence-based 
biosensor) 

Clinical setting + + Azad et al. (2021); Cesewski and Johnson 
(2020); Jeewandara et al. (2022); Syed Nor 
et al. (2022) 

Immuno (magnetic) 
capture 

Antibodies against spike, nucleocapsid, or receptor- 
binding domain proteins. 

Clinical 
setting, oysters 

+ + Gao et al. (2021); Ha et al. (2021); Schuster 
et al. (2022)  
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to minimize the impact of the pandemic. They estimated a loss in global 
GDP per capita of 5.6% for 2020, 5.2% for 2021, 1.1% for 2025, and still, 
in 2030, a loss of 1.4%, thus showing the impact of the outbreak could 
extend to over a decade. Annual costs mount to several trillion USD, 
given that the global GDP is approximately 90 trillion USD (according to 
the World Bank, it was 87.65 trillion current USD in 2019). In line, 
McKibbin and Fernando (2021) estimated the global loss in GDP in 2020 
alone to be between 0.3 and 9.1 trillion USD, with actual costs more 
likely closer to the upper value given that SARS-CoV-2 developed to be a 
global pandemic. Total costs over the years could amount to tens of 
trillion USD. Therefore, the costs associated with a pandemic virus are 
long-lasting and expensive. 

When considering the effect of a pandemic virus on the agro-food 
sector, we saw, for instance, with SARS-CoV-2, rising prices due to 
disruptions in food supply chains and trade caused by measures to 
reduce the spread of the virus in society, such as lockdowns and social 
distancing. These disruptions included the closure of production facil
ities and ports, closure of restaurants and food services, a decline in 
passenger airline flights, restricted food trade policies, a lack of workers 
due to illness, and changing consumer preferences (Aday & Aday, 2020; 
Deconinck et al., 2020). This caused substantial problems in food se
curity, especially for countries depending largely on food imports. 
Laborde et al. (2022) projected that, due to the pandemic, in 2021, 
globally, 72 million additional people have fallen into extreme poverty. 
This would increase to a projected 95 million in 2030. Similarly, they 
estimated 25 million additional undernourished people globally due to 
the pandemic in 2020, which would increase to a projected 37 million in 
2030. Therefore, the costs associated with a pandemic virus can also 
extend beyond that of the agro-food sector, also affecting societal issues 
like food security. A food chain designed to maximize productivity and 
efficiency under standard conditions is likely relatively sensitive to 
market disruptions caused by a pandemic. Investments in a more resil
ient food chain can increase global food security during a pandemic 
(Galanakis, 2020), but strong evidence will be required to demonstrate 
that the benefits of policy interventions would outweigh the costs so that 
these interventions are also maintained without a pandemic (Hobbs, 
2021). One example of a shift towards a more resilient market in 
developed countries could be seen during the COVID-19 ‘stay at home’ 
policy, when e-groceries showed unprecedented growth (Dannenberg 
et al., 2020). However, when restrictions were removed, the market 
quickly returned to its state before lockdown policies with a corre
sponding level of food chain resilience. Efforts are needed to develop 
policy interventions to increase food availability and income in devel
oping countries, which could improve food chain resilience and reduce 
the impact of a pandemic on food security. 

With a foodborne pandemic virus, additional costs will arise to 
prevent foodborne transmission. Current foodborne viruses causing 
isolated outbreaks, smaller in size than a pandemic, already result in 
high costs. For example, global societal costs due to NoV were estimated 
at 60.3 billion USD per year, and global direct health system costs at 4.2 
billion USD per year (Bartsch et al., 2016). Bartsch et al. (2020) esti
mated the annual costs of NoV in the USA at 10.6 billion USD, of which 
95% concerned productivity losses and 5% direct medical costs, and 
sporadic cases generated over 90% and outbreaks less than 10%. They 
also showed that more than half the economic burden was concentrated 
in adults aged ≥45 years and over 90% of outbreak costs were due to 
person-to-person transmission. Johnston et al. (2007) also estimated the 
economic costs of a NoV outbreak in a tertiary care hospital in Baltimore 
(USA) during February–May 2004 at 650,000 USD, of which 420,000 
USD lost revenue, 97,000 USD cleaning expenses, 89,000 USD due to 
sick leave and overtime, and 53,000 USD due to replacement medical 
and unit supplies. These estimates show that the costs of an outbreak can 
be high for even a single institution or company; the economic cost of a 
food-borne pandemic outbreak would be significantly higher. 

