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A B S T R A C T   

Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil 
quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air 
and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical 
research is required to address the challenge of selecting an optimal prediction model that is both cost-effective 
and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling 
points in the eastern plains of China (107,200 km2). The performance of different prediction models for mapping 
soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a sta-
tistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the 
major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major 
drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/103 km2), the 
geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian 
simulation) performed best, followed by the machine learning models (random forest, cubist and support vector 
machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a 
considerable impact on model accuracy, and the advantages of machine learning models became apparent when 
sampling densities were below 20% (5.31 samples/103 km2). Therefore, the best combination of prediction 
model and sampling density should be selected to obtain maps of soil sand content economically and accurately. 
This study provides a valuable reference for the selection of prediction methods in the practical application of 
DSM.   

1. Introduction 

Soil texture is the fundamental physical property of soil and has an 
important influence on other soil properties (Hu et al., 2021; Tang et al., 
2022). Sand particles, representing large soil particles, play a crucial 
role in the transport and movement of water, fertilizer, air, heat, and 
microorganisms. Soil sand content directly influences soil fertility and 
soil quality and ultimately affects crop yield (Laborczi et al., 2019; 
Gupta et al., 2022; Yageta et al., 2019). Soil sand content is influenced 

by multiple factors, including climate, parent material, topography, and 
anthropogenic activities. As a result, it demonstrates a distinct spatial 
distribution pattern with certain regularity and zonality (Chen et al., 
2022; Lamichhane et al., 2019; Zhang et al., 2017). Therefore, accurate 
prediction of the spatial distribution of sand content and an under-
standing of its spatial distribution pattern and influencing factors 
contribute to precise regional land management, soil quality evaluation 
and soil erosion control. 

Traditional soil mapping methods rely on expert knowledge and a 

Abbreviations: DSM, digital soil mapping; OK, ordinary kriging; SGS, sequential Gaussian simulation; COK, co-kriging; RF, random forest; SVM, support vector 
machine; RMSE, root-mean squared error; R2, coefficient of determination; MAE, mean absolute error. 
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large amount of sampling data, making soil surveys very laborious, time- 
consuming and expensive (Liu et al., 2022; Sanderman et al., 2017). In 
recent years, digital soil mapping (DSM) technology has been recog-
nized as an innovative and effective way of expressing the spatial dis-
tribution of soil properties. It has demonstrated significant potential for 
updating maps of soil properties (Martin et al., 2021; Wadoux et al., 
2020; McBratney et al., 2003). DSM technology effectively achieves a 
pattern of inferring soil information based on the soil-forming envi-
ronment, overcoming the data limitation of traditional mapping 
methods and allowing for more accurate and high-resolution soil maps 
(Liu et al., 2020). Importantly, the results of DSM are reproducible and 
able to quantify uncertainties (Arrouays et al., 2020). 

DSM methods include linear models, geostatistical models, machine 
learning models and hybrid models (Minasny et al., 2013; Zhang et al., 
2017). The most representative of these are geostatistical models and 
machine learning models. The geostatistical method is an optimal linear 
unbiased interpolation valuation method based on a semi-covariance 
function that fully accounts for the spatially varying characteristics of 
the variables (Madenoglu et al., 2020). Ordinary kriging (OK) is the most 
representative geostatistical model. It had been widely used in early 
spatial mapping of soil properties due to its operability, but the method 
relies on the spatial autocorrelation of predictor variables and disregards 
the correlation between soil characteristics and environmental factors 
(Ma et al., 2022). Its derivatives, such as regression kriging and co- 
kriging (COK), overcome this problem. The inclusion of auxiliary vari-
ables can lead to more accurate predictions (Wan et al., 2021). Machine 
learning models learn patterns from data to identify relationships be-
tween soil characteristics and environmental factors, which are then 
used to predict soil properties (Tian et al., 2022; Zhang et al., 2017). 
They include support vector machine (SVM), cubist, artificial neural 
network model, Bayesian model and random forest (RF). Machine 
learning models have become an increasingly mainstream approach for 
DSM because they can handle a variety of complex nonlinear problems 
with no requirement for data distribution and perform well over large 
areas (Zhang et al., 2017; Lamichhane et al., 2019; Wadoux et al., 2020; 
Poggio et al., 2021). 

So far, it is not clear from the literature which type of model performs 
best for soil particle composition prediction. Zhao et al. (2022) 
compared the predictive performance of seven different models for soil 
clay content mapping in Australia, where the sampling density was 170 
samples/103 km2 and found that the optimal prediction model was RF. 
Beguin et al. (2017) compared eight different approaches in Canada 
where the sampling density was 0.17 samples/103 km2 and concluded 
that Bayesian inference with geostatistical model exhibited the best 
prediction performance for soil sand content mapping. Silva et al. (2020) 
compared three different mapping methods in Brazil, where the sam-
pling density was 83 samples/103 km2 and found that SVM was the 
optimal model for predicting sand content and clay content. These 
studies showed that the predictive performance of mapping is highly 
dependent on the model, and the appropriate choice of model de-
termines the efficiency of the mapping and the reliability of the results 
(Sun et al., 2022; Veronesi and Schillaci, 2019). In addition to predictive 
models, sampling density in DSM has a significant impact on the accu-
racy of soil mapping (John et al., 2022; Lai et al., 2021). However, the 
sampling densities in these studies varied considerably, and it is worth 
investigating whether the discrepancies in conclusions are related to the 
differences in sampling densities. 

