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1. The ‘normal’ activity pattern is abnormal for a calf. 
(this thesis) 
 

2. Accuracy of the 3D cameras needs to be improved to further develop Product-Lucrative Farming 
(also known as PLF). 
(this thesis) 
 

3. Experts develop complex systems; visionaries make them simpler.  
 

4. Science-based knowledge helps us understand the dopaminergic system, but it does not help us 
to control our desires. 
 

5. The disconnect of humans from nature started with our endless strive for convenience in daily 
life.  
 

6. More female leaders are needed to solve the global crisis caused by male ego. 
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World milk production reached 887 million tonnes in 2020 (FAO, 2022). With such high 

demand worldwide, dairy cows who produce the milk need to keep giving birth to renew the 

lactation in order to produce milk. Most female calves will be kept as heifers for the dairy 

industry, while the male (and some female) calves are not needed. The veal industry was 

therefore developed (mainly in Europe and North America) to make use of the dairy calves 

that are not wanted or needed for herd replacement, commonly referred to as ‘surplus’ calves. 

Although there are a number of possible routes for surplus dairy calves (Haskell, 2020; Webb 

et al., 2023), those calves destined for veal production are typically transported from different 

source dairy farms, sometimes across country borders, at the early age of around two to four 

weeks to a fattening veal farm (Marcato et al., 2018). At the veal farm, the calves are group-

housed, typically in small groups of five to ten, but sometimes in large groups of 40 to 70 

calves, with typically 1.8 m2 per calf, on wooden slatted floors. Veal calves are fed milk 

replacer in open troughs or buckets if housed in small groups, or via an automated milk 

feeders if house in large groups, until slaughter for the ‘white’ veal calves, and for eight 

weeks for the ‘rosé’ veal calves. Next to milk replacer, the calves receive solid feed, typically 

a mixture of concentrates and roughage (e.g. straw) until slaughter at approximately six 

(white) to eight (rosé) months of age (EFSA AHAW Panel, 2023). Veal calves do not 

typically receive enrichment, unless housed in the large groups, and do not typically have 

access to outdoor spaces. This production system allows veal calves to be raised efficiently, 

allowing each step of the chain to be considered and controlled (Renaud and Pardon, 2022), to 

end up with relatively high-quality meat products which fetch a high price with consumers, 

while using minimal resources. 

The Dutch veal sector is the biggest veal producer in the EU, accounting for 36% of the total 

production in 2020 (Berkhout et al., 2021). With around one million veal calves being kept in 

approximately 1,600 fattening farms1, the Dutch veal sector produces 1.6 to 1.7 million calves 

per year (Berkhout et al., 2021). These calves are transported from their source dairy farms all 

across Europe to the collection centres first, where they are sorted based on weight, breed, or 

conformation, before being sent to the fattening farms (Damiaans et al., 2019). This dairy-

veal chain presents potential concerns for calf welfare, including transportation of young 

animals, high risk of disease, and barren housing (Webb et al., 2023). One important concern 

for the farmers in this production system is the high morbidity (Sandelin et al., 2022) and high 

mortality rates (Bokma et al., 2019; Sandelin et al., 2021), which have a multi-factorial 

 
1 Source: Landbouw; gewassen, dieren, grondgebruik en arbeid op nationaal niveau (cbs.nl) 



3 

 

etiology: a combination of calf transportation at an early age and hence at an age of immune 

immaturity (Marcato et al., 2022a), and mixing of animals from many different source farms, 

hence the exposure to many pathogens (Sandelin et al., 2021).  

The result is often a high use of antibiotics at veal farms in the Netherlands (Havelaar et al., 

2017), and in many cases, a broad-spectrum antibiotic is used (Jarrige et al., 2017; Bokma et 

al., 2019). In addition, many antibiotic therapies are applied in group-treatments which makes 

the veal industry prone to the risk of sub-dosage and consequently an increased risk of 

development of antimicrobial resistance of pathogens (Jerab et al., 2022), which poses a 

human health risk, e.g. lower effectiveness of antibiotics treatment in humans. This high 

levels of antibiotic use and antimicrobial resistance makes the veal industry heavily criticized 

(EMA/EFSA, 2016), and European society demands veal calves receive better health care, 

including minimizing morbidity and mortality by limiting transport duration and transporting 

at an older age, and higher welfare (Dutch Ministry of Agriculture, Nature and Food Quality, 

2021; Webb et al., 2023). Animal welfare is defined here as the balance between pleasant and 

unpleasant experiences throughout an animal's life (FAWC, 2009). 

One promising avenue in the improvement of health care in livestock, and specifically in 

health monitoring, is that of precision livestock farming (PLF), which is defined as the 

continuous and real-time monitoring of animal behaviour, anatomy or physiology, or some 

environmental variable, to deduce health, welfare, production or reproduction parameters of 

the animals (Berckmans, 2017). Conventional on-farm health monitoring practice is based on 

visual appraisal and clinical examinations performed by farmers and veterinarians (McGuirk 

and Peek, 2014), which is linked to disadvantages such as identifying sick calves late (Timsit 

et al., 2011; Schroeder et al., 2012) or with medium diagnostic accuracy (Decaris et al., 

2022). Many sick calves, hence, remain undetected, which makes it difficult to promptly treat 

them, leading to greater chances of spread of disease and poorer animal welfare, resulting in a 

higher use of antibiotics. 

Sensor-based data is currently collected on many farms, for example milk yield, composition 

of dairy cows recorded via milking robots or feed intake of fattening pigs recorded via 

automated feed dispensers. In veal calves housed in large groups, automated milk feeders 

record milk feeding behaviour at the individual level. Although these data could say much 

about the health and welfare of individual animals, the principal use of these types of 

automated feeding systems is for production efficiency and the application towards improving 
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animal welfare is lagging (e.g. in pigs: Bus et al., 2021). A number of PLF techniques have 

however been developed in past research, e.g. 3D cameras (Arulmozhi et al., 2021; Wang et 

al., 2023), accelerometers (Riaboff et al., 2022), for different species, e.g. dairy cows (John et 

al., 2016; Silva et al., 2021), pigs (Gómez et al., 2021; Tzanidakis et al., 2021), poultry (Li et 

al., 2020; Olejnik et al., 2022), and to deal with different problems, including health (Niloofar 

et al., 2021; Džermeikaitė et al., 2023), welfare (Benjamin and Yik, 2019; Rowe et al., 2019; 

Schillings et al., 2021), and the environmental impact of livestock farming (Tullo et al., 2019; 

Niloofar et al., 2021). A fully automated health monitoring system for veal calves is, 

however, still lacking. 

The aforementioned general advances in PLF make it possible to start developing an 

automated tool for health monitoring in veal calves, to assist the conventional way of calf 

health monitoring. The following developments are crucial for the development and 

application in practice of PLF tools for health monitoring in veal calves:  

1) the decreasing costs and increasing implementation of electronic tools allows for the 

application of ‘sensing solutions’ on a large scale, such as in commercial veal fattening farms;  

2) behavioural and physiological parameters can nowadays be automatically recorded at 

individual animal level, continuously and over long periods of time (Caja et al., 2016), 

allowing to follow the course of the whole (or as long as possible) fattening period;  

3) previous studies reported automated detection of specific diseases such as respiratory 

disease (Puig et al., 2022; Garrido et al., 2023), which proved the feasibility of this PLF 

approach.  

We expect a large amount of work in PLF will go towards organising and analysing the 

various datasets, and that the development of new PLF systems will require a number of 

careful steps. One of the early required steps is the study and understanding of healthy, 

normal patterns of calf behaviour, anatomy or physiology, prior to attempting to 

identify ’abnormalities’ and ‘deviations’ which might point to some sort of problem, e.g. 

health or welfare issues. This step includes the investigation of individual variation and more 

or less constant traits (e.g. personality) that consistently affect these patterns. Another critical 

step is the testing and comparison of various, available models to describe and predict these 

patterns, with a particular interest in (deep) supervised machine learning techniques (Mahmud 

et al., 2021; Oliveira et al., 2021). 
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The advantage of machine learning in this context is that these systems can learn and adapt 

according to the data, without the need for human input, to develop the most adequate 

algorithms to describe and predict patterns of data. The terms ‘supervised’ indicates that the 

system receives a so-called ‘training’ dataset, whereby manual, direct, human-based outcomes 

are included for teaching. ‘Deep’ learning refers to a type of machine learning which involves 

multiple layers in the network to progressively extract more and more higher-level 

information. 

In the context of PLF applied to veal growth and health monitoring, various types of (deep) 

supervised machine learning are of interest, e.g. linear regression (LR); support vector 

regression (SVR); random forest (RF); extreme gradient boosting (XGB); and a 

convolutional neural network (CNN). These methods are used for classification to model 

either linear or non-linear relationships. LR is the simplest method and involves a linearly 

weighted sum of the features of the data (Hastie et al., 2017), and is often used as a 

benchmark to compare with other machine learning methods (Dohmen et al., 2021). This 

approach, however, has the restriction that it may be insufficient to model behaviour that 

deviates from a linear relationship. SVR overcomes this problem and models non-linearities 

(Drucker et al., 1996). Another supervised machine learning method which can be used for 

classification as well as regression is the RF (Hastie et al., 2017). It uses ensemble learning 

and it combines predictions from multiple decision trees to obtain a more accurate prediction 

than an individual tree. RF is trained by iteratively building decision trees based on randomly 

selected data points and predicts a value on a new data point by averaging across the predicted 

values over all the trees. RF can model non-linearities but has a drawback in that it needs to 

be trained with expected values thus it may be inaccurate while predicting previously unseen 

ranges of values. XGB uses gradient boosting on the decision tree algorithm for regression or 

classification (Chen and Guestrin, 2015). In this approach, new models are created that 

predict the residuals or errors of existing models and are then added together to contribute to 

the final prediction. CNN for regression consists of a deep neural network without a final non-

linear layer, which is typically used for classification (Goodfellow et al., 2016). 

Scientific challenges need to be noted, however, with the advances of PLF in veal calf 

industry. Firstly, a holistic view is necessary in terms of what are the available PLF 

techniques and which techniques are promising for health monitoring in veal calves. 

Secondly, before identifying a sick calf, we need to learn what a healthy calf look like with 

the available PLF tools, e.g. using accelerometers to record activity patterns in healthy calves. 
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Thirdly, with the current advances of PLF, what are the promising variables worth looking 

into for monitoring calf health and growth, in addition to the conventional health-monitoring 

variables? The aim of this thesis was to lay the foundations for the development of an 

automated health monitoring system for veal calves by developing algorithms that help 

describe and predict calf patterns of behaviour and anatomy. Three paths were followed to 

achieve this aim: 

1. First, a systematic review of past research into PLF techniques to monitor health in 

calves was conducted, to acquire an overview of current knowledge (including 

methods and tools), and gaps between current status and a desired situation (Chapter 

2). In particular, we constructed a four-step framework that should be followed 

carefully for automated health monitoring in calves. 

2. Second, behavioural patterns, in this case those linked to activity, were modelled and 

scrutinised to describe healthy, normal patterns of behaviour in calves throughout the 

fattening period (Chapter 3). Generalised additive models is reported to be promising 

in fitting nonlinear relationships, while minimizing instances of overfitting by 

optimizing a maximum likelihood estimation (Perttu et al., 2023). 

3. Third, four different (deep) supervised machine learning algorithms and a CNN 

regressor were tested and compared in their performance in the prediction of body 

weight (BW) based on 3D images (Chapter 4). BW is a robust indicator of growth 

performance and health for cattle (Segerkvist et al., 2020). A regular body weight 

measurement could support the identification of deviations from an estimated growth 

curve, allowing for timely adjustments in feeding and assistance in health monitoring. 

We explored the use of computer vision and appropriate machine learning models: 

LR, SVR, RF, XGB, and a CNN. 

In Chapter 5, I summarized and discussed the results of all chapters in an integrated way and 

identify the potential applications of current results, how the results can contribute to alleviate 

the problem of high antibiotic use and subsequently improve calf welfare and health. I also 

briefly shared the further plans of the project in which my thesis is embedded.  

This thesis focuses on learning about the patterns in healthy calves, which lay the foundation 

for the next step of detecting ‘deviations’ of patterns in individual calves. Furthermore, along 

this research approach, the author noticed certain risks linked to the development of PLF-

based solutions. In chapter five, I challenge the logic behind this approach, point out the 
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missing values in the process of developing and deploying these PLF tools, and invite readers 

to think about alternatives on how we could reduce the antibiotic use in veal rearing, with a 

more animal-oriented approach, to answer the societal demand such as farmers’ need, the 

nitrogen crisis in the Netherlands, to address global crises including global warming and the 

global resource depletion, and more importantly, to let PLF be a tool, not the goal.    
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Chapter 2 A systematic review of automatic health monitoring in calves: glimpsing the 

future from current practice 

 

Dengsheng Sun a, Laura Webb b , Rik van der Tol a, and Kees van Reenen b, c  

a Agricultural Biosystems Engineering Group, Wageningen University & Research, 

Wageningen, the Netherlands  

b Animal Production Systems Group, Wageningen University & Research, Wageningen, the 

Netherlands  

c Livestock Research, Research Centre, Wageningen University & Research, Wageningen, the 

Netherlands   



10 

 

Abstract 

Infectious diseases particularly bovine respiratory disease (BRD) and neonatal calf diarrhoea 

(NCD) are prevalent in calves. Efficient health monitoring tools to identify such diseases on 

time are lacking. Common practice (i.e. health checks) often identifies sick calves at a late stage 

of disease or not at all. Sensor technology enables the automatic and continuous monitoring of 

calf physiology or behaviour, potentially offering timely and precise detection of sick calves. A 

systematic overview of automated disease detection in calves is still lacking. The objectives of 

this literature review were hence: 1) to investigate previously applied sensor validation 

methods used in the context of calf health, 2) to identify sensors used on calves, the 

parameters these sensors monitor, and the statistical tools applied to identify diseases, 3) to 

explore potential research gaps and to point to future research opportunities. To achieve these 

objectives, systematic literature searches were conducted. We defined four stages in the 

development of health monitoring systems: 1) sensor technique, 2) data interpretation, 3) 

information integration, and 4) decision support. Fifty-five articles were included (stage one: 

27, stage two: 19, stage three: 9, and stage four: 0). Common parameters that assess the 

performance of these systems are sensitivity, specificity, accuracy, precision, and negative 

predictive value. Gold standards that typically assess these parameters include manual 

measurement and manual health assessment protocols. At stage one, automatic feeding 

stations, accelerometers, infrared thermography cameras, microphones, and 3D cameras are 

accurate in screening behaviour and physiology in calves. At stage two, changes in feeding 

behaviours, lying, activity, or body temperature corresponded to changes in health status, and 

point to health issues earlier than manual health checks. At stage three, accelerometers, 

thermometers, and automatic feeding stations have been integrated into one system which was 

shown to be able to successfully detect diseases in calves, including BRD and NCD. We 

discuss these findings, look into potentials at stage four and touch upon the topic of resilience, 

whereby health monitoring system might be used to detect low resilience (i.e. prone to disease 

but clinically healthy calves), promoting further improvements in calf health and welfare.  

Keywords: health monitoring, calf, early disease detection, precision livestock farming, 

sensor  
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2.1 Introduction 

Within the dairy and veal production systems, diseases such as bovine respiratory disease 

(BRD) and neonatal calf diarrhoea (NCD) are highly prevalent in young calves (Cramer et 

al., 2016). Despite slightly different prevalence rates (Sutherland et al., 2018), disease types 

affecting dairy and veal calves are similar (McGuirk and Peek, 2014; Marcato et al., 2018; 

Lowe et al., 2019b). BRD symptoms include hampered respiration, nasal discharge, and 

coughing (Brscic et al., 2012). A direct symptom of NCD is extremely watery faeces (Cramer 

et al., 2016). Potential risk factors for BRD include: poor immune system development and 

function (typically found in calves provided with a low body weight (Brscic et al., 2012), or 

provided with poor quality or inadequate amounts of colostrum, Edwards, 2010), indoor 

housing, trough feeding of milk replacer in the early stages of fattening (Brscic et al., 2012), 

and management practices such as weaning, comingling, and castration (Smith and Step, 

2020). Potential risk factors for NCD include high exposure to pathogens causing NCD, 

factors related to host resistance or susceptibility to disease, e.g. low quality and quantity of 

colostrum, and factors about the environment that favour the host or agent, e.g. high stocking 

density, too high or too low ambient temperature and air humidity (Smith, 2012).  

Diseases in calves cause significant economic losses (Yazdanbakhsh et al., 2017; Wang et al., 

2018), due to treatment (Schaefer et al., 2012), impaired growth and mortality (Windeyer et 

al., 2017), and impaired calf welfare (Millman, 2007). Moreover, antibiotic resistance, a 

major concern in human and veterinary medicine (Awasthi et al., 2016), is a serious problem 

in the veal industry (Havelaar et al., 2017; Mitrenga et al., 2020). In addition, the overuse of 

antibiotics might result in the contamination of surface water near farms due to residues in the 

urine and faeces of animals (Mostert, 2018). Given the all-encompassing impact of calf health 

on sustainability aspects, it is essential that we develop accurate, timely, and practical systems 

to identify sick calves, both in the dairy and veal sectors.   