Furthermore, in agri-food sectors, additional efforts will need to be 
made to prevent contamination of food products and packaging, 
monitor the virus, and inactivate the virus in food products and pack
aging. The costs can be expected to be higher than in the situation of 
SARS-CoV-2 because, in most countries, food products and packaging 
were not considered to be an important contributor to the spread. With a 
foodborne pandemic virus, current food safety control measures applied 
by companies will need to be adapted to the virus. Countries could also 
demand additional guarantees of the absence of the virus, such as 
implemented by China for SARS-CoV-2 (Rejeb et al., 2020) or to verify 
compliance with import requirements and control measures adopted by 
the exporting countries and regions (HKTDC Research, 2022). For 
example, Li et al. (2022) reported that from July 2020 to July 2021, over 
55.83 million samples from frozen foods and their packaging were 
analyzed for the presence of SARS-CoV-2 RNAs by RT-qPCR. With costs 
of PCR reagents of approximately 8 USD per sample (in duplicate), total 
reagent costs alone are calculated at approximately 500 million USD. 
This excludes other costs, such as personnel and equipment. This 
example illustrates how the costs for additional efforts, as realized 
during the COVID-19 pandemic, could also increase the economic 
burden on the agro-food sector if a pandemic virus were to be 
food-borne. 

Likewise, in the case where batches were found to be positive, recall 
of these batches is likely. Recalls can result in substantial direct and 
indirect costs and loss of corporate value (e.g., (Gunawan et al., 2022; 
Pozo & Schroeder, 2016; Velthuis et al., 2010)). It is expected that great 

Fig. 4. Techniques used to test for (effects of treatments on) virus infectivity. Cells permissive to virus replication can be used to test the infectivity of (surrogate) viruses 
without or after exposure to inactivation treatments. For food/water/fecal samples, virus extraction from the matrix and subsequent concentration will be followed 
by exposure to the permissive cells. Proxy assays are independent of such cells but will only provide an estimate of infectivity, i.e., information on genome 
completeness, capsid integrity, or binding capacity. 
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efforts will be put into developing methods to inactivate the virus in and 
on food products and packaging, especially in fresh and frozen products 
that lose value when heat treated. However, it is likely that such 
methods will not be directly available at the onset of the outbreak. 
Methods being currently developed for the inactivation of SARS-CoV-2 
in food and on the packaging, for example, electron beam irradiation 
(Luo et al., 2023), could be potential candidates for this. Especially at 
the beginning of an outbreak, it can be expected that governments will 
carry at least part of the costs of such control measures. However, the 
longer a pandemic occurs, the more these costs will have to be carried by 
companies and, ultimately, consumers. Thus, diverse direct and indirect 
costs, effects on corporate value, as well as costs for method develop
ment and control can be expected for our pandemic scenarios, PV1 and 
PV2. 

On top of this, the costs of efforts made in the agri-food sector will 
depend on the strictness of the implemented efforts. The strictness de
pends on the share of the food route in all infectivity routes and on the 
infectivity of the virus. A higher share of the food route and higher 
infectivity will likely result in companies in the agri-food sector being 
obligated to implement more and more strict efforts to prevent 
contamination and monitor the virus. This will result in higher costs. 
Therefore, it can be expected that more efforts will be mandatory from 
legislation and government policies rather than voluntary. 