The sampling density is a key factor in determining the cost- 
effectiveness of mapping, and its influence on mapping accuracy 
should therefore be given considerable attention. Guo et al. (2018) 
compared the performance of a partial least squares regression model at 
sampling densities ranging from 20 to 626 samples/km2, while Yang 
et al. (2020) evaluated the performance of a random forest at sampling 
densities ranging from 2.59 to 32.47 samples/km2. Both studies revealed 
that higher sampling densities led to better model accuracy. Long et al. 
(2018) investigated the effect of sampling density ranging from 9 to 10 

samples/km2 on OK accuracy and concluded that the prediction accu-
racy was more sensitive to sampling density in flat areas. However, 
many studies have solely focused on the impact of sampling density on 
the accuracy of a single prediction model, neglecting the need for a 
comprehensive evaluation of the multidimensional integration of sam-
pling density and prediction models. Further research is needed to 
determine the optimal combination of sampling density and prediction 
model for obtaining accurate and cost-effective spatial information on 
soil properties in a specific area. 

The eastern plain of China, where Jiangsu Province is located, is one 
of the regions in China with the most extensive plain and cultivated land 
area (Qu et al., 2023). The region includes wide spread area with a high 
sand content due to the alluvial deposits of rivers and the deposition of 
the sea. The region is characterized by a loose soil structure and abun-
dant rainfall, which makes it a high-risk area for soil erosion (Qu et al., 
2022). Consequently, there is an urgent need for comprehensive data on 
the distribution of soil sand content within the area for agricultural 
development and soil conservation. 

In this study, we compared the performance of two main types of 
DSM models (geostatistical models and machine learning models) in a 
large plain area, not only in terms of overall accuracy and local uncer-
tainty but also in terms of sensitivity to sampling density. More specif-
ically, we compared increasing sampling densities for soil sand content 
mapping with OK, sequential Gaussian simulation (SGS), COK, RF, 
Cubist and SVM. The aims of this study were to i) identify the driving 
factors of the spatial distribution of soil sand content; ii) explore the 
most suitable mapping models for sand content in plain areas; and iii) 
explore the impact of sampling density on the accuracy of mapping 
models. 

2. Materials and methods 

2.1. Study area 

The study was carried out in Jiangsu Province (30◦45′-35◦08′N, 
116◦21′-121◦56′E), situated in the eastern coast of China, with a total 
area of 107,200 km2 (Fig. 1). The northern regions are mostly charac-
terized by a warm temperate humid, semi-humid monsoon climate, 
whereas the southern regions are predominantly marked by a subtrop-
ical humid monsoon climate. The mean annual precipitation is 
800–1,200 mm. Precipitation is concentrated in summer, accounting for 
half of the annual precipitation, and precipitation in winter is the lowest, 
accounting for approximately one-tenth of the annual precipitation. The 
mean annual temperature is 13–16 ◦C, with a decreasing distribution 
from south to north. Jiangsu is one of the provinces with the lowest 
elevation in China, with most of the area below 50 m above sea level. 
The low hills predominantly cluster in the southwest region, whereas the 
remaining approximately 85% of the area is composed of plains with 
elevations less than 20 m above sea level. Wheat, rice, and oilseed rape 
are the main crops. The most frequent soils are Inceptisols, Alfisols and 
Entisols according to the USDA classification (Xie et al., 2022). Sandy 
soils in the study area were widely distributed along the abandoned 
Yellow River in the north, the coastal area in the east and the alluvial 
area of the Yangtze River in the south (Qu et al., 2023). 

2.2. Sampling and data acquisition 

2.2.1. Soil data 
A systematic soil survey of the study area was conducted through the 

2017 Cultivated Land Quality Survey Project in Jiangsu Province. A grid 
system was used to collect a total of 2,848 topsoil samples (0–20 cm) in 
cultivated land (Fig. 1). The sampling points were situated in predom-
inantly flat plains within the cultivated land. To obtain representative 
soil samples, a composite soil sample was created by collecting and 
thoroughly mixing five individual soil samples within a 10 m radius of 
each sampling location (Rawlins et al., 2009). The soil samples were air- 
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dried and then softly ground to pass through a 2-mm sieve for particle 
size measurement by a laser scattering particle analyzer (Beckman 
Coulter, LS13320). 