The common practice for identifying diseases in calves is based on visual appraisal and 

clinical examinations performed by farmers and veterinarians (McGuirk and Peek, 2014). 

This practice is linked to a number of disadvantages: 1) calves identified as sick already show 

clear clinical symptoms and may have already been sick for a while. For example, clinical 

signs of BRD are only visible 12 to 36 hours after the onset of fever (Timsit et al., 2011) and 

clinical signs of NCD are visible when much of the associated tissue damage to the intestinal 

submucosa has already occurred (Schroeder et al., 2012). 2) Visual appraisal and clinical 
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examinations are typically poor at identifying sick calves. For example, in a study diagnosing 

BRD in beef calves using clinical examination, the estimated sensitivity and specificity were 

61.8% and 62.8%, respectively (White et al., 2009). Many sick calves, hence, go undetected, 

which makes it difficult to promptly treat them, leading to greater chances of spread of 

disease, poorer animal welfare, and greater negative impacts on economy and environment, 

overall leading to poor sustainability of production systems involving calves.  

Improved methods to detect health problems accurately and on a timely basis in individual 

calves are warranted. The decreasing cost and increasing implementation of electronic tools 

allows for the application of ‘sensing solutions’ to animal farming. Behavioural and 

physiological parameters can nowadays be automatically recorded at individual animal level, 

continuously and over long periods of time (Caja et al., 2016). During the past decade various 

sensor data models have been proposed for automatic health monitoring systems in dairy and 

veal calves. To date, however, there has been no literature review presenting the associated 

gaps in research, while this has previously been done for pigs (Matthews et al., 2016; 

Martinez-Aviles et al., 2017) and dairy cows (Rutten et al., 2013). The objectives of this 

literature review were hence: 1) to investigate previously applied sensor validation methods 

and gold standards, 2) to identify how sensors are used and validated in calves, 3) to explore 

potential research gaps to point to opportunities for future research. 

2.2 Methods 

2.2.1 Definitions  

Animals included in this review were bovine animals aged less than one year, these include 

‘calf’ or ‘calves’ (pre-weaned or weaned), heifers (weaning to one year of age), growing bulls 

(after arrival at the fattening farm up to one year of age), beef cattle (early fattening period till 

one year of age). Precision livestock farming (PLF) is defined based on Berckmans (2008) as 

‘measuring variables on the animals, modelling these data to select information, and then 

using these models in real time for monitoring and control purposes’. We defined the 

following terms - SENSOR: an automatic tool capable of recording activities, behaviours, 

physiology, and morphology of calves continuously; MODEL: a mathematical tool that 

describes the relations between the sensor output and the actual values of the measured 

parameters of the physical environment; VALIDATION: the process of determining the 

measurement ability of automatic tools relative to a gold standard using statistics. 
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We defined four stages of development of a particular sensor technique for disease detection 

based on Rutten et al. (2013) (Fig.1) - stage one: SENSOR TECHNIQUE - applying sensor 

technology to record behavioural or physiological parameters in animals, visualizing these 

parameters, stage two: SENSOR INTERPRETATION - changes in data are detected and 

connected to changes in behaviour and physiology with an established link to the animal’s 

health status; stage three: INFORMATION INTEGRATION - multiple data resources, e.g. 

treatment records and sensor data, are integrated to direct the farmer to potential problems that 

need attention; stage four: DECISION SUPPORT – a sensor system that aids to make a 

decision, e.g. whether to treat an animal or not; what to treat the animal for? 

 

Fig. 1 Development stages 

2.2.2 Inclusion and Exclusion Criteria  

Peer-reviewed scientific articles applying sensors to calves were eligible for inclusion. Only 

articles based upon original data were included. Included articles were written in English, 

with complete, full-text documents available. To provide up-to-date review, only articles 

published between 2009 and 2021 were included. Manuscripts published after the completion 

of the literature search were not included (i.e. after May 10, 2021). Exclusion and inclusion 

criteria for the systematic review were based on an previous work by Beaver et al. (2019) and 

agreed upon by all co-authors. 

2.2.3 Search Strategy  

Systematic searches were conducted using the Web of Science Core Collection database 

because it has high coverage rates of animal behaviour and welfare and bio-system 

engineering journals with significant PLF contents. 
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The following search terms were applied: (calf OR calves OR dairy calf OR dairy heifer OR 

heifer calf OR heifers OR young cattle) AND (BRD OR bovine respiratory disease OR calf 

comfort OR calf health OR diarrhea OR group housing OR health OR precision livestock OR 

precision livestock farming OR proneness to disease OR welfare) AND (automatic OR 

automated measurement OR automated measures OR detection OR diagnosis OR disease 

monitoring OR evaluation OR modeling OR non-invasive detection OR prediction OR 

validation) AND (accelerometer OR activity sensor OR artificial intelligence OR automatic 

milk feeder OR bioacoustics OR computer vision OR electronic monitoring OR infrared 

thermography OR low-cost sensor OR non-invasive technology OR radio frequency 

identification OR reticulo-rumen bolus OR statistical process control OR sound analysis OR 

3D sensor). The selection of these search terms was based on initial screening of relevant 

articles to gain general background information and expert opinion.  

2.2.4 Selection Process 

The primary outcomes were selected based upon a four-step screening and appraisal process 

(Fig. 2):  

Step one. Scanning the titles - filter out irrelevant results such as review articles in automatic 

detection, original articles of health monitoring in calves without applying sensor technology, 

or original articles of automatic health monitoring systems in mature cattle or other species. 

Step two. Evaluating abstracts - identify and remove irrelevant articles. 

Step three. Snowballing - checking and selecting references within selected articles. 

Step four. Eligibility. Full texts of the remaining articles were read in detail. Original 

experimental studies were excluded if not aiming at health monitoring in calves up to one year 

of age using sensor technology. 
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Fig. 2 Article selection process 

2.2.5 Data Extraction  

From each included article, where applicable, we recorded the objectives, animal category, 

parameters measured, sample size, gold standards for validation, sensors used, measurements 

used to assess the performance of the sensors or algorithms. Missing information were noted 

down as ‘not available’. The results were pooled in the form of Tables (Appendix 1). The 

reliability for data extraction was tested by author 1 (DS) on a random subset of 20 articles, 

with a result of 100% agreement. 

2.2.6 Data Management 

Extracted data were entered into and managed in excel spreadsheets (version 2016, Microsoft 

Corp., Redmond, WA, RRID:SCR_016137). 

2.3 Results and Discussion 

Following the article selection process described above, 55 articles were included in this 

review (Fig. 2). As shown in Fig. 3, 27 articles fell into stage one (sensor technique), 19 
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articles fell into stage two (data interpretation), and 9 articles fell into stage three (information 

integration). We found no articles at stage four (decision support).  

Studies at these different stages use different validation methods and gold standards. Studies 

at stage one aim to check that a given sensor is accurately recording a particular behavioural 

or physiological parameter of interest. These studies typically use (a) manually collected 

parameter(s) as gold standard for their validation, for example, video observations of lying 

bouts or rectal body temperature measurements using a thermometer. Stage two and stage 

three studies aim to identify sick calves as early as possible. Stage two and three studies 

develop and test algorithms applied to sensor data to accurately detect sick individuals. 

Manual health assessment protocols are typically used as gold standards to develop and test 

these algorithms (Table 1). 

We first define what is meant by ‘validation’ in this review as well as define the terms used in 

this context, i.e. sensitivity, specificity, accuracy, and positive and negative predictive value. 

We follow up with a description of the different gold standards that have been used at the 

different stages of investigation. Next, we describe the various sensors that have been used in 

calf health monitoring research, the parameters these sensors record, and their accuracies in 

these recordings. We end by presenting the current research at stage two (data interpretation) 

and stage three (information integration), revealing important knowledge gaps between stage 

three and stage four (decision support), suggesting the direction for future study of which will 

enable the bridging of these gaps, hence reaching automated health-related data interpretation 

and complete decision support systems for calf production systems.    
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Fig. 3 Distribution of stages of included articles. 

*  in Studds et al. (2018) both diarrhoea and navel inflammation were studied.  

2.3.1 Validation 

The validation assessments at different stages of studies share common principles. Validation 

assessments are typically calculated via so-called confusion matrices (Table 2) (Leary, 2020). 

Table 2* Confusion matrix 

               Predicted                        

                  

Actual 

   Positive Negative 

Positive True positive False negative 

Negative False negative True positive 
* Table 2 is presented here for better explaining the text. 

Confusion matrices reveal relationships between the sensor of interest, the selected gold 

standard (see below formulas for: sensitivity, specificity, accuracy, precision, and negative 

predictive values) and the underlying prevalence of the disease interest. ‘Positive and 

negative’ show the sensor (or model) output (a response of ‘yes’ or ‘no’ to the disease 

detection), while ‘true and false’ reflects whether the sensor (or model) output is in line with 

the gold standards in a pre-specified time window (i.e. whether the prediction matches the 

reality). When comparing article outcomes it should be noted that sensitivity and specificity 

are affected by characteristics of the sensor, while accuracy, precision and negative predictive 
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values are affected by the prevalence of disease or behaviour based on the dataset; the higher 

the prevalence, the better the accuracy, precision and predictive values for the given dataset. 

Model developments are usually aimed to enhance the contrast in a sensor system output for 

the purpose of threshold evaluations (e.g. sensitivity, specificity, or accuracy) over a given 

range. Common methods used for model developments are correlation, area under curve 

(Leary, 2020), and receiver operating characteristic curves (Leary, 2020). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=  
(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒) =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +  𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

2.3.2 Gold Standard 

To obtain a sound validation of a sensor or PLF system, an objective ‘gold standard’ is 

needed. In this regard, studies at stage one to stage four require different gold standards. At 

stage one, gold standard means ‘variables of interest’, i.e. behavioural or physiological 

parameters; at stage two, three, and four, gold standard usually refers to the identification of 

disease, typically via a manual ‘clinical examination’.  

Stage one studies, where sensors are checked directly for their ability to record behavioural or 

physiological parameters, tend to use manual sampling of these behavioural or physiological 

parameters. For sensors recording behavioural parameters, behavioural observations of 

videos, continuous or at regular intervals, is a commonly used reference for validation. 

Continuous sampling of focal animals will provide the most accurate data for calf behaviour, 

but is a time consuming exercise. For certain, long-term, so called ‘state’ behaviours, 

instantaneous scan sampling at regular intervals may provide an accurate enough gold 

standard and is less time consuming. For example, meal time and frequency over a 3-day 

period can be detected accurately with instantaneous scan sampling at short intervals of 30 
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seconds and one minute (Miller-Cushon et al., 2011). Disadvantages associated with video 

observations include difficulty in recognizing individuals from the videos (Robert et al., 

2011) and observer error (Kour et al., 2018), as well as problems with obstacles obstructing 

the behaviour of interest (e.g. head of calf behind bucket) or the quality of the video being too 

poor to identify with absolute certainty subtle behaviours (e.g. tongue rolling inside the 

mouth) (personal observation of the authors).  

For sensors recording physiological parameters, manual measurements of these physiological 

parameters are also used as gold standards. Sensors recording body temperature, e.g. body 

surface temperature (Nogami et al., 2013), eye temperature (Scoley et al., 2019; Bell et al., 

2020), and rectal area temperature (Scoley et al., 2019), typically use manually recorded 

rectal temperature as gold standard. When validating body dimensions in calves and heifers, 

manual measurements of body weight and dimensions are common, including body weight 

(Song et al., 2014; Nir et al., 2018; Pezzuolo et al., 2018), hip height (Song et al., 2014; Nir et 

al., 2018), and wither height (Nir et al., 2018). 

With increasing research into validating sensors in terms of how accurately they record 

behaviour or physiological parameters, previously validated sensors may be used as 

automated gold standard to validate new sensors, which significantly reduces labour required 

for these types of stage one studies. The Hobo Pedant G Data logger, for example, has been 

previously used as a gold standard to validate another accelerometer, the AfiTag II for lying 

behaviour and step count (Swartz et al., 2016).  

Stage two and three studies aim to identify sick calves. Here, a clinical examination is the 

most commonly used gold standard for disease diagnosis (Table 1) (Borderas et al., 2009; 

Voss et al., 2016; Swartz et al., 2017; Hixson et al., 2018; Shane et al., 2018; Toaff-

Rosenstein et al., 2018). Various protocols have been used in this type of study, such as the 

Wisconsin clinical respiratory score (Vandermeulen et al., 2016) and the Wisconsin calf 

health scoring chart (Johnston et al., 2016). Further information can be added to these clinical 

examinations to compliment the gold standard, including metadata like management 

information (e.g. calf registration or enrolment data), morbidity and mortality data from the 

farm (Knauer et al., 2017; Knauer et al., 2018), BW (Jackson et al., 2016; Studds et al., 2018; 

Kayser et al., 2019), post-mortem examination (Moya et al., 2015; Toaff-Rosenstein et al., 

2016), or blood parameters (Hanzlicek et al., 2010; Timsit et al., 2011; Schaefer et al., 2012; 

Wolfger et al., 2015a; Johnston et al., 2016; Vandermeulen et al., 2016; Knauer et al., 2017; 



20 

 

Oliveira et al., 2018b). Of all the clinical examination protocols, the (modified) Wisconsin 

calf health score chart was the most commonly used protocol (Johnston et al., 2016; Swartz et 

al., 2017; Hixson et al., 2018; Swartz et al., 2020; Duthie et al., 2021). Gold standards 

without clinical examination, for example, from blood analysis (Carpentier et al., 2018), or a 

combination of BW, biochemical parameters from blood and faecal samples, and rectal 

temperature (Szyszka et al., 2012) have also previously been used. Clinical examination can 

be combined with clinical chemistry, for example, via blood sampling, to improve the 

accuracy of health assessment. 

Visual appraisal of disease has been found to have low specificity and be highly variable 

between observers based on their level of experience (Amrine et al., 2013). Thus errors from 

the clinical examinations may transfer to the corresponding models (Moya et al., 2015). 

Though invasive, the addition of data from clinical chemistry is likely to improve the 

development of algorithms (Wolfger et al., 2015a), while also adding information about 

specific pathogens to the gold standard (Sutherland et al., 2018). It must however be noted 

that including clinical chemistry parameters into a gold standard, may lead to ‘intermediate 

values’ (i.e. neither true positive nor true negative), because these animals may be either 

successfully resisting or slowly succumbing to diseases (Schaefer et al., 2012). 

When performing time consuming clinical examinations for use as a gold standard, the 

frequency of these examinations needs to be carefully considered. Daily clinical examinations 

of calves can provide better timely reference, at the cost of disturbance to the group and high 

labour requirements. While too low frequency of clinical examinations will result in late 

detection, hence makes algorithm development for early onset of disease more difficult 

(Hogeveen et al., 2010). Previous research applied different frequencies - for clinical 

examinations, ranging from daily to weekly (Table 1). Clinical examinations combining two 

different frequencies applied at different life stages were also found, for example before 

(twice a week) and after the weaning period (once per week) of dairy calves (Johnston et al., 

2016; Vandermeulen et al., 2016). To the authors knowledge, no study has yet compared the 

effect of different frequencies of clinical examinations on the accuracy of disease detection 

models. 

Improvements are necessary for the clinical examinations used as gold standards for the 

development of algorithms to detect diseases in calves. Firstly, training in clinical 

examination and high inter-observer consistency are required. Secondly, to better relate 
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clinical examinations to model outcome, more specific research questions need to be raised, 

including the specific health, productivity and welfare concerns linked to calves of different 

ages (Finney et al., 2018).  

In summary, clinical examination is the most common gold standards used in the 

development of algorithms to identify sick calves. The Wisconsin calf health score chart was 

identified as a commonly used protocol for clinical examination in this context. This method, 

however, does not seem accurate enough, with a sensitivity of 62.4%, and specificity of 

74.1% (Buczinski et al., 2015). Therefore, clinical references with high accuracy, with 

consistent guidelines, and easy-to-follow protocols are needed for disease detection in calves. 

A standardized clinical scoring system will benefit the validation of the sensors and 

algorithms, making it easier to compare the performance of different algorithms.  

2.3.3 Stage one: Sensor Technology Used in Calves 

Data sources used in calves include automatic feeding stations (AFS), accelerometers, 

microphones, infrared thermography (IRT) cameras, temperature sensors (i.e. boluses, 

thermometers), radiofrequency identification (RFID) chips, 3D cameras, 2D cameras. 

2.3.3.1 Automatic Feeding Stations 

AFS, such as automated milk feeders for pre-weaned calves and automatic concentrate bunks 

for post-weaned calves and water bins, have been used often in studies aimed at automated 

health monitoring in young calves, hence stage two research. These AFS can measure a wide 

range of parameters linked to feeding and drinking patterns, including daily feed intake, 

frequency and duration of rewarded and unrewarded visits, drinking speed (milk), water 

drinking behaviour (intake, time, and frequency), and other feeding behaviours (head-down 

duration at the AFS, time-to-bunk: time to approach feeding stations following feed-truck 

delivery, and duration of unrewarded visit intervals). AFS seem to be able to measure feeding 

time, water drinking time, feed intake per visits, water intake per visits with high correlation 

compared to the gold standards (r2 =0.917, 0.963, 0.973 and 0.986, respectively) (Oliveira et 

al., 2018a). 