Finally, the costs of a foodborne pandemic virus also depend on the 
food types that could be contaminated with the virus. Are all food types 
involved, or only specific types? Consumers will likely avoid food that 
could be contaminated with the virus or have a higher probability of 
being contaminated and instead replace these with alternative foods that 
are not or are less associated with contamination. Demand, trade, and 
production of such contaminated products will probably collapse. With 
our selected scenarios, we gain some insight into the economic conse
quences if only specific food products, i.e., strawberries and salmon, 
were to be contaminated with the virus, be it scenario PV1 (Fig. 1) or 
PV2 (Fig. 2). 

7.1. Strawberries 

From 2015 to 2020, the global annual strawberry gross production 
value varied between 15.1 and 24.0 billion USD (Food and Agriculture 
Organization of the United Nations, 2022a). This encompasses straw
berries for the fresh market and for processing, of which the larger part is 
for the fresh market. For example, Wahl et al. (2014) indicated that 
about 80% of the strawberries in the USA were for the fresh market and 
20% for processing. A collapse of strawberry production would mainly 
impact China, the USA, the EU, and Mexico, where approximately 70% 
of global production occurs (Food and Agriculture Organization of the 
United Nations, 2022a). If a pandemic virus is transmitted via fresh and 
frozen strawberries, consumer demand for and trade in strawberries 
would likely collapse, given a limited shelf-life. Shifting from fresh to 
further processed strawberries would need to guarantee that the virus is 
inactivated and could only be done to the extent that processing capacity 
and demand are available, meaning that the rest of the product would 
probably have to be destroyed. Moreover, the part that can be shifted to 
processing would get a potentially substantially lower revenue price, 
depending on the local market circumstances and prices. For example, in 
the USA, Wahl et al. (2014) estimated a 60–80% difference in revenue 
price between 3.53 USD per kg of fresh strawberries and 0.66 to 1.43 
USD per kg of processed strawberries, depending on the market 
situation. 

Furthermore, a collapse in global trade would mainly concern 
countries in North America and in the EU because these exported 
approximately 88% of the global trade value of fresh and frozen 
strawberries of 3.3 billion USD in 2020 (Appendix Table A). The global 
trade value of fresh strawberries was estimated at 2.99 billion USD, 
almost two and a half times the 1.22 billion USD of frozen strawberries 
(Observatory of Economic Complexity, 2022a; 2022b). Given these 

numbers, it is likely that global costs would easily reach billions of USD 
if fresh and frozen strawberries were (the only) food products that could 
transmit a pandemic virus. If strawberries are associated with virus 
transmission, prices of processed strawberries most likely would 
collapse due to the large additional supply. If the outbreak starts after 
the production season, producers will likely shift to producing other 
crops, reducing the economic impact in the following years. Producers 
who want to keep producing strawberries must comply with strict bio
security measures and be able to guarantee the absence of the virus. For 
example, the SARS-CoV-2 outbreak resulted in many labor-related 
challenges for strawberry producers because picking requires manual 
labor, such as checking workers for symptoms and monitor SARS CoV-2 
outcomes, providing protective face covers, sanitizer, tissues, and 
handwashing stations for workers, and ensuring social distancing (Song 
et al., 2021). Such measures will need to be even more stringent if the 
virus can be transmitted via strawberries. 

7.2. Salmon 

From 2015 to 2020, the global annual salmon gross production value 
varied between 12.7 and 18.6 billion USD (Food and Agriculture Or
ganization of the United Nations, 2022b). Furthermore, in 2020 global 
trade value was estimated at USD 15.0 billion for fresh salmon and USD 
6.0 billion for frozen salmon (Appendix Table B). If a pandemic virus is 
transmitted via fresh or frozen salmon, global salmon processing will 
likely show a serious collapse because most producers of farmed salmon 
will likely be unable to switch to other fish, especially that related to 
aquaculture. For instance, the SARS-CoV-2 outbreak has severely dis
rupted Chile’s salmon industry (Soto et al., 2021). Export markets were 
closed, quarantine measures made it difficult for workers and special
ized personnel to tend farms (resulting in lowered growth rates, 
increased mortality due to diseases and parasites, starvation, and more 
fish escaping the ponds), and biosecurity measures for workers and 
government personnel complicated regular controls and monitoring of 
health and environmental issues. Also, social distancing resulted in 
processing plants being unable to work at full capacity (forcing a 
slowdown or stopping harvest from farm facilities), consequently leav
ing fish in the water beyond normal harvesting time. Thus, it will be of 
utmost importance for the salmon sector to implement measures to 
prevent contamination and to monitor the virus, which guarantees the 
absence of the virus, whether it is wild-caught or farmed. 