2.2.2. Environmental covariates 
According to the SCORPAN model (McBratney et al., 2003), soil 

formation is influenced by various factors, including soil data (S), 
climate (C), organisms (O), relief (R), parent material (P), age (A) and 
spatial position (N). We therefore selected a series of environmental 
factors associated with them (Table 1). 

The climate variables were obtained from the WorldClim database 
(Hijmans et al., 2005) with a spatial resolution of 1 km. Topographic 
variables were calculated using SAGA GIS software (https://www.sag 
a-gis.org) based on ASTER GDEM data provided by the USGS 
(https://earthexplorer.usgs.gov) at 30 m spatial resolution. The vege-
tation variables were obtained from Liu et al. (2022). The soil type 
variables were derived from the classification of soil types in the 1:1 
million digital soil map of China (https://www.resdc.cn). All the envi-
ronmental covariates were resampled to a raster cell size of 90 m by 
bilinear interpolation, as the selected environmental covariates had 
different spatial resolutions due to the different data sources. Among the 
aforementioned environmental variables, 13 variables were selected for 
mapping, which were significantly correlated with the spatial distribu-
tion of soil sand content (P＜0.01) in the factor detector (Table S1). A 

detailed explanation of the factor detector is given in Section 2.4.1. 

2.3. Sampling density 

We employed the 10-fold cross validation method to assess the ac-
curacy of the models. To investigate their performance under varying 
sampling densities, we randomly resampled each independent fold with 
a ratio ranging from 3% to 100%. The number of sample points and 
sampling densities corresponding to the ratios are shown in Table 2. 
Moreover, we computed the statistical average of the 10-fold cross 
validation to provide a measurement of the accuracy across different 
sampling densities for the models. 

The semivariance analysis serves as a fundamental tool in geo-
statistics for quantifying the spatial variability of regionalized variables 
(Zhu et al., 2021). Here, we employed the semivariance function to 
analyze the spatial variation in the soil sand content at different sam-
pling densities. Detailed calculations of the semivariance were given in 
Qu et al. (2023). The semivariance analysis was conducted in GS+

(version 9.0). 

2.4. Modelling and mapping 

2.4.1. Geographical detector 
Geographical detector (SI Materials and Methods) is a new statistical 

Fig. 1. Location of the study area in China and distribution of sampling points (n = 2,848).  
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method based on the principle of spatial differentiation of geographical 
phenomena to reveal the driving factors of a target variable (Wang et al., 
2010). The core assumption of this method is that if an independent 
variable has a significant impact on a dependent variable, then the 
spatial distribution of these two variables should exhibit similarity (Liu 
et al., 2021). The model consisted of four sub-models: factor, interac-
tion, risk, and ecological detectors. In this study, soil sand content was 
taken as variable Y, while environmental variables were taken as factor 
X. The factor detector was used to detect the importance of environ-
mental variables in explaining the spatial distribution of sand content. 
The interaction detector was used to detect how these variables inter-
acted with each other. The relevant calculations are made using Geo-
detector software (https://www.geodetector.cn). 

2.4.1.1. Factor detector. The q-value was used to measure the contri-
bution rate of a given variable. The higher the value is, the more spatial 
variation in the given variable is explained by the driver, which can be 
expressed as follows (Wang et al., 2010): 

q = 1 −

∑L

h=1
Nhσ2

h

Nσ2 , q ∈ [0, 1] (1)  

where h = 1, …, L, L is the strata of X, Nh and N are the number of sample 
units in strata h and the total region, respectively. σ2

h and σ2 are the 
variances of the dependent variable in strata h and the total region, 
respectively. 

2.4.1.2. Interaction detector. The interaction detector was used to 
evaluate whether factors X1 and X2 when acting together enhance or 
weaken the explanatory power of the dependent variable Y. First, the 
explanatory power of factors X1 and X2 is separately calculated for Y, q 
(X1) and q(X2), respectively. Then, q(X1 ∩ X2) is calculated. Finally, the 
q-values of the three variables are compared to evaluate the interaction 
effect. There are four categories in which the detected interactions can 
be classified: nonlinear weakening, single factor nonlinear weakening, 
double factors enhancement and nonlinear enhancement (Table S2). 

2.4.2. Geostatistical models 

2.4.2.1. Ordinary kriging (OK). OK is the most common format of 
kriging. The method aims to provide unbiased and optimal estimates of 
the variables by considering the semivariance in the spatial relationships 
between data points within the region being analyzed (Zhu et al., 2021). 
The algorithm only requires the target variable and is relatively simple 
to use and interpret. Similar to the SGS and COK models, the “gstat” 
package (2.1–1) (Gräler et al., 2016) in R software was used for 
prediction. 