2.3.3.2 Accelerometers 

Accelerometers are attached to the body of the calf, generally to one of the limbs, neck, or 

ear(tag). They measure accelerations and are typically used to assess various activity related 

behaviours. Accelerometers are accurate in recording calf behaviours, including lying time 
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(Trénel et al., 2009; Bonk et al., 2013; Swartz et al., 2016; Finney et al., 2018; Roland et al., 

2018), lying bouts (Trénel et al., 2009; Bonk et al., 2013; Swartz et al., 2016; Roland et al., 

2018), standing time (Trénel et al., 2009; Roland et al., 2018), standing bouts (Trénel et al., 

2009), step counts (de Passillé et al., 2010; Swartz et al., 2016), locomotion time (Roland et 

al., 2018), and gait scoring (de Passillé et al., 2010), feeding time (Wolfger et al., 2015b; 

Roland et al., 2018), sucking behaviour from dams (Kour et al., 2018), and licking or sucking 

at objects, other calves’ bodies, or own body (Roland et al., 2018). After more than 10 years 

of development, accelerometers are now used to record a broader variety of behaviours and 

more detailed behavioural patterns, for example, recognizing between galloping, trotting, and 

walking (de Passillé et al., 2010), and recording behaviours such as eating, water drinking, 

chewing, positive social interactions, self-grooming, and inactivity (Rodriguez-baena et al., 

2020). Step counts were originally measured by pedometers recoding steps taken in a certain 

period of time (Hanzlicek et al., 2010). This activity parameter was later integrated into 

accelerometers (de Passillé et al., 2010; Szyszka et al., 2012; Pillen et al., 2016; Swartz et al., 

2016; Swartz et al., 2017).  

2.3.3.3 Temperature Sensors 

Boluses, IRT cameras, and thermometers are used to measure body temperature. These 

temperature sensors have been developed to record body temperature at different anatomical 

areas, enabling the measurement of rectal temperature (Toaff-Rosenstein et al., 2016; Toaff-

Rosenstein et al., 2018) or temperature around the rectal area (Scoley et al., 2019), reticulo-

rumen temperature (Timsit et al., 2011; Voss et al., 2016), eye temperature (Schaefer et al., 

2012; Lowe et al., 2019b; Scoley et al., 2019; Bell et al., 2020; Lowe et al., 2020), cheek 

temperature (Lowe et al., 2019b; Lowe et al., 2020), back, shoulder, and side temperature 

(Lowe et al., 2019b), and temperature at the base of the tail (Nogami et al., 2013). These 

cameras have also shown high accuracy in measuring cheek temperatures (Lowe et al., 2020), 

but do not found to be highly accurate in measuring temperature around the rectal area 

(Scoley et al., 2019) or core body temperature (Bell et al., 2020). In terms of eye temperature, 

IRT cameras seem to show varying levels of correlation between eye temperature and rectal 

temperature, e.g. high correlation (R2 ≥0.99) (Lowe et al., 2020), low correlation (R2 ≤0.32) 

(Scoley et al., 2019). A prototype thermometer provided by Nogami et al. (2013) has been 

found to measure tail temperature with high correlation compared to rectal temperature in 

calves. 
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2.3.3.4 Other Sensors and Techniques 

Microphones, when integrated into sound acquisition systems, can detect abnormal cough 

sounds (Ferrari et al., 2010; Vandermeulen et al., 2016; Carpentier et al., 2018) and 

rumination sounds in calves (Burfeind et al., 2011; Lopreiato et al., 2018; Rodrigues et al., 

2019). The performance of microphones varied in calves of different ages. Microphones 

accurately recorded rumination time in heifers older than 11 month old (Burfeind et al., 2011) 

and in pre-weaned calves (Lopreiato et al., 2018), but overestimated rumination time in 

weaning calves (Rodrigues et al., 2019). RFID ear tags can be applied to monitor grooming 

behaviour (measured via proximity to a brush) in heifers (Toaff-rosenstein et al., 2017). IRT 

cameras have also been used to assess respiration rate in calves, at a high level of accuracy 

(Lowe et al., 2019a). 

With the application of approaches such as computer vision or machine learning, an even 

broader range of parameters might be recorded with the available sensors. For example, 

Carslake et al. (2021) applied machine learning approaches to multi-class behaviour 

identification (including locomotor play, self-grooming, ruminating, non-nutritive suckling, 

nutritive suckling, active lying, and non-active lying) as well as behaviour quantification (i.e. 

behaviour distribution) using a single sensor (comprised of an accelerometer and gyroscope) 

in calves. Computer vision allowed 2D cameras to identify multiple behaviours, for example, 

pen entering, pen leaving, standing or lying static behaviour, turning, feeding and drinking 

behaviours (Guo et al., 2020). 3D cameras can monitor growth and morphology (i.e. BW, 

body mass, hip height, and withers height) in young calves and heifers (Song et al., 2014; Nir 

et al., 2018; Pezzuolo et al., 2018).  

Knowing which parameters sensors (or sensor combinations) can accurately measure can 

contribute to the development of an efficient sensor system at stage two and three. For 

example, accelerometers are not accurate in screening rumination time in calves (Wolfger et 

al., 2015b), but this can instead be achieved by microphones (Burfeind et al., 2011; Lopreiato 

et al., 2018). Both accelerometers and AFS can record feeding and water drinking behaviours, 

but AFS can record these behaviours directly without having to apply statistical models and 

are non-intrusive, i.e. not attached to the animal (Rodriguez-baena et al., 2020).  

To sum up, available sensors (AFS, accelerometers, IRT cameras, microphones, and 3D 

cameras) are accurate in measuring different behavioural or physiological parameters in 

calves, and approaches such as machine learning and computer vision broaden the range of 
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behaviours sensors can record. Future work should further develop behaviour classification 

and quantification by applying computer vision and machine learning approaches. 

2.3.4 Stage two: Data Interpretation - Outcomes of Algorithms 

In order to develop a sensor-based system that detects sick calves, i.e. sensor technology 

combined with algorithms, stage two studies must follow three steps: 1) identify how 

behavioural or physiological parameters change with disease, identified via a gold standard 

(this includes the selection of both parameters of interest and corresponding sensors), 2) 

investigating how these behavioural and physiological changes vary at which stage of disease 

they can first be detected; and 3) developing and testing the accuracy (or performance) of 

algorithms in detecting sick calves based on changes in these behavioural and physiological 

parameters. In this section, we highlight the algorithms that can detect diseases prior to 

clinical confirmation (Table 3), and summarize: 1) changes in behavioural and physiological 

parameters in response to disease, and 2) time course - disease states in animals typically lead 

to both behavioural and physiological changes over time.  

2.3.4.1 Changes in Feeding Behaviours 

Feeding behaviours and patterns, including intake, frequency, speed and duration at various 

time ranges, are commonly used parameters for the early detection of disease in calves 

(Johnson et al., 2002; Svensson et al., 2007). Note that most studies look at feeding 

behaviours aggregated at a daily level. With the application of RFID, individual calves are 

identified at AFS, whereby individual feeding behaviours can be recorded. For example, pre-

weaned calves diagnosed with BRD drank less milk on the day of clinical examination 

(Swartz et al., 2017) and on the first day of treatment (Knauer et al., 2017), drank milk slower 

four days prior to the clinical examination (Knauer et al., 2017), and performed less 

unrewarded visits to the milk dispenser three days prior to (Johnston et al., 2016), and on the 

first day of treatment (Knauer et al., 2017). Moreover, net daily energy intake (calculated for 

each calf by summing daily milk replacer and concentrate intake values) (Johnston et al., 

2016) and DMI (Jackson et al., 2016), were reduced in BRD-infected calves prior to the 

clinical examination, e.g. three days in Johnston et al. (2016); 6.8 days in Jackson et al. 

(2016). In calves diagnosed with NCD, daily milk intake and time at water trough dropped 

four days prior to clinical examination (Lowe et al., 2019b).  
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2.3.4.2 Changes in Activity 

Changes in activity parameters, such as step counts and lying behaviours, are used to detect 

sick calves. In calves diagnosed with BRD, for example, step counts (<6 days), lying bouts 

(<5 days), standing time (<1 day) were reduced (Pillen et al., 2016). In calves diagnosed with 

NCD, results are inconclusive regarding activity: lying bouts were both found to decrease (<7 

days) (Lowe et al., 2019b) and increase (<7 days to 3 days) (Swartz et al., 2020), and lying 

duration were both found to decrease (<6 days to 3 days) (Swartz et al., 2020) and increase 

(<7 days) (Lowe et al., 2019b). Finally, calves with inflamed navels show reduced lying time 

at day level after arrival at fattening farms compared to healthy calves (Studds et al., 2018).  

2.3.4.3 Changes in Other Parameters 

Coughing which is a typical symptom of BRD can be detected using microphones (Ferrari et 

al., 2010). Note that as opposed to activity and feeding behaviours, coughing has so far only 

been measured at group level. An increased coughing frequency was found to be correlated to 

BRD occurrence in group housed calves (Vandermeulen et al., 2016; Carpentier et al., 2018).  

Changes in body temperature can be used to detected sick calves before clinical examination. 

BRD-diagnosed calves showed increases in orbital (eye plus one centimetre surrounding the 

eye) maximum temperature (Schaefer et al., 2012) and reticulo-ruminal temperature, for 

example, - 136 h to - 12 h (Timsit et al., 2011) and - 3.5 d (Voss et al., 2016) relative to 

diagnosis. One important methodological consideration with thermometers is that recorded 

temperatures differ based on the body area that is investigated. For example, skin temperature 

was consistently 2 °C to 3 °C lower than the rectal temperature (Nogami et al., 2013), while 

reticulo-rumen temperature was consistently 0.57 °C higher than rectal temperature (Timsit et 

al., 2011). As long as these differences between recorded temperature and body temperature 

are consistent, this should not affect the detection of temperature increases due to diseases in 

calves. In calves diagnosed with NCD, temperature of the side flank and shoulder increased at 

least seven days prior to diagnosis (Lowe et al., 2019b). 

Changes in social behaviours were also detected in sick calves. Sick calves were found to 

show decreases in daily social grooming time and daily social lying time (lying within one 

body length of another calf) (Hixson et al., 2018).  

Some other behavioural parameters can be well recorded by sensors, but their potential in 

early disease detection is yet unknown. These include sucking behaviour (Kour et al., 2018), 
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rumination time (Rodrigues et al., 2019), and play behaviour (Rushen and Passillé, 2012; Luu 

et al., 2013; Größbacher et al., 2020). Further research into the link between these parameters 

and disease is warranted.  

As explained above, behaviour and physiology change with disease and these changes can be 

detected using sensors and algorithms. However, the particular behavioural or physiological 

parameter that is most accurate in detecting a diseased state, or is fastest at detecting a 

diseased state, will depend on the variations in the pathogenesis and potentially also the innate 

and adaptive immune response of the calves. Theoretically, ‘behaviours that are less critical 

for immediate survival and primarily support long-term fitness are most affected by disease’ 

(Weary et al., 2009), such as play and exploratory behaviours Cramer et al. (2015). In 

practice, the type of diseases and the age of the animals also need to be taken into 

consideration as they might influence behavioural deviations. For example, in parasitized beef 

steers and BRD-infected dairy calves, changes in activity (i.e. lying, standing, and step 

counts) enabled a better disease detection than feeding behaviours such as frequency and 

duration of feeding and drinking behaviour (Szyszka et al., 2012) and feed intake (Swartz et 

al., 2017). In identifying NCD-infected calves and BRD-infected steers, however, feeding 

behaviours (i.e. the number of unrewarded visits to an automated milk feeder, DMI and bunk 

visit duration) permitted a more accurate detection of disease compared with activities such as 

lying and standing duration (Sutherland et al., 2018; Kayser et al., 2020). In addition, certain 

diseases result in behavioural changes that are easier to detect at an earlier stage. NCD-

diagnosed calves, for example, displayed earlier and more consistent changes in feeding 

behaviours compared with BRD-diagnosed calves (Knauer et al., 2017). Further research is 

hence needed into identifying the best, most sensitive behavioural and physiological 

parameters that can identify specific diseases or diseased state on a generic level. 

2.3.5 Stage three: Information Integration - Outcomes of Models  

To date, sensor fusion (i.e. two or multiple sensors) was applied in a number of studies (n = 9, 

Fig. 3), in which data from accelerometers, thermometers, and AFS are integrated into one 

model to identify diseases including BRD (Kayser et al., 2020; Duthie et al., 2021) and NCD 

(Sutherland et al., 2018; Lowe et al., 2019b). Information integration, however, means more 

than a multiple-sensor-tool. First, ‘integration’ does not mean accumulating all the data 

obtained from different sources. In the design of systems at stage three, redundancy needs to be 

reduced for a disease detection model. To reach this, data mining (Knight, 2020), which allows 
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for a more complete understanding of different parameters in relation to disease occurrence, is 

a prerequisite. Data mining allows for the selection of the key parameters, the variation of 

which reflects health status with high accuracy. In this way by reducing the redundancy the 

number of sensors used and possibly attached to a calf will be reduced. Second, multiple data 

sources mean that sensor data are not the only sources of data. Economic insights, for 

example, were also suggested to be considered for the treatment decisions (Timsit et al., 2011; 

Kayser et al., 2019).  

Given that many sensors and techniques are already commercially available, it is crucial to 

choose an appropriate sensor system when recoding certain parameters. For example, the 

combination of video cameras and sensors (including thermometers, accelerometers, or AFS), 

although popular for research (n = 5), seems impractical for on-farm settings. This might be 

due to the number of cameras required and the time-consuming process of analysing the video 

footage. However, artificial intelligence is able to identify physiology and behaviour of 

animals using video footages, for example, in Guo et al. (2020), allowing for high accuracy 

with less labour.  

Therefore, ‘information integration’ means 1) selecting as few as possible meaningful 

parameters indicative of diseases when developing models (thereby avoiding redundancy or 

collinearity), 2) selecting the most appropriate sensors for recording these parameters. The 

integrated systems will give an alert when the current status of a calf deviates from its earlier 

patterns. Ideally, models at this stage includes a minimum number of sensors per animal, 

which is advantageous in terms of costs, maintenance labour but also maintaining the 

integrity, and freedom of movement of calves.  

2.3.6 Stage four: Decision Support - Automation 

At stage four, decision support means that the integrated system can, 1) identify which disease 

is occurring, 2) indicate whether to treat or not, and preferably 3) suggest which treatments to 

give, based on the developed model, and subsequent prognosis. Farmers can refer to the 

decision made by the system as support. To the authors’ knowledge, no such systems are 

available for early disease detection in calves. An example of a stage four system in dairy 

cows is oestrous detection and automatic identification of the best way to inseminate the cow 

(Mottram, 2016). In the situation of early disease detection in calves, however, so far only 

alerts are available. 
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For the future, automation is crucial - decision support system with an easy-to-operate user 

interface is what farmers need for an easy identification of sick calves. Current models may 

give some form of alert, yet cannot give automatic decision support. Another important 

characteristics of such systems is the possibility for the farmers to enter feedback (e.g. was the 

identified individual truly ill with the proposed disease and was the treatment efficient) so that 

the system can continuously learn and adapt to the specific farming conditions. Knight (2020) 

suggested a business model that bridges information integration and decision support. In the 

provided business model, farmers are buying service from service providers. A service 

provider purchase the technologies from different developers, and provide the service of 

installation, maintenance, data collection, and data integration, therefore provide decision 

support to the farmers.  

2.3.7 Introducing ‘Resilience’ Theory 

Following the above four-stage approach, the decision-support systems are developed to detect 

diseases at an early stage and propose a treatment (or decision), but cannot predict the 

likelihood of a clinically healthy animal to becoming diseased in the near future, i.e. its 

predisposition to diseases. In a paper discussing sensor technologies in dairy farming, the 

author argued that ‘the focus is on improving overall husbandry, rather than ‘solving’ specific 

disease problems’ (Knight, 2020). The same focus should apply to the dairy and veal industry 

as well. We therefore introduce ‘resilience’ theory, through which the developed system might 

be able to quantify resilience of individual animals, thereby identifying animals in a low-

resilience state. This potentially allows for early intervention in the husbandry system, whereby 

the environment or management in such a way that low-resilient individuals and the herd as a 

whole can maintain relatively healthy states.  

Resilience in farm animals has been defined as ‘the capacity of the animal to be minimally 

affected by a disturbance or to rapidly return to the physiological, behavioural, cognitive, health, 

affective and production states that pertained before exposure to a disturbance’ (Colditz and 

Hine, 2016). Calves falling sick can be equalled to a complex system transiting from one stable 

state (healthy) to another (unhealthy), with the return to the original state being more difficult 

than the simple cancellation of factors that caused the change in state. Such shifts in complex 

systems have been termed ‘critical transitions’ or ‘tipping points’ (Scheffer et al., 2009). When 

such complex systems are close to tipping points, the recovery rate of that system from small 

perturbations becomes very slow, and this is known as ‘critical slowing down’ (CSD) (Scheffer, 
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2012). For example, a cow showing ‘CSD’ before parturition, in this case using an 

accelerometer to assess activity (e.g. low average eating time, a disturbed circadian rhythm, and 

variance in ear temperature), is likely to develop periparturient disorders (van Dixhoorn et al., 

2018). CSD, which can be revealed through dynamic aspects of sensor data, is here seen as an 

increase in variance in the activity data, hence a loss of regularity. CSD, therefore, reflects a 

loss of resilience (Schffer et al., 2009; Scheffer, 2012). In still clinically healthy individuals, 

CSD reflects the animal’s vulnerability to pathogens prior to the disease, and hence reflects a 

state of low resilience. Identifying CSD in sensor data patterns of ‘low resilient’ individual 

animals, enables timely change to the environment of this animal in an attempt to increase 

resilience (e.g. remove stressors, improve nutrition). 