A collapse of the salmon demand would mainly impact the two main 
producers and traders in Norway (50% of global production) and Chile 
(33%) (Food and Agriculture Organization of the United Nations, 
2022b); although many other countries, like Poland and USA, import 
salmon. The Norwegian salmon industry was less affected by the 
SARS-CoV-2 outbreak, although differences between the type of prod
ucts were observed (Straume et al., 2022). Many salmon producers 
would not be able to sell their fresh or frozen salmon anymore. Pro
ducers could shift selling processed salmon, for example, smoked, cured, 
or salted, if this processing would inactivate the virus. But this could 
only be done to the extent that demand and processing capacity are 
available; the rest would probably have to be destroyed or released in 
the wild. Therefore, it is easy to imagine that the global costs of an 
outbreak would easily reach billions of USD. Moreover, as workers 
contaminate the salmon in a cold chain environment that is similar for 
other frozen and fresh fish products, it is plausible that many additional 
fish chains will be affected, further increasing the economic impact. 

7.3. Food 

The results of the selected scenarios show that the economic impact 
can differ substantially between types of food products that can transmit 
the virus. Still, in both food chains, global costs are estimated to be in the 
billions of USD. It is important to note that only individual food products 
were examined. If a virus were to contaminate staple foods or food in 
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general, it would not be possible for consumers to avoid all the types of 
foods that could be contaminated with the virus and food security could 
be highly impacted. Food processing companies, retailers, and con
sumers probably will demand guarantees that the food products they 
purchase are free of the virus. Consumers will likely increase their 
preference for locally produced food, as was seen with SARS-CoV-2, due 
to the erosion of their trust in the global food system (Butu et al., 2020; 
Palau-Saumell et al., 2021; Rombach et al., 2022). Furthermore, con
sumers will have to implement control measures themselves to prevent 
infection, for example, sufficiently heating all products they consume. 
This could also involve a shift away from products eaten raw or without 
being heated at home, such as salads, fruits, or sushi. 

International trade in food products could suffer severe conse
quences because clients and countries would likely demand a guarantee 
of the absence of the virus. Companies involved in the production and 
international trade of food products that could be contaminated with the 
virus will need to implement strict control measures. Which control 
measures will be sufficient is unclear, as are the consequential costs. If 
such a guarantee of absence cannot be given, trade in such products 
might decrease substantially. Next to potentially large economic con
sequences (according to the Food and Agriculture Organization of the 
United Nations (2022c)), global food and agricultural export value 
almost reached 1500 billion USD in 2020). Even if a small part of global 
trade is affected, this could also endanger global food security. Collec
tively, these calculations stipulate the major potential economic effects 
of a pandemic food-borne virus and emphasize the need for pandemic 
preparedness and further development of cost-effective control mea
sures for viruses in food. 

8. Conclusions and recommendations 

In this study, the potential introduction and transmission of 
pandemic viruses via the food chain have been evaluated. Historical 
food (chain) related introductions of viruses into the human populations 
were featured and placed into the context of their high potential ca
pacity for causing epidemics, suggesting the plausibility of a future viral 
pandemic that has a relation to the food chain. Viruses with high 
epidemic potential are described in relation to their stability and po
tential for foodborne transmission. Due to challenges in scientifically 
demonstrating the surface transmission of viral pathogens versus their 
airborne transmission, there is great incongruence in virus transmission 
models. Therefore, the food and fomite transmission component could 
be easily neglected or underestimated in a future pandemic. Access to 
improved methods to detect and model the transmission of pathogens 
would benefit our preparedness against the emergence and spread of 
future pandemic pathogens or provide confidence in our food system 
when it is shown that food and fomite transmission is not an issue. This 
message is important for food business operators and governments alike 
to understand the possible risk of pandemic viruses being introduced 
and transmitted via our food system and the potential knowledge gap 
surrounding surface and foodborne transmission. 