2.4.2.2. Sequential Gaussian simulation (SGS). SGS is an effective geo-
statistical method for the stochastic simulation of continuous variables 
(Shen et al., 2021). The SGS principle involves simulating the proba-
bility distribution function of a point whose data are unknown based on 
available sample data. From the simulated distribution, one result is 
randomly selected to represent the value of the unknown point (Ma 
et al., 2022). Each time a simulation value is obtained, it is replaced with 
the original data for the next point in the simulation. SGS can therefore 
generate multiple possible spatial distribution patterns, effectively 
avoiding the smoothing effect of OK (Zhu et al., 2021). 

2.4.2.3. Co-kriging (COK). COK is an interpolation method derived 
from OK that makes full use of additional information from environ-
mental variables to interpolate target variables. The autocorrelation of 
the target variables and the cross-correlation between the target vari-
ables and other environmental variables all contribute to a better pre-
diction of the result (Zeng et al., 2023). However, the model is limited in 
that it can only be calculated using three environmental factors (Shen 
et al., 2019). Here, we used the mean annual temperature range, mean 
annual air temperature and water vapor pressor, which had the highest 
q-value in the factor detector, as covariates in the mapping. 

2.4.3. Machine learning models 

2.4.3.1. Random forest (RF). RF provides a prediction for the variables 
based on ensembles of regression trees (Breiman, 2001). RF is widely 
used in soil mapping because it is very inclusive of noise and outliers 
generated during processing, making the classification results more ac-
curate. The RF model was implemented through the “randomForest” 
package (4.6–14) (Liaw and Wiener, 2002) in R. There are two param-
eters in RF modelling that need to be defined by the user: the number of 
input variables (mtry) in each tree and the number of trees (ntree). Similar 

Table 1 
The description of the environmental variables for soil sand content prediction.  

Category Variable Description Spatial 
resolution 

Selected 
for 
modelling 

Climate MAT Mean annual air 
temperature (◦C) 

1000 m Yes 

TempRange Mean annual 
temperature range 
(◦C) 

1000 m Yes 

TempSeason Air temperature 
seasonality (◦C) 

1000 m No 

SolarRad Mean annual solar 
radiation (Jm− 2 yr− 1) 

1000 m No 

MAP Mean annual 
precipitation (mm) 

1000 m Yes 

PrecSeason Precipitation 
standard deviation 
(mm) 

1000 m No 

WindSpeed Wind speed (m s− 1) 1000 m Yes 
VaporPress Water vapor pressor 

(kPa) 
1000 m Yes 

Topography Elev Elevation above sea 
level (m) 

30 m Yes 

Slpp Slope gradient (%) 30 m Yes 
Curpln Planform curvature 30 m Yes 
Curprf Profile curvature 30 m Yes 
TWI Topographic wetness 

index 
30 m Yes 

TPI Topographic position 
index 

30 m No 

OpenNeg Negative terrain 
openness 

30 m No 

OpenPos Positive terrain 
openness 

30 m No 

Vegetation NDVImean Mean NDVI 90 m Yes 
NDVIstd Standard deviation of 

NDVI 
90 m Yes 

Soil types SoilOrd Soil types of soil 
order 

1000 m No 

SoilGrp Soil types of soil 
group 

1000 m Yes  

Table 2 
Ratio corresponding to the number of sample points and sampling density.  

Proportion, % 3 5 10 20 30 40 50 60 70 80 90 100 

Number 85 142 285 570 854 1139 1424 1709 1994 2278 2563 2848 
Density, samples/103 km2 0.80 1.33 2.66 5.31 7.97 10.63 13.28 15.94 18.60 21.25 23.91 26.57  
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to the cubist and SVM models, the grid search method of the “caret” 
package (6.0–88) (Kuhn, 2015) in R software was used to select the 
optimal model. The final model was configured using the parameters 
that resulted in the lowest prediction error. 

2.4.3.2. Cubist. Cubist is a robust method for continuous variable 
classification that utilizes rule-based regression decision trees to make 
predictions with high accuracy. It fits a separate multivariate linear 
model to each leaf node of the regression tree based on a set of condi-
tional rules, addressing the shortcomings associated with a single model 
and improving model prediction accuracy (Zhao et al., 2022). The cubist 
model was implemented through the “Cubist” package (0.4.2.1) (Kuhn 
et al., 2012) in R. 

2.4.3.3. Support vector machine (SVM). SVM is a popular supervised 
learning technique for classification and regression based on statistical 
learning theory (Smola and Scholkopf, 2004). The SVM model trans-
forms the original data into a new hyperspace using kernel functions. In 
this new hyperspace, the SVM algorithm searches for a hyperplane that 
effectively divides the classes while maximizing the margin between 
them. The “kernlab” package (0.9–29) (Karatzoglou et al., 2004) of R 
software was used to develop the SVM model. 

2.5. Accuracy and uncertainty estimation 

Model performance was evaluated by the mean coefficient of 
determination (R2), root-mean squared error (RMSE) and mean absolute 
error (MAE), as shown in equations (2)-(4). Smaller RMSE and MAE 
values are associated with smaller errors and higher prediction accu-
racy. The larger the R2 value is, the closer the fit is to the 1:1 line. 