Current sensor tools focus on detecting early stages of disease, while sensor technology already 

allows us to analyse the dynamics of physiology and behaviour with high accuracy. Advanced 

analytical tools can estimate resilience status from the micro-recoveries in the data flow 

(Scheffer et al., 2018). These tools invite a fundamental rethinking of our approach towards a 

pro-active rather than reactive calf health management.  

2.4 Conclusion 

This review summarized the literature on sensor systems so far studied in the context of health 

monitoring in calves between 2009 to 2021, and revealed the current stage of development by 

categorizing each study based on a four-stage system stages (sensor technology, data 

interpretation, information integration, decision support). Our literature search demonstrated 

that most studies up to now are at stage one (sensor technique) or stage two (data 

interpretation), a few studies are at the beginning of stage three (information integration). 

Accelerometers, IRT cameras, microphones, 3D cameras can be accurate in measuring 

behavioural and physiological parameters in calves, among which deviations in behaviours 

(e.g. feeding, lying, and social behaviours), activity, and body temperature can be detected 

prior to the clinical examination and are promising for developing algorithms. To develop a 

health detection model with a minimal number of sensors, it is crucial to select appropriate 

sensor systems, which can record the most relevant parameters that show clear changes in 

response to diseases in calves. Clear gaps in research include stage three (information 

integration) and stage four (decision support) systems, as well as forecasting methods via the 

identification of low resilience animals.   
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2.5 Tables 

Table 1 Gold standards of studies at stage two and three
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Table 3 Performance of algorithms and models 
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Abstract 

Young calves are susceptible to disease. Studies indicate that calf activity often changes prior 

to a clinical diagnosis. Accelerometers can monitor activity continuously, offering an 

opportunity for early detection of disease in individual calves, based on deviation from 

‘normal’ activity patterns. This requires the prior understanding of activity patterns in healthy 

calves. This study aimed at describing the normal activity patterns of healthy group-housed 

calves. Holstein and crossbred calves (n=231; 17 ± 4 d of age at arrival) were housed in six 

large pens. Milk replacer was available via automated milk feeders twice or three times daily 

(at around 4h30, 11h00 and 15h30, each period of milk availability lasted about 6h). Calves 

had ad libitum access to starter. Accelerometers were fastened to one of the front ankles of 

each calf. High frequency (sum of every 15min) activity data were continuously recorded 

from 6 to 28 weeks of age. Clinical examination was carried out twice per week by trained 

staff between 8 to 25 weeks of age, whereby any symptom of disease (e.g. nasal discharge; 15 

variables in total) was scored a 1, 2 or 3 based on the severity, and subsequently summed to 

reach a total ‘health score’. A calf day was defined as a sick day when either: the total health 

score was ≥ 5, the temperature was ≥ 39.5, or diarrhoea was detected. All calf days defined as 

sick, and between two healthy diagnoses, were removed from the dataset. Generalized 

additive models with a Gaussian response were used to estimate daily group patterns of ‘being 

active’ and ‘being inactive’ per week, corrected for trends over time/age. From these activity 

patterns, the following features (per week) were extracted from the model: number of peaks, 

time (of the day) at which peaks occurred, the height (i.e. absolute value) of each peak, and 

the proportion of the night activity. The results showed that normal activity patterns can be 

described using the above features. The number of peaks in activity went from 4 to 3 over the 

fattening period, with most peaks corresponding to new milk availability times. A peak in 

activity was consistently observed prior to dark. Night-time activity was consistently around 

20% between 8 and 20 weeks of age and gradually increased between 21 and 25 weeks of 

age.  A leave-one-out analysis showed a medium accuracy of using the fitted model to predict 

activity patterns of a group as well as individual calves. The performance of the model was 

moderate indicating that most calves deviate in some way from this average pattern. The next 

step is to identify which factors lead to individual differences between calves and to develop 

models that have a high performance in detecting deviations from normal which are indicative 

of health or welfare issues in calves. 

Keywords: accelerometer, activity, disease, health monitoring, veal calves  
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3.1 Introduction 

The Netherlands is the biggest veal producer in EU, accounting for 36% of the total 

production in 2020 (Berkhout et al., 2021). With over one million veal calves being kept in 

around 1,600 fattening farms2, the Dutch veal sector produces 1.6 to 1.7 million calves per 

year (Berkhout et al., 2021). In the Netherlands, veal calves are typically transported from the 

dairy farm to the veal farm (via an assembly centre) between 14 and 35 days of age. Veal 

calves stay at the fattening farm until they reach their slaughter weight, which for white veal 

calves is typically around 225 kg at average 25 weeks of age (Berkhout et al., 2021). During 

the veal fattening period, one main problem is the high morbidity and mortality (Pardon et al., 

2013), leading to high use of antimicrobials (Pardon et al., 2013) and high resistance to 

antimicrobials in bacteria within this sector (Yang et al., 2020). Factors likely to be 

responsible for this high morbidity and mortality include: an abnormal navel, dehydration, 

presence of a sunken flank, arriving in the summer (Renaud et al., 2018a), higher numbers of 

calves transported to the same farm (Sandelin et al., 2022), larger age variation in the same 

arrival batch (Sandelin et al., 2022). Factors responsible for high antimicrobial usage include: 

beef breed (higher use compared to dairy and crossbreeds), calves arrival in winter months 

(higher use compared with arrival in April and May), and veal company (Bokma et al., 2019). 

When multiple sick calves are identified in a barn, group treatments might be applied given 

through the automated milk feeders (AMFs), leading to non-specific use and hence higher use 

of antimicrobials. To safeguard animal welfare and human health, it is imperative that farmers 

are able to identify sick calves, an early stage of disease, allowing timely and individual 

treatment application. However, current health monitoring is carried out on many animals by 

farm staff in a limited amount of time, which cannot guarantee every sick calf is identified at 

an early stage of disease, where symptoms are possibly difficult to spot.  

To identify a sick calf at an earlier stage, precision livestock farming (PLF) tools might 

provide support in addition to the conventional health check by farm staff. PLF tools able to 

identify disease in individual animals could provide alerts to farm staff, enabling more 

focused health checks by these staff and possible timely, individual treatments and separation 

of diseased animals, reducing further spread of diseases. An example is the application of 

accelerometers. 

 
2 Source: Landbouw; gewassen, dieren, grondgebruik en arbeid op nationaal niveau (cbs.nl) 
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Accelerometers attached to a limb monitor calf activity, and have been shown to have 

potential in disease detection such as bovine respiratory diseases (BRD, Ramezani Gardaloud 

et al., 2022) and neonatal calf diarrhoea (NCD) in calves (Goharshahi et al., 2021). Before 

defining an algorithm for early disease detection, it is important that we understand the 

activity patterns of healthy calves. To the authors knowledge, no study has previously 

described in detail the daily activity patterns and trends of healthy group-housed calves. The 

objective of the current study was therefore to define these ‘normal’ patterns of activity in 

healthy group-housed veal calves using generalized additive models. In particular we answer 

the following questions: 1) What does the daily activity pattern of healthy calves typically 

look like? 2) How do activity patterns of healthy calves change over the fattening period 

(from 8 to 25 weeks of age)?  

3.2 Materials and Methods 

The study was approved by the Central Committee Animal Experiments (Centrale Commissie 

Dierproeven, CCD; beschikking 2655) in the Netherlands.  

3.2.1 Animals and Management 

The study was carried out between July 2021 and January 2022 on a Dutch commercial veal 

farm. Two-hundred and thirty-one Holstein and crossbred calves (2 weeks of age at arrival) 

from the same batch were included. Calves were kept individually in so-called ‘babyboxes’ 

inside the group pens for the first four weeks following arrival and were thereafter released 

into six pens (9.15 x 7.5 m per pen, N = 38 ± 2 calves per pen, mean ± SD). The babyboxes 

were 110 x 80 cm whereby calves were able to turn around, and these boxes permitted tactile 

contact with neighbouring calves, as well as visual and auditory contact with calves in the 

same pen. Calves were re-grouped three times (i.e. last week in September, second week in 

October, first week in November) during the fattening period based on body size by farm 

staff. Calves were kept in the same barn during the entire fattening period. The ventilation 

system in the barn used a combination of electronic ventilation fans and side curtains. Each 

pen in the group housing was equipped with enrichment in the form of several suckler teats (± 

6 mounted on the wall and ± 6 in a bucket hanging from the roof), one calf scrubbing brush, 

one mineral block and one large yellow skippy ball hanging from the roof. Pens were 

equipped with rubber coated slatted flooring. Light was on when farm staff was present. 

Group and individual medicine treatments were administrated and recorded by farm staff. 

Calves received herd level treatment at arrival (ornithine transcarbamoylase, 5d), 1, 6, 7 week 
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on arrival (Doxycycline, 5d), 2 weeks on arrival (Tilmoved, 5d), 3 weeks on arrival (Ampisol, 

5d). Calves received herd level treatment in the form of sodium salicylate (1g/50kg; 3-7d) at 

0, 1, 2, 3, 4 ,5, 6, and 16 weeks on arrival. All herd level treatments were supplied in the milk 

replacer through the AMF. Sick calves were treated with antibiotics and (or) anti-

inflammatories. Calves were slaughtered at 27 to 28 weeks of age.  

 

Fig. 1 Set-up of the house1 

1Left, individual ‘babyboxes’; right, group housing. 

3.2.2 Feeding  

During individual housing, calves were bucket-fed with 4L of milk replacer twice per day (2L 

each meal) at approximately 8h00 and 18h00, and had ad libitum access to calf starter. During 

group housing, calves were fed milk replacer through an AMF (n = 6, Förster-Technik 

GmbH, Engen, Germany). A new allowance of milk replacer was available to the calves via 

the AMF twice daily (between week 8 and 20, at around 4h00 and 15h30, each meal lasted 

about 6h; from week 21 onwards, at around 4h00, 11h30, and 16h30, each meal lasted about 5 

to 6 hours). The average amount of milk replacer allowance increased from 6 L to 14 L per 

week gradually over the entire fattening period (Table 1). Water was supplied 6 h per day in 

two periods (from 8h00 to 11h00, from 20h00 to 23h00) through an automatic water drinker. 

Calves had ad libitum access to starter through one shared trough per group, Calf starter 

consists of straw and concentrates. Roughage contents changed over time and were mixed 

with approximately 15% finely chopped straw. Concentrate contents were gradually mixed on 

overlapping days (roughage concentrate contents: day 1 to 35 on arrival - protein:12.5%, fat: 

4.5%, crude fibre: 7.7%. Day 14 to 80 on arrival - protein: 17.0%, fat: 4.0%, crude fibre: 

5.3%. Day 70 onwards on arrival - protein: 14.0%, fat: 4.0%, crude fibre: 5.3%).  
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3.2.3 Activity  

Accelerometers (SmartTag, Nedap N.V., Groenlo, the Netherlands) were equipped to one of 

the front ankles of each calves on the day before they were released into their groups, 

approximately six weeks of age. High frequency activity data (sum of every past 15 min) of 

lying time, standing time, walking time, number of lying bouts, step count were continuously 

recorded throughout the fattening period in individual calves (6 to 28 weeks of age). 

3.2.4 Health Score  

A health protocol was created (Table 2) based on the Calf health scorer of the University of 

Wisconsin-Madison (available at https://www.vetmed.wisc.edu/fapm/svm-dairy-apps/calf-

health-scorer-chs/) and the Welfare Quality Protocol for veal calves (Welfare Quality®, 2009). 

Clinical examination was carried out twice per week and were performed by a trained staff 

(DS) between 8 and 25 weeks of age. Intra-observer reliability was verified by repeated 

scoring of calves during the past batches of the experiment (100% agreement was noted). A 

sick calf was defined meeting either of these categories: 1) a total score ≥ 5, 2) temperature 

score = 1, 3) diarrhoea score = 1. 

3.2.5 Statistical Analyses 

3.2.5.1 Data preparation 

Two-hundred-and-thirty-one calves were included for the statistical analysis. The raw activity 

data for 231 calves are available. Activity data were stored and organized in excel 

spreadsheets (version 2016, Microsoft Corp., Redmond, WA, RRID:SCR_016137). Further 

pre-processing and statistical analyses were performed using the R statistical software 

(version 4.3.0; R Core Team, 2022) and RStudio environment (version 2023.03.1; RStudio 

Team, 2020). Before analysis, the calves with missing activity data for a period longer than a 

day, and that are therefore sick for an extended period of time, were removed from the 

dataset. Furthermore, the activity data of animals that were declared sick during the course of 

the study were excluded for the duration of their illness, as these animals are likely to exhibit 

behaviours that deviate from their normal pattern. The period of sickness is defined as the 

time between the last visit (prior to the visit that declared the animal sick), where the animal 

was not declared sick, and the next visit (following the visit that declared the animal sick), 

where the animal was not declared sick. The final activity dataset used for statistical analysis 

comprised data on 218 calves over a period of 18 consecutive weeks. To characterize the 

activity pattern of the group of 218 calves over time using the statistical model described 
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below, the numerical variables “week”, “day” and “minute”, that respectively represent the 

number of weeks from the start of the study, the number of days from the start of the study 

and the number of minutes from the start of the day, were created. These three variables 

represent different scales of time and are used as explanatory variables to describe and predict 

the activity of the calves. The activity of calves is measured by the numerical variables “lying 

time”, “standing time” and “walking time”, that represent the number of minutes, out of a 15-

minute window, that a calf has spent lying, standing or walking. Because these three 

numerical variables measuring activity are related (the value of one is a linear combination of 

the other two), there were recoded into a single categorical variable “activity”, with categories 

“lying”, “standing” and “walking”. Our original goal was to employ multinomial logistic 

regression to predict the categorical “activity” using the three numerical time variables. 

However, due to large size of the activity dataset, fitting this complex model is 

computationally infeasible. Therefore, we transformed the three-category variable “activity”, 

with categories “lying”, “standing” and “walking”,  into a two-category variable. The 

relabelled categories became “inactive” and “active” by combining the original “standing” 

and “walking” categories. This modification allowed us to use a logistic regression model that 

is computationally feasible.  

3.2.5.2 Model 

The statistical model used to describe the activity pattern of the group of calves is provided in 

Equation (1). This model uses the two-category variable “activity” as response variable and 

the three numerical time variables “week”, “day” and “minute”, as explanatory variables. To 

describe in a flexible way the activity patterns, the effects of the three times variables were 

modelled with cubic splines, which are non-linear and smooth functions. Specifically, a 

smooth function 𝑓0 was used for “day” to describe globally the activity patterns and smooth 

functions 𝑓𝑗 for “minute” were used to describe the activity patterns on a weekly basis. The 

factor “pen” (𝛼𝑞) was included in the model as a standard fixed effect. Denoting by 𝑦𝑖𝑗𝑘𝑙 ∈

{0,1}  the observed response (0 for “inactive” and 1 for “active”), the logistic model is: 

{
𝑦𝑖𝑗𝑘𝑙 ∼ 𝐵𝑒𝑟𝑛(𝑚𝑖𝑗𝑘𝑙 , 𝑝𝑖𝑗𝑘𝑙)                                                  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘𝑙) = 𝑙𝑜𝑔 (
𝑝𝑖𝑗𝑘𝑙

1− 𝑝𝑖𝑗𝑘𝑙
) = 𝜇 + ∑ 𝛼𝑞

6
𝑞=1 + 𝑓0(𝑥𝑘) + 𝑓𝑗(𝑥𝑙) 

  (1) 

Here, 𝐵𝑒𝑟𝑛(𝑚, 𝑝) denotes a Bernoulli distribution with number of trials 𝑚 and probability 𝑝. 

Furthermore, 𝑝𝑖𝑗𝑘𝑙 represents the probability that calf 𝑖 ∈ {1, … ,218} is active in week 𝑗 ∈
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{1, … ,18}, day 𝑘 ∈ {1, … ,126},  and minute window 𝑙 ∈ {1, … ,96} (there are 96 15-minute 

windows per day), whereas 𝛼𝑞 denotes the effect of pen 𝑞 ∈ {1, … ,6} (the contrast 𝛼1 = 0 

was used to ensure model identifiability). 

The above model is a generalized additive model (GAM) and was fitted using the function 

bam (Wood et al., 2015; Wood et al., 2017; Li and Wood, 2019) of the R package mgcv 

version 1.8-42 (Wood, 2011), which is designed to fit GAM models to very large datasets, as 

in our case. 

Our interest lies in the estimated smooth curves of the logistic model that describe activity 

patterns, but also in summary statistics of these curves such as the number, time and height of 

peaks, and the proportion of night activity (before 4am and after 9pm). These summaries were 

extracted from the fitted model. 

3.2.5.3 Leave-one-out analysis  

As it is not possible to obtain variance estimates for the extracted summary statistics directly, 

we conducted an leave-one-out analysis (LOO). This consisted in iteratively removing one 

calf from the dataset, refitting the logistic model using the data of all other calves, and 

extracting summary statistics from the estimated curves. This process was repeated for each 

calf in the dataset. The variances of the leave-one-out summary statistics were used as 

estimates of the variance of the summary statistics on the complete activity dataset.  