If food is to become a vehicle for pandemic virus transmission, this 
would compromise food safety and food security and be of great impact 
on the economics of food systems. Various scenarios are possible 
depending on the nature of the virus, e.g., tissue specificity, tropism, and 
modes of transmission. To further discuss the global impact of a po
tential foodborne pandemic, two scenarios were hypothesized: (PV1) a 
pandemic caused by a highly stable and transmissible gastrointestinal 
virus via food with more severe illness and (PV2) a pandemic caused by 
a highly harmful and transmissible respiratory virus via food with 
improved environmental stability. These scenarios help disseminate the 
impact on the safety and availability of specific foods as well as related 
economic consequences and the size of economic damage, as this de
pends on the transmission route and other properties of the virus. In this 
context, the economic impact of a foodborne pandemic occurring in two 
food chains, the strawberry chain and the salmon chain, was calculated. 

In scenarios PV1 and PV2, the introduction of the foodborne 
pandemic virus continually occurs via fecal or vomit and/or respiratory 
droplets. Guidelines will be required for the control of such a pandemic 
virus in the food chain. These will depend on the dissemination route of 
the virus. Specific hygiene measures required for the mitigation of a 
foodborne pandemic virus are suggested. Alongside hygiene measures, 
monitoring food for the presence or absence of viruses in specific chains 
will be necessary. Of note, it is not a realistic endeavor to ensure the 
safety of food by enforcement criteria due to the economically unfeasi
ble amount of testing that is required in a pandemic scenario. Rather, 
food safety testing is recommended to detect deviating batches, for 
verification purposes, to obtain monitoring data, and to provide confi
dence of control and assess compliance to hygiene criteria. Due to 
challenges in culturing foodborne viruses, routine batch testing relies on 
the demonstration of the presence of short stretches of viral genomic 
material. It is widely accepted that this method does not demonstrate the 
presence of infectious viral particles. Research and development are 
needed to develop affordable and effective infectivity assays for high 
epidemic potential viruses so that (un)safety of the food chain can be 
properly demonstrated, and the economic impact can be reduced by 
acting early and well-informed. Application of such tools will further 
translate to a comprehensive understanding of surface and food 
consumption-mediated viral transmission routes that are currently 
lacking. This message is important for food business operators, policy
makers, and scientists to understand the possible analytical needs, op
portunities, and caveats for food safety testing. 

In the unfortunate event that a viral foodborne pandemic crystal
lizes, economic costs will be great. The economic consequences were 
estimated for the strawberry chain, the salmon chain, and, more 
generally, for food. In cases where a specific product is affected, global 
costs will likely exceed billions of USD. If a virus were to contaminate 
staple foods or foods in general, consumers would be forced to imple
ment control measures themselves or shift away from specific types of 
food, eventually potentially affecting global food security. This message 
illustrates the importance for food business operators and governments 
to appraise the potential economic costs of pandemic viruses being 
introduced and transmitted via our food system and to determine 
whether actions are needed. 

In conclusion, if a pandemic virus associated with the food chain 
were to occur, our preparedness is currently lacking given our poten
tially limited knowledge of the transmission and introduction pathways, 
as well as access to methods to detect the viral presence and -infectivity 
and model the transmission of the pathogens. Likewise, cost-effective 
regulatory measures and control strategies would be required and 
would need to be tailored to the nature of the virus. Food safety testing 
using enforcement criteria would be economically unfeasible, meaning 
other control interventions beyond sampling like stricter hygiene, 
decontamination of the product, or possibly vaccination of food han
dlers may be required, yet would not be without their own risks and 
benefits. Overall, narrowing the knowledge gaps on introduction, 
transmission, economic impact, as well as improvement of analytical 
feasibility, is required to benefit our preparedness against the emergence 
and spread of future foodborne pandemic pathogens. 
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