R2 = 1 −

∑n

i=1
(ŷi − yi)

2

∑n

i=1
(ŷi − yi)

2 (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(ŷi − yi)

2

n

√

(3)  

MAE =
1
n
∑n

i=1
|(ŷi − yi) | (4)  

where ŷi is the predicted soil sand content of sample i; yi is the in-situ 
measurement of sample i; yi is the mean value of soil sand content of 
all in-situ measurements, and n is the total number of samples. 

Uncertainty analysis allows quantitative spatial analysis of soil 
property mapping results (Shrestha and Solomatine, 2006). The width of 
the 90% prediction interval (PI) is a useful measure of the prediction 
uncertainty. We computed the 90% PI in this study at every pixel. The 
limits were identified using the 0.05 and 0.95 quantiles of 100 
replications. 

3. Results and discussion 

3.1. Descriptive statistics 

The descriptive statistics of the sand content of the total soil samples 
(2,848) are shown in Table 3. The sand content of the topsoil in the study 
area showed a wide range from 3.2% to 95%. The mean value of the sand 

content was 51.6% with moderate variability (CV = 34.4%). Since the 
datasets were normally distributed (Fig. S1), no data transformation was 
applied. 

3.2. Driving factors of soil sand content 

Based on the analysis of the factor detector, the contribution of the 
main factors that affect the spatial distribution of the soil sand content is 
shown in Fig. 2. The first three main contributing factors were mean 
annual range (q = 32.8%), mean annual air temperature (q = 24.2%) 
and water vapor pressor (q = 23.7%). They were all climatic indicators, 
suggesting that long-term climatic conditions have the greatest influ-
ence on the formation and modification of the spatial distribution pat-
terns of soil sand content. 

For the topographic indicators, the topographic wetness index had 
the strongest explanatory power for soil sand content (q = 23.0%), 
followed by elevation (q = 13.3%) and slope (q = 8.5%). The topo-
graphic wetness index is a physical indicator of the influence of regional 
topography on runoff flow and storage which facilitates the identifica-
tion of catchment areas (Grabs et al., 2009). The high explanatory power 
of the topographic wetness index for soil sand content indicates that the 
spatial distribution of soil sand content was inextricably linked to the 
scouring action of water flow. Similar conclusions were drawn by Mello 
et al. (2022), who found that drainage patterns were closely related to 
soil formation; therefore, hydrological attributes represented by 
drainage networks showed great importance for soil prediction. The 
driving effect of all vegetation indicators on the spatial distribution of 
sand content was not considerable. 

The additive interactions between the factors were further detected 
with an interaction detector. As shown in Fig. 3, the 13 factors formed 91 
pairs of interactions when superimposed in two-by-two interactions. 
Approximately 74% of the factor interaction combinations showed a 
nonlinear enhanced relationship, 26% demonstrated a double factor 
enhanced relationship, and no independent relationship was found. The 
q-values of the influence of the interaction between the two factors were 
all greater than the q-values of a single factor, indicating that the in-
fluence of the interaction between the factors was higher than the in-
fluence of a single factor (Fang et al., 2021). The results of the 
interaction detector emphasized that the factors influencing the spatial 
distribution of soil sand content were not the result of a simple additive 
relationship of individual factors, but the result of the superposition of 
the spatial distribution characteristics of different factors. For example, 
the impact of wind speed as a single factor on the spatial variation of soil 
sand content is minimal. However, when combined with the soil type 
factor, the interaction effect of these two factors, as indicated by the q- 
value of 0.17, falls into the category of double factors enhancement. This 
indicates that wind speed has a statistically meaningful influence on soil 
sand content in specific soil types. 

3.3. Model performance 

Table 4 shows the summary statistics of the prediction accuracy of 
each model based on a 100% sample size. The performance of the six 
models in predicting the soil sand content in the study area was found to 
be acceptable. Among the geostatistical models, OK performed best with 
the lowest value of RMSE (9.78) and the highest value of R2 (0.72). SGS 
was slightly inferior, with an R2 of 0.68, and COK was the worst, with an 
R2 of 0.38. Among the machine learning models, RF had a higher 

Table 3 
Descriptive statistics of soil sand content in the study area.   

Min (%) Median (%) Max (%) Mean (%) SD (%) CV (%) Skewness Kurtosis 

Sand content  3.2  55.0  95.0  51.6  17.8  34.4  − 0.49  − 0.36 

SD, standard deviation; 
CV, coefficient of variation. 
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accuracy (R2 = 0.56)followed by Cubist (R2 = 0.49), and SVM had a 
lower accuracy (R2 = 0.30). 