Although the prediction of calf activity is not the main focus of the present paper, the LOO 

was also used to assess the out-of-sample prediction performance of the model. Each fitted 

model was used to predict the activity status of the calf that was left out. A data point is 

classified as "active" when its estimated probability of being active is greater or equal than 

𝑡 = 0.5. Then, performance is assessed by comparing predicted and observed classifications 

by reporting the sensitivity, defined as the proportion of predicted active states among truly 

active states, and the specificity, that is defined as the proportion of predicted inactive states 

among truly inactive states. Instead of reporting the sensitivity and specificity based on a 

single value for the threshold 𝑡, the receiver operating characteristic (ROC) curves that 

display sensitivity as a function of 1 - specificity for a range of values for 𝑡 are provided. The 

area under the ROC curve (AUC) is a numerical summary of this curve. ROC curves and 

AUC are reported for each left-out calf of the LOO and overall. 

3.3 Results 
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The histogram of the distribution of probability of being active over the fattening period (Fig. 

2) showed that between 8 to 25 weeks of age, healthy calves spent on average 60.7% of their 

daily time being inactive (i.e. lying) and 39.3% of their daily time being active (i.e. walking 

and standing). Average activity of being active and being inactive per week were summarised 

in Table 3 (the full summary of the weekly average of daily activity can be found in Appendix 

1). At 8 weeks of age, healthy calves spent on average 68.5% of their daily time being 

inactive and 31.5% of their daily time being active. As the calves grew older, they spent 

gradually less time being inactive (63% at 25 weeks of age) and consequently gradually more 

time being active (37% at 25 weeks of age). The proportion of night activity accounted for 

around 20% of the total activity between week 8 and week 20, and increased from week 21 

till reach to 27% of the total activity on week 25. The ROC curve of the LOO on group 

activity patterns of being active has an AUC of 0.67 (Fig. 3). The ROC curves of the LOO for 

each calf are presented in Fig. 4.  

 

Fig. 2 Histogram of the distribution of probably of being active over the fattening period 

 

Fig. 3 ROC curves of the LOO analysis on group activity patterns of being active 
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Fig. 4 ROC curves of the LOO analysis on individual activity patterns of being active 

  

Activity pattens between week 8 and 25 were plotted per week with smooth curves (Fig. 5). 

Four features (i.e. number of peaks, height of each peak, time of each peak, the proportion of 

night activity) were extracted from these group curves per week and these are shown in Table 

4. On average, the activity of healthy group-housed calves showed four peaks between 8 

weeks of age (at 4h48, 10h33, 16h05, and 21h07), 20 weeks of age (at 5h31, 10h48, 16h19, 

and 21h21). In contrast, the activity of healthy group-housed calves showed only three peaks 

between 21 weeks of age (5h31, 11h02, and 21h07) and 25 weeks of age (5h46, 12h29, and 

21h36). The timing of each peak shifted gradually to later times as calves grew older, except 

the first peak at 9 weeks of age, the third peaks at 10 and 17 weeks of age, and the fourth peak 

at 17 weeks of age. In terms of the height of peaks, which indicates a higher probability for 

calves to be active at this time, there was a shift over time as to which of the peaks was the 

highest. Between 8 and 12 weeks of age, the fourth peak of activity was the highest compared 

with other weeks (based on means comparisons). At 13 weeks of age the second and fourth 

peaks were the highest. Between 14 and 21 weeks of age, the second peak was the highest. 

Between 22 and 25 weeks of age, the third (and last) peak was the highest. The proportion of 

night activity (defined as the time between 21h00 and 4h00) was relatively stable between 8 

and 21 weeks of age except at 17 weeks of age where a slight drop in night activity was 

identified. The proportion of night activity increased between 22 and 25 weeks of age.  
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Fig. 5 Smooth curves of group activity patterns between week 3 and week 20 of attaching 

acceleromaters1 

1Week 3 equals to an average 8 weeks of age, week 20 equals to an average 25 weeks of age.  

3.4 Discussion 

The aim of this study was to describe the daily activity pattern of healthy, group-housed 

calves and changes in these activity patterns across the fattening period. To the authors’ 

knowledge, this is the first article describing the normal activity patterns of young healthy 

veal calves housed in large groups. The rationale behind this study, other than knowledge 

acquisition in itself, is that deviations from healthy patterns of behaviour, for example 

activity, may be indicative of disease, or other negative experiences such as social stress, in 

farm animals (Millman, 2007), which means that identifying sick calves first requires the 

understanding of healthy, normal patterns of behaviour. In particular, there may exist large 

individual variation in activity patterns within groups of healthy calves and activity patterns 

may be affected by the specific management routines implemented at the farm (Bus et al., 

2021). The understanding and prediction of group patterns in healthy calves is also valuable 

as it might provide a reliable trend of how the normal activity of calves changes across the 

fattening period: the normal activity patterns could be used as the benchmark for developing a 

disease detection or health monitoring model for individual calves.  

To describe the group activity patterns in healthy calves, we drew smooth curves of the 

activity for each week of the fattening period. These smooth curves allowed us to describe the 

activity patterns across multiple dimensions via so-called ‘extracted features’; in this case: the 

number of peaks in activity, the time at which the peaks took place, the height of the peaks, 

and the proportion of night activity. This is a new approach as previous studies typically 
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describe activity either in minutes per day (e.g. Omontese et al., 2022), or display average calf 

activity (standing or lying) across the day on a graph, without extracting key features (Webb 

et al., 2012, 2014, 2015: based on direct manual observations). The added value of the smooth 

curves is that they represent the expected increase in variables for specific moments of the day 

when all other parameters in the model are fixed (partial effects are adjusted or scaled 

variables adjusted for all other variables, e.g. pen, in the model including intercept). In the 

results, we presented one of the two opposite activity patterns, i.e. activity of ‘being active’, 

as opposed to ‘being inactive’. Following our two-category activity definition, the percentage 

of the activity of ‘being active’ equals to 1- (the percentage of the activity of ‘being inactive’), 

which means the smooth curves of the two activities have exactly opposite trends, therefore 

showing one of them is enough to clarify the pattern and changes in this pattern over time. 

The following discussion therefore uses the term ‘activity’ to represent the behavioural state 

of ‘being active’. 

We observed a stable number of four peaks of activity between week 8 and week 20 on 

average, followed by a stable number of three peaks between week 21 and 25. Between week 

8 and 20, milk replacer was made available by the AMF twice daily (at around 4h00 and 

15h30, each meal timeslot lasting approximately 6h), and was increased to three times daily 

from week 21 onwards (at around 4h00, 11h30, and 16h30, each meal timeslot lasting 

approximately 5 to 6 hours). The number of peaks, therefore, does not follow the number of 

milk feeding timeslots, as expected: an increase in milk feeding timeslots was expected to 

lead to a higher number of peaks of activity, but instead we noted a decrease in the number of 

peaks. Since the number of peaks in the weeks with three milk feeding timeslots corresponds 

exactly to the number of activity peaks displayed by the healthy calves, this could point to a 

better ability of calves to focus their activity around feeding moments, making them more 

efficient in the use of their time. Possibly young calves are less able to do so as they have a 

smaller stomach, or possibly a frequency of two milk feedings per day is simply too far from 

the voluntary milk feeding frequency of calves, which seems to be around 7 to 8 feedings per 

day (Webb et al., 2014), leading the calves to visit the AMFs more frequently. In terms of 

height of peaks, the height of peaks showed that calves become more and more active across 

the day, from morning to evening, which is consistent with previous research (Alawneh et al., 

2020). The respective height of peaks increased as calves grew older, especially the first and 

the second peaks between week 8 and 20. This suggested that the calves’ activity level 

increased in general as calves grew older. The first peak in all weeks occurred approximately 
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one hour after the starting of the first session of the milk replacer supply, with a constant 

timing of peaks in most of the weeks, i.e. 5h17 (between week 8 and 20) and 5h31 (between 

week 21 and 25), suggesting that the first peak is closely linked to the timing of milk feeding. 

The sudden drop of the height of first peaks between week 21 and 25 was speculated to be 

caused by the extra milk feeding timeslot implemented from week 21 onwards. Calves as a 

result had higher milk replacer intake during the day and were therefore potentially less 

hungry and hence less eager to access to the AMFs when the first feeding session started,, 

around 4h in the morning, which is reflected by lower peaks. Similarly, between week 8 and 

week 20: the third peaks occurred right after the starting of the afternoon milk timeslot 

(15h30), and the relative stable height of the third peaks indicated the normal activity level 

caused by the feeding; the difference of heights between the first and the third peaks narrowed 

down gradually as calves grew older, till the third peaks reached to similar heights as the first 

peaks at week 19 and week 20, suggesting that the calves were more eager to access to AMFs 

in the morning as they grew older. Our results were in line with recent studies reporting, that 

the activity patterns were related to the feeding time in calves (Omontese et al., 2022; 

Giannetto et al., 2023). 

In our study, most management procedures were taken place in the morning after the supply 

of the solid feed (at around 08h30), including daily inspection by the farmers, cleaning the 

house and maintenance, visits by the veterinaries, administrating individual treatments, etc. 

The second peaks between week 8 and 20 had stable time of peaks (around 10h30), the height 

of peaks increased gradually, with much higher heights than the first and the third peaks at 

corresponding weeks. This suggested that the second peaks should not (solely) be caused by 

the milk feeding, with no new milk timeslot occurring at this time, but might to a large extent 

be caused by the farm management activities and calves’ natural need to move during the day. 

From week 21 onwards, calves had an extra milk replacer supply in the morning (at round 

11h00 to 11h30), which may explain the second peaks in terms of time of peaks (between 

around 11h00 and 12h30) and height of peaks (have similar height of peaks as the third peaks 

between week 8 and 20) of the between week 21 and 25. We noticed a gradual increase of the 

first and the second height of peaks between week 8 and week 20, suggesting that the activity 

levels increased as calves grew older; the following drop of the first and the second peaks 

between week 21 and week 25 might indicated that calves were less active when having 

enough milk intake. Between week 21 and 25, we noticed the disappearing of the original 

third peaks (observed between week 8 and 20) in the late afternoon (around 16h00). We 
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speculated that this might be caused by the extra milk supply in the late morning (11h30). 

With three milk timeslots instead of two (each session lasted between 5 to 6 h), calves may 

have had sufficient milk intake and short waiting time in between the milk timeslots, 

especially between the second and third milking session. As a result, calves had access to 

AMFs with longer time window and could drank more milk, we assume that this avoid the 

“rush hour” at the starting of the milking sessions with a restricted feeding routine.  

We identified a relative stable final peak just before dark (between 21h07 and 21h36) and far 

from any kind of feeding or farm management timeslot. The heights of peaks (i.e. the fourth 

peaks between week 8 and 20, the third peaks between week 21 and 25) were higher than the 

putative milk-related peaks (i.e. first peaks between week 8 and 25 and third peaks between 

week 8 and 20), and closer in terms of height to the second peak apparent between week 8 and 

25 on the respective weeks. We speculated that the last peaks were due to calves’ need to 

express their natural behaviours, e.g. grazing at night (Kilgour, 2012) and play behaviour 

before dark (Jensen et al., 1998). A similar peak in calf activity just before dark, specifically 

around 20h00 and 22h00 was also reported by Webb et al. (2014), in terms of percentage of 

calves standing at a given time. In this study, we did not observe the behaviour of our calves 

manually. However, our pilot study (with video footage, not reported here) observed a peak of 

play behaviour in young calves in the evening. To further study the last peaks, we recommend 

incorporating behaviour recording as reference.  

We observed a relative constant night activity level (between 21h00 and 04h00), with a 

gradual increase in the last four weeks of the fattening period, when the calves have become 

much larger and consequently the space available in the pen much lower. This may result over 

time in large groups of calves becoming seemingly more active throughout the fattening 

period as a result of increasing disturbances between animals linked to limited space. 

Alternatively, since the change in night-time activity was detected by our model from week 

21 onwards, it might hence be linked to the changing of the milk feeding routine: the extended 

milk replacer feeding time and the increased milk intake and might result in higher level 

activities of calves during the night. However, this warrants further research. We also 

identified the deviations of time of peaks on some weeks compared to the weeks prior and 

after, e.g. the timing of the first peak in week 14, the third time of peak on week 10, and the 

fourth time of peak on week 17. To explain these deviations require further analysis of the 

dataset, combining the feeding behaviour obtained from AMFs and the detailed farm 

management activities registered in the logbook.  
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A medium AUC of the LOO was displayed from our fitted model predicting a calf (and the 

group) being active. The predictive model had a medium accuracy (0.646) in its prediction of 

whether a calf was active or not at a given time, with a low sensitivity (0.355) and high 

specificity (0.834), suggesting that the predicted activity of ‘being active’ accounted for a low 

percentage of the truly activity of ‘being active’ in calves (i.e. low sensitivity), while the 

predicted activity of ‘being inactive’ was close to the true inactive activity (i.e. high 

specificity). The high specificity of the current model might be useful for further detecting a 

sick calf because the activity of being inactive (i.e. lying time) changes in a sick calf (Lowe et 

al., 2019b, Swartz et al., 2020). However, activity of ‘being active’ also changes in a sick 

calf, e.g. standing time (Pillen et al., 2016). Further work is needed to improve the accuracy, 

especially the sensitivity of the model in its prediction of whether an individual calf is active 

or not. In a sick calf, we expect to identify the missing or the reducing of the features 

compared to the group activity patterns, e.g. missing or reducing of the standing peaks related 

to feeding, a reduced height of peaks of the last peaks, etc. Moreover, individual variations 

should also be considered when identifying the individual activity patterns deviating from the 

group activity patterns. The individual patterns in a calf could be related to many factors other 

than sickness, e.g. the dominance hierarchy and the related replacements at the feed bunk 

(Foris et al., 2019), calves’ personality, etc. Further study should look into the range of 

individual variations of the normal activity patterns.  

In this study, we applied a two-categorical activity variable to fit the model. A three-

categorical activity variable distinguishing standing, walking, and lying time, could represent 

more detailed activity patterns of a healthy calf. Further studies should look for a predictive 

model that can fit such categories. In addition, as explained in the Material & Methods, we 

did not include discreet variables (i.e. step counts, number of lying bouts) in the analysis 

among the five recorded variables of the activity dataset. Step counts (Pillen et al., 2016) and 

number of lying bouts (Swartz et al., 2020), however, were reported to be important 

indicators for detecting sickness in a calf. Further study should look for models fitting the 

discreet variables (i.e. step counts, number of lying bouts) from the current dataset, e.g. 0-

inflated possion model. Moreover, we obtained the feeding dataset from the AMFs, including 

individual feeding time, time visiting the AMFs, and milk replacer intake of each visit. This 

information might be useful for further developing a disease detection model, combining with 

the abnormal activity pattern detection. Similar suggestions were also given by recent studies 

(Bowen et al., 2021; Conboy et al., 2021; Lowe et al., 2021; Cantor and Costa, 2022).  
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3.5 Conclusion  

We conclude that the activity pattern of healthy group-housed calves, corrected for trends 

over time, can be described by a binomial logistic model of the pattern changes over weeks, 

with a moderate predictive performance. Interesting features to extract from such activity 

patterns include the number and timing of peaks, as well as the proportion of night-time 

activity. These features, and more specifically, meaningful deviations from the average levels 

of these features may correspond to health or welfare issues in calves.   
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3.6 Tables 

Table 1 Average milk replacer intake in healthy calves (±XX; SD) 

Week of age  Milk replacer intake (mL) 

8  6529 ± 826 

9  6580 ± 875 

10  6453 ± 886 

11  6762 ± 900 

12  6969 ± 887 

13  7241 ± 933 

14  7490 ± 869 

15  7570 ± 929 

16  7703 ± 1036 

17  7841 ± 1018 

18  8058 ± 1068 

19  8346 ± 1096 

20  8845 ± 1215 

21  9526 ± 1168 

22  10283 ± 1268 

23  11117 ± 1345 

24  11943 ± 1449 

25  12675 ± 1770 
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Table 2 Calf health score  

Calf health scorer  

Score 0 1 2 3 

Temperature (oC) 37.8-39.4 >39.4   

Navel infection Normal Enlarged, not 

warm or 

painful  

Enlarged, with 

pain, heat or 

moisture 

 

Prepuce/urine 

sucking 

Normal Moisture, 

enlarged, not 

warm, without 

pain 

Moisture, 

swollen, warm 

 

Attitude Normal, 

bright, alert, 

responsive 

Dull but 

responds to 

stimulation 

Depressed, slow 

to stand or 

reluctant to lie 

down 

Unresponsive to 

stimulation 

Behind in weight 

and condition  

Normal 15-30% >30%  

Bloat  Normal One side Two sides  

Abnormal 

breathing  

Normal  >40/min   

Cough  No cough Single cough 

occurrence 

Repeated or 

occasional 

spontaneous 

coughs 

Repeated 

spontaneous 

coughs 

Diarrhoea (calf 

number) 

Normal Faecal score = 

2 or 3 

  

Nose Normal Small amount 

of unilateral 

cloudy 

discharge 

Bilateral cloudy 

or excessive 

mucus discharge 

Copious bilateral 

mucopurulent 

discharge 

Eye Normal Small amount 

of ocular 

discharge 

Moderate 

amount of 

bilateral 

discharge 

Heavy ocular 

discharge 

Ear Normal Ear flick or 

head shake 

Slight unilateral 

droop 

Head tilt of 

bilateral droop 

Joint, lameness, 

bursa problems 

(note down front or 

hind legs)  

Normal  Slight 

swelling, not 

warm or 

painful 

Swelling with 

pain or heat 

 

Skin damage  Normal Single source 

of damage 

Multiple sources 

of damages  

 

Faecal (at pen 

level) 

Normal Semi-formed, 

pasty 

Loose, but stays 

on top of 

bedding 

Watery, sifts 

through bedding 

     

To check calf condition, compare our experimental calves with the rest of the stable (and not 

just the other calves within the same pen); 
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Total score besides temperature and diarrhoea: 4 (watch), 5 or more (treat), faecal score: 2 or 

3 (treat), temperature/diarrhoea=1 (treat) 

Temperature: write down the actual temperature  
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Table 3 Average activity of being active and being inactive in healthy calves 

Weeks of age  Active (%)  Inactive (%) 

8  31.5  68.5 

9  32.5  67.5 

10  32.1  67.9 

11  32.9  67.1 

12  34.1  65.9 

13  33.1  66.9 

14  33.4  66.6 

15  33.3  66.7 

16  33.5  66.5 

17  33.9  66.1 

18  35.8  64.2 

19  35.2  64.8 

20  35.7  64.3 

21  36.4  63.6 

22  36.2  63.8 

23  36.3  63.7 

24  37.0  63.0 

25  37.0  63.0 
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Table 4 Extracted features of the smooth curves of active activity patterns in healthy 

calves  
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Appendix 1 Weekly average summary of daily activity in healthy calves 

Weeks of 

age  

Standing time 

(%)  

Lying time 

(%) 

Walking time 

(%) 

Number of 

steps  

Number of lying 

bouts  

8  27.6 68.5 3.9 5040 19 

9  28.9 67.5 3.6 4754 18 

10  28.5 67.9 3.6 4775 19 

11  29.3 67.1 3.6 4780 18 

12  30.0 65.9 4.1 5311 20 

13  29.3 66.9 3.8 5047 20 

14  29.5 66.6 3.9 5186 19 

15  29.3 66.7 4.0 5230 19 

16  29.4 66.5 4.1 5374 20 

17  29.9 66.1 4.0 5261 20 

18  31.4 64.2 4.4 5719 20 

19  31.0 64.8 4.2 5566 21 

20  31.2 64.3 4.5 5841 21 

21  31.6 63.6 4.8 6120 21 

22  31.4 63.8 4.8 6168 21 

23  31.6 63.7 4.7 6051 22 

24  32.3 63.0 4.7 6065 21 

25  32.4 63.0 4.6 6000 21 
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Abstract  

Body weight (BW) is a robust indicator of growth performance and health for calves. A 

regular BW measurement could support the identification of deviations from an estimated 

growth curve, allowing for timely adjustments in feeding and assistance in health monitoring. 

Recent studies suggest that image analysis and machine learning can be applied to 3D images 

for BW estimation. This study aimed at exploring computer vision and machine learning to 

accurately estimate BW using features related to body size obtained from top-view images of 

calves. Holstein and crossbred veal calves (n = 228; 17 ± 4 d of age at arrival) were housed in 

six large pens, each with an automated milk feeder and a RGBD camera. Scale-based BW was 

used as ground truth (GT), each calf was measured three times throughout the 6-month 

fattening period. The images were obtained when calves visited the automated milk feeders 

(AMFs). First, a deep learning object detection method MaskRCNN was trained for detecting 

the calves in the images, which was found to have an accuracy of 90%. Six-hundred-and-

thirty-one images from 20 calves (35 ± 5 images per calf) containing the specific calves 

whose BW were measured, were selected by visual inspection. Using the images 

corresponding to a BW measurement, machine learning methods for predicting the BW were 

developed. One approach used features extracted from the pixel mask corresponding to the 

calf being weighed, to train the four BW models: linear regression (LR), support vector 

machine (SVM), random forest (RF), and extreme gradient boost (XGB). The other approach 

used a convolutional neural network (CNN) applied on the calf pixel instances with the 

measured weight as the target. Among the trained models, LR obtained the best result using 

features extracted from the RGB-mask and corresponding depth images with a median 

relative error of 0.05. However, this method is linear which may give errors for a longer 

period of estimation. LR and XGB are suitable models when BW needs to be extrapolated 

beyond the GT BW. For data with a non-linear correlation, RF, SVR and XBG obtained 

similar accuracy. However, smooth growth curves in individual calves have not yet been 

feasible especially for predicting previously unseen ranges of BW. Further work is required to 

improve the performance of the models, e.g. to improve the test set-up, to increase the number 

of images in the model training, and to ease the process of aligning suitable images.   

Keywords: growth curve, machine learning, veal calf, weight gain, 3D image 
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4.1 Introduction  

Body weight (BW) is a robust and direct indicator of growth performance and health for 

livestock (Maltz et al., 1997; Segerkvist et al., 2020). For meat-producing farms, the 

economic performance is directly linked to BW: low BW (gain) often means lower feed 

efficiency, health issues and costly treatments, and lower carcass weight at the 

slaughterhouse, thus lower profit. In veal sector, for example, diseases in calves such as 

bovine respiratory diseases and diarrhoea have an negative impact on hot carcass weight in 

slaughter (Pardon et al., 2013), and a higher arrival weight of calves is associated with a 

higher daily weight gain (Renaud et al., 2018c). Therefore, a regular BW measurement of the 

calves assist a better management procedure. In the veal sector, however, BW measurement is 

not done systematically: BW of calves on arrival is usually not recorded, live BW is not 

measured during the fattening period, only carcass weights are measured at the 

slaughterhouse.  

The most accurate way of BW measurement is using scales. However, traditional scale-based 

measurement makes regular BW measurement a difficult task due to the noisy character of the 

data. For example, eating, drinking or urinating or defecating will change weight rapidly and 

requires some data filtering to monitor significant weight changes. In addition, this requires 

much time and labour, and likely causes stress to the animals. Alternatively, measuring body 

dimensions e.g. body length, hip length, and withers height can give approximate BW because 

of its high correlation to BW (Dohmen et al., 2021). If done manually, once again this 

requires intensive labour, time and animal handling and can be dangerous for the farm staff 

when animals grow larger, thus not feasible for frequent measuring of individual calves in a 

large group.  

Recently, different approaches have been explored for automatic BW measuring in cattle 

rearing. Automatic scale-based systems have been developed for different rearing systems, 

e.g. walk over weigh system designed for extensive beef cattle systems (e.g. Tru-Test Flexi 

Mobile 4000c, Datamars Inc., US), or forefront weight scales designed to attach to an AMF 

for dairy and dairy-beef calves (e.g. electronic half-body animal scale, Förster-Technik, 

Germany) and Sharpe and Heins, 2023). However, the direct BW measuring devices have the 

same disadvantages as the conventional scales such as requiring repeated calibration and 

maintenance and are therefore less appealing to small and medium size farms (Wang et al., 

2021). An alternative approach which is both labour free and non-invasive is using 3D video 



62 

 

cameras, to combine computer vision and machine learning techniques in the estimation of 

BW (Wang et al., 2022). Despite the advantages of such an approach, the application of deep 

learning algorithms in BW estimation is still very limited (Dohmen et al., 2021). This method 

does not require much investment, allows for multiple images to be taken to develop an 

algorithm for body size or volume estimation, and subsequent BW estimation. Besides, 

remote monitoring allows animals to walk freely, and avoid the stress caused by the presence 

and handling of humans. In pigs, for example, BW can be estimated with images applying a 

neural network (Cang et al., 2019) or a YOLO-based algorithm (Franchi et al., 2023). To 

date, however, we have not found a study estimating BW based on deep learning using 3D 

images in calves housed in large groups.  

In this study, we applied the most widely used models used for machine learning, including 

Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Extreme 

Gradient Boost (XGB), and a convolutional neural network (CNN) regressor for the BW 

estimation. The objectives of this study were, 1) to train different models that estimate BW 

using body sizes extracted from 3D images, and 2) to evaluate the performance of these 

models. We expected that at least some of these models could accurately estimate the BW in 

veal calves based on the images obtained from 3D cameras.  

4.2 Materials and methods 

This study was performed on a commercial veal fattening farm in the Netherlands between 

July 2021 and January 2022. The study was approved by the Central Committee Animal 

Experiments (Centrale Commissie Dierproeven, CCD; beschikking 2655) in the Netherlands. 

This study is part of a larger project which applied multiple automated tools (including 

accelerometers, automated milk feeders (AMFs), and 3D cameras). In this study, only 3D 

camera related results were reported.  

4.2.1 Animals, housing, and management  

Two-hundred-and-twenty-eight Holstein and crossbred veal calves (17 ± 4 d of age at arrival, 

mean ± SD) were included in the study. Registration information of the calves was obtained 

from the farm. Both sexes were included (male N=202, female N=26). Calves were kept 

individually in so-called ‘babyboxes’ inside the group pens for the first four weeks following 

arrival and were thereafter released into six large pens (N=38 ± 2 calves per pen, mean ± SD). 

During group housing, calves were fed milk replacer through an AMF (N=6, Förster-Technik 
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GmbH, Engen, Germany). Water was supplied 6 h per day in two periods (from 8h00 to 

11h00, from 20h00 to 23h00) through an automatic water drinker. Calves had ad libitum 

access to starter through one shared trough per group. The calf starter consisted of a mixture 

of chopped straw and concentrates. The roughage contents changed over time and were mixed 

with approximately 15% finely chopped straw. Concentrate contents were gradually mixed on 

overlapping days (roughage concentrate contents: day 1 to 35 on arrival - protein:12.5%, fat: 

4.5%, crude fibre: 7.7%. Day 14 to 80 on arrival - protein: 17.0%, fat: 4.0%, crude fibre: 

5.3%. Day 70 onwards on arrival - protein: 14.0%, fat: 4.0%, crude fibre: 5.3%). 

Each pen in the group housing was equipped with enrichment in the form of several rubber 

teats (per pen: ± 6 teats mounted on the wall and ± 6 teats in a bucket hanging from the 

ceiling), one scrubbing brush, one mineral block and one large yellow skippy ball hanging 

from the ceiling. Pens were equipped with rubber coated slatted flooring. Artificial lighting 

was on only when farm staff was present (around feeding times: 8h00, 16h30; daily 

inspection), and the barn was most often lit by natural light through windows. The ventilation 

system in the barn comprised of ventilators and side curtains. 

4.2.2 Body weight data 

Scaled-based BW of individual calves were recorded three times during the fattening period 

(weighing scale: ISC-V, Henk Maas Scales, the Netherlands; e = 0.1kg, max = 300 kg, min = 

2 kg) starting at 10, 14, 19 weeks after arrival. For the practicality of the work, BW 

measurement was carried out after the clinical examination day (twice per week, for 16 

consecutive weeks. Data of clinical examination was used and reported elsewhere), two pens 

of calves were measured each time prior to their afternoon feeding session. A total of 650 BW 

measurements from 228 calves was obtained (missing data were due to 1) the difficulty of 

handling the calves, 2) calves’ sizes were too big to go through the gate of the weighing scale, 

3) calves were absent in the pen on the measuring date).  

4.2.3 Imaging protocol 

Depth cameras (Intel® RealSense™ Depth Camera D435, Intel Corporation, Santa Clara, 

California) were placed directly above the AMF, at a height of 1975 mm above floor level, 

and a horizontal distance of 825 mm to the teat of the AMF (Fig. 1). Active Infra-red stereo 

technology was used for depth measuring. The depth cameras recorded output in 720p at 

3μm×3μm pixel size. Open‑source software Intel® RealSense™ SDK 2.0 was provided for 
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automatic calibration (Intel®, 2021). RGB and depth images were taken when calves visit 

AMFs and were stored on the server.  

 

Fig. 1 The allocation of depth cameras above the automated milk feeders 

4.2.4 Data management  

All data processing was written in Python 3.8 (van Rossum and Drake, 2009). A flow chart 

(Fig. 2) was drawn to present how the data was processed. 

 

Fig. 2 Flow chart of data processing 
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4.2.5 Calf detection using MaskRCNN 

Two-hundred-and-fifty RGB images were used. To identify the individual calves from the 

RGB images, the time of the images being taken were manually matched to the same time a 

calf visiting the AMF (calves were identified at the AMF through their RFID ear tags. 

Feeding information including time visiting the AMF, feeding time, and milk replacer intake 

of individual calves were recorded by the AMF and stored automatically on the computer at 

the farm). Calf registration information (e.g. with fur colour recorded) was used for a manual 

double check if the calves were rightly identified. The 250 RGB images were annotated using 

image polygonal annotation tool labelme (Kentaro, 2016. 

https://github.com/wkentaro/labelme). The contour of the calf in the image were manually 

drawn using a sequence of points forming a polygon (Fig. 3). The enclosed area within the 

polygon is called the mask and it is the region-of-interest (ROI) for further processing to 

estimate the BW. An example of an annotated image with the calf pixel mask overlaid is 

shown in Fig. 4.  

 

Fig. 3 An example of drawing the contour of a calf manually 

 

Fig. 4 An example of an annotated image with the calf pixel mask overlaid 

A subset of the annotated RGB images (N=200) were used to train the deep learning model 

MaskRCNN (He et al., 2017) implemented in Detectron2 (Wu et al., 2019. 

https://github.com/facebookresearch/detectron2) for calf detection (Fig. 5), and 50 RGB 

images were used for validation. MaskRCNN is an object instance detector and outputs a 

mask of the pixels corresponding to the calf visiting the AMF in each RGB image. The ROIs 
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obtained by the RGB image were applied on the corresponding depth data obtained by the 

depth-camera to provide several features, including the total number of pixels in the mask, the 

minimum, maximum, mean, and median values of the depth data.  

 

Fig. 5 An example of an annotated RGB image 

4.2.6 Body weight estimation models 

To train machine learning methods to estimate the BW of a calf from an image, a set of 

images with the respective BW at the time of the image acquisition is required. Thus, for a 

particular calf which was weighed, a corresponding image on or close to the day of weighing 

needs to be located. This is not a trivial task because there are often more than one calf in the 

images, necessitating manual inspection and selection of the images. Following this protocol, 

twenty male calves were identified as being clearly visible without occlusions at the AMF 

top-view images taken on or close to the days of their respective weightings. Moreover, to 

obtain the individual growth curves for these animals, their subsequent images other than the 

dates of measurement were also selected manually. Those RGB images were selected with 1) 

a single calf in the image, 2) a complete calf in the image, and 3) with a 3-day gap in between 

images. Images from one day prior (or after) were selected when no suitable images can be 

found on the original selected days. This resulted in a total of 631 images being selected 

(approximately 35 ± 5 images per calf), out of which 55 images had a corresponding ground 

truth, i.e. scale-based BW measurement (2 or 3 images per calf).  

Four machine learning models: LR (Linear Regression), SVM (Support Vector Machine), RF 

(Random Forest), XGB (Extreme Gradient Boost) were applied to train the BW estimation 

models using the features obtained from the data frames. A CNN (convolutional neural 

network) regressor was also trained to predict the BW directly from an input image. Out of 

the methods that work with the features, LR (James et al., 2017) is the simplest and involves a 

linearly weighted sum of the features. Denoting the weight of the ith calf as yi and the feature 

vector as xi, the relation is formulated as 
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yi = Σ xi,j wj + w0  

The vector of regression coefficients w is estimated from the training data by solving the least 

squares problem 

arg minw Σ ( xi,j wj + w0 - yi)
2 

This approach has the restriction that it may be insufficient to model behaviour that deviates 

from a linear relationship. Support Vector Regression (SVR) (Drucker et al., 1996) 

overcomes this problem by using a kernel function φ such as the radial basis function to be 

able to model non-linearities. The idea of SVR is to fit the error inside a certain threshold 

which amounts to approximating the best value within a given margin, minimize  

wT w subject to |yi – wT φ(xi) - w0 | ≤ ε 

Another supervised learning method which can be used for classification as well as regression 

is the RF (James et al., 2017). It uses ensemble learning in that it combines predictions from 

multiple decision trees to obtain a more accurate prediction than an individual tree. RF is 

trained by iteratively building decision trees based on randomly selected data points and 

predicts a value on a new data point by averaging across the predicted values over all the 

trees. RF can model non-linearities but has a drawback in that it needs to be trained with 

expected values thus it may be inaccurate while predicting previously unseen ranges of 

values. 

XGB (Chen et al., 2015) uses gradient boosting on the decision tree algorithm for regression 

or classification. In this approach, new models are created that predict the residuals or errors 

of existing models and are then added together to contribute to the final prediction. A gradient 

descent algorithm such as Newton-Raphson is used to minimize the loss function when 

adding new models. 

Finally, CNN for regression consists of a deep neural network without a final non-linear layer, 

which is typically used for classification (Goodfellow et al., 2016). This approach uses the 

RGB and depth images as inputs to the network, along with the age in days (calculated as the 

difference between the date of the image and the respective calf’s date of birth) encoded as a 

constant matrix. The input is thus a five-channel tensor, which is resized to 128 times 128 

pixels. The architecture used is shown in Fig. 6. The first few layers called the convolutional 

layers apply filters and pooling on the tensor and at the end produce a vector of length 512. 