According to our results, OK and SGS exhibited the best performance 
in terms of mapping accuracy. However, this contradicts the findings of 
many studies that considered machine learning models to be better 
suited to soil property prediction (Szatmári and Pásztor, 2019; Shar-
ififar, 2022; Veronesi and Schillaci, 2019; Zhang et al., 2020). This is 
because machine learning models were thought to have several advan-
tages. On the one hand, since most machine learning models are based 

on regression tree algorithms, the aggregation of multiple trees will 
improve the stability of the model. On the other hand, machine learning 
models make full use of additional information from environmental 
variables, so the model’s accuracy will be improved. However, the 
machine learning models lost its superiority in our study area. This was 
because in areas of gentle topography, where environmental gradients 
were small, the degree of spatial synergy between environmental factors 
and soils was usually low, resulting in a reduction in the effectiveness of 
using environmental variables to predict soil properties (Pouladi et al., 

Fig. 2. Statistics of q value for single factors affecting sand content.  

Fig. 3. Statistics of q-value for interaction factors affecting sand content (#indicates double factors enhancement and others indicate nonlinear enhancement).  
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2019; Sun et al., 2022). Among geostatistical models, OK and SGS, 
which relied entirely on the spatial autocorrelation of the target vari-
ables, contained valuable information that could not be captured by 
environmental covariates, and the inclusion of spatial information 
improved the prediction performance (Beguin et al., 2017). COK, a de-
rivative of OK, considered both the spatial autocorrelation of the target 
variable and additional environmental variables, but the forced addition 
of environmental variables to the operation reduced the prediction ac-
curacy due to the low synergy between environmental variables and 
target variables in our study area. Hence, in the absence of highly syn-
ergistic or highly accurate environmental variables, COK exhibits 
limited performance in accurately mapping soil sand content in the 
plains. 

The performance of the predictive model is also correlated with other 
factors. Among them, different target variables for prediction can lead to 
different performances of the models. Wu et al. (2022) found that OK 
performed poorly when mapping soil organic carbon, which was 

attributed to the fact that the spatial distribution of soil organic carbon 
was subject to multiple influences from natural and human activities. Lu 
et al. (2023) found that nonlinear model outperformed linear model 
when mapping soil pH and carbonates. This is due to its high spatial 
variability and sensitivity to local environmental factors. These exam-
ples demonstrated how different target variables in digital soil mapping 
can present unique challenges and require tailored approaches to ach-
ieve accurate predictions. Furthermore, the topographical conditions of 
the study area could critically affect the accuracy of different mapping 
methods. A myriad of studies have considered machine learning models 
to be more effective for mapping in hilly mountainous areas with un-
dulating terrain (Behrens et al., 2010; Huang et al., 2022; Long et al., 
2018; Zhang et al., 2019). Pouladi et al. (2019) conducted research in 
areas with flat terrain and demonstrated that OK performed best and 
that no additional environmental variables were considered necessary 
for mapping. 

Machine learning has gained widespread usage in recent years due to 
its great flexibility in establishing relationships between dependent and 
independent variables. However, it does not account for spatial corre-
lations and is effectively a “black box”. Thus, spatial statistics should not 
be neglected. The future advancement of DSM capabilities can be greatly 
enhanced by effectively integrating machine learning and spatial sta-
tistics (Heuvelink and Webster, 2022). 

3.4. Effects of sampling density on mapping accuracy 

Fig. 4 shows the spatial prediction accuracy of the soil sand content 

Table 4 
Accuracy of the sand contents predicted with OK, SGS, COK, RF, Cubist and 
SVM, evaluated as R2, MAE and RMSE.   

Geostatistical models Machine learning models  

OK SGS COK RF Cubist SVM 

R2  0.72  0.68  0.38  0.56  0.49  0.30 
MAE  7.30  7.60  9.83  8.54  9.67  11.45 
RMSE  9.78  9.98  13.65  11.24  12.87  15.03  

Fig. 4. Comparison of the accuracy of sand content prediction with different sampling densities.  
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in the study area with the change in sampling density. The study used a 
total of 12 sampling densities from 3% to 100% of the calibration dataset 
(Table 2) for soil sand content prediction. As shown in Fig. 4, the pre-
diction accuracy of the models was sensitive to the density of sample 
points, and the pattern of overall variation was largely consistent. R2, 
MAE and RMSE fluctuated considerably for small sample sizes (<50%), 
with R2 gradually increasing and MAE and RMSE gradually decreasing 
as the number of sample points increased. When the sampling density 
continued to increase, the prediction accuracy of each model tended to 
stabilize, indicating that the method of improving prediction accuracy 
by increasing the sampling density had a marginal effect, in line with the 
previous assessment of Lai et al. (2021). This boils down to the increased 
density of sample points leading to higher spatial aggregation and in-
formation saturation. In this case, even if the sampling density is 
increased, no additional information can be provided. 