This part of the architecture was previously used for estimating the biomass of lettuce plants 
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(Zhang et al., 2020). The next part, called the fully connected layers, have connections 

between all nodes across two consecutive layers. The final layer outputs a scalar value, i.e. the 

predicted weight. While the CNN approach does not need to explicitly define the features 

from which to learn the weight, it requires many more data points and consequently, 

annotation effort and cost. Moreover, it is not straight-forward to incorporate additional 

information. 

 

Fig. 6 The architecture of the Convolutional Neural Network 
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4.2.7 Evaluation of predictive performance  

Leave-one-out cross validation was carried out to evaluate the performance of the five models 

described above. Each model was trained by leaving one animal out and training on all other 

animals. The absolute error and proportional error for the predicted BW were estimated 

compared to the ground truth.  

4.3 Results  

4.3.1 Ground truth data  

Six-hundred-and-fifty individual scaled-based BW measurements from 228 calves were 

obtained, 25 measurements failed due to the difficulty of handling the calves (N=23) or the 

calves were too big to walk into the scale (N=2). Descriptive statistics of scale-based BW 

measurement are presented in Fig. 7: calves had mean BW of 93 ± 8.7 kg (at 79 ± 6.5 days of 

age), 133.4 ± 10.7 kg (at 113 ± 6.1 days of age), and 179.4 ± 14.4 kg (at 145 ± 4.6 days of 

age).  

 

Fig. 7 Scattered plot of scale-based body weight measurement 

4.3.2 Validation of calf detection  

For the calf instance segmentation using maskRCNN, a precision of 93% was obtained (i.e. 

93% of detected calves were valid) on the validation set, with a recall of 100%: all valid 

annotated calves being detected (i.e. no false negatives). The Jaccard index or intersection 
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over union (IOU) which indicates the degree of overlap between the annotated ground truth 

pixel masks and the detected ones was found to be 94%.  

4.3.3 Predictive performance of supervised machine learning models 

The predicted BW obtained using the five models are presented in Fig. 8. For each selected 

calf, 3 estimated BW were plotted in comparison to the corresponding GT (i.e. scale-based 

BW measurement) of the same approximate dates. 

 

 

Fig. 8 Predicted body weights of the tested models 
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4.3.4 Leave-one-out cross validation  

Boxplots of absolute error and relative error of the five models are presented in Fig. 9. The 

metrics of leave-one-out cross validation are shown in Table 1 (absolute errors) and Table 2 

(relative errors). CNN obtained a much higher median absolute error and median relative 

error and was therefore dropped and not included in the below comparison. Among the other 

four trained models, in terms of absolute errors, LR had the lowest median absolute error yet 

had the widest spread of absolute errors; SVR had the smallest spread of absolute errors 

although not the smallest median absolute error; RF and XGB had the largest median absolute 

errors but had smaller spread of absolute errors than LR. In terms of relative errors, SVR and 

LR had the lowest median relative errors, but SVR had the lowest spread of relative errors 

while LR had the largest spread of relative errors; RF had the highest median relative error 

with a medium spread of relative error; XGB had a higher median relative error than SVR and 

LR, with the spread of relative errors larger than SVR yet smaller than LR.   

 

Fig. 9 Predictive performance of the tested models1 

1Left: absolute errors; right: relative errors. 

4.3.5 Growth curves of the models  

Growth curves estimated from the five models are presented in Fig. 10. To have a smoother 

growth curve, we added a two-neighbourhood median filter to the estimated growth curve: 

each BW point in a curve is based on the median of the two points prior to and after. Growth 

curves estimated from the models with a weight average filter are presented in Fig. 11, less 

outliers were generated compared to the growth curves of the raw data. As shown in Fig. 11, 

the estimated BW of the tested models showed relatively smooth increases (when GT BW 

data were available) before large fluctuations (when GT BW data were not available) except 

CNN (not included in the discussion because of the high errors). All four models had huge 
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outliers when no GT BW measurements were available. Within the range of available GT BW 

measurements, LR and XGB showed smoother growth curves than SVR and RF.  

 

 

 

 

Fig. 10 Estimated growth curves of the tested models 
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Fig. 11 Estimated growth curves of the tested models adding weight average filter 

4.4 Discussion  

The aim of the study was to test the performance of four supervised machine learning models 

and a CNN for regression in estimating the BW of group-housed calves, based on the 3D 

images taken above the AMFs. The tested models, except CNN, showed good predictive 

performance. Among the remaining four models, SVR and LR obtained the best performance 

in BW estimation in terms of absolute errors and relative errors. In terms of the estimated 

growth curves, however, XGB and LR showed smoother curves than RF and SVR.  

To evaluate the predictive performance of trained models, we applied the metrics absolute 

error, i.e. the absolute difference between the scale-based BW and the predicted BW from an 

image, and the relative error, i.e. the absolute error divided by the GT. LR is known as a 

benchmark performance to comparing with machine learning methods (Dohmen et al., 2021). 

In our study, LR obtained better performance (lower relative error) than RF and XGB but less 
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as good as SVR. This result is different from Gebreyesus et al. (2023) reporting that tree-

based group of supervised learning techniques (Catboost, AdaBoost, RF) resulted in the 

highest prediction performance in all the metrics used to evaluate technique performance (i.e. 

LR, tree-based regression, SVR).  

Among the four models, XGB and LR generated the smoothest growth curves, while XGB 

obtained less outliers compared to LR. SVR and RF had the most unstable growth curves: the 

estimated growth curves from SVR and RF seem to be smooth in the beginning of the time 

series, with errors and uncertainty building up over time. The predictions obtained with RF 

seem to plateau out or increase very slowly after the dates for which measurements were 

available. While this is not unexpected as RF needs to be trained with possible anticipated 

values, the resulting growth curves are chosen to an S shape. In terms of SVR, although 

obtaining the best predictive performance in estimating BW, the fluctuated curve from SVR 

indicated that it may not be stable for fitting the current dataset.  

In addition, although the CNN regressor performed the worst of the methods in both the cross 

validation as well as the almost linear final growth curve, it must be noted that deep learning 

typically needs many more data points than other methods. Nevertheless, the results obtained 

show the application of the complete pipeline, which can be expected to improve in future 

with additional data. 

In this study, we only obtained three scale-based BW measurements for each calf over the 

time-range of three months. Unfortunately, we dropped the fourth BW measurements because 

the calves were too big to handle and to walk through the scale. The lack of higher body 

weights resulted in the poor performance of the growth curves at older age (i.e. outside the 

range of the GT BW measurements). In the current study, we carried out a monthly scale-

based BW measurement, which is fine for a "proof of principle”. A more frequent BW 

measurement is required for the training of the models. In a commercial farm setting-up, 

however, this would cause additional stress moments to the calves therefore may not be 

favoured. A built-in automated BW scale incorporated into the AMFs, e.g. automatic calf 

weighing scale from Forster-technik (Automatic calf scale for the automatic feeder| Förster-

Technik (foerster-technik.com)), might be useful to obtain a larger reference dataset and not 

stress the calves. A comparison of the accuracy of these two methods (i.e. between automatic 

weighing scale and 3D cameras) might be interesting for further study. Furthermore, we also 

suggest a higher number of images be included for further training the models.   
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MaskRCNN was used for background subtraction, allowing for manually selecting suitable 

images for annotation. The mask had a high precision, suggesting that maskRCNN is a 

reliable model for calf detection in a farm environment. The manual annotation, however, is 

time-consuming, which limited our inclusion of more images for training maskRCNN model. 

A more efficient way of annotating (preferably automatic) should be explored. An alternative 

way is to apply deep learning techniques to detect calves directly without the need to 

annotate, e.g. 3D Time of flight (Dohmen et al., 2021). In addition, data preparation is crucial 

(Dohmen et al., 2021). In our study, many recorded images had calves in a position in which 

they bended lateral, for example to look aside or behind them. Such curved back might affect 

the generated mask of the MaskRCNN, further affect the model training and validation. To 

avoid bended positions, it is suggested to add barriers at the AMFs to allow calves stay 

straight when drinking milk. This also will reduce the fighting and the frequent calf 

replacements at the AMFs, allowing cameras to take more images of the same calves in 

similar positions, which benefits the later image selection process. Other images that are too 

dark or unclear, with more than one calf, occlusions, with incomplete calf image, should also 

not be included for the data processing. 

4.5 Conclusion  

3D images, subsequent features in combination with machine learning models, are able to 

predict the BW of calves with high accuracy. Among the trained models, LR obtained the best 

result using features extracted from the RGB-mask and corresponding depth images with a 

median relative error of 0.05. However, this method is linear which may give errors for a 

longer period of estimation. LR and XGB are suitable models when BW needs to be 

extrapolated beyond the GT BW. For data with a non-linear correlation, RF, SVR and XBG 

obtained similar accuracy. However, smooth growth curves in individual calves have not yet 

been feasible especially for predicting previously unseen ranges of BW. Further work is 

required to improve the performance of the models, e.g. to improve the test set-up, to increase 

images in the model training, and to ease the process of aligning suitable images. 
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4.6 Tables 

Table 1 Absolute errors of leave-one-out cross validation  

Method 

Absolute 

error  

(median, kg) 

Absolute error  

(maximum, 

kg) 

Absolute 

error  

(minimum, 

kg) 

Absolute 

error 

(spread, kg) 

 

Support vector regression       7.6 31.7 1.1 30.6  

Random forest 7.9 36.3 0.1 36.2  

Linear regression 7.0 40.8 0.2 40.6  

Extreme gradient boost 7.9 35.0 0.6 34.4  

Convolutional neural 

network 

12.4 90.1 0.7 89.4  

 

Table 2 Relative errors of leave-one-out cross validation 

Method 

Relative 

error  

(median) 

Relative 

error  

(maximum) 

Relative 

error 

(minimum) 

Relative 

error 

(spread) 

Support vector regression 0.049 0.280 0.008 0.272 

Random forest 0.064 0.321 0.001 0.320 

Linear regression 0.050 0.330 0.002 0.328 

Extreme gradient boost 0.058 0.309 0.005 0.304 

Convolutional neural 

network 

0.096 0.702 0.006 0.696 
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In this chapter, I will first summarise and discuss the results of all previous chapters, and 

identify the potential applications of current results, how the current study can contribute to 

alleviate the concern of high antibiotic use in the veal sector and how this study may 

contribute to improving calf health and welfare. I will also briefly share the future plans 

linked to further analysis of the dataset presented in this thesis. In the second part, I will jump 

out of the current line of thought, and bring readers to think with me, using our study as an 

example, to reflect on the (subtle) misleading promises precision livestock farming (PLF) 

might bring, and invite readers to think of the possibilities of embracing a PLF approach with 

different priorities, i.e. a more animal-oriented approach.   

5.1 Summary and applications of this thesis 

5.1.1 Health and welfare risks in veal production, and the PLF approach as a potential 

solution 

Following the conventional visual appraisal and clinical examinations at the fattening farm, 

sick calves are often identified at an advanced stage of disease or not at all (White et al., 

2009; Decaris et al., 2022), leading to a more intense and wide spread of pathogens, and 

subsequent group treatments with antibiotics. For the farmers, sick(er) calves mean lower 

carcass weight at the slaughterhouse and costs for treatments, and consequently less profit 

(Lora et al., 2022). The causes of the sickness, however, are complex and relate to many 

challenges veal calves face throughout the entire production cycle, e.g. at the source dairy 

farm (Renaud et al., 2018b), during transportation (Marcato et al., 2018), and at the fattening 

farm (Renaud et al., 2018a). Identified risk factors include: a young transport age (Marcato et 

al., 2022a; Marcato et al., 2022b), high numbers of calves (and the contacts among them) and 

large age variation of calves in the same arrival batch (Sandelin et al., 2022), mixing 

procedures, and a new housing environment (Marcato et al., 2018). Multiple approaches were 

proposed to reduce the risk factors that cause the sickness, e.g. allowing sufficient early dam 

contact before transport (Haskell, 2020; Webb et al., 2022), assuring an adequate body weight 

(BW) before transport (>50 kg), adequate transferring of passive immunity, specific 

immunity by vaccination (Renaud and Pardon, 2022), scoring dehydration and BW at arrival 

(Renaud et al., 2018c), classifying calves according to disease risk on arrival (Renaud and 

Pardon, 2022), and applying real-time health monitoring tools, e.g. accelerometers (Puig et 

al., 2022). In addition, standardized disease control programs were suggested to be developed 

and validated to allow a comparison across herd, regions or countries (van Roon et al., 2019). 
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PLF use in health management is a complex matter, which requires careful investigative steps. 

Other bigger changes proposed include the combination of sexed semen and beef-breed 

crossing, to obtain more male beef cross calves at veal farms, which grow faster and may be 

more resilient, or to use dual-purpose breeds of cattle to integrate the dairy/veal and beef 

systems (Webb et al., 2023). 

In this thesis, we did not directly look at the use of PLF for health detection in calves, but 

rather, dived into stage two of our four-stage PLF framework: namely data interpretation. This 

thesis laid the foundations for early health monitoring in veal calves, aiming at reducing the 

potential over-appliance of antibiotics, especially the group treatments. 

5.1.2 Summary of this thesis 

In chapter two, we adapted a four-stage approach as proposed by Rutten et al. (2013) for 

developing PLF-based early disease detection tools in veal calves, i.e. 1) sensor technique, 2) 

data interpretation, 3) information integration, and 4) decision support. At stage one, 

automatic feeding stations, accelerometers, infrared thermography cameras, microphones, and 

3D cameras are accurate in screening behaviour and physiology of calves. At stage two, 

changes in feeding behaviours, lying, activity, or body temperature corresponded to changes 

in health status, and point to health issues earlier than manual health checks. At stage three, 

accelerometers, thermometers, and automatic feeding stations have been integrated into one 

system which was shown to be able to successfully detect diseases in calves, including bovine 

respiratory diseases (BRD) and neonatal calf diarrhoea. Most studies up to now are at stage 

one (sensor technique) or stage two (data interpretation), a few studies are at the beginning of 

stage three (information integration). Clear gaps in research include stage three (information 

integration) and stage four (decision support) systems, as well as forecasting methods via the 

identification of low resilience animals. To develop a health detection model with a minimal 

number of sensors, it is crucial to select appropriate sensor systems, which can record the 

most relevant parameters that show clear changes in response to diseases in calves.  

Based on our proposed framework and our results, this thesis falls in stage two - we reviewed 

the available sensor technology options available for monitoring calf behaviour and 

physiology (Chapter 2), described activity patterns of healthy calves using accelerometers 

(Chapter 3) and tested the efficacy of models applied to 3D images to predict calf body 

weight (Chapter 4).  
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Chapter 3 used generalized additive models (GAMs) to describe the group activity patterns 

in healthy calves and the changes of these patterns over time. The fitted model used the 

extracted features of the acceleration data to describe the activity pattern of ‘being active’ of 

group-housed calves during the fattening period, and we obtained a medium predictive 

performance. Though individual calves may show different activity patterns in a specific time 

window, the smooth curve of the group activity pattern over a long period of time is relatively 

stable. The smooth curve of the group can therefore be used as a valuable reference to 

compare to the activity pattern of an individual calf. However, the existing computing power 

limited the depth at which we could investigate the current dataset. Further work and time is 

needed to describe the activity patterns in a more detailed way, e.g. identifying lying, 

standing, and walking time, exploring different methods to analyse the current dataset is 

needed, looking at milk feeding data and looking more closely at individual patterns. 

Compared to recent studies on similar topics (e.g. Cantor and Costa, 2022; Ramezani 

Gardaloud et al., 2022), our study differed on important aspects: it was based in a real 

commercial setting, with large numbers of animals, and the data were gathered over a long 

period of time (2 batches in 1 year). We further explored fitting the activity data of calves 

using GAMs, a model which was recently reported to fit data obtained from automated milk 

feeders for disease detection in pre-weaned dairy calves (Perttu et al., 2023). Our results 

showed the ability of using GAMs to describe ‘normal’ group activity patterns in healthy 

calves, which can be used as the reference for further detection of the calves showing the 

‘abnormal’ activity patterns, and further give early warnings to farmers. 

Chapter 4 explored computer vision using machine learning techniques in estimating BW of 

calves from 3D images. Scale-based BW, taken at three time points during the fattening 

period, were used as the ground truth. A deep learning object detection method MaskRCNN 

was trained for detecting the calves in the images, which was found to have an accuracy of 

90%. The extracted features from the images in combination with machine learning models, 

were able to predict the BW of calves with high accuracy (with median relative errors 

between 0.049 and 0.096). Among the trained models, linear regression obtained the best 

result using features extracted from the RGB-mask and corresponding depth images with a 

median relative error of 0.05. Based on the current BW estimation models, however, 

estimated growth curves in individual calves showed huge variations, especially for predicting 

previously unseen ranges of BW. Further work is required to improve the performance of the 

models, e.g. to improve the test set-up, to increase the number of images used for training, and 
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to ease the process of aligning suitable images. The current result showed the feasibility of 

applying computer vision to 3D images for BW estimation and the potential to estimate the 

growth curves of individual calves. Further training of these models with a large number of 

images are needed for a smoother growth curve estimation.  