No model always maintained an absolute accuracy advantage over 
other models at different sampling densities. Similar conclusions have 
been drawn in many studies (Shao et al., 2021; Sun et al., 2022). The 
geostatistical model and the machine learning model both have 
strengths and weaknesses in terms of prediction accuracy at different 
point densities. In the variation in R2 with sampling density in Fig. 4, 
there was an intersection between the machine learning model and 
geostatistical model. At high sampling densities (>20%, 4.26 samples/ 
103 km2), geostatistical models (OK and SGS) had an advantage over 
other models in terms of accuracy, with higher R2 and smaller RMSE and 
MAE. Pouladi et al. (2019) also found that OK could achieve effective 
prediction of soil properties with a high density of sample points. When 
the sampling density was less than 20% (4.26 samples/103 km2), the 
machine learning models, RF and Cubist showed superiority, with 
higher R2 and relatively lower RMSE and MAE compared to other 
models. This was because the spatial autocorrelation relied upon by 
geostatistical models was difficult to capture at low sampling density. 

To confirm this point, we computed semivariograms for soil sand 
content at six sampling densities (Fig. 5). The optimal model for each 
sampling density was selected based on the lowest residual sum of 
squares and the highest R2. The range (a) represents the maximum 
distance at which spatial autocorrelation occurs, indicating that a vari-
able loses its spatial autocorrelation beyond that distance (Webster and 
Oliver, 2001). As the sampling density decreases, the range becomes 
shorter. At the same time, the fitting accuracy of the semivariogram, on 

which the geostatistical model relies, gradually decreases. This might be 
an important factor leading to poor mapping performance of geo-
statistical models under low-density conditions. Whereas machine 
learning models made full use of the additional information provided by 
environmental covariates to aid prediction and therefore had higher 
prediction accuracy than geostatistical models. In the process of solving 
practical problems, to save costs, we should reasonably choose the most 
suitable model to improve the prediction accuracy according to the 
density of sample points (Arrouays et al., 2014). 

3.5. Spatial distribution and uncertainty analysis 

Fig. 6 shows the predicted maps of soil sand content with various 
models based on a 100% sample size. Overall, the spatial distribution 
pattern of sand content obtained by the six models was generally similar, 
with the high value areas distributed in the northwest and coastal areas 
of the study area and the low value areas distributed in the central and 
southwest areas. Actually, there are historical reasons for the formation 
of sandy areas in the study area. The high value area in the northwest is 
associated with the accumulation of river sediment. The second largest 
river in China, the Yellow River, used to flow there for over 600 years, 
and the deposition of river sediment has created large areas of sandy soil 
in the area. The high values in coastal areas are associated with marine 
sediments of the Yellow Sea. 

This scenario is similar to the results of the second national soil 
survey in China in the 1980s (Qu et al., 2023), demonstrating that soil 
texture is a fairly stable soil property that changes less over time. 
However, there have been discrepancies between the soil maps pro-
duced from the sample points in the China National Soil Series Survey 
and Compilation (2009–2019) and our mapping results. The mapping 
results of Liu et al. (2022) indicated that the sand content of the topsoil 
layer was higher in the southwest and northwest, which corresponded 
well with the distribution of hills in Jiangsu Province. The reasons for 
this discrepancy could be the different mapping methods, a lower den-
sity of sampling points (0.50 samples/103 km2) than ours and a high 
dependence on environmental variables. Moreover, the scope of their 
study was national and much larger than our study area; therefore, a 
lower accuracy of the mapping result may have contributed to the 
discrepancy. 

The prediction maps of soil sand content produced by the three 

Fig. 5. Semivariograms for soil sand content at different sampling densities.  
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geostatistical models were fuzzier and blurrier than those produced by 
the machine learning models (Fig. 6). This was because geostatistical 
models rely principally on spatial distances. The predictions of soil sand 
content generated by OK and SGS were broadly similar (Fig. 6a and 
Fig. 6b). However, in terms of prediction range, OK exhibited a 
smoothing effect due to the filtering of information, i.e., the maximum 
and minimum values of the original data were removed. SGS had a wider 
range of predicted sand content that was closer to the measured values, 
as it emphasized the volatility of the raw data and could mitigate the 
smoothing of the data to some extent. COK considered environmental 
variables with small variability, yielding fuzzy mapping results and 
reducing the prediction range considerably (Fig. 6c). The mapping re-
sults of the machine learning models were more detailed. Among them, 
the mapping results of cubist and SVM showed segmentation charac-
teristics with sporadic distribution of patched low-value areas that 
resembled the urban distribution of the region (Fig. 6e and Fig. 6f). This 
occurred because both cubist and SVM utilized linear functions in their 
underlying logic, and the input of NDVI among the environmental var-
iables led to abrupt changes in the predictions. In terms of prediction 
range, RF had the widest range, followed by SVM and cubist. 

Fig. 7 displays the uncertainties with different models of soil sand 
content, using lower and upper prediction limits at a 90% prediction 
interval. The uncertainty distributions of OK and SGS were smaller, 
indicating that these two models were more stable since they only 
consider the autocorrelations of the target variables. Their distribution 
was irregular throughout the study area. COK had a similar uncertainty 
distribution to the three machine learning models due to the inclusion of 
the calculation of environmental variables. The high uncertainty for 
COK, RF, Cubist and SVM was distributed in the northwest and southeast 
areas, and the low uncertainty was distributed in the central and 

southwest areas. Combined with the spatial distribution map of soil sand 
content (Fig. 6), the large uncertainty was distributed in the region with 
high soil sand content values. This could be attributed to the fact that in 
the high-value areas, the data were more discrete, which increased the 
uncertainty of the mapping. Fig. 8 displays the 90% prediction interval 
(PI) of each model for sand content prediction. This indicates that for 
each prediction model, there is a 90% probability that the true value 
falls within the prediction interval. OK yielded the smallest mean of 90% 
PI (20.98%), followed by SGS (21.75%), whose mean was smaller than 
that of RF (23.32%), cubist (23.45%), COK (23.57%), and SVM 
(23.79%). 

In this study, the mapping results of several models were evaluated in 
terms of accuracy and stability. These two aspects were crucial factors in 
the evaluation of DSM results and could directly affect the reliability of 
the mapping results. However, in practice, the evaluation of digital soil 
mapping also includes other aspects, such as the interpretability and 
applicability of the map. These indicators are equally important but 
were not discussed in detail in this article. Therefore, in future studies, 
researchers should comprehensively consider multiple evaluation in-
dicators to assess the quality of DSM mapping results to better suit 
practical applications. 

3.6. Limitations and further research 

There were certain limitations to our study. First, the selection of 
environmental variables was relatively conventional and less relevant to 
sand content, and advanced environmental covariates such as high- 
resolution remote sensing data (Padarian et al., 2022; Liu et al., 2020) 
and UAV imagery (Biney et al., 2023) were not included. This limitation 
may have restricted the ability to capture fine-scale variations in the soil 

Fig. 6. The predicted maps of sand content with different models.  

L. Qu et al.                                                                                                                                                                                                                                       



Catena 234 (2024) 107572

10

mapping process. Second, the spatial resolution of the covariates was 
relatively low. For instance, environmental variables such as climate 
data were obtained at a resolution of 1 km, and soil information was also 

characterized on a large scale. These coarse data might contribute to the 
limited shared variation between the covariates and the soil mapping 
target variable. Third, to ensure the relevance of the selected environ-
mental variables to soil sand content, we employed the geographical 
detector to screen the covariates. However, the results were not 
compared with the model without the screening process, which could 
potentially yield different outcomes. 

Meanwhile, numerous studies have indicated that the sampling 
method and structure also have a considerable impact on the accuracy of 
the DSM (Du et al., 2021). Nevertheless, our study was based on a 
sample set collected from farmland, and the sample structure was not 
laid out at the diversity of the relief since the terrain in most study areas 
is very flat. To obtain more accurate soil maps, the next step would be to 
conduct an in-depth study of the influence of sampling methods and 
layout on the accuracy of the mapping. 

4. Conclusion 

In this study, we compared the effect of sampling density on the 
performance of two common types of soil prediction models (geo-
statistical models and machine learning models) for mapping the sand 
content of topsoil in plain areas. Moreover, the geographical detector 
was used to identify the main drivers of spatial variation in soil sand 
content. The results showed that the spatial variability of the soil sand 
content in this study was largely attributed to climate factors, and the 
dominant factors were the mean annual range, mean annual air tem-
perature and water vapor pressor, with q-values of 32.8%, 24.2% and 
23.7%, respectively. In terms of the prediction accuracy, the geo-
statistical models OK and SGS, which did not depend on environmental 
variables, had higher accuracy based on a 100% sample size, with R2 

Fig. 7. Maps of the uncertainty of sand content prediction with different models.  

Fig. 8. 90% prediction interval (PI) of each model for sand content prediction.  
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values of 0.72 and 0.68, respectively. COK, which incorporated envi-
ronmental variables, performed poorly, with an R2 of 0.38. Among the 
machine learning models, RF had the highest accuracy, followed by 
cubist and SVM, with R2 values of 0.56, 0.49 and 0.30, respectively. The 
sampling density had a considerable impact on the model accuracy. As 
the number of samples decreased, the model accuracy decreased 
(smaller R2 and larger RMSE and MAE). The advantages of machine 
learning models became apparent when the sampling density was below 
20% (5.31 samples/103 km2) for soil sand content mapping in plain 
areas. The geostatistical models OK or SGS should be chosen when the 
sampling density is greater than 5.31 samples/103 km2, and RF should 
be chosen when the sampling density is less than that. This study con-
firms that an optimal combination of model and sampling density should 
be chosen for the spatial prediction of soil properties in an area. If 
possible, further consideration needs to be given to the spatial structure 
of the target variables and their relationship with environmental 
covariates. 
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