5.1.3 Application of results in practice 

The selected automated tools in our study (i.e. accelerometer for disease detection and 3D 

cameras for BW estimation) correspond to the two fundamental goals of the veal production 

in practice: achieve low mortality and good growth rates (Sandelin et al., 2021). In Chapter 

3, we showed the ability of using acceleration-based activity to describe the normal activity 

pattern of a group of calves, with the potential of detecting the activity pattens of individual 

calves deviating from the normal activity patterns. The identification of ‘abnormal’ calves 

will allow for a timely check of the individual calves and early treatment, reducing the chance 

of a sick calf infecting other calves in the same group, therefore lower the morbidity and 

consequently the mortality of the group. In Chapter 4, we showed the investigated computer 

vision using the combination of 3D images and machine learning models to predict BW of 

calves with high accuracy. The next step of this analysis - drawing the growth curves of 

individual calves with high accuracy - will allow for a continuous growth monitoring, which 

will instantly reflect the efficiency of the feeding and the management routine at the farm, 

allowing for relevant adjustment to reach the optimal growth rate. This growth curve could, as 

with activity patterns, further be used to detect deviations from normal which may point to 

disease. 

5.1.4 Outlook and future work 

Further data analysis is planned to reach stage three: 1) to study the individual variability of 

activity patterns, and the factors underlying the variability, 2) to explore an optimal model to 

detect individual calves that show deviations from the normal activity patten, 3) to develop 

the growth curve for individual calves, and 4) to explore how BW can be used to reflect the 

health status of a calf. This requires further exploring of different models using statistical 

tools. After these steps, data from different techniques need to be integrated into one model, 

this includes not only the activity data from accelerometers (chapter 3) and the images from 

the 3D cameras (chapter 4), but also the feeding information obtained from automated milk 

feeders (not included in this thesis). The most relevant variables in relation to disease 

occurrence (or deviations from normal patterns) can then be selected at this stage. In this next 
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step, we need to search for appropriate models that can fit our large dataset, train and validate 

the models (an unused dataset consists of clinical examination scores, feeding information, 

and activity data is available). This approach is in line with suggestions from other studies, 

e.g. including field test and using previously validated reference tests to assess technology’s 

performance for early BRD detection (Garrido et al., 2023).  

5.2 Will the current PLF approach solve the problem? 

 If the automated tools have been developed following the proposed approach, how much can 

the developed tools contribute to solve the original problem, i.e. lower morbidity and 

mortality and subsequently reducing antibiotic use in the practice of veal rearing? In our case, 

we applied PLF tools at the fattening farm, which eliminated the possibility of dealing with 

the risk factors at the source farms and during transportation, which to a large extent cause the 

disease occurrence at the fattening farm. The author acknowledges other studies that improve 

the health status and welfare condition of calves with a focus on other stages in the 

production, e.g. at the source farm or during transportation (introduced in 5.1.1). One fact, 

however, separates our PLF approach (i.e. at the fattening farm) with other aforementioned 

approaches (i.e. at the source farm or during transportation): detecting a sick calf earlier might 

indeed reduce the appliance of antibiotics (both in volume and type), but the early detection 

only allows a sick calf to be identified earlier, which does not change the fact that the calf still 

got sick in the first place, and still lives in the same conditions with the same risk factors for 

disease. 

Putting the rationale behind the work in this thesis into question, the question is: should we 

focus our research efforts on detecting problematic issues in existing production systems, or 

on modifying these systems towards minimising risks or preventing issues arising in the first 

place? Modifying the current production systems, however, does not per se mean big changes 

for the commercial farms, unless the nature of the system itself is the main factor behind the 

issues that should be minimised. For example, to minimise lung infections, attaching sensors 

to calves might be less appropriate than improving the ventilation system in the house. 

However, preventive and risk reducing measures may require more and significant 

investments, e.g. reducing the stocking density, equipping better ventilation systems, or larger 

changes such as a re-design the farming system by incorporating animal capacities in 

engineering design (van Weeghel et al., 2021), or applying a new rearing system such as an 

‘outdoor veal calf’ system (Becker et al., 2020). Even bigger system changes that reduce large 
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causal factors to morbidity are envisaged, like including the lack of sufficient immunity 

transfer with milk from the dams, the transportation and mixing of young animals, and the 

low perceived value of these ‘surplus’ animals; this would be possible through the use of a 

combined dairy-beef farm using dual-purpose breeds of cattle (Webb et al., 2023). This is not 

easy, as the current calf production sector has evolved over many years with deeply rooted 

practices of involved stakeholders in the production chain, e.g. farmers, supply industry, 

advisors, the veal industry, etc. If any of the above changes mean that one or more of the 

involved parties has to sacrifice its interests, who should and will pay the costs of these 

changes?  

The discussion of balancing the interest of different groups is crucial but distracts us from 

focusing on the problem itself: to minimise morbidity in calves and reduce the use of 

antibiotics. Before reaching consensus (or compromises), different stakeholders at least 

should freely explore the uncompromised method to tackle the problem. Our proposed four-

stage approach applies PLF tools at the fattening period, which presupposes that the veal 

production system as it now stands will not (have to) change, leaving small changes and 

additions to the current rearing systems the only option. If so, attaching sensors might indeed 

be a good solution, because it requires no further changes of the current indoor group housing 

systems, and requires no change of the transport system from current source farms to fattening 

farms. Following the proposed four-stage approach, development of PLF tools adds to the 

existing systems, but does not solve the inherent causes of the problems. In addition, the ‘calf’ 

is not considered as stakeholder in the decision-making process. 

5.3 The ‘value hierarchies’ in PLF development 

This brings the discussion to the potential societal and other risks of developing PLF. The 

author acknowledges different concerns regarding developing and deploying PLF, especially 

to the farmers, such as the concerns for adopting new technologies (Smith et al., 2020; Stone, 

2020), job loss and job simplification (Werkheiser, 2020), and underexamined issues such as 

the costs/benefit ratio of incorporating PLF tools to the farmers. This section, however, will 

not touch upon these concerns. Instead, the author would like to (try to) bring the readers to 

think of the impacts of developing PLF from a holistic point of view, using this thesis as an 

example. The most worrying concern, to the author’s mind, is the lack of ‘value hierarchies’ 

(Werkheiser, 2020).  
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To explain value hierarchies, we need to discuss the ‘related values’ that are taken into 

consideration when developing PLF. When developing PLF tools, besides the original 

problem these tools were developed for, they might also address other issues related to 

livestock farming, e.g. improving animal welfare, reducing environmental impact, and 

increasing the profitability for farmers. At a certain point, however, there will be trade-offs 

and decisions to be made about how to prioritize values. Depends on who made the decisions, 

the decisions will dictate who benefits from these PLF tools and who is disadvantaged by 

these developments (Werkheiser, 2020). In the current thesis, PLF approaches focus on 

improving and optimising the current system without questioning the values (or reasoning) 

behind the existing system. Practically, when comparing different approaches, e.g. PLF-

approaches versus bigger changes through re-designing the housing system, the cost of re-

designing the housing and related facilities might be much higher than improving the current 

system by adding sensors. To be safe and keep the business running, ‘optimisation' of the 

current system seems like a logical approach.  

‘Animal welfare’ as part of the consideration has not been mentioned in this chapter. Animal 

welfare is defined here as the balance between pleasant and unpleasant experiences 

throughout the life of an animal (FAWC, 2009). The author argues that improving animal 

health and animal welfare is an added value, but not an initial drive of developing and 

deploying PLF tools. As discussed, animals (i.e. veal calves) were not taken into 

consideration in the process of the decision-making, and their needs as sentient beings were 

consequently not considered in the development of PLF. The difference between ‘improving 

animal welfare as a consequence’ and ‘improving animal welfare as an initiative’ determines 

how animals in general are treated. The former (i.e. improving animal welfare as a 

consequence) considers animals as products (corresponding to the name ‘veal industry’), with 

the identified problem being ‘a sick calf being identified late’, the solution being ‘detecting a 

sick calf earlier’. Improving the lung function of the calves, including the immune system and 

its development, is therefore out of scope. The latter (i.e. improving animal welfare as an 

initiative) recognises calves as sentient beings, keeping a healthy calf is no doubt a minimum 

requirement. Only when the need of calves as sentient beings are met (as much as possible), 

the calves will grow well and produce well. This, however, requires a holistic way of looking 

at the relationships between human activities (veal production as part of it) and nature (refer 

to Gaia theory, Latour, 2017). Recently, improving animal welfare has received more and 
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more attention, e.g. from consumers, NGO’s and supermarkets, regulations (e.g. 

‘dierwaardige houderij’ in the Netherlands), etc.  

The veal industry ‘tries’ to adapt to these changing requirements to keep the business running. 

However, this situation has not changed much compared to 15 years ago as described by e.g. 

Wathes et al. (2008). If the industry has first to survive as a business (with low profit) and 

make practical choices (to save costs), we as the consumers and the public need to think of the 

forgotten part to complete the loop: what are the consequences? Does the development and 

deployment of PLF help form a better livestock farming? And is it in line with the efforts to 

tackle the current crises, e.g. global climate change, global resource depletion, and global 

inequalities of living standards (Diamond, 2019)? Given the current lack of regulations 

limiting the development and fast deployment of PLF, further intensification of farms might 

become real (Werkheiser, 2020), which will also have a major impact, e.g. on the 

environment. The further consolidation of farms means exactly what Berckmans (2017) 

visualises: the number of farms decreases, the scale of single farms increases, and the overall 

production (per animal) increases. Hypothetically, with the support of PLF, the livestock 

sector reaches the level of production anticipated by Berckmans (2017) for 2050: a 70% 

increase of animal products (a small part is contributed by veal industry, as introduced in the 

general introduction). Given that the livestock sector contributes a major part of GHG 

emissions, it is hard to imagine a 70% increase of animal products with less or equal levels of 

GHG emissions. Has the potential environmental impact been considered into the value chain 

in the decision-making process of PLF deployment?   

5.4 Summary 

The above discussion used three values, i.e. ‘profitability’, ‘animal welfare’, and briefly 

mentioned ‘environmental impact’, as an example to show the potential risks of developing 

and deploying PLF to detect issues rather than look into the causes. It is complex to make a 

choice that balances different interests and values. However, given that ‘sustainable farming’ 

is accepted as consensus at different levels (government, public, corporate, etc.), the author 

invites the readers to start considering how to set up an appropriate value hierarchy, that 

embraces PLF development and a more sustainable livestock farming without further 

compromising the environment (Tullo et al., 2019), natural resources, and animal welfare 

(Rowe et al., 2019; Tuyttens et al., 2022). This requires the efforts of the whole of society, 

including multi-stakeholder engagement, public-private partnerships, awareness raising and 
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capacity building, strengthening the policy environment, research and innovation, metric-

based monitoring and evaluation (One Planet Network, 2020). Suggestions were provided 

involving different stakeholders, e.g. reflecting consumer perception and consumer choice to 

the farmers to drive the improvement of rearing conditions (Haskell, 2020), or proposing new 

framework of the livestock farming system such as ‘animal-centred farming’ (proposed by the 

research group of Bas Rodenburg, Utrecht University, the Netherlands). In essence, it is 

possible to avoid the conflict between developing and deploying PLF and incorporating 

important values into this process, e.g. between animal welfare and efficient farming 

(Dawkins, 2017), or between animal welfare and sustainable development (Keeling et al., 

2021). 

To summarise, the current development of PLF tools reflects the veal industry’s value 

preference, i.e. detecting health issues early and monitoring animal performance to maximize 

efficiency and production. The initial step of developing PLF tools to assist a more 

sustainable livestock farming, lies not on developing the techniques, but on re-setting the 

value hierarchies.  
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Summary of the thesis 

The veal industry was created to make use of the dairy calves that are not wanted or needed 

for herd replacement, commonly referred to as ‘surplus’ calves. These calves are typically 

transporting from different source dairy farms, sometimes across country borders, at the early 

age of around two to four weeks to a fattening veal farm. This dairy-veal chain presents 

potential concerns for calf welfare, including transportation of young animals, high risk of 

disease, and barren housing. One important concern for the farmers in this production system 

is the high morbidity and high mortality rates, resulting in often a high use of antibiotics at 

veal farms. 

Precision livestock farming (PLF) is a promising avenue in the improvement of health care in 

livestock, and specifically in health monitoring, to assist the conventional health check by 

farm staff (which often identify a sick calf at a late stage), enabling timely individual 

treatments and separation of diseased animals, reducing the potential antibiotics use. The 

advances of PLF make it possible to start developing an automated tool for health monitoring 

in veal calves: 1) the decreasing cost and increasing implementation of electronic tools allows 

for the application of ‘sensing solutions’ on a large scale, such as in commercial veal fattening 

farms, 2) behavioural and physiological parameters can nowadays be automatically recorded 

at individual animal level, continuously and over long periods of time, allowing us to follow 

the course of the whole (or as long as possible) fattening period, 3) previous studies reported 

automated detection of specific diseases such as respiratory disease, which proved the 

feasibility of this PLF approach, 4) the advantage of machine learning in this context is that 

these systems can learn and adapt according to the data, without the need for human input, to 

develop the most adequate algorithms to describe and predict patterns of data. 

The aim of this thesis was to lay the foundations for the development of an automated health 

monitoring system for veal calves by developing algorithms that help describe and predict calf 

patterns of behaviour and anatomy. Three paths were followed to achieve this aim:  

In Chapter 2, we adapted a four-stage approach for developing PLF-based early disease 

detection tools in veal calves, i.e. 1) sensor technique, 2) data interpretation, 3) information 

integration, and 4) decision support. At stage one, automatic feeding stations, accelerometers, 

infrared thermography cameras, microphones, and 3D cameras are accurate in screening 

behaviour and physiology of calves. At stage two, changes in feeding behaviours, lying, 

activity, or body temperature corresponded to changes in health status, and point to health 
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issues earlier than manual health checks. At stage three, accelerometers, thermometers, and 

automatic feeding stations have been integrated into one system which was shown to be able 

to successfully detect diseases in calves, including bovine respiratory diseases and neonatal 

calf diarrhoea. Most studies up to now are at stage one (sensor technique) or stage two (data 

interpretation), a few studies are at the beginning of stage three (information integration). 

Chapter 3 used generalized additive models to describe the group activity patterns in healthy 

calves and the changes of the patterns over time. The fitted model used the extracted features 

of acceleration data to describe the activity pattern of ‘being active’ during the fattening 

period and we obtained a medium predictive performance. Though individual calves may 

show different activity patterns in a specific time window, the smooth curve of the group 

activity pattern over a long period of time is relatively stable, therefore can be used as a 

valuable reference to compare to the activity pattern of an individual calf. However, the 

existing computing power limited the depth that we could apply for interpretation of the 

current dataset. To describe the activity patterns in a more detailed way, e.g. identifying lying, 

standing, and walking time, exploring different methods to analyse the current dataset is 

needed. The understanding of activity patterns of healthy calves can be helpful in future to 

further develop a model identifying the abnormal patterns in individual calves, which give 

early warnings to farmers.  

Chapter 4 explored computer vision and machine learning techniques in estimating body 

weight (BW) of calves using images obtained from top-view RGB-D cameras. Scaled-based 

BW, taken at three time points during the fattening period, were used as the ground truth. A 

deep learning object detection method MaskRCNN was trained for detecting the calves in the 

images, which was found to have an accuracy of 90%. The extracted features in combination 

with machine learning models, are able to predict the BW of calves with high accuracy. 

Among the trained models, linear regression obtained the best result using features extracted 

from the RGB-mask and corresponding depth images with a median relative error of 0.05. 

However, smooth growth curves in individual calves have not yet been feasible based on the 

current BW estimation models, especially for predicting previously unseen ranges of BW. 

Further work is required to improve the performance of the models, e.g. to improve the test 

set-up, to increase the number of images in the model training, and to ease the process of 

aligning suitable images. 
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Based on our proposed framework and our results, this thesis falls in stage two - we reviewed 

the available sensor technology options available for monitoring calf behaviour and 

physiology (Chapter 2), described activity patterns of healthy calves using accelerometers 

(Chapter 3) and tested the efficacy of models applied to 3D images to predict calf BW 

(Chapter 4).  

Chapter 5 summarized and discussed the results of all chapters in an integrated way and 

identify the potential applications of current results, how it can contribute to alleviate the 

problem of high antibiotic use and subsequently improve welfare and health, the author also 

briefly shared the further plan of analysing the current dataset. This thesis focuses on learning 

about the patterns in healthy calves, which lay the foundations for the next step of detecting 

‘deviations’ of patterns in individual calves. The final goal of these automated health 

monitoring tools is to detect sickness in calves at an early stage, aiming at reducing the 

potential anti-biotics appliance, especially at the group level.  

Furthermore, along this research approach, the author noticed the risks of developing PLF-

based solutions. In Chapter 5, the author challenges the logic behind this approach, points out 

the missing values in the process of developing and deploying PLF tools, and invite the 

readers to think about alternatives on how we could reduce the antibiotics use in veal rearing, 

with a more animal-oriented consideration, to answer the societal demand such as farmers’ 

need, the nitrogen crisis in the Netherlands, to address global crisis including global warming 

and the global resource depletion, and more importantly, to let PLF be a tool, not the goal.    
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